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Abstract

Orderly Broadcasting in Multidimensional Tori

Perouz Taslakian

In this thesis, we describe an ordering of the vertices of a multidimensional torus
and study the upper bound on the orderly broadcast time. Along with messy broad-
casting, orderly broadcasting is another model where the nodes of the network have
limited knowledge about their local neighborhood. However, while messy broadcast-
ing explores the worst-case performance of broadcast schemes, orderly broadcasting,
like the classical broadcast model, is concerned with finding an ordering of the vertices

of a graph that will minimize the overall broadcast time.
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Chapter 1

Introduction

Broadcasting is the process of disseminating information in an interconnection net-
work whereby a message, orignating from one of the nodes, is transmitted to all the
other nodes of the network. A broadcast problem is the problem of determining the
minimum amount of time needed to transmit a piece of information to every node in
the communication graph. In what follows, we discuss the broadcast problem of a

2-dimensional torus under the orderly broadcasting model.



1.1 Mbotivation and Definitions

Computer networks provide us with an important tool for data sharing. Substantial
effort has been made recently to develop effective techniques to make such com-
munications reliable, efficient and fast. All these properties depend highly on the
performance of information dissemination between network components.
Information dissemination also plays an important role in parallel processing,
where a single problem is divided into sub problems, which are solved by multi-
ple processors simultaneously. Each of these processors needs to transfer its results
to the others for further computing, and the effectiveness of the result of the whole
computation process relies on the efficiency of the information exchange among these
processors. Moreover, in such a multiprocessing environment each processor may
have its own memory cache while sharing a common memory. Cache coherence is
the problem that arises when copies of the same memory block are present in the
caches of one or more processors. When a processor modifies a memory block, the
other processors might continue to access the old copy of the block that is in their
caches. The protocol that manages these caches and ensures that no data is lost or
overwritten relies heavily on effectively broadcasting the information of any change

in the caches of all processors.

We will model a communication network as a connected graph G = (V, F) consist-

ing of aset V = {vp, v1,...v,} of vertices (nodes) and a set of edges E (communication



lines) connecting these vertices. Two vertices u € V and v € V are adjacent or are
neighbors when they are connected by an edge e € E such that e = (u,v). We define
the degree of a vertex v, 6(v), to be the number of neighbors of vertex v. A path P of
a graph G is a sequence of vertices of the form P = (v, vo,...v;) (K > 2), such that
every (v;,vi11) € E, 1 <14 <k. A cycle C of length k is a path (vi,vs,...v;) Where
(v1,v) € E. A graph G = (V, E) is said to be connected if for every pair of vertices
u,v € V there exists a path that connects u to v. The distance, d(u,v), between two
vertices u € V and v € V is the number of edges of the shortest path between v and
v. The diameter D(G) of a graph G is the maximum distance between all pairs of
vertices of G.

We say that two vertices are in a call when they communicate a message through
their incident edge. Communication networks can be classified into two major cate-
gories, based on the number of simulataneous calls that each vertex can make within

the same time unit [17] :

e Processor-bound called 7-port or whispering in which a vertex can call only

one neighbor at a time.

e Link-bound called n-ports or shouting in which a vertex can call up to n of
its neighbors simultaneously. Notice that the processor-bound is a special case

of the link-bound, where n = 1.



In the discussions below, we will assume the 1-port constant model of commu-
nication, during which one call can be made between two adjacent vertices in one
time unit. We define a round to be a set of parallel calls that are made simulta-
neously by many vertices. The set of all calls made between the pairs of vertices in

a graph during a sequence of time units is called a protocol or communication strategy.

There are three major types of information dissemination problems that have
been widely studied. A survey on the results of some of these problems can be found
in [29, 28, 17]. These types of information dissemination problems are : gossiping,

broadcasting and accumulation.

1. Gossiping

Gossiping refers to the information dissemination problem in which each node of the
communication network knows a unique piece of information and must transmit to
the rest of the nodes in the network. More formally, given a graph G = (V, E), for
all v € V, I(v) is a piece of information residing in ». The problem is to find a
communication strategy, called a gossip protocol, such that each vertex in V learns

the whole cumulative message in minimum time possible.

2. Broadcasting
Broadcasting is the problem of determining the minimum amount of time required

for one vertex of a graph to transmit a piece of information to the rest of the vertices.



More formally, given a graph G = (V, E), for a certain v € V, I(v) is a piece of
information residing in v which is unknown to all vertices in V' — {v}. The problem is
to find a communication strategy, called a broadcast protocol, such that the remaining

vertices in V learn the piece of information I(v) in the minimum time possible.

3. Accumulation
Accumulation is the dissemination problem in which each vertex of the communica-
tion graph knows a unique piece of information and must transmit to a single given
vertex in the network. That is, given a graph G = (V, E), for a certain v € V, I(v)
is a piece of information residing in v. Let, for any z,y € V, the piece of information
I(z) and I(y) be “disjoint”. The set I(G) = {I(u)|u € V} is called the cumulative
message of G. The problem is to find a communication strategy, called a accumulation
protocol, such that the vertex v learns the cumulative message of G.

The above mentioned communication problems frequently arise in various appli-
cations ranging from parallel computing to communications in computer networks.
In this thesis, we are interested in the broadcasting problem, which we will discuss in

more detail in the following section.



1.2 Broadcast Models

Broadcasting is a major variant of the Gossip problem and was first introduced by
Slater in 1977. It is an one-to-all information dissemination process during which a
vertex called the originator sends its message to the remaining vertices of the graph
through a set of calls. Broadcasting is complete when all the vertices of the graph
are informed. It is required that broadcasting is completed as fast as possible and

subject to the following constraints:
i) each call involves only two vertices.
ii) each call requires one unit of time.
iii) a vertex can participate in only one call per unit of time.

iv) a vertex can only call an adjacent vertex.

Broadcast models can be divided into two major groups. The first is known as
classical broadcasting and is the one on which initial research concentrated. Various
classical broadcasting models have been introduced [8, 13, 29, 28, 17|, all of which
deal with the issue of finding a scheme whereby information dissemination takes the
least amount of time. In classical broadcasting, it was assumed that every vertex has
the knowledge of the graph topology, the originator of the message and the time at
which it was sent. Based on this information, and in order to minimize the broadcast

time, each vertex of the graph transmits the message in the most clever way.



The second major type of broadcasting is known as messy broadcasting [2]. Unlike
the classical model, messy broadcasting deals with analyzing the worst-case perfor-
mance of broadcast schemes.

Below we describe some of the broadcast models which were studied extensively

in each group. We give some bounds on popular graphs structures.

1.2.1 Classical Broadcasting

Given an originator u € V, we define the broadcast time of vertex u, b(u) in the
classical model to be the minimum number of time units required to complete broad-
casting from vertex u [8, 13]. The classical broadcast time of a graph G = (V, E)
is:

b(G) = maz{b(u)|u € V}

A trivial lower bound on the broadcast time is the diameter of the graph. However,
since each vertex can inform one of its adjacent vertices in one time unit, then at each
time unit the number of informed vertices can at most be doubled. Thus, after k£ time
units, the number of informed vertices is bounded by 2*. Thus, the lower bound for
broadcasting a message in any graph will be [log2(|V])].

As mentioned above, in the classical broadcasting model every vertex is required
to have knowledge of the network topology, the originator of the message, and the

time at which the it was sent. It was also assumed that every vertex broadcasts the



message using an optimal scheme.
The classical broadcasting model was studied in various types of graphs. Here we

list a few results for commonly used interconnection networks :
1. Complete graph K, : b(K,) = [logan].
2. Hypercube H,, : b(Hy) = m.
3. Complete k—ary tree of height m, T{" : b(vy, Tj*) = k.m (v is the root).

4. Cube Connected Cycles of dimension k, CCC}y, : b(CCCy) = {%-l

Determining the broadcast time of a vertex in an arbitrary graph is known to be
NP-complete [39].

Special interest was given to the construction of minimum broadcast graphs (mbg)
which are graphs on n vertices that have the minimum number of edges, denoted by
B(n), that required to broadcast in [logsn] time. Since edges stand for the commu-
nication lines, these graphs are the cheapest possible communication networks.

It turns out that mbgs are extremely difficult to find. In 1979, Farley et al [13]
determined the values of B(n) for n < 15 and showed that B(2*) = k2F~!. Today,
B(n)s are known for n = 2% and n = 2¥ — 2 and for some values of n < 63 [3, 4, 6,
15, 31, 36, 38] and for n = 127 [40].

Also studied were different variations of the initial scheme. Below we describe

some of them and give some bounds.



k-Broadcasting

k-broadcasting is a generalization of the classical broadcast model. In k-broadcasting,
an informed vertex can make up to k£ simultaneous calls in one time unit. Since the
number of informed vertices can, at most, be multiplied by k£ + 1 at each round, then
the k-broadcast time of a graph G of n vertices is bx(G) > [logg+171].

Most of the work in k-broadcasting concentrates on finding minimum broadcast
graphs (Bi(n)) which allow minimum time k-broadcasting. Grigni and Peleg [18]
showed that By(n) € ©(kLg(n)n), where Li(n) is the exact number of consecutive
leading k’s in the (k + 1)-ary representation of n — 1. Lazard [33] found values for
Bsy(n), Bz(n) and By4(n) for small n. Later, Konig and Lazard {30] constructed mini-
mum k-broadcast graphs for all £+ 3 < n < 2k + 3. Bounds on By (n) were improved
in [32]. Harutyunyan and Liestman [24] give the best known lower and upper bounds
on Bi(n) to date. They also solve the problem of constructing optimal k-broadcast
trees on n vertices that have minimum possible k-broadcast time [25]. In [27], Haru-
tyunyan and Shao describe a heuristic that works well in practice. Their heuristic

gives exact time for grid, torus and hypercube graphs.

Fault-Tolerant Broadcasting

Fault-tolerant broadcasting deals with the problem of broadcasting a message in a
network when one or more communication lines or nodes fail to operate. In this

model, it is assumed that faults are not detected during broadcast, and in order to



tolerate k faults, the broadcast scheme must consist of k+1 edge-disjoint calling paths
from the originator to every other node. Let Ty(n) be the minimum time required to
broadcast in the presence of k faults in a graph G on n vertices. Then, it was shown

in [33, 34] that :
e To1(n) = [logon] +1
e Too(n) = [logan] + 2 for n # 4i 43
e Tox(n) > [logon] + k for appropriate values of k£ and n

Constructruction of optimal fault-tolerant broadcast graphs with n vertices and

k faults were studied in [5, 1].

Multiple Originator Broadcasting

Another variant of broadcasting considers the problem of finding the minimum num-
ber of message originators necessary to complete broadcasting in a specified amount
of time. In 1981, Farley and Proskurowski [14] settled the multiple-originator broad-
cast problem in arbitrary trees in at most ¢ time units (for any t), and presented a
linear algorithm for decomposing a tree into a minimum number of subtrees such that

broadcasting can be completed in at most ¢ time units in each subtree.
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Multiple Message Broadcasting

Multiple message broadcasting deals with the problem broadcasting multiple messages
in a graph. It was observed that simple modifications of one-message broadcast
schemes will be too inefficient for multiple message broadcasting. This model was
first studied by Chinn, Hedetniemi, and Mitchell [7] in 1979 and Farley [12] in 1980

for complete graphs. The functions studied in this model were the following :

P(m,t) : The maximum number of vertices that can be informed of m messages in
t time units.

M (p,t) : The maximum number of messages that can be broadcast to p people in
t time units.

T(m,p) : The minimum number of time units necessary to broadcast m messages to

p vertices.

Some of the obtained results are summarized below :
1. P(1,t) = 2¢

2. P(2,t) =222 fort>2

3. P(3,t)=2""*+2fort >4

4. P(4,t)=2"%+2fort > 6

t— 1
l__g__‘:_J for p odd where ¢ = |logsp|
5. M(p,t) = lpt—q+2q+1_2

2(p—1)

J for p even

11



2m — 1+ |logap| for p odd

m — 1 -+ 9logap
p/2

6. T(m,p) =

2m + |logap| — l J for p even

New results are given in multiple message broadcasting are given in [21, 22].

1.2.2 Messy Broadcasting

In their paper published in 1994, Ahlswede et al [2] introduced a broadcast model,
called messy broadcasting, in which every vertex knows nothing about the network
topology, the originator or the time at which the message was sent, and makes only
local decisions to send the message. That is, at every round, each informed vertex
broadcasts to a randomly chosen neighbor, but can receive information from any
number of its neighbors simultaneously. Messy broadcasting is concerned with the
worst-case broadcast performance. The authors introduced the following three models

of messy broadcasting:

1. Model M,: every informed vertex knows the state of each of its neighbors:
informed or uninformed. In this model, each informed vertex transmits the

message to one of its uninformed neighbors, if any, in each time unit.

2. Model My: Every informed vertex knows from which vertex (vertices) it received
the broadcast message and to which neighbors it has sent the message. In this
model, each informed vertex transmits the message to one of its neighbors that
it has not yet informed, if any, in each time unit.

12



3. Model Ms: Every informed vertex knows to which neighbors it has sent the
message. In this model, each informed vertex transmits the message to one of

its neighbors that it has not yet informed, if any, in each time unit.

Given a graph G = (V, E), the messy broadcast time of a vertex u € V, b*(u) is
the maximum number of time units required to complete broadcasting from vertex u
under the model i (where 7 € {1,2,3}) [2, 23, 9, 20, 19]. The messy broadcast time

of a graph G = (V, E) is:

b™(GQ) = maz{b™(u)|u € V}

Let 87 (G), b3(G), b (G) be the broadcast time of a graph G under the models
M, M,, Mj respectively.
It was shown in [2] that b*(@) < b*(G) < b5*(G) for any connected graph G.

Also, the following results were discussed:

o BG) < (D(G) x (k—1)) +1

o B(G) < D(G) x k

(where k is the maximum degree over all vertices v € V).
The paper also dealt with the problem of constructing optimal graphs in which
b (G) will yield minimum time.

In [23, 9, 20] the following results were presented:

13



1. Complete graph, K, : b(K,) =b3(K,) =b(K,)=n—1
2. Path of length n, B, : b(P,) =b3(P,) =n—1 and b§(P,) =2n—3

3. Cycle of length n, C, : b(C,) = b3(Cy) = [——’ and b3(Cp)=n-—1

1
4. Hypercube H,, : by(Hpy) = E(—mzL) and
-1
bS(Hy,) = m(m—22 +1 and
-1
24 < b (Hy) < % +1

5. Directed torus of dimension k, Ty, xnyx..ns
W (Tnyxmax.mz) = (1 — 1) +2(ng — 2) + ... + k(ng — 1),
where 2<m <n2<...<npand k > 2
B8 (Tnyxnaxm) = (M — 1) +2(n2 — 2) + ... + k(ny — 1),

where 3<n <ne <...<npand k > 2

Comparing the two broadcast schemes described above, it can be observed that
the major difference between messy broadcasting and the classical broadcast model
is that in the messy broadcast scheme, the vertices know nothing about the topology,
and at each broadcast round transmit the message to a randomly selected neighbor.

In practice however, it is not realistic to require for each node of a network to

know the network topology or to make decisions based on a set of stored protocols.
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In many cases, the nodes have primitive structures with small memories that cannot
store such information or make intelligent decisions. On the other hand, building
networks in which the nodes have no decision-making responsibility is much simpler
and more robust. These were the reasons that made the study of messy broadcasting

interesting, and eventually led to the idea of orderly broadcasting.

