Web Services for Presence Based Application

Development

Rajesh Karunamurthy

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montréal, Québec, Canada

September 2004

© Rajesh Karunamurthy, 2004

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94703-3
Our file Notre référence
ISBN: 0-612-94703-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Web Services for Presence Based Application Development

Rajesh Karunamurthy

Presence is a promising technology for developing innovative value added services that
differentiates the success of the service providers, seeing that users gaze for novel
services. Standardization efforts are ongoing in the presence technology while some
organizations like IETF and 3GPP are working in the protocol area. Consortiums like
Parlay, JAIN and OMA are working on exposing this potential technology for the
application developers via APIs. Interoperability and the flexibility to develop
applications with ease would be the foundation for the success of the presence
technology. Web services is the next generation middleware that provides flexibility to
develop loosely coupled, coarse-grained interfaces with seamless interoperability that
makes application development simpler and efficient. These advantages make Web
services an attractive middleware for developing ground-breaking value added services
using the presence technology. This thesis proposes a novel Web service based API for
presence based application development that is protocol, network, language, platform and
architecture independent. The proposed API is highly abstracted with the intention that
even non-telephony experts like IT developers should be able to incorporate the presence
functionalities for creating services. Two case studies are also provided to show the
usefulness, completeness and flexibility of the proposed API. A subset of the API is
implemented as a Web service gateway and mapped to a SIMPLE based presence server

besides that Web service based clients are also prototyped. One of the main aims of this

iii

research work is to see the feasibility of using the Web services middleware for
telecommunication application development; therefore performance measurements are
also done. The analysis of the results show that although Web services introduces
additional overhead because of XML based SOAP messages it is insignificant compared
to the interoperability and easier application development features offered by this

middleware.

iv

Acknowledgements

Words are not enough for thanking all the people who helped me complete this research
work. First of all I would like to take this opportunity to thank my supervisors Dr.Ferhat
Khendek and Dr.Roch Glitho for assisting in every move. Although they had busy
schedules, they always helped me to solve my problems. I learnt a lot under their tutelage

and would always remember them for their guidance, motivation and immense support.

[am thankful to NSERC (the Natural Sciences and Engineering Research Council of
Canada) and Ericsson Research and Development, Montreal for assisting me financially.
Furthermore I am grateful to Ericsson for providing me an opportunity to work in one of
the finest research centers in the world and to Concordia University for giving me all the
facilities I needed. I also thank my colleagues for their suggestions and discussions; it
was really great working with all of you. I would also like to show my appreciation to
Andre Poulin, Jean-Charles Beaudin, Sochea Meas, Vincent Carpentier and last but not
least Suresh Krishnan for the help provided by them at Ericsson.

I would like to take this opportunity to thank everyone from my family in India, without
them it would have been impossible to complete this work. My uncle,
Dr.Radhakrishnan’s family in Montreal was of great help and they took care of me very
well. T would like to thank them from my heart. For last two years, my friends and
roommates were part of my life in Montreal and were always present during the times I

needed them the most. I would like to thank everyone for their patience and help.

Rajesh Karunamurthy, September 2004

Table of Contents

LIST OF FIGURES

..

LIST OF TABLES

LIST OF ACRONYMS AND ABBREVIATIONS.covtiiiiiiiiiiiniiiiieieen, Xiii

CHAPTER 1: INTRODUCTION

...

1.1 INTRODUCTION TO THE RESEARCH DOMAIN

...

1.1.1 Value Added Services

..

1.1.2 The concept of Presence

...

1.1.3 Web Services

..

1.2 THE PROBLEM STATEMENT AND THE PROPOSED SOLUTION

.......................................

1.3 ORGANIZATION OF THE THESIS

..

CHAPTER 2: PRESENCE AND WEB SERVICES

..

2.1 PRESENCE TECHNOLOGY

..

2.1.1 A model for Presence Service

..

2.1.2. Presence Protocol REQUITEMENLS......c.cvveererrineenreriernienennienessieseesanssesanas 10

2.1.3 P1eSENCE PIOtOCOLSeouvenrieieiieierieieetere ettt ettt et ees 11
2.1.3.1 Extensible Messaging and Presence Protocol (XMPP)............ccueeeu. 11
2.1.3.2 SIP for Instant Messaging and Presence Leveraging Extensions
(SIMPLE) ..ottt sttt at sttt sa et ae st e s e s et eenas 13
2.1.3.3 Wireless Village (WV) Protocol SUTLec.coueeveeveenrieneerierireneneeenaenn 15

2.1.4 Professional Organizations and their Workcoccvvieveviveninnieenenieinenenn, 18

vi

2.1.4.1 Internet Engineering Task Force (IETF)o.oucvvenenomnunceeneneenenne 18

2.1.4.2 Third Generation Partnership Project (3GPP)covuveveevereevcevnieenne 19
2.1.4.3 Open Mobile Alliance (OMA)cc.oueeeeurcerieereecrireeeienienieeescie e 20
2.1.5 DISCUSSION ...v.vviviereeiereieiieeetesie s eeeseseeseseesessssessseaseessesasseseeseesessenessessensansen 22
2.2 WEB SERVICES ...cuveoutiiiiiiieniiiieiiiiesee ittt sere e b st se s sas e stesn s esaebasaesessnesns 23
2.2.1 Web Services Principles.....coceeeiireneniincneeeteneeteneeeeeenteee e 23
2.2.2 Web Services ArchiteCture.c.c.eevueerueerierreernereriiereeereeeeeeeeeeneesee e eennes 24
2.2.2.1 ROIES Of ERHILIES....ooueeeeeeiareeeiesreneeeteeiteeieeestesiesste st st s ssessae s aee 24
2.2.2.2 Operations Used by ERLILIeS...........cocccevveureeerieeeserrsrtenirereereneessessesesnens 26
2.2.3 Web Services developmentcoceeieveerierienenineeneenteceesreneeseeseeeseenveens 27
2.2.4 Protocol StaCK ...c.cocveiiiiiiiiieneeeceeeereee et 28
2.2.5 Advantages of using Web Services for Application development............... 30

CHAPTER 3: PRESENCE BASED APPLICATION DEVELOPMENT: STATE-OF-

THERART ...ttt ettt e st a bt sasss s e ses b ensssassasessssarsansans 32
3.1 PRESENCE AND AVAILABILITY MANAGEMENT (PAM) /PARLAYccocovvemrverenrernnenne 32
B2PARLAY X o coteieirtieietereteeste e re e seee e e sasse st e abe s e et e s s s sesssstssessssassessensennon 34
3.3 NOKIA’S PROPRIETARY PRESENCE API’S....c.oouiiiiiiiiiietcetecne e 36
3.4 JAVA API’S FOR INTEGRATED NETWORKS (JAIN) ..c.uviiiiiiiiiicrieeeeecie s 37
3.5 RELEVANT WEB SERVICE API’S ...cceiiiitiiieieitetenteieni et seesrteenesne s enaeesneaas 39

3.5.1 Geographical Information System Based API’Scocceerivrienvienieenreenann. 39
3.5.2. Location Based API’Sccceiviiiieeiirieccerteceeere e sre st snesne s s 40
3.6 SUMMARY ...oviiiiireieriieneetesteentaesstesseessesstessessessstssssesssessaesssessssessnssasesssassssessnsessses 41

vii

CHAPTER 4: THE PROPOSED WEB SERVICE BASED APPLICATION

PROGRAMMING INTERFACE ..ottt et saessesesessesinens 42
4.1 INTRODUCTION......certemeeuriurietentrtentenreneteeeeeaenesnes s s e ss st s aesae i s sas b sesasess 42
4.2 METHODS USED IN THE APT......ociiiiiiiiii s 43
4.3 DETAILED DATA TYPES USED IN THE PROPOSALuuvvvrierereerenieeereeesearrereesenesescnnnnes 46
4.4 METHODS IN DETAIL ..coveiviniirerinierininisimsinieesisiesesississsieresesssaessssessosessssssessssosessssensons 52
4.5 TWO CASE STUDIES BASED ON THE PROPOSED API.......ccccocvivviiiniiiiiiniiiiiiene 60

4.5.1. Case Study One - Application BOW (deBate nOW)......cccccceevvieicnenniennnnns 60
4.5.2. Case Study Two - CONFAPP (CONFerencing APPlication).................... 64
4.5.3 Discussion about the API with respect to the Case Studies.........ccccceeueeunene 66
4.6 SUMMARY OF THE APTooiiiiiiiiiiiicincec s 67

CHAPTER 5: PROTOTYPES AND PERFORMANCE STUDY ...cccooenviriineriineeceenne 69

5.1 ARCHITECTURE OF THE WEB SERVICE BASED PRESENCE SYSTEMcccecuivueruinncnnenn 69
5.1.1 APPHCALION SEIVETcecveerireiirerierreereerieeteseeerressreesreessesssessesseassnasaessessesns 70
5.1.2 FTamMEWOTK ...cverueeiiniiiiniieniceietcste ettt s e st s eesaeesee st st eseessaessenns 71
5.1.3 PrESEINCE SEIVETuvevueeerererreeiereesreenreseeesseessesseessareessaesssessenessesesaesasessseens 71
5.1.4 Presence Web Service Gateway — Prototypecooveeevveerrieeerieensneeenseenenee 71
5.1.5 Web Service based Presence Clients — Prototypesccoceevveeenecenervecrnnnn 73

5.2 MAPPING OF THE WEB SERVICE BASED PRESENCE GATEWAY TO THE SIMPLE BASED

PRESENCE SERVERccirertiiiiiinitireieieittinnteetnesesnneeesnnessnessesossssessnsssosnssssnnsssnesssssessnns 75
5.3 PERFORMANCE EVALUATIONcccotiriirieetieneererteemeeenneeteseeesoseesssessssesmeessnessssssmnssnse 77
5.3.1 Test Bed and Performance metricsccceevvervieeerereeiieeneiireenieeennecesnessnnes 77
5.3.2 Performance Measurements and Analysisccoeceeverneevenennienrenseenseenenns 79

viil

CHAPTER 6: CONCLUSIONcccviiiiiiiiniiintiienetsteeeisieresseseesessesesssoseesnsnens 85

6.1 SUMMARY OF CONTRIBUTIONS .vvvtteiieeeeeeeresireeesseseneneeessssssesseeesesssonessassnessssesssneeens 85
B2 FUTURE WORK ...ccoiiiiiiiieeee i eeeeeeeeevvvsveeseesessesssssssssssssmnmnansssssesenesssaneesesesesasesesrenesanneee 87
REFERENCES ... oottt s e et ssesssssssssssssessasssssnnsessnssesnansasasarennenannennnses 88

APPENDIX A : Deployment and Configuration of the Web Service based Presence

SYStEM COMPONEIILS.....coeeirriieiieteeieerete et see e reeeeee e eee st tesae s beseees st sssassseeesseaessaensns 91

ix

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 3.1:
Figure 4.1:
Figure 4.2:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:

Figure 5.5:

List of Figures

Page
Basic Presence Model.... ..o 9
XML Streams and XML Stanzas of XMPP Protocol................c..coenin. 12
Wireless Village Protocol Stack...........coooiiiiiiiiiiiiiiiie 16
Service Oriented ArchiteCture.ovvuevniviininiiiiii e, 25
Web Services Stack.......oovvriiieiiiiiii i 29
Relationship between Parlay and Parlay-x API’S.......c.ccoiviiiviiiiiinnnnn, 35
deBate nOW application.........ocvuiuiieiiiieiiiiiinrieieiei e, 62
Dial-out model conference usage (Presence side)..........ccovvvvviveinnnninne. 65
Architecture of the Web Service based Presence System.........................69
Basic Architecture of the Web Service Gateway for Presence.................. 71
Class Diagram of the Web Service Gateway for Presence....................... 73
User Interface for Publisher.............cooooviiiiiiiiiii e, 74
User Interface for watcher.............ooviiiiiiniiiiii e, 74

Figure 5.6: Mapping of the Presence Gateway to Presence Server (Publisher

FUNCHONAITHES). + ..t eeetenit ettt e et et et et et e e e e e e e naenentenanseneeneannns 76

Figure 5.7: Mapping of the Presence Gateway to Presence Server (Watcher

Functionalities).......ooeieii i i e e 77
Figure 5.8: Basic architecture of the test environment.............ccocvveiiviinienineenannn, 78
Figure 5.9: Response time and Network Load of the Publisher with and without the

Web Service Gateway for Presence..........cooviiiiiiiiiiiiii e, 80

Figure 5.10: Response time and Network Load of the Watcher with and without the

Web Service gateway for Presence......ooovviiiiiiiiniiririiniiiiiieriririeee e eneenrenans 81
Figure 5.11: Response time and Network Load of the Watcher with

Filtering Parameters........ovueuiniie e eaeees 83
Figure A.1: Deploying and Checking the Framework, Presence Server and Gateway....92
Figure A.2: Registering the Presence service and creating the user for using the

Presence service with the FramewWorK.......ueeeen ittt e, 93

xi

List of Tables

Page
Table 4.1: Conventions and simple Data types used inthe API......................ooii 47
Table 4.2: Complex Data Types used inthe API..................o 51
Table 4.3: (Status_Op) setPresence Method...........ccooveviiiiiiiiiiiiiiiiiiiiieeen, 52
Table 4.4: (Status_Op) setWatcherAuthorization Method.................coooooil 54
Table 4.5: (Status_Op) setCList Method..............oooiiiiiiiii e 55
Table 4.6: (Sub_Status) subscribe Presence Method..........cccovveviiiiiiiiiiiiiiiinnnn, 56
Table 4.7: (Status_op) notify Presence Method..............ccoiiiiiiiiiiiniiniiniinnnns 57
Table 4.8: (Sub_Status) subscribe. WINFO Method.............ooooiiiiiiiiiiiie 58
Table 4.9: (Status_op) notify WINFO Method...........c.coviiiiiiiiiiiiiiiiiiniiiene, 60

xii

List of Acronyms and Abbreviations

3GPP: 3" Generation Partnership Project

3GPP2: 3™ Generation Partnership Project 2

APEX : Application Extension

BOW: deBate nOW

CLP: Command Line Protocol

CONFAPP: CONFerencing APPlication

CORBA: Common Object Request Broker Architecture
CPIM: Common Presence and Instance Messaging

