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ABSTARCT
Building a Tool for Testing the Real Time Systems
Manar Abu Talib

Real time systems can be defined as systems whose behavior is time dependent. They
don’t depend only on the values of input and output signals, but also on their time of
occurrence. These systems are highly used nowadays, such as in patient monitoring
systems, air traffic control systems, and telecommunication systems.

Ensuring the correctness of real time systems before the development and ensuring that it
functions correctly within the specified time constraints become a very important task to
avoid catastrophic consequences. A number of design issues affect the testing strategies
and the testability of the system. In this thesis, we have designed and built a tool that
generates the timed test cases by implementing the state characterization technique. The
tool consists of the following steps: First, the real-time system is modeled as a Timed
Input Output Automaton (TIOA). Its description is written in a file to be parsed by the
tool using JAVACC. TIOA has locations, clocks and transitions with time constraints.
Second, the tool samples the stored TIOA into sub automaton easily testable, called Grid
Automaton. Third, the tool is then responsible for transforming this Grid Automaton into
a Non-deterministic Timed Finite State Machine (NFSM). Finally, test cases are
generated from NFSM, using the Generalized Wp-method. We have applied many

examples to the tool and it demonstrates its ability to detect many possible faults.
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CHAPTER I: INTRODUCTION

Although testing principles developed for non-real-time systems are applicable for
real-time systems, the fact that time is a parameter in the testing complicates many
issues [1]. However, before introducing the testing methods for real time systems,
what does real time systems mean? What are their characteristics? What does testing
mean? Why is testing important? How to test real time systems? In this chapter, we
try to answer the above questions. The objective and the outline of this thesis are also

introduced.

1.1 Definition of Real Time Systems

Most of the processors produced today are used in the embedded systems [2], [1].
Many of these embedded systems have real-time requirements and therefore are
called real time systems (e.g., airplanes, patient monitoring systems, microwave
ovens, mobile telephones and toys). This means that the successful operation in such
systems is measured not only on the correctness of the result produced but also on the
time of response. Real-time systems, therefore, interact with their environment using
time constrained input/output signals. Another definition of a real-time system can be
in terms of a “real-time task™ where a real time system contains at least one real-time
task [1], [3]. In theory, a real-time task is a task that must be completed at specific
time (not before or after that specific time) [1], [4]. However, in practice, it is usually

enough if the real-time task is completed before the specific time, that is, the deadline.

Real-time systems are often classified according to the cost of missing a deadline.

Based on that, Locke describes four different classes (soft, firm, hard essential, and



hard critical) of real-time systems. “In a soft real-time system, completing a task after
its deadline will still be beneficial even if the gain is not as big as if the task had been
completed within the deadline and it may be acceptable to occasionally miss a
deadline. In a firm real-time system, completing a task after its deadline will neither
give any benefits nor incur any costs. In a hard essential real-time system, a bounded
cost will be the result of missing a deadline. An example may be lost revenues in a
billing system. Finally, missing a deadline of a hard critical system will have

disastrous results, for instance loss of human lives” [1].

It is to be noted that different inputs to the real time systems lead to input types. If two
inputs have entered the same channel in a system and they only differ in the time of
entrance, then they have the same input type [1]. Input types may be very different
from each other. Temperature readings, keyboard commands and pushing a call
button of an elevator are examples of input types. An input type may be periodic,
sporadic or aperiodic. If an event occurs with a regular period, then it is periodic. If
inputs occur any time and there is a known minimum inter-arrival time between two
consecutive inputs then it is sporadic. Finally, if nothing is known about how often
inputs may occur or when it is known that inputs may occur anytime, then it is

aperiodic.

Real time systems have many characteristics [5]. They are large and complex. They
contain many components with complicated relationships between them. However,
they have concurrent control of the system components. They also have facilities for
the hardware control. Real time systems should be extremely reliable and safe. They
have the ability to fail in such a way to preserve as much capability and data as

possible and to detect and correct the failure. A processor failure in a non real time



system may result in reduced level of service; however, in a real time system it may
be catastrophic such as life and death, financial loss and equipment damage. For
example, when a pilot moves his airplane, the computer-controlled system is expected
to change the rudder almost immediately. If the rudder is moved too slowly or too
fast, the plane might become instable and crash. Still, to the best of our knowledge,
little attention has been devoted to develop an automatic tool for testing real-time

systems since the time parameter complicates many issues in the testing [1].

To that end, real time systems can be defined as systems whose behavior is time
dependent. These systems are highly used nowadays and software engineering is

responsible for controlling safety for these critical systems.

1.2 Verification and Testing

Verification and testing are two essential techniques that are used to cope with the
correctness of a system. Verification can guarantee the correctness of the system
specification. It aims to ensure that the designed specification satisfies predefined
functional and timing requirements [6]. Our concern lies on testing, , that is, dynamic
execution of test cases [1], [7]. It is an important activity that aims to ensure the
quality of the implementation, which verification doesn’t guarantee. Testing

techniques check whether or not an implementation conforms to its specification [6].

Testing procedure consists of generating test cases and applying them to the
implementation, which is referred to as Implementation Under Test (IUT). Three
main testing strategies are available, which are white-box testing, black box testing
and gray-box testing. Fault model is also another important aspect in the testing of an

implementation for a system. It is referred to the potential basic fault that can exist in
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an implementation [8] [9] [10] [11] [12]. In fact, some techniques, which generate the
test cases, may able to detect all the potential faults, while others may fail in detecting

some faults.

Assessing and increasing reliability are the major goals of testing [1], [13]. Based on
monitoring the number of encountered failures, the test cases are chosen and executed
to assess the reliability. A failure is defined as “a deviation of the software from its
expected delivery or service” [1], [7]. To increase the reliability, it depends on
selecting test cases that are assumed to be especially likely to detect failures. The
observed traces are analyzed to find the cause of the failure, which is the fault [7]. By
removing the fault, the reliability is assumed to increase. The power of test cases
generation technique to detect faults in an implementation is referred to as fault
coverage. Many different test methods exist (e.g. formal methods based on FSM and
EFSM [14]) that are all assumed to generate test suites containing test cases especially
prone to revealing failures. These test methods can be compared according to their
respective fault coverage. One method is more powerful than the other if it has a
better fault coverage. In this research, Timed Wp-Method is chosen for the derivation
of test cases for real-time systems modeled as a TIOA, a variant of the Alur and Dill

timed automat a model [15] [16].

Gray-box testing is applied as efficient strategy to test real time system using Timed
Wp-Method. Before explaining that strategy we have to indicate that in white- box
testing, the test suite is generated from the implemented structures, while in black-box
testing the structure of the implementation is not known and the test cases are
generated and executed from the specification of the required functionality at defined

interfaces. In gray-box testing, the modular structure of the implementation is known



but not the details of the programs within each component. As we can see in Figure 1,

the testable model consists of two parts: the control part and the clock part.

Tester
A A
\ 4
Control > Clock
Part Part
a—
IST

Figure 1: Test architecture

The tester knows and reaches some of these parts where he can observe when the
clock resets to zero. The control part indicates the interaction between the timed
system and its environment by exchanging input and output signals. However, the
clock part handles the clock variable, used in the specification of the timed system.
There are two channels, which are connecting the two parts. One channel is used to
exchange some internal signals after the control part receives an input from the
environment and checks with clock part whether or not the input satisfies the time
constraint of the specification. In other channel, clock reset signal is sent by control

part to the clock part asking it to reset the clock to zero.

1.3 The Objective of the Thesis

Based on the work published by Dr. Abdeslam En-Nouaary in [34], this thesis is

intended to develop a tool that generates the test cases for testing real time systems



using the Generalized Wp method (Figure 2). The developed methodology is
composed of five steps:

1. Sampling the Timed Input Output Automaton (TIOA) by using a suitable

granularity, in order to have a Grid Automaton, which is a simplified sub

automaton that can be easily tested [6].

2. The transformation of the Grid Automaton into a Non-deterministic Timed
Finite State Machine (NFSM) [6].

3. The minimization of the obtained NFSM.
4. The generation of test cases based on the generalized WP-method [6].
5. The optimization of the obtained test cases. The fault coverage of test cases

generation method is then estimated and its ability is shown to detect many
possible faults
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Figure 2: The context diagram of the developed tool

In this thesis, we have designed the tool and chosen the appropriate algorithms and
data structures. We have chosen JAVA language to implement our tool for reasons

listed in Chapter 3.



1.4 Outline of the Thesis

The rest of this thesis is structured as follows: Chapter 2 provides an overview of
some model based testing methods. In order to have a well-designed tool, Chapter 3
explores the data structures and the algorithms. Chapter 4 includes the
implementation details and the solutions of the major design decisions and the design
quality attributes are introduced. In Chapter 5, many examples are examined and
evaluated using the tool. We also validate our results at the end of that chapter.
Finally, Chapter 6 provides a conclusion of what was achieved and why the work is

important. In addition, pointers for future research are given.



CHAPTER II: STATE OF THE ART

The testing phase represents a large effort within the common software development
cycle. Generation of the test cases is the first step in testing the software process. The
most difficult problems in generating the test cases are finding a test data selection
strategy that is both valid and reliable [17]. In this chapter, we present the state of the

art of the test cases generation methods.

2.1 Testing Based on FSM Model

The Finite State Machine (FSM) model [18] is the base of the most research
contributions in test derivation and selection. It was used since 50s in testing the
sequential circuits, the communication protocols and the object-oriented systems. One
raised problem with the test based on FSM Model is the conformance testing. We
want to test whether the implementation Mi conforms to the specification Ms through
observing the Input/Output behavior of Ms. To do so, we define a conformance
relation to link Mi with Ms. The most conformance relation used is the traces
equivalence. It is based on the observable behavior of the implementation after the

application of the test suites.

The test cases generation for FSM is often done under certain hypotheses of Ms
specification and the fault types that can be presented in Mi implementation. The
hypotheses of Ms specification are used in order to ensure that the specifications with
the desired properties are treated. The implementations’ hypotheses and the concerned
possible fault types are used to limit the implementation’s domain that will be

considered. Without these hypotheses, each FSM can be considered as a possible



implementation of a given specification, thus the number of implementation machines

will be infinite.

In general, the specification is supposed to be an FSM that is:
e Deterministic: where 6: S x I — S is a transfer function, A: Sx I — O is an
output function, S is a state, / is an input and O is an output.
e Reduced: there are no equivalent states in FSM. Refer to 3.5 section.
e Strongly connected: any state can be reached from the initial state.
o Completely specified: where 8: S x I — S and &: S x I — O are complete

functions that reach to any input. Empty output is also allowed; but the
completeness is implicit.

However, the implementation is often supposed to be an FSM that is:

¢ Having a limited number of extra states.

e Deterministic.

e Strongly connected.

e Completely defined: providing an answer for any input in a limited time.

e Implementing correctly the reset action.

Many of these assumptions can be avoided and methods have been developed for
partially specified and nondeterministic behaviors (see the following sections). Now
with the above hypotheses, the FSM fault model can be summarized with the

following four fault types [19]:

e Output faults: these faults cause a state not to respond with an expected output.

o Transfer faults: these faults cause a state with a specific input or output to
enter a state different from the expected one.
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e Transfer faults with the additional states: the arrival state of a transition is a
new one.

e Transitions’ faults (additional or missing transitions): usually, we suppose that
the automaton is deterministic and completely specified, which means that for
each input of a state, there’s exactly one corresponding transition coming out
of that state. The absence of this transition is also a fault of this type.

Many methods of test cases generation from FSM were developed. There are two

categories: methods based on states’ identification and others based on simple path of

all transitions. In the following sections, we discuss some of these methods.

2.1.1 Transition Tour Method

The transition tour method [20] consists of generating a single input sequence that
traverses all the transitions at least once and returns to the initial state. Obviously, the
generated sequence can contain many redundant inputs that generate cycles in the
sequence. This can be avoided by optimizing the transition tour. Some efficient
algorithms such as Chinese Postman Algorithm for the transition tour derivation of

certain FSM classes were studied in [21].

The problem of finding the optimal transitions in FSM is a well-known problem in the
graph theory. In fact, FSM is seen as oriented graph and optimal transition tour, which
seems exactly like Euler tour. An Euler tour in an oriented graph is the transitions’
sequence, which starts and ends at the same state and it contains each transition at

least once. To have an Euler tour in an oriented graph, the graph has to be:

e Strongly connected.
e Symmetric: a graph is called symmetric if and only if the number of the

incoming transitions for each state in the graph is equal to the number of the
outgoing transitions for the same state. A non-symmetric graph can be

11



transformed into a symmetric one by an incremental procedure [22]. This

consists of duplicating certain transitions till the graph becomes symmetric.
The fault coverage of the generated test cases by the method of transition tour is not
complete. In fact, the range of test cases checks only the transitions’ outputs. This is
not enough since it has to check the state where the implementation under test exists
after each transition. This method has a limited error detection power compared to
other methods since it doesn’t consider the state verification. However, an advantage
of this method is that the test sequences obtained are usually shorter than test

sequences generated by the other methods.

In Figure 3, the possible transition tour is formed by the transitions’ sequence: #;. ¢4
13. ts. t7. ts. 1. No transition needs to be traversed twice. It’s clear that the arrival state
of the last transition, f,, is not checked. As a result, if #¢ transition reaches to S2
instead of S/, this transfer fault will not be detected. In order to systematically detect
the transfer faults, one has to identify the state into which the implementation goes

after the execution of the tested transition.

t8: b/2 |

t7: a/2

Figure 3: FSM example (1)
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2.1.2 Distinguishing Sequence Method

The distinguishing sequence (DS) method [23] is a state identification sequence and it
is applicable if FSM has one distinguishing sequence. A distinguishing sequence is a
sequence of inputs that produces a different sequence of outputs for each FSM state:
sequence x that produces different output for each state such that for all pairs ¢, s with

t#S8:A(s, x) £ (1 x).

The DS method consists of two steps: the state verification and the transition
verification. During the first step in the state verification, the implementation has to
provide the observed output to the distinguishing sequence for each state. For
example, by applying the sequence of inputs in the current state of FSM such that
from the outputs we can identify whether or not that state is where we should go. The

second step of the DS method consists of checking each FSM transition.

The states’ verification is done by applying the following procedure to each FSM si
state:
e The implementation is carried out at i; state, which is supposed to be

isomorphic to s; state, by applying the reset action at the initial state followed
by the preamble from the initial state sy to s; state.

e The DS sequence is submitted to the implementation to check whether or not
the observed output is equal to the excepted output.

This phase ensures that the implementation has at least n states iy, i3, i3,..., i, , which

are accessible by the same preambles of their isomorphic states s;, 2, 53,..., S, in the

specification.

However, many transitions are used in the distinguishing sequence preamble during
the states’ verification. These transitions must be implemented correctly. It’s the

13



transitions’ verification step that has the role to test each transition s; fo s; according to
the following procedure:
e The implementation is carried out at i;, which is isomorphic to s;, by applying
the reset action at the initial state followed by the preamble Preamble (s;);

e The i input is submitted to the implementation and the output is observed to
check if it is the same as the expected output;

¢ By the application of DS sequence, the new implementation state is tested to
check if it is i;.

The DS method guarantees complete fault coverage (detecting both transfer and

output faults). However, the disadvantages of this method is that a DS may not be

found for a given. Also applying a fixed length sequence may not lead to the shortest

state identification sequence. Table 1 shows that DS = a.a for the FSM shown in

Figure 4. The corresponding outputs sequences and the preambles for each state are

also shown in the table.

b/0
a/0 b/
a/l

Figure 4: FSM example (2)

Table 1: DS of Figure 4

S1 . a/0
S2 . b/0
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2.1.3 UIO Method

The unique InputOutput sequence (UIO) method consists of generating test sequences
that check if the arrival state of each transition is the right one (or the transfer is
correct). To do so, it uses the unique InputOutput sequence of the arrival state. It

allows distinguishing this state from others.

