Using Web Services for Application Development in Internet Telephony:
A Case Study on Conferencing in SIP Networks

May El Barachi

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montréal, Québec, Canada

March 2004

© May El Barachi, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91023-7
Our file Notre référence
ISBN: 0-612-91023-7

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

ABSTRACT

Using Web Services for Application Development in Internet Telephony:
A Case Study on Conferencing in SIP Networks

May El Barachi
Applications offered to end-users as value-added services are a critical element for the
success and the survival of Internet telephony service providers. Some service creation
frameworks have been proposed by IETF while alternative frameworks have been
proposed by other forums such as Parlay and JAIN. All these frameworks have several
drawbacks which may be solved by the use of web services. Web services are self-
describing, modular business applications that expose the business logic as services over a
network, generally, the Web. This thesis presents a case study on the use of web services to
develop conferencing applications in SIP networks. The case study involves the definition
of comprehensive web service interfaces that make conferencing capabilities available to
developers. It also involves the implementation a sub-set of the interfaces as a gateway
using SIP servlets, the development of two applications using the interfaces, and
performance evaluation. The applications we have developed consist of dial in and dial out
audio conferences. The interfaces proposed offer a level of abstraction that is higher than
what the standard frameworks provide. In addition, their use does not require a background
in telephony or telecommunications. This could allow developers who are new to the
telecom field, to easily integrate conferencing capabilities to their applications.
Furthermore, a considerable reduction of the application footprint is achieved. This
reduction saves time and effort for application developers. These benefits make web

services an interesting approach, despite the overhead introduced.

il

ACKNOWLEDGEMENTS

I would like to express my gratitude for my supervisors Dr. Rachida Dssouli and Dr. Roch
Glitho for their patience, guidance, and great support. Dr. Dssouli, you are an example to
all of us, and your dedication and kindness are truly unique. Dr. Glitho, your motivation
and guidance are what pushed me to go through this research. Despite your busy schedule,

you are always there for your students. Thank you for teaching me so much.

- T would also like to thank all my team mates who worked with me in the TSE research lab.
All of you have been such a great company and of great help when I needed you. I wish
you all the best of luck. Many thanks to the SINTEL team members who provided me with

invaluable resources and support.

I would also like to acknowledge funding from the Concordia Research Chair in

Telecommunications Software Engineering.

Words are not enough to express my gratitude to my parents and my brother who always
encouraged me to push my limits and have confidence in myself and my work. To my
husband Amir and my daughter Yasmine, you are the light of my life. I am blessed to have

both of you.

v

TABLE OF CONTENTS

LIST OF FIGURESoootie ettt ettt ent st nsnnssanssnsssas bt viii

LIST OF TABLES ...ttt ettt sete b st es e sesebsea b sassre s sbesbasbnsnbebaeas X

LIST OF ACRONYMS AND ABBREVIATIONSccocriiiirinirtieieiee e, Xi

CHAPTER 1 : INTRODUCTION......cooiiiieiieie ettt saesnsssasssse s sae s 1

L1 OVEIVIEW ettt sttt et et ere s s s ssesaesat e st e se e sanesan s b e s b s saase e e nassaneas 1

1.2 Purpose of the THeSIS.......eccvireiieiiereeieeteeeicce et 3

1.3 Organization of the ThesiScccevieriiiirniiiininiin s 4
CHAPTER 2 : REVIEW OF CONFERENCING MODELS, SIP, AND WEB

SERVICES ...ttt sttt et ettt e se e st sb e sresanesnnsae e 5

2.1 Conferencing MoOdelS.........ccceeviiiriieiiennieeiinrersee et 5

2.1.1 The End System Mixing Modelcccoceeininvinninininnniinn 6

2.1.2 The Full Mesh Model..........ccceeieieriinincinicniieiciicecinicsercneeanens 7

2.1.3 The Multicast Model...........ccceemieriiiiiinieciieccrecccse s 7

2.1.4 The Centralized Model..........ccccooeviimmieniiiiniiiinieceieeree e 7

2.1.5 DASCUSSION...eirueiirireriierieieiee et et e ste e b eeeeesre e bt e sbsesaae st s sbe s sbs s b e s eraoes 8

2.2 The Session Initiation Protocol.......c.cceceveevieeninineniciiiinninies 9

2.2.1 SIP Main CharacteriStiCs......ccvuirvverrrerrreneerireeereeesesssisesnesssesieessnessnens 9

2.2.2 SIP ArChItECIUIC....eciviieiieiieireeitteseiesreieeeeeeeveesreeseeesreeeeeeeneresmnrennis 10

2.2.3 SIP MESSAZES ..ccevuveieiuiieeeireeniieisiee st tre st st s 11

2.2.3.1 Header Fields........cccoeouienieniiiniinerccnicnicinnncnis e 12

2232 Message Bodyccceoerviniininiiiiiiiccin e 13

2.2.3.3 Request Methodscccocveeiiveniiiiieiiiiiniiicicinceeenne 13

2.2.3.4 Response Codes.......cccerriirrrenrenrenneeniiiiieeisnenncaneae 14

2.2.4 Alternatives to SIPccveverieiiiiieieeeecenr e 15

2.3 WVED SOIVICES ceerieriririiirreeieetereeereeeretteeeesseraareness e sesisbtebtesttessessesissasnransasenesss 16

2.3.1 Web Services Main Characteristics........occeruerrreerieecsierneeinecnninnnennnns 16

2.3.2 The Web Services ArchiteCture........cevveevreeneerrcceiniiinienicnnienneenennee, 17

2.3.3 The Web Services Development Lifecycle ... 17

2.3.4 Expected Benefits of the Web Service Technologyccocceveninne 18

2.3.5 Examples of Web Services Application Domains..........c.cocceevervevrennene 19

v

CHAPTER 3 : CONFERENCING IN SIP NETWORKS: STATE OF THE ART........... 20

3.1 The Standard Service Creation Frameworks..........cccccocvviivinvinininniiniininninnns 20
3.1.1 Signaling Protocol Neutral Frameworksccccovvviiiienniinininnnnnn. 20
3.1.1.1 The Call Processing Language...........ccccevververriiiiinirnnnceniennn. 20

3.1.1.1.1 The Language Requirementsc.cccovevrerurnn 21

3.1.1.1.2 The Key Features........c.cccccceveveriinirinninnnnnnnnnne. 21

3.1.1.1.3 The Language Primitives..........c.ccooervvvirvreinnens 22

3.1.1.1.4 Pros and Cons........ccocevvueinvinnnininninnnnennicineann, 23

3.1.1.2 JAIN’S JCC/ICAT ..ottt 24

3.1.1.3 The Parlay/OSA APIcccceveviiiirenerreeceneeerecnne 25

3.1.1.3.1 The Parlay Business Modelccceuevviirnnnne. 25

3.1.1.3.2 The Parlay APIs......ccccceervirviininicnnininiicninnne 26

3.1.1.3.3 Pros and Cons......c.cceveevereviienieiiinecninniennnennenns 28

3.1.2 Signaling Protocol Specific Frameworkscccccccivvvecrnriniinicnnnnnnen. 28
3,121 SIP CGIL ittt 29

3.1.2.1.1 Basic Operation of SIP CGI........cccevurvivninnnnnnne. 29

3.1.2.1.2 Pros and Cons......ccceeveerviervireinnrenninnnnireenecnnnn 30

3.1.2.2 The SIP Servlet APL.....c.cccccevvieiiiiiniiniicniinnenrnenn 30

3.1.2.2.1 The SIP Servlet API Architecture.........c.cccvenene 31

3.1.2.2.2 Processing SIP Messages........cocevvevrivniivurnunnn. 32

3.1.2.2.3 SIP Servlet Operation Exampleccccceuenene. 34

3.1.2.2.4 Pros and Cons......cccoceercereermreneeiiinnnieicnnsnneecnnnens 35

3.2 The Emerging Service Creation Frameworksc..ccccoocevinninininnniinn 37
3.3 CONCIUSIONS 1eeiuviiiiiierieitieieeitesite ettt sbe s b b e b e sa e st sasssaesnaesasesanes 37
CHAPTER 4 : THE CASE STUDY COMPONENTS.......cocoiviiiiiiniiiiiiiireeiens 40
4.1 TNOAUCHION .revveviieeiieteteriect sttt ettt n e esesae b e b sa s bssan s 40
4.2 The Gateway and the ServIets...........ccceevieieriinrnnienicii e 43
42.1 The New Web Service Interfaces........ccccocevvvervvnivcinniiinniinninnnninnnn, 43
42.1.1 Methods Specific to the Dial-out Conferencing Model......... 44

4.2.1.2 Methods Specific to the Dial-in Conferencing Model........... 46

4.2.1.3 Methods Common to Both Models.........cccceeerniiriiinininenneen. 47

4.2.2 Mapping the Application Function Calls onto SIP..........cccccceernvinnene. 49
4.2.2.1 The General Mapping Strategycccoeeviriirinnnieniniinnnnns 49

42.2.2 Detailed Mapping of the Dial-out Functions.............c.ccue..e. 52

4.2.2.3 Detailed Mapping of the Dial-in Functions...........c.ccocceuerunin. 58

4.3 The Mixer and the SIP CHEnts.........cccccecevveevrenrienniniininncciennnienns 60
4.4 The Client APplCAtIONSc.ccveeviirieciiniiiienitcrie ittt ens 60

Vi

CHAPTER 5 : IMPLEMENTATION AND PERFORMANCE MEASUREMENTS62

5.1 Implementation........cocevireerieinerneninieiiinitirest e e b re s sanan 62

5.1.1 The Software Architecture of the Conference Server........cccceeeveeeeenne. 62

5.1.1.1 The Modules and their ROIESocevviviiiniiiieerinereriieerenieenes 64

5.1.1.2 The Class Diagramc...cccceeuvvrervircnininniininninnienneneeneenns 66

5.1.2 The PrototyPes ..c.cccervverreieeieinieniinienictecreseieineicsis s s 67

5.1.2.1 The Components Implemented...........cccvvrvrvivvininiinnennnnn. 67

5.1.2.2 The Web Services Deployment..........c.cccocevvvvrriniinicnnncnnnnne. 68

5.1.2.3 Asynchronous Mode Requirements..............ccccocevivnurnnnnnnnnn. 70

5.1.2.4 The SetUP...cceeviirierieieeierterrre et 72

5.1.2.5 A word about the Interfaces.........cccovvevveevvvrirerevmrnreniresrenennns 72

5.2 Performance MEASUTEIMENIScovvveeiiieiieeeieeeeeeeceieeeeeeereieieeaeseaeneeeeeererassensenees 73

5.2.1 Metrics and Measurement Data..............coovvvieiiivreereiiieeierererererernrmnennees 73

5.2.2 Time Delay Data ANalysisccccecerveeenirnerninniineniniiinieesnenes 78

5.2.3 Network Load Data AnalysiS........cceceereereeeneneeneenenneninnnnnecncnnninnne 79
CHAPTER 6 : CONCLUSIONS AND FUTURE WORK.......c.ceovevrrirrrrrieniesrseennnrnnnenes 81
6.1 Contribution OF thiS TRESIS......cciviiiiiiiiiieeeeieeeeeeeee e eeeeeeeerereree e rereerenees 81

0.2 FULUTE WOTK ... ooieeeetiieeie ettt ee ettt ettieeet e s s s et stesssessassisseesessaasanesssesernsrarsessaenans 83
REFERENCES ...ttt ettt ettt e teestteeessetateessessseessosstnsossbssressessssnseesssssaessssanrsasesssssens 85

vii

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:

Figure 5.8:

LIST OF FIGURES

Page
Conferencing Models TOPOIOZIESc.coeeiimiiiiiiiiiiininineecre e 6
SIP Basic ATCRItECTUIEccueeveeeeireeirerrerienie ettt st st enas e e 11
SIP MeSSagESs SIIUCLUTEcoouviiiviiniiiriiiieitreeie et sste e assassinesnaanes 11
Web Service Roles, Operations, and ObJECtS.......c..coceerevrevriiiinnnniiinnninnenne. 17
Example of a CPL Decision Graph..........cccoociiiiiniiiniinninineninnreeeenenns 22
The Parlay Business Model........c.ccccoiviviiininiinininiieenenen, 25
Parlay Call Control Packages..........ccccoevereviciniiiniiciniiniiiinnereieveennns 27
The Basic SIP Servlet Modelcccoooieviiinniniiiniiniiniiicinieicieenes 32
SIP Servlet Message Handling Model..........ccccocoeivieniiniiiiiininniiiee, 33
An Example of a SIP Servlet Based Service........ccccvvvevvvviniininninniiinncinenne 35
The Case Study COMPONENLScccverrrrerieerirenieneeiniiiii st ese s 41
The Different Modes of Communicationcoceeerevevrerenniniiniininnnnienns 43
The Mapping Strategyccevernierieriininiiniiiie et 52
Dial-out Mapping: Conferencing Functionalities............cocoovevirvinininiiininnnns 55
Dial-out Mapping: Sub Conferencing Functionalitiesccccvvrniininnnnne. 57
Dial-in MaPPING ...oovveveieeieieiienieieieerre et sicere sttt sre s sae s sas st ean s 59
The Software Architecture of the Conference Serverc.ccecevevrivvninnnennn. 63
The Class DIAZIamcccvevvveereeerieiniienienie ettt srtesbeenanees 66
Overall Architecture of the Dial-out Conference Prototypeccccoeennnene. 67
Web Services Deployment STEPSevvveurerrirerrieieiiiiiencirerereee e ecree e 69
Example of Conversational Interaction with the Dial-in Web Service........... 71
Web Service Approach Vs. Raw SIP Servlet Approach........cccovvviviiiinnnn 74
Average Time Delay and Time Delay Overhead.........ccccocoviviinininniinnnnnne. 75
Average Network Load and Network Load Overhead..........cccoeeviininnnnnnnann. 76

viil

Figure 5.9: Time Delay Trend and Network Load Distribution

ix

..

LIST OF TABLES

Page
Table 2.1: Conferencing Models Propertiescccceveevenirriencniinicrnnieciesnninseieen 8
Table 2.2: SIP Header Fields Used........cccccoeviiinininiininincecise s 13
Table 4.1: The New Web Service Interfacescccevveviiiiiinninicnnininininnne, 49
Table 4.2: Audio Conferences FEatures.........cc.coevvevvicrneniniinnininniiincncenns 61

LIST OF ACRONYMS AND ABBREVIATIONS
3GPP: Third Generation Partnership Project
API: Application Programming Interface
CGI: Common Gateway Interface
CPL.: Call Processing Language
CPXe: Common Picture eXchange environment
* ECMA: European Computer Manufacturer’s Association
ETSI: European Telecommunications Standards Institute
GIS: Geographic Information Systems
H.323: Internet video conferencing standards from ITU-T
HTTP: Hyper Text Transfer Protocol
IETF: Internet Engineering Task Force
ISDN: Integrated Services Digital Network
ITU-T: International Telecommunication Union - Telecommunication
JAIN: Java APIs for Integrated Networks
JCC/ICAT: Java Call Control/Java Coordination and Translation
LAN: Local Area Network
MCU: Multipoint Control Unit
Megaco: MEdia GAteway COntrol
MG: Media Gateway
MGC: Media Gateway Controller
MMS: Multimedia Messaging Service
OASIS: Organization for the Advancement of Structured Information Standards
OMA: Open Mobile Alliance

OSA: Open Service Architecture

Xi

OWSER: OMA Web Services EnableR
PSTN: Public Switched Telephony Network
RSVP: Resource reSerVation Protocol

RTP: Real-time Transport Protocol

SAP: Session Announcement Protocol

SDP: Session Description Protocol

 SIP: Session Initiation Protocol

SMS: Simple Messaging Service

SOA: Service-Oriented Architecture

SOAP: Simple Object Access Protocol

TCP: Transport Control Protocol

UA: User Agent

UAC: User Agent Client

UAS: User Agent Server

UDDI: Universal Description, Discovery, and Integration standard
UDP: User Datagram Protocol

URI: Universal Resource Identifier

URL: Uniform Resource Locator

W3C: World Wide Web Consortium

WSDL: Web Services Definition Language
WS-I: Web Services Interoperability organization

XML: Extensible Markup Language

Xii

Chapter 1

Introduction

This chapter first gives an introduction to the research area. It then presents the problem
that will be tackled and the solution we propose. The aim of this chapter is to give the

reader a flavor of the work to be presented in the rest of the thesis.