CS: Circuit Switched

CSP: Client to Server Protocol

DAML-S: DARPA Agent Mark up Language — Services
GIS: Geographic Information System

IANA: Internet Assigned Numbers Authority

[IOP: Internet Inter ORB Protocol

IETF: Internet Engineering Task Force

IMPP: Instant Messaging and Presence Protocol

IMPS: Instant Messaging and Presence Services

IMS: IP Multimedia subsystem

IRC: Internet Relay Chat

J2EE: Java 2 Platform, Enterprise Edition

JCP: Java Community Process

xiii

JSPA: Java Specification Participation Agreement
JSR: Java Specification Request

MMS: Multimedia Message Service

MQ: Message Queuing

OASIS: Organization for the Advancement of Structured Information Standards
OGC: Open GIS Consortium, Inc

OMA: Open Mobile Alliance

ORPC: Object Remote Procedure Call

OSA: Open Service Architecture

P&IM: Presence and Instant Messaging

PA: Presence Agent

PAM: Presence and Availability Management
PIDF: Presence Information Data Format
Presentity: Presence Entity

PRIM: Presence and Instant messaging

PS: Packet Switched

QOS: Quality of Service

RFC: Request for Comments

SGML: Standard Genralised Markup Language
SIMPLE: SIP for Instant Messaging and Presence Leveraging Extensions
SIP: Session Initiation Protocol

SMS: Short Message Service

SOA: Service Oriented Architecture

xiv

SOAP: Simple Object Acccess protocol

SSP: Server to Server Protocol

UDDI: Universal Description, Discovery and Integration
VHE: Virtual Home Environment

W3C: World Wide Web Consortium

WG: Working Groups

WSDL: Web Services Description Language
WSP: Wireless Session Protocol

WSI: Web Service Interface

WS-I: Web Services Interoperability Organization
WV: Wireless Village

WWW: World Wide Web

XML : Extensible Markup Language

XMPP: Extensible Messaging and Presence Protocol

XV

Chapter 1

Introduction

This chapter presents the background to and motivation for the research. Initially, an
overview of the research domain is provided. The problem statement and the proposed
solution are discussed in the next section. The last section gives the organization of the

remaining part of the thesis.

1.1 Introduction to the Research Domain

This section gives a brief outline of the research area. Initially, an introduction to value
added services is given. Afterwards Presence, one of the promising technology for
creating value added services, is discussed and finally a small overview of the Web

Services technology that allows easier application development is provided.
1.1.1 Value Added Services
Today, telecommunication networks are extensively deployed and used by enormous

amount of people for wide variety of services and diverse purposes. Cellular phone has

become a basic necessity in this contemporary world and the users gaze for innovative

and attractive services in the market. Basic services like two party voice call are no
longer a key issue for the service providers, but the differentiating factor for the service
providers are the value added services. Value added services are services that add extra
value to the basic service like call forwarding or they could be standalone services like
Short Message Service (SMS). There are many value added services available today like
call diversion, call screening, call transfer, call hold and SMS. Many innovative
technologies like Multimedia Message Service (MMS), Presence, and Push to talk are

emerging for enhanced, revolutionary value added services.

1.1.2 The concept of Presence

Thanks to the numerous communication devices, technologies and services available
today, however their full potential is not exploited. For instance, according to a research
report more than half of the telephone calls made around the globe go unanswered. The
presence technology allows entities to disseminate information about their
communication capabilities, preferences, availability and status to other entities and
allows the prospective usage of all communication devices and technologies.

The birth of World Wide Web (WWW) created a way for global communication
and information sharing. Today the most popular application in Internet is the instant
messaging application, which is principally a presence-enabled communication service.
In instant messaging, users communicate with others using short messages based on the
‘availability’ of the user, which is basically presence information. The presence

technology is used in various areas like gaming, conferencing, collaborative working and

distance learning apart from instant messaging. Some of the prominent presence-enabled
applications are Microsoft Office 2003 and IBM Lotus Notes 6.5 [1]. The presence
technology can be used as a value added feature with any application that involves
interaction between entities.

The presence technology has a wide area of application and its potential has been
realized by many standard organizations from Internet and telecommunication domain.
Internet Engineering Task Force (IETF) has developed the basic presence model, defined
the protocol requirements and also developed an interoperability framework. There are
many standard protocols and API’s proposed by IETF, 3GPP (3»rd Generation Partnership
Project), Open Mobile Alliance (OMA), Parlay, and Java API’s for Integrated Networks
(JAIN) for accessing the presence service. Standardization effect is still on going and the

technology is not matured.

1.1.3 Web Services

The World Wide Web is more and more used for application to application
communication. The programmatic interfaces made available are referred to as Web
services [2]. The Web services provide a standard means of communication among
different software applications, running on a variety of platforms and/or frameworks.
According to the World Wide Web Consortium’s (W3C) Web Services architecture
working group ‘Web Services are an amalgam of Distributed Objects, Business to
Business and the World Wide Web itself”. Web services is based on Service Oriented

Architecture (SOA) and has been adopted widely by many domains like Information

Technology (IT), Telecommunications, Digital Imaging and Geographical Information
System, to name a few.

The Web services are the new middleware that provides numerous promising
functionalites like high level abstract interfaces, loose coupling between interacting
componenets and interoperability. The Web services technology is based on open
standards like HTTP, XML (Extensible Markup Language), SOAP (Simple Object
Acccess protocol), WSDL (Web Services Description Language) and UDDI (Universal
Description, Discovery and Integration). Open standard consortiums like IETF, World
Wide Web Consortium, Organization for the Advancement of Structured Information
Standards (OASIS) and Web Services Interoperability Organization (WS-I) develop the
Web services specifications. Furthermore the high level interfaces provide easier
application development. The above mentioned features make Web services an attractive
middleware for building standard based, novel interoperable services and to expose the

existing functionalities for application development.

1.2 The Problem Statement and the Proposed Solution

In recent years presence technology has gained significant importance and lot of
standardization effort is going on within many standard organizations. IP based SIMPLE
(SIP for Instant Messaging and Presence Leveraging Extensions), XML based XMPP
(Extensible Messaging and Presence Protocol) and Wireless Village (WV) protocols have
been proposed and adopted by many companies. These protocols are not interoperable;

however there are some solutions proposed by IETF like Common Presence and Instance

Messaging (CPIM) interoperable framework and protocol gateways. Moreover OMA’s
Interoperability working group has recently started its work on presence interoperability.
Interoperability is one of the key issues for the future of presence.

Presence enabled applications have enormous potential and numerous
applications can be developed using this technology. While some of the organizations are
working on the protocol and interoperability issues of presence, organizations like Parlay
and JAIN are working on exposing the presence service to application developers. They
have developed interfaces for presence service access itrespective of the underlying
protocol, network and architecture. These API’s have several problems, some being
programming language dependent or technology dependent (Common Object Request
Broker Architecture (CORBA) based) and in addition they are at low level of abstraction.
The application developers do not have flexibility with the API and more over need to
use many methods to even realize simple presence functionality.

The Web Services middleware provides the flexibility to offer high-level,
language and platform independent abstract interfaces and besides that provides seamless
interoperability. This makes Web Services an attractive technology to develop
Application Programming Interfaces (API) for presence. There is no standard Web
services based Presence API available, though the work is on going in Parlay-X, which
would be eventually used by OMA for providing interoperability.

This thesis proposes a novel Web Services based API for Presence, which is
defined at the highest level of abstraction possible. The API defined is protocol, network,
language, platform and architecture independent. The proposed API is also flexible and

extensible and offers all the potential functionalities possible with the presence service.

These features of the proposed API would make presence based application development
easier and faster and furthermore the developer need not be an expert in the presence
technology to use the presence functionality with the applications.

As a part of the research work, a subset of the proposed interfaces was
implemented as a Web service gateway and mapped to a SIMPLE based presence server.
A voice conference application was also developed to show the usability of the interfaces.
Performance measurements were taken and analyzed to see the overhead induced by the

Web services layer.

1.3 Organization of the Thesis

The second chapter gives an overview of the technologies-Presence and Web Services
and discusses the standards available today. The topic on presence technology will
explain the basic presence service architecture, presence protocol requirements, proposed
presence protocols such as XMPP, SIMPLE, and Wireless Village protocols. A brief
overview of the on-going work in the professional organizations is also given. The topic
on Web services will elucidate the Web service principles, basic Web service
architecture, and the Web service development lifecycle. The Web service protocol stack
is also described. The advantages of using Web services in application development
conclude the chapter.

The third chapter details about the available APIs for presence based application
development. It explains the PAM/Parlay API’s; Parlay-X API’s and proprietary Web

service based presence API's of Nokia. Java based JAIN presence API’s is also briefly

discussed and an overview of other relevant Web service API's such as Geographic
Information System (GIS) and location based API’s is presented. A critical summary on
the available API’s concludes the chapter and motivates the need for new Web service
based API for presence.

The fourth chapter gives a detailed description of the proposed interface and
discusses two case studies based on debating and conferencing. This chapter also gives an
in-depth explanation of the API and points out the usefulness of all the methods in the
APL

The implementation, prototypes and the performance analysis are explained in the
fifth chapter. This chapter shows the implementation architecture and explains the details
on the mapping of the proposed API to SIMPLE based Ericsson presence server. Details
on the test environment, performance measurements and analysis are also specified.

The last chapter concludes the thesis by pointing out the contributions and

discusses the possible future work.

Chapter 2

Presence and Web Services

This chapter is organized into two major sections on two technologies, namely Presence
and Web Services giving an overview and discussing the standards available in these
technologies today. The basic presence model is explained first, after which the presence
protocol requirements and the proposed presence protocols such as SIMPLE, XMPP, and
Wireless Village protocol are explained. A brief overview of the on-going work in IETF,
3GPP and OMA is also given and a critical summary on the presence technology
concludes the discussion on presence. The part on Web services will explain the Web
service principles, their architecture, development and the Web services protocol stack.
Finally, the advantages of using Web services in application development are explained

briefly.

2.1 Presence Technology

Presence technology allows entities to “publish” and “consume” presence information.
The presence information may be about capability or preferential information such as
communication means, contact address, device status, device priority, device capability,

availability, willingness & mood of the user, location or special notes.

2.1.1 A model for Presence Service

Request for Comments (RFC) 2778 [3] describes the basic presence model as shown in
figure 2.1. The two main entities involved are the presentity (presence entity) & the
watcher, the former is the producer and the latter is the consumer of the presence
information. The presence service accepts the presence information from presentity,
stores it and distributes to the watchers. Principals are the people, software or groups of
people/software that are distinct and act as a single actor for the presence service.
Principals may own zero or more presentities and zero or more watchers. They
manipulate presentities and watchers using presence user agent and watcher user agent
respectively. The presence information that is provided by the presence service to the
watchers is determined by the access rules, which are previously defined by the
presentities. The presence user agent for a particular Principal, which owns the presentity,

verifies the access rules.

Figure 2.1: Basic Presence Model

Watchers are the entities, which consume the presence information, but the
presence service also handles information about watchers called ‘watcher information’.
The watcher information is also handled similar to presence information. The watcher has
visibility rules that are supposed to be manipulated by the watcher user agent before
giving out the watcher information. Depending on the consumption of the presence
information the watchers are classified into three major types called fetcher, poller and
subscriber. Fetcher consumes the presence information as and when required. There is a
special kind of fetcher called poller, which fetches presence information at regular
intervals. The subscriber is notified about the presence information when there is a

change in state of the subscribed presentity.

2.1.2. Presence Protocol Requirements

RFC 2779 [4] describes the protocol requirements for Presence and Instant Messaging
(P&IM). This document does not give an exhaustive requirements list, but describes the
minimal set of requirements that any P&IM protocol must meet. The document describes
a new entity called administrator who controls the local domain and firewall. RFC 2779
describes common security and non-security requirements for both presence and instant
messaging services. The shared requirements cover the namespace and administration,
scalability, network topology, access control and message encryption and authentication
related issues for P&IM. The security requirements further describe security related
requirements the protocol must meet. The administrator may have special privileges

beyond those allowed by the principal, but it is up to the implementation to impose the

10

security privileges for administrators. The security requirements covers details on the
subscriptions, publications and notifications of the presence information and also
requirements related to instant messages. Additional requirements for presence
information deals with common presence format, presence lookup and notification,
presence caching and replication and performance related issues. Additional instant
messaging requirements talks about common message format, reliability, performance

and presence format related matters.

2.1.3 Presence Protocols

This section details on the presence protocols available in the public domain. XMPP,

SIMPLE and Wireless Village protocol suite will be discussed briefly.

2.1.3.1 Extensible Messaging and Presence Protocol (XMPP)

XMPP [5] is a protocol for streaming XML elements, in order to exchange structured
information between any two network-endpoints in close to real-time, however it is
mainly used for building presence and instant messaging based applications. The syntax
and semantics of the protocol is adopted from the Jabber protocol, which was developed
by the Jabber open-source community. The two fundamental concepts of XMPP that
helps in the exchange of structured information between presence-aware entities are
XML streams and XML stanzas [figure 2.2]. An XML Stream is a container that consists
of discrete semantic units of structured information called as XML stanza. <presence/>,

<message/> and <iq/> are the three basic XML stanzas defined by the protocol. The core

11

XMPP protocol is described in the document XMPP: CORE [6] and extensions to the
core protocol to provide P&IM service, as specified in RFC 2779, are described in
XMPP: Instant Messaging and Presence [7].