To apply the UIO method, the FSM specification has to contain an initial state. As in
DS method, each state of this FSM must have its own Input‘Output sequence. The test

procedure done for each transition s; to s; is as follows:

e Bring the FSM to its initial state, sy, using the reset operation.
e Find the shortest path from the initial state to s;.

e Apply i input to do the transition execution and check if the output is as
expected.

e Apply the unique InputOutput sequence of s; to check if it’s the good state.

It happens sometimes, that the unique InputOutput sequence doesn’t exist for a state.
In this case, the signature technique is used. The signature of s; is a sequence formed
of a set of minimal InputOutput sequences, 10(s; s; ), each one of them starts at s; and

distinguishes s; from another state s; (j # 1).

In the original paper where the UIO method was proposed, the authors used only the
verification of transitions to generate the range of the test cases because they thought
that the transition verification is enough to guarantee good fault coverage. In [24],
Vuong took this lack into consideration by showing certain faults that can be hidden
from the tester. As a result, he recommended adding the states’ verification step to the

UIO method, which gives a new method, called UIOv method. This step of states’
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verification consists of ensuring that the InputOutput sequences are unique in the
implementation under test. To do so, the UIO (s;) sequence for s; state in the
specification is accepted by its isomorphic state in the implementation, and it’s
rejected for the rest of states. The reject procedure of UIO (s;) sequence by a state s; is
the following:
¢ Bring the implementation at #; state, which is supposed to be isomorphic to s;
state, by applying the reset action in the initial state followed by the preamble
from the initial state sy to s; state.
¢ Submit the UIO (s;) sequence to the implementation and check if the observed
output is really different from the expected one by applying the UIO (s;) to s;.
In Figure 5 and Table 2, we present an FSM and its corresponding UIOs for each

state.

b/l

L

a/0  b/g
a/0

Figure 5: FSM example (3)

Table 2: UIO sequences of Figure 5

S1 a/0.b/1 a/0
32 a/l b/1
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2.1.4 W Method

The DS method has the advantage of having complete fault coverage. However, its
major disadvantage is that the DS sequence doesn’t exist for all FSM. This limits the
application of DS method and constitutes a kind of motivation to look for more
general method. The W method [17] is a general method, which is applicable for all
minimal FSM. It’s based on the fact that for all FSM, there exists a set of finite input
sequences, called W characterization set, such that the output sequences are unique

for each state.

Besides W set, W method has a second set of input sequences, called the set of
transitions cover. We write P for any set of input sequences (including the empty set),
which tests for each transition s; to s; of the specification. This means, the set P
consists of all partial paths and it can be formed from a testing tree, which shows

every transition from state s; to state s; on each input.

The W method produces a set of test cases, which are formed from the concatenation
of Z and P sets (e.g. P.Z) where Z= ({¢} UIU ?U ... UI"™) .W. The use of Z set
instead of W set is principally due to the fact that the number of states, m, in the
implementation can be greater than the number of states, 7, in the specification. If m =
n, we will have Z = W and accordingly, the range of test cases will be P./¥. Each test

sequence starts with the initial state and returns to it again.

The assumptions about the implementation under test are that the implementation is
minimal, may start in a fixed initial state, and is strongly connected. Under these
assumptions a W-set exists, and the W-method gives a set of sequences that are
guaranteed to detect any misbehavior of the implementation. However, the

disadvantage of using this method is that the W-set may not exist for every FSM,
17



especially if it is an incompletely specified machine. Therefore, before using this
method, if the machine doesn’t have a W-set sequence, one should make the machine
to be a completely specified. For example, adding an “error” state and declaring all

unspecified transitions to lead to this state.

The main goal of the W method is to test whether or not an implementation conforms
to FSM specification. To do so, we check for each input sequence whether or not the
observed outputs are the same as the expected outputs. The set of tests (P.Z) detects
all output and transfer faults since the number of states in the implementation doesn’t
exceed m. Figure 6 and Table 3 show respectively a reduced FSM and the

corresponding W set.

b/1
a/l b/

a/0

Figure 6: FSM example (4)

Table 3: W set of Figure 6

S1 {0, 1} a/l
S2 {1, 0} o/1

There are two modes to check the verification [17] of test sequence: the test mode and
the walkthrough mode. The test mode is to build the correct responses in the form of

the operation sequences, which is based on the specification and the semantics of the
18




operations. The responses from the design are then derived and compared with the
correct or expected version. In the walk-through mode, the input sequences and their
corresponding responses from the design are represented as “path programs”. The
correctness of these programs can be established by a walkthrough procedure based
on the specification. When the testing sequences are got from the concatenation of P

and W, it can be decided whether or not a path program is correct.

The proof of the fault detection power of W-method is given in [17].

2.1.5 The Partial W Method

In [25], the partial W (Wp) method is introduced to determine whether or not a given
implementation protocol satisfies the properties required by the specification protocol.
The Wp method is a generalization of UIOv method which is always applicable. It is
at the same time an optimized and a refined version of W method since it reduces the
length and the number of the test cases. Therefore, the assumptions made for Wp
method is similar to those made for W method. FSM is strongly connected and
deterministic. It also contains no equivalent states and it is a completely specified
machine. Instead of using W set to check each reachable state s;, only a subset of this
set can be used in certain cases. These subsets are called the state identification set
(Wi) for s;. Wi set is a set of s;, if and only if, Wi is minimal and for each state s; (j£i),
it exists a sequence of inputs which belong to Wi and generates two different

behaviors in s; and s;. The Union of all Wi produces W characterization.

The Wp method consists of two phases. The first phase checks that all states defined

by the specification are identifiable in the implementation, and each si state in the
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implementation can be identified by the Wi set. The test cases that allow achieving
these objectives are given by Q. ({€} UI U P U ... UI" ) .W, where W is the
characterization set and, m is the maximal number of states in the implementation,
and Q is the cover set of states. The Q set consists of the input sequences that allow
reaching the specification states from the initial states. At the same time, the
transitions leading from the initial state to these states are checked for the correct

output and the state transfer.

The second phase checks the implementation of all specified transitions, which aren’t
tested in the first step. The test sequences of phase 2 consist of the sequences of P
which are not contained in Q, concatenated with the corresponding Wi, written RxW,
where R=P-Q, that is the set of all transitions that is not part of Q. It is noted that
different test sequences are obtained depending on the choices made for the sets P,Q

and Wi.

Finally, the test hypotheses of Wp method are the same as W method and its fault
coverage is complete. The following table shows W and Wi sets (1 =0, 1, 2) for FSM

in Figure 6 and the corresponding outputs.

Table 4: W and Wi results

Null

4 ;_;

IS

SO {1, 1}
S1 {0, 1} a/l {a} {0}
S2 {1, 0} b/l {b} {0}
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2.1.6 The Generalized Wp Method

The generalized Wp method, generates test sequences for both non-deterministic and
deterministic finite state machines. The generalized Wp- method [26] is based on
extending the state identification approach used for deterministic finite state machines
to non-deterministic finite state machines (NFSM). To do so, the NFSM is
transformed to an observable NFSM. ONFSM has a property that a state and an
inputjoutput pair uniquely determine the next state, while a state and an input alone do

not necessarily determine a unique next state and an output.

The generalized Wp method uses the same sets as Wp method uses but with the
fairness hypothesis. This hypothesis means that it’s possible to reach all accessible
states by one input sequence ¢ in one implementation by applying ¢ on it for n finite
times. Without this hypothesis, no set of test cases can guarantee complete fault
coverage for a non-deterministic implementation. Refer to 3.6 section for a detailed

example of this method.

The generalized Wp method is applicable for concurrent systems that are modeled as
FSMs, which communicate with each other through channels: first, the FSMs of the
system are composed, by using the accessibility analysis, to obtain one FSM. After
that, the generalized Wp method is applied on that FSM. Refer to 5.4 section for an

example.

2.2 Real Time Systems Testing

The last three decades have known intensive research activity in the un-timed test
domain. However, the computer systems are more specified nowadays with the

temporal constraints in order to control their execution. This motivated researchers to
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develop new test methods for these systems. In the following, we expose a list of

researches about generating the timed test cases.

2.2.1 Test Cases Generation for Theory Formulas

This approach [27] consists of generating test cases from a theory formula. The used
logic is an extension of the classical timed logic in order to model the real time
systems. The time aspect is expressed according to two fundamental constructors,
future and past, referring respectively to the moments in the future and the moments

in the past. In this theory, one clock is used.

To generate test cases from formula F, F is decomposed in a hierarchical structure in
terms of the atomic formulas that contain events only. An event is a couple (L, ) that
is formed from L literal and ¢ moment. A set of events that doesn’t contain any
contradiction and is happening at the same time (the two events (L, ) and (—L, #)) is
called a history. Each leaf, that doesn’t contain any of the decomposition tree of a
formula F, is considered as F history. A history of the formula F is called “complete”
if it contains a unique value of truth for each predicate formula and at any point in the
temporal domain. A test case of formula F is a complete history satisfying F' in many

points of its temporal domain. This domain is discredited in the digital values.

A complete test case of F' formula is constructed by the application of the offset and
the concatenation operation of the test cases with the small sizes, called elementary
test cases. These are directly extracted from F decomposition tree. The offset A of the

test case time unites, which satisfies F formula at ¢t moment, consists of the test case
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satisfying F at ¢ + A moment. Beside that, the concatenation of two test cases 7C; and

TC; 1s the test case 7C; obtained by the union of 7C; and TC, event sets.

This method of generating the timed test case, suffers from the following lack: the
range of the generated test cases can cover only the digital values of the temporal
domain for the formula specification logic. The used logic can only serve in
describing very restrictive classes of the real time systems (Those which are specified

according to one clock).

2.2.2 Test Cases Generation for FSM Model with Timers and Counters

This method [28] generates the timed test cases from a specification given as an FSM
with timers and counters by using Wp method [25]. First of all, the behavior of each
timer and counter is modeled as FSMs. Then, all the FSMs are combined so that they
have only one global FSM, which describes the system. Finally, the Wp method is

applied on the resulting FSM with certain hypothesis.

FSM timer is defined by:

o Two states indicating respectively the activity and the inactivity timers;

¢ An alphabet, which forms the corresponding events in respect to the triggering
timer, stop and expiration, and the flow period in which the timer is activated;

o A set of the transitions between the states with the appropriate events.

FSM counter is defined by:

o A set of the states representing the different counter values;
o Two events representing respectively the reset and the incremental counter;

e A set of the transitions between the states with the appropriate events.
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The problem of this approach is being not applicable for all systems such as systems,

which have the general shape of the temporal constraint.

2.2.3 Test Cases Generation for Timed Automaton

Springintveld and al. [29] present a theoretical framework for generating the test cases
from Timed Input Output Automaton (TIOA). They adapt W method [17] with taking
into account the temporal aspect of the real time systems. The conformance relation is

used to judge whether or not the implementation conforms to its specification [30].

The approach contains many transformations. First of all, we count the number of
TIOA region, which is a result from the automaton that is composed of both the
implementation and the specification. This aims destructing the maximum traces
length of the states’ distinction. Then, we construct a sub-automaton from the region
graph, called Grid Automaton, by using a “uniform mapping” [31]. This characterizes
the relation ~ between the clocks’ interpretations. The resulted automaton is finally

used to generate the test cases by applying W method.

Grid Automaton is the labeled-transitions system summarizing the region graph
behavior, which is necessary for the system exhaustive test. Each state in this
automaton has a delay transition. Its period is 2™, where n is the length of the states’
distinction trace in the region graph for the automaton (that is composed of the
implementation and the specification). In the worst case, n is equal to the number of
the clocks in the region graph. The value 2™ is selected to allow the test cases, under

certain hypotheses, detecting all possible faults in the implementation.
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The main result of this work is the proof of the possibility for the exhaustive test to
detect all faults in the implementation using the conformance relation. However, the
major problems of this method are the restriction of the used model and the number of
the generated test cases. The used model is TIOA in which the system outputs can
exist in integer values of the clocks’ temporal space. This restriction doesn’t allow
describing a large range of the real time systems where their outputs can be produced
within the temporal range and at a specific point. For the sequence of the generated
tests, its number is so big, even for a simple academic example. In fact, this big
number of test cases is due to the transitions’ period of 2™ delay used in constructing
the Grid Automaton. This period is very small because the number of region clocks in
TIOA is exponential to the number of clocks and the constants used for these clocks’

constraints.

The authors don’t use the exact number of the region clocks, but an approximation

number to the superior bound provided by Alur and Dill [32].

2.3 Conclusion

In this chapter, we have reviewed the methods of the test cases generation from the
most known formal models. More precisely, we have presented the test based on
FSMs and the timed test. For each method, we have explained its strengths, its
weakness and the conditions of its application. The Generalized Wp method will be

used in next chapters to be applied in our developed methodology.

In the following chapter, we deeply discuss our developed methodology and its

structure and processes. We propose the algorithms and the reasons of using them.
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CHAPTER I1I: TIMED TEST CASES GENERATION

For any tool to be built, it is an important task to go through its structure, functions
and goals before designing it. Chapter 3 is based on IEEE standard [33] to point at
these issues in order to not miss any small detail. Although it doesn’t specify any
particular design, it has the advantage of limiting the range of valid design. After
having the clear picture of what the tool is, its functions and its goals, the areas of data
structures and algorithms are introduced in this chapter. The next aim is not only
designing the correct tool but it is more about evaluating the tool design in order to
have quality attributes in it. As a result of this chapter, the implementation of the tool
is as easy as mapping the data.structures and algorithms to the direct code. Figures
and examples are represented for understanding the steps of our developed

methodology.

3.1 Tool Input, Process and Output

The tool should support the Generalized Wp method. The testing of the real time

system should be done using the Generalized Wp method.
The steps of the test process are:
» The tool receives the Timed Input Output Automaton specification (TIOA)

from the tester.

» The tool displays its Grid Automaton information, its NFSM information, its
test suites and the detailed information about them such as Q set, R set...etc.

> The tester validates the results by using oracle (see section 5.5) to compare the
observed outputs with the expected outputs.
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The following figure presents an outside view of the tool. The tool has one primary
actor (the tester) who initiates the activity by describing the real time system in terms
of TIOA. Therefore, the input of the tool is TIOA specification. The tester is also
responsible of running the tool to derive the test cases from the given TIOA based on
timing constraints of the system. Therefore, the test suites, the Grid Automaton details

and the Minimized NFSM details are the output of the tool.

GA
details

TIOA <Tool> / Minimized
==y Sample"Transform"Minimize"Generate"Optimize —> Inimize

specification] NFSM
details

Test
suites

Figure 7: The tool input, process and output

As we have noticed, the tool needs sufficient memory to store the information related
to TIOA, Grid Automaton, NFSM and to run the tool in order to generate the test

cascs.

In the next sections, we explained in details the steps of our developed methodology,

why we need each step, what the selected algorithms are and their time complexity.

3.2 TIOA Specification

TIOA specification is a file, which needs to be parsed by the tool in order to generate
its timed test suites (test cases). A set of locations, a set of inputs, a set of outputs, a
set of clocks and data variables and a set of transitions define TIOA. This file must

follow a specific format (Figure 8).
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New source

Figure 8: File format

The tester starts describing TIOA by going to each location and writes its name
(source name), its destination, its action, its constraints and its reset clocks
information. One location may have more than one transition, and the tester has to put
“#” sign, which indicates that the next transition is following. After specifying the
information of the first location, the tester put “###” sign to start the next location in
the same manner as explained before by describing the elements of its transitions.
Finally, when the tester finishes all the locations, s’he writes EOF, which means the

end of the file. For example, the file format of Figure 9 is:

Figure 9: TIOA specification

Source: 10
Destination: 11
Action: ?In
Constraint : null
Resetclk:x,y
it

Source: 11
Destination: 10
Action: !Out
Constraint: x <2,y <2
Reset clk: null
HitH

EOF
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3.3 Sampling the TIOA

Sampling TIOA into Grid Automaton is the first step of our developed methodology.
TIOA specification is the input of this step and Grid Automaton is the output. We
need such step since Grid Automaton is sub-automaton that is easily transformed into

NFSM.