1.1 Overview

Beside cost savings, there are other driving forces behind Internet telephony. One of the
important motivations is the integration of voice and data applications, which can enable a
wealth of new value-added service possibilities. These services are a critical element for the
success and the survival of Internet telephony service providers. They are usually divided
in two groups: telephony services and non-telephony services. Telephony services interact
with call control which enables the initiation, the modification, and the tear down of calls.
Examples of telephony services include call forwarding, call screening and conferencing.
Non-telephony services, such as customized stock quotes and web surfing from cellular
phones, do not interact with call control. Our work here is mainly concerned with

telephony services. These services are offered to end-users in the form of applications.

Two main sets of standards exist for Internet telephony: H.323 from the ITU-T [16] and the
Session Initiation Protocol (SIP) [32] from the IETF. References [24, 38] provide
overviews about these standards. H.323 embraces a traditional approach for signaling,
based on the integrated services digital network (ISDN) architecture. SIP on the other hand
flavors a lightweight approach, drawing heavily on existing Internet tools. It has been

selected by the third-party generation partnership (3GPP) [42] as the sole signaling system

for third generation networks. For that reason, we chose SIP as the signaling environment

for our case study.

Several service creation frameworks exist for the development of value-added services.
The IETF has proposed two frameworks: The Call Processing Language (CPL) and the SIP
Common Gateway Interface (SIP CGI). Alternative frameworks have been proposed by the
. W3C, the JAIN, and the Parlay forums. Among these frameworks, we find the Parlay API,
the SIP Servlet API and the JAIN Java Call Control (JCC)/ Java Coordination and
Translation (JCAT). Reference [10] provides an overview of the standard service creation

frameworks for Internet telephony and pinpoints their weaknesses.

The web service technology is now emerging and being applied to several industries. It
adopts a service-oriented architecture (SOA) where all of the applications are encapsulated
as services and made available for invocation over a network. Expected benefits of this
technology include loose coupling between different components, reduction of the
complexity by encapsulation, and ease of applications development and integration.
Standardization work is carried by several standards bodies such as the World Wide Web
Consortium (W3C) [49], the Organization for the Advancement of Structured Information

Standards (OASIS) [28], and the Web Services Interoperability organization (WS-I) [48].

An industry that is in the process of adopting Web services is telecommunications. The
standards being developed include Parlay X [30], ECMA’s specifications [6], and the Open

Mobile Alliance (OMA) specifications [27].

1.2 Purpose of the Thesis

Applications offered to end-users as value-added services are a critical element for the
success and the survival of Internet telephony service providers. Several service creation
frameworks exist, however they have many drawbacks. This thesis presents a case study on
the use of Web services for the development of conferencing applications in Internet
Telephony, or more precisely in SIP networks. By this approach, we try to overcome some
of the drawbacks exhibited by the standard frameworks. For instance, a common
characteristic between these frameworks is that they require knowledge that non-experts
may not have (e.g., scripts, programming languages, APIs). Exposing the needed

capabilities, such as call control, as web services may solve this problem.

In this case study, we have defined comprehensive web service interfaces that make
conferencing capabilities available to developers. In addition, a sub-set of these interfaces
was implemented as a SIP servlet based gateway; the SIP Servlet API being more
commonly used in a SIP environment than other frameworks. The sub-set implemented is
related to pre-arranged conferencing functionalities. Two applications were built using the
implemented interfaces and performance was evaluated. The applications built consist of

dial-in and dial-out audio conferencing applications.

The interfaces proposed offer a level of abstraction that is higher than what is provided by
the standard frameworks. This level of abstraction could allow developers who are new to
the telecom field, to easily incorporate conferencing capabilities to their applications.
Another important merit is the considerable reduction of the application footprint. This
reduction saves time and effort for application developers. These benefits make web

services an interesting approach, despite the overhead generated.

1.3 Organization of the Thesis
In chapter 2, we start by providing background information about the different
conferencing models, the signaling environment used (SIP), and the web service

technology that may ease the development of conferencing applications.

Chapter 3 presents the state of the art in service creation frameworks that can be used for
the development of conferencing applications in SIP networks. The standard service
creation frameworks are first discussed. We then move to the emerging service creations
frameworks, based on the web service approach. The SIP serviet API framework is

emphasized, since it is the framework used for the building of the web services gateway.

Chapter 4 is dedicated to the description of the case study components. Among the
components presented, we focus on the description of the new interfaces and the mapping

of a sub-set (pre-arranged conferencing functions) onto SIP.

In chapter 5, the components software architecture and the prototypes built are presented.

The performance measurements are then reported and analyzed.

The thesis concludes with chapter 6, which contains a recapitulation of the major work of

the thesis, the lessons learned, and suggestions for future work.

Chapter 2

Review of Conferencing Models, SIP, and Web Services

Conferencing is a critical application area for Internet Telephony. It includes audio/video
conferencing, but also multiparty gaming, and distance learning. In this chapter, we
successively introduce it, present the signaling environment used in this case study (SIP),
and discuss Web services a technology that may ease the development of related
applications. The aim of this chapter is to define the general context of the work presented

in this thesis.

2.1 Conferencing models

The two main aspects of any conferencing architecture are signaling and media mixing.
Several topologies can be used to perform these two tasks. Other capabilities such as floor
control can also be used. The latter allows users of networked multimedia applications to
utilize and share resources (e.g., media channels) without access conflict [4]. Another
criterion for distinguishing between the different models is the way the conference starts.
While pre-arranged conferences have a pre-determined start time and a conference
identifier, ad-hoc conferences are more spontaneous and begin as soon as the first two users
start communicating. In this Section, we give an overview about the commonly used
conferencing models. These models are categorized based on their media distribution
topologies. Figure 2.1 illustrates these models and table 2.1 summarizes their properties. In
addition, references [37, 34, 39] provide more details about these models, in the SIP

context.

A+Bf C

<4 B
A B
—»
A+C
a) End system mixing model b) Full mesh model

OrF OF:

@ \ /é_-l;3+C+E+F
0—0(7 Server =) D

RO /\;C

¢) Multicast model d) Centralized model

Figure 2.1: Conferencing models topologies.
2.1.1 The End System Mixing Model
In this model, signaling and media mixing are handled by one of the participants. For
example, A calls B then later calls C, using a different session. There is no direct call setup
between B and C. A receives media streams from B and C, and mixes them. It then sends
the mixed streams to the appropriate users. B and C do not need to be aware of the service
provided by A, but can in turn mix other participants. In fact, any user who has media

mixing capabilities can invite other users to the conference.

This model is built around ad-hoc conferences. Its main drawback is that the conference
ends when the mixing participant leaves the call. Another problem is scalability. Due to the
limitation of the mixing workstations capabilities, this model is more likely to scale only

for small conferences.

2.1.2 The Full Mesh Model

In a full mesh, every participant builds a signaling leg with every other participant and
sends an individual copy of the media stream to the others. The participants’ end systems
sum the incoming streams. This mechanism only scales to very small groups. In this model,

each pair of participants must share a common codec.

2.1.3 The Multicast Model

In this case, a multicast address is allocated to the conference. Each participant joins that
multicast group and sends his media to it. Signaling is not sent to the group, it is only used
to inform participants to which multicast group to join. Like the full mesh case, participants
receive packets on the same address from all other participants, and need to sum streams.
On the other hand, each end-system needs to generate only one copy of its own stream, to

send to the multicast address.

Multicast conferences are usually pre-arranged. However, the multicast model can also be
used for ad-hoc conferences, as long as a mechanism exists to dynamically obtain a
multicast address. This model scales very well to large-scale conferences. Unfortunately, it
has not been widely deployed across backbones. As a result, wide area conferences are not

really viable using multicast.

2.1.4 The Centralized Model

In this model, a server or bridge receives streams from all the participants, mixes them, and
redistributes the appropriate stream to each user. The participants’ end systems do not
require any special processing. All the new logic resides in the conferencing server.

Participants either call the server (dial-in model) or are called by the server (dial-out

model). Several applications could be built using these models. The dial-out model is suited
for conferences directed by a chair and multiparty games initiated by game servers, while

the dial-in model is more suited for online public debates and chat applications.

The server based model offers some advantages. First, the clients do not need to be
modified and do not need to perform media mixing. In addition, heterogeneous media types
can be supported, since the server performs decoding. The server can also enforce floor

control policies. Finally, this model can be used for both pre-arranged and ad-hoc

conferences.
— Models End Mixing | Full Mesh | Multicast | Centralized
Properties
Signaling topology Tree Full mesh Pairs Star
Media topology Tree Full mesh m-cast tree Star
Scaling Small Small Large Medium
Heterogeneous endpoints | Yes (Partiallty) | Yes No Yes
Starting mode Ad-hoc Pre-arranged | Pre-arranged/ | Pre-arranged/
Ad-hoc Ad-hoc

Table 2.1: Conferencing models properties.

2.1.5 Discussion

Centralized conferences are easier to handle for end systems and simplify keeping track of
the conference participants. On the other hand, multicast conferences have an excellent
scalability for large conferences and allow a “loose” model of conference membership.
However, as long as multicast is not widely deployed, centralized cbnferences will remain
the only viable model for mid-size conferences of tens to hundreds of participants. It is
therefore the most appropriate model for Internet telephony applications. We based our

case study on centralized conferencing for that reason.

2.2 The Session Initiation Protocol

The Session Initiation Protocol (SIP) is an application-layer signaling/control protocol for

creating, modifying and terminating multimedia sessions with one or more participants. SIP

extensions are used for event notification and management of other types of sessions, such

as distributed games. Core SIP was published as a proposed standard (RFC 2543) [13] in
March 1999, and June 2002 (RFC 3261) [32]. Other standards exist for SIP extensions such

| as RFC 3265 [31] and 3515 [41] (for the event framework), and RFC 2976 [5] (for the

INFO method).

>SIP is designed as part of the overall Internet Engineering Task Force (IETF) multimedia
architecture. Examples of other IETF protocols with which SIP is used in conjunction
include: quality of service related protocols (e.g., RSVP); media transport protocols (e.g.,
RTP); and other protocols (e.g., SDP and SAP). References [38, 33, 36, 20, 40] constitute a

list of some of the articles and books published on SIP.

2.2.1 SIP Main Characteristics

In this section, we present some of the important features of the session initiation protocol.
SIP is based on HTTP, reusing many of its header fields, encoding rules, error codes, and
authentication mechanisms. Like HTTP, SIP is a request/response protocol in which each
operation consists of a request going from the client to the server followed by a response
returned from the server to the client. SIP is also a text-based protocol. This textual nature
promotes easy development and debugging of SIP based applications, in addition to

making SIP quite flexible and extensible.

SIP messages can be transported on any transport protocol (e.g., UDP and TCP). SIP
applications can range from traditional call waiting and 800 numbers services to
multimedia conferencing, presence, and distributed games. Finally, SIP supports both
unicast and multicast sessions, and can also initiate multiparty calls using a Multipoint

Control Unit (MCU) or a fully meshed connection.

Five facets of multimedia communications are supported by SIP: user location, user
capabilities, user availability, call setup, and call handling. User location consists of the
determination of the end-system to be used for the communication. In SIP, user capabilities
are assessed by determining the media type and parameters to be used. User availability
~support consists of determining the called party’s willingness to engage in the
communication. Call setup is accomplished by the establishment of the call parameters of

both called and calling party, and call handling includes transfer and termination of calls.

2.2.2 SIP Architecture

Two main components constitute the core of the SIP architecture: User agents (UAs) and
network servers. A user agent is an end-system which takes order from a user and acts on
his behalf, to setup and tear down sessions with other user agents. Usually the UA consists
of two parts, a client (UAC) and a server (UAS). These components enable the user to both
place a call and be called. The UAC is used to initiate requests while the UAS receives

requests and returns responses on behalf of the user.

On the other hand, network servers are applications that accept SIP requests and respond to
them. They provide services to user agents. There are three kinds of network servers: proxy

servers; redirect servers; and registrars. Proxy servers act as routers, forwarding SIP

10

requests and responses. They usually use backend location servers to map a request URI to
a new destination. Typically, SIP messages originating at a user agent traverse one or more
SIP proxy servers, then reach one or more SIP user agents. However, user agents can also
communicate directly between each others. A redirect server receives requests then returns
the address of another server or UA where the client might be found. Finally, registrars

keep track of users registered with them. Figure 2.2 shows these elements and their

interactions.

= Reguest

e Response

- Media SIP Redirect

Server _Location Service
SIP Proxy ’
SIP Proxy
SiP User Agent
SlPLUsar gent
Figure 2.2: SIP basic architecture.

2.2.3 SIP Messages

A SIP message is either a request from a client to a server or a response from a server to a

client. Figure 2.3 depicts the general structure of SIP messages.

SIP messages

SERVER

Raquast = Raquast-Ling
*i gengral-hiaader
| recjuest-haaser | respanse-hpadar

{ anfity-header | @ntity-header)
CALE CRLF
{ mussage-body | | message-tody |

Figure 2.3: SIP messages structure.

11

Request messages start with a request line, which includes the request method, the user or
server to which the request is being addressed (request URI), and the version of SIP used.
Response messages on the other hand start with a status line. This line includes a three digit
status code indicating the response type, and a reason phrase giving a short text description
of the status code. Besides the first line, both types of messages include several headers and

sometimes a message body.

2.2.3.1 Header Fields

Four types of headers can be included in SIP messages: General headers indicate general
information that can be included in both requests and responses. The “To” and the “From”
headers are examples of general headers. On the other hand, entity headers provide
information about the message body, such as the content length and the content type.
Request headers allow the client to pass additional information about himself and about the
request, to the server. The contact header, indicating an alternative address where the client
can be reached, is an example of request headers. Finally, response headers allow the server
to pass additional information about the response, which cannot be placed in the status line.
A list of the headers used in this work and their description is presented in table 2.2.

References [32] can be consulted for more details about the basic and the extension headers

available.

Header fields | Type Description

To General header | Specifies the desired recipient of the request

From General header | Specifies the initiator of the request

Via General header | Indicates the path used by the request. The same path is
traversed by the response, in reverse direction

Call-ID General header | Provides a unique ID identifying a certain session

Cseq General header | Indicates the request method and a sequence number
identifying the different transactions

12

Contact General/Request | Provides an alternative address where the user can be
header reached
Subject General/Request | Indicates the message subject
header
Content-Length | Entity header Indicates the size of the message body, in number of octets
Content-Type Entity header Indicates the media type of the message body

Table 2.2: SIP Header fields used.