1.3 Orderly Broadcasting

In messy broadcasting, when a vertex u receives a message, it randomly chooses a
neighbor at each round and sends the message to that chosen neighbor. Ultimately,
the neighbors of vertex u will be informed in some order. This means that if we
randomly number the neighbors of each vertex v € V and let u send the message
first to the neighbor numbered 1, then 2, ... etc., then we would have simulated
an instance of messy broadcasting. The overall broadcast time of the graph in this
case will depend on the way in which the neighbors of each vertex are numbered.
A different ordering of the numbers might yield a different broadcast time; and the
question that can be asked here is : what is the ordering that will give the minimum
possible broadcast time for a given graph?

The above question has lead to the idea of orderly broadcasting {10, 11, 26] , which
deals with the problem of finding an ordering for each vertex u of a given graph G
that will minimize the overall broadcast time of G (Figure 1).

In what follows, we will state a more formal definition of the orderly broadcast

15



model and give known bounds on some studied graphs.

Figure 1: The three broadcast models: (a) Classical broadcasting with b(u) = 3 (b) Messy
broadcasting with ™ (u) = 6 and (c) Orderly broadcasting with b°(u) = 4. Note that in
(c) the numbers represent the ordering of the edges and not the time at which the vertex
receives the message.

A symmetric digraph is a graph G = (V, E) where every edge (u,v) € F in the
undirected graph becomes two edges (u,v), (v, u) in the digraph. We define the out-
edge of a vertex u to be the edge (u,v) € E (Figure 2). Broadcasting in a symmetric
digraph is identical to broadcasting in the associated undirected graph. Hence, in all

further discussion we will model our communication network as a symmetric digraph.

u v u v

o—O

(a) (b)

Figure 2: An edge (u,v) in an undirected graph (a) becomes two edges (u,v) and (v,u) in
a symmetric digraph (b).

Given a symmetric digraph G = (V, E), an ordering II, of a vertex u € V of degree
d is the assignment of distinct time units 1,2,...d, called labels, to the outedges of

u. We use TI(u, v) to denote the label assigned to the edge from u to v. When every
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vertex u of a graph G has an ordering II,, we say that G has ordering II.

Suppose G = (V,F) is a graph with ordering I and let © € V such that
V1,Vs,...,V; € V are the neighbors of u. Orderly broadcasting from originator
proceeds as follows: At time 0, the originator u learns the message. Vertex v; learns
the message at time II(u,v1); v, learns the message at time II(u, ve); vy learns the
message at time IT(u,v;). In general, for any vertex u € V, if u learns the message
at time ¢, it sends the message along its outedges ordered ¢ at time ¢ + i, where
¢ = 1,2,.... Orderly broadcasting is complete when every vertex has received the
message. The time at which this happens when the originator is vertex u is denoted

by b"(u). The broadcast time of graph G = (V, E) with ordering IT is :

(@) = maz{b™ (u)|u € V}

The orderly broadcast time of graph G is the minimum broadcast time over all

possible orderings II of the vertices of G. That is,

b°(G) = minp {b"(G)}

The orderly broadcast time is known only for a limited number of graphs. The
problem has been studied in various types of graphs in [10, 11] and in [26] separately.
In [11], the orderly broadcast model described here is referred to as non-adaptive model
of broadcasting with universal lists. In the same paper, the authors also introduce

a variant of orderly broadcasting called the adaptive model in which an informed
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vertex retransmits the message in the given order, but skips all neighbors from which
it received the message. In this thesis we consider only the non-adaptive model
descibed in [11].

Below we present some of the studied results :

1. For any tree T, b°(T) < b(T) + I'_I_DQ‘I

3n—41

2. For a path P, on n vertices, b°(P,) = [ 5

2
3. For a cycle C, on n vertices, b°(C,) = [—g—ﬂ
4. For a complete graph K, on n vertices, b°(K,) < [logn] + 2 [, /logn-l

5. For a grid Gmxn on mn vertices, b°(Gpuxn) =m+n—1

6. For a torus 7,«, with m rows and n columns,

D(T,xn) +6 if n is even
b (Trmxn) <

D(Txn) +7 if nis odd

where D(T,;xy) is the diameter of the torus.

Contrary to what it may seem, finding an optimal ordering for the vertices of a
graph is a difficult problem. Even for a simple structure like a cycle, an optimum

ordering is not yet known.

In this thesis, we first describe an ordering II for a 2-dimensional torus 7T,,x, and
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discuss the upper and lower bounds on the orderly broadcast time. We then general-
ize the result for d-dimensional tori Ty, xn,«..xn, and state the orderly broadcast time

in this multidimensional graph structure.

1.4 Thesis Outline

The remainder of this thesis is structured as follows: In chapter 2 we discuss the lower
bound on orderly broadcast time for 2-dimensional tori. In chapter 3 we describe an
ordering for the vertices of a 2-dimensional torus, and discuss the upper bound that
this ordering produces. An ordering for multidimensional tori and the upper bound
for this ordering are discussed in chapter 4. Finally, in the last chapter we give a

summary of the results and discuss future work in this area.
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Chapter 2

Lower Bound on 2D Tori

In this chapter we show a lower bound on the orderly broadcast time b°(T;,xn) of a

2-dimensional torus under some optimal ordering II.

2.1 Definitions

A 2-dimensional torus Tp,x, = (V, E) with m rows and n columns is a connected
graph on mn vertices with 2mn edges, such that:

V(Tmxn) ={(5,5)0<i<m-1and 0 < j <n-—1}

E(Tnxn) = {((#,), (p,9))lp = u+1 mod m or

g = v+ 1 mod n where (u,v) € V,(p,q) € V}
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The diameter of a 2D torus is:

We define u € V to be the diametric vertex of v € V if dist(u,v) = D(Tyuxn)-

Given a path P = (v, ve,...vg), we say that a vertex v; € P when 1 <1<k

If u € V and v € V are adjacent such that £ = II(u,v), then u %, v implies that
if u receives the message at time ¢, then it will send it to v at time ¢t 4+ k. This means
that the time at which any vertex v € V receives the message from a vertex u € V' is
simply the sum of the labels of the edges of the path that takes the message from u

to v. For example, if ug € V is the originator and we have the path:
k k k k
Piiug=du 3up—3...3u, (forallu; €V)

n
then, u,, will receive the message through P, at time ¢t = Z k;

i=1

Here we make the following observations:

Observation 2.1.1

b(G) < b°(G) < b™(G) for any connected graph G.

(Here, 5™ (G) refers to the messy broadcast time of G under the model Mj).
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Observation 2.1.2
Let b3 (G) denote the orderly broadcast time of graph G under some ordering I1. If
IT' C 11 then,
(@) < by (G)
Observation 2.1.3

b(G) < b(G') for any connected graph G where G’ is a spanning subtree of G.

Observation 2.1.4

Let u,vy,v9 € V such that u is at distance d from each of v1 and v
If u receives the message at time 0, then vy can be informed at time d and vo can be

informed not earlier than time d + 1

We know that at round ¢ of any broadcast scheme, at most one vertex at distance
¢ from the originator u can be informed. Therefore, if vertex v; is informed at round

d, then v, can be informed in the next round, d + 1

Lemma 2.1.1

Given any cycle C; in Tyxpn of length 2D(Thuxy), there exists a verter u € C; such

that the diametric vertez u is v ¢ C;.
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Proof :
Consider the torus Ty,x, (Figure 3) where T),x, is represented as a wrapped-around
mesh. Let u;; represent the vertex (i,7) where 0 <i<m—-1land 0<j<n-—-1

m

The diameter of Tpyxp I8 D(Trxn) = lEJ + ng, which is basically the distance

between the corner vertex and the center vertex. That is,

D(Tinxn) = dist(uo, uo, 2 |) + dist(ug, 2|, ujz |, 2)

This also means that the diametric vertex of ug is the vertex (CEINEY

Uo,0 Up,1 Uy, j uo,[%]
o >0 L
U1,0 x
...... UI.%L’J’I.%J—I UL%LL%J ul_%’]ﬂ"‘[%]
U210 @ @< @ L

Figure 3: Cycle C, in torus Trxn

Without loss of generality we will consider the cycle :

23



Cu D U0 U1 Ug2F - - . —)uO,L%J ——)’u,l,Lz;.J —>u2,L%J—> . _H’L[%J’[%J

-—)UL%J,[%J_l—) ees UL%J,O-—-}UL%J_LO—)UL%J_2,0—) < U

Consider the vertex ug; € C, where 0 < j < |7]. The diameter of the torus from

ug,; will be:

D(Tnxn) = dist(uoj, ot (2]) + dist(uojy 2], um i 2)

This means that the diametric vertex of ug,; is the vertex u|= ;4 2. But since j > 0,
then vertex um ;2| ¢ Cu.
Therefore, we can say that for any cycle C; in Ty, of length 2D(T,,«»), there

exists a vertex u € C; such that its diametric vertex does not belong to Cj. O

2.2 Lower Bound for 7,

Theorem 2.2.1

Given a torus Tyxn(V, E) with the ordering 11. Then,

D(Thuxn) +1 m if and n are even
b (Tnxn) >

D(Tuxn) +2 otherwise

Proof :

Case 1: m and n are even
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If m and n are both even, then for every vertex u € V, there exists exactly one vertex

v € V such that dist(u,v) = D(Tnxn)

Let u,v € V such that v is the diametric vertex of v. Suppose u is the originator
and that there exists a path P,, from u such that :
Pu,,:u—1->u1—1>u2—1->...—1->uki>uk+1—1>...—l>uk+c—1>uk+c+1i>...—1—>un—1>'v
(where ¢ < n — k is a constant and 0 < k < n)

Then, v will receive the message through path P,, at time = D(Tp,xn)

Vertex v has to have a similar path (in case broadcasting starts from v) that
carries the message from v to u in time < D(7T,,x5). Hence:

szv—1>v1—1>v2—1>...—1—>u

Thus, when the originator is v then vertex u will receive the message through

path P, at time = D(T,,x,). Note that the two paths P, and P,, form a cycle C,

of length 2D(T,xn)-

Now consider vertex u; € P,, where the diametric vertex of u; is w ¢ C, (lemma
2.1.1). Let P, be one of the fastest path that carries the message from u; to its
diametric vertex w. Since w ¢ C,, when the message originates from wu, the path
P,,» has to separate from C, at one of its vertices. Without loss of generality, we
will assume that this vertex is ugi, € Pyy,. Then,

1 1 1 2 1 1 1
Puw Uk = Ugs1 = oo D Upge 2w D w1 —> ... > w  (for some ! € ZY)
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> —— 59—
2 i
P, !
A ' : Pukw
Pvu ; w
¢ s -« ® B
U1 v

Figure 4: The paths Py, Py, and Py, 4 in Txy

Suppose u.. receives the message at time ¢,. Then, at time 9+ 1, uz4. sends the
message t0 Ugicq1 € Py, and at time ¢y + 2, ug. sends the message to w; € Py, -

Therefore, when broadcasting starts at vertex ug, the path that takes the message
from uy, to its diametric vertex w will lose one time unit. Thus, in this case w will be
informed at time > D(T,,x5) + 1

Hence, 0°(Tyuxn) > D(Txn) +1  when m and n are both even.

Case 2: at least one of m or n is odd
If at least one of m or n is odd, then for every vertex u € V, there exists at least two

vertices vy, v € V such that:
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dist(u,v;) = D(Tpuxn)  forie {1,2}

Suppose at least one of m or n is odd and consider the path P,, described above.
Then, vertex u; € P,v will have at least two diametric vertices w and w'. Since w
and w' are both at distance D(T},x,) from uy, through observation 2.1.4 we know
that to inform w and w’, u needs at least D(Txn) + 1 time units.

Also, from case 1 above we know that u; € P,, will lose one time unit to inform
its diametric vertex w. This implies that b°(Tuxn) > D(Txs) + 2 when at least one
of m or n is odd.

Therefore,

D(Tyxn) +1 m and n are even
b (Trxn) =

D(Tyuxn) +2 otherwise
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Chapter 3

Upper Bound on 2D Tori

3.1 Notations

Let Truwn = (V, E) be a 2-dimensional torus. We denote:

e b(P;,v) to be the time at which vertex v € V receives the message through

path P; under ordering II.

) b}I (P;,v) to be the time at which vertex v € V receives the message that origi-

nated from vertex (0, j) through path P, under ordering II.

e i"(v) or t"(p,q) to be the time at which vertex v = (p,q) € V receives the

message under ordering II.

5] ulgleem
) ) 1S eve

Let ¢ = <

n

. ni.
‘ [§J+1 if bJ is odd
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3.2 An Ordering for T,,.,

In this section we will describe the ordering II of a torus Ty, «,. Observe that T,y is
a 4-regular graph (6(v) = 4 for all v € V'), hence the time units assigned to the edges

will be chosen from {1,2,3,4}. Let u = (i,j) € Vv € V and k € Z* . Then,

1. II(u,v) = 1 when:
a)v=(4,7+1modn) wherei=2k and j ¢ {0, ¢}
b)v= (4,7 — 1 mod n) wherei=2k+1 andj ¢ {0,¢}
¢)v=(i+1mod m,j) wherej=0
d) v= (i — 1 mod m,j) where j=1/¢
2. II(u,v) = 2 when:
a) v = (i +1 mod m,j) where j =2k and j ¢ {0,¢}
b) v = (i — 1 mod m, j) where j=2k+1 and j ¢ {0,¢}
¢)v=(i,j+1mod n) wherei=2k and j € {0,¢}
d)v=({,7—1modn) wherei=2k+1 and je€ {0,¢}
3. II(u,v) = 3 when:
a) v = (i — 1 mod m,j) where j = 2k and j ¢ {0, ¢}
b) v = (1 + 1 mod m,j) where j =2k+1 and j ¢ {0,¢}
¢c)v=(:,7—1modn) wherei=2k and j € {0, ¢}

d)v=(4j+1modn) wherei=2k+1 andje{0,¢}
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4. II(u,v) = 4 when:
a) v = (4,j — 1 mod n) where1=2k and j ¢ {0, ¢}
b)v=(¢,j+1modn) wherei=2k+1 andj¢ {0,¢}
¢)v=(i—1mod m,j) where j=0

d) v = (¢ + 1 mod m,j) where j =/¢

Refer to Figure 5 for an example of ordering II.

In what follows we will assume that T,,«, has the ordering IT described above.

0 1 2 4 4 5
o 3 2.4 1 4 1‘/3 2 4
A N CIG S I D 9
1 1y 1 2y 2 |1 2y.2
S---ad A 3 NI D ZLo
9 1 3 2 2\
?“nxx% ______ 3_ ______ L - i L\2
; 1 3 2 24,
DR Ed
N T —

Figure 5: The ordering Pi for Ty«e. Note that some of the edges and labels are omitted
to make the figure more readable.

3.3 Upper Bound on 7, : An Example

In this section we will give an example and show in detail how a message propagates
and eventually informs all the vertices of a given row of T}, xy.

Consider the torus Tgxi3. The diameter D(Tgx13) = 10 and £ = 7. Let the
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originator be vertex (0, 3), and suppose we want to inform all the vertices on row 5.

We describe four labeled paths :

e P, and P, that will inform every vertex (5,q) € V where 0 < ¢ <7, and

e P; and P, that will inform every vertex (5,¢9) € V where 7 < ¢ < 12 and ¢ = 0.

01 2 3 4 5 6 7 8 9 10 11 12

0,3 Y
0 (|,') -------- >\\
o\ \
2 'K Lie X‘
|
4 Y e '
5 * (513) P2 :
BB [T -1 ]
6 t
7/ 0/
| !
8 II/

W

Figure 6: The two paths P; and P, originating from (0, 3) inform all the vertices (5, q)
such that 0 < ¢ <7.