The Grid Automaton is to represent each clock region with a finite set of clock
valuation. This finite set is called “representatives of the clock region” and it is
determined from the set of the grid points with the granularity at most 1/ (1+n) where
n is the number of the clocks. The granularity is determined according to the number
of the clocks. By this granularity, the clocks are authorized to pass from one clock
region to another one, and the automaton is allowed to make a transition from one

location to another [6].

3.3.1 Sampling Process

To construct the Grid Automaton of a TIOA, the following operations have to be
proceeded [6]: first step, determine the maximal granularity we can use for a specific
TIOA. If the number of the clocks is one then the granularity is Y2, but if the number
of the clocks is greater than one then the granularity is 1/ (n+2) where n is the number
of the clocks. By this granularity, the relationships between clocks are kept because
every delay transition in the region graph is matched with a transition on 1/(n+2) in
the Grid Automaton. Therefore, there will be no relationship between clocks when the
number of clocks is one. See Figure 10 as an example of a TIOA Specification, which
has one clock “x”, then the granularity is %. Second step, create the initial state of the
Grid Automaton formed from the initial location of TIOA and a valuation that sets all
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clocks to zero. The Initial state of TIOA specification in Figure 11 is “100”, which
will be the initial grid state that has the valuation of “x” to be equal to zero. Third
step, Create all states reachable from the initial state yvith repetitive 1/ (nt+2) (or 2 if
number of clocks is one) delay transition. (100, 0) has a reachable state (100, }2) and
the delay transition %2 (See Figure 11). Fourth step, for each state, we create all its
possible transitions with a condition that for each transition in TIOA, the clock
valuation satisfies the clock guard in the Grid Automaton. We noticed that (100, 0)
has two transitions. One transition goes to (101, 0) and x to be reset to zero and the
second transition goes to (111, 0) since the clock valuation of (100, 0), which is zero,
satisfies the clock guard (zero < 1). Finally, we repeat the process starting with the
next state. In our case, (101, 0), (111, 0) or (100, '%) is the next state. The final Grid
Automaton of Figure 10 is shown in Figure 11. We noticed that the state (100, «) will
not have an input transition that goes to (111, 0) since the bound of the time constraint
is X < 1. Besides, its delay transition has a destination (100, o) where co means
infinity. Note that the example is for understanding the concept; it may not represent

the good real-time system.

Figure 10: TIOA example with one clock
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Nn 0Out
12
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Figure 11: Grid Automaton of Figure 10

3.3.2 Sampling Algorithm

As we have explained the sampling process in the previous section, the corresponding
algorithm is stated in this section. The time complexity of the sampling algorithm is:
O(C+ S* t) where C is the number of clocks, S is the number of states and t is the
number of transitions.

Input: TIOA States object
Output: Grid_States object
Initially:
e reachable states and handled_states are empty and their types are Grid_States
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e clk _nois an integer variable that has the number of clocks of a TIOA
e granularity is a double variable that has the granularity of Grid Automaton

BEGIN
//find the number of the clocks of the TIOA
clk_no =find_clk_no(TIOA_States);

//compute the granularity of Grid Automaton
Granularity = compute_granularity(clk_no)

Create the initial state of Grid Automaton which has the same location as TIOA initial state
Create its Clk Vector object whose size is equal to clk_no

For each CIk object

Give the clock name //from the TIOA_States information
Give value of 0
} End For

//Add that state g_state to reachable_states
reachable_states.gstate.addElement(g_state);

While (reachable_states - handled_states is not empty)
{
Get a state s from (reachable_states-handled_states)
Add s to handled_states

For (each transition belongs to TIOA transitions)
{

I (the clock valuation of s satisfies the clock guard || there is clock reset)

& & (the s location is equal to the source location of that TIOA transition)

{
Create new Grid transition which has the same information as TIOA transition
Add the transition to the Grid Automaton transitions of s without including constraints and
clock reset information

}End If

If (it doesn’t exit)

Add the destination of the transition to reachable_states if it doesn’t exist in it
}End If
} End For

If (the delay transition exceeds the bound of the maximum time constraint)

{
Create delay transition, which has destination with a clock value of infinity
If (if it doesn’t exist in Grid Automaton transitions of s)

Add this delay transition of that state s to its Grid Automaton transitions
}End If
} End If

Else
{
Create delay transition, which has destination with a (clock value + Granularity)
If (if it doesn’t exist in Grid Automaton transitions of s)

Add this delay transition of that state s to its Grid Automaton transitions
}End If

} End Else

If (destination of the delay transition is not included in reachable_state)

{
Add destination of the delay transition to reachable_states
}End If
} End While
Return reachable_states
END

Figure 12: Sampling algorithm
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3.4 Transforming of Grid Automaton into NFSM

This is the second step of the developed methodology, which takes the Grid

Automaton information as input and produces a NFSM as output.

3.4.1 Transformation Process

The transformation of the Grid Automaton into a NFSM is based on Figure 13 [6]:

Dela, Delay @

\
Output > @

Input|Output

DW@ Del}l@
Dela Delay|-
020 —
i (sm)
Output
Delay|Output

Figure 13: NFSM transformation

The transformation can be explained easily from the above figures. It consists of
combining each output with the input or each output with the delay, which is
preceding it in the Grid Automaton [6]. Figure 14 shows NFSM of Figure 11. For
example, in Figure 11, the Grid Automaton has (100, 0), which has the transition that
is going to (111,0) with the input action ?In and (111,0) has the transition that is going
to (101,0) with the output action !Out and the clock reset action. The resulted NFSM

is a state (100, 0), which has ?In|!Out&Reset action to the destination (101,0). The

33



transitions with ?In|- action are not shown in the figure to not make it so complicated,

however we have to include them in our tool. For instance, (100, 0), (100, %2 ), (100,

1) and (100, ) have such transition, which is going to (101, 0).

N,

100, o0

InlOut&Reset x

Yl

100,1
/S

InlOut&Reset x s

100, 1/2

n|?Out&Reget x

In|Out&Reset x 1|Out @

InjOut&Reset x

Figure 14: NFSM of Figure 11

3.4.2 Transformation Algorithm

14/Out

Y/Out

The corresponding algorithm of the transformation process is introduced in this

section. The time complexity of the transformation algorithm is: O(S* t*t) when t> I
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and t> C and it is O(S*t*C) when C>I and C>t, however, it is O(1*S*t) when I>C and
I>t where C is the number of clocks, S is the number of states, t is the number of

transitions and I is the number of input list elements.

You can see that the last part of the transformation algorithm makes NFSM to be
completely specified. To do so, we have to check each state in the produced NFSM if
it contains each input. If not, a transition with that input action is added in that state.
The transition is going to itself without any output action.

Input: Grid_States object

Output: NFSM_ States object
Initially: NFSMstate is an empty vector of Location objects
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BEGIN
‘While not the end of Grid Automaton states

Get a Grid Automaton state s
Make a new NFSM state s
‘While not the end of transitions of specified state s

Get a transition t
‘While not the end of transitions of the destination of state s

Get a tt transition
If (tt has an output action which strats with ( "!"') && ( t has either input or delay action)
{
Make a new NFSM_Transition nt from s to it’s transition’s destination with action
Input|/Output
} End If

If (nt is not in the NFSM transitions of s)
Add it to the vector of s transitions

}End Xf
} End while not the end of transitions of the destination

// add the NFSM-delay transitions
Make a new NFSM-delay transition ntd from s to destination of tt with action delay|-

If ( ntd is not in the NFSM transitions of s)
Add it to the vector of transitions of s
} End If

} End while not the end of transitions of specified state s
} End while not the end of Grid Automaton states

/7add reset clocks as output actions
While not the end of NFSM states

While not the end of transitions of ss
‘While not the end of clocks of the t destination
If (the destination has a clock ¢ whose value is zero)
Add reset clock as output action
} End If
} End while not the end of clocks
} End while not the end of transitions of ss
} End while not the end of NFSM states
//add input actions for those state, which don’t have to make the NFSM more //specified
‘While not the end of input list
{
‘While not the end of NFSM states
‘While not the end of transitions of s

If (t does have an input action)

{
} End If

Break the loop of s transitions

If (all °s don’t have i as input action) && (it is the end of s transitions)
{
Make new transition with the destination of s and action of i
Add this transition to s transitions
}End If
} End while not the end of transitions of s
} End while not the end of NFSM states
} End while not the end of input list
END

Figure 15: Transformation algorithm
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We have to point that our tool doesn’t consider the transformation of NFSM to
observable NSFM, however, we have to introduce the concept behind it. NFSM is
observable if for every state S in NFSM, and every inputjoutput pair ajb, there is at
most one transition from S with label ajb. ONFSM’s are a typical class of NFSM’s
where a state and an inputjoutput pair uniquely determine the next state, while a state
and an input alone don’t necessarily determine a unique next state and an output.

Figure 16 is an example of not being ONFSM because state SO with pair al0

I={a}
()
\ all

al0 al0

al0

Figure 16: Not observable NFSM

determines two states which are not unique state, however Figure 17 is ONFSM of the
previous figure since state SO uniquely determines next state. In our testing method, it

is assumed that the NFSM is observable.

N

ajl

e

al0

Figure 17: ONFSM of Figure 16

37



3.5 Minimizing the NFSM

The minimization of NFSM is the third step of our developed methodology. However,
this minimization [34] is slightly different from the classical minimization of FSMs
because it takes into consideration the time factor. In fact, instead of checking the
equivalence for each pair of states, we consider only the pairs of states that have the
same clock interpretations and different locations. The input for this Minimization
process is NFSM information and the output is the minimized NFSM. How the tool

minimizes the given NFSM is introduced in the following sections.

3.5.1 Minimization Process

Based on the NFSM information as an input, the equivalent traces are checked only
for the states (/, v) and (/’, v) such as / is not equal to /’. For that, we get all NFSM
states, and for each pair of states (/, v) and (/’, v), we check with a recursive manner if
they accept the same traces. If one of the two accepts a trace, which doesn’t belong to
the other one, both of them are judged not equal. So, they are distinguishable by, at
least, an entry sequence. However, if all traces of the two states are examined and
none of them can distinguish a state from another, both of them are judged as equal
states. In the case of the equivalence, we remove one of the two states and its
children. Obviously, all the outgoing transitions from the removed state are deleted
and all the ingoing transitions are oriented to the equivalent state [34]. The equivalent
states are removed to avoid having redundant information. In Figure 18, (S1, 1) and
(S2, 1) are equivalent states, since they have the same transition information (1|-). The

same case for (S1, oo) and (S2, ).
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Figure 18: : Non-minimized NFSM

The Minimized NFSM of Figure 18 is represented in Figure 19. It is noticed that
state(S1, 0) is not equivalent with the state (S2, 0) since (S2, 0) has a transition

?In[!Out, which (S1, 0) doesn’t have.

Figure 19: The minimized NFSM of Figure 18

3.5.2 Minimization Algorithm

In this section, we introduce the minimization algorithm supporting of what we have
explained earlier. The time complexity of the algorithm is O(S*S*t*t*t) where S is the

number of states and t is the number of transitions. We have used the linear search in
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this algorithm, however, searching by sort is better to be used in such context because
the search is done only for the states that have the same clock values but different
locations and accordingly sorting the states is based on their clock values.

Input: a non-minimal NFSM
Output: a minimal NFSM

BEGIN
For (each state s1 of NFSM states)

{
For (each state s2 of NFSM states)

{
If ((s1.location ! = s2.location) and (s1.clock = s2.clock))
If (EqualStates(s1, s2) = true)
{

Attach input of s2 to s1 since they are equivalent
Delete s2 state and its children
} End if
} End if
} End for
} End for
END

// EqualStates(s1, s2) function
Function EqualStates(s1, s2) returns Boolean

If (there is no transition included in s1 and s2 )

{
Return true
} End if

For (each transition of s1)
{
EquiT = false
EquiS = false
Get t1 transition
For (each transition of s2,

Get t2 transition

H (tl.input = 2.input) && (t1.output = 2.output)
EquiT = True
If (s1=tl.destination) && (s2=t2.destination)

{

EquiS = true
} End if
Else

{
EquiS = EqualStates(t1.destination, t2.destination)
} End Else
} End if
} End for
If (EquiT = false) or (EquiS = false)
{

Return false
}End if
} End for
Return true

Figure 20: Minimization algorithm
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3.6 Generating the Test Cases

This is the fourth step of our developed methodology. Based on the minimized NFSM

information as input, the generalized WP has the following five steps in order to

produce the test cases as the output of the tool [6]:

L.

6.

Construct the state cover set (Q set). Refer to 3.6.1 section.

Construct the characterization W set and the state identification set Wi = {W0,
WI1... Wn-1} of S. Refer to 3.6.5 and 3.6.6 sections.

Construct the two sets P and R. Where P = Q.I, R=P/Q and I is the input list.
Refer to 3.6.3 and 3.6.4 sections.

Generate the test suite one: I11 = Q. I (m-n). W. Refer to 3.6.7 section.

Generate the test suite two: [12 = R. [ (m-n) @ {WO0, W1... Wn-1}, where m
>=n and m is the max number of states in IUT and n is the number of states in
NFSM. That formula means that for each element in R set, find its
corresponding reachable state from the initial state of NFSM by applying the
same input sequences of R element. Then, calculate Wi for that reachable state.
As a result of concatenating each element of R with its Wi, the test suite two is
generated. Refer to 3.6.8 section.

IT =TIT11 v I12. That means the test suites is the union of the test suite one and
the test suite two.

The first part checks that all the states defined by the specification are identifiable in

the implementation. At the same time, the transitions leading from the initial state to

these states are checked for the correct output and the state transfer. In this sense, this

checking is a kind of the state verification.

The second part checks the implementation for all the transitions defined by the

specification, which are not checked during the first part. It is a kind of the transition

verification. Figure 21 illustrates NFSM for a system under test, which is completely

specified [26].
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Figure 21: NFSM under test
Q={g, a,ab} 4 P=QI={g a,b,c, a.a,ab,ac, ab.a,ab.b,
a.b.c}
R=P/Q={b,c,aa,ac, aba,abb,abc} W= {b}
W1 ={b} W2 ={b}
W3 = {b}

[11 =Q.w= {b, a.b, a.b.b}

[12 =R® {W0,...Wn-1} =b.W1 U c.W1 U a.a.(WI1UW2) Ua.c.(WIUW2)U
a.b.a(Wlu W2 UW3) U a.b.b. (W1UW3) U ab.c.(Wlu W2)= {b.b,c.b,a.a.b,ac.b,
a.b.a.b,a.b.b.a,ab.c.a}

[I={a.ab,ab.ab,abbb,ab.cb,a.cb,bb,cb}

3.6.1 Q Process

By recalling its definition, a Q set is a state cover set of NFSM, if for every state Si; Q
contains an input sequence that brings the M machine from the initial state SO to Si.
Therefore, we need a tree that is drawn from the initial state (the root of the tree) to
the other states of NFSM. In other words, finding the Q is like finding the shortest
distance from the initial state to the rest of NFSM states. Dijkstra's algorithm is

applied to find the Q set. It finds the shortest path from a chosen source to a given
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destination. To apply the algorithm on NFSM states, then we have to think of NFSM
states as a graph, which has the states as vertices (or nodes) and the transitions as
edges that link the states together. The transitions are directed and have an associated
distance, sometimes called the weight or the cost. We have the assumption that each
transition has a weight of 1. The distance betWeen the states 4 and the state B is noted

[4, B} and is always positive 1 [35].

