Iterative Joint Source and Channel Decoding
Using Turbo Codes for MPEG-4 Video
Transmission

Xiao‘Feng Ma

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

February 2004

(© Xiao Feng Ma, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91076-8
Our file Notre référence
ISBN: 0-612-91076-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

13

ABSTRACT

[terative Joint Source and Channel Decoding Using Turbo Codes for MPEG-4

Video Transmission

Xiao Feng Ma

This thesis presents a novel iterative joint source and channel decoding scheme
using turbo codes for MPEG-4 video transmission over noisy channels. The pro-
posed scheme, on one hand, utilizes the channel soft outputs generated by a turbo
decoder to assist syntax based error concealment in a source decoder. On the other
hand, the residual redundancy extracted by the source decoder is fed back to the
channel decoder through modifying the extrinsic information exchanged between the
two constituent MAP decoders of the turbo decoder so as to improve the error per-
formance of the turbo decoder. With video packet mixer, the proposed scheme can
correcl most of the turbo coding blocks with a large nwnber of bit errors. Simulation
results show significant improvement in terms of BER, PSNR and the reconstructed
video quality.

Keywords: Joint source and channel decoding, turbo codes, MPEG-4, video trans-

mission, error concealment, error resilient, syntax.

1l

To my mother, my husband and the memory of my father

v

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor Dr. William E. Lynch for proposing
the research topic and directing this work. I would also like to thank all the professors
with whom I have interacted during my study at Concordia University. Last but
not least, I would like to thank my colleague Mr. Cheng-Yu Pai and other friends
at Concordia for their support and for sharing with me their experience.

This work has been supported by the Natural Science and Engineering Re-

search Council of Canada.

TABLE OF CONTENTS

Introduction

1.1 Transmission of Compressed Videos
1.2 Problem Statement,
1.3 Figuresof Merit
1.4 Organization of Thesis

Background and Literature Review

2.1 The MPEG-4 Standard
2.1.1 Context and Overview of the MPEG-4 Standard
2.1.2 MPEG-4 Video Hierarchy
2.1.3 Video Compressor

2.1.4 Video Decompressor

[RNe}
S}

Turbo Codes s
2.2.1 Shannon Limit and Turbo Code Error Performance
2.2.2 Turbo Encoder
2.2.3 Interleaver/De-interleaver
2.24 Turbo Decoder and MAP Decoding Algorithm
2.2.5 Complexity of MAP Decoding Algorithm
2.3 Error Resilience and Error Concealment for Video Communication . .
2.4 Literature Review on Joint Source and Channel Decoding for Im-

age/Video Transmission

2.5 SUMMALYo

Vi

3 Syntax Based Error Concealment (SBEC) Using Turbo Codes 36

3.1 Residual Source Information in an MPEG-4 Bitstream 37
3.2 Review of Previous Work 40
3.3 Syntax Based Error Concealment Using Turbo Codes 42
3.3.1 The Turbo Code Employed 44
3.3.2 Channel and Modulator/Demodulator 45

3.3.3 Relation between the Hard Decisions and Soft Outputs from

a Turbo Decoder 45

3.3.4 Multiple Video Packet Candidate Generator 48
3.3.5 Syntax Checker 52

3.4 Simulation Results 52

4 Iterative Joint Source and Channel Decoding Using Turbo Codes 57
4.1 Overview of Iterative Joint Source and Channel Decoding (IJSCD) . 58

4.2 Feedback Scheme 61
4.2.1 Usual Effect of Feedback scheme on Turbo Decoding 61
4.2.2 Modification Module00 62

43 VP Mixing/De-mixing 61
431 Convergence Patterns of MAP Turbo Decoding 64
4.3.2 VP Mixer and VP De-mixer 65

4.4 Performance Evaluation 68
4.4.1 Parameter Determination 69
4.4.2 Objective Performance 78
4.4.3 Subjective Performance 84
4.4.4 Computational Time Complexity 101

4.5 Summary ... 106

5 Conclusion and Future Work 108

5.1 Contributions L 109

vii

5.2 Conclusions

5.3 Future Work

REFERENCES .

A Programs

A.1 Smallest Combination Algorithm

vili

1.1

1.2

2.1
2.2
2.3
24
2.5
2.6

3.1

3.3

3.4

3.5

3.6

3.7

3.8

LIST OF FIGURES

Error propagation due to bit errors in VLC codes. Frame 1 of “Table-
Tennis” and the reference frame for Frame 2.
Error propagation from the reference frame, Frame 1, to motion com-

pensated frame, Frame 2.

Hierarchical structure of MPEG-4 bitstream.
GOV structure and coding/decoding order.
MPEG-4 compressor.
MPEG-4 decompressor.
Block diagram of turbo coding/decoding

[Hustration of the soft outputs from a turbo decoder |

Bitstream organization within an MPEG-4 video packet. Numbers
represents the bit length of the corresponding component.
Bitstream organization within an MPEG-4 macroblock. Numbers
represents the bit length of the corresponding component.

[lustration of pixels used in discontinuity measure.
Block diagram of the SBECTC.|
Turbo encoder (u'? and u?® represent the parity bit sequence from
RSC encoder 1 and 2, respectively. u is information bit sequence.).
Recursive systematic convolutional (RSC) encoder (uy, is information
bit and wuj, is parity bit at time k).
Histogram of soft outputs from turbo MAP decoder at iteration 1
and channel SNR 1.50dB
Histogram of soft outputs from turbo MAP decoder at iteration 15

and channel SNR 1.50dB

X

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

412

413

Histogram of soft outputs from turbo MAP decoder at all of iterations

and channel SNR 1.50dB 47

Block diagram of the proposed scheme, iterative joint source and

channel decoding (IJSCD). 59
Luminance PSNR (Y) Vs. number of FBCs Ny at channel SNR. 1.50
dB. Nypisfixedas 16. 71
Number of error bits (NEB) Vs. number of FBCs Ny at channel SNR,
1.50 dB. Nypisfixedas 16. 71

Luminance PSNR (Y) Vs. modification parameters M1, M2 and M3
at channel SNR 1.50 dB(The numbers in the figure is in the order of
M2, M1 and M3). 73
Number of error bits (NEB) Vs. modification parameters M1, M2
and M3 at channel SNR 1.50 dB(The numbers in the figure is in the
order of M2, M1 and M3). 73
Luminance PSNR (Y) Vs. channel SNR and the number of FBCs Ny 79
Blue chrominance PSNR (U) Vs. channel SNR and the number of

FBCs Ny o000 80
Red chrominance PSNR (V) Vs, channel SNR and the wnmber of
FBCs Ny oo oo 80
Number of error bits (NEB) Vs. channel SNR and the number of
FBCs Ny o o o 81

Bit error rate (BER) Vs. channel SNR and the number of FBCs Ny . 81
Frame 73 from the original error-free video “Table-Tennis” 86
Frame 73 from the decompressed video “Table-Tennis” reconstructed

by the TD 87

Frame 73 from the decompressed video “Table-Tennis” reconstructed

by the SBECTC with Ny =4 87

4.14

4.15

4.16

4.17
418

4.19

4.20

4.21

4.25

4.26

4.27
4.28

Frame 73 from the decompressed video “Table-Tennis” reconstructed
by the SBECTC with Ny =6
Frame 73 from the decompressed video “Table-Tennis” reconstructed
by the proposed scheme, IJSCD, with Ny =4
Frame 73 from the decompressed video “Table-Tennis” reconstructed
by the proposed scheme, IJSCD, with Ny =6
Frame 166 from the original error-free video “Table-Tennis”
Frame 166 from the decompressed video “Table-Tennis” recon-
structed by the TDo
Frame 166 from the decompressed video “Table-Tennis” recon-
structed by the SBECTC with Ny =4
Frame 166 from the decompressed video “Table-Tennis” recon-
structed by the SBECTC with Ny =6
Frame 166 from the decompressed video “Table-Tennis” recon-
structed by the proposed scheme, IJSCD, with Ny, =4
Frame 166 from the decompressed video “Table-Tennis” recon-
structed by the proposed scheme, LJSCD, with N, =6

Frame 90 from the original error-free video “Table-Tennis”

4 Frame 90 from the decompressed video “Table-Tennis” reconstructed

by the TD
Frame 90 from the decompressed video “Table-Tennis” reconstructed
by the SBECTC with Ny =4
Frame 90 from the decompressed video “Table-Tennis” reconstructed
by the proposed scheme, IJSCD, with Ny =4
Frame 89 from the original error-free video “Football”

Frame 89 from the decompressed video “Football” reconstructed by

the TD . . 0 o o oo

X1

90

90

91

91

92

94

95

4.29

4.30

4.31
4.32

4.33

4.34

Frame 89 from the decompressed video “Football” reconstructed by
the SBECTC with Ny =6
Frame 89 from the decompressed video “Football” reconstructed by
the proposed scheme, [JSCD, with Ny =6
Frame 31 from the original error-free video “Football”

Frame 31 from the decompressed video “Football” reconstructed by

Frame 31 from the decompressed video “Football” reconstructed by
the SBECTC with Ny =4
Frame 31 from the decompressed video “Football” reconstructed by

the proposed scheme, IJSCD, with Ny =4

X11

3.1
3.2
3.3
3.4

3.5

4.1

4.2

4.3

4.4

4.6

4.7

4.8

4.9

4.10

LIST OF TABLES

BER, NEB and PSNR Vs. number of FBCs N; at channel SNR 3 dB 53
BER, NEB and PSNR Vs. number of FBCs N; at channel SNR 3.5 dB 53

Maximum PSNR from the video compressor for “Table-Tennis” . . . 54
BER, NEB and PSNR Vs. the order of choosing the best candidate
at channel SNR 3.0 dB (Ny =6, Nyp=64) 54
BER, NEB and PSNR Vs. the order of choosing the best candidate
at channel SNR 35dB (Ny =6, Nyp=64) 54

8 combinations of transmitted bits, turbo decoded bits and source
decoded bits, 61
Turbo coding blocks with a large number of errors at channel SNR
1.5 dB after 15 iterations 67
Turbo coding blocks with a large number of errors at channel SNR
1.6 dB after 15 iterations 67
Maximum frame delay caused by VP mixing Vs nwnber of bits from
the same VP {V,,) in a turbo coding block B 75
Performance versus number of bits from the same VP (N,,) after 15
iterations at channel SNR 1.6 dB 77

Required channel SNR to achieve the same performance when differ-

ent decoding schemes employed 82
Maximum PSNR from the video compressor for “Table-Tennis” . . . 83
Maximum PSNR from the video compressor for Video “Football” . . 83

Objective performance comparison at channel SNR 1.5 dB when em-

ploying different schemes and Video “Football” 84
Objective performance comparison at channel SNR 1.6 dB when em-

ploying different schemes and Video “Football” 84

xiii

4.11

4.12

4.13

4.14

4.15

4.16

4.17

PSNR of Frame 73 of Video “Table-Tennis” at channel SNR 1.5 dB
when employing different schemes and Video “Table-Tennis”
PSNR of Frame 166 of Video “Table-Tennis” at channel SNR 1.6 dB
when employing different schemes and Video “Table-Tennis”
PSNR of Frame 90 of Video “Table-Tennis” at channel SNR 1.6 dB
when employing different schemes and Video “Table-Tennis”
PSNR of Frame 89 of Video “Football” at channel SNR 1.5 dB when
employing different schemes
PSNR of Frame 31 of Video “Football” at channel SNR 1.6 dB when
employing different schemes
Complexity comparison at channel SNR 1.6 dB after 15 iterations
(Nm = 20, Nyp = 16, Ny =4, “Table-Tennis”.)
Complexity evaluation at channel SNR 1.6 dB when achieving similar
performance in terms of PSNR and NEB(Y,, = 20, Nyp = 16, Ny =
4, “Table-Tennis”.)