First, we concentrate on informing all the vertices (5,¢) where 0 < ¢ < 7. Con-
sider the paths P, and P, (Figure 6):
P:(0,3) 3 (1,3) 3 (1,2) & (1,1) 5 (1,0) 5 (2,0) 3 (3,0) = (4,0) 3 (4,1)

5 (4,2) 3 (5,2)
Py:(0,3) 3 (0,4) = (0,5) = (0,6) = (0,7) = (8,7) = (7,7) = (6,7) = (5,7)

2

2 (5,6) = (5,5) = (5,4) = (5,3)

The time that vertices v; = (5,2) and va = (5, 3) receive the message from each
of the paths P, and P, is: b"(Py,v1) = 14 and b"(P,,vy) = 13.

31



Now, we look at the vertices (5,q) where 7 < g < 12. Consider the two paths
(Figure 7):
Ps:(0,3) > (1,3) 5 (1,2) > (1,1) 5 (1,0) 5 (2,0) 5 (3,0) > (4,0) = (5,0)
3 (5,12) 5 (5,11)
Py (0,3) = (0,4) 5 (0,5) 5 (0,6) = (0,7) 2 (8,7) = (7,7) > (6,7) > (6,8)

5 (6,9) 5 (6,10) > (5,10)

The time that vertices v3 = (5,11) and vy = (5, 10) receive the message from each

of the paths P; and P, is: b™(Ps,v3) = 13 and b (Py,vs) = 14

-

0,3 P4
0 1 =
' ’
1 ! !
P 7
2 ’ '/
H
3 ’
i
4 - : -
5 e _ ' (3{10y- =2t
6 ‘\ P, 4 T ﬁ3
7
8

—_—-d ==

;/

Figure 7: The two paths P; and P; originating from (0,3) inform all the vertices (5, q)
such that 7 < ¢ <12 and g = 0.

Therefore, all the vertices of row 5, except vertices (5, 1), (5, 8) and (5,9), will be
informed through the above described paths P;, Py, P3, P, in at most D(Tyx13)+4 = 14
time units.

Vertex (5,1) will be informed through the path:
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0,3) % (1,3) 5 (1,2) 3 (1,1) 5 (1,0) 5 (2,0) 2 (3,0) 5 (4,0)

34,13 5,1)

Vertex (5, 8) will be informed through the path:
(0,3) = (0,4) = (0,5) = (0,6) = (0,7) - (8,7) = (7,7) = (6,7)

2 (6,8) > (5,8)

Vertex (5,9) will be informed through the path:
(0,3) = (0,4) = (0,5) = (0,6) = (0,7) = (8,7) = (7,7) > (6,7)

2 (6,8) > (6,9) > (5,9)

From the above path descriptions it is easy to see that all three vertices (5, 1), (5, 8), (5,9)
will also receive the message in less than 14 time units. Thus, we can conclude that
in a Tyx13, for a given originator (0, 3), all the vertices v = (5,¢) € V on row 5 will
be informed by time b(v) < D(Tyx13) + 4 = 14.

In what follows, we will state a few lemmas and observations which will help us
show that the worst case for an originator (i, 7) is when j is odd for any given torus

Tmxn (this is the example that we considered above).

Observation 3.3.1

Let v € V be a vertex in Tp,xn. Then, if v receives the message twice at two different
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times t, and iy, then

(v) < [tl ;t2J

Lemma 3.3.1

Given a torus Tyxn, consider any two verticesu = (0,7) €V andv=(0,j+1) €V
where 0 < j < £. Let tX(w) denote the time at which a vertez w = (p,q) € V receives
the message under ordering I1 when the originator is u. Suppose p is odd. Then, if j
1s odd,

ty (w) <t (w)

That is, informing the vertices of an odd-numbered row in Ty,«n will take less time if

the originator is a vertex with an even-numbered column j.

Proof :
Consider the path P; described above and suppose we want to inform a vertex w =
(p,q) € V such that 0 < g < £. Then, for each of the originators u = (0, ) and
v =(0,j + 1), P, will proceed as follows (where k € {1,2,3,4}) :
PN 3 LS M-S 51,05205. . 5e-19%5 4
PP i+)31i+) 505 005205 .. 5 p-1,9
= (p,9)

The only step that will effect the time at which vertex w recieves the message from

each of the originators P and P} is the first one, where (0, j) informs its neighbor

in P¥ in 3 time units, while (0, j+1) informs its neighbor in P} in 2 time units. Hence,
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BI(PEw)=3+j+@p—-1-1)+2+(q—1)+k=q+j+p+k+2 and
VP w)=2+(G+1)+(p-1-1)+2+(@-)+k=q+j+p+k+2
This implies that b (P?, w) = b(P¥, w), that is vertex w will receive the message

from the any of u or v at the same time.

Also for path P, described above,

Pr:(0,7) 5 (0,i+1)>0,5+2)>... 50,0 m—-1,05...
SmO)SM@l-1)S5me-2)S ... 5 (@9

PY:(0,j4+1) (0, +2)>(0,i+3) ... 5(0,0) 3 (m—-1,005 ...

S 00)D@l-1)D@me-2)D ... 5 (pg)

Thus, the time that vertex (p, g) receives the message from each of Py and P} is:
W(PRw)=(@Z—-j)+1+(m—-1-p)+2+({—-1—-¢)=—q¢—j—p+m+20+1
WP wy=@-G+1)+1+(m—-1-p)+2+({l—-1-q)=—q—j—p+m+2

This implies that b"(P¢, w) = b (P¢,w) — 1

Through observation 3.3.1 we know that :

ty(w) <

[bH(Pf’, w) + bﬂ(Pg,w)J
2

lbn( r,w) + g“(P;, w) — 1J

35



2 2

_ lb“(Pf‘,w) + bRy, w) 1 J

Therefore, we can see that tX(w) < tI(w). Similarly, we can show that tJ(w) <
tl(w) where w = (p, q) such that £ < ¢ <n-—1.

It follows from the above discussions that for any vertex w € V,
ty (w) <, (w)

This means that, when the originator is (0, j) € V where 0 < j < £ and j is odd,
broadcasting to a vertex w € V that is on an odd-numbered row will take more-or-
equal time than when j were even. Thus, for any vertex (0,5) € V, the worst case

originator will be when j is odd. O

In the next lemma we show that for any originator (0,j) € V where 0 < j < £,
informing all the vertices on an even-numbered row will take the same amount of

time as informing all the vertices on an odd-numbered row.
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3.4 Informing Even-numbered Rows

Lemma 3.4.1

Gwen a torus T, and an originator (0,5) € V. Then, in the worst case, all the
vertices on row p will be informed by the same time as the vertices on row p+1. That

is, for any two verticesu = (p,q) €V andv = (p+1,q1), where 0 < ¢,y <n—1:
t(u) = t"(v)

Proof :
Without loss of generality, we will assume p to be odd (and thus, p+ 1 will be even).
We know through lemma 3.3.1 that the worst-case for an originator is when j is odd.
Thus, here we will assume that j is odd.

For each of the rows p and p + 1, we again describe four labeled paths similar to

those described in section 3.3. For row p we describe :

e P, and P, that will inform every vertex u = (p,q) € V where 0 < ¢ < £, and

e P; and Py, that will inform every vertex u = (p,q) € V where £ < ¢ <n -1

and ¢ = 0.

For row p 4+ 1 we describe :

e P, and P,, that will inform every vertex v = (p+1,q1) €V where 0 < ¢; < ¢,
and
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. Pé and P;, that will inform every vertex (p,q) € V where £ < ¢ < n —1 and

qg=0.

First, we concentrate on informing all the vertices u = (p,¢) and v = (p+ 1,¢)
such that 0 < ¢ < £ and 0 < ¢ < £ (see figure 8). Suppose u receives the message
through path P, such that (suppose & € {1,2,3,4}):

N 3 N . 1 1 1 1
P:(0,)=>0,)—=1i—-1)>...=5(1,00>(2,0)>...
1 2 1 1 k
= {P-1L0)=>(p-L1)=...2(p-1,9 > (p9)
And, v receives the message through path P; :
, N 3 N 1 : 1 1 1 1
P':(0,))=>(L,)—>1,-1)>...>(1,0) > (2,0) > ...
> (=100 (,0) > (p+1,0) 3 p+1L1) ... 5 (p+1,q0)
Then, v and v will each receive the message at time:
W(PLu)=3+j+@p-1-1)+2+(@-1)+k=j+p+q+k+2

PU(PLv)=3+j+(@+1-1)+2+(q—-1)=j+p+aq+4

Also, u will receive the message through path P such that :
Py:(0,5) (0,5 +1) 3 (0,j+2) D> ...5(0,8) 5 (m—1,0 > ...
1 2 1 1 1
= () = (l-1) = (Ll-2)>...> (pq)
And, v will receive the message through path P, (where &' € {1,2,3,4}):
Py:(0,5) 5 (0,j+1) 5 (0,5+2) ... 50,05 (m—-1,0 ...

LS m+2,03@+2,0-1)S3@+2,0-2)5 ... SE+1,¢)D @+1,q)

Then, u and v will receive the message at time:
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W(Pyu)y=(L-35)+(m—p)+2+(f—-1—¢)=—j—p—q+2+m+1

NPy v) = (b—j)+(m—(p+2))+2+(l—1—q)+k = —j—p—q+20+m+k —1

(0,7) (0,4)
@ -5 —-------------3>
3i 1 \\
I \
__________ Y \
| N
1 \
: Pl ‘\
g v| (P, 9) Py Al
p é ‘("‘“— __________ =TT =1 I
i ) ! u
1 §
I [ cep L0+ 1g) ||
! i
A , |
Y LA 1]
) /,"
! ]
J i
I 1
l//
1 7
1 /
Wl

Figure 8: Originating from (0, j), the paths P; and P, inform all the vertices (p,q) on row
p, while the paths P, and P, inform all the vertices (p+1,41) on row p+1 where (0 < ¢ < £)
and (0 < ¢ <¥)

Through observation 3.3.1 we know that any vertex u = (p, ¢q) will be informed

through P; or P, at most at:

M) < [bH(Pl,u)+bH(P2,u)J

2

_ [(j+p+q+k+2)+(—j—p—q+2£+m+1)J
B 2
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__Fﬂ+m+k+3J
- 2

Similarly, any vertex v = (p+ 1,¢;) € V will be informed at time :

tn(v) < bH(Pllav) + bH(le,U)}

2

_ (j+p+q1+4)+(—j—p—q1+2£+m+k'—1)J
B 2

[%+m+y+ﬂ
2

In the worst case for each of #!(u) and t"(v), k¥ = k' = 4. This implies that
t(u) = t"(v) when 0 < ¢ < £ and 0 < ¢; < £, and hence, all the vertices u = (p,q)

and v = (p+1, q) with 0 < ¢ < £ and p odd, will be informed at most by the same time.

Now, consider the vertices u = (p,q) and v = (p+ 1,¢;) such that £ < g <n—1
and ¢ =0 and £ < ¢ < n—1 (see figure 9). Then, u receives the message through
path P3 :

N 3 N 1 . 1 1 1 1
P:(0,5)>1,)—~>0Jj-1)>...—> (100> (2,0 >...
2 (@=10)5 (02 En—1) 2 @En=2) ... 5 (0
And v receives the message through path P; (where k € {1,2,3,4}):
, N 3 N 1 , 1 1 1 1
P:(0,7) > (1,7)=>01,7-1)>...>(1,0) > (2,0) > ...
1 1

Lp-1,003 003 @n-1)Smn-23...50a) S 0®+1,q)
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Then, u and v will each receive the message at time:
V(Pu)=3+j+(p-1)+2+(n—-1-¢)=j+p+n—q+3

Also, u will receive the message through path P, (where & € {1,2,3,4}):
P:(0,7) (0,5 +1)5(0,j+2)D...50,0) > (m—1,0 > ...
L p+1,0 3 p+1+D) 5 . S5 e+1,0% (0,9
And, v will receive the message through path P‘i :
Py:(0,7) (0,5 +1) 5 (0, +2) ... 50,0 5 (m—1,8 > ...

S+, P+1,L+1)S... S @p+1L,q)
Therfore, u and v will each receive the message at time:
N Puu)=(l—j)+(m—-(p+1)+2+ (- ¢+1)+k =—j—p+g+m+k

HPyv) == +(m-(p+))+2+ (- (¢+1))=—j-p+ta+m

Similarly, any vertex u will be informed through P; or P, at most at:

b1 (P3,u) + b7 (Py, u)
t(u) < 5 J

(j+p+n—q+3)+(—j—p+q+m+k')J
2

B lm+n+k'+3)J
B 2
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Figure 9: Originating from (0, j), the paths P; and P, inform all the vertices (p,q) on
row p, while the paths Pé and Pli inform all the vertices (p + 1,¢1) on row p + 1 where
(<g<n—landg=0)and ({<qy <n—1)

Also, any vertex v will be informed through Pé or P; at most at:

B(P;, v) + b1 (P, v)
t(v) < l : 4 J

_ [(j+p+n—q1+k+3)+(—j—p+ql +m)J
2

_|m+n+k+3)
<[

Again in the worst case for each of t"(u) and t(v), k = k" = 4. This implies that
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t(u) = t'(v) when ({ < ¢ <n—1and ¢ =0) and (£ £ ¢¢ < n— 1), and hence,
all the vertices u = (p,q) and v = (p+ 1,¢) with ({ < ¢ < n—1 and ¢ = 0) and

(£ < ¢ <n—1) and p odd, will be informed at most by the same time. 0

Therefore, given any originator (0, ) with 0 < j < £, the vertices u € V on the
odd rows of T,,«, will be informed at most by the same time as the vertices v € V
on the even rows. That is : t®(u) = t"(v)

Combining lemmas 3.3.1 and 3.4.1, we can say that informing the vertices of any
row p in Ty, from originator (0, j) with 0 < j < £ will take the most time when j
is odd.

In the following two lemmas we show that the originators (0,0) and (0,¢) will
yield a less-or-equal broadcast time than originator (0, ) with 0 < j < £ and j odd.

This will mean that when j is odd, we will have the worst-case broadcast time.

3.5 Case when Originator is (0,0)

Lemma 3.5.1

Given a torus Tpxn, consider the two vertices u = (0,0) € V and v = (0,j) € V
where 0 < j < £. Let tX(w) denote the time at which a vertex w = (p,q) € V receives

the message under ordering I1 when the originator is u. Then,

to(w) <ty (w)
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Proof :

Through lemma 3.4.1 we know that in the worst case the parity of p does not effect
the broadcast time, thus without loss of generality we will assume that p is odd. We
also know through lemma 3.3.1 that the worst-case for an originator is when j is odd.
Thus, here we will assume that j is odd.

We will proceed by first describing the paths that will inform all the vertices
w = (p, q) of a given row p when the originator is u = (0, 7) in one case and v = (0, 0)
in the other, and then compare the time by which each of these originators deliver
the message to all the vertices of row p.

First, consider the vertex w = (p, q) where 0 < ¢ < £ (assume k,k € {1,2,3,4}).
When the originator is v, w receives the message from the following two paths (see
figure 10) :

Pl(0,)) SN S0,5-1)>... 51,0320 >...
Hp-1,03@-1,1)>...5(-1,9 > (p,q)
PY:(0,5) > (0,i4+1)5(0,j4+2) ... 5(0,6) H (m—1,8) > ...