2.2.3.2 Message Body

All SIP messages may include a message body, except the CANCEL request message.
Usually, the message body includes a session description based on the session description
protocol (SDP) [14]. This description conveys the information necessary to allow a party to
joins a multimedia session (session and media related information). When a message
contains a body, the body length and type must be indicated in the Content-Length and
Content-Type headers respectively. If the message is encoded, this should be indicated in

the Content-Encoding header.

2.2.3.3 Request Methods

In Core SIP, six possible methods can be used is a request message: INVITE, ACK,
CANCEL, BYE, REGISTER, and OPTIONS. Note that the first four methods are used for
setting up sessions while the last two methods are used for registrations and capability
queries. A description of these methods is presented as follows:

» INVITE: This method indicates that a user or a service is being invited to
participate in a session. A media session is considered established when INVITE,
200 OK, and ACK messages have been exchanged between the UAC and the UAS.

» ACK: Confirms that the client has received a final response to an INVITE request.
This method is only used following an INVITE method.

» CANCEL: This method is used to cancel a pending request. It does not affect a
completed request, a request that has been processed, or a response that has been

sent back.

13

* BYE: The UAC uses this method to indicate to the server that it wishes to release
the call. This request can be issued by either the caller or the callee.
* REGISTER: This method is used by a client to bind his address with one or more
URIs where he can be reached. This request is sent by the client to a registrar.
» OPTIONS: This method is used to query a server about its capabilities. The
response can include headers such as Accept and Allow.
In addition to these methods, other methods have been introduced as extensions to SIP.
Examples of these extensions include: the SUBSCRIBE; NOTIFY; and INFO methods.
The SUBSCRIBE method is used by a requestor for subscription to certain event(s). The
NOTIFY method is used by the provider to send notifications to the requestor when the
event(s) occur. Note that SUBSCRIBE can also used for un-subscriptions by setting the

expiry header to zero. The INFO method is used for the exchange of additional

information, that can’t be conveyed by standard messages, between parties.

2.2.3.4 Response Codes
Six types of responses are possible in SIP. Each type is distinguished by a specific digit
starting the status code. These types are summarized as follows:

Ixx: Informational - the request was received and is going to be processed.

2xx: Success - the action was successfully received, understood and accepted.

3xx: Redirection - further actions need to be taken in order to complete the request.
4xx: Client Error - the request contains bad syntax or cannot be fulfilled at this server.
5xx: Server Error - the server failed to fulfill an apparently valid request.

6xx. Global Failure - the request cannot be fulfilled at any server.

Examples of the available response codes include the 180 response code, which means that
a client is sending a ringing or that it has been alerted by the request. Another example is

the 200 response code, which indicates that the client accepts the request.

14

2.2.4 Alternatives to SIP
In this section, we give a brief overview of two of the alternatives to SIP: H.323 and

Megaco/H.248.

H.323 is an umbrella standard including signaling standards (e.g., H.225, Q.931, and H.
245) and other standards (e.g., H.324). H.323 functional entities consist of: terminals;
- gatekeepers; gateways; and MCUs. A terminal is an end-point which is used in two-way
real time multimedia communication with another end-point. A gatekeeper provides
address translation and controls how a terminal accesses the network. Gateways are used in
the communication between H.323 terminals and terminals in the Public Switched
Telephony Network (PSTN). An MCU provides centralized conferencing functionality.

The H.323 recommendation is available at [16].

Megaco/H.248 is mainly used for the decomposition of gateways between Internet
telephony networks and circuit switched telephony networks. Two important concepts in
Megaco/H.248 are terminations and contexts. A termination is a source or a sink of media
flow. A context is a mixing bridge to which a number of terminations are connected.
Terminations can be added to a context or removed from a context. Other operations such
as modification of the properties of a termination, moving a termination between two
contexts, auditing termination capabilities, notifications and change of services are
supported by this protocol. Megaco/H.248 can also be used for telephony signaling. In this
case, the IP phone is a Media Gateway (MG) controlled by the Megaco/H.248 protocol.
The call control intelligence is located in the Media Gateway Controller (MGC) which acts

as a soft switch in this case. Reference [12] provides more details about Megaco/H.248.

15

2.3 Web Services

The web services architecture has been introduced by the World Wide Web Consortium
[45]. Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network, generally, the Web. This section provides
an overview about the Web service technology. Reference [35] provides an overview and

reference [25] provides tutorial-level information.

2.3.1 Web Services Main Characteristics

The different aspects of a web service are summarized as follows: A web service is an
interface that describes a collection of operations, which are network-accessible through
standardized Extensible Markup Language (XML) messaging. It is described using a
standard XML notation, called its service description, expressed in Web Services
Definition Language (WSDL). This description covers all the details necessary to interact
with the service, including message formats, transport protocols, and location. In addition,
this description can be published to a service registry using the Universal Description,
Discovery, and Integration standard (UDDI), where it can be discovered later by a service
requestor. Applications use the Simple Object Access Protocol (SOAP) as a
communication protocol to interact with web services. SOAP messages are typically
carried over HTTP, but can use other transport protocols. The web service interface hides
the implementation details of the seﬁice, allowing it to be used independently of the
hardware or software platform, on which it is implemented, and of the programming
language in which it is written. Finally, web services fulfill a specific task or a set of tasks.
They can be used alone or with other web services. References [47, 46, 26, 44] can be

consulted for XML, WSDL, UDDI, and SOAP specifications.

16

2.3.2 The Web Services Architecture
The web services architecture places into relationship different components and

technologies. Figure 2.4 illustrates these components, their operations and interactions.

Service
Description
FIND PUBLISH
WSDL, UDDI WSDL, UbDI

Service
Service
—Jp Provider
L Service
g‘ggp Description

.

Figure 2.4: Web services roles, opé:lreifions and objects.

Typically, a service provider hosts a network accessible software module (an
implementation of a web service). In addition, the provider defines a service description
and publishes it to a service registry, based on the UDDI specification. Once a web service
is published, a service requestor may find the service via the UDDI interface. The UDDI
registry provides the service requestor with a WSDL service description and a URL
pointing to the service itself. The service requestor may then use this information to

directly bind to the service and invoke it.

2.3.3 The Web Services Development Lifecycle
Generally, the web services development lifecycle is composed of four phases: building,
deploying, running, and managing the services. These phases are described as follows:

» Web service Building: This phase consists of the development and testing of the
web service implementation, and the definition of the interface description and the

implementation description. The implementation can be used to create new web

17

services, to transform existing applications into web services and to compose new
web services from other web services and applications.

Web service Deployment: This phase starts with the deployment of the executable
modules into an executable environment (e.g., a web application server).
Afterwards, the service interface and the service implementation definition must be
published to a service requestor or service registry.

Running the Web service: At this stage, the web service is available for use. It has
been fully deployed, and is operational and ready to be network-accessed by the
requestor.

Web service Management: This phase deals with the management and the

administration of the web service, by treating issues such as security, performance,

-quality of service, and service composition.

2.3.4 Expected Benefits of the Web Service Technology

In this section, we give an overview of the key benefits expected from the web service

technology. These benefits are summarized as follows:

1.

Loose coupling between different components: In the web services architecture, all
components are loosely-coupled, and binding occurs at run time. This implies that a
change in the implementation of the services does not require any changes in the
applications using them. This loose-coupling is translated in more flexibility,
scalability, and extensibility.

Reduction of the complexity by encapsulation: The web services technology adopts
a Service Oriented Architecture (SOA) where all applications are exposed as
services. This coarse-grain approach puts the focus on the service behavior, rather
than the service implementation, thus reducing the complexity of the services used
by the developers.

Easy application development and integration: The high level of abstraction
provided by this technology allows developers to integrate the needed functionality
to their applications easily and rapidly. In addition, no knowledge of the underlying

architecture of these functionalities is needed.

18

2.3.5 Examples of Web Services Application Domains

The web service technology is now emerging and being applied to several domains besides
telecommunications. Digital imaging and geographic information systems (GIS) are
examples of these domains. In the digital imaging industry, the common picture exchange
environment (CPXe), created by a large number of imaging companies, is based on the web
service technology. Its main goal is to offer consumers a broad range of digital imaging
services, while giving providers access to an expanded market. In this framework, services
such as printing, resizing, image layering, and shipping, are exposed as web services. Their
WSDL descriptions are published in a UDDI registry, to be discovered by service
requestors. In addition, catalog services and service locators are provided to facilitate
service discovery. After discovering these service descriptions, requestors can place their
orders via the provided interfaces. Reference [43] gives an overview of this framework.
Similar work is done in the GIS field. The goal of this work is to dynamically assemble
applications from multiple GIS web services, for use in a variety of client applications.
Examples of services to be exposed include reprojection, overlay, and portrayal services.

Reference [1] gives more details about this framework.

19

Chapter 3

Conferencing in SIP Networks: State of the Art

In this chapter, we present the state of the art in service creation frameworks that can be
used for developing conferencing applications in SIP networks. We first present an
overview of the standard service creation frameworks for Internet telephony. We then
introduce the emerging frameworks proposed by the telecom industry in order to adopt the
web service technology. We put a special emphasis on the SIP servlet API, since it is the

framework we chose for the building of the web services gateway.

3.1 The Standard Service Creation Frameworks
The standard service creation frameworks can be divided in two categories: signaling
protocol neutral frameworks, and signaling protocol specific frameworks. We’ll now give

an overview of the frameworks belonging to each of these categories.

3.1.1 Signaling Protocol Neutral Frameworks

Three main signaling protocol neutral frameworks exist: The Call Processing Language
(CPL), JAIN’s JCC/ICAT, and the Parlay/OSA API. As the name implies, these
frameworks can be used with any signaling protocol, including H.323 and SIP. The

Parlay/OSA API is the most deployed framework in this category.

3.1.1.1 The Call processing language
The Call Processing Language [22] has been proposed by IETF. It targets primarily end-
users but also service providers. Users can directly write CPL scripts, defining services, and

upload them to a network server. A transport mechanism is needed to upload the scripts

20

from end-systems (e.g., H.323 terminals and SIP clients) to servers. The use of the
REGISTER message, in the case of SIP, has been proposed for this purpose [23]. Scripts
should be able to react to signaling events. In the case of a call invitation for instance, the
script should be able to reject the call, redirect it, or proxy it. At the network server, the

scripts can be verified and the service instantiated instantly.

3.1.1.1.1 The Language Requirements
Since CPL is made to be used by untrusted users, some requirements had to be imposed on
the language: These requirements are summarized as follows:

» Verifiability: Upon receipt of a script, the service provider must be able to verify its
correctness and that the server can successfully execute it.

» Completion: The service provider must also be able to determine that the service
specified in the script will be completely executed in a finite amount of time. This
implies the absence of general loops and of calls to external services without
timeouts.

» Safety of execution: The service should be executable in a safe manner. For
instance, it should not make an excessive use of the server resources (memory,
bandwidth...and so on) and should not manipulate sensitive data on the server.

» Standardized representation: Service descriptions must be compatible between

different tools and must be producible by both humans and machines.

3.1.1.1.2 The Key Features

CPL represents services in a decision graph. The graph’s individual nodes are the
primitives of the language. They represent decisions to be made or actions to be taken
during the service execution. Each node may have output (s) which leads to further actions
or decisions. After a node execution, the script may follow one of the outputs or terminate,

depending on the result. Figure 3.1 shows a CPL decision graph for a call forward service.

21

Time switch: Location:
> sip:secretary@office.com
Call
Monday-Friday
From 9 Am to 5 PM)
Location:)
Saturday-Sunday p| sip:private@home.com Redirect

From 10 AM to 10 Pm

Otherwise

I Location:

sip:voicemail@office.com

Figure 3.1: Example of a CPL decision graph.
This node-based structure implicitly guaranties most of the mentioned requirements. Since
the flow of control moves only downwards, this implies that the service will eventually
reach a node and terminate. In the worst case, the resources consumed by the service are
proportional to the length of the longest branch of the graph, and are therefore finite. The
language contains no loops, no function calls, and no access to external programs. This

makes the service executable in a safe manner.

CPL scripts are based on XML because of several important features it offers. XML
consists of a hierarchy of tags, each tag having a set of attributes. It is therefore suitable for
the representation of structured data and tree structures. XML can be produced and read by
both humans and machines. It can also be verified automatically. Finally, XML has no

specific key words. This allows the definition of the needed primitives.

3.1.1.1.3 The Language Primitives

There are four types of primitives in CPL: switch nodes, location nodes, signaling action
nodes, and non-signaling action nodes. Switch nodes represent decisions a script can make.
They match call attributes or call independent parameters against a list of conditions. Each

condition corresponds to a certain output of the node.

22

Location nodes specify the locations needed for call processing. A basic location node
specifies the location as a URL and has one output. A location lookup node determines the
location by consulting an external source (e.g., a SIP registrar or a database) and has three

possible outputs (success, failure, and not found).

Signaling action nodes control the behavior of the underlying signaling protocol. There are
three types of signaling action nodes: proxy, redirect, and response nodes. A proxy node
makes the server forward the call to the currently specified set of locations. The server then
waits for the responses and selects the best response. Possible outputs include success,
busy, no-answer, and failure. Redirect and response nodes immediately terminate the
execution of the script. A redirect node makes the server redirect the calling party to the
currently specified set of locations. A response node makes the server send a failure

response or reject the call.

Non-signaling action nodes allow the script to log events and notify the user of them. For
instance, a script can send an instant message to a user, warning him about a malfunction

which is preventing him from receiving calls.

3.1.1.1.4 Pros and Cons

The main advantage of CPL is that it allows end-users to create their own services. In
addition, it provides an environment in which these services can be executed safely.
However, it has several drawbacks. First, the absence of loops and function calls makes it
tedious to create services with repetitive patterns. In addition, creating services that access
external data is not possible. Finally, the range of services that can be created is limited. In

fact, due to the limitations of the language, CPL can not be used for the development of

23

complex applications such as conferencing applications. The language primitives are
designed to be simple and have a specific behavior, as described previously. These
primitives cannot be used to manage a conference and keep track of multiple signaling
objects such as participants, ports and so on. Therefore, the capabilities offered by these
primitives limit the range of the possible services to simpler services such as call redirect,

call forward, call screening, and time of the day routing.

3.1.1.2 JAIN’s JCC/JCAT

The Java Call Control (JCC)/ Java Coordination and Translation (JCAT) framework gives
access to call control capabilities. The JCC API provides the core functionality, while the
JCAT API extends it by providing a finer granularity. Examples of the services that could
be developed using these APIs are: first and third party calls; toll free number translation;
voice activated dial; and dial-in conferences. Reference [17] provides an overview of this

framework.

The JCC/ICAT call control model is composed of the following objects: a provider; a call;
a connection; and an address. The call is an abstraction of the physical call. A provider is
an access point used by the service to view a call. The address represents a call party while

the connection is a logical link between the call and the address.

Due to its signaling protocol neutrality, the JCC/JCAT framework enables the creation of
services that are portable across network technologies. However, the following drawbacks
are observed: the framework is not programming language neutral (tendency towards
Java); the level of abstraction offered is low and necessitates a background in circuit

switched telephony; security and resilience features are not offered. We should mention

24

that the JCC/JCAT framework has lost momentum to the Parlay framework presented in

the next section.

3.1.1.3 The Parlay/OSA API

The Parlay/OSA API was originally defined within the Parlay group and standardized by
3GPP and the European Telecommunications Standards Institute (ETSI) [7]. So far, four
releases of Parlay/OSA specifications have been released. Reference [29] can be consulted
for the latest release. The main goal of the Parlay/OSA API is to open up
telecommunication networks in a secure and resilient way. This is accomplished by making
network capabilities available for applications development. In addition, the API enables

new business models and is based on open information technology.