X1v

LIST OF SYMBOLS

L{uy) LAPP ratio or soft output from a MAP decoder

N Interleaver length

Ny Number of flip bit candidates

Nyp Number of VP candidates

My Overall discontinuity measure

Ny, Number of bits from the same video packet in a turbo
coding block

f\% Channel SNR

r Code rate

E, Energy of a bit

Ny One sided noise power spectral density

k Time index

Uy, Transmitted bit at time k

s, s State of the RSC encoder

v Received noisy bit sequence

oy (s) Forward state metric

35 (81 Backward state metric

Y (8, 8) Branch metric

Ny One sided noise power spectral density

Pripr(ur) Logarithm probability difference of bit uy

P(ukly) APP of bit uy

P(VPC;ly) APP of VPC i

XV

APP
APRI-SOVA
AWGN
BER
BPSK
DCT
DVB
DVD
EC

ED
ER
FBC
FEC
FLC
GOV
HDTV
apc
IDCT
IEC
1JSCD
ISO
LAPP
MAD
MAP
MB
MM

LIST OF ACRONYMS

a posteriori Probability

a priori Soft Qutput Viterbi Algorithm
Additive White Gaussian Noise

Bit Error Rate

Binary Phase Shift Keying

Discrete Cosine Transform

Digital Video Broadcasting

Digital Versatile Disc

Error Concealment

Error Detection

Error Resilience

Flip Bit Candidate

Forward Error Correction

Fixed Length Coding

Group of VOP

High-Definition TV

Header Extension Code

Inverse Discrete Cosine Transform
International Electrotechnical Commission
[terative Joint Source and Channel Decoding
International Organization for Standardization
Logarithm a posteriori Probability

Mean Absolute Difference

Maximum a posteriori

Macroblock

Modification Module

XVl

MPEG
MSE
MVPCG
NEB
NSC
PSNR
RSC
RVLC
SBEC
SBECTC
SCA
SDBEC
SNR
TD
VHS
VLC
VO
VOL
VOP
VP
VPC
VPDM
VPM
VS

Moving Picture Experts Group

Mean Square of Error

Multiple Video Packet Candidate Generator
Number of Error Bits

Nonsystematic Convolutional Code

Peak Signal-to-Noise Ratio

Recursive Systematic Convolutional
Reversible VL.C

Syntax Based Error Concealment

Syntax Based Error Concealment using Turbo Codes
Smallest Combination Algorithm

Syntax and Discontinuity Based Error Concealment
Signal to Noise Ratio

Turbo Decoding

Video Home System

Variable Length Coding

Video Object

Video Object Layer

Video Object Plane

Video Packet

Video Packet Candidate

VP De-Mixer

VP Mixer

Video Sequence

Xvil

Chapter 1

Introduction

1.1 Transmission of Compressed Videos

Video transmission has been a major issue in today’s communication networks. In
video transmission, many challenges have been encountered mainly due to limited
bandwidth and noisy channels. Video compression techniques are developed to deal
with the problem of limited bandwidth. However, these compression techniques
make the noisy channel problem worse and thus robust video transmission schemes
are necessary to combat channel noise and to provide videos with acceptable quality
[1].

Video compression is essential in a video transmission system because the
available bandwidth is restricted. Bandwidth is in general measured in bits per
second. In the real world, there’s always a restriction on the available bandwidth.
For example, the available bandwidth in regular telephone lines is 33.6 kbits/s and
20 Mbits/s in digital television system in North America [2]. A 1-second video
with frame rate 30 frames/s and picture size 352 x 240 in RGB color space needs
352 % 240 x 3 x 30 x 8 = 60, 825, 600 bits to represent it if each pixel is represented
using 8 bits. Hence, without compression, it’s impossible to transmit videos over
most of the current communication networks. Not only does video compression make
transmission possible, but it also enables efficient use of the available bandwidtly.
Since bandwidth costs money, video compression reduces the cost of transmission
for both the video providers and consumers.

Common video compression techniques exploit the spatial and temporal redun-
dancy of videos. The compression standards produced by Moving Pictures Experts
Group (MPEG) including MPEG-1 (ISO/IEC 11172), MPEG-2 (ISO/IEC 13818)
and MPEG-4 (ISO/IEC 14496) have been accepted worldwide and have given rise
to a wide range of applications. Notably, MPEG-2 has been chosen as the compres-
sion scheme for both the European Digital Video Broadcasting (DVB) and Digital
Versatile Discs (DVDs) [3]. MPEG-4 known as the standard for multimedia ap-

plications is the newest standard on compression. The work in this thesis follows

the MPEG-4 standard. The compression techniques in the MPEG-4 standard in-
clude Discrete Cosine Transform (DCT), Variable Length Coding (VLC), motion
estimation/compensation, etc. The DCT is aimed to reduce spatial redundancy in
neighboring pixels of a frame and motion estimation/compensation exploits tempo-
ral redundancy in adjacent frames. VLC is an efficient source coding method, which
represents input symbols using different length codewords according to the symbols’
probability.

When a compressed video is transmitted over communication channels, it suf-
fers from channel noise. Channel induced errors can be divided into three categories
according to channel condition [4, 1]: (1) Packet losses due to network congestion;
(2) Burst errors resulted from multipath propagation in mobile wireless networks;
(3) Random bit errors caused by imperfections of physical channels. In this the-
sis, an Additive White Gaussian Noise (AWGN) channel is assumed and thus only

random bit errors are considered.

Figure 1.1: Error propagation due to bit errors in VLC codes. Frame 1 of “Table-
Tennis” and the reference frame for Frame 2.

After compression, most of the redundancy in a video is removed. As a result,

3

Figure 1.2: Error propagation from the reference frame, Frame 1, to motion com-
pensated frame, Frame 2.

compressed video is more fragile to channel errors than uncompressed video in the
sense that a few channel errors may cause severe quality degradation because of error
propagation. For example, in VLC coding in the MPEG-4 standard, since there’s no
fixed codeword length, a single bit error could cause the length of a codeword to be
wrongly assessed and then all subsequent codewords would also be wrongly decoded
until synchronization could be re-established. The black strips in Figure 1.1 show the
effect of bit errors that cause error propagation. In addition to error propagation
caused by VLC coding, errors can also propagate in the temporal direction, due
to motion estimation/compensation. Figure 1.2 shows the error propagation in
temporal direction.

In order to combat channel noise, three kinds of techniques have been de-
veloped for robust video transmission [4, 1]: (1) Forward Error Correction (FEC)
codes, which provide error protection for compressed videos from the viewpoint of
channel coding; (2) Error Resilient (ER) schemes, which make compressed bitstream

resilient to channel errors from the viewpoint of compression; (3) Error Concealment

(EC) schemes, which conceals the errors in a frame at the source decoder side. Some
references on these three kinds of techniques can be found in [1]. In fact, these tech-
niques are not mutually exclusive, but can be used jointly. This thesis studies a joint
source and channel decoding scheme for error concealment in video decompression

process, in which turbo codes are employed for error protection.

1.2 Problem Statement

In this thesis, a robust video transmission scheme, Iterative Joint Source and Chan-
nel Decoding (IJSCD) is investigated and developed. In this scheme, a powerful
channel code, turbo code, is employed to protect the compressed bitstream, i.e., the
output from an MPEG-4 compressor. Binary Phase Shift Keying (BPSK) is used
for modulation and Additive White Gaussian Noise (AWGN) channel is assumed.

Since the IJSCD is a joint scheme of channel and source decoding, the inter-
activity between the source decoder and the channel decoder has to be established.
Thus, the main problem of the IJSCD is two-fold. First, how can the source de-
coder make use of the information from the channel decoder, i.e.. turbo decoder?
Second, how can the information from the source decoder be fed back to the channel
decoder? In addition, since the 1JSCD is an iterative scheme, the third problem is
that how the interactivity between the source decoder and the channel decoder can
go on iteratively?

The information from the turbo decoder considered in this thesis includes the
hard decision and soft output of each decoded bit. To solve the first problem stated
above, the relationship between the hard decision and soft output is investigated.
Based on this relationship, multiple Video Packet (VP) candidates are constructed
for each VP (note that VP is the lowest syntax layer with a resynchronization code
in a compressed MPEG-4 vidco). The a posterior: Probability (APP) of cach VP

candidate is also calculated based on the soft outputs from the turbo decoder. All

the VP candidates together with their APPs are sent to the source decoder. Note,
for a BPSK system, the hard decision/output is 1 or 0 for each information/input
bit, which is made by a channel decoder. If a decoder outputs a continuous number
or chooses one from more than two numbers for each information/input bit, this
decoder is said to make soft decisions/outputs.

The source decoder chooses the best VP candidate according to the APP of
each candidate and the redundant information extracted from the compressed video.
The information of the best VP candidate is fed back to the channel decoder by a
modification scheme. In addition to feed back the information from the source
decoder to the turbo decoder, the modification scheme is also developed in the way
so that the interactivity between the source decoder and the channel decoder can

work iteratively.

1.3 Figures of Merit

Two kinds of measurement have to be introduced since this thesis deals with robust,
video transmission over noisy channels. The first kind of measurement is related 1o
channel coding/decoding. The other is how to evaluate the qualitv of reconstructed
videos.

From the viewpoint of channel coding, the figures of merit are required such

as channel SNR, Bit Error Rate (BER), Number of Error Bits (NEB) and code rate.

e Channel SNR is defined as

E
Channel SNR £ ﬁb (1.1)

0

where Ej, represents the energy of a bit and Ny the one sided noise power
spectral density. Channel SNR is useful for evaluating the energy requirement

of a digital transmission system [5].

e Number of Error Bits (NEB) is the absolute number of error bits in a re-

ceived/reconstructed bitstream.

e Bit Error Rate (BER) is calculated by dividing NEB by the total number of
bits in the compressed bitstream. BER and NEB can be used to evaluate the

goodness of a received/reconstructed bitstream.

e Code rate r is defined as

A I
= 1.2
" nc ()

where n; is the number of information bits and n¢ represents the number of
channel coded bits corresponding to n; information bits. In a binary system,
the channel-coded system requires a bandwidth expansion by a factor of 1/r

to maintain the same bitrate as the uncoded system [6].

The quality of a reconstructed video also need to be assessed, which is generally
done subjectively and objectively [7]. Subjective methods require a group of human
viewers to rate the quality in a well-controlled environment, which can be a costly
and time-consuming process. However, it vields accurate results since the end users
of video are human beings. Objective methods don’t use human viewers but rather
evaluate the video automatically. These methods usually implement an algorithm
which measure video quality based on the comparison of a source/original and a
processed video [7].

In this thesis, rigorous subjective methods are not employed due to the con-
sideration of cost and time. Instead, two alternative ways are used: 1) Some frames
of an original and reconstructed video are presented for readers’ own evaluation. 2)
The author views the videos and gives the comments on their subjective quality.

Common objective methods of assessing video quality includes calculating
Mean Square of Error (MSE), Mean Absolute Difference (MAD) and Peak Signal-
to-Noise Ratio (PSNR). PSNR is a variation of MSE, which is chosen as the

7

objective measure of video quality in this thesis. PSNR for luminance(Y), blue

chrominance(Cy/U) and red chrominance(C,/V) components are defined, respec-

tively, as [7]

PSNR(Y) £ 101log,,

PSNR(U) £ 10log,,

PSNR(V) £ 10log,,

2552

N - : (1.3)
I_Vl; Zi:yl (pYO [Z] - pyR[Z])2
2552
14
M puoli] — purli])? (1.4)
2552)

NLV S (pvolil — pvrli])?

In Equation 1.3, 1.4, and 1.5, Ny, Ny and Ny represent the number of luminance,

blue chrominance and red chrominance pixels in a frame, respectively. pyoli] and

pyr(¢] denote the luminance pixel value in an original and reconstructed frame, re-

spectively. puoli], purli), pvoli] and pygli] are similarly defined for chrominance pix-

els. 255 is the highest-possible pixel value in a frame representing with 8 bits/pixel.

It should be noted that. comparing to RG B color space. the Y

_{sometines

referred to as YUV') color space is a popular wav of efficiently representing color

images/videos, which makes use of the fact that the human visual system is less

sensitive to color than luminance [7].

1.4 Organization of Thesis

This thesis is organized as follows:

Chapter 2 introduces necessary background information, such as the MPEG-

4 standard, syntax hierarchy of MPEG-4 compressed bitstreams, video compres-

sor/decompressor compliant with the MPEG-4 standard, materials related to turbo

codes and common error concealment techniques. This chapter also reviews the
literatures on joint source and channel decoding for robust video/still image trans-
mission.

Chapter 3 describes a simple joint source and channel decoding scheme, Syntax
Based Error Concealment using Turbo Codes (SBECTC). Through SBECTC, some
ideas of how to extract syntactic/semantic information from an MPEG-4 compressed
bitstream and how to make use of the soft outputs from a turbo decoder to assist
source decoding are introduced.