XMPP is not devoted to any network architecture although all the deployed
systems are based on client-server architecture, where a client communicates with the
server using the XMPP protocol over TCP sockets. The server acts as an intelligent
abstraction layer for XMPP communication. Gateways are used for communication with
non-XMPP messaging systems. Examples are gateways for Internet Relay Chat (IRC),
Short Message Service (SMS), SIMPLE, SMTP, and legacy instant messaging networks
such as AIM, ICQ, MSN Messenger, and Yahoo! Instant Messenger. The server-to-server
communication is an extension of the client-to-server communication and in practice the
XMPP system consists of an intercommunicating network of servers. The recommended
port for client-server communication is 5222 and for server-server communication is

5269, as registered with the IANA (Internet Assigned Numbers Authority).

Figure 2.2: XML Streams and XML Stanzas of XMPP Protocol

12

2.1.3.2 SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE)

SIMPLE [8] is an application layer protocol that extends SIP for presence and instant
messaging. Session Initiation Protocol (SIP) [9] is a text based protocol for creating,
modifying and terminating multimedia sessions such as conferences and Internet
telephqny calls. SIP should be used along with other protocols such as Session
Description Protocol (SDP), Media Gateway Control protocol, Real-Time Transport
Protocol (RTP) and Real-Time Streaming Protocol (RTSP) to provide a complete service
for the user. SIMPLE is defined as an event package that fits within the SIP event
framework [10] that is presented briefly.

The SIP event framework is a SIP extension that aims at providing a SIP-specific
framework for event notification, which is simple but flexible enough to provide
powerful services. The purpose of the event framework is to provide an extensible
framework by which SIP nodes can be notified from other nodes when some events have
occurred.

The SIP event framework extends the SIP Protocol with two new methods:
SUBSCRIBE and NOTIFY and three new headers: Event, Allow-Events and
Subscription-State. The resources implementing the event package that suits the
framework will publish the event packages it supports using the Allow-Events header.
This may be done when it sends an invite request to create a SIP session or when it
responds to any of the SIP request messages. The Event header is used by the SIP entities
to specify about the interested events of a resource and issues a SUBSCRIBE request to

that resource. The Subscription-State header is used to specify the status of the

13

subscription and is added in the NOTIFY message.

A SUBSCRIBE request establishes a subscription session between the resource
and the subscriber. The session established with the INVITE request is orthogonal to the
subscription session. The subscription session is valid for a given time called expiration
time, which is requested in a SUBSCRIBE message and authorized through one of the
200 response message. The subscriber will be notified about the occurrence of the
subscribed events if the subscription session is valid. A subscriber can refresh its
subscription before it expires by sending another SUBSCRIBE message within the same
subscription session. SUBSCRIBE and NOTIFY requests are handled in the same way as
the other SIP messages.

SIMPLE is a specialization of SIP event framework for Presence related events
[11]. It 1s an event package specifying the behavior of the SIP nodes consistent with the
event framework, in the generation and processing of SUBSCRIBE and NOTIFY
requests for presence related events. One subscribe request is sufficient for a watcher to
create subscription sessions with many presentities. This event package introduces a new
logical entity called Presence Agent (PA) that is generally co-resident with another entity.
PA is capable of accepting subscriptions, storing subscription state and generating
notifications when there is a change in the presence state.

SIMPLE works well with both client-server and peer-to-peer based architectures.
In a peer-to-peer based architecture the Presence Agent is located in the terminal device,
which is responsible for handling the presence related requests for the entities. The
presence server in the domain is responsible for handling the presence related requests in

the client-server based architecture. Migrating the responsibility of handling the presence

14

requests is possible to take advantage of both architectures. For example, if a user
switches on his/her personal device, which is capable of handling the presence requests,
the responsibilities are switched from the presence server to the user’s terminal device.
Several PA’s can handle presence related requests in SIMPLE but all the PA’s should
have complete knowledge of the presence state of the presentity [12].

SIMPLE inherits the basic mechanisms and capabilities of SIP like addressing,
routing, authorization and authentication. SIMPLE uses SIP addresses to identify the
presence entities and rely on SIP routing mechanism. SIP proxies and servers handle all
the SIMPLE messages like other SIP messages. SIMPLE supports user mobility and
multiple devices can manipulate entities presence information. Presence information is
very sensitive user related information, so the level of security supported by the basic SIP
authentication is inadequate for SIMPLE. SIMPLE does not mandate any authorization
mechanism, but it encourages authorization for each presence information access. The
implementation can use any existing access control mechanism for the security issues
when using SIMPLE. SIMPLE does not support presence information filtering and list
management. All the subscriptions have to be maintained by the application using the

presence feature.

2.1.3.3 Wireless Village (WV) Protocol Suite

Wireless Village [13] is an organization formed by Ericsson, Motorola and Nokia to

promote universal specification for mobile Presence and Instant messaging services. The

presence service (defined along with instant messaging, group and shared content

15

service) by WV is based on client-server model and is accessed by the client by
establishing a session with the WV server. The client and server negotiate capabilities
with each other when a session (client session) is created; subsequently Client to Server
Protocol (CSP) or Command Line Protocol (CLP) governs the client and server
interaction. CLP has limited functionalities compared to CSP to support “legacy” clients.
The Server to Server Protocol (SSP) is used for the interaction between two servers in
which the interactions occurs in a session, different from client session. The CSP, CLP

and SSP protocols are binary-based Protocols. The protocol stack is shown in figure 2.3.

Figure 2.3 : Wireless Village Protocol Stack [13]

The client session once created is destroyed only when the client logs out;
otherwise it is independent of the wunderlying protocols. The destruction and
reestablishment of the transport layer also keeps the client session active. All the
interactions are through the CSP or CLP requests and responses from client to server or
from server to client. WV specifies transport bindings for CSP over WSP [WAP WSP],
Hyper Text Transfer Protocol (HTTP) [RFC 2616], HTTPS, or SMS [TS 23.040]. The
transport binding for the CSP is logically divided into two separate channels called the

data channel and the control channel. The data channel is used for exchanging all CSP

16

messages and can be temporary unlike the optional control channel. The control channel
is used for controlling the data channel, when used should be permanent [14].

The SSP protocol is used to distribute the functionalities between several WV
servers and it specifies interaction between inter and intra domain WV servers. In the
case of inter domain servers, SSP protocol is used for the interoperation between different
domain servers and furthermore SSP protocol is used for bridging the inter domain
services with different protocols. CSP and SSP sessions are two different session models,
however a single SSP session can support several CSP sessions.

The server session is established when two WYV servers authenticate each other
and negotiate capabilities, but the session should be established in two-way i.e. from
server A to B and also from B to A, in order to initiate SSP transactions between A and
B. WV supports HTTP and HTTPS transport bindings for SSP although the SSP
transactions are independent of the underlying transport transactions. Symmetric
communication is not supported by HTTP/HTTPS hence a SSP session is bound to two
HTTP/HTTPS connections. The HTTP/HTTPS connections used for SSP are persistent
TCP connections and the HTTP/HTTPS requests and responses are pipelined.

WYV supports list management, presence information filtering and partial presence
information update. List of presentities can be subscribed for watching which reduces the
number of messages transacted and WV has a primitive support for watcher information.
WYV supports proactive and reactive authorizations of watchers; wherein attribute lists are
used for in the former mechanism and “On Request” authorization is done in the latter
case. WV does not support soft subscriptions (subscriptions does not time out) and polite

blocking i.e.; watchers are always aware of the rejection of presence information access.

17

2.1.4 Professional Organizations and their Work

This section describes the work done in the various standard organizations in the

presence domain. An overview of the ongoing work in IETF, 3GPP and OMA is given.

2.1.4.1 Internet Engineering Task Force (IETF)

Internet Engineering Task Force [15] proposed the presence technology and five
Working Groups (WG) were formed to standardize the protocol and data format for the
presence and instant messaging. Three of the five WG are actively working on the
presence protocol. The Presence and Instant messaging (PRIM) and Application
Extension (APEX) working groups have been dissolved. Instant Messaging and Presence
Protocol (IMPP) [16] is the lead working group formed in 1998 to develop architecture
and define the protocol and data formats for the presence and instant messaging. IMPP
WG has published RFC 2778, RFC 2779 and an interoperability framework
specifications called Common Presence and Instance Messaging (CPIM) but have not
been successful in standardizing a protocol for P&IM.

The Extensible Messaging and Presence Protocol working group is proposing to
adopt XMPP, an open XML based protocol; a core in jabber P&IM service, as the
presence protocol. The SIMPLE working group is the most active working group and is
proposing extensions to SIP for the presence and instant messaging protocol. The XMPP
and the SIMPLE protocol is compliant with the presence protocol requirements as

proposed in RFC 2779 and also with the CPIM interoperability framework

18

2.1.4.2 Third Generation Partnership Project (3GPP)

3GPP [17] is working on the standardization of a presence protocol and an API to allow
the applications to access the presence service in the wireless domain, while assuring
interoperability with the wired domain [18,19]. Initially, 3GPP used the IETF protocol
requirements and extended these requirements for the wireless arena. Session Initiation
Protocol is already adopted by 3GPP for Internet telephony services and applications.
The SIMPLE protocol will also be ultimately extended to encompass aspects such as
integrating the presence service in the 3GPP service architecture, charging and
administration, maintaining the interoperability with the Internet.

Computing power and network bandwidth are scarce resources in the terminal
devices, which access the 3GPP networks through wireless air interfaces, so presence
information filtering and partial presence updates are supported by 3GPP. Presence
information filtering is a mechanism by which watchers can fetch or subscribe required
presence information avoiding more traffic in the network.. Publisher also has the facility
to update partial presence information and only the values of the updated attributes are
notified to the subscribed watchers. 3GPP is also defining attributes to add value to the
wireless presence information i.e.; to presentities whose principal is a 3GPP subscriber.

3GPP provides flexibility for the users by supporting different presence
information for different watchers, which affects the performance and scalability.
Attribute lists are used for authorization and access controls in 3GPP. Additional
charging and administration requirements are incorporated in 3GPP, as they are

autonomous and independently managed networks.

19

3GPP networks are very heterogeneous, they contain packet switched (PS),
circuit switched (CS), and IP Multimedia subsystem (IMS) domains, moreover they have
to interact with PSTN networks and should deal with QoS (Quality of Service) issues.
Presence in 3GPP is a inter domain service and so it has to support non-SIP protocols for
CS domains.

3GPP defines an open and consistent service architecture based on Virtual Home
Environment (VHE) and Open Service Architecture (OSA) concepts. 3GPP adopts
Parlay’s Presence and Availability Management (PAM) API’s for accessing the Presence
service by applications. 3GPP, which has adopted client-server based architecture, uses
SIP/SIMPLE protocol for non-CS domains and has to support a new protocol for CS

domain.

2.1.4.3 Open Mobile Alliance (OMA)

OMA [20] was formed in June 2002, (as on June 2004 is supported by 300 companies
from all domains) with a mission to grow the market for the entire mobile industry by
removing the barriers and by ensuring seamless application interoperability. OMA works
very closely with many international organizations in both wired and wireless domain
like IETF, W3C, Java Community Process (JCP), 3GPP and 3™ Generation Partnership
Project 2 (3GPP2). There are fourteen working groups functioning in wider areas like
architecture, security, device management and mobile protocols. Wireless village, an
organization formed by Ericsson, Motorola and Nokia to promote universal specification

for mobile Presence and Instant messaging services, consolidated into the OMA and is

20

now operating as Mobile Instant Messaging and Presence Services (IMPS) WG. The WV
specifications are directly adopted and are available as a candidate release version (OMA
IMPS V1.1), which are a set of open technical specifications forming an enabler that can
be implemented in products and solutions. The WG is concentrating on three main areas
of work one being the WV technology, then the SIP/SIMPLE technology, the
interoperability between the WV and SIMPLE and also in developing IMPS service
enabling interfaces technology.

The IMPS WG is working closely with OMA IOP (Inter Operability) WG for
testing the interoperability of SIMPLE and WV technologies; furthermore it is working
also with OMA requirements, architecture, security WG for general activities. The OMA
MWS (Mobile Web Services) WG is working on the specification that defines the
application of Web Services within OMA architecture. The IMPS WG will work with
MWS WG to provide mobile web service based specifications and interfaces for presence
and instant messaging. The Presence and Availability WG (PAG) is formed to define
architecture for OMA presence service that fits the general architecture specified by the
architecture WG. This WG is also responsible for specifying enablers for presence and
availability (or more generally presence).

The work has just started in the OMA organization and because of the wide
acceptance by many big players in the wireless and Internet arena; OMA might bring

interoperability in almost across the entire wired and wireless domain.

21

2.1.5 Discussion

The Presence technology is not matured, but a lot of work is going on in many standard
organizations and its working groups. Microsoft, IBM, Sun Microsystems and Novell
back up the SIMPLE protocol, while XMPP is supported by Hewlett-Packard, Intel’s
Wireless Computing Group, Sony and Hitachi, and on the other hand mobile moguls like
Ericsson, Nokia and Motorola prefer Wireless Village. The SIMPLE supporters argue
that XMPP needs considerable bandwidth, whereas SIMPLE is based on SIP which is not
designed for carrying data and the wireless world points out that both the IETF-protocols
are not suited for mobile arena. There is a protocol race between XMPP, SIMPLE and
Wireless Village, though organizations such as OMA is working on the interoperability
between different systems; the ultimate result would be the deployment of systems using
all these protocols. Interoperability would be a key issue for the future of presence
technology. There is some work done on the XMPP-SIMPLE interoperability in IETF
and OMA IOP WG is focusing on presence interoperability using the Web services
technology, however they are in the initial stages of work and would take a considerable

time to achieve the interoperability.

22

2.2 Web Services

Web services are programmatic interfaces made available for application-to-application
communication. Web services have their roots in component based architecture and
borrow concepts like encapsulation and loose coupling from object-oriented
programming. They are in the form of software code, which can be invoked and used by

the other services/users in a network.

2.2.1 Web Services Principles

The three basic principles of Web Services according to Adam Bosworth [21], one of the

pioneers in Web services area, are

1. Coarse-Grain approach: This principle deals with the communication efficiency.
The interfaces defined for accessing the services that are exposed as Web services should
be at a very high level of abstraction, minimizing the interaction between the requesting

and the responding components.