[B,Al=1
Figure 22: Simple graph
Dijkstra's algorithm divides the states into two distinct sets, the set of unsettled states
and the set of settled states. Initially all the states of NFSM are unsettled, and the
algorithm ends once all the states are in the settled set. A state is considered settled,
and moved from the unsettled set to the settled set, once its shortest distance from the

initial state has been found.

With these definitions, the algorithm is the following:
1. Initializing the shortestDistances to infinity.
2. Initializing the predecessors and unsettledNodes to empty sets.
3. Adding the initial state of the NFSM s to unsettledNodes set.

4. Mapping the shortest distance of s to value of “0”.

5. While not the end of unsettledNodes set.
e Getting the first element f of unsettledNodes set.

e Adding fto settledNodes set.

¢ Relaxing the neighbours of f.
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How to relax its neighbours?
We go through each state “destination” adjacent to state f and see if the destination is
not in the settledNodes and if the shortestDistances of “destination” is greater than the

sum of the shortestDistances of fand [f, destination](which is 1), then:

1. Mapping the shortestDistances of “destination” with value of
(shortestDistances of “f” + 1).

2. Making fas a predecessor of “destination”.
3. Adding “destination” to unsettledNodes set.

4. then repeating number 5.

For example, we shall run Dikjstra's shortest path algorithm on the following simple
NFSM states [35] (without specifying the transitions’ information and the clock
values of the states), starting at the initial state a. Figure 23 shows the simple NFSM

graph.

[a,c]=1 [c.d]=1

Figure 23:Dijkstra algorithm (1)

First, add the initial state a to unsettledNodes. Now unsettledNodes isn't empty, and
the minimum is extracted, which is a again. a is added to settledNodes, then relaxing

its neighbours. See Figure 24 to notice the relaxation of a.
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Those neighbours are the states adjacent to @, which are b and c¢. The best distance

estimate from a to b is computed. shortestDistances(b) was initialized to infinity,

therefore:

o shortestDistances(b) = shortestDistances(a) + [a,b]=0+1=1
o predecessor(b) is set to a, and b is added to unsettledNodes.

o Similarily for ¢, shortestDistances(c) is assigned to 1, and predecessor(c) is a.

b,d]=1

[e.d]=1

Figure 24: Dijkstra algorithm (2)

Now unsettledNodes contains b and ¢. ¢ or b can be the state with the current shortest
distance, which is 1. Let’s say c is extracted from the queue and added to
settledNodes, the set of settled nodes. Once more, relax the neighbours of ¢, which are

b, d and a. See Figure 25.

[e,d]=1

Figure 25; Dijkstra algorithm (3)
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a is ignored because it is found in the settled set. It is clearly that the first pass of the
algorithm had concluded that the shortest path from a to b was direct. Looking at ¢'s

neighbor b, it is realized that:

shortestDistances(b) = 1 < shortestDistances(c) + [c,b]=1+1=2
If shortestDistances(b)> shortestDistances(c) + [c,b] then the shortestDistances(b)
will be updated by the value of (shortestDistances(c) + [c,b] ) and the predecessor is

updated to c.

The next adjacent state is d. shortestDistances(d) is set to 2 and predecessor(d) to c.
The unsettled state with the shortest distance is extracted from the queue, it is now b.
It is added to the settled set and its neighbor c is relaxed.

c 1s skipped, it has already been settled.

At this point the only state left in the unsettled set is d, and all its neighbors are

settled. See Figure 26.

[a,b]=

[a,c]=1 [c,d]=1

Figure 26: Dijkstra algorithm (4)

The algorithm ends. The final results are displayed in the straight arrows below:
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[e.d]=1

Figure 27: Dijkstra algorithm (5)

3.6.2 Q Data Structure

According to the above explanation, the data structures that are needed for the Q

algorithm (Dijkstra Algorithm) are in the following table [35]:
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Table 5: Dijkstra data structure

NFSM States

settledNodes

Set

settledNodes contains the set of the settled states in NFSM, whose
shortest distances from the source have been found. The Java
collection includes the Set interface, and more precisely, the
HashSet implementation. It offers the constant-time performance
on the “contains” operation, which is the only needed one. Set is
an abstract type is declared as the data structure of settledNodes
instead of concrete type (HashSet). Doing so is a good software
engineering practice, as it allows changing the actual type of the
collection without any modification to the code that uses it.

shortestDistances

Map

shortestDistances stores the best estimattion of the shortest
distance from the source (the initial state of the NFSM) to each
state in NFSM. “Map” is used to keep the shortest distance value
for each state in the NFSM. As a result, it is a mapping from each
Location object to an integer value. Map is an abstract type.

predecessors

Map

predecessors stores the predecessor of each state in the NFSM on
the shortest path from the initial state. “Map” is used to store the
one-to-one relationship between two states, one state is a
predecessor of another state in order to keep the track of the
shortest path. As a result, it is a mapping from each Location
object to another Location object.

unsettledNodes

SortedSet

unsettledNodes contains the set of the unsettled NFSM states.
This structure keeps the set ordered all the time in order to get the
first element with the lowest distance. However, a comparator is
needed to order the states in the unsettledNodes.

ShortestDistanceComparator

| Comparator

| This attribute is used to insert any new element in the right place
in the unsettledNodes set.
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3.6.2 Q Algorithm

After we have explained the data structure that is required for the Q algorithm, the Q
algorithm is introduced in this section. The time complexity is O(S+S*log(S)) where
S is the number of states.

Input: NFSM_States object
Output: Q set which is a vector of vectors
Initially:
o shortestDistances is infinity
e predecessor is empty
o settledNodes and unsettledNodes are empty sets
e Q is an empty vector

BEGIN
//find the shortest distance for each state using the Dijkstra algorithm
Add the initial state s of NFSM to unsettledNodes

‘While (unsettledNodes is not empty)

{

state_one = extract_minimum(unsettledNodes)
Add state_one to settledNodes
relax_neighbours(state_one)

} End While

// Get the Q set by extracting the input action from each transition of the shortest distance
// that is determined by the above predecessor for each state
While (not the end of NFSM)

{

Get a NFSM state s

‘While (not the end of predecessor of s)

{

Get a predecessor

Get the input from each predecessor to its corresponding state
Store the input in a vector input

} End While

Reverse the input vector

Store the reversed input vector in a Q vector
} End While

Return Q

END

//relax_neighbours(state_one) function
For each state s adjacent to state_one

{
If (state_one is not in the settledNodes)

{
If ( shortestDistances(s) > (shortestDistances(state_one) + 1))
{
shortestDistances(s) = (shortestDistances(state_one) +1
Predecessor = state_one
Add s to unsettledNodes
} End If
}End If
} End For

/fextract_minimum(unsettledNodes) function

Find the smallest (as defined by the shortestDistances) state in unsettledNodes set
Remove it from the set

Return it

Figure 28: Q algorithm
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3.6.3 P Alsorithm

By recalling the definition of P set: P set is a transition cover if, for every transition
si — sj with ajb action, P contains input sequences o and a.a that bring the M machine
from the initial state sO to si and sj, respectively. It can be simply obtained by
concatenating the Q set with the Input list. This will cover the transitions, where P set
is necessary for obtaining R set as it was explained in 3.6 section. This needs a time
complexity O(I*Q) where I is the number of input elements and Q is the number of Q
elements.

Input: Q vector and Input vector

Output: P vector
Initially: Vector P is empty

BEGIN

‘While (not the end of Q set)

{

Get a vector “inl1” from Q vector
“in11” = clone “in1”

While (not the end of Input set)

{

Get a vector “in2” from Input set
“in22” = clone “in2”

Add “in22” vector at the end of “in11” vector
} End while not the end of Input vector
Add “in22” to P vector

} End while not the end of Q set
Return P vector

END

Figure 29: P algorithm

3.6.4 R Algorithm

R set denotes all transitions of NFSM except those belonging to Q set. Therefore, the
Q transitions are removed from P set to obtain R set. We need R set to calculate the
test suite two as it is explained in 3.7 section. R algorithm needs a time complexity:

0O(Q) where Q is the number of Q elements.
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Input: Q vector and P vector
Output: R vector
Initially: R vector is empty

BEGIN
R = clone of P vector
‘While (not the end of Q set)

{

Get a vector “in” from Q vector
If (R contains “in” vector)
{
Remove “in” vector from the R vector
}End If

} End while not the end of Q set
Return R
END

Figure 30: R algorithm

3.6.5 Wi Algorithm

State Identification set (Wi) is defined as a given Si state, for any other state Sj, there
must exist an input sequence in Wi such that two different sets of possible output
sequences are produced when this input sequence is applied to their states. Wi set is
important to produce both test suites. When we calculate Wi for each state, we start
with the input list I. If it is not sufficient then we grow up with LI If it doesn’t
produce different outputs then we try L.L.I and so on. Input list of NFSM and NFSM
information are needed to calculate the Wi. In Figure 31, the Wi algorithm is
introduced and its time complexity is O((I*S)+(I*I)) where S is the number of the
states and I is the number of the input elements. Again as in the minimization
algorithm, we have used linear search here. It is better to use the sort search since the

search is done through the states, which have the same clock values and different

locations.

51



Input: Input vector, NFSM state s and NFSM_ States object
Output: Wi vector of strings
Imitially: Wi is empty vector

BEGIN
//motice that two states must have different locations and same time as a condition //inside check function
While (not the end of Input elements)
{
Get an input element “in” //input element is a vector of strings
If (check(s, NFSMStates object, in)) / check if they have different output for the same input

Wi=in
Return Wi
}End If
} End while not the end of Input elements

//1f there is no input element in Input vector that gives different output then call
//Wi recursively with new Input vector, which is equal to Input.Input

Create vector list

list = Input.Input

Wi = get_Wi(list,s, NFSM_States object)
END

Figure 31: Wi algorithm

3.6.6 W Algorithm

W is the union of all Wi. It is needed to produce the test suite one as it was shown in
3.6 section. The test suite one is W.Q. In Figure 32, the W algorithm is introduced.
And its time complexity is O(S) multiplied with the Wi time complexity where S is
the number of states.

Input: NFSM_ States object and Input vector

QOutput: W vector
Initially: W vector is empty

BEGIN
‘While (not the end of NFSM states)

Get a NFSM state s

Create Wi vector

Wi=get Wiofs

If (W doesn’t contain Wi of s)

W.addElement(Wi)
}End If
} End While not the end of NFSM states
Return W
END

Figure 32: W algorithm
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3.6.7 Test Suite One Algorithm (Q.W)

As it was explained in 3.1 section, test suite one and test suite two are the desired
results of our tool. Calculating the test suite one depends on Q set and W set
information. Its algorithm is simple as it is shown in Figure 33. The time complexity
of the algorithm is O((Q*W)+(T*T*E)) where Q is the number of Q elements, W is
the number of W elements, T is the number of test suite one elements and E is the
number of one test element sequences. For example the E of (In. }2 .In) is equal to 3.
Input: Q vector and W vector

Output: Test Suite One vector
Initially: test vector is empty

BEGIN
// It is important to say that the test suite one must be optimized to avoid redundant test //cases

test = Concatenate(Q,W)
test = optimize(test)
Return test

END

Figure 33: Test suite one algorithm

3.6.8 Test Suite Two Algorithm (R.Wi)

Another important output of our tool is the test suite two. It can be calculated
depending on R set and Wi set information. Its algorithm is shown in Figure 34. The
time complexity of the algorithm is O(R*R*t*t*s*s*Wi) multiplied with the Wi time
complexity where R is the number of R elements, t is the number of the transitions, s

is the number of the states and Wi is the number of Wi elements.
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Input: R vector, NFSM_States object and Input vector
Output: test suite two vector
Initially: test vector is empty

BEGIN

‘While (not the end of R)
{
Get r element from R
Get the initial state s from the NFSM_States object
‘While (not the end of transitions of s)
{
Get a transition t
If (t.input.equals(r.elementAt(0)))

/fcall function check, which calls itself recursively to obtain the vector of reachable states from the initial
//state of NFSM by applying the input sequence of element r
vector of NFSM states = check(r)
‘While (not the end of states)
{
Get state ss from states
Get Wi for ss
Store it in Wi vector
} End while not the end of states
} End If
} End while not the end of transitions of s
Concatenate r with each element of Wi vector using function of Concatenate
Add the concatenation to the vector test
} End while not the end of R
Return test
END

Figure 34: Test suite two algorithm

3.7. Optimization the Test Cases

Finally, the tool optimizes the number of the test cases if they are large. One approach
is to delete any test case, which is a prefix of another one. Another way can be
generating test cases only for the critical parts of the real time systems. The last
approach to think of is using large granularity or selecting one representative of a

clock region to optimize the large number of the generated test cases.

3.7.1 Optimization Algorithm

Using the first approach, the optimization algorithm is as in Figure 35. The input of

this algorithm is the test suite one or the test suite two. The time complexity of the
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optimization algorithm is O(T*T*E) where T is the number of the test suite elements

and E is the number of the test element sequences.

Input: not optimized test vector
Output: optimized test vector

BEGIN
//Optimization of the test cases by removing the prefix
‘While (not the end of test vector)

{

Get an element from test vector: elementl
While (not the end of test vector clone)

{
Get an element from test vector clone: element2
If (the position of element1 != the position of element2)

If (elementl.size () < element2.size ()

While (not the end of element1)
{

{

Break of element] loop
} End If
Else if(the end of element1 loop)

If (one element of elementl != one element of element2 of same position)

Remove elementl

}
} End while not the end of element1
} End If
}End If
} End while not the end of vector
} End while not the end of vector

Return test vector

END

Figure 35: Optimization algorithm

3.8 Conclusion

In Chapter 3, the developed methodology was detailed. The TIOA specification is the
input and the timed test cases are the output of the tool. To generate the test cases, the
tool parses the TIOA specification in order to construct its corresponding Grid
Automaton that will be transformed by the tool into NFSM. The tool also minimizes
the NFSM and accordingly it generates the test cases. The optimization of the test
cases is also done by the tool in order to avoid the large number of the test cases. Each

step is explained with examples and their algorithms are introduced. Moreover, we
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have used [36] and [37] to calculate the time complexity of the proposed algorithms.
They are considered big since the algorithms are exponential on the number of the
clocks, and the constants used as bounds in the time constraint. Appendix B shows the

activity diagrams for more details about the algorithms, using a concrete context.

In next chapter, we put the developed methodology into the implementation
framework. The design issues such as the high level language, the user interface, the

parser, the tool parts...etc will be also covered in next chapter.
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CHAPTER IV: TOOL IMPLEMETATION

In this chapter, the major design decisions and their solutions, the class diagram and
the sequence diagram are explored so that the included information is clear, consistent
and correct with the previous chapters. It is important to mention how the class
interface look like, how the relationships introduced in the class diagram
implemented, and how the tester interacts with the user interface of the tool. The

scenario of execution for the tool is introduced as well.

4.1 Design Rationale.

This section summarizes many of the issues, which need to be addressed or resolved
in order to devise a complete design solution. It also addresses the main issues of the

detailed design of the tool

4.1.1 User Interface

This tool, like most of today’s applications, has a graphical user interface. This
facilitates the interaction of the users with the application, but at the same time, adds
some complexity and difficulty to the design of the tool. In the following table, we
have introduced some of the available alternatives and we have chosen one of them

according to some reasons that are also stated in the table.
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Table 6: User interface issue

User interface of the tool.
Interweave the user interface with the core functionalities of the
application.

Benefits:

- Simplifies the complexity of the design.

Liabilities:

- The reusability of the various components is limited.

Use the architecture, which build the programs that have a
graphical user interface: the model-view-controller design pattern
(MVC).

As its name indicates, the MVC paradigm breaks an application
into three components. The model contains only the data and the
functionalities that are related by a common purpose. The view is
responsible to display the information to the user. The controller
accepts input from the user and instructs the model to perform
actions based on that input. The controller and the view, combined
together, form the user interface.  Furthermore, a change-
propagation mechanism ensures consistency between the user
interface and the model [38], [39], [40].