Chapter 4 presents the proposed scheme, Iterative Joint Source and Channel
Decoding (IJSCD), which is based on the iterative feature of turbo codes. This
chapter introduces a feedback scheme so that the extracted syntactic/semantic in-
formation can be available to the turbo decoder. Also, the convergence patterns
of turbo decoding are checked in this chapter. At last, the performance of the
proposed scheme, in terms of PSNR, BER, frame delay, overhead bits, picture qual-
ity and complexity, is investigated in Chapter 4, against two other schemes, the
SBECTC and Turbo Decoding (TD).

Chapter 5 concludes this thesis and discusses the future work on iterative joint

source and channel decoding using turbo codes

Chapter 2

Background and Literature

Review

10

This chapter presents the necessary background information on video compres-
sion/decompression, the MPEG-4 standard, turbo coding/decoding, error resilience
and error concealment for video transmission, as well as joint source and channel
decoding. In Section 2.1, a brief introduction on the MPEG-4 video compression
standard is given. In particular, the hierarchy of the MPEG-4 compressed bitstream
is described. Section 2.2 presents information on turbo codes, which are standard
and powerful error control codes. The MAP decoding algorithm for turbo codes used
in this thesis is also given in Section 2.2. In Section 2.3, a general introduction is
presented on current error resilience and concealment schemes for compressed video.
Section 2.4 reviews existing joint source and channel decoding schemes on video and

image transmission. Finally, Section 2.5 concludes this chapter.

2.1 The MPEG-4 Standard

The Moving Pictures Experts Group (MPEG) is a committee formed under the
Joint Technical Committee of the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC). Tt was formed in
1983, As a working group of ISO/IEC, MPEG is in charge of the development
of international standards for compression, decompression. processing, and coded
representation of moving pictures, audio and their combination [2]. In Sub-section
2.1.1, a brief review on the MPEG standards is presented. An overview on the
MPEG-4 standard is also provided in this sub-section. The syntax of the MPEG-4
compressed bitstream is important in an environment where errors are inserted into
the bitstream as in this thesis. Thus, the MPEG-4 syntax hierarchy is presented
in Sub-section 2.1.2. Sub-section 2.1.3 and 2.1.4 describe a simple compressor and

decompressor compliant with the MPEG-4 standard, respectively.

11

2.1.1 Context and Overview of the MPEG-4 Standard

So far, MPEG has produced MPEG-1 (ISO/IEC 11172), MPEG-2 (ISO/IEC 13818),
MPEG-4 (ISO/IEC 14496) and MPEG-7 (ISO/IEC 15938), which have given rise
to widely used commercial products and services. A brief introduction is given on
each standard in the following.

MPEG-1 (ISO/IEC 11172) is the standard for storage and retrieval of moving
pictures and associated audio on storage media, which was approved in November,
1992. MPEG-1 includes 5 parts: systems, video, audio, conformance testing and
reference software. The video part provides efficient encoding of non-interlaced
pictures with roughly Video Home System (VHS) quality at 1.15 Mb/s. Products
such as Video-CD and MP3 are based on MPEG-1 [3, 8].

The subsequent MPEG-2 (ISO/IEC 13818) standard, on which such prod-
ucts as digital television set top boxes, Digital Versatile Discs (DVDs) and High-
Definition TV (HDTV) are based, was approved in November 1994. MPEG-2 con-
sists of all MPEG-1 coding tools, plus a considerable number of new ones including
the tools for coding interlaced pictures and generating scalable bit streams. MPEG-
2 has become very important because it has been chosen as the compression scheme
for both the Furopean Digital Video Broadeasting (DVB) and DVD. Since MPEG-
2 supports a wide range of applications, it's divided into Profiles and Levels with
a Profile describing a degree of complexity and a Level describing the resolution
associated with the Profile [3, 8, 2].

MPEG-7 (ISO/IEC 15938) is the content representation standard for multime-
dia information search, filtering, management and processing, which was approved
in July 2001 [8, 2].

MPEG-4 (ISO/IEC 14496) is an audiovisual coding standard that capitalized
on advances in compression technology, after MPEG-1 and MPEG-2. The first set
of MPEG-4 standard (so-called Version 1) was approved in October 1998. A major

extension of the standard (so-called Version 2) was approved in December 1999.

12

Some work on extensions in specific domains is still in progress, which are MPEG-4
Version 3 (studio profile) and Version 4 (streaming profile) [8].

Initially, the objective of MPEG-4 was to address very low bitrate coding
issues. However, its scope expanded to include all compression applications. It’s
known as the standard for multimedia applications that require powerful tools for
interactivity. The most distinctive feature of MPEG-4 is that it enables the coding
of individual objects. Different parts in a scene can be segmented, encoded and
transmitted separately as visual objects and audio objects, which will be composited
together at the MPEG-4 decoder. Visual objects in MPEG-4 can be of several
different types, such as natural video, still texture, face, body and mesh objects
[3, 9]. Moreover, the object based coding facilitates access to individual objects in
a scene so that the interactivity can be reached at object level, not at frame level as
MPEG-1/2 does. This kind of functionality is known as content-based interactivity
13, 8,2, 9].

In object based coding, video objects need not to be of rectangular shape as
in MPEG-1/2. That is, MPEG-4 supports arbitrarily shaped objects in contrast to
previous block based schemes. (However, rectangular shaped objects are supported
as a special case in MPEG-4.) Hence, when coding a video object. both textire
data (corresponding to conventional video data but with a smaller size) and shape
data have to be provided. Arithmetic encoding is used for shape coding. In order
for higher coding efficiency, several new texture coding tools are employed such as
AC/DC prediction for intra macroblocks, alternate scan modes, etc. [10]. More-
over, sprite, a special video object for background can substantially reduce the bits
consumed in some cases such as football games since this kind of data is only sent
once [2, 9].

MPEG-4 has also paid great attention to Error Resilience (ER), which makes
it particularly suitable for use in error-prone environments [11, 9, 4]. There are four

error resilient tools incorporated in MPEG-4 as listed in the following;

13

e Video Packet (VP) based resynchronization

VP based resynchronization is similar to Slice in MPEG-1/2. However, the
VP length in MPEG-4 is based on the number of bits contained in the VP, not
on the number of macroblocks as MPEG-1/2 does. Thus, if the number of bits
contained in the current VP exceeds a predetermined threshold, a new VP is
created at the start of the next macroblock. The resynchronization marker is
a specific code at the beginning of a VP and used to distinguish the start of a
new VP.

e Header Extension Code (HEC)

HEC is a single bit used to indicate whether additional information is available
in the header of a VP. When it’s turned on, information on time, motion vector
and Video Object Plane (VOP) coding type are provided in the header so that
each VP can be decoded independently even if the VOP header information

is corrupted.

o Data partitioning

Data partitioning is achieved by separating the motion and macroblock header
information away from the texture information in a VP, Thus. this approach
requires a second marker be inserted between motion and texture data. Its
advantage is that, if texture data are corrupted, motion data can be used for

error concealment.

e Reversible VLCs (RVLCs)

RVLCs are designed such that the VLCs describing the texture information
can be instantaneously decoded both in forward and backward directions in a
VP with data partitioning. In this way, the number of corrupted bits can be

reduced.

14

Note that all these four ER tools are implemented at VP layer. In this thesis, the
only error resilient tool employed is VP resynchronization. More information about
MPEG-4 error resilient tools are available from [11, 9, 4.

The targeted applications of MPEG-4 cover such areas as internet multimedia,
Interactive video games, interpersonal communications (videoconferencing, video-
phone etc.), interactive storage media (optical disks, etc.), multimedia mailing,
networked database services (via ATM, etc.), remote emergency systems, remote
video surveillance, wireless multimedia broadcasting applications [9]. Given the
huge range of coding tools and the many applications, similar to MPEG-2, MPEG-
4 is also subdivided into Profiles and Levels. For more detailed information about

MPEG-4, please refer to [3, 2, 9, 12, 10].

2.1.2 MPEG-4 Video Hierarchy

One important principle in MPEG standards is that the encoder is not standard-
ized. Only the bitstream the encoder produces and the procedure for decoding the
bitstream are standardized. Any bitstream compliant with MPEG standards has to
follow the syntax/semantics specified by the standards. Hence, some authors sug-
gest that the syntax/semanics in MPEG standards can be used for error detection
or error concealment [13, 1]. Thus, the syntax structure of MPEG-4 compressed
bitstream is introduced in this sub-section [2, 9, 10]. Although MPEG-4 supports
many different objects, the focus of this thesis is still on natural video. Figure 2.1
presents the complete hierarchy of an MPEG-4 natural video bitstream.

For natural video, the Video Sequence (VS) is the highest syntactic structure
of the coded bitstream in MPEG-4, which is followed by one or more Video Objects
(VOs) coded concurrently. The profile and level information are indicated in the VS
header. In the VO header, objects’ type, ID and video format such as NTSC, PAL
are given [9].

In scalable coding, each VO can be coded into multiple Video Object Layers

15

Video
Sequence

Video

Group

Video

Video
Packet

Macro-
Block

VS

Figure 2.1: Hierarchical structure of MPEG-4 bitstream.

(VOLs), which consists of a base layer and several extensive layers. Each VOL
corresponds to a certain spatial resolution of a VO. Its head information includes
Layers’ ID, aspect ratio, the horizonal and vertical size of the pixel aspect ratio, the
chrominance format, the bitrate of the bitstream, the video buffering verifier size,
the VOL shape, the VOP rate, the VOL width and height, the bits per pixel, the
quantizer precision, the type and matrix for inverse DCT, the sampling factor in
scalability, etc. If error resilient schemes are employed, this is also signalled in the
VOL header. Note that MPEG-4 only supports 4:2:0 chrominance format [9].

Fach time sample of a VO is defined as Video Object Plane (VOP), which
is similar to a Frame in MPEG-1/2 if the VO consists of the entire frame. The
Group of VOP (GOV) associates together several VOPs. The GOV header carries
time information which is useful for random access and resynchronization in case of
channel errors [9]. A typical GOV is illustrated in Figure 2.2 [9]. In this example,
there are two B-VOPs between successive P-VOPs or successive [- and P-VOPs.
Note that I- represents intra-coded VOPs, P- predictive-coded and B- bidirectionally
predictive-coded VOPs. Particularly, an I-VOP is coded using information only from
itself. A P-VOP is coded using motion compensated prediction from a past reference
VOP. A B-VOP is coded using motion compensated prediction from a past and/or
future reference VOP. The VOP header provides information such as the VOP coding
type, time, the VOP width, height and spatial position, the quantizer value for de-
quantizing the macroblock, etc. [9].

Each VOP is processed blockwise. Thus, below the VOP layer is the mac-
roblock (MB). Each MB is a square of 16 x 16 pixels and comprises 4 luminance
blocks (Y) and 2 spatially corresponding chrominance blocks (Cb or U and Cr or
V) since the chrominance format is 4 : 2 : 0 [9]. A block has 8 x 8 pixels. Note
that motion estimation and compensation work on a MB basis and a block is the
working unit for DCT/IDCT transform coding.

When the VP error resilience scheme is employed, the VP layer is inserted

17

At the compressor input,
i 2 3 4 5 6 7 8 9 10 11 12 13 14 13 16
i B B P B B p B B P B B P B B [
At the compressor output, in the coded bitsream, and at the decompressosor input,

1 4 2

w
~
th
o
>
oo
©
>
I
&
=
o

{ P B B P B B P B B p B B f B B

At the decompressor output

i 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16

I B B P B B P B B P B B I3 B B I

Figure 2.2: GOV structure and coding/decoding order.

between the VOP and MB layer. A VP contains several MBs depending on how
many bits it can have. In the VP’s header, the macroblock number in the current
VP, and the quantizer value to be used for de-quantizing the MBs in the VP are
provided [9].

2.1.3 Video Compressor

Although Sub-section 2.1.1 presented many powerful features of MPEG-4 such as
object based coding/decoding, error resilience schemes, etc., this thesis only con-
siders a simple video compressor and decompressor compliant with the MPEG-|
standard. Specifically, natural video is the input to the video compressor and the
whole frame is treated as a video object so that video segmentation, shape cod-
ing and object composition at the decompressor side are not needed. Moreover,
the compressor does not employ scalable coding. Note that in this thesis from this
point on, the video source encoder/decoder is called video compressor /decompressor
to distinguish it from the channe] encoder/decoder.