When the originator is u, w receives the message from the following two paths:
" 1 1 1 1 2 1
Pr:(0,0) > (1,0) > (2,0) > ... > (p—-1,0) > (p—-1,1) > ...
= (®-1,0) > (pq)
1

Pr:(0,0)35(0,1) 5(0,2)5...5(0,0) > (m-1,0 ...

Lp+1,05 00D M-S ®,L-2)> ... 5 (p9)
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Figure 10: The paths P and P§ originate from (0,0) and inform all the vertices (p,q) on
row p, while the paths Py and Pj originate from vertex (0,7) and inform all the vertices
(p,q) on row p where (0 < j < £

Vertex w = (p, q) will receive the message from the two paths P and p% at time:
W(P,w)=3+j+(p—2)+2+(q—-1)+k=qg+j+p+k+2

WP,w)y=(l—-j)+(m-p)+2+({l—-1-q)=—q—j—p+m+2(+1

Also, w will receive the message from the two paths P and P§' at time:
II(PE,w)y=(p—-1)+2+(q—-1)+k=q+p+k

M(Prw)y=2+{(—-1)+(m—-p)+2+({f—-1—¢g)=—q—p+m+2{+2

Thus, every vertex w = (p,q) € V, with 0 < ¢ < £, will receive the message from
each of the originators 4 and v at most at time:
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(w) < [b”(Pf’,w) ; b“(P;,w)J

_ [(q+j+p+k+2)+(—q—j—p+m+ze+1)J
N 2

B [m+2£+k+3J
B 2

o) < |0V B

2

_ [(q+p+k)+(—q—p+m+2£+2)J
2

|m+2e+k+2
B 2
This implies that tI(w) < b (w) for 0 < ¢ < £
Similarly, for £ < ¢ < n —1 and ¢ = 0. When the originator is v, w receives the
message from the following two paths:
" N 3 N 1 . 1 1 1 1
Py:(0,5)=>(1)>0,7i-1)>...=(1,00>(2,0)>...
= (,0) 2 (p,n—1) > (p,n—2) > ... 5 (p,q)
PY:(0,5) 3 (0,54+1) 5 (0,j+2) ... 50,0 3 (m-1,05 ...

S@+1,03P+1,L+1)S ... S p+1,95 (p,g)
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When the originator is u, w receives the message from the following two paths:
P2 (0,0) & (1,00 3 (2,0) H ... 5 (p—1,0) = (p,0) > (p,n — 1)

L n—2)> ... 5 (p,q)

Pr:(0,00)3(0,1) 5 (0,2)S... 50,05 (m-1,05...

Lp+1,03p+1,0+1)5 .. 5 0+1L,95 (0,9

Vertex w = (p, ¢) will receive the message from the two paths Pj and pj} at time:
V(P w)=3+j+(p-1)+2+(n—-1-¢)=—g+j+p+n+3

(Pl w)y=(z—j)+(m—-p—1)+1+k+(g—2)=¢—j—p+m+k

Whereas w will receive the message from the two paths P§ and p} at time:
(P, w)=p+2+(n—1—¢)=—q+p+n+1

(Ppw)=2+(x—1)+(m—-(p+1)+2+(gqz+1))+k =¢g—p+m+k +1

Thus, every vertex w = (p,q) € V, with £ < ¢ <n —1 and ¢ = 0, will receive the

message from each of the originators 4 and v at most at time:

to(w) <

B Py, w) + (P}, ) J
2

2

_ (—q+j+p+n+3)+(q—j—P+m+k')J

B lm+n+k’+3J
B 2
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2

T(w) < [bH(P:;L’ w) + b (P, w)"

B (——q+p+n—|—1)+(q—P+m+k'+1)J
B 2

_ m+n+k’+2J
- 2

Thus, tX(w) < tM(w) for £ < g<n—1and ¢ =0.

Therefore, for any vertex w = (p,q) € V where £ < ¢ <n—1and ¢ = 0 and
0 < j < ¢ tHw) < bl(w). This means that in T,y,, informing all the vertices
w € V from originator (0,0) will take less time than when the originator is (0, ) with

O0<j<lt O

3.6 Case when Originator is (0, ¢)

Lemma 3.6.1

Given a torus Tryy,, consider the two vertices u = (0,£) € V and v = (0,5) € V
where 0 < j < L. Let t,) (w) denote the time at which a vertex w = (p,q) € V receives

the message under ordering I1 when the originator is u. Then,

ty () <t (w)
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Proof :
The proof of this lemma will proceed in a similar manner as that of lemma 3.5.1.

Thus, the parity of p does not effect the broadcasting time (lemma 3.4.1), without
loss of generality we will assume that p is odd. Also, since the worst-case for an
originator is when j is odd (lemma 3.3.1), we will assume j to be odd.

We first describe the paths that will inform all the vertices (p, q) of a given row
p when the originator is (0, j) in one case and (0,4) in the other, and then compare
the time by which each of these originators deliver the message to all the vertices of
row p. Thus, consider the vertex w = (p, ¢q) where 0 < ¢ < £. When the originator is
v = (0,7), w = (p, q) receives the message from the two paths P’ and Py described
in lemma 3.5.1. We will omit repeating the details of these two paths.

Assume k € {1,2,3,4}. When the originator is u = (0, £), (p, g) receives the mes-
sage from the following two paths (see figure 11):
PY:(0,0) 3 (0,04+1) 5 (0,£+2) 5 ... 5 (0,n—1) 5 (0,0) = (1,0) 5

LS P-L,03 -, B . S (p-1,9) 5 (p,q)

PP:(0,0) 5 (m—1,0) 5 (m—=2,05...5 (p+1,0 > (po) >

(pae_l) _1> (p’E_Q) _1) _1>( 7Q)
Vertex w = (p, ¢) will receive the message from the two paths P and p} at time:

DY (PY,w)=q+j+p+k+2

(PP w)=—-q—j—p+m+20+1
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Whereas w will receive the message from the two paths P! and p% at time :
W(Prw)=2+n—(L+1))+p@-1)+2+(q-1)+k=q+p+n—~L+k+1

W(Pfwy=(m-p)+2+(f{—-1-qg)=—q—-p+m+L+1

_____________________________ < B e
0,0) T 0,5) py (0,£) P T
& o S -c------------g < R s >
3 i 1 ‘\ \‘\'\
P | VA
- - _3__-..__.}{ \\ \'\.
| \ \\ ‘\_
! \
! vy
LI DU IR . v
i T
1)) il ]
H iy * Py AL
I 1
p @ 11— — T
()] -7 ! |
< u ! v v
| i
I vl
Y : Al
| / N
1 ;1
1 1 I-'
1 ! .,'
: //I,."l
1 N
V§ /s
1 /,,"

Figure 11: The paths P{* and P§ originate from (0,£) and inform all the vertices (p,q) on
row p, while the paths P} and Pj originate from vertex (0,7) and inform all the vertices
(p,q) on row p where (0 < j < £

Thus, every vertex w = (p,q) € V, with 0 < ¢ < ¢, will receive the message at

most at time:

2
() < m+ £+k+3J
| 2
TI U II U
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(g+p+n—L4+k+1)+(—q—p+m+£L+1)
2

_ m+n+k+2}

In the worst case, the minimum possible value of 2/ = n — 1 (when n is odd and

[gJ is 0dd). Thus,

() < lm+(n—21)+k+3J _ [m+n)2+k+2J

Which implies that tI(w) < tH(w) for0<g< 4.

Similarly, for £ < ¢ < n — 1. When the originator is v = (0, 7), w = (p, q) receives
the message from the two paths Py and P; described in lemma 3.5.1. We will omit
repeating the details of these two paths.

When the originator is u = (0, £), w = (p, q) receives the message from the follow-

ing two paths:

Pr:(0,0) 3 (0,6+1) 3 (0,£+2) 5 ... 5 (0,n—1) 5 (0,0) 5 (1,0) >

A p-1,05 0,03 @r-1)5@En-25...5 (@)

PLi(0,0) B (m=-1,005m-20>...5p+1,0 S5 m+1,0+1) S

U

D +1,95 9

o1



Vertex w = (p, q) will receive the message from the two paths Py and pj at time:
V(P w)=—q+j+p+n+3

bH(PZ,w)=q—j—p+m+k'

Whereas w will receive the message from the two paths P} and p§ at time :
W(Prw)=2+n—-(l+1))+p+2+(n—1—-¢)=—q+p+2n—£+2

M(Prw)=(m—(p+1)+2+(q—(L+1)+k =¢q—p+m—L+F

Thus, every vertex w = (p,q) € V, with £ < ¢ < n — 1, will receive the message

at most at time:

m+n+k +3

A < |2EREEY

B (PE, w) + BN (PE, w)
ty(w) < [ = J

Fﬂ+p+2n—€+%+%q—p+m—£+ﬁw
2

2

_ m+2n—2£+k'+2J

In the worst case, the minimum possible value of 2 = n — 1. Thus,

ﬂmo<[m+mpwn—U+H+QJ_[m+n+H+3J
= 2 B 2
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This implies that tI(w) <t (w) forf<g<n—1

Therefore, for any vertex w = (p,q) € V where 0 <¢g<n—-1land0<j</?

ty (w) < by (w)

This means that in T, x,, to inform all the vertices w € V from originator (0, £)

will take less time than when the originator was (0, j) where 0 < j < 4. O

3.7 Symmetry

In this section we will show that the vertices of the rows of torus T,«, have identical
ordering. We will also show in lemma 3.7.2 that the paths used when broadcasting
from a vertex (%,7) with 0 < j < £ and j odd, are identical to the paths used when
broadcasting from an originator (i, ;') where £ < j' < n and j' even, for any row of

the torus To,xn.

Observation 3.7.1

From the ordering 11 we can see that all the vertices of the odd-numbered rows p
of Truxn = (V, E) have identical numbering. The same can be said about the even-
numbered rows p of Tmxn. That is, every (3,7) € V has an ordering identical to (i +2
modm,j) €V forall0<j<n-1.

Also, the only difference between the even-numbered rows and the odd-numbered

rows s the direction of the edges labeled 1 and 4 (see section 3.2 for the details).
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Thus, a vertex (i,£— j) € V is symmetric to (i+1,7) € V where 0 < j < 4. Also, a

vertez (i,7) € V is symmetric to :
e (i+1modm,f—j)€V where0 < j<{
e (i+1modm,L—j+nmodn) €V where{<j<n-—1

This means that every vertex (i,5) € V has a symmetric vertez (i',j') € V on
any row 1 of Tyuxn- Thus, the mazimum broadcast time among all the vertices of a

certain row 1 in Ty« will also be the broadcast time of torus Tpyxn-

Observation 3.7.2

The paths used to inform all the vertices (p,q) € V where 0 < q¢ < £ from any
originator (i,7) € V with 0 < j < £ and j odd are similar to the paths used to
inform vertices (p,q) € V where £ < q < n—1 from any originator (i,j') € V where
¢ < 3" <n and j' even. The same can be said when we take j to be even and j' to be

odd.

We illustrate the observation with figures 12 and 13. We will discuss these paths

in detail later on.
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Figure 12: Path P; is similar to path P; and path P is similar to path Pj.
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Figure 13: Path P; is similar to path P; and path Py is similar to path Pj.
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3.8 The Upper Bound

In this section we calculate the upper bound on T, in two different cases : First
we consider m to be even and calculate the upper bound in this case; then, we do the

same calculation for m odd.

From lemma 3.3.1 we know that the worst-case originator (0,j) € V for any
0 < j < £is when j is odd. Observing the rows of T,,«n, it is easy to see that
the vertices (7,7) € V are symmetric to vertices (¢,5') € V where 0 < j < £ and
£ < j' < n, and that the paths used to broadcast from any vertex (0, j) where j is
odd will be identical to the paths used to broadcast from any (0, j') where j' is even
(and vice versa). Below, we will see these paths in more detail.

Moreover, since all the rows of T,,x, are symmetric (observation 3.7.1), then
broadcasting from any originator (¢,j) € V where 0 < j < n — 1 will give the same
result as broadcasting from a vertex (0, j) € V for the same j. Observe also that since
broadcasting from originators (i,0) € V and (¢, £) € V yields a smaller broadcast time
(lemmas 3.5.1 and 3.6.1), we will discard these originators.

Therefore, to calculate the broadcast time of torus T;,«y», it is enough to describe

the dissemination of the message from two different originators : One from vertex
v = (0,7) € V where 0 < j < £ and j is odd and the other from v’ = (0,5') € V

where £ < j' < n and j' is even.
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3.8.1 Upper Bound when m is Even

In this section, we will assume m is even and discuss the upper bound on T,,, for

this case.

Lemma 3.8.1

Gwen a torus T,,«n where m is even, the orderly broadcast time under ordering II

will be:

n
D(Txn) +3  if — is odd
B (T < " 2

D(Tpuxn) +4  otherwise

Proof :
Through lemma 3.4.1 we know that in the parity of p does not effect the broadcast

time, thus without loss of generality we will assume that p is odd.

Case A: Originator u = (0,j) € V where 0 < j < £ and j odd

We will first discuss the case when the originator is vertex u = (0,7). We will
again use the four paths described in lemma 3.4.1.

First, we inform all the vertices (p,q) where 0 < ¢ < £. Let v; = (p,q1) € V
and vy = (p,¢2) € V be two vertices where 0 < ¢1,¢2 < £. Suppose (p, q1) receives
the message from u = (0, j) through path P, and (p,¢2) receives the message from

u = (0, ) through path P,. Let k € {1,2,3,4}. Then,
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P:0,) 5,50 i-13 .. 50,0520

Lp-1,003p-1,1)3... 5 0m-1,0)5 @ aq)
1

P:(0,5) 5 (0,j+1) 2 (0,j+2) ... 50,0) >(m—1,0 > ...

L0 ml-1)5 (0,L-2)> ... (p,¢)

First observe that the only time when k = 4 is when ¢; = £. But the vertex (p, £)
is already being informed through path P,. Therefore, we will assume that ¢; < ¢
and hence the maximum value of & is 3.

On rows p and p — 1, the paths P; and P, will inform the following vertices:

(p,q1) and (p, ¢2), (P, g2+ 1), (P, @2+ 2),... (1, £).

(p_1a0)’(p_171)a"'(p_17QI)'

According to the ordering II, each of the informed vertices on row p — 1 needs at
most 3 time units to inform its neighbor on row p.

Suppose vertex (p— 1, ¢;) receives the message at time ¢. This means that at time
t all the vertices (p — 1,0),(p—1,1),...(p — 1,¢1) are also informed. Then, by time
at most ¢ + 3, each of the informed vertices (p — 1,7) where 0 < i < ¢; sends the
message to its corresponding neighbor (p,4). Thus, by the time that (p,q;) receives

the message, all the vertices (p,¢) where 0 < ¢ < ¢; will also be informed (Figure 14).

Now, to make sure that all the vertices (p, ¢) where 0 < g < £ are informed, (p, ¢1)

and (p, ¢2) have to be (at least) adjacent at a given time t.
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Figure 14: By the time vertex (p, q1) receives the message through path P, all the vertices
(p,t) where 0 < i < ¢ are already informed. Similarly, by the time vertex (p, g4) receives
the message through path Py, all the vertices (p,i) where £ < i < g4 are already informed.