Benefits:
- Facilitates the reuse of the components.

Liabilities:

- Following the MVC structure tends to increase the complexity of]
the design and its corresponding implementation.

- The controller and view are separate but closely related

components, which hinders their individual reuse.

The chosen alternative for this tool is the first one, since its
advantages outweigh its liabilities. Although the MVC is a very
common and powerful architecture, the tool is only seeking a
simple interface that allows the users to interact with it in friendly
way rather than running the tool in Unix environment. The tool
interface is not for reusability issues but it is more about seeing the
results in the applet.

Therefore, the tool has a very simple graphical user interface as shown in Figure 36. It
is just for seeing the results of the tool by clicking the desired button. By clicking the

“TIOA” button, the information of TIOA specification that the tester has just entered
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will be displayed. The “Grid Automaton” and “NFSM” buttons are for displaying the
Grid Automaton and NFSM information. If the tester is interested to see the Q, P, R
and W sets, then s/he clicks the “Q set”, “P set”, “R set” and “W set” buttons. Finally,
the most important buttons to display the test cases are “Test suite 1” and “Test suite

2” buttons.

@ C:\manariapplet.html

Figure 36: Tool user interface
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4.1.2 Why JAVACC?

As mentioned before, the tool needs a parser to parse TIOA file, which is written by
the tester to describe the real time system. In table 7, two alternatives are shown and

we have chosen Java Compiler Compiler (JavaCC) as the parser of our tool.

Table 7: Parser issue

The parser of the tool.
Interweave the tool with a function that reads the file by using
while and for loops.

Liabilities:

- The function must be so precise to describe the format of the file.
For example, the spaces between the words and the new lines
must be taken into consideration.

Many loops are needed to read the file.

- Memory leak problem will happen if the file size is big.

Use a compiler that has a simple and readable structure [41], [42,
43].

Benefits:

- A simple compiler will neither need any code improvements
(optimization) nor create the parse tree explicitly

- No need for the loops. It is the responsibility of the lexical
analyzer to scan the file and identify the groups of the characters
that form the tokens.

Using a compiler is better since it can generate the code for
individual components of a file at the moment at which the
corresponding syntactical structures are recognized.

For a program to receive an input, either interactively or in a batch environment,
another program or a routine is provided to receive the input. Complicated input
requires additional code to break the input into pieces that mean something to the
program [41], [42]. Java Compiler Compiler (JavaCC) is used to develop this type
of input program. JavaCC generates a lexical analyzer program that analyzes the
input, which is a sequence of character, and it is represented by a Java InputStream

object or a Java Reader object. It is the first phase in a compiler, which reads the input
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source and converts the character strings in the source into individual Token objects.
The tokens are defined by the grammar rules set up in the .jj specification file. Using
the regular expressions and BNF productions, we can specify patterns to .jj that allow
scanning and matching strings in the input. Each pattern in jj has an associated
action, which is a fragment of C code that performs some action. Typically an action

returns a token, representing the matched string, for subsequent use by the parser [44],

[45].

JavaCC also generates a parser program that analyzes the input using the tokens
identified by the lexical analyzer. As the lexical analyzer reads the source file, the
initial characters in the remainder of the input stream are checked against the legal
token strings. These tokens strings are checked in the order in which they are listed in
the lexical analyzer. The analyzer attempts to match the longest segment possible
from the input. The output of the parser is whatever the programmer wants it to be, as
long as it can be expressed in Java. In our case, the output is reading the file and

storing its information to its corresponding data structure of TIOA object [44], [45].

To that end, the compiler has the following structure [42]:

Source N Source >

code Lexical > code » | Parser/ Object

(characters) analyser (tokens) code code
generator

Figure 37: Compiler structure

The tokens of the file, which have the same format described in the previous chapter,

must be specified in the following manner:
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Space must be specified so that it is skipped and it is not passed to the parser, while
reading the file. Line breaks have different representations depending on the operating
system. For example, in Unix and Linux, a new line character "\n" is used, in DOS
and Windows a carriage return "\r" followed by a new line is used, and in other
operating systems a carriage return alone is used. They are defined as tokens. Other
tokens must be specified to represent the information of the file such as S, which
represents the source of a state (or location), D, which is the destination of a transition
of a specific state, etc. The tokens are important to be passed on to the parser and in
turn the parser determines the structure of the program [45]. The following are the

tokens of TIOA file:

SKIP : { nn }
TOKEN : {
< EOL . H\n" | "\r" | "\r\n" >
| <ENDINPUT : "#####" >
| <ENDSTATE : "###" >
| <ENDTRANSITION : "#" >
| < TRAN : "transition" >
| < CONSTRAINT : "constraint" >
| <RESET: "reset" >
|  <Source:"S" >
| <Desti:"D" >
l < SpeCial : "?" I "!" | n_n | |l>" | "<H >
| < Others : (KLETTER> | <DIGIT> | <special> )+ >
| < LETTER : (["a"'"Z", llA'l_l'Zl'])+ >
| < DIGIT : (["0"_'!9"])+ >

Now the regular expressions are defined. For example, the generated method
“TIOA_State State()” in the next page is BNF production of TIOA state. The return
type of that method is TIOA_State. The variables are then declared inside the method
State() such as the vector of the transitions, the vector of the time constraints, the
vector of the clocks and the variable “t”, which is of type Token. Token is a generated

class that represents tokens.
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The BNF production section for State() is followed after that. It is noticed that within
the braces in a BNF production, Java statements are added. Now, when a token is
matched in BNF production, the Token object is recorded by assigning a reference
and the image field of the Token class records the matched string of the characters.
The meaning of the star “*” in BNF production of TIOA_State is having one or more
transitions. The other methods are having the same structure as below one. (See

Appendix A for more details about the other methods.

TIOA_State State() :
{
Token t;
String source;
TIOA _State state;
TIOA_Transition transition;
Vector trans;
Vector consts;
Vector resClk;

{trans = new Vector();}
{consts = new Vector();}
{resClk = new Vector();}

<TRAN >
< Source >
t = <Others>
{source = t.image;}
transition = Transition()
consts = constraint()
resClk = reset()
{ transition.setCLK( resClk); }
{ transition.setConst( consts); }
{trans.addElement(transition); }
(
<ENDTRANSITION>
<EOL>
transition = Transition()
consts = constraint()
resClk = reset()

{ transition.setCLK( resClk); }
{ transition.setConst( consts); }
{trans.addElement(transition); }
)*
<ENDSTATE>
<EOL>
{state = new TIOA_State(source, trans);}
{ return state; }
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4.1.3 Why JAVA?

The tool is more efficient to be implemented in an Object Oriented Language. C++
and Java are two alternatives. In the following table, we discuss their benefits and

liabilities.

Table 8: High level language issue

Choosing the high level language.

It provides the generic classes’ facility (templates), which refers
to the ability to parameterize a class with specific data types.
It gives the ability for a programmer to overload the operator such
as+, * ., etc.

C++ programs generally run faster than Java programs.

Liabilities [46]:
The programmer is responsible of freeing any memory that is no
longer needed.

It is strongly object oriented since all user-defined types are
Objects.

There is a garbage collection mechanism, which frees the
memory of unused objects.

There is no pointers arithmetic.

Java attempts to be simple and familiar without the loss of]
functionality or performance [43].

Portability: programmers can be assured that their programs will
run the same on many different platforms, as well as allowing the
programmer to fix many of his/her errors early on as opposed to
after distribution [43].

Performance: Java is fairly fast for most applications in
interpreted mode [43].

Liabilities [46]:

- It is not having the ability to overload the operators and it can’t
provide templates of other data types different from the specified
one.

The tool is better to be implemented in Java since the memory leak
problem will be avoided especially many large graphs will be used.




4.1.4 Loops Issue

How can we deal with the loops in the minimization algorithm? To avoid the
deadlock loop while minimizing NFSM, the vector data structure is used to store the
history of the checked transitions. When the transition that is contained in a loop in

NFSM is checked and stored in the history vector, then it won’t be checked again.

4.1.5 Determinism Issue

The tester must check that TIOA specification is deterministic before writing the file.
Otherwise, an error message is displayed in the screen. The tool can’t handle the non-

deterministic TIOAs.

4.1.6 Q Algorithm

As it was mentioned earlier in Chapter 3, we have chosen Dijkstra algorithm to find Q
set although there are other shortest path algorithms. In the following table, we

compare between Bellman Ford algorithm and Dijkstra algorithm.

Table 9: Q issue

Choosing an algorithm to find Q.

Bellman Ford Algorithm [47].

Benefits:

- It allows negative edge weights.

- The time complexity is O(VE) where V is the number of vertices
and E is the number of edges.

Dijkstra Algorithm [47].

Benefits:

- All edge-weights are nonnegative.

- The time complexity is O( E + V log V), where V is the number
of vertices and E is the number of edges.

The tool is better to implement the Dijkstra algorithm since it beats
Bellman-Ford when there are no negative edge weights. Assuming
that each edge (transition) in the NFSM has a weight of 1. In
addition, the time complexity of Dijkstra algorithm is better.
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4.2 The methodology used in designing the tool

4.2.1 Object Oriented Design Methodology

To design the real time system tool, the Object-Oriented Design methodology [48] is
chosen to describe the solution to the testing problem in terms of objects. An object-
oriented design consists of a set of classes and data associated with these classes, and

the set of actions the class can be asked to undertake.

The object-oriented design methodology consists of the following steps:

1. Identify the classes.

» Identify a large set of candidate classes such as TIOA, Grid Automaton,
NFSM, State, Transition, Clock, and Action ...etc. Refer to the class diagram
in this section.

> Find a subset that provides a meaningful solution to the problem at an
appropriate level of abstraction. For example, TIOA States, Grid Automaton

States, NFSM States and the parser, where these classes consist of other
classes.

2. Characterizing the class.

» Provide a verbal description of each object. For example, TIOA States
object has states and each state has transitions.

» Define the data associated with the objects. For instance, the TIOA
transition may has clock reset, time constraints and an action.

» Avoid too many details.
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3. Defining the implementation.

> Finds an action that is certain to be part of the final implementation, e.g.
main ().

» Outline how each selected action will be implemented, e.g. pseudo code.
Refer to Chapter 3.

> Adds actions to related classes when exploring.

4. Pseudo code.

4.2.2 Overview of Tool’s Class Diagram

In general, the tool for the real time systems consist of four packages based on a state
characterization technique: TIOA_States, Grid_States, NFSM_States and the Parser.
Each package has its own responsibilities and relatively independent. They are limited
in contacting each other. The whole tool is flexible and extensible thereby. That’s
why we take advantage of vector framework to construct our tool. The tool is not a
complex tool since its modules are simple to understand and its behavior is
predictable according to its well-defined rules (See the class diagram). That is beside
it is well documented. Therefore, these attributes ease the maintenance of the tool.
The tool is also portable since java language is itself portable across operating

systems and different architectures. Java uses universally standard and static data

types [43].
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4.2.2.1 TIOA Package

TIOA package is to read the file entered by the user to construct the corresponding
TIOA states in terms of vectors. It allocates the required memory for such automata.

Detailed information of the classes in this part is shown in the table below.

Table 10: TIOA package

TIOA States Super | is the main class that the second and third parts
Class depend on it. It is responsible for reading the file.
It is a vector list that contains the states of TIOA
automata.

TIOA_State Class is a part of TIOA_States that represents the state
of TIOA .1t is characterised by the state name and
its vector list of the transitions.

TIOA_Transition | Class is a part of TIOA State that represents the
information of a transition for a specified state.
TIOA_ Constraint | Class is a part of TIOA Transition that represents the
time constraint for certain transition.

4.2.2.2 Grid Automaton Package

Grid Automaton package is like a bridge between TIOA package and NFSM package.
It samples the given TIOA automaton using a suitable granularity, in order to
construct a sub automaton that is easily testable, called Grid Automaton. It also
allocates the required memory for that Grid Automaton. Detailed information of the

classes in this part is shown in table 11.
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Table 11: Grid Automaton package

is an important class which NFSM_States
depends on. It is responsible for sampling the
TIOA to Grid Automata. It is a vector list that
contains the states of Grid Automata.
State Class is a part of Grid_States that represents the state
of Grid Automata .It is characterized by the
state name ,its time and its vector list of the
transitions that comes out from it.

Grid_Transition | Class is a part of State that represents the
information of a transition for a specified state
in Grid Automata.

Clk Class is a part of State that represents the

information of clock for specified state.

4.2.2.3 NFSM Package

NFSM package is responsible for transforming the given Grid automata to a (NFSM).
It allocates the required memory for that NFSM. It also minimizes the given NFSM in
order to ease the operation of generating the test cases. Moreover, It handles all
operations associated with the Generalized Wp-method to generate timed test cases
from the minimized NFSM. Detailed information of the classes in this part is shown

in table 12.

Table 12: NFSM package

S_Stats T ss is the required class to obtain NFSM for test

cases generation. It is a vector list that contains
the states of NFSM.
State Class | is also a part of NFSM_States that represents

the state of NFSM .It is characterised by the
state name ,its time and its vector list of the
transitions that comes out from it.

NFSM Transition | Class is another part of State that represents the
information of a transition for a specified state
in NFSM.

Clk Class | is a part of State that represents the information
of clock for specified state.
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4.2.2.4 Parser Package

Parser package is responsible for parsing the file that is send by TIOA_States.

Table 13: Parser package

Is the required class to parse the TIOA file and
store its information in TIOA States class.

4.3 Sequence Diagram for Tool Execution

The following sequence diagram shows the course of the tool execution. That is
supporting to what we have said in Chapter 3. Table 14 explains the sequence

diagram.
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Figure 39: The sequence diagram of the tool execution
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Table 14: Sequence diagram information of the tool execution

Interaction Diagram
Name

Running the tool

Responsibility This diagram is used to show the interaction of
scenario for Use Case: Run the tool (Use Cases:
Parse the TIOA file, Sample into the Grid
Automaton, Transform into the NFSM, Minimize
the NFSM and Generate the test cases are
included).

Objects Origin

:tioa_states See Class Diagram TIOA_States

:grid_states See Class Diagram Grid_States

:NFSM _states See Class Diagram NFSM_States

:parser See Class Diagram Parser

file See Sequence Diagram Software Interface

Sequential Actions

Description

1. run()

The user runs the tool.

2. parsel() The tioa_states asks the parser to parse the TIOA
file.

3. parse2() The parser parses the TIOA file.

4. store() The parser then stores the file information into
tioa_states.

5. get tioa() grid states asks tioa_states for TIOA information.

6. sample() grid_states builds the corresponding Grid
Automaton based on returned information.

7. get_grid() NFSM _states asks the grid_states for the Grid

Automaton information.

8. transform()

NFSM_states transforms the Grid Automaton to
its corresponding NFSM based on the returned
Grid Automaton information.

9. minimize()

NFSM states minimizes NFSM.

10. generatel()

NFSM states generates the test suite 1.

11. resultl()

NFSM_states returns the test suite 1 to the user to
analyze it.

12. generate2()

NFSM states generates the test suite 2.

13.result2()

NFSM _states returns the test suite 2 to the user to
analyze it.
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4.4 Design Quality and Design Evaluation

4.4.1 The Five Factors That Effect the Design Quality

To have a good quality of design, there are five factors that must be considered [48]:

1. The relative level of detail.

¢ The level of detail or granularity of the various components should be about
the same.
It is noticed that in the previous class diagram, the detail level of the variety classes is
almost the same. The TIOA_States, Grid_States, NFSM_States and the Parser are the
classes of the first level. They are describing the four parts that our tool is consisting
of and the first three of them have its own responsibility toward the states it may have.
Then, the second level of detail is the states of each part which are characterised by
certain features that make it unique from other states. Finally, the third level is
describing the details of each state’s transitions, its information that may have on and
their clocks. The last level is necessary for the first part, which is the constraint class

that describes the details of constraint in which TIOA transition has.