3.1.1.3.1 The Parlay Business Model

There are three roles in the Parlay business model: client application; enterprise operator;
and framework operator. The client application uses the services (network capabilities).
Prior to the service usage, a subscription to the service should be made. The enterprise
operator is the entity that subscribes to the services, while the framework operator handles

the subscriptions. Figure 3.2 illustrates the Parlay business model.

Figure 3.2: The Parlay business model.

25

3.1.1.3.2 The Parlay APIs

There are two types of APIs in Parlay: service APIs and framework APIs. The service APIs
expose the network capabilities. They include interfaces for call control, user interactions,
generic messaging, mobility, terminal capabilities, connectivity management, account
management, charging, session control, presence and availability. The call control
interfaces are the most relevant for Internet telephony applications. The framework APIs
make the use of the service APIs secure and resilient. They include interfaces for trust and
security management, event notification, service discovery, service registration, integrity

management, and service agreement.

A. The Call Control APIs

In order to give an example of the provided interfaces, we’ll describe the call control
interfaces since they are the most relevant to the scope of this thesis. The call control API is
made of four packages: a generic call control package; a multiparty call control package; a

multimedia call control package; and a conference call control package.

Three types of objects are manipulated by these packages: a call, a call leg, and an address
object. The call and the address objects have the same significance as in the JCC/JCAT

framework. The call leg is similar to the connection object used in JCC/JCAT.

The generic call control package supports two-party calls only. It remains in Parlay for
historical reasons. The multiparty call control package permits the establishment of calls
with any number of users. It also allows operations on call legs. It is the root of the
inheritance tree. The multimedia call control package extends the multiparty package by

adding multimedia capabilities. The conference call control package adds another extension

26

by adding support to conferencing capabilities. Figure 3.3 illustrates these packages and

their hierarchy.

Multiparty call
control package

Multimedia call
control package

Generic call control
package

Conference call
control package

Figure 3.3: Parlay call control packages.

B. Conference Initiation Example

In order to give an example of the methods provided by the call control API, we’ll examine
the method required to initiate a dial-out conference. The following methods are needed:
createConference (); getSubConference (); createCallLeg (); route (); and attachMedia ().
createConference () is used to create the conference object. getSubConference () is used to
get the list of all the sub-conferences in the conference. createCallLeg (), route (), and
attachMedia () are used to create the leg object, route it, and attach it to the conference call.
Note that these three methods are called for each participant in the conference. These
methods are replaced by the createandRouteCallLeg () method in the latest version of
Parlay. This method creates the leg object, routes it, and attaches it, all in one shot.
Reference [11] provides more details about the mapping of the Parlay call control APIs

onto SIP.

27

3.1.1.3.3 Pros and Cons

Like JCC/ICAT, Parlay allows the creation of services that are portable across network
technologies. In addition, it is programming language neutral and allows the creation of a
wide range of services that combine different types of capabilities. Another advantage is
that it offers security and resilience features. The main drawback is the low level of
abstraction provided. In addition, the use of the Parlay APIs requires a background in

circuit switched telephony.

In the context of conferencing applications, the following drawbacks are observed: Due to
the low level of abstraction, the number of function calls multiplies rapidly with the
increase of the number of participants. This may affect the performance, for a conference
with a large number of participants. In the example given in the previous section, to initiate
a conference with N participants, 2 + 3N calls are needed. This number is lowered to 2+N
calls in more recent versions of Parlay, which is still high. The number of function calls is
not an issue in simpler applications, involving a smaller number of users. Another
requirement imposed by the application nature is the manipulation of call legs, conference
and sub conference objects. These operations require a good knowledge of circuit switched
telephony and are not necessarily needed in simpler applications. In addition, the
manipulation of multiple call legs and conference objects necessitates keeping tracks of this

information, in order to manage the conference.

3.1.2 Signaling Protocol Specific Frameworks
These frameworks are used with specific signaling protocols. H.323 comes with a set of

standardized supplementary services and includes no service creation framework. In the

28

case of SIP, two service creation frameworks exist: SIP Common gateway Interface (CGI)
and the SIP servlet API. We now give more details about these two frameworks with a

focus on the SIP servlet APIL. The latter is the most deployed framework in this category.

3.1.2.1 SIP CGI

SIP CGI [21] has been proposed by IETF, targeting experienced and trusted developers.
. Due to the similarities between HTTP and SIP, the SIP CGI was based on the HTTP CGI
[3]. SIP CGI inherits from its predecessor the following characteristics: It is programming
language independent and can therefore be used with any programming language. It gives
full access to all the messages’ headers. It allows the creation of responses and gives access
to environment variables. Finally, its similarity to HTTP CGI makes it appealing to web
programmers, permitting them to create new services. In the next section, we present the

basic operation of SIP CGI and discuss the differences it presents from the HTTP CGI.

3.1.2.1.1 Basic Operation of SIP CGI

A SIP CGI script is first invoked when a SIP request arrives at a server. The server then
passes the message body to the script, through its standard input. It also sets some
environment variables with information from the headers. The script processes the message
body and the environment variables to generate new data. This data is written to the script’s

standard output then read by the server. The script then terminates.

Several differences exist between SIP CGI and HTTP CGI. First, unlike HTTP CGI, the
script output is not necessarily a response message. It can be a proxied request, an entirely
new request or even a proxied response. Another important difference is that SIP CGI

scripts are persistent while HTTP CGI scripts are not. This property is needed to enable the

29

script to process subsequent responses to a request that has been proxied or a new request
that has been sent. Not all services require the execution of the script for each message
received. Therefore, triggering rules have been introduced in SIP CGI to determine the
conditions under which a script should execute. Finally, SIP CGI scripts reside on proxy

servers to control request routing, while HTTP CGI scripts reside on origin servers.

3.1.2.1.2 Pros and Cons

The main advantage of SIP CGI is that it allows the development of a wide range of
services. This is due to the full access to all the headers in addition to the possibility of
proxying requests and creating new requests. Another advantage is the programming
language independence. Finally, SIP CGI opens service creation to the wide community of
web programmers, due to its similarity to HTTP CGI. On the other hand, SIP CGI has
several drawbacks. The first drawback is the lack of scalability. SIP CGI scripts reside and
run in proxy servers and there is no means to distribute the execution when demand is high.
Performance issues constitute another drawback. Despite the introduction of triggering
mechanisms to improve the performance, these mechanisms are under specified by IETF.

An obvious drawback is the lack of generality, since SIP CGI applies to SIP only.

3.1.2.2 The SIP Servlet API

The SIP servlet API is a standard extension to the Java platform. Its purpose is to
standardize the platform for development of SIP based applications, such as conferencing
applications in SIP environment. Like SIP CGI, the SIP servlet API targets experienced

and trusted developers.

30

Like the HTTP serviet API [18] from which it is derived, the SIP serviet API builds on the
generic servlet API. Despite the similarities between the HTTP servlet API and the SIP
servlet API, there exist important differences between them. For instance, SIP servlets
reside on proxies rather than on origin servers, in order to control request routing. Apart
from the common capability of generating responses, they can initiate requests, receive

responses, and proxy requests. The SIP servlet API specification is available at [19].

3.1.2.2.1 The SIP Servlet API Architecture

The SIP servlet API architecture is based on two components: the SIP servlet and the SIP
servlet container (or servlet engine). The generic servlet API defines methods that are used
in the interactions between servlets and servlet containers. The SIP servlet API is used for
the development of the servlets, which are the applications. These applications are run on

the container. They extend the capabilities of the SIP server hosting them.

The container can be built into a host SIP server or can be installed as a co-located
component. The server hosts a number of applications and contains internal rules
determining which application(s) to invoke, based on the messages it receives. The
container on the other hand monitors a port on the server where it runs. When the message
is received on the port monitored by the container, this entity checks if any servlet-
triggering rule has been registered that matches the characteristics of the arriving message.
If so, the container loads the servlet identified and executes the service requested. Figure
3.4 illustrates the basic SIP servlet model. In this figure, the container is co-located from

the SIP server.

31

(servlet) (servlet
T Y
y

Servlet Container

requests requests

it
responses

responses

Figure 3.4: The basic SIP servlet model.

The execution of a service is done in three steps: servlet initialization, service execution,
and servlet instance destruction. The service execution is controlled using the SIP servlet
API. Each request is associated with a method in the APIL For instance, if an INVITE
request is received, dolnvite() method of the servlet is executed. The next section explains

how the different requests are handled.

3.1.2.2.2 Processing SIP Messages

When a message is received by the container, this message is forwarded to a servlet
instance via the service () method. This method is defined by the generic servlet APIL
Depending on the nature of the message (request or response), the service () method
dispatches it to doRequest () and doResponse () methods. These methods then dispatch
further, depending on the type of messagé. Figure 3.5 illustrates the SIP servlet message

handling model.

32

o Beevlet s
o entaney
LS T

e

i dariee
Methods

|
|
I
|
|
|
1
I
i
i
[}
'
1
i
t
§
|
t
i
|
]
|
|
|
|

————————————————————— ___-___-_-------------%--------

Figure 3.5: SIP servlet message handling model.

A. Request Handling Methods

These methods are part of the SIP serviet API. They are automatically called by the
doRequest () method, to help in processing SIP requests. There are ten request handling
methods as shown in figure 3.5. The name of each method is related to the request type that
it handles. For instance, the doRegister () method is used for handling REGISTER requests,
and so on. In the SIP servlet API, the implementation of these methods is empty. This
means that they do nothing. Typically, a servlet will override the methods relevant o the
service it is providing, and implement them in any way needed. This results in a certain

degree of flexibility.

33

B. Response Handling Methods

These methods are automatically called by the doResponse () method, to help in processing
SIP responses. There are four response handling methods: doProvisionalResponse (),
doSuccessResponse (), doRedirectResponse (), and doErrorResponse (). The
doProvisionalResponse () method is used for handling 1xx responses. 2xx responses are
handled by the doSuccessResponse () method, while 3xx responses are handled by the
doRedirectResponse () method. Finally, the doErrorResponse () method handles all 4xx,

5xx, and 6xx responses.

C. Access to headers and message body

The SIP servlet API provides some methods allowing the access to the message headers
and body. Methods such as getHeader () and setHeader () can be used to access and modify
the headers’ content. In order to obtain a parsed version of the message body, the
getContent () method is provided. For information about all the available methods, the

reader can consult reference [19].

3.1.2.2.3 SIP Servlet Operation Example

A simple example to illustrate the model’s operation is the call forward on busy service.
User A sends an INVITE to user B via the SIP server. The container receives this request,
parses it, and identifies the servlet to invoke. It loads the appropriate servlet class and
initializes it by calling its init () method. Then, it calls the dolnvite () method, passing to it
the initial request information as a Servlet Request object. The servlet proxies the request to
B, via the container. B sends a busy response, including an alternative address where he can

be reached, in the contact header. The container parses the response message and passes its

34

information to the servlet by calling its doErrorResponse () method. The servlet extracts the
new address information from the contact header. It then creates a new INVITE and sends
it to the new destination C, via the container. Once the INVITE has been accepted by C, the
servlet sends an ACK to it via the container. This way, a connection is established between
A and C. When the servlet instance is no more needed, the destroy () method is called by

the container. Figure 3.6 illustrates this example.

User Sﬂlﬂmf“ [Serviet J LUser [User 1
L ionA) | | (SPseveqy ¢+ |

i _@ﬁgusg MTQ B | [(ecationQ |
INVITE (B) -
.................... '} init) [
|

[
1 Q,EWMEJELMﬁ
I

| INVITE (B)

|486 Busy-Here response (Contact: Iocaﬁop C)

I doErrorResponse () U !
""""""""""""]
[Qﬁlﬁeﬁdﬂ() & sTneader()
[j INVITE (C) ~
I U INVITE (C)

Figure 3.6: An example of a SIP servlet based service.
3.1.2.2.4 Pros and Cons
One of the important advantages of the SIP servlet API is that it allows the creation of a
wide range of services. This is due to the full access to all the fields of SIP messages, in
addition to the capability of initiating requests, receiving responses, and proxying requests.

Two main advantages it has over SIP CGI are scalability and performance. Since the

35

container and the servlets can be co-located, distributing the execution is possible. Also,
due to its similarity to HTTP servlet APIL it opens sérvice development to web
programmers. Finally, the servlet model offers a certain degree of flexibility. The two
drawbacks of the SIP servlet API are its programming language dependence (based on

Java) and its lack of generality (specific to SIP).

The use of the SIP servlet APIs for the development of conferencing applications presents
the following drawbacks: In order to implement the logic for complex signaling operations
such as creating and managing conferences and sub conferences, a deep knowledge of SIP
is required. This is due to the extensive manipulation of the SIP messages involved. This
level of knowledge is not necessarily required for simpler applications. In addition, a
mechanism for keeping track of the participants’ addresses, their assigned media ports, the
conferences/sub-conferences, and the call-ID assigned to each session is needed. Also, a
good knowledge of the servlet model operation is required in order to optimize the design
of the servlets used. An optimum design is crucial to reduce the interactions between the
servlet and the container, and thus improve the performance. These issues do not arise

when dealing with simpler applications.

On the other hand, we chose the SIP servlet API for building our web services gateway for
the following reasons: the flexibility offered by the servlet model allows the choice of the
appropriate level of abstraction for the gateway; this framework allows the implementation
of advanced signaling capabilities such as conferencing and sub-conferencing; this
framework is commonly used for the development of signaling capabilities in a SIP

environment.

36

3.2 The Emerging Service Creation Frameworks

In the telecom industry, three main standards are being developed for the adoption of web
services: Parlay X, ECMA-348, and the OMA Web Services Enabler (OWSER). The
Parlay X web services aim at facilitating applications development by people who are not
necessarily experts in telephony or telecommunications. The Parlay X APIs offer a higher
level of abstraction than the standard Parlay APIs. Services offered include third-party call,
SMS, MMS, payment, account management, user status and terminal location. These APIs

focus on two-party calls and do not cover conferencing.

ECMA-348 on the other hand constitutes a complete call control web service specification.
Examples of the services defined include capability exchange, routing, and media
attachment services. This framework offers an extensive range of capabilities. However,
these capabilities are highly specialized for Computer Telephony Integration (CTI) and are
not suitable for call control applications in general. In addition, the level of abstraction they
offer is still low (WSDL version of existing specifications). Reference [50] can be

consulted for the complete listing of ECMA'’s interfaces.

The OWSER aims at defining common functions in the form of web services. Examples of
these functions are: security, network identity, discovery, and service level agreement.
Although some of these functions (e.g., authentication) are useful for conferencing, no

specific interfaces are defined for call control.

3.3 Conclusions
Several standard service creation frameworks exist for the development of value-added

services. These frameworks share a common drawback: they require knowledge which

37

non-experts may not have. CPL and SIP CGI require the knowledge of scripts, while
JCC/ICAT, Parlay, and SIP servlets require the knowledge of their related APIs. In
addition, JCC/JCAT and Parlay offer a low level of abstraction and require a background in
circuit switched telephony. SIP CGI and the SIP servlet API require knowledge of SIP.
These requirements are accentuated for more complex applications such as conferencing
applications. In fact, the advanced signaling capabilities used in these applications result in
an extensive manipulation of signaling related objects (call legs in the case of JCC and
Parlay, message fields in the case of SIP CGI and the SIP servlet API). These capabilities
are not possible to implement in a language such as CPL due to the limited behavior of the

language primitives.