As mentioned in the last sub-section, the MPEG standards don’t standardize
the compressor, but only specify the syntax of the compressed bitstream and the
decoding process. Figure 2.3 shows the simplified MPEG-4 compressor (3, 10, 2]

employed in this thesis. The functionality of each module in the figure is discussed

18

below.

Rate
Controlfer

e ;

Frame - .

————>4 Pre-processing Reoonor d_ DCT » Quantizer Encoder Butfer

Tnput . Output

video J bitsteam

De-quantizer

|

IDCT

Motion Reference

Compensation Frame

I

Motion

Estimation

l Motion vectors

Figure 2.3: MPEG-4 compressor.

First, the input video is pre-processed, which is done by the Module Pre-
processing. The preprocessing includes color system conversion, for example, from
RGB to YCbCr, and sampling to achieve the suitable frame rate and frame size.
etc. The pre-processed video are then re-ordered due to the presence of inter-coded
frames(P- and B- frames). Figure 2.2 shows the coding order of & GOV, which is
actually the GOV structure employed in the later simulations.

The Discrete Cosine Transform (DCT) reduces spacial redundancy in both
intra-coded frames and residual frames, which are formed by subtracting the pre-
dictive frame from the frame being inter-coded. The Motion Estimation module
compares the frame being inter-coded to a reference frame (or two reference frames
for B-frame) to generate motion vectors, which indicate the location of the best
matching macroblock in the reference frame. Based on the reference frame, Motion
Compensation makes use of the motion vectors fed from the Motion Estimation to
generate a predictive frame such that the temporal redundancy between frames is

exploited. Note that motion compensation induces error propagation among frames,

19

as stated in Section 1.1.

The Quantizer in Figure 2.3 works on DCT coefficients for further compression.
The serial concatenation of De-quantizer and Inverse DCT (IDCT) reconstructs the
intra or residual frame as the case may be. The reconstructed residual frame adds
the predictive frame to obtain the Reference frame in Figure 2.3. The quantized
DCT coefficients are scanned in a specific order (so called zig-zag scanning) and
then run-length coded using VLCs. Motion vectors are also coded using VLCs.
These two jobs are done by the VLC Encoder. It’s worth mentioning again that
VLCs result in fragile bitstreams since any bit error in one VL.C codeword can not
only result in this codeword being un-decodable or wrongly decoded, but also render
the following bits un-decodable or wrongly decoded.

The VLC coded bitstream goes into the Buffer before being sent out. Accord-
ing to the Buffer state, the Rate Controller in Figure 2.3 adjusts the step size of the

Quantizer so as to keep the bitrate relatively constant as is commonly required.

2.1.4 Video Decompressor

The video decompressor [3, 10, 2] shown in Figure 2.4 reconstructs a video sequence
according to the received compressed MPEG-4 bitstream generated by the video
compressor described in the last sub-section. Correspondingly, this video decon-
pressor is also a simplified MPEG-4 decompressor.

Quantized DCT coefficients and motion vectors come from decoding the cor-
responding VLCs. IDCT reconstructs the DCT coefficients for either an intra or
residual frame depending on the frame coded type. For an inter-frame, Motion
Compensation combines motion vectors and residual DCT coefficients to recon-
struct it while only DCT coefficients are needed to reconstruct an intra-frame. The
functionality of both the Buffer and the Frame Re-order are the same as in the
COMPIressor.

The decompressor, however, requires three important features because the

20

VLC .
———>] Buffer De-quantizer
fnput Decoder
bitsteam
Motion vectors
IDCT
Motion @ Frame
. L/ Re-order Output
Compensation €0)
video
Reference
Frame

Figure 2.4: MPEG-4 decompressor.

received bitstream may contain channel induced errors: (1) It has the ability to
recognize important syntax/semantic violations; (2) It must not stop decompressing
when error bits are found; (3) The decompressor can output the bitstream which it

has decompressed for bit error comparison and further processing.

2.2 Turbo Codes

Turbo code has been a popular research area since it was fitst proposed by Berrou ef.
al. in 1993 [14] for its excellent error performance. The block diagram of a conven-
tional turbo coding/decoding process is shown in Figure 2.5. A conventional turbo
encoder(please refer to Figure 2.5) includes two recursive systematic convolutional
(RSC) encoders, which are parallel concatenated, an interleaver, and a puncturer.
By interleaver, a turbo code has to work on a block-by-block basis and a turbo cod-
ing block usually is quite long in order for a desirable error performance. A turbo
decoder consists of two maximum a posteriori (MAP) decoders. The two MAP
decoders shown in Figure 2.5 are linked through the same interleaver as used by the
turbo encoder and the de-interleaver, which corresponds to the interleaver. Thus,

soft decisions made by the two MAP decoders can be iteratively passed from the

21

output of one decoder to the input of the other decoder. If puncturing is used in the
encoder part, the corresponding de-puncturer is also required in the decoding part.
It can be seen from the above description that such functions as parallel concate-
nation, large block length, interleaving, iteration and soft decoding are included in

turbo codes, which give rise to their excellent error performance [15].

2.2.1 Shannon Limit and Turbo Code Error Performance

According to Shannon’s Theorem, the minimum required channel SNR 1—‘\% for error-
free transmission is —1.59 dB [5]. Note that, as the Shannon limit of —1.59 dB
is approached, the required system bandwidth approaches infinity. Therefore, the
Shannon limit represents a theoretical bound, but it is not a practical goal.

In the case of Binary Phase Shift Keying (BPSK) modulation, several authors
use BER P, = 10™° and]%—g = 0.2 dB as a pragmatic Shannon limit for a rate 1/2
code [5].

Berrou et. al. in [16] employ a turbo code with generator matrix

and a nonuniform interleaver with N = 256 x 256 = 65, 536 bits. After 18 decoding

iterations, the BER is less than 107" at %}- = 0.7 dB using a rate % code over an
Additive White Gaussian Noise (AWGN) channel. Thus, the error performance of
this turbo code is only 0.5 dB away from the pragmatic Shannon limit and that is

why turbo code is so attractive.

2.2.2 Turbo Encoder

A conventional turbo encoder in Figure 2.5 is formed by parallel concatenation of

two RSC encoders linked through an interleaver. In general, the two RSC encoders

22

HAVITIINTAA

!
t
I
t
[
I
1
1
1
i
|
"
I
! 1g-N
¥
1
1
!
i
1
!
!
I
1
|
i
1

4
44a003q

dvi

4300030 0981

ABAVITHIN

dRNLONALAT

I4-N

Nz

[LNIL 1

IAVITIIINI

|
J40003d

&

lo

)

JE-N 4B

SEAVATHINGEA

dVi

Ud-N

SNOILYAALI ThHEAES AK
YELIVISOD

|
i

" JOLVINAOW-30 +
, ;

FAONTORL

JOLYINT0N

@' |l
I
L0 (@F 108
VIV
IO 1N
105
i

Block diagram of turbo coding/decoding

Figure 2.5

23

are identical. In some cases, a turbo encoder also includes a puncturer to increase
its code rate.

In the turbo coding process, the input information bits feed into the first RSC
encoder and, after having been interleaved by the interleaver, enter into the second
encoder. The codeword of a turbo code consists of the input bits to the first RSC
encoder and the parity check bits generated by both encoders. The parity bits can
be punctured according to the available bandwidth or power.

Compared with nonsystematic convolutional code (NSC), the RSC code is
chosen in a turbo encoder because of the following reason. Whereas the generator

matrix of a rate 1/2 NSC code has the form Gysc = [9:(D) g2(D)], the equivalent

92(D)
91(D)

generator matrices, it’s easy to see that both RSC and NSC encoders have the same

RSC encoder has the generator matrix as Grge = |1]. Comparing the two
set of codewords. However, the input-output weight correspondence are different
between NSC and RSC encoders. Especially, the weight-1 input sequences to an
NSC encoder can generate finite output codewords. In contrast to an NSC encoder,
the weight-1 input sequences to an RSC encoder can only generate infinite output
codewords if not considering the turbo coding block length. Moreover, for NSC
codes. error paths with weight-1 input sequences are dominant on the turbo code
error perforiance and in this case, the BER is independent of the interleaver length
N {15, 17]. Thus, no performance gain can be achieved by interleaving for NSC

codes. That’s why turbo codes do require RSC encoders to work effectively.

2.2.3 Interleaver/De-interleaver

Interleaving is a process of reordering an input bit sequence. The inverse of this pro-
cess is called de-interleaving which restores the received sequence into their original
order.

The basic role of an interleaver is to construct a long block code from small

memory RSC codes since long codes provides the possibility of approaching the

24

Shannon limit. Another role of an interleaver is to de-correlate the input sequences
to the two constituent MAP decoders. In this case, after one decoder corrects some
of the errors, some of the remaining errors should be correctable in the other decoder.
The final role of the interleaver is to break low weight input sequences. When the
parity check sequence out of the first RSC encoder is of low weight for a specific
input sequence, a well-designed interleaver can generate a high weight parity check
sequence out of the second RSC encoder so that the overall weight of the code can
be increased.

The length and structure of an interleaver can considerably affect the turbo
code error performance. At low channel SNRs, the interleaver length is a dominant
factor. However, both the interleaver length and structure play an important role
in determining the code performance at high channel SNRs [18].

Commonly used interleaving techniques include block interleavers, convolu-
tional interleavers, random interleavers and code matched interleavers. In this the-
sis, a random interleaver is employed. In random interleaving, a block of N input

bits is read into the interleaver and read out randomly.

2.2.4 Turbo Decoder and MAP Decoding Algorithm

1 he turbo decoder in Figure 2.5 consists of two constituent MAP decoders which are
serially concatenated through two interleavers and a de-interleaver. The interleavers
are identical to the ones used in the turbo encoder and the de-interleaver is the
reverse of the interleaver.

During the turbo decoding process, first, MAP decoder 1 takes as input the
received information sequence y* and the received parity check sequence y'?, which
is generated by the RSC encoder 1. The MAP decoder 1 then produces a soft output,
which is interleaved and used as a prior: probabilities of the information sequence for
the MAP decoder 2. The other two inputs to the MAP decoder 2 are the interleaved

received information sequence and the received parity check sequence y?, which is

generated by the RSC encoder 2. Similarly, the MAP decoder 2 also generates a soft
output, which is de-interleaved and used as a priori probabilities of the information
sequence for the MAP decoder 1. This kind of work between two MAP decoders
can be repeated several times according to the performance requirement. Finally,
after several iterations, the turbo decoder makes hard decision on the information
sequence.

The decoding algorithm employed is the so called MAP decoding algorithm
and that’s why the two constituent decoders are named MAP decoders. Berrou et al.
[14] in the first paper about turbo codes utilized and modified the symbol-by-symbol
maximum a posterior (MAP) decoding algorithm of Bahl et al. (usually referred
as BCJR algorithm) for convolutional codes [19]. The MAP decoding algorithm for
RSC codes and turbo codes assuming an AWGN channel and BPSK modulation
described in the following comes from [20] and [21]. These two papers give some
detailed derivations and information of MAP decoding. Before further illustrating

the MAP algorithm, the following notations should be given at first:

¢ N is the interleaver length.

e m is the RSC encoder’s memory.

s k refers to a time instant.

e S is the set of all 2™ states of the RSC encoder.

e 5; is the state of the encoder at time k.

e u=(u, uUs, ---, uy) is the input information bit sequence.
e x° = (x3, x3, ---, x%) is the modulated information bit sequence.
o v = (uf, ub, .-, uk;) is the parity check bit sequence.

26

o x? = (g, b, -+, 2k) is the modulated parity check bit sequence. x!? and

x% represent the modulated parity check bit sequence generated by the RSC

encoder 1 and 2, respectively.
e yv = (11, Y2, -+, yn) is the received noisy bit sequence.

e y. = (y5, y}) is the noisy version of (x5, z7). y'? and y? corresponds to the

noisy version of x'? and x%, respectively.

i YZ = (?sz Yitir "7y yj)-

The main idea of BCJR Algorithm follows from the Markov property, that is,
if s, is known, bits after time k don’t depend on y*. The detailed BCJR. algorithm
for decoding convolutional codes and linear block codes can be found in [19].