The time that (p,¢:) and (p, ¢2) receive the message from each of the paths P,
and P, are:
W(PL,v)=3+j+(p-1-1)+2+(@-1)+3=q+j+p+5

W(Pyv)=—7)+1+(m-1-p)+2+(f—-1-q)=—g—j—p+m+20+1

Suppose v1 = (p,¢1) and vo = (p,qe) receive the message by time D(Tpyxn) + ¢

(where ¢ € Z1). Then,

bH(Plavl) S D(men) +c= qQ1 +j +p+5 S D(men) +C

:>QISD(Tm><n)+C_j_p_5
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bH(PQaUQ) S l)(men)'I'c:> —qz—j—p+m+2€+1 S D(men)+c

= ¢ > —D(Tpxn) —c—j—p+m+20+1

Since the path P, propagates from (p,0) — (p,1) = ... = (p,¢:) and path P,
propagates from (p,£) — (p,£—1) = ... = (p,q2), then at time D(T,,xn) + ¢, the
last vertices that receive the message though P; and P, will be the maximum value
of ¢, and the minimum value of ¢, respectively (Figure 15).

Thus, (p,q1) and (p, g2) are going to be (at least) adjacent when :

Mazimum(q,) + 1 > Minimum(gs)
& D(Tipxn) +c—j—p—5+12 "'D(men)_c_j —p+m+20+1

& 2D(Tonxn) +2c—m—=2£—5>0......... (A)

Now, we look at all the vertices (p, q) such that £ < g <n—1. Let v = (p,¢3) € V
and vy = (p, q1) € V be two vertices where £ < ¢3,94 < n— 1. Suppose (p, g3) receives
the message from u through path P and (p, ¢4) receives the message from u through
path Py. Let k' € {1,2,3,4} (see figure 15). Then,

N 3 N1 . 1 1 1 1
P:(0,7))> (L) >1,7i-1)>...5 (1,0 > (20 >...
5 (p—1,00= (,0) > (p,n—1) > (0,n—2) > ... = (b, )
Pr:(0,5) 3 (0,j+1)3(0,j+2) ... 5(0,6) > (m—1,0 5 ...

Lo+1,03p+1,0+1) 5. B (+1,0) 5 0w
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Figure 15: The four paths P;, P», P; and P;. Note that some of the edges are deleted in
order to make the figure more readable.

Similarly, observe that the only time when & = 4 is when g, = 0. But the vertex

(p,0) is already being informed through path P;. Therefore, we will assume that

g4 < n and hence the maximum value of k' is 3.

On rows p and p + 1, the paths P; and P, will inform the following vertices:

(p,4) and (p, g3), (P, g3 + 1), (P, 93+ 2), ... (p,n — 1), (p, 0).

(p+1,€),(p+1,£+1),---(p+1,Q4)-

According to the ordering II, each of the informed vertices on row p + 1 needs at
most 3 time units to inform its neighbor on row p. Similarly, we can say that when

k' = 3, then by the time that (p, ¢4) receives the message, all the vertices (p, i) where
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¢ < i < g4 will also be informed (Figure 14).
To make sure that all the vertices (p, g) where £ < ¢ < n —1 are informed, (p, g3)

and (p, g4) have to be (at least) adjacent at a given time ¢.

The time that (p,q3) and (p, qs) receive the message from each of the paths Pj
and P, are:
W (Ps,v3) =3+j+@—-1)+2+(n—-1-g)=—-gs+j+p+n+3

W(Phv)=(l—)+(m—-p—-1)+2+(@a—¢-1)+3=qu—j—p+m+3

Suppose (p, g3) and (p, q4) Teceive the message at time D(T,,xn) + ¢ (Where ¢ € ZF).

Then,

Y1 (Ps,v3) < D(Tpaxn) +¢= —gs+j+p+n+3 < D(Thpxn) +c¢

= q3 > —D(men)—c+]+p+n+3

bH(P41U4) SD(men)+C=>Q4_j_p+m+35D(men)+c

:Q4SD(men)+C+j+p—m—"3

Since the path P; propagates from (p,0) — (p,n — 1) — ... = (p,¢s) and path
P, propagates from (p,£) — (p,£+1) — ... = (p, q1), then at time D(T,,«pn) + ¢, the
last vertices that receive the message though P; and P, will be the minimum value

of g3 and the maximum value of g4 respectively.
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Thus, (p,q3) and (p, q4) are going to be (at least) adjacent when :

Mazimum(q) + 1 > Minimum(qs)
& D(Txn) te+j+p—m—=3+1> —D(Tpxn) —c+j+p+n+3

< 2D(Thxn) +2c—m—n—-52>0......... (B)

When the inequalities (A) and (B) hold true for some constant c, then vertex ¢
will be adjacent to g, and vertex g3 will be adjacent to g, and hence, all the vertices
on row p will be informed. In what follows we will find the value of ¢ for each of the

cases for m and n in torus T},«,, and derive the broadcast time when the originator

is vertex u.

Case 1: m and n are both EVEN

Since m and n are both even

- =3+ [} -2

(A):>2(m+n>+20—m—2£—-520=>n—2£+2c—520
oy . ni. n n
i) if bJ is odd = £ = b‘J -2

n

=>n—2£+2c—520=>n—-2(2

>+2c—520:2c—520:>023

ey ip | TOL n n
11)1f[§J 1seven:>£—[§J+1—§+1

=>n—2e+2c—5z0=>n—2(g+1)+2c—520=>2c—720=>cz4
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(B):>2<m;-n>+26—m——n-—520:>20—520=>023

Case 2: m is EVEN and n is ODD

Since m is even and n is odd

m n m n—1 m4n-1
= D(Tmxn) = {EJJF{ J_ 2 " 2 2

2

~1
(A)#2(%——)+2c—m—2£—520=>n—2£+2c—620

o oepe | _|n n—1
l)lf[EJlsodd:e_[ZJ -

~1
=>n—2£+2c—620:>n—2(n

)+2c—620=>2c—520=>c23

n
2
=>n—204+2c—6>0=n—2(

n—1+1_n+1
2 )

1
n—2i— )+2c—6>0=>2c—-7>0=>c>4

ii)if[gJ iseven:>€=[ J+1:

-1
(B):>2(%)+2c—m—n—520:>2c—620:c23

Therefore, for any originator (0, 5) with 0 < j < £ and j odd, every vertex v € V
for a torus with even number of rows m will be informed at most by time:
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Case B: Originator v/ = (0, ;') € V where £ < j' < n and j even

We will now calculate the broadcast time when the originator is ' = (0,5') € V
where £ < j' < n.

When j' is even, then the paths P{, P, P; and P; originating from v’ will be respec-
tively symmetric to the paths P;, Py, P3 and P, described above. Thus, consider the
vertices v, = (p, q1), vy = (P, G3), v3 = (P, ¢5) and vy = (p, q,) where £< g;,¢, <n—1
and 0 < g3,q, < £and let k, k" € {1,2,3,4}. We define the four paths (see figure 16):
P(0,/)Sm-1,7)Dm-1,7-1)>... B m-1,) 5> (m—-2,0>...

S (p+1L0 3 E+1LE+1) BB (p+1,4) S (9.4)
PL:(0,5) 2 (0, +1) 3 (0,7 +2) 5 ... 5(0,0) > (1,0) = (2,0) & ...
1 2 1 1 1 '
= (p,0) = (P,rn-1) > (pn—-2)=>... > (p,¢)
P:(0,) S (m-1,7) S m-1,7-1)3 ... S m-1,0 3 (m-20>...
1 1 2 1 1 1 ,
= p-1,0)=>m0)>@L—-1)>(PLl—-2)> ... (p,g)
PL:(0,5) 5 (0,7 +1) 5 (0,5 +2) > ... 5 (0,0) 5 (1,0) = (2,0) = ...

H-1,030-1,1)5 .. 5 0m-1,¢)% »q)

For the same reasons mentioned in Case A above, we will assume that the worst

case for k and k' is equal to 3.

The time at which each of the vertices g, ¢s, q; and q; receives the message is :
BI(Pv) =3+ (' —0)+(m—(p+1)—1)+2+ (g, —£—1)+3 = q;+j —p+m—2£+5

V(PLv)=Mn—j)+p+2+(n—g—1)=—g—j +p+2n+1
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0.9 0.4 0.5 Y

.......

(pa qfl) I —ﬁé_ N Pll ? (P, ql2)

Figure 16: The four paths P/, P}, P§ and P;. Note that some of the edges are deleted in
order to make the figure more readable.

bH(Pg,fu;)=3+(j'—£)+(m—p—1)+2+(£—1—q'3)=—q;+j'—p+m+3

V(PLv)=mn—)+@-1)+2+(¢u—1)+3=q—j +p+n+3

Similarly, we assume that each of these vertices receives the message at most by
time D(Tpxn) + ¢. Thus,
¢, < D(Tpxn) +c— 7 +p—m+20—5
4y > —D(Trxn) —c—j' +p+2n+1

Q3Z —D(men)—c+j'—p+m+3

@ < D(Tpyn) +c+j' —p—n—3
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We know that all the vertices of (p,q) € V on row p will be informed when q'1 is

adjacent to q'2 and q'3 is adjacent to ;. This will happen when :

Mazimum(qy) + 1 > Minimum(g,)
& D(Tpxn) +c—j+p—m+20—5+1> —D(Tpyn) —c—j' +p+2n+1

& 2D(Tywn) +2c—m—=2n+20—-5>0......... (A"

M am’mum(q;) +1>M inimum(q;)
& D(Tnxn) +c+j —p-n—=3+12 —D(Tpun) —c+j' —p+m+3

S 2D(Txn) +2c—m—n—-52>0......... (B")

When the inequalities (A’) and (B') hold true for some constant c, then vertex g;
will be adjacent to ¢, and vertex q'3 will be adjacent to ¢, and hence, all the vertices
on row p will be informed.

In what follows we will find the value of ¢ for each of the cases for m and n in

torus Ty,xn, and derive the broadcast time when the originator is vertex u'.

Case 1: m and n are both EVEN

Since m and n are both even

m n m-+n
= D(Tma) = || +[3] =75
(A’):>2<m;_n)+2c—m——2n+2£—520=>—n+2£+20—520
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o e | _In|_n
1)1f[§} 1sodd:>£—l2J 5

=>—n+2€+26—520¢—n+2<g)+20—520=>2c—520=>623

ii)if[g} isevenéﬁz{gJ—f—l:g—I—l

:>—n+2£+2c—520=>—n+2(g+1)+2c—520:>2c—720:>cz4

m+n

(B") = 2(

>+2c—m—n—520:2c—520=>cz3

Case 2: m is EVEN and n is ODD

Since m is even and n is odd

m ) m n-—1 m+n—1
iD(me"):lﬂJ’liJ:?J“ 2 2

-1
(A’)#2(%)+2c—m—2n+2£—520-——>—n+2£+2c—620

o oae [T n| n-—1
1)1f[§Jlsodd:>£—[—2—J_ 5

-1
:>—n+2£+2c—620=>-n+2<nT)+2c—620=¢2c—720=>024

U X I n n—1 n+1
11)1f[§Jlseven=>£—{§J+1— 5 +1= 5

1
:>—n+2£+20—620:>-—n+2(%—)+20—620=>2c—520:>623

m+n-—1

(B’):>2< :

)+2c—m—n—520=>2c—620=>623
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Thus, for any originator (0, j') with £ < j' < n and j’ even, every vertex v € V for
a torus with even number of rows m will be informed at most by time:

B (Trxn) < D(Tonxn) + 4

Therefore, we can see that in the worst case, broadcasting from any vertex u or
u' will give the same broadcast time. Thus, summarizing the results, we can say that
when m is even, the broadcast time of a torus T;, ., is:

n
D(Tinxn) +3 if = is odd
B (Thn) < - 2

D(Tyuxn) +4 otherwise

NOTE:

In the above discussion, we have assumed that the paths P, P,, P; and P; will reach
row p by time D(T,,xs) + ¢. But what if D(T,.xn) + ¢ is not enough of one of those
paths to reach row p? In what follows, we will show that even in this case, all the

vertices of row p will still be informed by time D(T},,x5) + 4.

When P, and P; do not reach row p :

In this case, P, will inform all the vertices (p, g) where 0 < ¢ < £ and P, will inform
all the vertices (p,q) where £ < ¢ < n — 1. To show this, we let v; = v3 = (p — 1,0),
ve = (p,0) (hence, ¢» = 0) and v4 = (p,n — 1) (hence ¢4 = n — 1). Then,

bH(Plavl):bH(P17v3)=3+j+(p—1_1)=j+p+1
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B (Pyyvg) = —j —p+m+20+1

W(Pyv)=-j—p+m+n+2

Suppose each of the vertices vy, v2 and v, receive the message by time D(T x5 )+c.

Then,

VP, v1) < D(Tixn) + ¢ = D(Tnxn) + ¢ =5 =P =120 i, (1)
b (Py,v9) < D(Tysen) + ¢ = D(Tpsn) +c+j+p—m—=20—1>0 .......... (2)
W (Ps,v3) < D(Tsen) + €= D(Tipxn) €= =P =120 e (3)
B Py, vy) € D(Traxn) + €= D(Typsn) +c+j+p—m—-n—2>0........... (4)

(1)+(2):>2EJ+2[

(3)+(4):>2[§J+2[

J+20—m—2€—220 .............. (5)

SIERME

J+2c—m—n—320 ............... (6)

In the worst case, for each of the equations (5) and (6) we will have :

-1
e the minimum value of 2 [gJ =2 lnTJ =n — 1 (when n is odd)
-1
e the minimum value of 2 {%J =2 [mTJ =m — 1 (when m is odd)
e the maximum value of 24, which occurs when ¢ = [—;EJ + 1 and n is even

=W=n+2

Replacing the worst-case values in equations (4) and (5) we get :
6G)=(n—-1)+m—-1)+2%-m—(n+2)+2>0=>c>3
6)=n-1)+(m—-1)4+2c—m-n—-3>0=c>3
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Therefore, when P, and P; do not reach row p by time D(Ty,x,) + ¢, P, and Py
will inform all the vertices (p,q) € V where 0 < ¢ < n —1 if ¢ = 3. Similarly, we can
show that when P, and P, do not reach row p by time D(T,;xn) + ¢, then P, and Ps
will inform all the vertices (p,q) € V where 0 < ¢ < n —1if ¢ = 3. The same can
be shown for the paths Pj, Pj, Pj, and P, when the originator is vertex v’ = (0, j')

where 0 < j' < n and j even.

Therefore, even when two of the pahts in each case of an originator u and u' do
not reach the destination row, we can still say that the broadcast time for 7, «,, under
ordering IT will be:

0" (Trmxn) < D(Trxn) +4

3.8.2 Upper Bound when m is Odd

When m is odd, m — 1 will be even and the vertices u© € V on the last row m — 1 of
Tmxn Will have the exact same numbering as the vertices v € V on row 0. That is,
every vertex (m — 1, ) will have an ordering identical to that of vertex (0, j) for any
0 < j < n — 1. This will mean that broadcasting to and from row m — 1 will take
different paths than the paths described in lemma 3.8.1.

In this section we first describe the paths used to inform all the vertices on rows 0
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and m — 1 and derive the orderly broadcast time in these two cases. We later discuss
the broadcast time for the worst-case originator u = (m — 1,j) € V and derive the

broadcast time of T,,, when m is odd.

3.8.2.1 Informing Row 0

Assuming broadcasting starts from some vertex u = (i,5) € V where 4 is even and
j is odd, we will describe the paths that are used to inform the vertices (0,q) € V
where 0 <g<n-—1

Consider a torus Ty,x, where m is odd. Let u = (i,j) € V be the originator.
Broadcasting from u will use the exact same paths described in lemma 3.8.1 to in-
form all the vertices (p,q) € V where p ¢ 0,m — 1. Now, suppose we want to inform
all the vertices (0,¢) € V on row 0. Let v; = (0,¢1),v2 = (0,¢2),v3 = (0,¢3) and
vy = (0,q4) € V be four vertices on row 0. Consider the following paths (See figure
17):
Po:(ij) 3 G+1,)36E+1L,i-1)3 ... 53@E+1,0 > GE+2,0 5 ...