Emerging service creation frameworks try to remedy to this problem by relying on the web
service technology. For instance, Parlay X offers a level of abstraction that is higher than
the one offered by the standard Parlay APIs and does not require a background in circuit
switched telephony. For the moment, Parlay X web services focus on two party calls and
do not address conferencing. ECMA-348 constitutes a complete call control specification
including conferencing capabilities. However, the interfaces proposed are still at a low
level of abstraction and are rooted in circuit switched telephony. They are therefore not
easy to grasp. Finally, OWSER is mainly concerned with common functions such as

security and network identify but do not offer any call control interfaces.

The framework we propose uses the same philosophy as these emerging frameworks. It
defines comprehensive interfaces exposing conferencing capabilities. These interfaces offer

a level of abstraction that is higher than what is offered by the standard service creation

38

frameworks. In addition, their use does not require any knowledge related to circuit
switched telephony or telecom. They can therefore be used by application developers to

integrate conferencing capabilities to their applications, easily and rapidly.

39

Chapter 4

The Case Study Components

In this chapter, we present the different components used in the case study. We then give a
thorough description of the function of each component. Among the components presented,
we focus on the description of the new interfaces proposed and present the mapping of a
sub-set onto SIP. The aim of this chapter is to describe the general operation of the model

used in the case study.

4.1 Introduction

The case study was based on centralized conferencing since it is the most appropriate
model for Internet telephony applications. Both the dial-in and the dial-out models were
considered. The different components involved in the case study are: A conference server
which manages the conference from a centralized point and provides web service interfaces
exposing its conferencing capabilities. The gateway, along with the servlets and the mixer
play the role of the conference server in our model. Another component is the application
which uses the capabilities exposed by the interfaces. Finally, the SIP clients are SIP user
agents representing the application users. Note that each client has a point-to-point
signalling and media relation with the conference server. This chapter provides more

details about these components and figure 4.1 illustrates them.

40

Application
Conference Server

Web service/SIP gateway

I SIP Servlet Container

SIP Servlets OO

S |

Figure 4.1: The case study components.
We note that the dial-in and the dial-out models use two different modes of
communication. The dial-out model uses synchronous communication while the dial-in
model uses asynchronous communication. In synchronous communication, the client
application sends a request to the conference server and remains blocked until it receives
the response. This type of communication is suitable for dial-out conferences since all
actions are initiated by the application and sent to the server, which directly gets the result
and sends it back to the application. However, this mode is not suitable for dial-in
conferences since the application will remain blocked for a long time before a user joins or
an update occurs, to receive a response. Asynchronous communication solves this problem
by allowing the application to subscribe to a certain event and get notified when the event
occurs. Two notification mechanisms can be used: the callback mechanism and the polling
mechanism. We now give a brief overview of both mechanisms. Figure 4.2 illustrates the
synchronous mode and the asynchronous mode (using the two notification mechanisms).

More information about the two notification mechanisms can be found in [2].

41

In asynchronous communication using callbacks, the application first sends its request to
the conference server and directly gets an acknowledgement for it. This terminates the first
request-response interaction. When the final result of the operation is ready, the server
sends it to the application via a callback. The callback is a request (not a response) sent to
the application which replies with an acknowledgement. This constitutes the second

request-response interaction.

When using the polling mechanism, the application once again sends its request to the
server and directly gets an acknowledgement. Afterwards, it starts polling the server
regularly to check if its request has been completed. When the request is completed, the

application calls the server to get the result.

The callback mechanism seems to be an efficient way to implement asynchrony. In fact,
only one additional response-request interaction is needed to send the notification. For that
reason, we chose to implement the asynchronous mode of communication used by the dial-

in model, based on the callback mechanism.

42

(a) (b) ©

Client Server Client Server Client Server
Request Request Reguest
) > I
Remains
blocked | y rAck/
: T Result is <=n' 2 . <:IU Is result ready?
. R > ready Continues Result is Continues *
esponse > : .
P doing Callback ready doing Not yet
other other /
tasks / tasks
I Is result ready?
. il
—
Get result
?

Figure 4.2: The different modes of communication: a) synchronous
communication; b) asynchronous communication using callbacks; and ¢) asynchronous
communication using the polling mechanism.

4.2 The Gateway and the Servlets

The gateway and the servlets are key elements in the model studied. They are responsible
of implementing the interfaces the applications expect to find, and mapping the
applications’ calls onto SIP messages going to the clients. In this section, we first present

the interfaces defined. We then discuss the mapping of a sub-set of the interfaces onto SIP.

4.2.1 The New Web Service Interfaces

The new interfaces proposed define conferencing related functions which suit the needs of
both dial-in and dial-out conferencing models. In this section, we describe the functions
specific to each model. We then present the functions common to both models. A summary

of the defined functions is presented in table 4.1.

43

4.2.1.1 Methods Specific to the Dial-out Conferencing Model

Eight methods were defined to provide conferencing and sub-conferencing capabilities to
the dial-out model. These methods are: initiateConf (); addUser (), removeUser ();
initiateSubConf (); endSubConf (); moveUser (); splitSubConf (); and mergeSubConf ().
All these methods are implemented by the gateway, except the splitSubConf () and the
mergeSubConf () methods. These two methods were not implemented since the
applications developed did not involve splitting and merging of sub-conferences. The dial-

out audio conference uses the full range of the implemented functionalities.

initiateConf () is used to initiate a dial-out conference using the parameters provided. It
takes as input the following parameters: the addresses of the participants to invite to the
conference; the media type supported by the conference (presently only voice is
supported); the conference duration (in seconds); the expected number of participants; and
the conference ID (input-output parameter updated with the conference ID generated). It

gives as output the result of the conference initiation (successful or not).

addUser () and removeUser () are used to add/remove a participant to/from the conference
after it has started. Both methods take as input the address of the participant to add/remove

and the ID of the conference concerned. Both return the result of the operation.

initiateSubConf () is used to create a sub conference using the parameters provided. The
sub conference will be related to the main conference already started. initiateSubConf ()
takes the following input parameters: The addresses of the participants to move into the sub
conference after its creation; the ID of the main conference to which the sub conference

will be related; and the sub conference ID (input-output parameter to be updated with the

44

sub conference ID generated). This method doesn’t trigger any signaling action. However,
media manipulation is performed. We explain the media action involved in the next

section. The result of the sub conference initiation is returned as output.

endSubConf () is used to terminate the specified sub conference. The sub conference ID
and the main conference ID are input parameters. The result of the sub conference

. termination is returned as output.

moveUser () is used to move a participant between two sub conferences or between a sub-
conference and the main conference. The input parameters are: the address of the
participant to move; the main conference ID; the ID of the sub conference of origin; and the
ID of the sub conference of destination. To move a participant from the main conference to
a sub conference, the origin sub conference ID should equal zero. In the opposite case
(moving from a sub conference to the main conference), the destination sub conference ID
should equal zero. Like initiateSubConf (), moveUser () doesn’t trigger any signaling
action. It only involves media manipulation. This method returns the result of the operation

as output.

splitSubConf () is used to create a new sub conference and move some of the participants
to it. The input parameters are: the main conference ID, the ID of the sub conference of
origin; the addresses of the participants to move; and the ID of the sub conference of
destination (input-output parameter to be updated with the destination sub conference ID
generated). The result of the sub conference splitting is returned as output. This function

does not trigger any signaling action. However, it involves media manipulation.

45

mergeSubConf () is used to merge two sub conference together, moving all the participants
from the sub conference of origin to the sub conference of destination, then destroying the
sub conference of origin. The input parameters are: the main conference ID; the ID of the
conference of origin; and the ID of the conference of destination. Once again, this method
requires media manipulation only. It returns the result of the sub conferences merging as

output.

4.2.1.2 Methods Specific to the Dial-in Conferencing Model
In this case, two methods were defined specifically for the dial-in model. These methods
are: initiateAsyncConf () and getConfUpdate (). Both methods are implemented by the

gateway. They are used by the dial-in audio conference.

Contrarily to its dial-out counterpart, initiateAsyncConf () does not trigger any signaling
action. It is used to set a dial-in conference room waiting for the participants to join in. It
takes the same input parameters as initiateConf (), except for the participants’ addresses
since they are not known yet. This method directly returns an acknowledgement to the
application. When the first user joins in, the updated conference information is returned to
the application in a callback. This mechanism describes the asynchronous mode of

communication used for dial-in conference initiation.

getConfUpdate () is used to investigate about any updates occurring during the conference.
It takes the conference ID as input parameter. Like initiateAsyncConf (), getConfUpdate
directly returns an acknowledgement to the application. When an update occurs (a user
joins or leaves the conference), the updated conference information is returned to the

application in a callback. Thus, this method uses asynchronous communication.

46

4.2.1.3 Methods Common to Both Models

Four methods were defined to be used by both models. These methods concern conference
termination (both dial-in and dial-out) and floor control capabilities. Only the endConf ()
method was implemented by the gateway. The remaining methods were not implemented
since they were not needed for the applications developed. Note that resource reservation
methods were not defined since they would represent a low level of abstraction and would
require circuit switched telephony background to understand their purpose. Therefore, we
decided to omit them from the interfaces defined. We now present a description of the

common methods defined.

endConf () is used to terminate the specified conference. It takes as input the ID of the
conference to terminate and returns the result of the conference termination. In the dial-out
case, it is used to terminate a dial-out conference when the chair decides to end the
conference. In the dial-in case, it is used to terminate a dial-in conference when the time

allowed expires.

requestFloor () is used to inform the application that a participant requests the right to use
the microphone. The input parameters are: the main conference ID; the ID of the sub
conference to which the participant belongs; and the participant address. If the participant
does not belong to any sub conference (only to the main conference), the sub conference ID
should be set to zero. The application can then grant the requested floor by calling the

appointSpeaker () method. No output is returned by the requestFloor () method.

appointSpeaker () is used to appoint a floor (e.g., the right to use the microphone) to the

indicated participant. The input parameters are: the main conference ID; the ID of the sub

47

conference to which the participant belongs (zero if does not belong to any sub

conference); and the participant address. This method returns the result of the operation as

output.

appointChair () is used by the application to select a participant as the conference chair.

The input parameters are: the main conference ID; the ID of the sub conference to which

. the participant belongs; and the participant address. This method returns the result of the

operation as output.

Method signature Related Description
Model
Boolean Used to initiate a conference
initiateConf(String[] addresses, String Dial-out with the given users’ addresses.
mediaType, int duration, int expectedUsers, model The conference ID is an output
String conflD); parameter returned.
boolean Used to add/remove a user
addUser(String userAddress, String confID); . to/from a conference. The
Dial-out ,
Boolean model user’s address and the
removeUser(String userAddress, String conference 1D must be
conflD); specified.
boolean Used to initiate a sub-
initiateSubConf (String[] users, String Dial-out conference between the
ConflID, String subConfID); model specified users. The main
conference ID to which they
belong must be specified.
Boolean Used to move a user between
moveUser (String user, String ConflD, String Dial-out sub-conferences or main
OriginSubConflD, String model conference and sub-conferences
DestinationSubConflD); and vice-versa.
boolean Used to split a sub-conference
splitSubConf (String[] users, String ConfID, Dial-out into two, by moving some of
String OriginSubConfID, String del the participants of the first sub-
DestinationSubConfID); fmode conference to a second new sub
conference.
Boolean Used to merge two sub-
mergeSubConf (String ConflD, String conferences into one, by
OriginSubConfID, String Dial-out moving the participants of the
DestinationSubConfID); model first sub-conference to the
second then destroying the first
sub-conference.
boolean Dial-out Used to terminate a certain sub-
endSubConf(String ConfID, String model conference. Both main and sub-
subConfID), conference IDs are used.

48

void
initiateAsyncConf (String mediaType, int
duration, int expectedUsers, String confID);

Dial-in model

Used to set a dial-in conference
room, waiting for the users to
join in. (Asynchronous mode)

Void
getConfUpdate (String confID);

Dial-in model

Used to investigate about any
updates occurring during the
conference.(Async. mode)

boolean Dial-out and | Used by application to

endConf(String confID); Dial-in terminate a conference of the
models given ID.

void Dial-out and Used to inform the application

requestFloor (String userAddress, String Dial-in that a participant is requesting a

ConfID, String subConfID); models floor (e.g., the right to use the

mic.)

boolean

Dial-out and

Used by application to grant a

appointSpeaker (String userAddress, String Dial-in floor request to a participant.
ConfID, String subConfID); models

boolean Dial-out and | Used by application to select a
selectChair (String userAddress, String Dial-in chair for the conference.
ConflD, String subConflD); models

Table 4.1: The new web service interfaces.

4.2.2 Mapping the Application Function Calls onto SIP

As mentioned previously, only a sub-set of the functions presented were implemented.
These functions were mapped onto SIP. Two levels of mapping are performed. First, each
of the functions implemented is mapped onto a SIP message by the gateway. This message
is sent to the SIP container which interacts with the appropriate servlet to perform the
needed signaling to the conference clients. Therefore, the servlet performs a second level of
mapping, transforming the message received by the container into SIP messages sent to the
clients. The two levels of mapping were performed using core SIP messages, in addition to
one extension method (the INFO method). In this section, we first present the mapping

strategy, and then detail the mapping of the implemented functions.

4.2.2.1 The general Mapping Strategy
SIP does not offer conference control services. Instead of introducing new SIP extensions

to support conferencing needs, we tried to accommodate those needs using basic SIP

49

messages. Four possible solutions were examined to accomplish this task:

1. Use the trivial solution of sending a SIP message to each of the users, via the SIP
servlet (hosted by the container), which serves as a proxy in this case.

2. Incorporate the users’ addresses as SIP URLs in several contact headers and the
remaining information (ID, action to take) in the subject header. These headers are
then accessed by the servlet, which takes in charge the signaling of the users.

3. Insert the conference parameters in the message body. This body is then parsed by
the servlet to access the needed information and perform the signaling actions.

4. Use messages pointing to a multicast address (representing an administrative group
to which the users should belong).

Despite its simplicity, the first solution is very inefficient and was therefore discarded. The
second solution has the advantage of accommodating any number of users (number of
contact headers used is unlimited). However, only REGISTER messages can accommodate
multiple contact headers. Since the REGISTER message does not reflect the nature of all
the functions to map, this solution was discarded. The last solution is more related to the
multicast architecture not the centralized architecture used. Finally, the third solution is the
one we chose since it is intuitive and accommodates a fairly large number of users. In

addition, it could be applied with several SIP messages, reflecting the nature of the

functions to map.

Therefore, the mapping strategy consists of the following: At a first stage, the gateway
maps each function to a specific SIP message which reflects its nature. Each SIP message
contains the needed conference parameters in its message body. The SIP message is then
passed to the servlet which performs a second mapping, transforming it into other SIP
messages needed for the clients signaling. Figure 4.3 illustrates the mapping strategy. This

strategy is detailed below:

50

initiateConf () and addUser () were mapped onto INVITE messages. The INVITE message
naturally reflects the action of inviting a user (or users) to a session (in this case, a
conference session). The servlet then maps this INVITE message onto other INVITE

message(s) sent to the client(s).

endConf (), removeUser (), and endSubConf () were mapped onto BYE messages. The
. BYE message reflects the action of terminating a session with a user (or users). Again, the

servlet maps this BYE message onto other BYE message(s) sent to the client(s).

initiateSubConf (), moveUser (), initiate AsyncConf () and getConfUpdate () were mapped
onto INFO messages. The INFO message was chosen in those cases, to reflect actions that
do not require any signaling. In fact, those four functions involve media manipulation or
resource initialization. Therefore, the INFO message is used to inform the servlet of a
media action request or resource initialization request. No further mapping is required for

the INFO messages received by the servlet.

getConfUpdate () does not require any action from the servlet. It consists of a database
query request to the gateway itself. Since no SIP message need to be sent to the container,

no mapping is required for this function.