For a single MAP decoder employing BCJR algorithm, the MAP decoder
decides uy = 1 if P(uy = 1ly) > P(ux = Oly) and ug = 0 otherwise. The decision

Uy, 18 given in terms of natural logarithm as
wy, = sign|L(uy)) (2.1)

where L(wy) is the logarithm a posterior: probability (LAPP) ratio and defined as

Plug = 11.‘/))

P(ux = Oly) (2.2

L{ug) = log (

Incorporating the RSC code’s trellis and the Markov property presented above,

Fquation 2.2 may be rewritten as

Dos+ Q—1(8) -y (8's 8) - B (S)) (2.3)

L () = log (Es— ar—1(s') - e (s, 5) - B (5)

where S is the set of order pairs (s, s) corresponding to all state transitions from
Sp_1 = 8 to s = s caused by input bit uy = 1, and S~ is similarly defined for
uy, = 0.

In Equation 2.3, oy (s) and B (s), called as forward state metric and backward

state metric respectively, are computed recursively as

27

D1 () (8)9)

o (s) =) 2.4
+(s) Do 2y k1 (8) (8, 8) (24)
, > B (s)w (s,)
_1(8) = £) 2.5
Pres (5) Dos s Cre1(8) k(8) (25)
v (8, 8), called as branch metric, is defined as
Vi (8 8) £ p(sk = s, yelsk_1 =). (2.6)

The computation of the probabilities v, (s, s) will be given later.

However, the BCJR algorithm only applies to a single decoder. In order to
take full advantage of a bit’s a prior: information available from the previous MAP
decoder, some modification on BCJR algorithm has to be done to make possible
iterative exchanging information between two MAP decoders, which is the so-called
turbo decoding. The a priori information of each bit generated by the previous
MAP decoder L¢ (uy) is defined by

L° () 2 log (%) (2.7)

The branch metric v, (¢, 8) is then computed as

Y (s, s) = exp {5% (L (up) + La.u;i)} T (88) (2.8)
where
4F
L.&2 — 2.9
= 29)
and
1
v (s',8) 2 exp[iLcnyi]. (2.10)

In Equation 2.9, FE,. = rF} with F} and r representing the bit energy and the code

rate, respectively. Ny is the one sided noise power spectral density.

28

After incorporating the a prior: information ¢ (ug), the LAPP ratio in Equa-

tion 2.3 can be further represented as

Lw)= Ly, + L°(w) +1og(ZSM’H(S,)'VE(S/’S)'&‘(S)) (2.11)

~—~ —— >og- 1(8) -5 (s, 8) - Br (s)
channel a priori o
extrinsic
value information ,)
information

The first term L.y; in the right hand side of Equation 2.11 is sometimes called
channel value representing the information from channel. The second term L€ (uy)
represents the a prior: information about uy provided by the previous MAP decoder,
and the third term represents the extrinsic information only available in the current
decoder, which can be passed on to the subsequent decoder as a priori information.

In particular, Equation 2.11 can be rewritten as

Li(ug) = Leyg + Lo (ur) 4+ Liy(ur) (2.12)

Lo(w)jivr) = Lcyi[m:r] + LYy (ur)iy + Loy (k) v (2.13)

for MAP decoder 1 and 2, respectively, where "[INT]" represents the interleaving
operation. L§{ug) (2,7 = 1,2) is the third term in the right hand side of Equation
2.11. After the final iteration, MAP decoder 2 makes a decision on each wuy. If
Lo(ug) > 0, decode uy, as 1; otherwise, as 0.

Equation 2.12 and 2.13 clearly shows that the output from the MAP decoder
takes soft value. The reliability information about each decoded information bit is
the absolute value of L;(uy). Generally, correctly decoded bits most likely have high
| L;(uy)| values while wrongly decoded bits have small |L;(uy)| values which are close
to the threshold 0 as illustrated in Figure 2.6 [22].

The initial conditions in the MAP decoding algorithm are listed as follows:

29

10+ . FENN R Q e

Soft-output

15 ; i : ; ,

Time

16

i8

Figure 2.6: Illustration of the soft outputs from a turbo decoder

For MAP decoder 1,

ag ' (s) =
0 ifs#0
1 ifs=90
1
BV (s)=q
0 ifs#0

LSi(ug) =0fork=1,2,..., V.

For MAP decoder 2,

(2) - 1 lfSZO
0 ifs#0

1
1(3)(3) = 5m for all s.

30

(2.16)

(2.17)

(2.18)

L3y (ur)ynry is the output from the MAP decoder 1 after the first half iteration.
For more detailed derivation of the MAP algorithm, please refer to [19, 18, 20,
21].

2.2.5 Complexity of MAP Decoding Algorithm

For a (n, 1,m) RSC code, the complexity of MAP decoding algorithm per time unit

is illustrated as below
1. Addition: 7-2™ — 1.
2. Multiplication: 5- 2™+ 4+ 4.
3. Exponential: 27+2,

m is the memory of the RSC code.
The total complexity can be estimated by multiplying the time-unit complexity

listed above by the interleaver length and iteration times.

2.3 Error Resilience and Error Concealment for

Video Communication

As presented in Chapter 1, an unavoidable problem with video communication is
that the transmitted video bitstream usually suffers from channel noise. In general,
the channel induced errors can be classified into three categories: random bit errors
caused by imperfections of physical channels, burst errors in storage media or in
wireless networks resulted from multipath propagation, and packet loss caused by
network congestion in packet networks [4, 1]. Moreover, a compressed video bit-
stream is extremely sensitive to errors due to the use of predictive coding and VLC
codes as described in Section 1.1 and 2.1.3. Hence, many techniques have been

developed to combat these channel induced errors. These techniques are commonly

31

divided into three types called Forward Error Correction (FEC), Error Resilience
(ER) and Error Concealment (EC) [23, 1]. These three types of techniques for robust
video communication are further described in the following.

In FEC, a video bitstream is protected using channel error control codes by
systematical inserting extra redundancy bits. So far, Unequal Error Protection
(UEP) schemes are the most popular among FEC schemes for video transmission,
in which different error protection is provided based on the importance of the bits,
i.e., more important bits are protected with stronger channel codes [23, 1].

ER schemes mainly refer to what a video compressor employs to make a com-
pressed bitstream robust to channel errors [24]. MPEG-4 supports the ER schemes
including VP based resynchronization, HEC, data partitioning and RVLCs, which
have been discussed in Section 2.1.1.

Although video compression schemes can heavily reduce the temporal and
spatial redundancies in a natural video, some redundancies remain. EC schemes
used in a video decompressor make use of residual redundancy to minimize the
artifacts caused by transmission errors. These EC schemes are subdivided into
four categories: simple concealment, temporal concealment, spatial concealmenl

and frequency concealment according to the redundancy they use

123, 1] Lynch
et al. [13] introduces an EC method based on the syntax structure of compressed
bitstreams. In [25], a hybrid spatial/temporal EC approach is presented for MPEG-
4 video transmission. However, error detection has to be done before using any EC
scheme. Common ways for error detection includes using FEC codes, characteristics
of natural videos and the syntax structure of a compressed bitstream [1, 24].

Clearly, the three techniques for robust video transmission introduced above
are not mutually exclusive, but can be used jointly. In fact, most papers in this field
present joint schemes and many references are available from |1, 24].

The proposed robust video transmission scheme in this thesis is also a joint

scheme, which combines an FEC code (turbo codes), an ER scheme (VP based

32

resynchronization) and syntax based error concealment together. Moreover, the
proposed scheme provides for interactivity between the channel decoder and the

source decoder, from which the syntax based EC scheme can benefit.

2.4 Literature Review on Joint Source and Chan-
nel Decoding for Image/Video Transmission

Some common techniques for robust video transmission have been introduced in
the last section such as FEC coding, error resilience and concealment schemes. If
FEC is employed for error protection, many authors [26, 13, 27, 28, 29, 30, 22]
have pointed out that the redundancy left in a source after compression can be
utilized jointly by a channel decoder while a source decoder uses the information
from the channel decoder to assist error concealment, which is called Joint Source
and Channel Decoding (JSCD) and the focus of this thesis. Thus, this section will
review some papers in this area. Special attention is paid to the joint schemes using
turbo codes or convolutional codes for image/video transmission.

In [29]. a joint source and chanunel decoding approach for image transmission
over AWGN channel is described. The channel code i3 a convolutional coce and «
priori Soft Output Viterbi Algorithm (APRI-SOVA) is used for decoding it. The
source coders employ the nonadaptive DC'T coding and subband coding with Lloyd-
Max quantization. The quantized coefficients are coded using Fixed Length Coding
(FLC) and DC coefficients are not predictively coded to reserve the bit correlation
among neighboring samples. Then, the reserved redundancy in coded bits is ex-
ploited in that the final soft output for each bit from the channel decoder linearly
combines the soft output of the current bit and the value linearly predicted from
those of previously decoded neighboring bits. However, this method is not formu-
lated using the standard method of compressing quantized non-DC coeflicients and

predictive coding for DC coefficients with VLC’s.

33

Kliewer et al. in [30] introduce an iterative decoding scheme for subband
coded image transmitted over an AWGN channel. A soft-input a posterior: prob-
ability (APP) source decoder is developed based on exploiting implicit residual re-
dundancy in the index vectors after vector-quantization. The channel code is also a
convolutional code and MAP decoding algorithm [20] is used for channel decoding.
Then, the source decoder and channel decoder work together like turbo decoding
of two serially concatenated codes. Note that subband coding is not the standard
method for image compression.

An iterative joint source and channel decoding scheme using turbo codes is
found in [22] for MPEG-1 video and JPEG image transmission. This scheme has also
been used for vector quantized image [31] and subband coded image [32]. The pro-
posed scheme includes error-free source information feedback, error-detected source
information feedback, and the use of channel soft outputs for source post-processing.
The feedback scheme is a weight operation on the extrinsic information passed be-
tween the two constituent decoders inside a turbo decoder based on the extracted
source information, which varies along with different visual sources and source com-
pression methods. The work on MPEG-1 video iu {22] only makes use of the high
degree of predictability of the MPEG-1 start codes. Then, error-free source infor-
mation feedback scheme is emploved for these start codes. Other than these start
codes it does not appear to use other syntax/semantic information of the compressed
bitstream.

Aign in [33] studies error concealment techniques for MPEG-2 inter coded
pictures with the assistance of the soft output values from a channel decoder. In [33],
a RS (204, 188, 17) code is employed as outer channel code and a convolutional code
as inner code, which is decoded using the Soft Output Viterbi Algorithm (SOVA).
The soft output from the SOVA decoder are applied to detect errors where the RS
code may fail.

Bystrom et al. [34] considers the problem of soft decoding of VLCs and the

34

proposed method is applied to MPEG-4 videos. However, the statistics of the em-
ployed VLC are need to be investigated at first and the number of bits and VLC
codes used in the coded bitstream should be sent as side information and received

correctly.

2.5 Summary

This chapter has provided some background information related to the work in
this thesis. The background information includes the introduction on the MPEG-
4 standard and compressor/decompressor compliant with the MPEG-4 standard.
Particularly, the syntax structure of an MPEG-4 compressed bitstream has been
described in this chapter. The introduction on turbo codes and the MAP decoding
algorithm for turbo codes has also been given in this chapter. Since the proposed
joint source and channel decoding scheme will employ some error resilience and
concealment techniques, some information on error resilience and concealment tech-
niques is provided in this chapter. Finally, this chapter has reviewed the literatures

on joint source and channel decoding schemes for video/image transmissiont.

35

Chapter 3

Syntax Based Error Concealment

(SBEC) Using Turbo Codes

36

The syntax structure of an MPEG-4 bitstream, the reliability associated with
the soft outputs from a turbo decoder and common EC techniques are discussed in
Chapter 2. These important concepts form the basis of Syntax Based Error Con-
cealment using Turbo Codes (SBECTC), which is the focus of the current chapter.
In this chapter, first, the residual information in an MPEG-4 bitstream, which can
be used for detecting syntactic/semantic errors in the MPEG-4 bitstream, is given
in Section 3.1. Section 3.2 reviews previous work on using residual information in
an MPEG bitstream for error concealment. Then, Section 3.3 presents the detailed
information on the SBECTC. Finally, simulation results of the SBECTC are given

in Section 3.4.