2. The number of components at each level

¢ Ideal number ranges from 5 to 10.

Since our tool is quiet medium and it is not considered as a huge tool, then having
three to four classes in each level is quiet fair to not have the complex relationships
among classes. Moreover, it is enough to build co-operative components to construct

the tool.
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3. The final level of detail

¢ The hierarchy should be terminated at an appropriate level depending on the
audience of the design. Le. reader feels comfortable to implement the design.

The tool is broken into four parts to represent the main four steps in the test cases

generation. Then, each part is broken into smaller pieces to handle the operations in

easier way and to not find the hardships during the implementation of the tool. These

smaller pieces can be directly mapped to a code in any implemented language.

4. Class interface protection

In order to prevent indiscriminate access to application data, the declaration of data
members has been placed in the private section of the classes. Therefore, they are
only accessible to other member functions of their corresponding class. This
restriction of access to the private data is a carefully considered principle of software
engineering and is known as information hiding. On the other hand, the member
functions have to be accessible to functions that are not members of their class. For

that reason, they have been declared as public [43], [49].

5. Implementation of the relationships
In the design of the tool, there are four kinds of relationships: association,

aggregation, inheritance and dependency relationships.

In the case of one-way association and aggregation relationships, since they are
navigable in just one direction, the target classes become attributes of their
corresponding classes in the relationship. For example, TIOA_Location as the target
class of the “contains” relationship is an attribute in TIOA_States class. In the “has”

relationship, each TIOA Transition object has one TIOA_ Location object as its
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destination; therefore the TIOA Transition class is an attribute in the

TIOA_Location class.

In C++, the attributes mentioned above could be stored as pointers in the case of
associations or as embedded objects or pointers in the case of aggregations. However,
since the tool is assumed to be implemented in Java, they will be stored as references

because in Java, objects are always references variables [49].

Also, if the multiplicity of the association or the aggregation is many, collection
objects are used to store the attribute, i.e. list, vectors, and maps.

Dependency is another important relationship to show that the NFSM can’t be built if
the Grid Automaton can’t be constructed and the Grid Automaton can’t be
constructed if the TIOA is not stored. Therefore, these dependencies serve to alert us
to the fact that whenever we change the TIOA information, the Grid Automaton will
be changed and so will NFSM. To implement the dependency relationship, it must be
in the signatures of the methods as a type of a parameter. For instance, the “Sample”

method in Grid_States class must have TIOA_States as a type of its parameter.

Another relationship, which is very powerful and useful tool to save a great deal of
redundant effort, is the inheritance relationship. Objects in the classes
NFSM_Transition and Grid_Transition inherit the attributes of class Transition (their
| parent) while having additional unique attributes of their own. The inheritance
relationship is always one-to-one (excluding the representation of multiple inheritance

relationships). In Java, inheritance is specified by using the keyword extends [43].
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4.4.2 Evaluating our Design (A check list).

The evaluation points are [50]:
e Most important criteria: correctness.

» Address and solve all issues in the problem definitions.
» Solve the given problem within a specified constrains.

> Design is complete: all classes and methods are needed, none is omitted.

o Simplicity.

» Can any operations, data members, parameters be removed?
» Can any parameters and return type or any operations be simplified?

> Are the operations and their parameters lists logically consistent?

o Cohesion and Coupling.

» Everything in a class is directed at single purpose. Split the class if it
serves more than one purpose. Merge classes if they serve the same purpose.
» Minimize dependencies on other classes.

% All relationships among classes should be based on operations, not

on data elements.

¢ Minimize the number of the operations one class provides for
another class. That is to simplify our interface.

o Information hiding.

» Conceal the implementation details within a particular class or method.
> Hides the potential changes to a particular class or method.

» Data elements should be local (not visible from outside).
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> Separate methods into those only accessible by other classes and those
used locally (as a part of implementation).

» Try to identify heuristic classes.

% Portions of the design those are not well understood.

¢ Portions of the design that are machine or operating system specific
(subject to change) or

¢ Portions of the design that are to be extended in the future

e FError Handling.

» A large percentage of the codes of most systems need to handle special
cases and errors, e.g. Error messages are displayed when a wrong format of
TIOA file is written.

» It is hard to add error handling to a system once it has been designed and
implemented.

» Error handling should be part of the initial problem statement and should
be important design criteria in considering alternative designs.

4.5 Scenario of Execution

For the testers to be able to use the tool, they can either run it on UNIX operating
system (Figure 40) or on Windows (Figure 41 &42). It is important to follow the

following steps by order.

On UNIX operating System:

1. Log into UNIX operating system.

2. All files should be placed in the same directory.

3. Enter the TIOA information to the file called “input”. Note that the “input”
file has no extension. For example if you rename it to input.txt, then the

tool generates an error message. For writing TIOA description, testers
must follow the format mentioned in Chapter 3.
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Change to the directory that you have placed the files. Write in the
command line: java TIOA_States to run the tool and have the results. The
test cases’ results of the small multimedia system are shown in Figure 40.

fabutaBuendee: [~/nanax] 31>java TIOA States
GA

28
NTESH

[{7sound], [2image, 2image], [1.0, zimage], [1.0, ?sound], [2inmage, 1.0, ?image], [1.0, 1.0, 2image], [1.0, 1.0, ?sound], {?image, ?sound, ?image], {?image, ?%0
und, 7sound], [7image, ?sound, 1.8), [7image, 1.0, 1.0, 2image}, (1.0, 1.0, 1.0, 2imsge], [1.0, 1.0, 1.0, 7soumd], [7zimage, 1.0, 7somnd, zimege], [7image, 1.0,
2sound, ?sound), [7imege, 1.0, 7sound, 1.0], (?image, 1.0, 1.0, 1.0, 7image], [¢image, 1.0, 1.0, 1.0, ?sownd], (1.0, 1.0, 1.0, 1.0, zimsge], [1.0, 1.0, 1.0, 1.0 :
» ?sound], [?image, 1.0, 1.0, 2sound, ?imege], [?image, 1.0, 1.0, ?sound, ?sound], [1.0, L.0, 1.0, 1.0, 1.0, risage], {1.0, 1.0, 1.0, 1.0, 1.0, ?sound], [?image
, 1.0, 1.0, ?sound, 1.0, zimage], [7inage, 1.0, 1.0, 23cund, 1.0, 2sound], [?image, 1.0, 1.0, ?sound, 1.0, 1.0], [rimage, 1.0, 1.0, 1.0, 1.0, 1.0, rimage}, (?im
age, 1.0, 1.0, 1.0, 1.0, 1.0, ?seund), {L.0, 1.0, 3.0, 1.0, 1.0, 1.0, ?image}, [1.0, L.0, 1.0, 1.0, 1.0, 1.0, 2sound], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], {2im
age, 1.0, 1.0, 1.0, 1.0, ?inage], [?image, 1.0, 1.0, 1.0, 1.0, ?sound], [2image, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, rimage], (7image, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, ?
sound), (?image, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]

Test2

44

[[2s0und, ?image], [?image, ?image, ?sound], {1.0, ?image, ?sound], [1.0, ?scund, 7image], [7image, 1.0, ?image, ?sownd], [1.0, 1.0, zimsge, ?sound], [1.0, 1.0,
2s0und, 7image}, [2imege, 2sound, zimege, 1.0], {?imege, 7sound, 1.0, 7inage], [?image, ?sound, 1.0, 1.0), {?imege, ?sound, 2sownd, 1.0], [?image, 1.0, 1.0, 23
nege, 7sound], [1.0, 1.0, 1.0, 2imege, ?sound], [1.0, 1.0, 1.0, 23cund, ?image], [?image, 1.0, ?sound, ?image, 1.0], [?image, i.0, ?soumd, 1.0, 2image], [?image
, 1.0, ?sound, 1.0, 1.0], [7image, 1.0, ?sound, ?scund, 1.0], {?image, 1.0, 1.0, X.0, ?imege, 1.0], [2image, 1.0, 1.0, 1.0, ?sound, 1.8), (1.0, 1.0, 1.0, 1.0, ?
image, ?sound], (1.0, 1.0, 1.0, 1.0, ?sound, zimage], [image, 1.0, 1.0, ?sound, ?image, 1.0], [?image, 1.0, 1.0, ?sound, ?sound, 1.0], (1.0, 1.0, 1.0, 1.0, 1.0
, 7image, 7sound), [1.D, 1.0, 1.0, 1.0, 1.0, ?sound, ?image], [?image, 1.0, 1.0, ?sound, 1.0, 7imege, 2sound), [?imsge, 1.0, 1.0, 7sound, 1.0, ?image, 1.0], [?1
nage, 1.0, 1.0, zsownd, 1.0, 1.0, ?image), [?image, 1.0, 1.0, ?sound, 1.0, 1.0, 1.0], [?image, 1.0, 1.0, 2scund, 1,0, ?sound, ?imege], [?image, 1.0, 1.0, zsound
+ 1.0, 2sound, 1.0], [7image, 1.0, 1.0, 1.0, 1.0, 1.0, ?inege, zimege], [?image, 1.0, 1.0, 1.0, 1.0, 1.0, zimsge, ’sound]l, [7image, 1.0, 1.0, 1.0, 1.0, 1.0, ?s0

ge, 1.0, 1.6, 1.0, 1,0, 7image, 1.0}, [?imsge, 1.0, 1.0, 1.0, 1.0, ?sound, 1.0], [?image, 1.5, 1.0, 1.0, 1.0, 1.0, 1.0, ?image, »image], [7imsge, 1.0, 1.0, 1.0,
'1.0, 1.0, 1.0, rimage, ?sound), [2image, 1.8, 1.0, 1.0, 1.0, 1,0, 1.0, 1.0, 7image], [?image, 1.0, 1.0, 1.0, 1,0, 1.0, 1.0, 2sound, ?image}]

Figure 40: Running the tool (1)

wnd, ?irage}, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, »image, zsound], {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, ?imagel, {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, ?sound, 2image], [2ima i ;

5. You may have the results in a file by writing: (java TIOA_States >>

outputfilename) in the command line.

Windows:

1. All files should be placed in “C:/manar” directory.

2. Enter the TIOA information to the file called “input”. Note that the “input” file
has no extension. For writing TIOA description, testers must follow the format

mentioned in Chapter 3.

3. Open the file applet.html.

4. Click the required button for any results. For example, by clicking “Grid

Automaton” button, the Grid Automaton information will be displayed in the
text area. The Grid Automaton information is the Grid Automaton states with
their transitions’ information. See Figure 41 for the Grid Automaton

78



information of the small telephone system and Figure 42 for its Q set
information.

Last thing to be mentioned is that the user must follow the specific file format in

writing the TIOA description so that the tool can read the file correctly.

v Actesse | @3 C:ymanar\applet.htmi

Grid states are:

150

1 ) HRARRRERARENEHR Th e S GUICS EEERERRENREERN
die

0.0
Action and destination for the transifion

Figure 41: Running the tool (2)
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R

The MAZE Applet - Microsoft Internet Explorer

{0.5],10.5, 0.5, [?pickUp, 2digits}, [0.5, 0.5, D.5}, [PpickUp],
?pickiip, “digits, (.5} {0.5, 0.5, 0.5, 0.5}, [PpickUp, 0.5} 105,
0.5, 0.5, 0.5, 0.5], [Ppicklp, 05,051,105, 05 05 05,05 0.5}
Ppickip, 0.5, 0.5, 0.5 [05,05, 05,05, 0.5, 0.5 0.5} [?pickUp
05,0505 05,105 05 05,05,05 05 0.5 0.5 [?pickUp,
0.5, 0.5 0.5 0505, 10505,05,05,05,05,05, 0505

WD,OS 05,05,05,0505],{05 05 05 05,05 05,
£ NE 0R RNSNEORNE NG ORI

Figure 42: Running the tool (3)
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4.6 Conclusion

In Chapter 4, major design issues are introduced and solved. The tool has been
implemented in Java language and that is because of many reasons that were stated
earlier in this chapter. JavaCC has been used as a parser of our developed tool and the
grammar of TIOA specification has been also explained. The grammar is following
the same format that was introduced in Chapter 3. The tool has a simple user interface
and we showed how to use the tool by giving a scenario of its execution. Finally, we

validate our design by a checklist method.

In Chapter 5, we run many examples using our tool. We also validate some of the
results to ensure that the generated test cases are correct. We conclude with analyzing

the results.
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CHAPTER V: CASE STUDIES AND EVALUATION

Many examples are applied to our tool and it successfully detects many possible faults
especially with the real time systems that have number of clocks (3 to 5) with medium
time constraints. Four examples are described in this chapter with their results:
number of Grid Automaton states, number of NFSM states, number of the test cases
of the test suite one and two and the tool time response. The examples are applied
according to different granularities. That is because the granularity of 1/ (2+n) may
construct a very huge Grid Automaton with its information overhead. The tester can
choose the granularity, which can be 1 or the common factor between the bounds of
the time constraints. It is to be noted that the bigger the granularity is, the less the

fault coverage is.

5.1 Hypothetical Telephone System

The telephone system [51] is responsible of establishing the connection between two
parties after receiving the five digits as input from the first party. Figure 43 illustrates
TIOA description of the timing constrains for such system. It has five states and the
initial state is “Idle”. When the user picks up the phone, the telephone system outputs
the dial tone and initializes the clock to be equal to zero. As a result, it reaches the
“Dial Tone” State. The time from picking up the phone to the dial tone signal can be
any delay in the range [0, 1]. The total time to dial the five digits is any delay in the
range [0, 15]; otherwise the behavioral constraints are violated and not considered.
Moreover, the maximum delay between the dialing and the “connect” output is in the
range [0, 10], where the “Connect” state is reached and the connection is established.

One clock is used to evaluate the signal, the dialing time, and the connecting time. It
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is noted that the TIOA for the telephone system is deterministic in order to trace the
test cases. The results of the telephone system are shown in table 15. The machine
that we have run the tool on is Intel P4 2.0GHz, 512 MB RAM, Windows XP home

edition.

Figure 43: Telephone system (1)

Table 15: Telephone system results (1)

Tm7523s
1 85 51 71 112 Real:

0m09.90s
5 25 14 22 31 Real:

0.844s

The same telephone system may have other dialing-time requirements. For example,
the time between each successive pair of digits can be in delay in the range [0, 5].
Beside that, there is an error message if the total time to dial the ten digits is greater
than 19 seconds. In such system, TIOA description differs from Figure 43. To
represent the ten digits when they are dialed, Figure 44 shows the behavior of the
system in terms of 14 states with their transitions. The results are discussed in table

16.
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?pickUp

. !dialTon . 2digit1 2digit2
— Picked ————%0 p—— Dial —g—-PO . k<=5
=0 x=0 Tone / y<-19 y<=19 x=0
y=0 x=0
lerror
y=20
y=0
X:
?HangOff
y=0
x=0

Connect

lconite
0<=x<=10

Digit10

19
2digi .. 2digit9 2digit8 _
s g N Y i
y<= 19 O<=x<= J<=x<=

x=0 y<=19 y<=19

x=0 x=0

Figure 44: Telephone system (2)

Table 16: Telephone system results (2)

1250 12793 31814 Real:
643m54s

1 12012

5.2 Small Multimedia System

The TIOA presented in Figure 45 shows the behavior of the small Multimedia System
[52]. When the system is in the state “S1”, the system is waiting for an image as input.

When the image arrives, the system resets two clocks to zero and it moves to state
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“S2” waiting for the sound as a second input (?sound) at most 2 seconds after
receiving the first input (?image). If it receives a sound before the deadline, an
acknowledgment will be sent at most 5 seconds; otherwise, it will discard the received
inputs. At the end, after sending the acknowledgment, the clocks are again reset as an

output behavior. Table 17 shows the system’s results.