51

initiateConf (a.b.c. ID) addUser (d. ID) removeUser (a, ID) endConf (ID)
A 4 \ 4 \ Al i 4
INVITE (a.b.c, ID) INVITE (d, ID) BYE (a, ID) BYE (ID)
Y Y \ 4 \ 4
INVITE (a) INVITE (d) BYE (a) BYE (b)
INVITE (b) BYE (¢)
INVITE (c) BYE (d)
initiateSubConf (a,b, ID) moveUser (b, ID1, ID2) endSubConf (ID)
A 4 A 4 Y
INFO (a.b, ID) INFO (b, ID1, ID2) BYE (ID)
\ 4 \ 4 A 4
Media Media BYE (a)
action action BYE (b)
request request
initiate AsyncConf (ID) getConfUpdate (ID) — Database
v query
INFO (ID) request
I 4
Resource
initialization
request

Figure 4.3: The Mapping Strategy.

4.2.2.2 Detailed Mapping of the Dial-out Functions

initiateConf () is first mapped onto an INVITE request by the gateway. This request
contains the needed information (users’ addresses and conference ID) in its message body.
It is then sent to the SIP container which parses it and identifies the servlet to invoke. The
container loads the appropriate servlet class and initializes it by calling its init () method.
Then, it calls the doInvite () method, passing to it the initial request information as a Servlet
Request object. The servlet extracts the conference information using the getContent ()
method. It then creates new INVITE messages (one for each participant), and sends them to
the SIP clients via the container. Once the invitations have been accepted by the clients,

ACK messages are sent to them by the servlet, via the container. The servlet then calls one

52

of the mixer’s functions (addStream ()) to add the users’ media streams. Finally, the servlet
updates its users’ database and sends an INFO message to the gateway via the container.
This message provides information about the conference initiation. This message is

mapped by the gateway to a return parameter, which is returned to the application.

addUser () is first mapped onto an INVITE request by the gateway. This request contains
the needed information (action requested, user address, and conference ID) in its message
body. As described previously, the SIP request is sent to the SIP container, which forwards
it to the servlet by calling its doInvite () method. Once again, the servlet parses the message
body to extract the needed information. It then creates a new INVITE message and sends it
“to the user to be added, via the container. Once the user accepts the invitation, an ACK
message is sent to him by the servlet (via the container). The servlet calls the mixer’s
addStream() method to add the user stream. It then updates its users’ database and sends
another INFO message to the gateway to inform it of the result of the function requested.

This message is then mapped by the gateway to a return parameter, sent to the application.

removeUser () is first mapped onto an BYE request by the gateway. This request contains
the needed information in its message body. It is forwarded by the container to the
appropriate servlet (via the doBye () function), which extracts the needed information. It
then creates a new BYE message and sends it to the user to be removed from the
conference. Once it is accepted by the user, the servlet calls the mixer’s subtractStream()
function to subtract the user stream. The rest of the scenario is the same.

The endConf () is first mapped onto a BYE request sent by the gateway. This request

contains the conference ID in its message body. This message is sent to the container which

53

forwards it to the servlet by calling its doBye () method. The servlet extracts the needed
information and creates new BYE messages. These messages are sent to the remaining
conference participants, via the container. Note that the servlet keeps track of the
participants in a database. Once those participants accept the BYE requests, the servlet calls
the mixer’s subtractStream() function to subtract their streams. It then clears its users’
database and sends an OK response to the gateway, via the container. This response is
mapped by the gateway to a return parameter, sent to the application. This method is shared

by both models.

Figure 4.4 illustrates the mapping of the functions presented. Note that the interactions

between the container and the servlet are not shown.

54

l MTxer ; l Application] ’W§ galewax‘ FI_Lcoma_m_e_ri l User A I [User B i I Usei C I
Conferpnce Initiation
initialeConf(addressys, ID)
INVITE (ln body: addressss, ID)
I INVITE A | I
"1 inviTEB
l | | INITEC
’ .4 Ringing l ’ ’LI]
Ringing L |
INFO (IN body; StartedDialOutie Ringing
gletum “TRUES < OK
I [I. i = OK oK
ACK
| {lddStream (A, D)
e | U ack]
. AddStream(B, 1D) - ’Q
I RddStream (€. i) ! ACK 51
i i updiate users DB l l ’K'IJ
< l ' |
Addinl a user: adLUssr {address, liD) T
NYITE (In body: ress, 1D)
v 5K INVITE ;\l
RIAGING
INFO (i body: Added: A)
gtyrn "TRUE" | "= QK
_____ ACK
AddStream (A [1D)
L'J‘ update users l:)B I l
Sz
| d [| |
Remébving & usdfm dvelser (address, ID)
lBYE {In body: aqdress, ID)
| T e
ak “U
. SubtractStream (B)
IIF” I INFO (n body: removed:3)
return "TRUE"
| [{]ﬁ wwwwwwwwwwwwwww U up+te users DB |
’ P—
Conferer’ce termination endCont I ‘ l
| _______ BY; E_cg_gﬂ]dy: ID) l l ‘
BYE A
l ’ ,ﬁ] BYE B | ‘
J BYEC
| » ISubtrac:Streanl (A) =, S]J] ’[E
{ éubtractStreaml(C) QK.
7 4 ubtractStreaml(C) lI' QK |
[ol — l T I
g TRUE \oar DB
p—

])
| |

Figure 4.4: Dial-out mapping: conferencing functionalities.

55

initiateSubConf () is first mapped onto an INFO request sent by the gateway. This request
contains the needed information (action, users’ addresses, and sub conference ID) in its
message body. As described previously, the SIP request is sent to the SIP container, which
forwards it to the servlet by calling its doInfo () method. The servlet extracts the needed
information. It then calls the mixer’s moveStream () function to move the users’ streams
from the main conference stream pool to the sub conference stream pool. Note that no
signaling action is needed here, since signaling relations already exists with all the users
(due to the main conference initiation). The servlet then updates its users’ database and

sends another INFO message to the gateway.

endSubConf () is also mapped onto a BYE request sent by the gateway. This request
contains the action and sub conference ID in its message body. This message reaches the
servlet via the doBye () method. The servlet extracts the needed information and creates
new BYE messages. These messages are sent to the sub conference participants, via the
container. When the participants accept the BYE requests, the servlet calls the mixer’s
subtractStream() function to subtract their streams. It then updates its users’ database and

sends an INFO message to the gateway.

moveUser () is mapped onto an INFO request sent by the gateway. This request contains
the needed information (action, user address, main conference ID, origin and destination
sub conferences IDs) in its message body. Once the servlet extracts the needed information,
it then calls the mixer’s moveStream () function to move the user stream. Once again, no
signaling action is required. The servlet then updates its users’ database and sends an INFO

message to the gateway.

56

Figure 4.5 illustrates the mapping of the sub conferencing related functions.

Application WS gateway || Sip container User A st B %! C
Sub confe 4ncem|tlanon i l{!f?f_ﬁg??g@j_(gférems D) ‘ | I
l T lﬂf%pgﬁv addresses, |D)| l I
| _MoveStream (A, x, y) ')
| . moveStream (¢,x, y) l'[l ’
| INFO(nbody. startedSub)
[, retum "TRUE" I '
’ {:r‘ """""""""""""""""""" : [update users OB | ’
P
Moving'a user. movLUser {address 1D1,1iD2) T ‘ I {
' I >m INFO in boddddresa ID1, 1D2) ' | ’
| _moveStream BLV 2) /ll]
| v
o INFQ (Ip body: moveg: B)
l retum *TRUE" | I
€
l [H T update users DB |
- 1
Sub oon{erence termination] endSubCont (D} I T |
‘ U ﬁ,}‘wwgy_g_@n body: ID) |
| | L N
} I l BYE C I
- { -
I subtractStream (B) |
[a < fl 1 1 OK
rj LubtractStream l
) |

/
:
|
|
|

T
pjiate users DB

BY!E B
|
C1'K
|
|
|
|
|
|
|

!
U
|
r
i
|
u

Figure 4.5: Dial-out mapping: sub conferencing functionalities.

57

4.2.2.3 Detailed Mapping of the Dial-in Functions

When the initiateAsyncConf () function is called, the gateway directly sends an
acknowledgement to the calling application. This terminates this first request-response
interaction. The initiateAsyncConf () function is then mapped onto an INFO request by the
gateway. This request contains the conference ID in its message body. It is then sent to the
SIP container which forwards it to the dial-in servlet by calling its doInfo () method. The
servlet extracts the conference ID and sets a conference room, by initializing the needed
resources. Later on, when the users start sending their invitations to join the conference
room, the servlet finalizes the signaling and contacts the mixer to handle the media mixing.
After the first user joins in, an INFO message is sent back to the gateway to inform it of
this event. This information is used to update the conference record, within the gateway,
which sends it via a callback to the application. The callback in this case is a request, not

response. The application finally responds with an acknowledgement.

When the getConfUpdate () function is called, the gateway directly sends an
acknowledgement to the calling application. No SIP messages are sent to the container as a
result of this function. In fact, each time an update occurs, the servlet automatically sends
an INFO message to the gateway to inform it of the update. The information in these INFO
messages is used to update the conference record maintained by the gateway. When the
getConfUpdate () function is called, the gateway examines the conference record and check
if it has been changed from the last getConfUpdate () function call. If it has changed, the
new conference information is sent to the application via a callback. The application then

responds with an acknowledgement.

58

Figure 4.6 illustrates the dial-in functions’ mapping.

Wl s

initialize msouTas

I Mixer ! [Ap_plicatlgn HWE gatamy} Fﬂp "l { User B i
Confererice initiation '
wlataAsyEEg:n' D)
[T ACK ”’E']
|f INFO (14 body: ID) ‘
A |
”‘*‘“’“‘j Loop J:nn tirgt userjoinr
|
22773 Setconference room 4|
Entering the conferefce: r ite
N OH]
P Ack g
AddBtraamia), [H
| INFO J'WJ(EQQLAQSLJ
| ﬁ QFC!EE"U“N 0B ’
| UpJato usars DB |
...... -
Caﬂbacf((new info)
ACK |

getConference Update(lD)

’ ACK U !
,‘fef Loop d

T

ntit an tipdate is

|
Getting |conference «1pdaie: l

deaF (D)

Leaving the conference:

=]

gpdata users DL

fod

btractStream @)

INFO (In body: Ra

aB)

Up te users DB et

vailabte ‘ '

#F{otum TRUE ’

Confetrence termimation: ‘ I
endCi (I
l _BYE (In hofly: ID)
i =l
| BYE (C) |
. SpbtractStream (A) e ox
(= Jc |
| oK
) SlbtractStream (C)
{ oK
r’-:
Clear 0B
fear DB <
£ T

Figure 4.6: Dial-in mapping.

59

4.3 The Mixer and the SIP Clients

The Mixer is a support unit required for conferencing. It handles media mixing by enabling
actions such as: the addition of a user stream to a pool of streams; the subtraction of a

stream from a pool of streams; and the moving of a stream between two pools of streams.

The SIP clients are the conference participants. They are normal SIP user agents, able to
send and receive SIP messages. They also receive mixed streams from the mixer. In the
dial-out case, they can only accept invitations. In the dial-in mode, they can initiate

invitations and terminate sessions as they wish.

4.4 The Client Applications

Several applications could be built using the capabilities of the conferencing model
presented. Two audio conferencing applications were implemented as examples: a dial-in
and a dial-out audio conferencing application. Some features of these applications are
described as follows: Both conferencing applications are pre-arranged. We chose to study
floor control by including it in one of the applications - the dial out conference. In this case,
a chair conducts the conference, orchestrating the access to the shared resources.
Furthermore, the dial-out conference includes sub-conferencing capabilities, such as
creating sub-groups and moving users between sub-groups. The dial-in conference does not
include these capabilities, as they are already included in the dial out model. The dial-out
conference is closed, so users cannot join the conference as they please. The dial-in
conference on the other hand is open for anyone to join. Finally, the dial-out conference is
started and ended by the chair. The dial-in conference is started when the first user joins in,

and it ends when the time allowed expires. In the dial-in case, other conditions for the

60

starting and ending of the conference could have been used. These features are summarized

in table 4.2.

Dial-out Conference Features

Dial-in Conference Features

Pre-arranged

Conducted by chair (with floor control)
Dial-out

Sub-conferencing capabilities

Closed

Join allowed

Media negotiation

Only chair can invite user. Users can’t join.

Chair starts conference and ends it as he
wishes.

Pre-arranged

Non-conducted (without floor control)
Dial-in

No sub-conferencing capabilities
Open

Join allowed

No media negotiation

Users can join and invite other users
Conference is launched automatically
with first comer. System ends conference
when time allowed expires.

Table 4.2: Audio conferences features.

61

Chapter 5

Implementation and Performance Measurements

This chapter first presents the components software architecture and the prototypes

developed. Afterwards, performance evaluation is discussed.

5.1 Implementation

Among the components presented, the two applications, the gateway, and the servlets were
built during the implementation part of this research work. The SIP container, the mixer
and the SIP clients were built previously by other groups and were reused in this project. In
this section, we focus on the conference server (gateway, servlets, and mixer) since it is the
key component. The applications were built for demonstration purposes and their
architectures are out of the scope of this thesis. For more details about the reused

components, references [15, 9] can be consulted.

5.1.1 The Software Architecture of the Conference Server

As shown in figure 5.1, the conference server is composed of two units: a signaling control
unit and a media control unit. The gateway and the servlets (hosted by the container) act as
the signaling control unit. This unit performs the actual mapping between the calls made to
the web service interfaces and SIP. The mixer on the other hand represents the media
control unit. The latter is a support unit required for conferencing. It is responsible of media
mixing. The communication between the signaling unit and the media unit is done using

Java calls.

62

Signaling Control Unit

Web Service/SIP Gateway

oo Db

™~

Web Service Handler

SIP Handler

SIP Servlet Container ¢

Dial-in
Servlet

Dial-out
Servlet

Media Control Unit

Java
API

Mixer

Figure 5.1: The software architecture of the conference server.

The signaling control unit has three interfaces: HTTP, SIP, and Java API (for
communication with the media control unit). It is composed of two elements: the gateway
and the servlets hosted by the SIP container. The gateway implements the interfaces the
applications expect to find and maps the applications calls onto SIP messages sent to the
container. The container forwards each SIP message it receives to the appropriate servlet.
Two servlets were designed to suit the needs of both dial in and dial-out models. The
container uses servlet-triggering rules to direct the messages to the appropriate servlet. For
instance, all messages with the word “dial-in” in their subject headers are directed to the

dial-in servlet. The servlet then maps the message it receives onto other SIP messages sent

to the clients.

63

5.1.1.1 The Modules and their Roles

The gateway is composed of four modules: the web service handler; the mapper; the SIP
handler; and the coordinator. The web service handler validates the SOAP messages
received from the applications and builds the SOAP messages to be sent to the applications.
SOAP messages are carried over HTTP. The SIP handler builds and sends SIP messages to
the container which forwards them to the appropriate servlet to handle the clients’ signaling
and interactions with the mixer. The SIP handler also validates the SIP messages received
from the container. The mapper handles the mapping between the web service handler and
the SIP handler. The coordinator keeps track of all actions and handles any exceptions or
errors. It also manages the interaction with the conferences database. This database

contains conferences’ records.