3.1 Residual Source Information in an MPEG-4
Bitstream

As discussed in Chapter 2, motion compensation/estimation and the DCT employed
by MPEG-4 standard [9] can dramatically reduce the spatial and temporal redun-
daney in a video. However, some redundancy is still available after compression,
which have been widely used for spatial, temporal or spatial-temporal error conceal-
ment. Especially, the syntax and semantics specified by MPEG-4 standard [9] are
residual information inhered in an MPEG-4 coded bitstream and can be applied for
error concealment [13].

An MPEG-4 bitstream is structured into several layers corresponding to dif-
tferent objects, locations and time instants. From top to bottom, these layers are:
Video Sequence (VS), Video Object (VO), Video Object Layer (VOL), Group of
VOPs (GOV), Video Object Plane (VOP), Video Packet (VP), macroblock (MB)
and block [2, 9, 10]. Fach layer includes certain components and these components
are organized in a specific order. All the layers above macroblock layer include a

special component, start-code or resynchronization marker. The bits spent on each

37

VP Resynchroni- Mb N Quant_scale
. g . :

zation Marker N Combined Motion and DCT Data

(17-23) (1-14) (5)

Figure 3.1: Bitstream organization within an MPEG-4 video packet. Numbers
represents the bit length of the corresponding component.

CODED| MCBPC CBPY DQUANT

Encoded MVs DCT Data
(@) (1-9) (1-6) (2)

Figure 3.2: Bitstream organization within an MPEG-4 macroblock. Numbers rep-
resents the bit length of the corresponding component.

component have specific length and meaning, and are allotted according to various
code tables in MPEG-4 standard [9]. Figure 3.1 and Figure 3.2 show the bitstream
components, their order and corresponding length in a VP and a MB, respectively.
This syntax, on one hand, ensures that the MPEG-4 standard is generic so that it
can serve a wide range of applications. On the other hand, it can be used as a pow-
erful tool for error concealment since the violation of MPEG-4 syntax/semantics can
be easily detected by an MPEG-4 decompressor and the syntactic/semantic errors
often render serious video quality degradation.

The examples of syntactic/semantic violation are listed below:
» The motion vectors are out of range.
» Start codes are not at the beginning of the corresponding layer.
e The decoded bits can not be found at any code table in MPEG-4 standard.

e The number of macroblocks doesn’t match for the number specified in a video

packet header.
e The DCT coeflicient is out of range.

e The number of DCT coeflicients of a block exceeds 64.

In addition to syntactic/semantic residual information in a compressed video

bitstream, spatial smoothness [35] is another kind of residual information available

38

FRAME

bottom bottom bottom
Y U \%

4 i i-4,j i-4,]

VP4
VP,
VP VP g

A

VP s VP VP 4y
VP,

P up up

i ij ij

Figure 3.3: Illustration of pixels used in discontinuity measure.

from a partially decompressed video because abrupt discontinuity is very uncommon
in a natural scene due to the video capture process. Considering 4 VPs per row, the

discontinuity measure for luminance component My is defined as [35]

Ny —1

L 1 Cy
My 2 — 3~ (vbgtom _ yioP) (3.1)
LVY j:O
where Ylthp is the luminance pixel value in the top row of V P, while K?Zgﬁom

represents pixel value in the bottom row of the VP above V P,. Ny is the number
of pixels in a line of V P;.
Similarly, the discontinuity measure for chrominance components My, and My

are defined as

Ny-—1

1
My £ o (bottom _ Uf‘jp) (3.2)

=0

39

Ny -1
I
My & = S (vhghtom _y 0P (3.3)
Vv

W)
j=0

where UZ’ (]?p and Vlt]op are the chrominance pixel values in the top row of VP,.
U}zajcjtom and Vil_)gcjtom are pixel value in the bottom row of the VP above V P,. Ny

and Ny are the number of chrominance pixels in a row of V P,.

The overall discontinuity measure is defined as
1
Ma = (AMy + Mj + M7)? (3.4)

for a video with format 4 : 2 : 0.
For error concealment, the smallest M, is preferred since it means the best
spatial smoothness, when considering several candidates for a VP. Figure 3.3 illus-

trates the pixels used in discontinuity measure.

3.2 Review of Previous Work

Previous work on using residual information in an MPEG-2 bitstream to cowbat
channel noise employed different channel error control codes and different schenies
for generating slice candidates. These schemes are further illustrated in the follow-

ing.

1. Syntax based error concealment (SBEC) [13]

In [13], an MPEG-2 bitstream is encoded using a simple parity check code,
which adds 1 parity bit for each error detection (ED) block of 12 bits. At the
receiver end, corrupted ED blocks are located by parity checking. If an ED
block is flagged as corrupted, it’s known that one of the 13 bits is erroneous.
Hence, the slice containing this ED block is decoded up to 13 times and each

time a different bit in this ED block is toggled. Accordingly, two corrupted

40

ED blocks in a slice will result in 169 decodings, etc. The first slice candi-
date without syntax violation during the toggling process will be accepted
as the correct one. Clearly, SBEC uses only the syntactic/semantic residual

information in an MPEG-2 bitstream for error concealment.

. Syntax and discontinuity based error concealment (SDBEC) [35]

SDBEC is an extension of SBEC, which not only makes use of syntac-
tic/semantic residual information, but also uses discontinuity measure to assist
error concealment. The channel code employed in SDBEC is the same as in
SBEC. SDBEC first works like SBEC to check if a slice candidate has any
syntax error, but SDBEC keeps all the slice candidates without syntax vio-
lation. Then, the slice candidate with the smallest M4 is chosen as the best

slice candidate.

- Joint forward error correction and error concealment for compressed video [28]

Mei et al. 28] works on MPEG-2 videos, too. A (16,8) quasi-cyclic code with
minimum Hamming distance 5 is employed for forward error correction (FEC).
In general, the classic FEC approach generates only one slice candidate which
has the shortest Hamming distance to the received bits. If more than one slice
candidate have the shortest Hamming distance, a random one among them is
chosen. The scheme described in [28] not only preserves all the candidates with
the shortest Hamming distance, but also includes the candidates which have
the shortest Hamming distance plus 1 or plus 2, which is the way how slice
candidates are constructed. Considering of choosing the best slice candidate,
Mei et al. in [28] develop a measure which combines channel information
(Hamming distance), syntax information and discontinuity measure together.
In this scheme, the slice candidates from the shortest Hamming distance group
have the highest priority and the ones from the shortest Hamming distance

plus 2 group have the least priority of being chosen as the best candidate. The

41

different weights on the priority are decided experimentally.

4. Syntax and discontinuity based error concealment for compressed video in a

packet environment [27]

Lynch et al. [27] work on MPEG-2 videos and aims to apply SDBEC in a
packet environment. In [27], the errors considered are lost packets which are
generally caused by network congestion in a packet switched network and no
channel coding is employed. The bits from a single slice are distributed among
several packets so that the loss of a packet will result in only one or a few
errors in one slice. The loss of a packet is detected by the de-packetizer at the
receiver side and the lost bits are treated as erasures. Syntax information and
discontinuity measure are used to find the best slice candidates for a corrupted

slice.

3.3 Syntax Based FError Concealment Using

Turbo Codes

Syntax Based Error Concealment using Turbo Codes (SBECTC) follows the pre-
vious work in utilizing the source syntax/semantics for error detection and con-
cealment. The turbo code employed in the SBECTC is introduced in Sub-section
3.3.1. The channel condition and modulation/de-modulation scheme are described
in Sub-section 3.3.2.

Figure 3.4 shows the block diagram of the SBECTC. The Video Compressor
and Decompressor have been introduced in Sub-section 2.1.3 and 2.1.4, respectively.
The turbo decoder and the employed MAP decoding algorithm have been discussed
in Section 2.2.

Since the current work uses turbo codes, the soft information of each bit is

available from the turbo decoder. To utilize this information, the relation between

42

YIUNLONNL-30

YIAVITIRINGIEA YIAVITIALNI TANNVHD

BN Ty, | UgN

Y3JOONT
oIl

¥30003a ACLYINAO

G ke 4N ¥OLYINAOW
|
i
|

¢

¥00030
Net,| - wE-N a4
: 2| dvn

ISION

JOSSFUINOD

— YIAVITIAINIEA 03dIA

Iig-N 124

I

1

1

“ Any € ;]
(w1 VN AIAVATHIIN]
I

I

I

I

I

I

I

I YTAOIHD
——— O0dAN
XYINAS

YOSSTIINO23a
O3dqiA

HIAOIAI 08

LYHELITYYIAIR ¥314Y 35070 MA

|

O3qIA G3583

Block diagram of the SBECTC.
43

Figure 3.4

the hard decisions and soft outputs of the turbo decoder is investigated in Sub-
section 3.3.3. Based on this relation, a Multiple Video Packet Candidates Generator
(MVPCG) is developed, which is discussed in Sub-section 3.3.4. A Syntax Checker
aiming to exploit the syntactic/semantic redundancy in an MPEG-4 compressed

bitstream is introduced in Sub-section 3.3.5.

3.3.1 The Turbo Code Employed

RSC I

P or o
N - BIT

INTERLEAVER

PUNCTURER

YNy

RSC 2

Figure 3.5: Turbo encoder (u'? and u? represent the parity bit sequence from RSC
encoder 1 and 2, respectively. u is information bit sequence.).

Figure 3.6: Recursive systematic convolutional (RSC) encoder (uy is information
bit and wu} is parity bit at time k).

The turbo code used in the current work is the one from [21]. Figure 3.5 shows

the turbo encoder. The two RSC encoders have the same generator matrix [31 27] in

44

octal form, and the memory is 4. Figure 3.6 shows the RSC encoder. The puncture

matrix is

11
10
01

so that the code rate of this turbo code is about % (4 tail bits are added to restore
the RSC encoder to all zero state for each turbo code block). A random interleaver
with length N and the MAP decoding algorithm introduced in Section 2.2.4 are
employed for this turbo code.

The bits on and below the VP from an MPEG-4 compressed bitstream, except

the VP header bits, are encoded using this turbo code.

3.3.2 Channel and Modulator/Demodulator

As discussed in Section 1.1, there are three different kinds of transmission errors, i.e. .
random errors, burst errors and packet loss. In the current work, AWGN channe!
is considered resulting in random errors in the coded video bitstream. BPSK 14

employed for modulation |5},

3.3.3 Relation between the Hard Decisions and Soft Out-

puts from a Turbo Decoder

The relation between the hard decision on a bit and its corresponding soft output
L(u) from a turbo decoder is investigated, in order to take advantage of the available
soft information. To find this relation, some simulations of turbo decoding are
implemented. The block diagram of turbo decoding is as shown in Figure 2.5.

In the simulation, the turbo code employed is the one introduced in Sub-section

3.3.1. An AWGN channel and BPSK modulation are considered. The interlecaver

45

as x 10°{&) Correctly decoded bits 1 o x 10° (b} Wrongly decoded bits 1

2 5
4
g 15 g
£ £ 3
3 3
z 1 z
2
05 f
0 0
~-10 0 10 20 30 40 -40 -30 ~20 -10 o} 10
Soft output value Soft output value
x 10" (c) Wrongly decoded bits O x 10° (d) Correctly decoded bits O
7 3
6 25
5
2
S 4]
£ €15
23 2
1
2
1 0.5
0 0
-10 [} 10 20 30 40 -40 -30 -20 -10 o} 10
Soft output value Soft output value

Figure 3.7: Histogram of soft outputs from turbo MAP decoder at iteration 1 and
channel SNR 1.50 dB

length IV is 1,004 and channel SNR 1.5 dB. The information bit sequence is from an
MPEG-4 compressed video. In the compression, a 6-second video “Table-Tennis” is
used, which has frame size 352 x 240.

The histograms of the final Oﬁtputs from the turbo decoder which are the
soft outputs Lo(wy) from the MAP decoder 2(please refer to Iigure 2.5, are plotted
for both correctly and wrongly decoded bits. The histograms show the soft outputs
Lo(uy) of all the coded information bits.

Figure 3.7 shows the soft outputs at the first iteration. The soft outputs are
classified into four categories as correctly decoded bits 1, correctly decoded bits
0, wrongly decoded bits 1 and wrongly decoded bits 0, respectively. Similarly,
Figure 3.8 shows the histograms at the last iteration, i.e., the fifteenth iteration.
It’s noticed that the histograms from the third iteration are all similar to the ones
at the fifteenth iteration and the only difference among them is that the number of
correctly decoded bits is increased as the iteration goes on. For further investigation,

Figure 3.9 presents all the soft outputs from all 15 iterations.