5 (m—1,0) 5 (0,0) 3 (0,1) > ... 5 (0,41)
Py:(iyf) = (i +1) 5 (5,5 +2) > ... B (5,0 = (m—1,0) > ...

LS0LOBMLE-1HL-2) 5.5 (L) 5 (0,0)
Po:(6,5) 2 (G+1L,7) S GE+1,7-1) 5 ... 5 E+1,00D ((+2,0) 5 ...
Lm=203m-2n-1)Sm-2n-2)>...5(m—24q)

X (m—1,q5) % (0, g5)
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Pl S 6+1,)56E+1,7-1)5 . .5 E+1,03 6+2,0 > ...

1 1 1 2 1 1 1 K

- (m—l,O)—-) (070)_> (170)__) (Ln_l) = (1,71—2)—}—) (11Q3) - (OaQ3)
Pi:(i, i) S 0Gi+1)D6i+2) > .. 53G0S m-1,0>. ..

50,03 (0,£+1) 5 (0,£+2) 5 ... 3 (0,q4)

For the same reasons discussed in lemma 3.8.1, we know that k, k', k" € {1,2,3}.
In the worst case, we will consider k" to be equal to 3, and will discuss the values of

k and k' in what follows.

The time at which each of the vertices vy, vy, v3, v4 receive the message will be :
PUPLv)=34+j+m—-i~-1)+2+ (g —-)=q+j+m—i+3
M Pyv)=U¢—5)+(GE-1)+2+(f-1—g)+3=—¢a—j+i+2(+3
(P, v3) =3+j+(m—2—i—1)+2+(n—1—g3)+2k = —gs+j—i+m+n+1+2k
V(P vg)=3+j+(m—9)+2+(n—1—g)+k =—g+j—i+m+n+d+k

bH(P4,’U4)=(£—j)+i+2+(Q4—g—1)IQ4"'j+i+l

Now, consider the two paths P3 and P;. Both of these paths inform vertex vj.
Observe that if k = k' = 3, then b'( P}, v3) = b'(P3, v3). However, below we will show
that when k = 3, then k" will be equal to 2 and vice versa.

First, suppose £ = 3. Then,

(P, v3) =—gs+j—i+m+n+4+k

V(P vs)=—gzs+j—i+m+n+4+Fk
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Figure 17: Informing the vertices on row 0 through the paths P, P, P3, Pj and Py when

m is odd.

At time —g3 + j — i + m + n + 4, the last vertex that path P; has informed is
(m —1,¢3), and the last vertex that path P; has informed is (1, ¢3) (see Figure 17).
In the next step, vertex (m — 1,¢s) will inform (0, ¢3) in &k time units, and vertex
(1, g3) will inform (0, g3) in k' time units. Since (m —1, g3) and (1, ¢3) are on the same

column, from the ordering IT we know that k and k cannot have the same value.

Thus, when k = 3 then &’ = 2. This implies that vertex (0, g;) will be informed

through path Pj at most by time:

V(Pv3)=—gzs+j—i+m+n+6
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Similarly, when k = 2 then k& = 3. This means that vertex (0, g3) will be informed
through path P; at most by time:

bH(P3,v3)=—Q3+j—i+m+n+5

Therefore, in the worst case, vertex vs will be informed by time:

W(Pvs)=—gs+j—i+m+n+6

We will now proceed with the discussion in a way similar to that of lemma 3.8.1.

Since each of the informed vertices on rows 1 needs at most 3 time units to inform
its neighbor on row 0, then by the time vertex (0, ¢2) receives the message, all the
vertices (0,%) where ¢» < % < £ will also be informed.

Now, consider vertices (1,q3 — 1),(1,93 — 2),...,(1,n — 1) which are informed
through path Pj. All these vertices are informed by time "(Pj,v3) — k' — 1. Since
each one of these vertices needs at most 3 time units to inform its neighbor on row
0, then their neighbors on row 0 will be informed at most by time:

b (Pl vs) — K —1+3=0b"(Pl,vs) —k +2
In the worst case, when K = 2, all the vertices (0,7) where g3 < i < n —1 will be
informed by time b™ (P}, v3).

Thus, we know that all the vertices on row 0 are going to be informed when v, is
at least adjacent to v and w3 is at least adjacent to vy.

Suppose v1, V2, v3 and v, receive the message by time D(T;,x5)+c (where ¢ € ZF).
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Then,

WP, 1) < D(Tpxn) + ¢ = ¢t < D(Tipxn) +c—j—m+i—3

b (Py,v2) < D(Tpxn) + €= g2 > —D(Tpuxn) —c— 5+ 20+ i+ 3

b (Pl v3) < D(Tiaxn) + ¢ => g3 > —D(Tpxn) —c+j+m+n—i+6

bH(P47U4) S D(men)+cz>Q4 _<_. D(men) +C+j —1—1

Vertex v; will be at least adjacent to v when:

Mazimum(q;) +1 > Minimum(q.)
& D(Tpxn) +¢—j—m+i—3+1> —D(Tpmxn) —c—j+20+i+3

& 2D(Tonsn) + 20— m—20—=5>0......... (A)

Vertex v3 will be at least adjacent to v4 when:

Mazimum(qy) + 1 > Minimum(qs)
& D(Tpxn) +e+j—i—141> —D(Tpun) —c+j+m+n—i+6

< 2D(Tpxn) +2c—m—n—62>0......... (B)

For each of the equations (A) and (B), the worst case will occur when m and n

n+1

areoddand2£:2<[gJ+1):2< >:n+1. Then,

1 _
(A):>2<n2 )+2(mTl)+2c—m—(n+1)—520:>624

-1 -1
(B):>2<n )+2(Zn2—)+2c—m—n—620$024
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Thus, when the originator is a vertex u = (4,j) € V where 0 < j < £ and j odd,
informing all the vertices (0, ¢) € V where 0 < ¢ < n — 1 when m is odd will take at
most D(Tyyxn) + 4 time units.

When the originator is a vertex v’ = (4,5) € V where £ < j' < n and j' odd,
then paths symmetric to Py, Ps, P3, P; and P, will inform all the vertices on row 0.
Calculations similar to the above will lead to the conclusion that when the originator
is a vertex «’, all the vertices on row 0 will be informed at most by time D(Tp,xn) +4.

Therefore, when m is odd we can conclude that for any originator (i,j) € V,
informing all the vertices (0,q) € V where 0 < ¢ < n—1 will take at most D(T;;x)+4
time units.

We will later see that this is actually less than the broadcast time in T,,,x, When

m 18 odd.

3.8.2.2 Informing Row m —1

We will now describe the paths used to inform the vertices (m — 1,q) € V where
0<¢g<n-—1onrow m—1when m is odd and derive the broadcast time in the
worst-case.

Consider a torus T,x, where m is odd. Suppose we want to inform all the ver-
tices (m — 1,q) € V on row m — 1. Broadcasting from a vertex u = (4,j) where

0 < j < £ and j odd will use similar paths described in section 3.8.2.1 to inform all
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the vertices on row m — 1. Let v; = (m —1,q1),v2 = (m — 1,¢2),v3 = (m —1,¢3) and

vy = (m — 1,q4) € V be four vertices on row m — 1. Consider the following paths

(See figure 18):

Pll

P22

G,7) S GE+1L,7) D E+1,7-1)D ... 5 E+1,00 5 (i+2,0) 5 ...

Sm=-1,003m-1,1)D... 5 m—-1,q)
G S Gi+1D)DGEi+2) . B 60D (m-1,0>...

51,03 0,-1)51,0-2) 5.5 La) B 0w m-1,0

6 DG+ ) G+ D S E) D m-1,0 5.

50,0 5m-1,05m-2,03m-20-1)3(m-2£-2)—>...

_1> (m—27q2) i)(m—l’QZ)

DD EHL) D E+Li-1) D B E+1,00D ((+2,0) ...

Lm-2003m-2n-1)Sm-2n-2)5... 5 (m—2,q)

"

k_) (m - 1aQ3)

) DG+ D6 +) S B EH S m-1,0 5.

50,05 m—-1,03m-1,04+1)5 (m—-1,£+2) ... 5 (m—1,q)

For the same reasons discussed in lemma 3.8.1, we know that k, k', k" € {1,2,3}.

In the worst case, we will consider k" to be equal to 3, and will discuss the values of

k and k' in what follows.

The time at which each of the vertices vy, vq, v3, v4 receive the message will be :

M(PL,v)=3+j+(m—-1—i-1)+2+(q—-1)=q+j+m—i+2
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Figure 18: Informing the vertices on row m — 1 through the paths Py, P2, P3, P3 and P,
when m is odd.

VI (Pyv)=(U—)+(E-1)+24+ (U —-1~q)+2k=—g—j+i+20+2k
VU PLu)=(L—)+(GE+2)+2+(U-1—q)+k =—g—j+i+20+3+Fk
(P,v3)=34+j+(m—2—i—1)+2+(n—-1-¢g)+3=—q@z+j—i+m+n+4

' (Pyv) ==+ (E+D)+2+(@—C-1)=a—j+i+2

Similar to the discussion in section 3.8.2.1 above, we will show that in the worst-
case, vertex v, will receive the message by time : b (P}, v) = —ga — j + 1 + 2£ + 5.

Thus, consider the two paths P, and Pj, both of which inform vertex v,. Similarly,
at time —go —j+i+20+k = —qy — j +1i+ 2¢+ 3 the last vertex that P, has informed

is (0, g2), and the last vertex that path Pj has informed is (m — 2, ¢2) (see Figure 18).
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In the next step, vertex (m —2, go) will inform (m —1,¢z) in k' time units, and vertex
(0, g2) will inform (m — 1, ¢2) in k time units. Since (m — 2, ¢2) and (0, g2) are on the
same column, k and k' cannot have the same value.

Thus, when k = 3 then k' = 2. This implies that vertex (m — 1, ¢2) will be in-
formed through path Pj at most by time:

B (Pyv) =—go—j+i+20+5

Similarly, when k = 2 then £ = 3 and hence vertex (m — 1, g;) will be informed
through path P, at most by time:

BU(Py,ve) = —g2 — j + i+ 20+4

Therefore, in the worst case, vertex v, will be informed by time:

(P ve)=—g—j+i+20+5

Since each of the informed vertices on rows m — 2 needs at most 3 time units to
inform its neighbor on row m — 1, then by the time vertex (m — 1, ¢2) receives the

message, all the vertices (m — 1,7) where g; <% < £ will also be informed.

Now, consider vertices (m — 1,2 + 1), (m — 2,¢2 + 2),...,(m — 2,£) which are
informed through path PJ. All these vertices are informed by time 6" (Pj, v2) — kK —1.
Since each one of these vertices needs at most 3 time units to inform its neighbor on
row 0, then their neighbors on row 0 will be informed at most by time:

BU(Pvg) — k' —1+3=b1(P),va) —k +2
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In the worst case, when k = 2, all the vertices (m — 1,4) where g < i < £ will be
informed by time ™ (P, vs).

Thus, we know that all the vertices on row m — 1 are going to be informed when
vy is at least adjacent to vy and v; is at least adjacent to vy. Assuming each of v,
vq, V3, V4 Teceives the message by time D(T,, ) + ¢, calculations similar to the ones

done in section 3.8.2.1 will lead to the following two equations:

Vertex v; will be at least adjacent to vy when:

Mazximum(g) + 1 > Minimum(g2)
& D(Tpxn)+c—j—m+1—24+1> —-D(Tpun) —c—j+20+i+5

< 2D(Thxn) +2c—m—20—62>0......... (A)
Vertex vz will be at least adjacent to v4 when:

Mazimum(qs) + 1 > Minimum(gs)
& D(Tpxn) +e+j—i—=24+1> ~D(Tpxn) —c+j+m+n—i+4

& 2D(Thxn) +2c—m—n—-5>0......... (B)

For each of the equations (A) and (B), the worst case will occur when m and n

are odd and 2¢ = 2 (BEJ +1) =2 (n—zi—l) =n+ 1. Then,

~1 ~1
(A):>2(”2 )+2<mT)+2c—m—(n+1)—620=>c25

—1 -1
(B)-—->2(n2 )+2(—7—n—5—)+2c—m—n—520=>c24
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Thus, when the originator is a vertex u = (4,7) € V where 0 < j < £ and j odd,
informing all the vertices (m — 1,q) € V where 0 < ¢ < n —1 when m is odd will
take at most D(Tyuxn) + 4 time units.

When the originator is a vertex ' = (i,5') € V where £ < j/ < n and j' odd,
then paths symmetric to Py, P», Pj, P» and P, will inform all the vertices on row
m — 1. Calculations similar to the above will lead to the conclusion that when the
originator is a vertex v/, all the vertices on row 0 will be informed at most by time
D(T,nxn) + 4. Therefore, when m is odd we can conclude that for any originator
(i,4) € V, informing all the vertices (m — 1,¢) € V where 0 < ¢ <n — 1 will take at
most D(Tuxn) + 4 time units.

Below we will see that this value is less than the broadcast time in T;,«x, when m

is odd.

3.8.2.3 Broadcasting from Originator(m — 1, j)

When m is odd, broadcasting from any originator (,j) € V when 0 < j < ¢ and
i#m—1or when £ < j < n and ¢ # 0, will use the exact same paths described
in lemma 3.8.1 and sections 3.8.2.2 and 3.8.2.1 (for informing the vertices on rows 0
and m — 1). In these cases, the upper bound on orderly broadcasting in Ty, will
be at most D(T,,xn) + 4. In this section we will see that broadcasting from a vertex
u=(m—1,5) for any 0 < j < £ or from a vertex v’ = (0, j') where £ < j'. < n will

yield a broadcast time of D(Tyxn) + 5.
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Lemma 3.8.2

Given a torus Tp,«n, where m is odd, the orderly broadcast time under ordering II will

be:
4
D(Txn) +5 if (m and n are odd )
or (m is odd and n, lEJ are even)
b (Traxn) < § 2
L D(Tyxn) +4 otherwise
Proof :

The paths used to broadcast from vertex (m — 1,j) where j is odd will be identical
to the paths used to broadcast from any (0, ;') where j' is even (and vice versa).
Thus, to prove the lemma, we will describe the dissemination of the message from
two different originators : One from vertex u = (m — 1,5) € V where 0 < j < £ and
j is odd and the other from »' = (0,5') € V where £ < j' < n and j’ is even.
Through lemma 3.4.1 we know that in the parity of p does not effect the broadcast

time, thus without loss of generality we will assume that p is odd.

Case A: Originator v = (m —1,j) € V where 0 < j < ¢ and j odd

Suppose broadcasting starts from vertex u = (m — 1,5) where 0 < j < £ and j is
odd. We want to inform all the vertices (p,¢) € V where p is odd. The only change
that the originator u will cause in the paths described in lemma 3.8.1 will be in the

two paths P, and P;, while P, and P, stay the same. Below we redefine the paths
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Py, P, P; and P, (Figure 19) that originate from (m — 1, j):
Piim-1,5)3(m—-2,7)Sm—-2j7-1)3...5@m=20 > (m-10)
10,050,005 . Hrp-1,030-1,05...50-1,0)" 0a)
Py:(m—1,9) 3 (m—=1,741) B (m=1,j4+2) 5 ... B (m=1,0) > (m—1,6) > ...
50,03 (p,t—1) > (p,t-2) > ... > (,0)
Poi(m—1,7) 3 (m=2,7) > (m—-2j—-1)3...3 (m-20 > (m-1,0)
50,005 ... 50p-1,03%030@n-1)53@n-2) ... (pa¢)
Pi:(m=1,9) 3 (m—1,7+1) 5 (m=1,j42) > ... B (m—1,0) 5 (m—1,6) > ...