'reset

Figure 45: Multimedia system

Table 17: Multimedia system results

Real:
3m0317s

1 28 22 37 48 Real: 0m4.10s
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5.3 Media Synchronization Protocol

The media synchronization protocol [53] is a protocol, which is responsible of
synchronizing the real time continuous media such as video stream when the transfer
rate quickly changes. Figure 46 shows the behavior of that protocol. The states: “S0”,
“S17, “S4” and “S5” try to send data continuously at the fixed rate to the states: “S2”
and “S6”. Note that a, b, d, x, and y are constant parameters specified by designers

where:

1. The network propagation delay of sending a data may vary between the

66,2 g

minimum “x”” and the maximum “y”.
2. “d” denotes the maximum time necessary for preparation to play a video.
3. The decoding time of the received data such as MPEG encoded data may vary
between the minimum “a” and maximum “b”.
First, SO sends to S2 a video packet with a timestamp representing its sending time.
S2 starts to receive the data at time x1 and finishes to receive the data at time x2
where (x1+x <= x2 <= x1+y). Next, the system outputs a signal, which instructs to
start playing the video packet before x2+d. Then, it outputs a signal, which instructs
to finish playing the video packet after the necessary duration to finish playing [a, b].
After that, S6 carries out the above work continuously. Moreover, it synchronizes the
playing rate with the sending state. To do so, it sets the objective starting time for
playing the next video packet to time x3+w, where x3 is the starting time for playing
the previous video packet and w is a difference between two timestamps of the most
recent video packet and its previous one. If the actual completion time of receiving
data is earlier than the objective one (x6<x3+w), the system waits until the objective
time and then outputs the signal to start playing. Once again, TIOA description in
Figure 46 is deterministic, which has 5 clocks.
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?DataStart
x1=0 x2=0 x3=0 x4=0

?DataEnd
xl+x <= x2 <=xl+y

!FirstDisplayStart
x2<=x3 <=x2+d

!FirstDisplayEnd
x3+a <= x4 <= x3+b

?DataStart

x1=0 x2=0 x4=0x5=0
'DisplayEnd

x4+a <= x5 <= x4+b

?DataEnd

x1+x <= x2 <=xl+y
DisplayStart

x2<= x4 <=x2+d
x4<x3+w

Figure 46: Media synchronization protocol (1)

To execute the media synchronization protocol example and have the test suite, the
constant parameters must be specified with some values. If it is assumed that the
network propagation delay is not high where x= 5 and y = 15, d=10 and the decoding

time in the range from a=5 to b =30. One case can be the following:
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If x1=10

If x2=20

If x3=25

If x4=20

!DisplayEnd
25 <=x5<=50

?DataEnd
15<=x2 <=25

?DataEnd
15<=x2<=25

S6

G,
!DisplayStart

20<= x4 <=25

?DataStart
x1=0 x2=0 x3=0 x4=0

IFirstDisplayStart
20<=x3 <=30

!FirstDisplayEnd
30<=x4<=55

?DataStart
x1=0 x2=0 x4=0 x5 =0

Figure 47: Media synchronization protocol (2)

Then the results for such protocol are as following:

11967

2926

Table 18: Results of the media synchronization protocol (1)

2271

Real:320m1365s

232

153

210

225

Real: 9.062s

Another assumption can be when the network propagation delay is higher than before

where x= 60 and y = 100, d=10 and the decoding time in the range from a=10 to b

=40. Figure 48 shows TIOA description of such protocol:
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?DataStart
x1=0 x2=0 x3=0 x4=0
If x1=10 e
?DataEnd
70<=x2<=110
If x2=80 @
IFirstDisplayStart
80<=x3 <=90
If x3=85 e
IFirstDisplayEnd
= 95<=x4 <= 125
?DataStart
If x4=85 Xl=0 X2=O X4=O XS =0
!DisplayEnd
95 <=x5<=125
?DataEnd
70 <=x2<=110
!DisplayStart
80<=x4 <=90

Figure 48: Media synchronization protocol (3)

Then the results for such protocol are as following:

Table 19: Results of the media synchronization protocol (2)

Real: More than one day and there is no
test cases.

5 649 499 861 902 Real:
2m8143s
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5.4 Railroad Crossing System

In the railroad system [54], [55], [56] shown in Figure 49, more than one train can
cross a gate simultaneously, through multiple parallel tracks. According to the train’s
destination, the train can independently choose the gate it will cross. Each gate is
controlled by one controller, which must be active all the time to close and open the
gate for the trains. Two kinds of objects are determined in such system: environmental
objects and system object. The environmental objects include: trains and gates. The
system object is the controller. The trains are interacting with the controllers through
sensors (many —to-many relationships). The controllers are communicating with the
gates through actuators (one-to-one relationship). Two properties must be satisfied in
the railroad system: the safety property and the liveness property. The safety property
is that the gate remains closed whenever there is a train inside a crossing. The liveness

property is that the gate eventually reopens when the last train leaves the crossing.

Controller

Figure 49: Railroad crossing system
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The timing assumptions for the railroad crossing system are as following:

» A train (Figure 50) enters the crossing within an interval of [60, 120] seconds
after sending a (!Near) message to a controller informing that it is
approaching. A train then informs the controller (by sending (!Exit) message)
that it is leaving the crossing within 180 seconds of sending the approaching

message.
!Near
Idl '
© x=0
. n
tExit 60<=x<=120
0<=x<=180

< Leave 20ut

Figure 50: Train

> A gate (Figure 51) closes within 60 seconds after receiving the instruction
(?Lower) from a controller. A gate then triggers the opening event (!Up)
within an interval of 0 to 60 seconds after receiving the instruction (?Raise)
from a controller.

pened

y=0

<g\ ?Lower

Down

Up O<=y<=60

0<=y<=60

Closed

Rt
< 7Raise
y=0

Figure 51: Gate

91



> A controller (Figure 52) instructs the gate to close within 120 seconds after
receiving an approaching message (?Near) from the first train entering the
crossing. A controller then instructs a gate to open within 120 seconds after
receiving an exiting message (?Exit) from the last train leaving the crossing.

Lower

'Raise O<=z<=120

O<=z<=120

7Exit
z=0

Monitor

Deactivate

Figure 52: Controller

It is noted that the railroad crossing system is composed of three deterministic TIOA
descriptions, which have the shared events between them. The system uses three
clocks to keep a track of the timing constraints. The results obtained from the tool for

each TIOA are mentioned in the following three tables:

Train:

Table 20: Train results

v 1208 | 1084 1929 3247 Real:

5h22m58.6s
1 608 544 969 1627 Real:

1h48m29.2s
2 308 274 489 817 Real: 1m41s
5 128 112 201 331 Real: 3.781s
60 18 13 25 34 Real: 0.813s
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Gate:

486

Table 21: Gate results

729 1335 Real: 14m40s
248 246 369 675 Real: Im2s
128 126 186 345 Real: 3.734s
56 54 81 147 Real: 2.906s
12 10 15 26 Real: 0.485s

Controller:

Table 22: Controller results

o

2655

Ya 968 1449 Real:
1h4m045s
1 488 486 729 1335 Real: 8m48s
2 248 246 369 675 Real: 1m125s
5 104 102 153 279 Real: 3.047s
60 16 14 21 37 Real: 0.828s
5.5 Results Validation

Before analyzing the results we have obtained from the tool, the validation step is
necessary to be done in order to ensure that the generated test cases from our tool are
correct. The purpose of that test result validation is to determine whether the trace of
mteractions observed during a test satisfies the requirements of the reference
specification. This result, sometimes called verdict, which is not easy to be obtained
in general; one sometimes refers to an Oracle to provide an answer. As it is shown in
Figure 53, we have the test cases as a result of our tool and the starting point for the
conformance testing is the definition of the conformance relation between an IUT and

the specification. Does the implementation confirm to its specification? As it was
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explained earlier in chapters 1 and 2, the environment behaves according to the
specification reference and by observing the implementation reactions (observed
outputs) to the applied inputs; we can compare them with the expected outputs of the
specification within the allowed time interval. Accordingly, in Oracle the test cases
are first applied to the TIOA specification to obtain the expected output. They are
then applied to the IUT to derive the observed output. If the observed output is equal
to the expected output then the TIOA specification and the IUT are conformed,

otherwise the fault is detected in the implementation of the system.

Test suites

TIOA Specification

Expected Output Observed Output

Are they
conformed?

No | es

Qault is detected) (Conformed )

Figure 53: Oracle methodology

Let’s validate the obtained test cases from the multimedia system (see Figure 54 and

55). The TIOA specification of the multimedia system was introduced in 5.2 section.
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The MAZE Applet - Microsoft Internet Explorer

C:\manarlapplet.html

? .25, U 25,0.25, ?sound], [?image,
25 ?sound, ‘?lmage] [‘?lmage 0.25, 7sound, ?sound],

25 025 % 25,0, 25 0.2

Figure 54: Test suite one of the multimedia system

Figures 56 and 57 show two faulty implementations. The implementation in Figure 56
has an output fault in location S2. It doesn’t respond with the output /error after the
application of the input sequences {?image.?sound. % }. This input sequences is
obtained from the test suite one (Figure 54, the shaded test case), which produces the
expected output {/error&resetXY.-.- } that is not conformed to the observed output {-
-lackAll }. Therefore, the output fault is detected in the faulty implementation

(Figure 56).
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C: '1rnanar'l,app|et html

17sound, 0.25), {?image, 0.25, 0.25, ?image, ?7sound], [0.25,
0.25, 0.25, ?image, ?sound}, [0.25, 0.25, 0.25, ?sound, ?image),
[?image, 0.25, ?sound, ?image, 0.29], [?image, 0.25, ?sound,

10.25, ?image], [*image, 0.25, ?sound, 0.25, 0.29), [?image,
0.25, ?sound, 7sound, 0.25], [?image, 0.25, 0.25, 0.25, ?image,

7sound], [0.25, 0.25, 0.25, 0.25, ?image, ?sound), [0.25, 0.25,

und, 0.25, 0.25], [?image, 0.25, 0.25,
image, 0.25,0.25, 0.25, 0.25, 7ima &

Figure 55: Test suite two of the multimedia system

Moreover, the implementation in Figure 57 has a transfer fault in state (S4, x= 1, y=
%2). Indeed, after the sequence {?image. % . % .?sound. % .?image} , which is
obtained from the test suite 2 (Figure 55, the shaded test case) , the expected output
that is derived from the TIOA specification is {-.-.-./ackAll lresetXY.!error&resetXY}
which is not conformed to the observed output {-.-.-./ackdll. !resetXY.- } that is
derived from the implementation. Therefore, the fault is detected where the faulty

implementation enters the state (S3, 0, 0) instead of the state (S1, 0, 0).
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Ireset

Figure 56: Multimedia system with output fault

lerror

Figure 57: Multimedia system with transfer fault
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Other faults that can also be detected using the generated test cases of our tool are the
time constraint widening and restriction faults. The implementation of Figure 58
enlarges the time constraint of the transition from S2 to S3 on input ?sound when the
value of clock x is less than 3. Contrary to the specification, this implementation
accepts the input ?sound even when the value of clock x is between 2 and 3. The input
sequence: {?image. Y4 . %. % . Y% . % . % . % . Y% . % 7sound} , which is obtained from
the test suite one, detects such fault type. The expected output is {-.-.-.-.-.-.-.-.-.-.- }
that is not conformed to the observed output {-.-.-.-.-.-.-.-.-.-./ackAll}. The faulty
implementation enters the state (S4, 2 %, 2 %) instead of the state (S2, o, o). The
same test case can detect the time constraint restriction fault if the implementation

restricts the same time constraint to make the value of clock x is less than 1.

reset

Figure 58: Multimedia system with time constraint widening faults
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Finally, the test cases that are generated from our tool are also able to detect the reset
clock faults. We also consider the TIOA of the multimedia system in 5.2 section. The
implementation in Figure 59 doesn’t reset the clock x with the transition from S1 to
S2. The faults related to a reset of a clock change the ordering between clocks in the
implementation. In our case, the implementation in Figure 59 changes the ordering
between clocks x and y since the specification requires that the clock x must be not
greater than the clock y in location S2. It also decreases the number of the reachable
states. The input sequence: {4 .?image} , which is obtained from the test suite one,
detects such fault type. The expected output is {-./error&resetXY} that is not
conformed to the observed output {-./error&resetY}. The faulty implementation

enters the state (S1, %, 0) instead of the state (S1, 0, 0).

Figure 59: Multimedia system with reset clock fault

5.6 Results Analysis

By analyzing the obtained results in the tables introduced in the previous sections in

this chapter, we noticed the following:
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o Even if the sampling algorithm is exponential on the number of the clocks and
the constants used as bounds in the time constraint, the tool remains scalable with the
real time systems of most two clocks, medium integer constants and the granularity of
1 and it generates the test cases in less than 20 minutes.

o If the tool is applied with the real time systems of three clocks to five clocks,
which is the rare case, and large integer constants, then the test cases are generated
and executed in more than 5 hours. Otherwise, it may take days to have the test cases
for the real time systems with the large number of clocks and the integer constants.

« For any input transition, there exists at least one test case that covers the time
space of the transition.

« The tool is also used to derive the timed test cases for the real time systems
specified as a set of communication TIOA [57]. This serves testing the embedded real
time systems. All the parts of the complete or the partial product of the system are
composed to be tested. Refer to the example of railroad crossing system in 5.4
section.

« The most time execution is spent on generating Q set and the test suite two. For
example, when Dijkstra algorithm [47] is applied for NFSM whose states’ number is
larger than 1000 states, then each state is checked with the rest of the 999 states to
find the shortest distance for that state.

o Itis to be noted that when the granularity of 1 is used instead of 1/(2+n), then the
test cases are approximately reduced by (1-(1/(2+n))). The bigger the granularity is
chosen, the fewer the test cases are generated and the less time is needed to generate
them.

«  Whenever there is a clock reset, there are more generated states. For example, the

telephone system (2) has a reset action for “x” clock in many transitions. This leads to
new states with different locations where x is equal to zero and y has different values.

5.7 Conclusion

In this chapter, we run the tool on many examples such as the telephone system, the
multimedia system, the synchronization protocol and the railroad crossing system.
The tool detects successfully many possible faults as we have seen in the multimedia
system, using the oracle methodology to validate its generated test cases. Finally, we

have analyzed the results and made our conclusions on the developed methodology.
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CHAPTER VI: CONCLUSION

Real-time systems are more challenging to test than non-real-time systems. A number
of design decisions affect the testability of the real-time system such as the parser,
choosing an algorithm... etc. Our tool is efficient enough to produce the required test
cases by applying a method, called Generalized Wp-method. In order to generate the
test cases, the tool is divided into four parts. Firstly, the parser, which parse TIOA file
and match the real time system information to its corresponding data structure in
TIOA_States part, which is the second part of the tool. Thirdly, Grid_States is the part
that is responsible for sampling TIOA in order to construct the Grid Automaton
according to certain granularity determined by the tester. The granularity can be 1/2,
1/n+2, 1 or a common factor between TIOA time constraints. Finally, to have a good
coverage of the potential faults in a timed system, NFSM_ States is the part that takes
care of transforming the Grid Automaton into NFSM and minimizing NFSM. It then
generates the test cases based on the state characterization sets and optimizes them.
We have run the tool to various examples with different sizes of states, clocks and
time constrains. The tool successfully generates the timed test cases many examples.
Even if the sampling algorithm is exponential on the number of the clocks and the
time constraints, choosing the proper granularity and minimizing NFSM are factors
make the tool scalable. The tool is also powerful to derive the timed test cases for a

set of communicating real time systems.

Future Work
To improve our software tool there are some features that can be implemented in the
future such as the transformation of NFSM into ONFSM. The tool can also be

expanded to deal with non-deterministic TIOAs. Moreover, there are many design
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patterns [39], which can be used to increase the efficiency of our tool such as MVC
architecture, etc. It is also a good idea to implement the tool in C++ to increase the

tool performance in terms of time response.