2. Loose Coupling: Dependency of the interacting components on each other is an
important issue in communication. The second principle suggests that the
interdependency between two communicating modules must be minimized. Many
applications interact with each other for achieving a certain task. If one of the

component/application changes, it should not disturb the working of another component.

23

3. Asynchronous Communication: The last principle deals with the mode of
communication. The basic method of communication should be asynchronous, though
synchronous mechanisms could be used. In Web services world applications interact with
many different components at the same time so asynchronous communication, which
minimizes the interdependency of the components, is preferred to the synchronous. In
practice, the RPC based synchronous mode of communication is more commonly used

than the message based asynchronous one.

2.2.2 Web Services Architecture

The Web services architecture [figure 2.4] called as Service Oriented Architecture
(SOA) is based on the standard architecture developed by the World Wide Web
Consortium’s Web Services architecture working group [22]. The basic architecture
includes Web services technologies capable of exchanging messages, describing Web

services and publishing and discovering Web service descriptions.

2.2.2.1 Roles of Entities

The Web services architecture is based on three different roles played by three different
entities namely service provider, service requester and service registry. These entities
need not be strictly identical. The service provider is the owner of the service and

processes a Web service request. This software agent creates a Web service, describes it

24

and publishes the service in the service registry. The service is described in a standard

formal XML notation called its service description.

Figure 2.4: Service Oriented Architecture

The service description provides all the information about the service like where
to find the service, how to access the service and protocols used. The service registry is
an entity, which maintains all service descriptions provided by the service providers. The
service requestor is the user of the service. The service requestor software agent can be a
service by itself or any user, requiring a service. The service requestor queries about the
interested services to the service registry. The service registry provides the lists of
available services with its descriptions to the requestor. The service requestor analyses the
service description provided by the owner of the service and then interacts with the
service provider for using the service. The service requestor can also publish the
information to the service requestor directly using any form of communication like email

or fax. The service requestor can also be a service provider and vice versa. They are

25

software agents, which can take dual role. Thus there is a low coupling between the
interacting agents in this architecture. The implementation details of the service are never
exposed to the service requestor, the service requestor just interacts with the interface
provided by the service. The service description may include details about data types,

location and binding information.

The communication between the requestor and the provider is mostly by using
Simple Object Access Protocol. The services are described using the standard Web
Services Description Language. SOAP and WSDL are gaining popularity because they
are developed and standardized by the W3C. Other XML based protocol can also be used
for communication and similarly other technologies can be used for describing the
services. The WSDL and DAML-S are orthogonal. DARPA Agent Mark up Language —

Services (DAML-S) can also be used instead of WSDL for Web Services description.

2.2.2.2 Operations Used by Entities

These are the behaviors that must take place for a Web service: publication of the service
with its description, finding the service description and binding or invoking the services
based on the description of the services. These behaviors are carried out by three different
operations namely publish, find and bind as shown in the architecture. The services are of
no value unless they are used by some entities.. For a Web service to fetch profit to the
provider it needs to be published which can then be discovered and invoked by paying

customers. The place to publish the service depends on the application and the

26

preferences of the service provider. The service requestor uses the find operation to query
about the required service locally or from the registry depending on how those types of
services are provided. The find operation may be used in the design time or in the
runtime. The bind operation is used for invoking or initiating an interaction with the
actual service discovered using the find operation. The interactions may be single
message one way or multi message conversation or can also be a broadcast from the
service requestor to a bunch of services. These interactions can be both

synchronous/asynchronous.

2.2.3 Web Services development

The Web Services development lifecycle can be broadly divided into four phases namely
the D&D (Development and Description) phase, deployment phase, operational phase

and M&M (Maintenance and Management) phase [23].

D&D Phase: The Web Service development and description phase is the phase in which
the service is developed from scratch or an already existing application can be modified
to a web service or an already available web service and/or application is composed to
form a new web service. This is a complex step in which service development itself can
have a lifecycle like service design, service implementation and testing. The service

interface definition and description is also done in this phase.

Deployment Phase: The deployment phase deals with the publication of the developed

27

services interfaces and the service descriptions to the service registry/service and also the

deployment of the executables for the Web service in the environment.

Operational Phase: In the operational phase the Web Service is ready to be invoked and
used. The service provider waits for the usage of the Web service by the service
requestor. The operational phase of a particular Web service depends on the type, quality
and popularity of the service. If the type of service is a commonly used service like credit
card validation service, it may be found, invoked and used by the service requestors

often. The Return on Investment (ROI) of a service fully depends on its usage.

M&M Phase: The final phase is the most important and mostly forgotten phase in this
life cycle. The ROI for a service is mainly affected by the availability, accessibility,
security, performance and quality of service of the underlying services provided. This
phase deals with software (service) maintenance and the resulting update and

management issues for a web service.

2.2.4 Protocol Stack

IBM developed the conceptual Web Services stack (figure 2.5). The Web services stack is
developed based on the Service Oriented Architecture and should support the basic
operations: publish, find and bind. The capabilities of the lower layer form the basis for
the upper layers. The main issues in the Web services are the QoS, management and

security, which should be addressed in each layers of the stack.

28

WSFL Service Flow M
S|l A
UDDI Service Discovery E|IN
UDDI Service Publication ICJ é
R || E Q
Service Description o
WSDL I || M S
T || E
SOAP XML-Based Messaging v I N
T
w1, Network
1TOP, etc

Figure 2,5: Web Services Stack

The technologies that are appropriate for each of the layers of the stack, are
HTTP, SOAP [24], WSDL [25] and UDDI [26]. SOAP forms the basic protocol for
communication between the service requestor, service provider and service registry.
WSDL is the standard service description mechanism, which is based on XML. UDDI is
an open initiative, where companies all around the globe can publish and make their
service accessible to the requestor. The basis for the Web services stack is the network. It
is apparent that Web services are accessed through some network. The Internet accessible
Web services should support any of the common network protocols such as HTTP or FTP
or SMTP or any transport protocols like TCP. The intranet Web services can be accessed
through protocols such as Internet Inter ORB Protocol (IIOP) or Object Remote
Procedure Call (ORPC) or Message Queuing (MQ). HTTP is the de facto standard
because of its wide usage and it passes firewall easily compared to other protocols, thus
increasing security. XML is the basis on which other Web service standards such as
SOAP and WSDL are built. XML is a standard developed by W3C XML working group.

XML is a markup language like HTML and Standard Genralised Markup Language

29

(SGML) describes a class of data objects called XML documents. XML documents are
made up of storage units called entities, which contain either parsed or unparsed data.

Service composition and flow is described using Web Services Flow Language (WSFL).

2.2.5 Advantages of using Web Services for Application development

This section discusses the main advantages of Web Services and points out the usefulness

of the technology.

1. Interoperability: Web Services make disparate systems to communicate
effortlessly. They allow developers to build platform and programming language

independent applications/services.

2. Open Standards: The basic Web services technologies such as SOAP, WSDL and
UDDI are open standards developed by World Wide Web Consortium. XML, an open

W3C standard is the base for Web services.

3. Easy Application Development Environment: Business logic can be exposed as a
service using the Web services, so that clients, applications and services can be easily
developed by adding minimal application-specific business logic in the client/application
side. The high level interfaces hides basic functional details and provides ease in

innovative application development.

30

4. Reusability: Most of the applications developed can be exposed as Web services
with least amount of coding, providing better Return on Investment. Even legacy based

systems and applications can be exposed as Web services.

31

Chapter 3

Presence Based Application Development: State-of-the-art

This chapter discusses the Application Programming Interfaces available for presence
based application development in the public domain. API is a technology that facilitates
exchanging messages or data between two or more different software applications. The
first section gives an overview on PAM/Parlay interface followed by a brief discussion
on Parlay-X API’s. The third section describes the proprietary presence Web services
interfaces of Nokia, after that Java based JAIN interfaces for presence is discussed. A
brief overview of relevant API’s such as location based and geographical information
system based interfaces is also provided. A critical summary on the different API’s

available for presence based application development concludes the chapter.

3.1 Presence and Availability Management (PAM)/Parlay

Parlay [27] is developing network independent API’s to open the telecom networks for
application developers in the IT domain, who outnumber the telecom counterparts.
Applications could be developed with ease using the standardized API’s, and widely
available IT technologies and tools. The IT developers need not be a telecom expert to
develop inventive applications. Principally, all the network functionalities should be

opened up for application developers to create innovative applications, which are not

32

only simple to develop and maintain but also must have potential market. The API’s are
abstracted to be protocol and network independent and are standardized by 3GPP. Parlay
API’s are based on Common Object Request Broker Architecture.

Initially, PAM forum developed the presence and availability API in the wireless
industry. The PAM forum joined Parlay and is now working as Presence and Availability
Management working group [28]. This WG is responsible for defining network and
protocol independent interfaces for the presence service in Parlay. The PAM APl is a part
of the Parlay 4.1 specification. The PAM API defines a set of abstract interfaces that can
be mapped to any presence protocol in any network. The applications using the PAM API
to provide services to the users will be able to handle and manage both preferential and
presence information of the agents and identities, independent of the networks and
protocols. An identity is the electronic representation or more generally identifier of any
entity, while the agent may be any terminal device or software that interacts with the
communication networks and services on behalf of the identity. Identities and agents can
have aliases and are identified by their names in some naming space. Agents have
specific capabilities associated with them, which determine their interactions and
participations in some sort of communication. Agents can also have the ability to monitor
and proactively report certain information. Identities are associated with the agents and
the capabilities of the identities are inherited from the agents.

Dynamic attributes of the identities/agents determine their presence information.
The presence information is reported by the identities/agents or by the network.
Capabilities of the identities depend on the agents they are associated with. The

willingness of the identity to communicate depends on the availability information that

33

can be calculated by the identity’s presence and the preference information. Preferences
control the disclosure of presence information of the identity/agent. These PAM

interfaces are CORBA based interfaces.

The functionalities covered by the PAM/PARLAY interface are

» Management of identities, their association with agents, agents and their capabilities;
» Management of identity and agent presence;

» Management of availability of the identities;

» Management of events that are related with the above.

3.2 PARLAY-X

Parlay-X [29] working group is focused on providing simple yet powerful, highly
abstracted, creative building blocks of telecommunication capabilities. The interfaces
provided by this WG will be much simpler than the complex CORBA based interfaces,
since these interfaces are abstracted from the CORBA interfaces. The building blocks
provided by the Parlay-X group should be easily understandable and utilizable by even
non telecom expert to provide highly ground-breaking applications. Homogeneous (E.g.:
MMS) or heterogeneous (E.g.: PAM and Mobility) capabilities could be offered as
building blocks, but they should always be generic. Figure 3.1 shows the relationship

between Parlay and Parlay-X Application Programming Interfaces.

34

QZ—n>»mMmu0Zz—

ZO0—~MO>P»x-H0T>

The main goals of Parlay-X are
1. Unless there any convincing services, only functionalities provided by Parlay would
be used for making the building blocks.
2. The Interfaces defined should follow KISS (Keep Interface Spec Simple) rule.
3. Only one message exchange between the application and the building block.

Parlay-X Web service specification Version 1.0 [30] exposes SMS, MMS,
charging, account management, third party call, user status and terminal location as Web
services. As such now, there is no Web Service interface for presence service available in
Parlay-X, and it will most likely be available in the next version of the Parlay-X Web

service specification.

Network Protocols
(E.g. SIP, INAP, etc)

Figure 3.1: Relationship between Parlay and Parlay-X API's

35

3.3 Nokia’s Proprietary Presence API’s

Nokia is adopting Web services to expose the functionalities of their server products and
have defined Web service interfaces for some of their servers. More information on the
Web services usage in Nokia can be found from [31]. Nokia has developed a Presence
Server (PS) based on Wireless Village standard. Nokia is exposing the WV based PS
using Web services, for applications to employ the presence service using the Web
services Interface. The presence Web services interface enables integration of new
systems and services with the Nokia presence server and further applications can use
these interfaces for using the presence service with ease. The Nokia clients use WV
Client Server Protocol for communication with the Presence server. A cluster of servers
may also be used for providing high availability, in which case WV Server to Server
Protocol will be used for communication between WV servers. The presence Web service
interface can be used by clients to send requests to the PS and also by the PS to send
notifications to the clients.

The Nokia presence server uses OMA IMPS attributes [32], which can be broadly
classified based on the nature of information as client status attributes and user status
attributes. The client status attributes gives information about the status, capabilities of
the hardware and the software. The status of the clients could be easily reported by the
network elements once a client is registered to its network. The user status attributes
gives detailed information like availability, preferences, free format status and mood of
the user. As Nokia is Wireless Village based it supports contact list management. Users

can use many contact lists for distribution of information, proactive authorization and

36

much more.

The Wireless Village based Presence Web Service Interface 1.1 (WSI) [33]
provides access to applications to use the presence functionalities in the Nokia presence
server. A wireless village user ID, HTTP authentication username, password and URL
are required to access the presence WSI. Authentication and authorization plays a
significant security role in the presence WSI. Application acts on behalf of the OMA
IMPS user when accessing presence WSI. The transactions can be classified into five
categories and there are totally 16 operations in presence WSI. Presence subscription
management category has operations to subscribe, unsubscribe and get notified about the
presence information, and retrieve watcher and presentity lists. There are two methods in
presence fetch and update category to fetch and update the presence information. There
are two categories to manage the contact and attribute lists. Creation, updation and
deletion of the list members is possible with these category operations. The search
category has two operations, one to search for users based on user ID, status, and user

name, and the other method is to stop the search.

3.4 Java APD’s for Integrated Networks (JAIN)

JAIN [34] is an initiative by the Java community for providing Java based open
interfaces for accessing communication networks and services. The Interface
development is being carried out through the Java Community Process and under the
terms of Sun’s Java Specification Participation Agreement (JSPA). The main objectives

of JAIN initiative are service portability, network independence and open application

37

development. The goal of the JAIN is to progress the communication industry from many
proprietary closed systems to open environment to provide rapid application development
and deployment.