When the web service handler receives a valid SOAP request, it extracts from it the name
of the function required and the parameters to use. It then determines if mapping is
required. If it is, it asks the mapper to perform the mapping. The mapper then invokes the
SIP handler, which builds and sends the appropriate SIP message to the container. The
container forwards this message to the appropriate servlet. The servlet extracts the name of
the function required and the parameters to use from the message received. It then
determines if a second mapping is required. If it is, it builds and sends the new SIP
messages to the SIP clients, via the container. The servlet also manages the interaction with
the mixer. In addition, it processes the responses it receives back and sends feedback

messages to the gateway, via the container.

64

Upon receipt of a SIP message from the container, the SIP handler validates it and sends it
to the mapper. The mapper determines if mapping is required. If so, it does the mapping
and invokes the web service handler. The web service handler builds the corresponding
SOAP message. In the case of asynchronous communication, the web service handler uses
the appropriate callback function to notify the application. In the case of synchronous

communication, the handler sends the resulting message as a normal SOAP response.

We note that the way the subscription-notification cycle is accomplished in asynchronous
mode is not optimized. Normally, an application could subscribe for a number of events by
calling a certain function (ex: getConfUpdate ()= notify me each time a user joins or
leaves). The application would then receive a notification for each of these events.
However, due to a limitation imposed by the application server that we used, only one
notification could be sent per subscription. Therefore, when the application calls the
getConfUpdate () function, it will get notified through a callback as soon as the first update
occurs. To get the other updates, other calls to the getConfUpdate () function must be made

by the application.

The media control unit has two interfaces: Java API (for communication with the signalling
control unit) and RTP (Real Time Protocol). RTP is the protocol used in Internet telephony
for media handling. This unit is composed of a simple media mixer. A more complicated
design with a media manager and media handlers could have been used for the support of
several media types. The mixer was designed by another group; therefore its architecture
will not be discussed in this thesis. The mixer receives and validates the RTP media

streams from the conference participants. It mixes them and redistributes the resulting RTP

65

streams to the appropriate participants. We chose to connect the mixer with the servlet and
not the gateway for synchronization purposes. In fact, when the servlet triggers both
clients’ signalling and media handling, synchronization between the two operations can be

achieved.

5.1.1.2 The Class Diagram
Figure 5.2 shows the class diagram. It illustrates the modules presented and their related

methods and attributes.

. CorferenceSenicejws
Investigate orferenceM anag er
dlback Bconfiguration
Einvestigate
i aq uestCanferenceStatus() IC allback
Mlireq uestConferencelipdate() R eguestTyne
Y L @Pararmsters
T o elmants BllLocatAddres
Investig steimpl jes lLocalPort
f;‘coum uses wsHander()
HCass alback lemerrrrrnere— s RAC orfig Ur ation{()
L=28 B onference 1 1{IBinitiateSubCont(}
.t MaddUser()
R oq uestConferenceStatus() BllremoveUser()
B equestConterencelpdate Mimovel ser()
b J [-—
commurvcates wity [WendSubCon()
BlinitiatsAsyncCont()
etConfUpdate
1 | ConferenceManager ! =%acmr;:> 0
S E8SipHand er 1 ilinvestigate_onConferenceReportDone()
rovder BIC orferenceManager() v R
BB yStack MM initateCont) |
Rlconnection_parameters M ap_jritiateSubCont() e
8- eaders MiMap_addUser()
ooy MMz deleteUser() —
BCorterence MMz moveUser() -
S S _—
ipHandler(ap_endSubCont() managas ",
oo aoesty) HiMen intaeAmneCont() — seriet dalin WlearDB) |
MRorocessReaponse() g ioMixer
MRorocessAcK)
xocessCance() Wiit()}
MBrocessTimeOut() Mldoinvite()
MBinitiali zeStack() MdoAck()
MsetCallD() WdoBye()
g etCalliDy) lldoinfo()
Ml et Seq N umber () IldoProvisional Response()
il Londs Moatiest
et r etHeader ()
M ctViaHeaders() R i
Wi 61C ontentType() n (EgeContent()
s etRequestURI() MupdateDBY()
WBcreatsBody_initiation() / MciearDB()
MBcreateBody_termination() - llsendF eecback()
McresteBody_subinitiation() .
MBcreateBody_subMoving () servet_dalin
MBcroateBody subTermination() oMier
Ilicreatebody_addition()
WlcreateBody._removal() I Winit()
MicreateiNVITE() 1n T Mlldoirnite()
MlkcroateBYE() SiilldoAck()
MllcreateiNFO() SldoBys()
MtartCont() Loads and triggers Wdoinfo()
lendﬁon«) ldoProvisional Response()
MaddUser() MidoSuccess Respanse(}
WremowUser() Mg etH sader ()
MinoveUser() MsetHeader()
MstantSubCont() Mg etC ontent()
MhendSuCont() WlupdateDB()
WciearDB()
MllsendFeedback()

Figure 5.2:

The class diagram.

66

5.1.2 The Prototypes
Figure 5.3 shows the overall architecture of the dial-out conferencing application prototype.
The prototype is made of an application server, a conference server, and SIP clients. A

similar prototype was built for the dial-in conferencing application.

Conferencing Application Server

i HTTP/SOAP

Web service/SIP serviet based Conference Server

Signaling l Java . Media
Control Unit | App Control Unit
N — V%
SIp RTP
RTP SIP

Figure 5.3: Overall architecture of the dial-out conference prototype.

5.1.2.1 The Components Implemented

In the signaling control unit, the gateway and the two servlets have been fully
implemented. Instead of a full-blown SIP container, we used a standalone SIP container
providing basic functionality. The media control unit was fully implemented in another
project. A PointBase database was created to store information about the conferences. The
prototypes were implemented in Java. Each of the components presented was implemented
as a separate unit for scalability purposes. For instance, another SIP container, or media

unit can be used by the gateway implemented, since all the components are decoupled.

67

We used the Java API provided by the mixer in the communication between the signaling
and the media control units. This API provides functions such as: addStream ();
subtractStream (); and moveStream (). These functions allow respectively: the addition of a
user stream to a conference/sub-conference; the removal of a user stream from a

conference/sub-conference; and moving a user stream from a sub-conference to another.

5.1.2.2 The Web Services Deployment

The interfaces provided by the conference server were deployed on BEA Weblogic 8.1
application server. This resulted in two web services: a dial-in conferencing web service
and a dial-out conferencing web service. WSDL documents were generated to provide
descriptions of the web services. These documents were used for the generation of stub
classes necessary for the invocation of the web services. Both applications were fully
implemented and bonded to the appropriate web services using the stub classes generated.

Figure 5.4 illustrates the different steps for the web services’ deployment.

68

<detinitions -
expes

erent. onee*setCantimretion’s
<arcempledtes
equeiss

erent Tawes"laiteont™>
cospkeTye
<31 seuencEs
Leacil, e atdresses” vipes upnmmnum~
g™ Mndoouese vy
ARDTCWER"G" S

te pog, dimending o g s o ration” type-"aid
¢ oo, depid k ‘expectediners” type:
caliID” types’ dpe)llll)\luuind' mipficcurs:

<laequence>
</o: Complexiyrey
<aieienne
azetenmnt sames" Ll €5 ATRCORRESPONSE™>
ux~muex|w
seqitnce

e S
¢ > Gcrssd] fhie="HgaferaueGersisededl”
Gedstor-infor Tk Sources fiintariniates

LEC vl setCon iquration {4ab. confaqurationId);

Piblic jave. Lang;String nitisteCont (jave.leng.Sceingl). addresses, jove.lang. St

it toslsan endfont (Javs. beng. String cellTD);

pebLic booleas addlser; tjova, lang. String userAddresse, jave. leng:string callIbj:

ibiLic boolesa tesbreliet. {Java. Ling. Séring uiérhdireast, Java. 1ang. String caltIL:

piblic java.lang String initiateSubCont (java,leng.String]) users, jave,lang. Suci;
iblic bosleax endSubCont {)ave, ing.Sering contIDin, Jsva. Jang.Stetny subContIDs
peblic boalean aovelser (java.lang.String user, Jeve. lang.String cori¢Ibin, Jave.
static Timl Tong. serialVecsiontld = it;

ox Bosmons getine nanes"Conferenzedensissids® values:
<l versione"L. 0" ehcodtge bl 2
) 1sch 1

di/" xilns:conv="h
types>

qualitt
<azélenent naues"serfontigiration”™

4 varning(s).
Check projeot Asyrenzonus_cell_conczol aompllete.
BiLd ile Contetencelervicelsmne. Jwo started,

0 scxor(s), 0 waxaingls)

§

ot

Figure 5.4: Web services deployment steps: a) server starting; b) WSDL document
generation; c) stub classes generation; d) web service building; e) web service testing.

69

5.1.2.3 Asynchronous Mode Requirements
Two requirements were met in order to be able to support callbacks when operating in
asynchronous mode. There requirements are:

» The web service defining a callback must be conversational. This means that the
web service must be able to keep track of the originator of a request, and can
therefore send the callback to the appropriate caller. This is accomplished, by
establishing a unique conversation session between the server and each application
it communicates with. Each conversation, having a unique identifier, permits the
conference server to direct the callbacks to the appropriate application. BEA
application server allows the creation of conversational web services. Therefore,
this condition was satisfied in the dial-in conferencing web service deployed.
Figure 5.5 illustrates a conversation example.

* The application itself must be capable of receiving and interpreting a callback.
Since the callback is defined by a web service, then the application must also be a
web service, to be able to receive SOAP requests (not only SOAP responses). In
addition, the application must also be capable of correlating an incoming message
with a previous request that it initiated. Finally, the application should not be
protected by a firewall, which would consider the callback as an unsolicited request
and would block it. These conditions were satisfied in the dial-in audio conference

application. The latter is the only application operating in asynchronous mode.

70

kstiop Test Browser

IR o

NTRYm0RLOGID=1D75862964234

 Sekvi
S«.bmltted atTuesday, February. 3, 2004 9:49:30 PMEST

;:aIIlD =1
CONVERSATIONID = 1075862964234

: medfiatype = voice

="true”> < Void>

2004 .
; Method:.com.beawiw,runtime.core. contrd ServbeConUolImp(context_onCreate
. Event source: coritext

| caistack:
catback.context_oncreate()
calback :context.onCreate()

Method: :com.bea:wiv.runtime.core.control.SérviceContrallmpl.context_onAcquire
» Event source: context

v <CalbackHeader 2mhs="http://www.opemri.org/2002/04/soap/conversaﬁon/“>
sconversationiD>1075862964234 fconversationlD> ’
<fCallbackHeader>

<hsionConferenceReportone xminsins="tttp://www.opencri.org/ >
<nsim_ctrrentConferences
<ng:confiD>1</ns:conflD>
<ns icurrentlyStarted> true< s icurrentlyStarted>
<ns avalabletisers> 1 </hs:avalableUsers>
<ns:Userss
<nsitem xsl:type="xsd:string">192.168.2:2 < /ns iterm>
</nis Users>
</§im:_clirentConferences>
<fnsionConferenceReportDone>-

ubmitted at Tuesday, February 3, 2004.9:52:27 PMEST
. The-orignal client s e Test User Interface

Figure 5.5: Example of conversational interaction with the dial-in web service: a) initial
request; b) callback.

71

5.1.2.4 The Setup

The SIP container, the servlets and the mixer were installed on the same machine due to the
frequent communications between them. The interactions are carried locally and do not
induce any extra load on the network. The workstation is a 400 MHz, 600 RAM, Intel
Pentium II machine running Windows 2K. The gateway is installed on a separate machine
running BEA Weblogic 8.1 application server. It is a Pentium IV machine operating at 2.2
GHz with 512 RAM and running Windows XP. The same applies to the server sides of the
applications (audio conference servers) and the applications’ clients (SIP clients). Five SIP

clients were used as participants to the conferences.

5.1.2.5 A Word about the Interfaces

The main advantage of the interfaces implemented is the higher level of abstraction they
provide. This level of abstraction could allow application developers who are new to the
telecom field, to easily incorporate call control functionality in their applications. Another
advantage is the loose coupling between the interfaces and the applications developed. This
loose coupling allows changes in the interfaces implementation without necessitating any
change in the applications using them. Finally, the use of these interfaces allows a
considerable reduction in the application foot print. In fact, using the traditional SIP servlet
approach requires 740 lines of codes to incorporate the presented dial-out call control
capabilities in an application. Using the web service interfaces requires only 70 lines of
code. These figures have been observed in the dial-out voice conferencing application
developed. This important reduction of the application foot print saves time and effort for

application developers.

72

5.2 Performance Measurements

The measurements were taken at night due to the absence of a dedicated and isolated
network. Taking the measurements at night allows the minimization of obstructions and
other hindering factors. The measurements were taken for the dial-out model only since the
dial-in model results depend on the participants’ reaction time and are therefore not
relevant. For instance, the dial-in conference initiation time depends on when all the
participants decide to join the conference. The dial-out audio conferencing application was
used for testing. All workstations are connected to a 100 Mb/s Ethernet LAN segment. This

section first presents the metrics and the data collected. The data is then analyzed.

5.2.1 Metrics and Measurement Data

Two metrics were used: time delay and network load. The time delay was calculated as the
time duration between a function call and a feedback message is received from the
container concerning the operation result. Note that for conference initiation and user
addition, the feedback message is sent when a ringing is received from the participant (or
the last participant) to be invited. The network load was calculated as the size of packets
exchanged to accomplish a certain function. The packets were captured using Ethereal
software [8]. The time of capture of each packet was used in the calculation of time delays.

Both metrics are influenced by the number of participants targeted.

In addition to the measurements made for the web service interfaces, similar measurements
were taken for the raw SIP serviet model. The comparison of these two batches of
measurements was used to calculate the overhead introduced by the web service layer.

Figure 5.6 shows the two models compared.

73

Application

. 1 Web service approach
2
WS Handler + 2 Raw SIP servlet approach
mapper
SIP Handler

OO Mixer

SIP servlets

=7
CICOEED

Figure 5.6: Web service approach Vs raw SIP servlet approach.

For each approach, three sets of measurements were taken. These sets involve targeting
three, four, and five participants respectively. Each set consists of 15 trials. For each trial,
the dial-out conference is initiated and its full functionality tested using the dial-out audio
conference application. The following sequence of actions was used: The conference is
initiated with all the participants available (3, 4 or 5 participants); a participant is removed
then added again; One sub conference is created with two random nparticipants; a
participant is moved from the sub conference to the main conference; the sub conference is
ended (dismissing only one participant); and the main conference is ended (dismissing the
remaining participants). The following conditions were observed: The SIP clients are
online at the conference initiation time. They always accept invitations made to them (no

busy or No-answer).

74

Time (ms)

For each approach, the time delay for each of the seven functionalities is plotted against the
number of targeted participants. The overhead introduced by the web service approach is
shown in a separate graph. The same is done for the network load. Two additional graphs
are also presented: the time delay measurements and the network load distribution for a

four-participants-conference, using the web service approach.