’

L+, pHe+1) 5. 5 (0+1a) S (0,0

(Observe that for the same reasons mentioned in lemma 3.8.1, we assume that

k =k’ = 3 in the worst case.)

The time at which each of the vertices v; = (p, q1), v2 = (D, ¢2), v3 = (p, ¢3) and
vy = (p, q4) receives the message will be:
B (PLv)=2+j+2+(p-D4+2+(a-1)+3=q+j+p+7
(Pyvg) =(l—j)+(m—1=-p)+2+(-1-q@)=-@—j—p+tm+2
W (P,v3) =2+j+2+p+2+(n—1—-g)=—g+j+p+n+5

B (Puv)=(—-g)+(m-1-p-1)+2+(u—L-1)+3=q—j—p+m+2

After calculations similar to the discussions in lemma 3.8.1, we obtain the follow-

ing two equations:
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y
'.\:
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Figure 19: The four paths P, P, P; and P, originating from vertex (m — 1,5) when m
and j are odd.

2D(Thxn) +2¢c—m—20—62>0 ........ (A)

2D(Tnxn) +2c—m—n—62>0 ........ (B)

Case 1: m is ODD and n is EVEN

Since m is odd and n is even

2 2 2

m m—1 +n—-1
3] -2 gt

= D(Ten) = |5

~1
(A):>2(T-1L2i—)+2c—m—2£—620=>n—2£+2c—720
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2 2
én—2Z+2c—720:>n—2<g>+26—720:>2c—720:>024

i)if{gJ isodd:>£=PJ=—

ey oo [TV n n
11)1be 1seven:>£—[§j+1—§+1

=>n—2€+2c——720:>n—2(g+1)+2c—720=>20—-9_>_0:>025

~1
(B):>2(T+—;——)+2c—m—n—520:>2c—720=>c24

Case 2: m and n are both ODD

Since m and n are both odd

2

mJ [nJ_m—1+n—1_m+n—2
T2 2 2

= D(Tixn) = [‘2— +

—2
(A)#2(%)—|—2c—m—2£—620¢n—-2£+2c—820

e | n n—1
1) if [EJ 1sodd=>€—[§} 5

=>n—2£+2c—820:>n—2<n_1

)+2c—820=>2c—720=>024

n n—1 n+1
2 s Tl==
n+1
=>n—2£+2c—720:>n—2(T)+20—820=>20—920=>c25

ii)if[gJ iseven=>£=[ J+1=

_9
(B)#2(m—+:———)+2c—m—n—620=>2c—8202>024
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Thus, for an originator (m — 1,5) with 0 < j < £ and j and m odd, every vertex

v € V will be informed at most by time D(T,;,xn) + 5.

Now, when 7 is even, the paths P, and P, will stay the same, while P, and P; will
change in the following way :
y N 2 N 2 N1 . 1 . 1 1 1
P:(m-1,7)>0,/)) > L)~ 1i-1)=>15j-2)>... = (1,0) >
5205 50-,03@-L1)5 ... S @-1La)D®a)
Pi(m=1,5)50,4) > (L) > (1,7-1) 5 (1,5-2)5... 51,0 >

52,05, 50-1,005 003 @mnrn-1)Smn-2)S...5 (1)

The time at which each of the vertices v; = (p,q1) and vs = (p, g3) receive the
message through the new paths P| and Pj will be:
V(PLv)=2+2+7+(p—-2)+2+ (-1 +3=q+j+p+6<b(P,uv)

(P,v3) =2+2+4+j7+(p—1)+2+(n—1—-¢)=—gs+j+p+n+4 < b (Pj,vs)

Thus, since the time at which each of the vertices v; and v3 receives the message
from originator is (m — 1, j) when j is even is less that the time at which they receive
the message when j is odd, then we can see that the worst case for an originator in

this case will again be when j is odd.
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Case B: Originator v' = (0,5') € V where £ < j' < n and j even

We will now calculate the broadcast time when the originator is v’ = (0,5') € V
where £ < j' < n.

When ;' is even, then the paths P}, Pj, Pj and P, originating from v’ will be respec-
tively symmetric to the paths P;, P,, P; and P, described above. Thus, consider the
vertices v, = (p,q;), vy = (p,ay), v3 = (p,q3) and v, = (p,q,) where £ < 4,0 <n—1
and 0 < q3,¢; < £ and let k, k' € {1,2,3,4}. We define the four paths :

PL(0,i) (L) 50,7105 51,030,035 m-1,0->...
L+ 3 (p+1LL+1) DS D (p+1,4) D (,q)

PL:(0,5) 5 (0,7 +1) B (0,5 +2) 5 ... 5 (0,0) > (1,0) = (2,0) = ...
L 0,03 @n-1)5@n-2) ... (p,¢)

PLi(0,) DM 1L —-1) 5. 51,050, >(m—1,6 ...
Lp-1,03m0D®L-1)D®,L-2) ... (pg5)

P (0,5) 5 (0,5 +1) 5 (0,7 +2) B ... 5 (0,0) 5 (1,0) > (2,0) > ...

1 2 1 1 "ok '
_)(p—]-ao)_)(p_l)l)—)"‘_)(p_lach)'_)(p"h)

(Observe that for the same reasons mentioned in lemma 3.8.1, we assume that

k =k = 3 in the worst case. See Figure 20 for a diagram of the four paths.)
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Figure 20: The four paths P{, Pj, P} and P, originating from vertex (0, j') when m is odd
and j' is even.

The time at which each of the vertices v; = (p,q;), v = (p,¢), v3 = (p, ;) and
v, = (p, q,) Teceives the message will be:
VUPLv) =24+ (' =)+ (m—(p+1)+1)+2+ (¢, —£—1)+3 = g, +5 —p+m+2(+6
B (P up) =(n—j)+p+2+(n—g—1)=—g—j +p+2n+1
BU(Pgvg) =2+ (' =)+ (m—-p+1)+2+({-1-¢') =—a'+j —p+m+4

W(PLvy)=(n—7)+ -1 +2+ (@' -)+3=a'-j'+p+n+3

After calculations similar to the discussions in lemma 3.8.1, we obtain the follwing

two equations:
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2D(Traxn) +2c—m—2n+20—-62>0 ........ (A"

2D(Tyxn) +2c—m—n—62>0 ........ (B")

When the inequalities (A') and (B’) hold true for some constant c, then vertex aq
will be adjacent to ¢, and vertex g, will be adjacent to g,, and hence, all the vertices
on row p will be informed.

In what follows we will find the value of ¢ for each of the cases for m and n in

torus Tp,n, and derive the broadcast time when the originator is vertex '.

Case 1: m is odd n is EVEN

Since m is odd and n is even

2

mJ+[nJ_m—1 n_m—i—n—l
2 2 2

= D(Tor) = |3

_1
(A')=>2(-W—Jf2”—>+2c—m—2n+2£—620=>—n+2£+2c—720

o e |7 _In|_n
l)lfBJlsodd:e_[ZJ_z

:>—n—i—2£+2c—720=>—n-|—2(E

2>+2c—7_>_0=>2c—720¢cz4

11)1f[§J 1seven:>€—[§J+1-—§+1

=>—n+2£+2c—7z0=>—n+2(g+1)+2c—720=>2c—520:>c23

~1
(B’)=>2(%—)+2c—m—n—620=>2c—720:>024
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Case 2: m and n are both ODD

Since m and n are both odd

2

m n m—1 n-—1 m+n—2
=>D(T"”"l):bJJ“H: 2 2 2

)
(A')=>2(T—1L;—)+2c—m—2n+2£—620=>—n+2£+2c—820

o e [T _n n—1
i) if bJ is odd:>€—[§J 5

-1
=>—n+2€+26—820$—n+2(n—2——>+2c—820:>2c—9_>_0=>cz5

n n n—1 n+1
avie |2 |2 4= 1=nt1
i) i [2J is even = £ {2J+ 5 + 2
1
=>—n+2£+2c—820=>—n+2(n; )+2c—8>20=>2c—-720=>c>4

-2
(B’)#2(%)+20—m—-n—620:>2c—820=>024

Thus, for any originator (0, ;') with £ < j/ < n and j’ even, every vertex v € V
for a torus with odd number of rows m will be informed at most by time b (Ty,x5) <

D(Tuxn) + 5.

Similar to lemma 3.8.1, here we can prove that when any of the paths P, Py, P
and P, or P, P2', P?: and Pi does not reach row p, then all the vertices of row p will

still be informed by time D(Ty,xn) + 5.
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Therefore, we can see that in the worst case, broadcasting from any vertex u or
v’ will give the same broadcast time. Thus, summarizing the results, we can say that

when m is odd, the broadcast time of a torus T,y is:

(

D(Tpuxn) + 5 if (m and n are odd )

or (m is odd and n, P} are even)
b (Tnxn) < 5 2

D(Tpuxn) +4 otherwise

From the two lemmas 3.8.1 and 3.8.2 we can conclude the following theorem.

Theorem 3.8.1

A torus Ty« with the ordering I1 will have the following broadcast time :

(

D(Tpxn) +5 if m and n are odd

. D(Txn) +4 if (one of m or n is even) or
b (Traxn) < 9

(m,n and [EJ are even)

2

D(Tyuxcn) +3 otherwise

\
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Proof :

From lemmas 3.8.1 and 3.8.2 we know that the orderly broadcast time of Tp,x, is
equal to D(Tuxp) + 5 when n is odd and m, [gJ are even, and D(Ty,xn) + 4 when
otherwise one of m or n is even. But if one of the row number or the column number
of T,.xrn is even, then m can be chosen to be the even number. Thus, for any torus
with either an even number of rows or an even number of columns, the broadcat time
will be at most D(Tp,xyz) + 4. This way, the only time when the broadcast time will
be equal to D(Tyuxn) + 5 is when we don’t have an even row or column. Hence, the

theorem is proved. O
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Chapter 4

Upper Bound on Multidimensional

Tori

In this chapter we discuss the upper bound on the orderly broadcast time in multidi-
mensional tori for a given ordering I1;. We first describe a slight variation of ordering
IT in Tpyxn (described in section 3.2). We then use this variation to describe ordering

14 in a d-dimensional torus and obtain an upper bound.

4.1 A Variation of Ordering II for T,

Observation 4.1.1 Consider the ordering I1 described in section 3.2.
Suppose we replace all the labels of the edges numbered 3 with some positive integer

k > 3. From theorem 3.8.1, we know that the paths Py, P5, P3, Py are enough to inform
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all the vertices of Tyxn. Observing these paths we can see that each one of them uses
an edge labeled 3 at most once. Thus, replacing the label 3 with k will make the upper

bound of a torus in the worst case equal to :

4

D(Tpxn) + k+2 if m and n are odd

D(Tpxn) +k+1 if (one of m or n is even) or
B (Tnxn) <

(m,n and {—Z—’J are even)

L D(Tyuxn) + k otherwise

4.2 An Ordering II; for 75, xnyx...xny

A d-dimensional torus Ty, xnyx..xn; = (V, E) is a connected graph of n; - na...ng

vertices and n, - ny ... ng edges, such that:

V (Tnysngx..xng) = {(t1, %2, .. .14)]0 < i <myp — 1 for k € {1,2,...d}}

E(mengx...xnd) = {((Ul, Ug, - - - ud), (’Ul, Vo, . . .vd))|uk = v, =1 mod ny

where k € {1,2,...d}/(u1,u, ... ug) € V, (v1,02,...v5) € V}

The diameter of a d-dimensional torus is:

D(Try xngx...xng) = [%j + [%2} et [%QJ
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A 3-dimensional torus is a collection of 2-dimensional tori, denoted by T,(l?xm -

Ty xnax...xng, connected together (Figure 21). In general, a d-dimensional torus is a

collection of (d — 1)-dimensional tori.

(0,0,1) (0,6,1)

/]

1
T7><5

(4,6,1)

(4,0,0¢" (4,6,0)

Figure 21: The three-dimensional torus T7xsx2 is a collection of 2 two-dimensional tori
Tyw5 where each vertex (i, j,0) is connected to (4,7,1) (with0<i<4and 0 < j < 6)

Let TI; be an ordering for a d-dimensional torus Ty, xnyx...xn, = (V, ). Let u =

(i1,%2,-..,%4) € V and v € V. Then,

1. O(u, v) =1 if:

a) v = (41,72 + 1 mod na, 3. ..%4) where 4, = 0 mod 2 and i, ¢ {0,£}
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b) v = (41,72 — 1 mod na, 3. .. 14) where 4, =0 mod 1 and i, ¢ {0, ¢}

¢) v = (i1 + 1 mod nq, 49,43 . . . 14) where i3 = 0
d) v = (i; — 1 mod ny,ia,13.. . . 1) where iy = £
2. M(u,v) =2 if:

a) v = (4, +1 mod ny, iz, 3. ..%4) where i, = 0 mod 2 and i, ¢ {0, ¢}
b) v = (31 — 1 mod ny, 42,13 .. .14) where i3 = 0mod 1 and i, ¢ {0, ¢}
¢) v = (41,72 + 1 mod ng, i3...14q) where 3, = 0 mod 2 and i, € {0, ¢}

d) v = (41,92 — 1 mod ng, i3. . . 14) where ; =0 mod 1 and i, € {0,£}

3. H(u,v) =rfor3<r <dif:
a) v = (41,99, ..,%, + 1 mod n,,...iq) where (i = 0 mod 2 and i, = 0 mod 1)
or (i; =0mod 1 and i, = 0 mod 2)
(That is, when 4; and i, have different parities)
b) v = (i1,4,...,4 — 1 mod n,,...ig) where (i1 =0 mod 2 and i, = 0 mod 2)
or (i;=0mod 1 and i, =0 mod 1)

(That is, when 7; and %, have the same parity)

4. M(u,v) = d + 1 if:
a) v = (41 + 1 mod ny, 4p, 3. . .%4) where i3 = 0 mod 2 and i, ¢ {0, ¢}
b) v = (41 — 1 mod nq, s, 3. . .14) where i3 = 0 mod 1 and i, ¢ {0,4}

C) v = (7;1,7:2 -1 mod ng,’i,?,. . ’[,d) Where 7:1 =0 mod 2 and ’ig c {O,K}
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d) v = (31,42 + 1 mod no, i3 . . . 14) where iy =0mod 1 and i, € {0,4}

Observe that ordering Iy for Ty, xnyx...xn, = (V, E) does not assign a label for
all the edges e € E. The reason for this is that during the process of message
dissemination in Ty, xn,x..xn,, these edges are not going to be used (the same way
the edges labeled 4 were not used in Txp)-

Moreover, a close observation of the labeling II; reveals that each of the 2-
dimensional tori T,E?xn2 = (V', E') has the ordering I (section 3.2) where the labels
3 are replaced with d + 1 and the labels 4 are discarded (since the edges with label
4 are not used in the broadcasting process). Thus, together with observation 4.1.1
we can conclude that when broadcasting starts from a vertex u € V', then all the

vertices v € V' will be informed by time :

D(TH. . )+d+3  if ny and n, are odd

BT, )= | D(Tsny) +d+2 if (one of ny or n, is even) or
niXn2

(ny,no and [gJ are even)

LDﬂﬁmQ+d+1 otherwise

In what follows we will assume that 7, xn,x...xn, has the ordering Il;.
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4.3 Upper Bound for T}, xn,x...xn;,; With Ordering I1,;

Let T, xngx..xng = (V, E) be a d-dimensional torus with ordering I14. Since Ty, xn,x...xng
is a collection of 2-dimensional tori, we let T\, = (V’, E') represent one of these

2-dimensional tori where 1 <1 <ng-n4...ng.