JAIN develops application interfaces (E.g.: JAIN SIMPLE Presence) and
container interfaces (E.g.: JAIN SLEE-Service Logic Execution Environment) for
communication. JAIN has developed three API’s for presence based application
development. The available presence based API’s in JAIN are
A. JAIN Presence (Java Specification Request (JSR) 186) [35]

B. JAIN SIMPLE Presence (JSR 164) [36]
C. JAIN Presence and Availability Management (PAM) API (JSR 123)[37]

JAIN Presence is a generic, protocol agnostic API for presence. This API provides
Java based, portable and secured interface for manipulating, managing and controlling
presence information between presence servers and clients. The API is independent of the
underlying protocol, which would enable innovative application development. This API’s
status is still “In Progress”.

JAIN SIMPLE Presence provides an API to support the use of SIP for Presence
and also provides a standard way to interact with the SIP/SIMPLE protocol stack. This
API allows manipulation of presence information between clients and servers using
SIMPLE protocol. This API development is still in progress.

JAIN SPA Presence and availability Management API is based on PAM Forum
1.0 specification and its adaptation in Parlay 3.0. PAM provides API for management and
dissemination of presence and availability information in a secured manner across

heterogeneous networks. These interfaces are very abstract and protocol neutral. Users

38

preferences and enterprise policies determine the manipulation of presence information,
which provides both privacy and security. This API specification is withdrawn from the
JAIN initiative. JAIN PAM API is at application level, while JAIN SIMPLE API is at
protocol level, hence JAIN PAM API can work on top of JAIN SIMPLE Presence API.
The JAIN Presence API is the most suitable interfaces for application development

compared to the other two JCP specifications.

3.5 Relevant Web Service APD’s

There are many different kinds of Web service based interfaces defined for many
technologies in the recent years. This section briefly discusses some of the API’s which
are relevant to presence. Presence technology provides user’s context related information
such as location, status and capabilities. Hence, geographical information system and

location based API’s would be the most relevant interfaces to be discussed in this section.

3.5.1 Geographical Information System Based API’s

Open GIS Consortium, Inc (OGC) [38] is an International, non-profit organization that is
leading the development of standards for geospatial and location based services. The
main mission of the organization is to deliver open spatial interface specifications. OGC
works with government, private and academic sector to create open and extensible API’s
for GIS. The GIS services can be grouped into three categories: data services, processing

services and registry or catalog services. OGC is developing interoperable interfaces for

39

accessing the basic GIS based services mentioned. OGC has recently published a
document that specifies aspects that should be common to multiple or all OWS interface
implementation specifications, which includes operation requests and responses,
parameters and encoding of the operations. The document specifies a mandatory “Get
Capabilities” operation, which allows any client to retrieve metadata about the services
available from any server. The server could implement Web Map Service (WMS) or Web
Feature Service (WFS) or Web Coverage Service (WCS) as supported by the

specification.

3.5.2. Location Based API’s

The Open GIS Consortium provides location-based services through ‘OpenLS: Core
Services’ specification. OMA’s Location Working Group (LOC), Parlay, JAIN and 3GPP
are also participating in the standardization of the location-based services. There are also
many proprietary location based Web services like Microsoft MapPoint Web service.
Parlay-X Working group has defined open, network and protocol independent location
based Web service in the Parlay-X Web Services Specification Version 1.0 [29]. This
Web service will be used for retrieving location information, and would enable easy and
fast way of developing location-based applications. The location API consist of only one
method “getLocation,” which takes the users address, whose location information is
requested, the desired accuracy and requestor address (optional) as parameters and gives
the location related information as output. This Web service API opens the location

aware services to IT application developers.

40

3.6 Summary

There are many API’s available for presence based application development but none of
them precisely addresses the usage of Web services for presence. The PAM interfaces are
designed for server-side aspect of presence. Moreover the PAM Interfaces are CORBA
based and not abstract enough to be used directly as Web service interfaces. On the other
hand Parlay-X interface for presence service is not defined yet, and their approach will
lead to one of the best solutions for Web service based application development. Nokia
proposes Web service based Interface but there are number of problems with their
interface: - to start with the interface is proprietary, secondly it is Wireless Village
dependent and moreover the level of abstraction is very low (protocol level interfaces).
JAIN Presence API is protocol independent but it is programming language (Java)
dependent, which is not desirable when designing the Web service interfaces. The Web
service interface defined for any application development should be protocol, language,
platform, network and framework independent and they should be highly abstract and
asynchronous. Currently available API standards although satisfy some of the
requirements, none of them addresses all the issues. So there is a need for a novel API

which would be suitable for presence based application development using Web services.

41

Chapter 4

The Proposed Web Services Based Application Programming

Interface

In the last chapter presence API’s available today for application development are
thoroughly investigated and found that there is a need for a new API for presence based
application development using Web services. This chapter describes in detail the
proposed novel Web service API for presence based application development. The first
section gives an introduction, which is followed by a description of the methods used in
the API. Data types used in the specification is described in the next section. An in-depth
discussion of the methods along with the attributes and the status messages is given in the
fourth section. Two case studies on the proposed API are presented and a discussion
about the proposed API with respect to the case studies is also given. A brief summary of

the API concludes the chapter.

4.1 Introduction

The API defined is network, protocol and language independent, i.e., these set of methods
constituting the Web service API for presence can be applied to any network or any

protocol and suitable for any programming language like Java and C++. The API is

42

designed at the highest level of abstraction possible and the presence information is
notified in asynchronous manner. There are seven Web service based methods defined
for presence and watcher information access. There are three methods for presence
information access; watcher information access can be done using three methods. The
presence information can be consumed in three different ways, and a single subscribe
method can handle all these watchers. Contact list management is also supported by the
interface and a single method is designed for doing all the operations concerning the

contact list.

4.2 Methods used in the API

1. setPresence (UID,UID| |, CL[|, TL[], AL[], Exp_Time, DAL[], DAL_only,
PD _on, Int_Gra_on, Del TL[]) — This single method supports all the publisher related
functionalities of the presence system. This method is used to set and update the
partial/full presence information of the presentity (presence entity), to provide
preauthorization to the watchers, to enable and set post authorization, to politely deny the
watchers and to delete the presence information from the presence server. The rationale
for this method is that using this single method all the operations with respect to the

presentity can be done.

2. setWatcherInfoAuthorization (UID, UID [}, CL [], WAL [], Exp_Time, DWAL [],

DWAL only) — The watcher information is any information about the status of the

subscriptions of all watchers. The watcher information typically consists of the status of

43

the watcher, the event that triggered to the current status, identity of the watchers,
duration subscribed for watching and expiration time for the watcher. This method is
used to set the authorization rules for “watcher info subscribers™ (Users that subscribes to
watcher information). The main reason for this method is authorizing the users for getting

the watcher information.

3. setCList (UID, AddUsers| |, DelUsers| |, MoveUsers[|, CopyUsers|], DelCL[],
RenameCL][|, ClearCL[]) — Contact list management is one of the most important
functions supported by the presence system. This single method is used for doing all the
operations for managing the contact list. This method can be extensively used to do all
the operations with respect to a contact list (buddy list). This method is used to add,
delete, move and copy users in any number of lists and also to rename, delete and clear

the users from the lists.

4. subscribe_Presence (UID, UID[], CL[], AL[], DAL only, Filter Doc [],
Exp_Time, R_of N, Accept_Docs) — The rationale for using this method is all the
watcher related functions could be done with this method. This method is used by
watchers to subscribe or fetch or poll the presence information of a list of users/contact
lists. The user can specify the filtering information using the XML filter document
(application/simple-filter +XML [39, 40]), preferred expiration time for the subscription,
preferred rate of notification and also the acceptable notification document types. The
subscriptions are soft subscriptions, so they have to be refreshed periodically. The

allocated expiration time along with the status of the method is returned as a result by this

44

method. If the application cannot support the filter document and still want to have
filtering characteristics it can just specify the set of attributes or the default attribute list
to be filtered out. If the subscription duration is set to the current time the presence
document is fetched once, but if the duration is greater than zero subscriptions are
accepted/refreshed and it is unsubscribed if the expiration time is set to zero. Fetching the
presence information with this method at regular intervals of time would take care of the
polling mechanism. If the user does not specify the expiration time and rate of
notification package specific values are used, in the presence case they are 3600 seconds

and 5 seconds respectively [12].

S. notify_Presence (Presence Document) — This method is used to send the presence
information document of a list of users/lists in the acceptable format to the watchers. The
default document format supported is Presence Information Data Format (PIDF) [41]. If
the users request for presence information of a list of users/lists but the particular
document format does not support combining all the information in a single document,
then the module implementing this method should combine all the documents over time
and send the notification as a single file. The main use of this method is to send the

requested presence information to the watchers.

6. subscribe WINFO (UID, UID [], CL [], WAL [], DWAL]], Filter Doc [],
Exp_Time, R_of N, Accept Docs) ~ The rationale for using this method is for
retrieving the watcher information. This method is used by the watcher info subscribers

for subscribing to or fetching or polling the watcher information. This method is used in

45

the similar way as the Subscribe Presence but here watcher information is used instead
of presence information. This method also supports filtering using the filter document or
by specifying required attributes. Preferred expiration time, rate of notification and the
acceptable documents can also be specified. Package specific default values for
expiration time and rate of notification are one hour and five seconds respectively [42].
The reason behind not using a generic ‘subscribe’ method for both the presence and
watcher information retrieval is that both the information are fundamentally different and
both have different requirement so the same set of attributes could not used for accessing

both the information.

7. notify WINFO (Watcher Info Document) — Acceptable watcher info document is
sent, based on the subscription of the user. If the watcher info subscriber doesn’t specify
the document type then the default document type Watcher Info document [43] is sent.
The foremost use of this method is to send the requested watcher information to the

entities.

4.3 Detailed Data types used in the proposal

The table 4.1 explains the basic conventions and simple data types used in the proposal.
The first column specifies the name of the attribute used in the specification, the next

column gives a brief explanation of the attribute and the last column gives the data type.

46

Polite Denial: Polite denial is a mechanism by which unauthorized watchers are sent
false authorization information by the system in order to make them feel they are

authorized.

Interactive Granting: Watchers request for presence information access, the presence
system checks the publisher’s access rules and either grants or rejects authorization for

the users. This technique is called as Interactive Granting.

Name Explanation Type

UID (PID) - User |It can be any ID like SIP ID or | String of alphanumeric
Identity (Presence | Wireless Village ID or any URI or any | characters not more than

Identity) system specific ID that is unique. 30 digits

CL - Contact List Identity to determine the contact list | String of alphanumeric
uniquely. characters not more than

30 digits

AL- Attribute List List of attributes supported by the | Enumerated data type
presence service. The interfaces
neither restrict nor propose any
attributes to be supported by the

presence service.

WAL - Watcher | Watcher attributes are very limited set | Enumerated data type
Attribute list of attributes that specify the state of

the watchers, but the information is as

47

sensitive as presence information
itself. The WAL is used to authorize

the set of users for accessing the W.I

and for filtering the watcher
information.
TL - Tuple List The list is a structure that contains a | Complex data type
tuple ID and a list of tuple values. [Refer Table 4.2]
Exp Time — | The time after which the data should | Integer
Preferred Expiration | not have value. This absolute time is
Time expressed in seconds.
DAL - Default | The default attribute list is set by the | Enumerated data type
Attribute List presentity
DWAL - Default | This default watcher attribute list is set | Enumerated data type
Watcher Attribute | by the presentity
List
DAL only - Default | If true, only the default attribute list is | Boolean
attribute list enabler | requested or disclosed
DWAL only - | If true, only the default watcher | Boolean
Default Watcher | attribute list is requested or disclosed
attribute list enabler
PD on - Polite | Polite denial is enabled when this | Boolean
Denial enabler value is set to true
Int Gra_on - | Post authorization is enabled when | Boolean

48

Interactive Granting

the value is true.

Enabler
Del TLL - Delete | List of tuples to be deleted for the | Tuple List.
Tuple List. presentity [Refer Table 4.2]
R of N - Preferred | The rate at which notifications are | Integer
Rate of Notification. | supposed to be sent. This time is
expressed in seconds and is not a
relative value.
Accept Docs - | The list of documents that can be | Enumerated data type

Acceptable

Documents

accepted by the subscriber or fetcher.
Depending on the list the notifications

are sent.

Filter Doc - Filter

The document helps in getting filtered

Enumerated data type

Document presence/watcher information. The

filter document could be any

document acceptable by both the

client and the server. Application/

simple-filer+xml document is

recommended as the filter document.
AddUsers This attribute is used to add new users | CL_Type

in the contact list. [Refer Table 4.2]
DelUsers This attribute is used to delete users | CL_Type

from the contact list. [Refer Table 4.2]

49

MoveUsers Used for moving the users from one | CL_Op
contact list to another contact list. [Refer Table 4.2]
CopyUsers Used for copying a list of users from | CL_Op
one contact list to another. The | Complex Data Type.
original copy in retained in the old | [Refer Table 4.2]
contact list.
DelCL- Delete | It is used to delete the contact list. The | Contact List
Contact List user list in the contact list is also
deleted along with the contact list.
RenameCL - | Used to rename the contact list. The | CL. Target
Rename Contact List | new contact list must be a valid. [Refer table 2]
ClearCL- Clear | It is used to clear the contents of the | Complex Data type
Contact List contact list, but the list remains empty | [Refer table 2]

once it is cleaned.

Table 4.1: Conventions and simple Data types used in the API

Table 4.2 represents the complex data types used in the specification of the web
service interface for presence. The first column gives the name of the data type, and the
next column briefly describes the data type. The last column explains composition of the

complex data type. The “consist of” column (M) should be interpreted as mandatory and

(O) as optional.