Average Time delay: Raw SIP servlet approach

AverageTime delay: Web service approach

7250 7250
6750 6750
6250 6250
5750 5750
5250 5250
4750 = 4750
4250 E 4250
3750 @ 3750
3250 E 3250
2750 = 2750
2950 2250
1750 1750
750 750

250 250 -
& S
&

layer

Time (ms)

Figure 5.7: Average time delay and time delay overhead: a) average time delay for dial-out
functionality using the web service approach; b) average time delay for dial-out
functionality using the raw SIP servlet approach; c) time delay overhead generated by the
web service layer.

75

Amount of data (Bytes)

13500
12500
11500
10500
9500
8500
7500
6500
5500
4500
3500
2500 -
1500

500

Average newtork load: Web service approach

Amount of data (Bytes)

Average network load: Raw SIP serviet approach

13500 -
12500
11500
10500
9500
8500
7500
6500
5500
4500 -
3500
2500
1500

500

Network Load overhead introduced by the web

service layer

Amount of data (Bytes)

Figure 5.8: Average network load and network load overhead: a) average network load for
dial-out functionality using the web service approach; b) average network load for dial-out
functionality using the raw SIP servlet approach; ¢) network load overhead generated by
the web service layer.

76

4 users conference Time delay measurements: Web service approach

8000 -

7000

6000

5000 -

4000 -

Time (ms)

3000
2000 | %

1000

1 2 3 45 6 7 8 9 10 1112 13 14 15

Trial number

ing
Average 1365 07 ms.

4 users conference network load distribution: web service approach

Network load overhead

n SIP (gateway/contamer)
: 19 gackets 0 1,bytes

o SIP/SDP (cantamer/clients) :
10 packets - 5115 bytes _

104 packets - 13243 bytes

Figure 5.9: Time delay trend and network load distribution: a) time delay measurements
for a four-participants-conference (web service approach); b) network load distribution for
a four-participants-conference (web service approach).

77

5.2.2 Time Delay Data Analysis

As shown in figs 5.7a and 5.7b, the biggest delay is generated at conference initiation (5-7
seconds). This delay is caused by several factors: servlet loading time, initialization of
needed resources, and users’ location in the network. The average dial-out servlet loading
time has been calculated to 119 ms. We note that a servlet instance is loaded only once, at
the conference initiation. The same instance is then reused for the remaining operations.
The same applies for resource initialization and users’ location. Therefore, the delays for

the other operations are much less (1-2 seconds).

Initiation and termination time delays are proportional to the number of participants. This is
due to a linearly proportional relation between the number of participants and the number
of SIP messages exchanged. We note that the initiation/termination delays variation is not
linear since other operations (coordination and database manipulation) are involved. The
remaining operations are slightly affected by the number of participants. These operations
involve signaling to one client or no signaling at all. The slight variations observed are

related to differences in database manipulations.

As expected, the web service approach introduces an overhead in terms of time delay. This
overhead is due to the extra communication between the application and the web service
layer. Once again, the biggest overhead is introduced at conference initiation, when the first
TCP connection is established to carry the traffic between the application and the web
service. We notice that the overhead is almost constant with respect to the number of
participants (fig 5.7¢). In fact, only one SOAP message is sent per function, irrespective to

the number of participants involved. The slight variations result from the different delays

78

while establishing the different TCP connections. The average overhead ranges between 43
and 556 ms (3% — 10 % respectively). This delay is barely felt by the application’s user.
Therefore, the added web service layer does not significantly penalize the performance of

the system.

Finally, the time delay trend is uniform as shown in figure 5.9a. In fact, no big fluctuations
are observed in the performance. We note that the SIP container is kept running without
restarting during the total number of trials. Therefore, we can conclude that the SIP

container used did not present any garbage collection problems.

5.2.3 Network Data Analysis

As shown in figs 5.8a and 5.8b, initiation and termination network loads are linearly
proportional to the number of participants. Other operations loads are constant with respect
to the number of participants. These operations generate the same amount of traffic in any
case, since they always target one participant or do not generate any signaling packets

(relative to participants).

The network load overhead generated by the web service layer consists of the extra SOAP
messages exchanged between the application and the web service. The packets size varies
in the case of the conference initiation, depending on the parameters passed within the
message. Therefore, the increase in the number of participants is reflected in the number of
parameters, thus increasing the overhead generated. For the remaining operations, the
number of parameters was kept constant for all scenarios. Therefore, the overhead
generated by these operations is unaffected by the number of participants. Figure 5.8¢c

illustrates the network load overhead generated.

79

The average overhead per functionality ranges between 1.7 and 2.4 Kb (41% - 28%
respectively). Even though this overhead is considerable, it remains constant with respect to
the number of participants, for almost all operations. Other solutions to decrease the SOAP

messages weight should be investigated.

In the web service approach, three types of packets are exchanged during the
. communications between the different components: SIP and SIP with SDP packets are used
in signaling between the gateway/the container and the container/the clients; and TCP
packets carrying the SOAP traffic between the application and the gateway. The TCP
packets constitute the extra load induced by the web service layer. An example of the

network load distribution is illustrated in figure 5.9b.

80

Chapter 6

Conclusions and Future Work

In this chapter, we highlight the contributions of this thesis, and discuss the lessons learned.

We also give hints about future research directions.

6.1 Contributions of this thesis

We have presented a case study on the use of Web services for the development of
conferencing applications in Internet Telephony, or more precisely in SIP networks. In the
study, we have defined comprehensive web service interfaces exposing conferencing
capabilities. In addition, a sub-set of these interfaces was implemented as a SIP servlet
based gateway. Two audio conferencing applications were built using the implemented

interfaces. Performance was evaluated in terms of time delay and network load.

Three main elements make the software architecture of the conferencing server we have
built: the gateway, two servlets hosted by a SIP container, and a mixer. Instead of a full-
blown SIP container, we used a standalone SIP container providing basic functionality. The
gateway and the servlets act as the signaling control unit. The functions implemented by
this unit and the mapping of these functions onto SIP were presented. The mixer on the
other hand acts as the media control unit. The Java API provided by the mixer was used in

the communication between the signaling and the media control units.

The performance measurements were taken for the web service model as well as the raw
SIP servlet model. The comparison of these two sets of measurements was used in the

calculation of the overhead introduced by the web service layer.

81

Throughout this work, we have learned a few lessons:

The first lesson is that the SIP servlet API is a suitable approach for building a web
services gateway. In fact, the flexibility offered by the servlet model permitted us to
choose the appropriate level of abstraction for our design. In addition, the
capabilities offered by this API permit the implementation of advanced signaling
functionalities such as conferencing and sub-conferencing. Such functionalities can
be used for the development of powerful call control applications. The two
applications developed are in fact non trivial and have been fully developed using

the call control capabilities implemented.

The second lesson is that the web service technology promotes easy and fast
applications development. In fact, web services hide the implementation details of
the call control capabilities exposed. This could allow applications developers who
are not necessarily experts in the telecom field to easily integrate call control
capabilities to their applications. In addition, using the web services interfaces
permits a considerable reduction of the applications foot prints. As observed in the
dial-out conferencing application developed, using the web services to incorporate
the dial-out call control capabilities requires 70 lines of code while using the
traditional SIP servlet approach requires 740 lines of code. This important reduction

of the application foot print saves time and effort for application developers.

The third lesson is that the web service layer does not penalize the system
performance in terms of time delays. The average time delay overhead ranges
between 43 and 556 ms (3% — 10 % respectively). This delay is barely felt by the
application’s user. In terms of network load, the extra SOAP traffic represents an
overhead ranging between 1.7 and 2.4 Kb (41% - 28% respectively) per
functionality. This overhead is considerable however it remains constant with
respect to the number of participants, for almost all operations. Other solutions

should be investigated to improve the performance of SOAP.

The fourth lesson is that the current application servers offer a limited support for

asynchronous communication. Normally, an application should be able to subscribe

82

for a number of events (e.g., notify me each time a user joins or leaves) and get
notified for each of the events. Presently, only one notification is allowed per
subscription. This requires several subscriptions by the application to get
notifications for all the events. Improvements should be made to the current tools
to offer optimum support for asynchronous communication.
6.2 Future Work
Although the interfaces defined offer many conferencing capabilities, there are some
capabilities that are not yet defined. For instance, more floor control features could be
added. Examples of these features include expanding and shrinking the scope of a floor,

and freezing a floor. In future work, we will look into the definition of these capabilities in

order to make the interfaces more comprehensive.

Although the gateway developed implements most of the conferencing functions defined,
some functions are not yet implemented. Examples of these functions include floor control
related functions and splitting/merging of sub-conferences. In future work, we will look

into the implementation and the mapping of these functions onto SIP.

Although the mixer used offers support for both audio and video streams, the interfaces
defined uses the voice capability only. In the future, we would like to also use the video
capability to allow video conferences. In addition, the support of several codecs should be

investigated.

One of the limitations of the application server used is the limited support to asynchronous
communication. Presently, several calls to the getConfUpdate () function are to be made by
the application to get all the conference updates. A more efficient way to support

asynchronous communication is among our interests.

83

Although the extra SOAP traffic introduced by the web service layer does not significantly
affect the time delay, it generates a considerable network load overhead. We would like to

find a solution in order to decrease the weight of the SOAP messages used.

Many applications can be developed in Internet telephony using call control capabilities.
However, some applications may need other capabilities such as presence and location.
. Extensions to SIP have been defined to support presence. The composition of the call
control services with other types of services such as presence in order to provide building

blocks for applications is an also among our interests.

84

REFERENCES

N. Alameh, “Chaining Geographical Information Web Services,” IEEE Internet
Computing Magazine, vol. 7, no. 5, pp. 22-29, September 2003

BEA Weblogic tutorial on designing asynchronous interfaces at
http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

The CGI specification at http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

H. Dommel and J. Aceves, “Floor Control for Multimedia Conferencing and
Collaboration,” ACM Multimedia Systems Magazine, vol. 5, no. 1, pp. 23-38, 1997
S. Donovan, “The SIP INFO Method,” RFC 2976, IETF, October 2000
ECMA-348 call control specifications at http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-348.pdf.

ESTI Official web site at http://www.esti.org/

Ethereal web site at http://www.ethereal.com/

R. Glitho, R. Hamadi and R. Huie, “An Architectural Framework for Using Java
Servlets in a SIP environment,” /ICN 2001, Colmar, France, July 2001

R. Glitho, F. Khendek, and A. De Marco, “Creating Value Added Service in Internet
Telephony: An Overview and a Case Study on a High-Level Service Creation
Environment,” IEEE Transactions on systems, man and cybernetics, vol. 33, no. 4,
pp. 446-457, November 2003

R. Glitho and K. Sylla, “Developing Applications for Internet Telephony: A Case
Study on the Use of Parlay Call Control APIs in SIP Networks,” accepted for
publication by IEEE Network

N. Greene, M. A. Ramalho, and B. Rosen, “Media Gateway Control Protocol
Architecture and Requirements,” RFC 2805, IETF, April 2000

M. Handley et al., “SIP: Session Initiation Protocol,” RFC 2543, IETF, March 1999
M. Handley and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327,
IETF, April 1998

S. Hawwa, “Audio Mixing for Centralized Conferences in a SIP Environment,” /[EEE
International Conference on Multimedia, August 2002

ITU-T Recommendation H.323, “Packet based multimedia communications
systems,” Geneva, 2002

JAIN JCC/ICAT, ISR 21 at http://www.jcp.org/jsr/detail/21 jsp

Java Servlet Specification Version 2.3, JSR 00 053 at
http://jcp.org/aboutJava/communityprocess/final/jsr053/

JCP Java SIP Servlet API, JSR 116 at
http://jcp.org/aboutJava/Communityprocess/review/jsr116/

A. Johnston, SIP: Understanding the Session Initiation Protocol, Artech House Inc,
Norwood, Massachusetts, 2001

J. Lennox, J. Rosenberg, and H. Schulzrinne, “Common Gateway Interface for SIP,”
RFC 3050, IETF, January 2001

L. Lennox and H. Schulzrinne, “Call Processing Language Framework and
Requirements,” RFC 2824, IETF, May 2000

J. Lennox and H. Schulzrinne, “transporting User Control Information in SIP
REGISTER Payloads,” Internet draft, [IETF, March 1999, work in progress

85

[24]
[25]

[26]
[27]

[28]
[29]
[30]
C131]
[32]

[33]

[34]
[35]

[36]

[39]
[40]
[41]

[42]
[43]

[44]
[45]

[46]
[47]
[48]

H. Liu and P. Mouchtaris, “Voice over IP Signaling, H.323 and Beyond,” IEEE
Communications Magazine, vol. 38, n0.10, pp. 142.148, October 2000

R. Nagappan, R. Skoszylas, and R. Sriganesh, Developing Java Web Services, Wiley
Pulishing Inc, Indianapolis, Indiana, 2003

OASIS standards consortium web site for UDDI at http://www.uddi.org/

The OMA Web Services Enabler core specification v1.1 (16-02-2004) at
http://member.openmobilealliance.org/ftp/public_documents/mws/2003/

The Organization for the Advancement of Structured Information Standards official
website at http://www.oasis-open.org/home/index.php

Parlay 4.1 specifications at http://www.parlay.org/specs/index.asp

The Parlay X specifications at http://www.parlay.org/specs/index.asp

A. Roach, “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 3265,
IETF, June 2002

J. Rosenberg et al, “SIP: Session Initiation Protocol,” RFC 3261, IETF, June 2002
(Obsoletes RFC 2543)

J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming Internet Telephony
Services,” IEEE Internet Computing Magazine, vol. 3, no. 3, pp. 63-72, May-June
1999

J. Rosenberg and H. Schulzrinne, “Models for Multi Party Conferencing in SIP,”
Internet Draft, IETF, May 2001, work in progress

J. Roy and A. Ramanujan, “Understanding web services,” IEEE IT professional
Magazine, vol. 3, no. 6, pp. 69-73, November 2001

H. Schulzrinne and K. Arabshian, “Providing Emergency Services in Internet
Telephony,” IEEE Internet Computing Magazine, vol. 6, no. 3, pp. 39-47, May-June
2002

H. Schulzrinne and J. Rosenberg, “Signaling for Internet Telephony,” Sixth
International Conference on Network Protocols, pp. 298-307, October 1998

H. Schulzrinne and J. Rosenberg, “The Session Initiation Protocol: Internet Centric
Signaling,” IEEE Communications Magazine, vol. 14, no. 4, pp. 134-141, October
2000

K. Singh, Gautam Nair, and H. Schulzrinne, “Centralized Conferencing Using SIP,”
In Internet telephony workshop 2001, New York, April 2001

H. Sinnreich and A. Johnston, Internet Communications Using SIP, John Wiley and
Sons Inc, New York, 2001

R. Sparks, “The Session Initiation Protocol (SIP) Refer Method,” RFC 3515, IETF,
April 2003

Third Generation Partnership Project (3GPP) at http://www.3gpp.org/

T. Thompson, R. Weil, and M. Wood, “CPXe: Web Services for Internet Imaging,”
IEEE Computer magazine, vol. 36, no. 10, pp. 54-62, October 2003

W3C web site for SOAP at http://www.w3c.org/TR/SOAP/

W3C working draft of the Web services architecture specification at
http://www.w3.0rg/TR/2003/WD-ws-arch-20030808/

W3C web site for WSDL at http://www.w3c.org/TR/wsdl/

W3C web site for XML at http://www.w3c.org/XML/

The Web Services Interoperability organization official website at http://www.ws-
i.org/

86

[49] The World Wide Consortium official website at http://www.w3.org/
[50] WSDL document for ECMA’s call control interfaces at http://www.ecma-
international.org/standards/ecma-348/csta-wsdl/

87