46

5 (a) Correctly decoded bits 1 1} Wrongly decoded bits 1
x 10

5 140
120
4
100
P 3 —
E: g ®0
= £
Z 2 z 80
40
1
20
0 0 a
-10 o] 10 20 30 40 -40 -30 -20 ~-10 0 10
Soft output value Solt output value
{c) Wrongly decoded bits 0 x 10° (d)} Correctly decoded bits 0
140 6
120 5
100 4
g e 3
£ £°
Z 60 z
2
40
20 1
0 * 0
-10 0 10 20 30 40 -40 -30 -20 -10 o] 10
Soft output value Soft output value

Figure 3.8: Histogram of soft outputs from turbo MAP decoder at iteration 15 and
channel SNR 1.50 dB

x 107 (@) Correctly decoded bits 1 x 10° (D) Wrongly decoded bits 1
8 8~
5
3
4
& D
£ 3 =
=) H 3
z z
2%
o
1
¢}]
-10 c 10 20 30 40 -40 ~30 -20 ~-10 0 10
Soft output value Soft output value
x 100 (c) Wrongly decoded bits 0 x 107 {d) Correctly decoded bits 0
10 7
6
8
5
i 6 —
g g4
: £
Zz 4 23
2
2
1
0 4]
-10 0 10 20 30 40 -40 -30 -20 -10 0 i0
Soft output value Soft output value

Figure 3.9: Histogram of soft outputs from turbo MAP decoder at all of iterations
and channel SNR 1.50 dB

47

According to all these histogram figures, it can be observed that the soft
outputs Ly(uy) of wrongly decoded bits generally are close to the threshold 0 (The
definition of threshold is given by Equation 2.2.). Moreover, the average values of
these four kinds of bits from all 15 iterations are calculated and the average values
of correctly decoded bits 1, correctly decoded bits 0, wrongly decoded bits 1 and
wrongly decoded bits 0 are 27.1210, —27.1208, —1.4977 and 1.5023, respectively.

From the simulation results presented above, it can be seen that the absolute
soft output values |Lo(uy)| of wrongly decoded bits are much smaller than the cor-
rectly decoded bits. At this point, |Lo(ux)| can serve as reliability indicator of a bit’s
hard decision, i.e., the larger the |La(ug)| is, the more reliable is its hard decision,

and vice versa.

3.3.4 Multiple Video Packet Candidate Generator

The Multiple Video Packet Candidate Generator (MVPCG) in Figure 3.4 is to make
use of the available soft output Ls(u,) and hard decision of each bit from the turbo
decoder to generate multiple VP candidates, based on the relation between the
hard and soft outputs discussed in last sub-section. The MVPCG works on a VP
basis. The number of multiple VP candidates generated by the MVPCG is fixed
and denoted as Ny p. A method of constructing VP candidates, and an algorithim,
Smallest Combination Algorithm (SCA) for finding Nyp VP candidates with the
highest a posterior: probability (APP) as well as sorting them in order of decreasing
APP, are developed.

The VP candidates are constructed as follows. When | Ls(uy)| of bit uy, is small,
its APP is close to 0.5 according to Equation 2.2. Moreover, its corresponding hard
decision is not reliable as discussed in Sub-section 3.3.3. Hence, it’s reasonablc
to choose Ny bits with the smallest |Lo(uy)| value in a VP as Flip Bit Candidates
(FBCs). By flipping some or all these N bits, VP candidates are generated. Consid-

ering all the combinations of these N; bits, 227 is the maximum number of available

48

VP candidates.
While constructing the VP candidates, the APP of each VP candidate is cal-

culated based on the method described below.

1. Bit’'s APP

Based on Equation 2.2, a bit’s APP can be calculated as

Plug = 1ly) = 1 jxfig[(ga]k” (3.5)

1
1 + exp[L(ug)]

Plup = 0ly) = 1 = P(u = lly) = (3.6)

Note that L(ug) is the soft outputs from MAP decoder 2, i.e., Lo(ux) and y is

the received noisy information bit sequence.

2. Video packet’s APP

After receiving y. the turbo decoder makes hard decisions on each transmitted
bit uy in a VP according to La(us). The VP’'s APP is then the product of each
bit’'s APP located in this VP under the assumption that the bits in the VP arce
independent to each other. This VP Candidate (VPC) is the MAP candidate
from the view point of channel decoding (turbo decoding in the current work)
since all the bits” APP are greater than 0.5. When flipping some or all the bits
of the chosen N; bits, the APP of the flipped bit is switched from P(u; = 1|y)
to P(ux = 0Oly) if the original hard decision is 1. Similarly, switch the APP
from P(uy = 0ly) to P(ux = 1ly) if the original hard decision is 0. The bit
APP can be calculated according to Equation 3.5 or Equation 3.6 and the
original hard decision. Thus, the APP of a VP candidate can be calculated as

P(VPCily) = [| P(w. or axly) (3.7)
k

49

where i is the index of VP candidates, k is the bit index in a certain VP

candidate and 7, represents the flipped version of bit uy.

In Equation 3.7, the right hand side can be rewritten as the product of two

parts, i.e.,

P(VPCily) = [] Pl oruly)

k
= I Peuly)- IT Plus. or wly) (3.8)
kks#L; k=L;

where L; represents the location of FBCs and j is the index of FBCs from 1
to Nf.

The algorithm, Smallest Combination Algorithm (SCA), is used to find Nyp
VP candidates of the highest APP from the possible 2¥/ combinations and to sort
these candidates in order of decreasing APP. This algorithm is important especially
when /Ny is a large number while Ny p is moderate.

To develop the SCA, Equation 3.8 is rewritten in logarithm scale as

log PIVPCily) = Z log Pluyly) + Z log P(uy, or uly). (3.9)
fe k£ L k=L,

The value of the first term in the right hand side of Equation 3.9 is fixed for all VP
candidates since it’s the summation of all the non-FBCs. Therefore, Nyp VP can-
didates that have the highest APP are found by identifying the Ny p combinations
from Ny FBCs which may produce the largest summation of the second term in the
right hand side of Equation 3.9.

After defining Py;rp(ux) as

Puigr(ug) £ log Plugly) — log P(tik]y) (3.10)

50

the second term in the right hand side of Equation 3.9 becomes

Z log P(ug, or iig]y)

k=L;
LNf
= Z log P(uly) + Z log P(tyly)
k=1L1 k#Cnm k=Com
LNf
= > log P(ugly) = > log Plugly) + Y log P(tit]y)
k=L, k=Cyn k=Ci,
LNf
= > log Pluly) = Y Puip(ue) (3.11)
k=L k=Cnm

where C,, represents the bit locations in a certain combination chosen from N;
Pyiff(ug) and m is the index of the bits which are to be flipped. It should be noted
that uy is the original hard decision made by the turbo decoder and after flipping,
uy, becomes wy. P(uly) and P(tg|y) are available according to Equation 3.5 or 3.6.

In Equation 3.11, clearly, the first term is identical for all the VP candidates
and the second term varies along with different flipped bits’ combinations chosen
from N; FBCs. At this point, the identification of the Ny p combinations with the
highest APP can be done by finding Ny-p smallest combinations from N; FBC’
logarithim probability difference Fypp{uy). Note that the VP candidates with the
highest APP is the one directly from the turbo decoder without flipping any bit since
it means the second term in the right hand side of Equation 3.11 is 0. Thus, only
Nyp —1 VP candidates need to be found by the SCA. The C program of the SCA
is given in Appendix A.1. While finding the Nyp — 1 smallest combinations from
Ny Pyisr(ug), the SCA generates these candidates in such a way that the Nyp VP
candidates are ordered from the smallest combination to the largest, corresponding
to arrange these candidates from the highest APP to the lowest APP. Note that,
before using the SCA, the Ny FBCs’ logarithm probability difference Py;sf(uy) are

ordered increasingly. Finally, these Ny p VP candidates are sent to the next module,

Syntax Checker.

ol

3.3.5 Syntax Checker

The function of the Syntax Checker in Figure 3.4 is to check if a VP candidate has
any syntactic/semantic error after receiving the multiple VP candidates generated by
the MVPCG. The syntactic/semantic information exploited by the Syntax Checker
is the syntax redundancy in an MPEG-4 compressed bitstream, as discussed in
Section 3.1

The Syntax Checker works in the following way: Once a VP candidate without
syntax violation is found, the Syntax Checker sends this candidate out and stops
checking the rest of the VP candidates. Since the VP candidates are given in order of
decreasing APP, the first VP candidate free from syntax violation is the best choice.
It all the VP candidates can’t pass the syntax checking, the one with the highest,
APP is accepted as the best candidate, i.e. the original VP from the turbo decoder
without any flipping. In this way, the available source and channel information are
combined together so that some improvement in terms of PSNR, number of error
bits (NEB) or bit error rate (BER) can be expected.

[t should be noted that if there are a large number of bit errors in a VP, the
VP candidates provided by the MVPCG still have many bit errors. In this case, it
is difficult for the Syntax Checker to find a VP candidate without syntax violation.
Thus, the Syntax Checker only works effectively when there are a few errors in a

VP.

3.4 Simulation Results

The performance of the SBECTC is tested against Turbo Decoding (TD). The
difference between the TD and the SBECTC lies in that the former lacks the Syntax
Checker and MVPCG shown in Figure 3.4 for the SBECTC. Thus, the output from
turbo decoder is directly sent to the Video Decompressor for decompressing and no

EC scheme is employed.

The current simulations work on a 6-second video sequence “Table-Tennis”
which has frame size 352 x 240, frame rate 30 and bit rate 2 Mb/s. The simulations
are run at channel SNR 3.0 and 3.5 dB, respectively. Only are intra-coded frames
used in the compression. The total number of bits after compression is 9, 873, 776.
The interleaver length N of turbo code is 10,000 and the iteration time is only
1. Table 3.1 shows the performance comparison, in terms of PSNR, BER and
NEB, between two schemes for channel SNR 3.0 dB and Table 3.2 for channel SNR
3.5 dB. Also, the number of FBCs N; varies to investigate the performance of
the SBECTC. In the simulations, the selected VP candidates Nyp by MVPCG is
2Ns. For comparison, Table 3.3 lists the possible maximum PSNR of Y,U and V

component.

Table 3.1: BER, NEB and PSNR Vs. number of FBCs Ny at channel SNR 3 dB

PSNR | PSNR | PSNR

BER | NEB| ©)) W)

TD [522x10 * | 5150 | 9.363601 | 10.950125 | 8.956155
Np=2[427 %1074 | 4213 | 15425918 | 17.773954 | 16.289440
Ny=4]388x107* | 3831 | 17.743491 | 20.644899 | 19.280595
Ny =6 364 x 107" | 3598 | 19.395481 | 22.724291 | 21.404960

Table 3.2: BER, NEB and PSNR Vs.

number of FBCs Ny at channel SNR 3.5 dB

PSNR PSNR PSNR
BER - INEB (u) V)
D 5.30 x 10~° | 523 | 19.182158 | 22.173519 20.565707
Nf =21320x107°| 316 | 28.637216 | 34.146479 32.891720
Nf =61]283x107%| 279 | 29.958338 | 36.081411 | 34.836587

According to the simulation results, the SBECTC has about 6.1 dB gain over
the TD at channel SNR 3.0 dB in terms of PSNR (Y) even using only 2 FBCs

and 4 VP candidates. The performance improvement is thus quite obvious. It’s

93

Table 3.3: Maximum PSNR from the video compressor for “Table-Tennis”

PSNR (Y) | 33.119841
PSNR. (U) | 37.340753
PSNR (V) | 36.196230

also observed that the performance of the SBECTC, in terms of BER, NEB and
PSNR, is improved along with the increased number of FBCs N;. However, since
the selected VP candidates Nyp = 2% and more VP candidates means more work

of the Syntax Checker, the complexity is increased along with the increased Ny, too.