50

Name Description Consist of
CL User Contact List User data UID (M) —User Identity
Nick (O) — Nickname for the user.
CL _Type Contact List Type CL_User (M) — Contact List User
CL (M)-Contact List
CL_Target Contact List along with Target CL- | CL (M)- Originating CL
When users are copied and moved | TCL (M)-Target CL
from one CL to another it require
originating and target contact lists.
CL_Op Contact List Operation- Operation | CL._User (M) — Contact List User
on contact list using CL_User and | CL_Target — CL with Target
CL_Target
TL Tuple List. The list is a structure | TID (O) — Tuple ID. The tuple ID
which contains a tuple ID and a list | can be any unique string of
of tuple values alphanumeric characters.
TVAL (O) —Tuple Values. The
values to be filled in the tuple for
the presence attribute.
Status Op Status of the Operation. Gives a | Status (M) (Boolean) —Status of
Boolean status and status message. | the operation
Status Mes (O) (String) —Status
message
Sub_Status Status of the operation with status | Status of Op (M) (Status_Op) —

51

value, message and Expiration time | Status of operation
set by the Presence server. Exp Time (M) — Expiration time

set by the server in seconds

Table 4.2: Complex Data Types used in the API

4.4 Methods in detail

The details of the methods with the parameters and error codes are discussed in the
following tables. The attribute returned as a result of the method is given in the bracket
before every method (For Example: (Status Op) setPresence means the setPresence
methods returns the structure Status Op). In the following tables (M) should be

interpreted as mandatory attribute and (O) should be assumed as optional attribute.

Attributes UID (M) - User Identity. Identifies the presentity.

Taken UID [] (O) - List of user identities for authorization.

CL [] (O) - List of contact lists for authorizing

TL [] (O) — List of tuples to be set and also used for authorization.

AL [] (0) - List of attributes to be authorized for the particular list of
users and/or contact lists.

Exp Time (0) — After this particular expiration time the presence
information and authorization information has no value.

DAL [] (O) (AL[]) - Default Attribute list used for authorizing and

filtering the presence information with respect to the presentity

52

DAL only (O) (Boolean) — To set Default attribute list for authorization
and also for filtering

PD_On (0O) (Boolean) - Enable Polite denial

Int_Gra (O) (Boolean) — To enable Post authorization

Del TL [] (O) (TL]]) — Tuple list to be deleted

Status Messages | Method Succeeded

User ID does not exist

Contact List does not exist

Bad Presence Attribute

Tuple ID already exist

Bad Tuple Value (Bad Presence Value)
Expiration Time too Small

Default Attribute List does not exist
Polite Denial not supported
Interactive Granting not supported
Tuple ID does not exist

Bad Parameter

Permission Denied

Server Error

Server too busy

Table 4.3: (Status_Op) setPresence Method

53

Attributes

Taken

UID (M) - User Identity. Identifies the user who authorizes the
watcher info subscribers.

UID [] (O) - List of user identities for authorization.

CL [] (0O) - List of contact lists for authorizing

WAL [] (O) - List of watcher attributes to be authorized for the
particular list of users and/or contact lists.

Exp Time (0) — After this particular expiration times the watcher
information and authorization information has no value.

DWAL [] (O) (AL]]) - Default watcher attribute list used for
authorizing

DWAL only (O) (Boolean) — To set default attribute list as authorized

list of attribute.

Status Messages

Method Succeeded

User ID does not exist

Contact List does not exist

Bad Watcher Attribute

Expiration Time too Small

Default Watcher Attribute List does not exist
Bad Parameter

Permission Denied

Server Error/Server too busy

Table 4.4: (Status_Op) setWatcherAuthorization Method

54

Attributes

Taken

UID (M) - User Identity. Identifies the user whose contact list is
managed.

AddUsers[] (O) (CL_Type[]) — To add a list of users to a contact list.
The attribute allows adding different users to different contact list at
the same time.

DelUsers[] (0O) (CL_Type) - To delete a list of users from a contact
list. The abstraction level is much higher than the normal delete user
methods provided by other interfaces.

MoveUsers[] (0) (CL_Op) - To move users from one contact list to
another.

Copy Usersf] (0O) (CL_Op) — To copy users from one group to
another.

Del CL (O) (CL []) - To delete the Contact list

Rename CL (0) (CL_Target|[]) — To Rename the contact list

Clear CL (O) (CL []) — To clear the users from the contact list. The

list become empty once this is done to any contact list.

Status Messages

Method Succeeded

User ID does not exist

Contact List Unacceptable

Too many users in the contact list
Service Not Supported

Bad Parameter

Permission Denied

55

Server Error

Server too busy

Table 4.5: (Status_Op) setCList Method

Attributes

Taken

UID (M) - Identifies the watcher (Subscriber/Fetcher/Poller)

UID [] (O) - List of user identities whose P.I. is requested

CL [] (O) - To get the presence information of the users in any
number of contact lists

Exp Time (0O) — Requested expiration time to get notification
documents but could be modified to a time smaller than the specified
time, depending on the polices of the server. In order to keep the
subscriptions active, it should be refreshed regularly depending on
the expiration time. By changing the expiration time the watcher can
unsubscribe, resubscribe or fetch the presence document.

AL [] (O) - List of attributes requested by the watcher. This is a
preliminary filtering mechanism that can be used by users incapable
of using the filtering document method.

DAL on (0) (Boolean) — To filter out all the attributes except the
presentity specified default attribute list.

FilterDoc[] (0) (String[]) - List of documents to specify the filters to
be used with the presence information retrieval.

R of N[] (O) (integer) — Requested Rate of Notification. This can be

56

modified because of the server policies and capabilities, but the rate
of notification should never be faster than what is requested.

Accepted Docs (0) (String []) - List of documents that can be
accepted by user/application. The document is sent in the notification

message after the subscription is accepted.

Status Messages

Method Succeeded

User ID does not exist
Contact List does not exist
Bad Presence Attribute

Filter Document not supported
No Documents acceptable
Rate of notification too fast
Expiration Time too Small
Default Attribute List does not exist
Service Not Supported

Bad Parameter

Permission Denied

Server Error/Server too busy

Table 4.6: (Sub_Status) subscribe_Presence Method

Attributes

Taken

Notify _doc[] (M) (String[]) - Notification Document is sent which is

supported by both client and server. The process and rate of

57

notification depends on the module implementing these interfaces.

Status Messages

Method Succeeded

Document Not Supported

Table 4.7: (Status_op) notify_Presence Method

Attributes

Taken

UID (M) - Identifies the watcher info subscribers

UID [] (O) - List of user identities whose watcher information is
requested

CL [] (O) - To get the watcher information of the users in any contact
list

Exp Time (0) — Requested expiration time to get notification
documents but this expiration time could be shortened depending on
the policies of the server. The subscriptions should be regularly
refreshed to keep them active. By changing the expiration time the
watcher info subscribers can unsubscribe, re subscribe or fetch the
watcher document.

AL[] (0) - List of attributes requested for filtering the unwanted
watcher information fetched or sent in the notification.

DWAL on (0O) (Boolean) — To request only the default watcher
attribute list, all the other attributes are filtered out.

FilterDoc[] (O) (String[]) - List of documents to specify the filters to

be used with the watcher information retrieval.

58

R of NJ] (0) (integer) — Requested Rate of Notification. Depending
on the local policies server can further increase the rate of notification
timing to send notification in longer intervals.

Accepted _Docs (0) (String[]) - List of documents that can be accepted

by user/application and is fetched or subscribed by the watcher info

subscriber
Status Method Succeeded
Messages User ID does not exist

Contact List does not exist
Bad watcher Attribute

Filter Document not supported
No Documents acceptable
Rate of notification too fast
Expiration Time too Small
Default Watcher Attribute List does not exist
Service Not Supported

Bad Parameter

Permission Denied

Server Error

Server too busy

Table 4.8: (Sub_Status) subscribe_ WINFO Method

59

Attributes Notify doc[] (M) (String[]) - Notification document sent to the client by
Taken the server. The server based on the local policies can change the

subscription duration and the rate of notification.

Status Method Succeeded

Messages Document Not Supported

Table 4.9: (Status_op) notify_ WINFO Method

4.5 Two case studies based on the proposed API

This section describes two case studies that are used to describe the usefulness of the
Web service based presence API. The two applications described help in realizing the
importance of the methods defined in the APIL The high level interface definition helps in
reducing the number of transactions between the presence server and the clients (users
and the application). The dial out conferencing application was developed as a prototype
- at Ericsson. A small discussion about the usefulness, completeness and flexibility is done

at the end of this section.

4.5.1. Case Study One - Application BOW (deBate nOW)

Motivation: Human beings enjoy discussions and debates. Debating application is a

service that helps people to debate about a particular topic with voice or video

conferencing and with or without text messaging. These applications can aid in having

60

public or private, pre-arranged or ad hoc debates (debates without a pre fixed time and
date). Today there are very few debate services in web that allow for pre-arranged

debates. There are almost no Ad hoc debate applications.

Working: BOW [figure 4.1] is a free presence-based Ad hoc debate application. It allows
users to debate with the help of multiparty conferencing and text chat. The application
chooses a “current” controversial topic and publishes the topic in the presence server
WITHOUT specifying the date and time. Interested users watch the topics posted by the
application and if interested register for the debate by some means like sending a mail or
filling a small form or sending just their contact addresses by instant messaging. The
users also authorize the BOW application for watching them. Registered users whenever
feel like debating change the status to “For Debate”. The application subscribes to the
registered users presence (status) information and starts a multiparty conference and chat
automatically when at least 5 users are ready “For Debate”. New users can also join the
on going debates; therefore the application also subscribes to the watcher information of
all the registered users. The presence server notifies the watcher information when new
users join, or the old users leave the conference. The application then reactively
authorizes the new users for joining the on going debates or starts a new debate. Contact

list management is not an important issue because the service is a free one.

61

Figure 4.1: deBate nOW application

FExplanation on Transacted Messages between Application and Users:

1. setPresence (BOW, anyone, “IRAQ WAR”, 7200, Int Gra on, PD on) - The
BOW application sets the debate topic as “IRAQ WAR” for 2 hours. BOW also
preauthorizes any users and enables post authorization.

2. subscribe_Presence (userX, BOW, Topic, filter all, 0, any Document Type) -
User X fetches only the debate topic and filters out all the other information from
application BOW. The user also specifies that he can accept any type of document

3. notify Presence (“IRAQ WAR”) - The application sends the document with just

topic value as “IRAQ WAR” to user X.

62

4, subscribe_Presence (BOW, all debate users, status, filter_all, 3600) - The users
register for the particular debate topic (Iraq war) by some means. The application then
susbcribes for the status information of all the registered users for 1 hour.

5. setPresence (user Y, BOW, “For Debate”, 1800) - User Y authorizes BOW for
the subscription of the presence information and sets the status to “For Debate” for 30
minutes.

6. setWatcherAuthorization (user X, BOW, 4800) - BOW is authorized by user X for
getting its watcher information for 90 minutes.

7. notify Presence (PIDF document of User Y with status “For Debate”) -
Application BOW receives the PIDF document of user Y with status as “For Debate”
After there are at least 4 users who are interested in the debate are available a audio/video
conferencing with text chat adoptability is created by BOW using some technology for
example by using the Web service interface for call control and instant messaging.

8. subscribe WINFO (BOW, all Debate users, 3600) - The application BOW
subscribes to the watcher information of all the debate users for one hour.

9. notify WINFO (winfo document) - BOW is notified if there is a change in watcher
information of some registered user.

10. setPresence (BOW, all pending users, 3600) - The debate application authorizes all

the pending users for one hour.

63

4.5.2. Case Study Two - CONFAPP (CONFerencing APPlication)

Motivation: Conferencing is one the most important applications in the communication
industry and Internet telephony. The conferencing application can exploit the presence
functionalities to check the availability, preference and capabilities of the user and in
addition can manage the contact list with the proposed API. There are many conferencing
applications available in the market, but there are very few presence-enabled applications
that use very primitive and proprietary technologies. There is a need for presence based

conferencing application, which is developed using open standards like the proposed

APL

Working: CONFAPP [figure 4.2] is a service that helps users to establish prearranged
dial in or dial out conferences. Companies can pay and use the application for
conferencing between their employees. In the dial-in model users are given an address by
the application and they dial in to participate in the conference. In the dial out model the
users are watched by the application and when a minimum number of participants are
available the conference is automatically started by using some other conferencing API’s
or by using any other mechanism. The application maintains a contact list for keeping
track of the users and the conferences participated by them, which might be then used for
billing purposes. As an example if the application has many companies as regular
customers, they could maintain a permanent user list for all these companies in their

contact list,

64

Figure 4.2: Dial-out model conference usage (Presence side)

Explanation on Transacted Messages between Application and Users:

1. setCList (CONFAPP, AddUsers [{userl, user2, user3}, current attendees]) - The
conferencing application adds the users(userl, user2, user3) to the contact list
“current attendees”.

2. setPresence (user x, CONFAPP, DAL [status],3600, DAL on) - The users preauthorize
the application and sets the default attribute to be the “status” and enables only that
information for the application .

3. subscribe Presence (CONFAPP,current attendees, status , filter all, 6000, 15,
any doc type) - The application subscribes only to the status attribute with rate of
notification as 15 seconds for 10 hours and also accepts any type of presence document.
4. setPresence (user 1, [status=online], 3600) - User 1 changes the status to online for 1

hour.

65

5. setPresence (user 2, [status=online], 3600) - User 2 also comes online for one hour.

6. notify Presence(PIDF documents of user 1 and 2 with status “online”) - The
application is notified about the online status of both users. The conference is
automatically started when at least two users are online by some mechanism.

7. setCList(CONFAPP, AddUsers [{user A, user B, user C}, current attendees],
MoveUsers[{user2},current_attendess,ZTEL employees],CopyUsers[{user3},
current_attendess, 3rdParty HR] DeleteUsers[{userl}], ClearCL[hackers]) - New users
(userA, user B, user C) are added to the current_attendees contact list. User2 is moved
from current_attendees to ZTEL. Employees contact list, user3 is copied to a new contact
list called 3rdParty HR and userl is deleted from the old contact list. Contact list

‘hackers’ is cleared.