The tool must also have user interface, which achieves the security requirements. This
user interface must have the activity logging and the management access. Certain

people must use the tool and each user has limit rights of using the tool.

Lessons learned

In summary, we have also learned new things while developing our tool to test the
real time systems. We are excited by this modest achievement. The integration of our
tool can leverage the real-time systems and provide us with new and fertile research
ground while addressing the information explosion, a very real and important task. In
addition, documenting the tool [50] is a very important task especially that the readers
refer to the documentation rather than the code. The clearer the documentation is, the
more benefits come out of it in terms of product improvement and maintenance. We
referred to IEEE standards [33] to make sure that many specification and design
issues are covered. Moreover, UML is used to describe the structural and the
behavioral model of the tool. Rational Rose was the tool for drawing the UML
diagrams. We have also learned more concepts about the graph theory, compiler
theory, applets and Java Language. It is nice experience to deal with many examples

and generate their test cases through our tool. It has been deeply analyzed the

importance of the tool results to the real time systems.
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APPENDICES

Appendix A
Parser Structure
//Structure of Transition method
TIOA_Transition Transition() :
{
Token t;
TIOA_Transition myTransition;
String Dest;
String Action;
}
{
< Desti >
t = <Others>
{Dest = t.image;}
t = <Others>
{Action = t.image;}
{myTransition=new TIOA_Transition(Dest, Action, null , null);}
{return myTransition; }
}
//Structure of constraint method
Vector constraint() :
{
Token t;
String name;
String oper;
int bound;
Vector CONSTSs;
TIOA_Constraint constr ;
}
{
{CONSTs = new Vector();}
< CONSTRAINT >
(
t = <Others>

{name = t.image; }

t = <Others>
{oper = t.image;}

t = <Others>
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{bound = Integer.parselnt(t.image);}

{constr = new TIOA_Constraint(name, oper, bound);}
{CONSTs.addElement(constr); }

)+
{return CONSTs;}
}
//Structure of reset method
Vector reset() :
{
Token t;
String CLK;
Vector CLKs;
¥
{
CLKs = new Vector();}
<RESET>
(
t = <Others>

{CLK = t.image;}
{CLKs.addElement(CLK);}
)aa
{return CLKs;}
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Appendix B
Activity Diagrams for a Concrete Context
Sampling Activity Diagram

The activity diagrams below are used here to understand and model the operations of

all main algorithms across a concrete context of the following TIOA:

Figure 60: TIOA with one clock

The flow of activity of Sampling Algorithm (Figure 61):
When the Parser stores the information of the file to its corresponding data structure
of TIOA, TIOA is then sampled to Grid Automaton. The following activities are

taken into considerations:

1. The number of the clocks is obtained, which is one.
2. The granularity is calculated, which is 2.

3. The first grid state is the first TIOA state “10”. In addition, It has the clock
information to identify the grid state: a clock name x and a clock value of 0.

4. Adding that state to reachable_states.

5. Extracting a state from (reachable_states - handled_states), it is again the
initial state (10, 0).

6. Adding the transition information to (10, 0). Two kinds of transitions are
added, the input transition and the delay transition.

7. The destinations of the transitions are added to reachable_states which are
(11, 0) and (10, %%).
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8. Adding (10, 0) to handled_states, since we are done with that state.

9. Again, extracting another state from the set (reachable states -
handled_states), which is (11, 0).

10. Adding the transition information to (11, 0).
11. The destinations of the transitions are added to reachable_states, which are
(10, 0), (11, '2). However, (11, %) is only added to reachable_states since
(10, 0) is already there.
12. In the same manner, the other states and their transitions will be added to
Grid_States.
One thing to be mentioned is that the state (10, 1) will not have an input transition
since the bound of the time constraint is one as it is shown in the Figure 60.
Therefore, its delay transition has a destination of (10, infinity). (10, infinity) has also a

delay transition to itself. Finally, the algorithm stops when set (reachable_states -

handled_states) is empty.
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Figure 61: Sampling activity diagram
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Transforming Activity Diagram
The flow of activity of Transforming Algorithm (Figure 62):
When Grid_States is constructed, then it is transformed to NFSM_ States object. The

transformation actions are as following:

1. Getting the first grid state from Grid_States object and make a new NFSM
state that has the same location and the clock information of that grid state.

2. For each transition of that grid state, if it has an input or a delay action and if
its destination has a transition that have an output action, which starts with !,
then make a new NFSM transition. In our case, (10, 0) has ?In as input action
and it has a destination (11,0) whose transition has the output action !Out to
state (10,0), then the new NFSM transition is from (10,0) to (10,0). Another
NFSM transition is from (10, 0) to (11, 0), whose action is ?In|-.

3. Another new NFSM transition, which also must be added, is the delay
transition from (10.0) to (10, %), which has ¥ as input action and without any
output action.

4. For the rest of the grid states, their corresponding NFSM states are created
with the same location and clock information. As well as their input
transitions and the delay transitions are added to them.

5. After finishing with the input and the delay transitions, the action of the reset
clock must be checked for each state whether or not it has a destination with
a clock value of zero. In case of (10, 0) NFSM state, it has two destinations
with x = 0, therefore, they must be added to the output action in the related
transitions. The same is done for the states (10, 2), (10, 1) and (10, infinifty).
Each of them has two destinations with x=0, which are (10, 0) and (11, 0).

6. Finally, to make NFSM_States object more specified, each state must have
all inputs, which starts with ?. Checking each NFSM state, (11, 0), (11, 72 ),
(11,1), and (11,infinity) are the states, which must add NFSM transitions
whose action is ?In|-. These transitions goes their states.
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don't have:input action startwith ?

state(i1,0)

V
new NTFS M transition of destination (11,0) with
?In-input action-and no output action

continue.irthe same mannerfor ﬁ

states? (11,1/2),:(11:,1), (11, infinity),
(10..infinity)

Figure 62; Transformation activity diagram

113



Minimization Activity Diagram

The flow of activity of Minimization Algorithm (Figure 63):
When Grid_States is transformed to NFSM_States, then NFSM_States must be

minimized before generating the test cases considering the following activities:

1. NFSM_States must be checked whether or not it has equivalent states. We go
through each two states, which have different locations but the same clock
information, and check if they have the same transition information. If yes,
then the equivalent state is removed after attaching its input to its next state
(destination). In our case, [(10,0) ,(11,0)], [(10, '%2 ) ,(11, %)}, [(10,1) ,(11,1)] and

[(10,infinity) ,(11,infinity)] are the states, which must be checked for the
equivalence.

2. States: (10, 0) and (i1, 0) are not equivalent since their transitions have
different information from each other.

3. Repeating the same procedure for the rest of the states, we noticed that the
NFSM_ States object is already minimized.

foreach two states that. L.
have differentlocations -
but the same time; they
mustbe checked if they
are equivalent

< ‘EqualiStates[(10,0),(11,0)}= false )

< quaIState's[(IO,1‘/2),(11 A12))= false >

< - EqualStates[(I0,1),(11,1)]= false >

< EqualStates[(i0;infinity),(11,infinity)]= false >

Figure 63: Minimization activity diagram

114



Test Cases Activity Diagram

The flow of activity of Test Suite One and Test Suite Two Algorithms (Figure

64):

Once the NFSM_ States is minimized, then it is ready to obtain the test cases from it

as follows:

1.

To generate the first test suite, Q set must be obtained by calling its function
and W set must be obtained by calling its function. As a result of
concatenating Q with W, the test suite one is generated.

Next is generating the second test suite, R set is obtained by calling its
function. For each element in R, find its corresponding reachable state from
the initial state of NFSM by applying the same sequence of inputs of R
element and then calculate Wi for that reachable state. As a result of
concatenating each R element with its Wi, the test suite two is generated. In
our case, the first element of R is [?In, ?In] and its corresponding reachable
states are (10,0) and (11,0). When [?In, ?In] is applied from the initial state of
NFSM which is (10,0), first input ?In leads to two reachable states (10,0) and
(11,0) and applying the second input ?In to these two states leads to the same
reachable states (10,0) and (11,0), which are number 1 and 5 from the states.
Now calculating W1 of state (10,0), which is ?In, and calculate W5 of (11,0),
which is ?In. By concatenating R element [?In, ?In] with W1 and W3 [?In],
the result is [?In, ?In, ?In]. Repeating the same procedure to the rest of R
elements to obtain the second test suite.
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« getQ Set: .
{0 [2in] [1/2]!',[7h,'1l2],,l1/2, 172 120112, 1/2].[1 12,412,112} [?n, 172, 1/2,1/2]]

Dijkstra algorithm . 1
is:appliedito.getQ. - :

W Set
e

Test Suit One ‘ : 9
s QW [2nLE 2] 12,20 2 42,720, [112, 112,

et Test suitone:

2hnL (20 402, 1220111720242, 20), [0, 112, 1/2,1/2,240]]

)

C

get R Set:{[?in; 2in], {0:5; 2], [?h,
70},[0.5,0.5.05,0.5], [2h, 0.5,0.5,0:5,2h], 17, 05,0.5,0.5, 0.5]

05, %], [0.5, 0.5, 7], 12, 0.5, 0.5, 21}, [0.5, 0.5, 0.5,

)

Test Suit Two is RWi by getting
WiforeachelementinR

S A
B’ ( Ty

(W1, W5) =[?h,'?F.§F1’>

second [0.5, 7hn}
elementof R

v
WA W5 =105, 2in, 2in] >

[trird element
of R e

PR 05, 7
b 05

S A—

W1 W5 W8 )Ei"a>
5,270

0.5,

fourth'element!
ofR

12[05;0:5,7h,2h]

\'4
05, 2hL (W1 WS =

manne
lem

contiruing in the same
r for the rest of R

-5,
(h], [0.5;0.5,0.5,7h, 7] [05,05,0.5,05,

get Testsuit Two: {2k, 2, 2h], [0:5, 2, 200, [24n, 0.5, 2,

71105 0.5, 70, 76, [N, 0.5, 0.5, 7. 7

21n]
2% P, 0.5,0.5:0:5, 2In,?1n}, [210,.0.5,0,5, 0.5, 0.5, 2]}

Figure 64: Test case

Q Activity Diagram

®

s activity diagram

The flow of activity of Q Algorithm (Figure 65):

How to get Q set, which is necessary fo

following actions:

1. Initially, the settledNodes contains
contains the state (10, %2 ). When
Then putting it in settledNodes.

2.
instead of infinitiy.

3.

r the test suite one, is explained in the

the state (10,0) and the unsettledNodes
extracting the minimum distance from
unsettledNodes, (10, %) is chosen since it is the only one in unsettledNodes.

Relaxing its neighbors means that each adjacent state to (10, %4) is included to
unsettledNodes. They are (10, 1) and (11, 0). Note that (10, 0) is a neighbor but
it is not added to the set since it is already settled. Then set the predecessor of
(10, %) to be mapped to (10, 0) and set the shortestDistances to be mapped to 1

Getting the next minimum distance from unsettledNodes which is (10,1). It
can also be (11, 0) since they have the same value of distance which is infinity.
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4. Relaxing its neighbors after adding it to settledNodes set. Its neighbor, which
is not settled yet, is (10,1%% ). Set the predecessor of (10,1) to be mapped to (10,
14) and set its shortestDistances to be mapped to 2 instead of infinity.

5.  After we are done with all states. We go again over NFSM states. For each
NFSM state, we get its predecessor in order to get the input action and store it
in a vector. Let’s take the case of (10,1) state. Its predecessor is (10, 72) and
therefore the input from (10, ¥2) to (10,1) is stored in the vector, which is 72 .
We have to get now the predecessor of (10, '2) which is (10,0). The input from
(10,0) to (10, %2) is also stored in the same vector, which is %2 . The vector
contains the input sequence [ 2, % ] and reversing it means having the same
vector. Finally, this vector is stored in Q vector to represent one element of Q
set.

6. Repeating the same procedure to the rest of NFSM states.
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get a hon-initial
NTFSM state (10,1/2)

\
< unsettliedNodes=(10,1/2) >

not empty relax_neighbours.of (10,1/2)

while unsettiedNodes is BI <setﬂedNodes-—(IO 10),{0,172)

Bi N
fonihbisid < ineedNodes=(0 110 01 predecessmm T2100) >

shortestDistances(10,1/2)=1

N
while unsetiiedNodes is '5‘ <settledNodes=(l0.0).(10.1/2),(10,1) >

notempty relax_neighbours of (10,1)
shortestDistances of A
Lo unsetiedNodes=(11,0),(0.1) predecessor(l0,1)=(0,1/2)
(0,1) ‘mﬁmtiy =2 < : shorte,stDistances(10 1)=2

settledNodes=(10 0) (10:1/2),(10,1),(11,0)
relax nelghbours of(11,0)

shortestDistances of - 1 4
{11,0)=infinitiy > 1 unsettiedNodes=(11,1/2),(10,1) predecessor(1,0)=(0,0)
. TSR TR : shortestDistances(11:0)=1

Pl

settledNodes=(11,1/2),(10,0),(10,4/2);(10,1);(11,0)
relax neighbours of (11,1/2)

unsettie dNod es=(10,1),(11,1) predecessor(il,112)=(1,0)
shottestDistances(11;1/2)=2
T
continuing-in the same mannerfor the rest
NTFSM states tilithe unsettied Node's is-empty

getting the predecessorof (10,1/2) which.is (10, D
0) and-then getting the. input action from (10,0) to o (R I7] For each NTFSM state,
(0,172 whichis 12 < =MA20 Y find the Q

getting the pmdecessorof(ﬂ 0)wh|ch is.(10,0) D

and then getting the input action from (IO O)to .
0) whichis ?in £

Q=(([1/2}7in]}

1)getting the pdecessor of (10,1) whichis (10,1/2).
2)geting the inputfrom(0,1/2) to (10,1) whichis 1/2 .
3)getting the predecessor of (10,1/2) which is'(10,0) ( Q=012 n72,12)) )

4)getting the input from(10,0) 1o (11,0) which is 1/2
5) the reverse order of inputs is [1/2,1/2] e l

continuing in the same manner for the
rest of NTFSM states to get the: Q set

' QSet:
<[[I, [2In). [1/2], [2In, 1421, 102,420, 1200, 112, 1/2L[1/2, 112,112}, [2n, 112, 1/2,112]] >

®

Figure 65: Q activity diagram
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Wi Activity Diagram
The flow of activity of Wi Algorithm (Figure 66):
How to get Wi set, which is necessary for obtaining the test suite two and W set, is

explained in the following actions:

1. For each NFSM state, we go through the input vector to find an input element
that is applied to other states, which have different locations but the same
clock information, gives different output. Starting with an input: ?In, (10,0)
and (11,0) two states, which have different locations but the same time: x=0,
have different outputs: !Out&resets and !Out.

2. Repeating the same procedure to the rest of NFSM states. It is noticed that the
input: ?In, when it is applied to the rest of states, is sufficient to give the
different output.

In case if the input vector doesn’t have any element that gives different outputs, then
the input vector is concatenated with itself to have new input elements: [[?In, ?In],

[?In, %2 1,[ %2 ,2In], [ Y2, ¥ ]]. Again the same method is applied to the states in order

to find one input element that gives different outputs.

check foreach the input -
NTFS M state if ~ vector=[?In,1/2
?in action gives X -
different output: T getaninput
element{?in]

when (10,0)is-checked wnthB
(11,0); ?n-is glvmg different Witi=21n

o-utputs.
R
W2=7n >

when (10, 112)|s checked D
with (11,1/2).? In.is.giving
different outputs:. o

{when (10;1)is checked withDy

(H1), 2Iniis glvmg different
outputs.

when (10 infinity)is EDN
checked with (11 infinfity ),
2nis giving:differe ..

Figure 66: Wi activity diagram
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