Before discussing the upper bound for T}, xnyx...xn,, We first make the following

observation.

0 1 2 3 4 5 6
1 1 14 1
—» @ —> r ’—)—
1 * SLEPY <o PLEP 2
Y 1
3 1 1 1 2
" <« @— <« @ — <@ <«
4 1 2 1
o—> o> o— >

Figure 22: If all the vertices (i,j) € V(Tsx7) where ¢ and j have different parities are
informed at time ¢, then (4, j) can inform the rest of the uninformed vertices by time ¢ + 2.
Note that some of the edges and lables are omitted to make the picture readable.

Observation 4.3.1

Given a torus T xnpx.xng = (Vs B). Let Tskny = (V'L E') C Toyxngx.xng- If all
the vertices (i1,%2,...,1a) € V', where i; and iy have different parities, are informed

at time t, then every vertexr u € V' will be informed at time t + 2 (Figure 22).
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Similarly, if all the vertices (i1,4s,...,14) € V', where iy and i2 have the same parity,

are informed at time t, then every vertex u € V' will be informed at time t + 2.

When all the vertices (41,142,...,%4) with 4; and i, having different parities are

; n
informed, then each row iy of T,E’l)xnz will have at most [ﬂ + 1 uninformed vertices.
Also, every informed vertex (iy,1,...,14) € V' will have two uninformed neighbors

(31,59 — 1,...,4q) and (41,32 +1,...,%4) on row é;. Thus,

e at time t + 1: (41,42, --,%4) N (1,32 + 1, ..., 44) where 4; is even and iy # £.

(31,42, - - - 1iq) = (f1,82 — 1,...,44) Where 41 is odd and 4y # 0.

e at time ¢t + 2: (i1,72+1,...,%4) N (41,72 + 2,...,14q) where 4, is even and 4y # .
(1,42 — 1,...,4a) = (i1,42 — 2, ...,74) where 71 is odd and i, # 0.

(1,4, ...,%4) 2 (i1,£+1,...,14) where i; is even.

This will inform all the vertices u € V'
Similarly, when all the vertices (41, %o, . . . , 3¢) With 4; and 75 having the same parity

are informed then:

e at time ¢ + 1: (41,40, ...,1%4) EN (1,42 + 1,...,44) where i; is even and iy # .
(i1, %9, - - - yiq) = (i1,%2 — 1, .. .,4q) where i1 is odd and iz # 0.
e at time ¢t +2: (41,42 +1,...,14) EN (1,92 + 2,...,1q) where %, is even and %o # £.

(i1,90 — 1,...,ig) = (61,5 — 2, ..., %a) where i, is odd and i, # 0.
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(i1, 2, ..., iq) > (i1,£—1,...,44) where 4; is odd.

. . . 2 . . . N
(1,50 +1,...,1q) = (i1 + 1,32 + 1,...,14) where 4, is even.

This will inform all the vertices v € V’

Theorem 4.3.1

Given a d-dimensional torus T, xnyx..xny = (V, E) with ordering Ily. The orderly

broadcast time of Ty, xnyx...xng Will be :

( d ;
[EJ + [@} +5 4 lﬁlJ +3d—1 if ny and ny are odd
2 2] =72

m No d KT ) .
[?J + [7J + )2 [—2~J +3d —2 if (one of ny or ny is even)
bnd(Tnlxngx...xnd) <K =3

or (ny,n, and {%J are even)

-

d
™m N .| .
L l?j + l?J + .E_ ] {?J +3d — 3 otherwise

Proof :
To prove the theorem, we will explain step by step how broadcasting proceeds in
Ty xnax...xng- We will first assume the case where n; is odd.

Let u = (41, 99,143, - - - i) € V be the originator where 0 < 4, < n, (for 1 <r < d).
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Let T,E?Xm = (V', E") C Tn xnyx..xny for some 1 < i< ng-ny...ng. Assume u € V'.

at time £, = l%J + {

U

2J+d+3

o All the vertices v € V' are informed (section 4.2).

at time : 1+ 3

e Vertices (4y,49,43,14 - .. 4q) inform their neighbors (i1,%2,%3 + 1,44 ..144), Where
i1 and 4, have different parities (i.e. when (i; = 0 mod 2 and i, = 1 mod 2) or

(i, = 1 mod 2 and i, = 0 mod 2)) for all 0 < %, < n, (where 1 <7 < 2).

e Vertices (i1, 42,143,144 - - - 44) inform their neighbors (i1, 42,43 — 1,44 . ..44), Where
i1 and i, have the same parity (i.e. when (i, = 0 mod 2 and i, = 0 mod 2) or

(31 = 1 mod 2 and 45 = 1 mod 2)) for all 0 < i, < n, (where 1 <7 < 2).

at time : 7, +6

e Vertices (i1, 42,43+1,14 . . . ig) inform their neighbors (i1, 42, i3+2, ¢4 . . . i4), where

i1 and iy have different parities for all 0 < 7, < n, (where 1 <r < 2).

e Vertices (i1, 42,73—1,%4 . . . iq) inform their neighbors (i1, 42, 3—2, 44 . . . iq), where

iy and iy have the same parity for all 0 < 7, < n, (where 1 < r < 2).
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Continuing in the same manner, we obtain :

at time: ¢, + 3 [—%"J

n .
e Vertices (41, 19, i3+ [%J —1,14...14) inform their neighbors (41, 32, i3+ [fJ yi4 - 1q),

where 4; and i, have different parities for all 0 < 4, < n, (where 1 <r < 2).

3
2

J +1,44...1q) inform their neighbors (4;, 42, 13— l%J i 1q),

where i; and i have the same parity for all 0 < 7, < n, (where 1 <r < 2).

e Vertices (43, 42, 13— {

At this point, we will have :

—_ 1 i . . . . .
° Vng J tori Tr(zl)xn2 = (V', E’) where all the vertices (41, %2,%3,-..,%4) € V' are

informed such that 7; and i, have different parities.

-1 .
. l@_é——J tori T,S{)xn? = (V",E") where all the vertices (i1,%2,13,...,%a) € V"

are informed such that 7; and 75, have the same parity.

e at most 2 informed tori T,g:)Xm = (V", E") where all the vertices v € V" are

informed.

at time: 5+ 3 [%} +2

e All the vertices v € V' are informed in each of T,ﬁ)xn2 (observation 4.3.1).

e Similarly, all the vertices v € V" are informed in each of T,(lf)x,n.

103



Observe that at this point, all the vertices (41, 2,%3, i4,- -, %q4) for all 0 < ¢y < ny —1,
0<iy<ny—1and 0 <43 <ng—1 are informed. This means that all the vertices
of one of the 3-dimensional tori, T,(L?menS C Ty xnax...xny are informed (figure 23).

at time: t0+3l%}+2+4

e Vertices (i1, 49, 13,44 - - - iq) inform their neighbors (i1, i2, 43,44 +1, %5 . . . ia), where
i1 and 4, have different parities (i.e. when (¢; = 0 mod 2 and i, = 1 mod 2) or

(i1 = 1 mod 2 and iy = 0 mod 2)) for all 0 < i, < n, (where 1 < r < 3).

e Vertices (i1, 42,13, 4 - . - 1g) inform their neighbors (i1, iz, 13, 44— 1, %5 . . . 14), Where
i1 and 4, have the same parity (i.e. when (7; = 0 mod 2 and i, = 0 mod 2) or

(i1 = 1 mod 2 and i3 = 1 mod 2)) for all 0 < 4, < n, (where 1 <r < 3).

at time: to+3l%J+2+8

e Vertices (i1, %9, 43,94+ 1,%5. . .44) inform their neighbors (41, 42, 3, 4 +2, %5 . . - 44),

where i, and 5 have different parities for all 0 < %, < n, (where 1 <r < 3).

e Vertices (i1, 142, %3,94 — 1,45 . . . ig) inform their neighbors (31, %2, %3, 44 — 1,25 . . . 14),

where 4; and 45 have the same parity for all 0 < 4, < n, (where 1 < r < 3).

Continuing in the same manner, we will get :

at time: #, -+ 3 [%iJ +4 [%} +2
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e Vertices (i1,19,1%3,% + [—} —1,145...14) inform their neighbors (i1,1%2,1%3,%4 +

2
[%J .15 ... 1q), where i; and 7, have different parities for all 0 < i, < n, (where
1<r<3).

N4

5 } +1,45...14) inform their neighbors (i1, ¢2, %3, %4 —

e Vertices (i1,%2,1%3,%1 — l

[%é} ,45...14), where i; and i; have the same parity for all 0 < i, < n, (where

1<r<3).

Similarly, at this point, we will have :

-1 .
. [WTJ tori Tr(tzl)xnzxns = (V', E') where all the vertices (i1, %2, 3,24 ...,%q) € V'

are informed such that ¢; and i, have different parities.

ng—1 -~ . o .
. [47} tori T,S{)xnzxm = (V" ,E") where all the vertices (i1, 12,%3,%4...,%4) €

V" are informed such that 4, and ¢, have the same parity.

e at most 2 informed tori T,E:)mena = (V™ E"™) where all the vertices v € V"

are informed.

at time: t,+ 3 [%J +4 [%é

| +4

e All the vertices v € V' are informed in each of T\ ..., (observation 4.3.1).

e Similarly, all the vertices v € V" are informed in each of Tg)xmxna.
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Similarly we can say that at this point, all the vertices (i1, %9,%3,%4,---,%4) for
allOS ’il Snl—-l,OS ’ig S n2—1,0§z’3 Sng—land0_<_z'4 S n4—1
are informed. This means that all the vertices of one of the 4-dimensional tori,

T,S?menaxm C Ty xngx...xny are informed (figure 23).

Continuing in this manner, for a d-dimensional torus T}, xn,x...xn, With n, odd,

the broadcast time will be :

e Dsmeond < | 2]+ | 2] + @49+ 3 3] #2022

-5+ L5 el s

=3

. n
For a torus where at least one of n; or ny is even or when ny, ny and {El—J are
even , the first step will take one less time unit. Thus, the broadcast time in this case

will be :

d
i o R
HEGE 5] +3d-2

(3

In all other cases, the first step will take two less time units, making the broadcast

time in this case:

i 13] B3]
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Therefore,

¢ d ]
F‘lJ + FEJ + ) i [&J +3d—1 if n, and ny are odd
2 2 — L2

1

m n d .|y . i
l?J * H * “H +3d —2 if (one of n; or n, is even)
bnd(memx...xnd) <X i=3

nq
or (ny,ny and 5 are even)

d .
[EJ + [@J +S 4 [&J + 3d — 3 otherwise
L 2 2 s 2

-

4.4 Analysis of Results

An obvious lower bound on broadcasting for a d-dimensional torus is its diameter,

which is :

D(Tuysnax...xng) = [%—IJ + [%J T [%J

It is easy to see that we can improve the orderly broadcast time for T}, xn,x...xny

by letting ny > ny > ... > ng.

The ordering I1; will yield the worst-case broadcast time when n; = ne = ... = ng,.
Let Ty xnyx..xn, = (V, E) be a d-dimensional torus such that n; = ny = ... = ng,

and let N = |V| be the total number of vertices. Then,
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N=n‘f:>n1=n2=...=nd=\d/]7

d

2 mi
- dn dv'N
The diameter in terms of N will be : D(Tp, xngx...xng) = 1—12 = 21 ==
dv/'N
Since the obvious lower bound is the diameter, then: b™(T, xnyx..xn,) = 5

Now, in the worst case the broadcast time of T, xnyx...xn, Will be:

d N
bnd(memx...xnd) < [EJ + [@J + E 1 [&J +3d-—-1
2 2 = L2

i d
<m+—-Y i+3d-1
21’:3

gn1+% (————(d+3)2(d_2)) +3d—1

Sﬂ(d2+d—6

2 3d—1
2 (=0 a) 4

m d+1
< — — -1
_2(d 5 1)+3d

1
'd%D(Tnlxmx...xnd) — % +3d—1

IA

The value %l +3d — 1 < D(Th, xnyx...xng)-

d+1

Thus, we can say that: d%¢(Tp,, xnyx...xny) < 5

D(Tn1 X’n2><...><’nd)
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Figure 23: A 4-dimensional torus T7x5x4x3. Suppose the originator is (0,1,0,0). Then at
time o = 11, all the vertices (41,42,0,0) where 0 < 7; < 6 and 0 < iz < 4 will be informed.
At time 14, all vertices (i1,%2,1,0) and (j1,72,3,0), where i1 and iz have different parity
while j; and j have the same parity, will be informed. At time 16, all vertices in the first
“cube” (3-dimensional torus) will be informed. The process then continues to the other
3-dimensional tori in the same manner.
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Chapter 5

Conclusion and Future Work

Information dissemination problems, such as broadcasting, are problems which have
numerous real-life applications, and many of the models studied have been inspired
by practical needs. Orderly broadcasting is one of the models which is very simple to
implement in practice. It is a model in which the nodes of a network do not have the
complicated task of making “intelligent” decisions in order to optimize the broadcast
time. The optimality of the broadcast time lies in the clever design of the network
itself, in which the nodes transmit the message simply by following a fixed set of
ordering. The challenge of this model is in finding an ordering for each node of a
network that will minimize the overall broadcast time. It has turned out that coming
up with an optimal ordering is not an easy task, even in networks which are as simple

as cycles, for example.

In this work, we studied the orderly broadcast problem for multidimensional tori.
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We first presented an ordering II of the vertices of a 2-dimensional torus which
yielded a broadcast time of : b(T,uxn) < D(Tpuxn) + 5 in the worst case. We
then introduced a slight variation of the ordering II and used it to order the ver-

tices of a d-dimensional torus T, xn,x...xn,- The broadcast time for this latter was
d
n n K
bnd(menzx.‘.x’nd) S {_1J + ‘,_QJ -+ Z’L [JJ + 3d— 1
2 2] &2
As mentioned in section 1.3, orderly broadcasting on 2-dimensional tori was dis-

cussed in [11], and the result presented was:

D(Tpuxn) +6 if nis even
0 (Trxn) <
D(Tyuxn) +7 if nis odd

This clearly shows that our result on 2-dimensional tori has improved the upper

bound by at least 2 time units.

Also in the 2-dimensional case, our result was close to the lower bound - there
was a difference of only 2 time units between the upper and the lower bounds in the
best case. Moreover, recall that the classical broadcast time of a 2-dimensional torus
is (see [16]):

D(T) if m and n are even

b(Tmxn) <
D(T)+1 otherwise

Compared to the result mentioned above, our result on the orderly broadcast time

of a 2-dimensional torus is close to the broadcast time of a 2-dimensional torus in the
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classical model.

As future work, the first problem that should be tackled is trying to improve the
upper and lower bounds for both, 2-dimensional and multidimensional tori. Other
interesting problems would include finding orderings for other graph topologies which
have been studied under other broadcast models (for example, Butterfly networks,
DeBruijn graphs, Cube Connected Cycles . .. etc.) Another interesting problem would
be trying to find a relationship between the broadcast times of a graph in the Classical,

Messy and the Orderly broadcast models.
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