4.5.3 Discussion about the API with respect to the Case Studies

These two case studies show the usefulness of the API by using a wide range of presence
functionalities with the help of the proposed API. The watcher information functionalities
like watcher information authorization, subscribing to and retrieving the watcher
information, and presence information functionalities like preauthorization, presence
information setting and retrieval are used in the first case study with the proposed APIL
The conferencing case study uses the methods of the API to perform the contact list
management, and presence information functionalities like post authorization, setting and
retrieval of presence information, partial presence information update and presence

information filtering. It should be noted that all the presence related functionalities are

66

used in the two case studies with the help of the API. All the methods designed in the
API are used with these two case studies. This proves the completeness of the API for
presence functionalities.

The usage of presence functionality in the complex debating and conferencing
application becomes simple because of the proposed API. The number of methods used
for performing a complex Presence related functionality is reduced by a significant
amount. For Example, Presence information setting, authorization and polite denial are
done using the single ‘setPresence’ method (transacted message 1) in the first case study.
In the second case study a single ‘setCList’ method (transacted message 7) is used for
adding, moving, copying and deleting users from a contact list and also to clear another
contact list. This shows that many diverse operations can be performed using the methods
of the APL. In the first case study the ‘subscribe Presence’ method is used for
fetching the presence information (transacted message 2) and subscribing to the presence
information (transacted message 4). This shows the flexibility of the methods for

performing completely different watcher functions.

4.6 Summary of the API

All the presence functionalities such as presence information creation, deletion, updation
and retrieval, watcher information functionalities, contact list management,
preauthorization, post authorization, partial presence information update and presence
information filtering can be done with the proposed API. The API is designed at a very

high level of abstraction; consequently most of the presence functionalities can be

67

accessed with minimum number of methods using the proposed API. The completeness

of the API is also shown with the help of two case studies.

68

Chapter S

Prototypes and Performance Study

The implementation, prototypes and the performance analysis are discussed in this
chapter. This chapter shows the implementation architecture of the Web service based
presence system, gives a concise overview of the different components in the system and
explains the mapping of the proposed API to SIMPLE based Ericsson presence server.
Details on the test environment, performance measurements and analysis are also

provided.

5.1 Architecture of the Web Service based Presence System

Web Service based Publishers Web Service based Watchers

Figure 5.1: Architecture of the Web Service based Presence System

69

This Web Service based Presence system (figure 5.1) uses the client-server architecture.
The presence server runs on an application server that supports Web services. The
framework is generally used for configuring presence services and the users for using the
presence services. The protocol independent API developed in this work is implemented
as a Web service gateway and mapped to the presence server API, which is at a low level
of abstraction. The Web service based clients (publisher and watcher) could use RPC
(Remote Procedure Call) mode or messaging mode to communicate with the gateway but
uses SOAP as the basic protocol for communication. The publisher stores the presence
information which is retrieved by the watchers. The Web service gateway for presence,
the Web service based watcher client and the Web service based publisher client is
developed as a part of the research work. The application server, presence server and the
framework were developed by different research teams. Detail on each component in the

presence system is discussed now.

5.1.1 Application Server

The application server used is a Java 2 Platform, Enterprise Edition (J2EE) based Apache

Axis enabled server built at Ericsson. Apache Axis is an implementation of the SOAP

protocol. The application server is platform independent that runs all the other server side

components of the presence system.

70

5.1.2 Framework

The framework is used for registering the presence service to the application server. The
framework is also used for creating and deleting the users that can act as both publishers

and watchers.
5.1.3 Presence Server
The Presence server is developed as a J2EE application that runs on the Ericsson’s

application server. This SIMPLE based presence server exposes its capabilities to third

party applications using an APIL.

5.1.4 Presence Web Service Gateway — Prototype

Presence Document Maker

Presence Document Parser

Filterine Handler

Figure 5.2: Basic Architecture of the Web Service Gateway for Presence

The Web service gateway for presence is to be used along with the SIMPLE based

Ericsson presence server. The basic architecture of the gateway is shown in figure 5.2.

71

The mapper is the coordinating module of the gateway that interacts with the other
modules like presence document parser, presence document maker, filtering handler and
the helper to process the presence requests. The presence document parser and the
presence document maker can parse and create PIDF documents that must be supported
by all presence servers. The filtering handler supports the parsing of standard filter
document proposed by SIMPLE. The helper is used for coordination between different
modules. The architecture of the gateway is flexible enough to be adapted to any presence
server, based on any technology. For example, if the underlying presence server is
changed to a 3GPP based presence server the mapper is the only building block that has
to be changed, the other modules could be used as it is.

The gateway implements only limited presence information functionality
(setPresence, subscribe Presence and notify Presence methods) that could be mapped to
the presence server’s Java API. The other functionalities such as the contact list
management and watcher Information functionalities are not implemented because of the
constraint of the Java API for the third party developers. The detailed class diagram for
the gateway is given in the Figure 5.3. The PIAccess is the central mapper class which
coordinates with other classes like PIAccessPublishHelper, AccessWatcherHelper,
PresenceHandler, PresenceDocumentMaker and FilteringHandler. The classes used by
PresenceHandler and FilteringHandler such as Presence, Tuple, Filter, What, Trigger,
ThreegppAttributes are generated using the castor Framework [44]. The castor

framework generates Java code from the XML schema for accessing the XML elements.

72

G Flﬁéce‘ssmﬁti;herﬂelper

PiAdeess Publish Hefper: 2

: 5",'P]Accessln!e1face," :

“§eaiPresence().: boolean 'l
L Ysubseribe, Prazence() | smngv
R DALY e : Qnouly_PresenceQ woid

SsatDAL_DNO o
ety T 1
; 2 mpkments

1

PlAdcess g go
handler ; Presence Handler o QsétAocepted DBESQ " Excluda]
dmaker:: Fresencenocumenmker b .:Qgemceepmnocso B e
iper's Pladoess RublishHeiper:. B igetALo i -
he ber = Plicte &s Wit chief Hellper Sgaclo
bler: : FiblishingEnabler. - - ot DAL ONG
henabler - WatcherEnabler™. .. 8 RgABPTMEQ
soegenmy : handier . FikEringHarder 12 o QgetFPOCO : S 1
94 LGy SRnaRes uses Butfer { Strngbuffer B R :gekﬁlonl:)o S
i) : : Q‘_—_‘ 3 boolean 1. . et
@ ‘QQDWEMO i 1 result:; boolean' ’ Sgetivatcheri DG
gaﬁﬁtgﬁoouo : Eoinu;result : boolean. , DgetitatcherName() uses
&t e
Qge'lTl() *Vwmvuu*——————”——

QsetPresence(): Booléan
Reubscrbe Presence) | Strng

o ::,Qiotlfy “Presence() void [3 ; T
- QoetWilingness o ‘Qmale, ‘WellFumedPresenceDowmsno suing : i1 'Lv ms{ﬂ?m
QgetStatisDetail(; “Sreplace() : Sting £ "iy smr?g

i QpgerSibsProv] Locanono
Qgetlnore(): =

PresenceDosumentiviaker.: -
phandler - FresenceHandler

‘hanged Changed[]
olud 3 Incjude

égu‘ple :
3‘95‘3'

fus’;

| DT |

]

wNes Qe Tiengihl)

5es Vet Tupiel DY
‘S«Sﬂlusbetaﬂo
m ‘set\MllmgneSso
[boationd
| BisTpe | Sestliateg

l

Figure 5.3: Class Diagram of the Web Service Gateway for Presence

5.1.5 Web Service based Presence Clients — Prototypes

The Web service based clients; the publisher and the watcher were also developed as a
part of the research work along with the Web service gateway for presence. The publisher
and watcher work only in RPC mode of communication and are also Apache Axis based.

The clients takes the input from the user using the graphical user interfaces (Figure 5.4

73

and 5.5), aggregates the information and sends a SOAP based RPC call to the server at a

particular endpoint (IP Address and Port number).

- USER RELATED WEORMATION

Enter the User Location

Erer thel
88 Userframe jave o
~ &8 usiFrome jova

2 WSUserApp jove Erter the Number oF Tuplesita be creafeq.

Vector() ,del
,inegraz
deltlenew Tuple &
jcaddress,prio.no
;dtaddr, tuplesl;

e

o

Figure 5.5: User Interface for watcher

74

The Web Service description of the Presence service is assumed to be published
locally to the clients and not in the service registry by the service provider. The publisher
uses user GUI, communication tuple GUI, delete tuple GUI and authorization GUI to
obtain the presence information from the user. The watcher uses one GUI for getting the
information for watching and uses three GUI’s for getting the filter related information
from the user. The castor framework is used for generating source code for creating the

filter document and processing the PIDF document.

5.2 Mapping of the Web Service based Presence Gateway to the

SIMPLE based Presence Server

The API developed during the research work is at a very high level of abstraction that
helps the application developers to use all the functionalities for publishing the presence
information using one method (setPresence). The mapping of the publisher side of the
protocol independent API to the Java API of the presence server is explained using the
sequence diagram in figure 5.6. The publisher calls the Web service gateway for creating,
updating and deleting the presence information of any number of users. The gateway
does some processing, then calls the presence server API using low level function calls
for creating or updating or deleting one user at a time and sends the result to the publisher
after aggregating all the results from the Java API. The setPresence method could also be
used for authorization, but the presence server does not expose the functionality for the

third party developers using the Java APL.

75

Eugllshgr {Clionty: I [Wsh Egm: ca gaigwa!

:'}' P[senog Senver
..... - Applicationy Lt ter Presénoe !

S Facade

I 1. setPresence() l I '

2. Setting and ieving Values from Helper Class and Chedking

3. createTuple() |

4. createTuple{).
B. Status Flag 5. Stati la

7. updateTuple()} 8. updateTuple ()
9. Status Flag

10. Status Flag

11. setUserTuple() hh2. setUserTuple

14. Status Flag 13. Status Flag
15. deleteTuple()

16. deleteTuple()
18. Status Flag 17. Status Flag

I m—

19. Result Aggregation

20. Result (Status)

———_{7
—_—_————

—_—— e —]

Figure 5.6: Mapping of the Presence Gateway to Presence Server (Publisher

Functionalities)

The subscribe Presence method is used for fetching, polling and subscribing the
filtered presence information. The Java based presence server API does not support
subscribing for the presence information, so only the fetching and polling mechanisms
are supported by the Web service gateway. The sequence diagram for the watcher side
operation is shown in figure 5.7. The watcher sends a single method for fetching the
filtered presence information of any number of users to the gateway. The presence
gateway uses the helper classes to fetch unfiltered presence information of all the
specified users, subsequently it parses the presence document, then the gateway filters
and makes the new well formed filtered presence document. The aggregated presence
document of all the specified users is sent to the watcher. The polling mechanism is
implemented in the gateway by fetching the presence information at regular interval of

time.

76

‘Watcher (Cliantf:
S Applicationdili

for Presence

:_'!!’ £-3:3 Sentlca O’a’tewag’ - ::‘}:Prvuem':‘e
e e - Java ARl

‘Senar I

Figure 5.7: Mapping of the Presence Gateway to Presence Server (Watcher

1. subscribe_Presence()

2. Setting
Parameters

3. *[1t0

nd Retrieving '_J_
—

fr Class
e
UID size] getPresencelnfo(] l

siiPiesence Sewer

Facada

LOOP: D

called -

pending: on the Pr
Information of the Number of users
requested the getPrésenceinfo method is

—rr :

4. getPresencelnfol) ,

5. PIDF(XML} Do t

5., PIDF(CAML) Document

7. parseP

8. Filtering t

9. make

10. make_Wel

11.Result (XML Document)

Document{)

hg Presence Information

[—

=

F prme dPrese nceD ocumeni(3

™~

Aggregated list of Filtered Presence s
Documents of ‘al the Requested Users 07

e —

bibsenceDooumentt)]IJ
|
|
l
I
|
|
|
|

]
.

Functionalities)

5.3 Performance Evaluation

the analysis of the results are presented

5.3.1 Test Bed and Performance metrics

77

This section details about the performance evaluation. Firstly, details about the test bed

and performance metrics are given, then the performance measurements are shown and

The performance measurements were taken to investigate the applicability of Web
services paradigm in the telecommunication domain, specifically with the presence

technology. The two performance metrics that were considered are network load and

response time. The basic architecture used for taking the performance measurements is
given in figure 5.8. The Presence server was deployed on the application server that was
running on an Intel Pentium IV 2.4 GHz machine (512 MB RAM) with Red Hat Linux
9.0 platform. The Web service gateway for presence and framework were also deployed
on the same application server. The methods supported by the proposed API are atomic
methods, so the testing is done with one client, as that would justify the overhead the WS

gateway imposes.

Application Server | Frame
work

Watcher
Publisher WS Gateway for Presence

pad AN
i

}jrm/ple Object Access Protocol/HﬁP\
Web Service Based Web Service Based
Publisher Watcher

Figure 5.8: Basic architecture of the test environment

The Web service based publisher and watcher were running on Intel Pentium IV
2.4 GHz (512 MB RAM) with Windows XP home edition operating system and were
using SOAP/HTTP for communication with the server. The client and server were
connected to the same segment of the 100 Mbps Ethernet in our local area network. To

compare the result without Web service gateway, we used the same machine to run a

78

custom built publisher and watcher, which used HTTP for communication with the
server. The non Web Service based clients were developed by another team.

We took the response time and the network load during the late hours to minimize
the network load due to other activities. Ethereal protocol analyzer was used to catch the
packets between the client and server ports. Each packet length was calculated to get a
faultless network load. The response time is calculated with an embedded software
module in the clients. The response time with and without the gateway is calculated as
the time duration between invoking the method in the server and getting a response from
it. The performance metrics were taken for 15 trials for all the measurements and the

average of all the readings is presented in the next section.

5.3.2 Performance Measurements and Analysis

The performance measurements obtained as a result of the experiments are shown in the
graphs (figure 5.9, 5.10, 5.11). In the case of publisher, the response time and network
load is calculated with and without the presence gateway for creating and deleting a
single tuple. As the gateway supports higher level abstracted methods, the same
performance metrics were taken while creating one tuple and deleting one tuple with the
setPresence operation. The performance measurements while creating and deleting two
tuples using one setPresence method with the Web service gateway is also done. The

figure 5.9 shows the final results.

79

Publisher - Response Time

Response Time
{ms)

Methods
[Dwithomws GW B With WS GWI

Publisher - Network Load

Network Load (KB}

Methoils

I BWithout WS Gateway HWith WS Gateway'

Figure 5.9: Response time and Network Load of the Publisher with and without the
Web Service Gateway for Presence

The response time and network load increases with the usage of the gateway. The
significant increase in the response time is mainly because of the SOAP decoding and
encoding and secondly it is because of the high level abstracted interface. SOAP is a text

based protocol that is based on XML, which also introduces additional network load.

80

Reference [45] discusses the factors that affect the SOAP performance. The
results also show that the delete method takes lesser load and response time than the
create method for the reason that only two parameters, communication mean and address,
are required for performing this method. The main advantage of the high. level abstracted
interfaces is that, for instance one setPresence method is used to create 2 tuples and delete
2 tuples that obviously increases the response time and network load, which otherwise
would take 4 method invocations to perform if the level of abstraction is lower. The end
result is that the high level API ultimately helps in reducing the response time and load

significantly.

Response time for Watcher

4000
3500
3000
2500
2000
1500
1000 13
500

Response time
{mis)

One 1 User 2 3 4 5 51
User Users Users Users Users Users

Number of users watched

| With WS GW mWithout WS GwW

81

Network load for Watchar

6 Users
5Users
4 Users
JUsers
2Users

1 User

One User

Number of users Wat ched

Hetwork Load {(KB)

@ Vith YWS GW B Without WS Gw]

Figure 5.10: Response time and Network Load of the Watcher with and without the
Web Service gateway for Presence

The presence server supports only the fetching operation for third party
developers, so the performance measurements for watchers are taken only for fetching
operation. The measurements with the Web service gateway is taken for getting presence
information of one to six users, but without the gateway presence information of only one
user can be fetched at a time. The response time and network load measurements of the
watcher with and without the gateway is presented in the figure 5.10. As analyzed
previously with the publisher, the response time and load increases with the usage of
gateway because of SOAP processing and the abstracted API. The network load and
response time increases steadily with the number of users being watched.

The presence server does not support the filtering of presence information; on the
other hand the Web service gateway for presence supports presence information filtering.

The Ericsson SIMPLE based presence server supports the ten presence attributes adopted

82

by 3GPP. The Web service based watcher specifies the list of attributes that it is interested
in fetching, and then the gateway filters the attributes and sends back the filtered presence

document to the watcher.

Response Timea for Watcher with Filtering
3000
w2500
=
1)
£ 2000 —— 1 User
'; 1500 - 2 Users
] e 3 USErs
s 1000
]
o 500
0
Without 1FP 3FPs 5FPs 7 FPs 9 FPs
FP
Number of filter parameters
Network Load for Watcher with Filtering
8
7%
Network Load (KB)
@ 1 User
1 B 2 Users
Q e s . . 03 Users
WIoU | 4 e | 3pps | 5FPs | 7FPs | aFPs
tFP
m1User | 511 | 4809 | 4874 | 5.084 | 5195 | 5.359
® 2 Users | 6.337 | 5.976 | 6.037 | 6.201 | 6.335 | 6.448
B33 Users | 7.672 | 6.956 | 7.145 | 7.384 | 7.51 [7.788
Number of filter parameters

Figure 5.11: Response time and Network Load of the Watcher with Filtering
Parameters

The network load and response time is calculated for three users with filtering
criteria. The filtering parameters (FP) specify the number of attributes requested by the
user. For example, if the number of FP is three that means the number of attributes

requested by the watcher is three. The graphs in figure 5.11 show that even though there

83

is a small increase in the response time there is a decrease in the network load when
filtering is used. It is also observed that it is optimal to filter less than half of the
attributes using the gateway, if more than 50% of the attributes are filtered the network
load increases considerably. This is because of the fact that when more attributes are
requested by the users the content of the filtered presence document is comparable to the
unfiltered document which increases the load in the network. The response time is
increased because of the additional processing required for filtering the attributes. It is
also analyzed that as the number of users increases the response time with filtering
parameters remains constant but the network load reduces notably for the optimal filter

criteria (up to 50% parameter filtering).

84

Chapter 6

Conclusion

This chapter gives a summary of the research contributions reported in this thesis. The

possible future work is also pointed out.

6.1 Summary of Contributions

In the recent years Web services have emerged as a new standard for easier application
development besides that Web services allows loose coupling among applications, and
provides effortless interoperability. The main aim of this research work is the
investigation of the Web services paradigm for presence based application development.
The core contribution from the research work is the development of the Web
service based API for presence based application development. The existing API’s for
presence is thoroughly analyzed and found that the level of abstraction available from
these API’s is not suitable to be used directly as high level Web service interfaces. The
proposed API is designed to be at a high level of abstraction so that applications could be
developed with ease; moreover the API is protocol, network and architecture
independent. The application developer need not be an expert in the presence domain to

incorporate the presence technology in the applications, which opens the technology to a

85

wide range of developers. Innovative applications can be effortlessly developed and the
number of lines of code required for using different presence functionalities reduces
significantly.

Interoperability is one of the key issues for the future of the presence technology
as there are different protocols like SIMPLE, 3GPP and XMPP that are widely deployed.
The usage of Web services with the presence technology solves this problem for the
reason that one of the main advantages of Web Services is that it allows disparate systems
to communicate with ease.

A subset of the functionalities of the API is implemented as a Web service
gateway for presence. The presence information creation, updation, deletion, retrieval
partial presence information update and presence information filtering is supported by the
gateway. The rationale for implementing only these functionalities is that the presence
server supports only these functionalities as Java API for third party developers. The Web
service based publisher and watcher were also developed as prototypes during the course
of this research.

Performance measurements were also taken with and without the Web service
gateway to explore the usability of Web services with presence. The network load and
delay measurements were taken and the results of the experiments were analyzed and
presented. The results show that there is an increase in the network load and response
time because of the additional SOAP processing and high level abstracted interface. The
proposed API’s presence information filtering mechanism for watchers reduces the

network load by significant amount though the response time increases a little.

86

Web services though considered being a challenging middleware, the overhead created by
Web services is negligible compared to the interoperability and easy application to

application interaction features offered by the Web services.

6.2 Future Work

The future work would be to map the native interfaces of the presence server (without
using the Java API of the presence server), that would give more flexibility for mapping
additional functionalities like subscribing to presence Information, authorization and
watcher related functionalities, to the gateway. The API developed is protocol and
network independent, so it would be interesting to map the Web service based presence
gateway to a 3GPP based presence server that would also allow contact list management
along with other presence ﬁmctionalities to be mapped to the presence gateway.
Performance measurements with these new gateways could also be done and compared
with the results obtained in this research work. Performance measurements in mobile
environment could be done with presence clients on mobile devices like PDA’s and
mobile phones. These experiments might show different kind of results that would be

interesting to analyze.

87

References

1. Steven J. Vaughan-Nichols, “Presence Technology: More than just Instant
Messaging,” IEEE Computer, October 2003, pp 11-13
2. Web Services Activity - W3C, http://www.w3.0rg/2002/ws/
3. M. Day, J. Rosenberg and H. Sugano, “A Model for Presence and Instant Messaging,”
RFC 2778, Internet Engineering Task Force, February 2000
4. M. Day, S. Aggarwal and J. Vincent, “Instant Messaging/Presence protocol
Requirements,” RFC 2779, Internet Engineering Task Force, February 2000
5. XMPP W.G, http://www.ietf.org/html.charters/xmpp-charter.html
6. P. Saint-Andre, Ed. “Extensible Messaging and Presence Protocol (XMPP): Core,”
internet draft, IETF, May 2004. Work in progress
7. P. Saint-Andre, Ed. “Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence,” internet draft, IETF, April 2004. Work in progress
8. SIMPLE WG, http://www.ietf.org/html.charters/simple-charter.html
9. J. Rosenberg et al, ”SIP: Session Initiation Protocol,” RFC 3261, IETF, June 2002
10. A. B. Roach, "Session initiation protocol (SIP)-specific event notification,"

RFC 3265, IETF, June 2002.
11. J. Rosenberg, "A presence event package for the Session Initiation Protocol (SIP),”
internet draft, IETF, January 2004. Work in progress
12. C. Muhugusa, R.H. Glitho, Theo Kanter, “A Protocol Perspective on Presence,”
Ericsson Internal Document, 2002
13. Wireless Village, http://www.openmobilealliance.org/wirelessvillage/

14. Wireless Village, Client-Server Protocol, Session and Transaction, Version 1.1

88

15. Internet Engineering Task Force, http://www.ietf.org

16. IMPP W.G, http://www.ietf.org/html.charters/impp-charter.html

17.3" Generation Partnership Project, www.3gpp.org

18. 3GPP. Technical Specification Group Services and System Aspects, “Presence
Service, Stage 1,” 3GPP TS 22.141 v6.1.0, September 2002

19.3GPP. Technical Specification Group Services and System Aspects, “Presence
Service, Architecture and Functional Description,” 3GPP TS 23.141 v6.1.0, Dec 2002

20. Open Mobile Alliance, http://www.openmobilealliance.org/

21. “A Conversation with Adam Bosworth,” ACM Queue, March 2003, pp 12-21

22. Web Services Architecture: http://www.w3.org/TR/2002/WD-ws-arch-20021114/

23. Kreger.H; Web Services Conceptual Architecture (WSCA 1.0) IBM white paper

On Web: http://www-3.ibm.com/software/solutions/webservices/pdf/ WSCA.pdf

24. Simple Object Access Protocol (SOAP): http://www.w3.org/TR/SOAP/

25. Web Services Description Language (WSDL): http://www.w3.org/TR/wsdl

26. Universal Description, Discovery and Integration (UDDI): http://www.uddi.org
27. Parlay, http://www.parlay.org/

28. PAM WG, http://www.parlay.org/about/pam/index.asp

29. Parlay-X WG, http://www.parlay.org/about/parlay x/index.asp

30. Parlay-X Web Services Specification Version 1.0,

On Web: http://www.parlay.org/specs/index.asp

31. Forum Nokia, Web Services Interfaces — an engine of innovation, White Paper

32. Forum Nokia, Presence Application Development Guide, version 1.0

33. Forum Nokia, Nokia Presence Server Service Developer’s Guide, version 1.0

89

34. JAIN, http://java.sun.com/products/jain/
35. JAIN Presence, http://jcp.org/en/jsr/detail?id=186
36. JAIN SIMPLE Presence, http://jcp.org/en/jsr/detail ?id=164
37. JAIN PAM API, http://jcp.org/en/jsr/detail ?id=123
38. Open GIS Consortium, Inc. http://www.opengis.org/
39. H. Khartabil, “An Extensible Markup Language (XML) Based Format for Event
Notification Filtering,” internet draft, IETF, August 2004, Work in progress
40. H. Khartabil, “Functional Description of Event Notification Filtering,” internet draft,
IETF, August 2004, Work in progress
41. H. Sugano, “Presence Information Data Format (PIDF),” Internet Draft, IETF, May
2003. Work in progress
42. J. Rosenberg., "A Watcher Information Event Template-Package for

the Sesston Initiation Protocol (SIP)", January 2003. Work in progress
43. J. Rosenberg, "An extensible markup language (XML) based format

for watcher information," internet draft, IETF, January 2004. Work in progress

44. The Castor Project, http://www.castor.org/
45. Robert Elfwing et al, Performance of SOAP in Web Service Environment Compared
to CORBA, Proceeding of the Ninth Asia-Pacific Software Engineering Conference

(APSEC °02), December 04 - 06, 2002 ,Gold Coast, Australia , p.84

Note: All the WebPages were last accessed on August 15, 2004

90

Appendix A

Deployment and Configuration of the Web Service based Presence

System Components

The application server is first started, and then the framework, presence server and the
Web service gateway are deployed on the application server. The presence service is then
registered to the application server by the framework after which the users for the
presence service are created. Figure A.1 shows the deployment and checking of the

framework, presence server and gateway.

The registration of the presence service and the creation of the user for presence
service access are shown in figure A.2. The publishers can publish the presence
information by sending SOAP based RPC calls to the gateway that maps the information
to the presence server API to be put in the presence server. The watchers has to be
authorized by the publishers before retrieving the presence information, once authorized
the watchers can retrieve the filtered presence information using the Web service gateway

for presence.

91

File Edit Vew Terminal Go Help

M Master Console> dapp
CM Master Console> Enter File name (full path): foptfj2as/war/sfw.ear

CM Master Console> dapp

(M Master Consoler Enter File name (full path): /opt/j2as/war/presence.eare§

e | oot localhostfopyiZasibin -
File Edit View Terminall Go Help

}CM Master Console>» dws

& M Master Console> Enter File name (full path): /fopt/j2as/war/se.war

¥ _rent@localhost/opyiRasibin, . Lw O % (¥ root@localhost/optjj2asibin i w [%)

‘File. Edit View! Temminal. Go . Help ; o -

M Master Console> getapp A E;e E@t Yi_&w Iem'ﬂnai QO _ﬁe

o The List of Applications: bd

t Application Name: wmc (M Master Console> getws A
Version: D -
Pescriptioen:

ModuleName: wmi.ear o The List of web service:
OperationMode: RUNNING,
Application Mame: SFW [
Yersion: O

Description:
ModuleName: sfw.ear
OperationMode: RUNNING,

Application Name: Presence =]
Version: ©
Description:

ModuleName: presence.ear : d
gv OperationMoede: RUNNING, - ,3 gCM Master Console> D

Figure A.1: Deploying and Checking the Framework, Presence Server and Gateway

92

Bervice Intarmation

§ Service Providér Adminis

ERIC

Regintes Sanoe. Crante Pabiis 1 Eog taat

Figure A.2: Registering the Presence service and creating the user for using the

Presence service with the Framework

93