Table 3.4: BER, NEB and PSNR Vs. the order of choosing the best candidate at
channel SNR 3.0 dB (Ny =6, Nyp =64)

PSNR PSNR PSNR
BER NEB
(Y) () V)
Choosing 4
the highest APP 3.64 x 10 3598 | 19.395481 | 22.724291 | 21.404960
Choosing 4 , . :
! . 2484 | 22.3550! .060:
the lowest APP 6.53 x 10 6447 | 18.632484 355050 | 21.060311

Table 3.5: BER, NEB and PSNR Vs. the order of choosing the best candidate at

channel SNR 3.5 dB (Ny =6, Nyp =64)

PSNR PSNR PSNR
BER NEB
(Y) () V)
Choosing _5
the highest APP 2.83 x 10 279 | 29.958338 | 36.081411 | 34.836587
Choosing s
the lowest APP 8.21 x 10 811 | 29.124841 | 35.865247 | 34.454307

For comparison, simulations are also run under the same simulation condition

as described at the beginning of this section, but choosing the best VP in a reverse

54

order, i.e., the candidate with the smallest VP APP is considered as the best candi-
date. Table 3.4 and Table 3.5 presents the performance comparison between these
two different orders of choosing the best VP candidate at channel SNR 3.0 dB and
3.5 dB, respectively.

The simulation results in Table 3.4 and 3.5 show that the scheme of choosing
the VP candidate with the highest APP works better than that of choosing the
lowest APP in terms of PSNR, BER and NEB, as expected. Although choosing
the best VP candidate with the smallest APP doesn’t make sense, the simulation
results can indeed show that wrongly decoded bits are most possibly the ones that
have smaller |Lg(ug)| values. They are thus less reliable bits as stated in Section
3.3.4 since the VP candidate of the highest APP is constructed by flipping the bits
with the smallest |Lg(ug)l|.

More simulation results of the SBECTC will be later pfesented in Chapter
4, in order to give a clearer comparison with the proposed scheme, iterative joint
source and channel decoding using turbo codes, which is discussed in Chapter 4.

In the current chapter, some basic ideas of how to make use of soft outputs
| Lo ()] of turbo decoder to assist error concealment in post-processing videos have
been presented. First of all, | Lo(wy)| can be considered as a reliability measurement
of the hard decision of the corresponding bit and thus the most uncertain bits in a
VP can be picked up based on the magnitude of |Ly(uy)|. Then, in the construction
of VP candidates by flipping the most uncertain bits, |Lo(ug)| is used to calculate
the APP of VP candidates. These ideas will be further used in the next chapter since
they provide a reasonable way of using the information from the channel decoder.
However, the SBECTC introduced in the current chapter is only a one-way method,
i.e., information from the channel decoder is passed to the source decoder, but
information extracted from the source is not fed back to the channel decoder. In
the next chapter, the schemes of iterative joint source and channel decoding using

turbo codes will be discussed, which will iteratively exchange information between

25

the channel decoder and the source decoder.

26

Chapter 4

Iterative Joint Source and Channel

Decoding Using Turbo Codes

o7

Chapter 3 has presented some ideas of how to use both the redundant in-
formation inherent in an MPEG-4 video bitstream and soft outputs from the turbo
decoder to alleviate channel noise. It’s well known that the most appealing feature of
turbo codes is that they can achieve dramatic coding gain by iteratively exchanging
extrinsic information between two constituent MAP decoders. The main purpose
of this chapter is to make use of this iterative feature of turbo codes to iteratively
send residual information in MPEG-4 compressed bitstreams to the turbo decoder
to improve performance. Thus, this chapter investigates possible ways to transfer
the residual information extracted by an MPEG-4 source decoder into soft values
and feed back this information to the turbo decoder iteratively.

Chapter 4 is organized as follows: An overview of the proposed scheme, Itera-
tive Joint Source and Channel Decoding (IJSCD), is given in Section 4.1. Feedback
scheme and VP mixing/de-mixing, which are employed in the proposed scheme, are
discussed in Section 4.2 and 4.3, respectively. The performance of the proposed
scheme is assessed objectively and subjectively in Section 4.4. The complexity of
the proposed scheme is also evaluated in Section 4.4. Section 4.5 presents a brief

summary of this chapter.

4.1 Overview of Iterative Joint Source and Chan-

nel Decoding (IJSCD)

The whole system diagram of the proposed scheme, IJSCD, is shown in Figure 4.1,
which consists of the modules: Video Compressor, VP Mixer (VPM), Turbo En-
coder, Turbo Decoder, Modulator, De-Modulator, Multiple VP Candidates Genera-
tor (MVPCG), Syntax Checker, Modification Module (MM), VP De-mixer (VPDM)
and Video Decompressor. Compared to the SBECTC, only the Modification Mod-
ule, the VP Mixer and the VP De-mixer are new in the proposed scheme. The other

modules are the same as discussed in Chapter 3.

o8

N_mooumg\o@ma
e e e e k
| YRLONNGED
| YaAVETHALNIEC YIAVIRIINI ! TINNYHD H
i I
: ug-N - ug-N bk H)
! :.Z:m:v 2 7 _ © . \
_ | | ! ¥IA00NT
_ ¥30004d ! YOLYTNAOW fent
! . _ o , _ of¥NL
"z V, _
po(men v WAAVITEEINI H ,V
”) ¥300090 - “ ,
| il :z:m_ﬁ UE-N NT a0 , | :
_ 3 4V R ; 3SION !
“ b T ;
" ,ﬁ " | -t WdA
‘ , | HIONTT dA v
“ YIAVITHINIG ” | v
! R T W _ t ”
“ Ty ug-N 14 , ¥ |
Lol e e e Yl) ; :
NadA Nt S | !
! “ , ! YOSSAUINOD
_ AIAFHD ! ! ,
e ODdAW v _, 03aIA
XVINAS Oy : ;
| v y “
1 1
HIONTTdA ! ! "
X h | Xp
! ! i B
b
HOSSTUINODEA|
03aIA ,_ u
“ ;
1

AIA0IA 3%

SNOLLYYHLI TY3TATS ¥914Y 35070

OFAA GISSTANO,

t source and channel

terative join

, 1

29

Block diagram of the proposed scheme

decoding (IJSCD).

Figure 4.1

The proposed scheme, Iterative Joint Source and Channel Decoding (IJSCD),
is developed on the basis of the SBECTC introduced in Chapter 3 while making
use of the iterative feature of turbo decoding. The Syntax Checker and Multiple
Video Packet Candidates Generator (MVPCG)(Please refer to Section 3.3.5 and
3.3.4) developed for the SBECTC are adopted by the proposed scheme and they
have the same functionality as in the SBECTC. MVPCG takes in the soft output
information from the turbo decoder and generates Nyp VP candidates for syntax
checking in the Syntax Checker. Among Nyp VP candidates, the Syntax Checker
chooses one as the best VP candidate if it has the highest VP probability and has
no syntax violation.

In addition to the MVPCG and the Syntax Checker, the proposed scheme
introduces a method of feeding back the best VP candidate information into the
turbo decoder, which is done by the MM in Figure 4.1. The MM is further described
in Section 4.2. Through three core parts of the proposed scheme, the MVPCQG, the
Syntax Checker and the MM, the interactivity between the channel decoder(turbo
decoder) and the source decoder is established.

It’s known that in some turbo coding blocks, there may still remain a large
number of errors even after many iterations. which is considered as one of the con-
vergence patterns of turbo decoding by some researchers [36. 37]. The convergence
patterns of turbo decoding are thus described in Sub-section 4.3.1. As stated in
Chapter 3, the Syntax Checker can only effectively handle a few bit errors in a VP
given a moderate complexity. To deal with the turbo coding blocks with a large
number of errors, the VP Mixer module at the transmitter side and the VP De-

mixer module at the receiver side are required. They’re introduced in Sub-section

4.3.2.

60

Table 4.1: 8 combinations of transmitted bits, turbo decoded bits and source de-

coded bits
Original Usual
Bit Turbo Decoded Source Decoded Effect of Case
(ux) ng:ﬁ)n Sign of Hard Sign of Feedback No
U a‘ Lo(ug) Decision Luy,) Scheme '
k

1 1 + 1 + Very Positive 1

0 - Negative 2

0 - 1 + Positive 3

0 - Very negative 4

0 1 + 1 + Very negative | 5

0 - Positive 6

0 - 1 + Negative 7

0 - Very Positive 8

4.2 Feedback Scheme

In this section, first, how the source information can affect turbo decoding is inves-
tigated. Then, based on the investigation, a feedback scheme is developed.

4.2.1 Usual Effect of Feedback scheme on Turbo Decoding

Before starting to design the scheme of feeding back the source information into
the turbo decoder, how the source decoder can affect the turbo decoder must be
examined.

The relationship among original/transmitted bits, turbo decoded bits and the
signs of their corresponding soft values Lo(uy) , as well as source decoded bits and
the signs of their corresponding soft values L(wy) are shown in Table 4.1. Based
on the hard decisions from the Syntax Checker, the sign of the soft value L(uy)
in Table 4.1 is determined according to the same principle as applied to the turbo

decoder, i.e., if a bit’s hard decision is 1, its soft value is bigger than the threshold

61

0; otherwise, its soft value is less than 0.

There are 8 possible combinations with different effects on the turbo decoder
as shown in Table 4.1. As described in Chapter 3, the output bits from the Syntax
Checker are mostly the same as the ones from the turbo decoder and the different
bits are only the flipped ones. Thus, Cases 1 and 8 in Table 4.1 occur with the
highest probability. Also, since the Syntax Checker can further correct the remaining
error bits after turbo decoding, Cases 3 and 6 is helpful for the turbo code error
performance. Cases 2 and 7 occur when bits are wrongly flipped. However, these
two cases won’t cause any syntax error and thus the video quality won’t degrade too
much. Cases 4 and 5 happen in case that the turbo decoder makes wrong decisions
and the Syntax Checker fails to catch these errors. There are two reasons why the
Syntax Checker fails to catch these errors. One is that too many errors are located
in a VP, which is beyond the capability of the Syntax Checker. The other is that
these errors don’t result in syntax errors.

In summary, if the feedback scheme can generate the source decoded soft
decisions (i(uk)) as presented in Table 4.1 | it will be helpful in terms of video

quality and may be helpful in terms of BER, which need to be proved by simulations.

4.2.2 Modification Module

According to soft value i(uk) discussed in last sub-section, it’s a natural idea that
the feedback scheme can be a kind of modification which works only on L, (uy)
(see Figure 4.1) since the information exchanged between the two MAP decoders is
only extrinsic information L (uy) (4, j = 1, 2, representing MAP decoder 1 or 2)
and the output hard decision on each bit is from MAP decoder 2. The modification
combines together L5, (uy,) and L(ug) as

L5y (we) = LS (ug) + L(w), (4.1)
which is fed back to the MAP decoder 1.

62

The modification works only on the best VP candidate which is considered as
error-free by the Syntax Checker. Note that the method of generating VP candidates
and choosing the best VP candidate is the same as described in Section 3.3.4 and
3.3.5. The soft value E(uk) (called Modification Value hereinafter) can be chosen
from M1, M2 and M3 according to the hard decisions made by the Syntax Checker

and the relations described in Table 4.1 as follows:

e Among the FBCs, if the decision on bit ux made by the Syntax Checker agrees
with i made by the turbo decoder, M1 will be chosen. The Modification
Module (MM) works as

124() M1 ifa, =1 (4.2)
U) = .
—-M1 ifd, =0

which covers Cases 1, 8, 4 and 5 in Table 4.1.

e Among the FBCs, if the decision on bit u; made by the Syntax Checker doesn’t

agree with 4, M2 will be chosen. The MM works as

) —M2 if =1 |
M2 ity =0

which covers Cases 3, 6, 2 and 7 in Table 4.1,
e [f u; doesn’t belong to the FBCs, M3 will be chosen and the MM works as

[:() M3 ifa, =1 (4.4)
U) = .
—M3 ifu,=0

which covers Cases 1, 8, 4 and 5 in Table 4.1.

All M#’s (i = 1,2, 3) are positive numbers and will be decided empirically. If all
VP candidates don’t pass syntax checking, no modification will be done for this VP.
In this case, the hard decision on each bit is the same as the one from the tubo

decoder and the soft value of each bit keeps intact.

63

The modification work described above is similar to the weight operation in
[22]. However, the work in [22] on MPEG-1 videos only considers syntax information
from robustly recovered start codes. Other than that, no more syntax information

are used.

4.3 VP Mixing/De-mixing

In this section, the convergency patterns of MAP turbo decoding are discussed. A
VP mixing/de-mixing scheme is introduced to deal with one of the convergency

patterns, turbo coding blocks with a large number of errors.

4.3.1 Convergence Patterns of MAP Turbo Decoding

In the simulations of MAP turbo decoding, it is noticed that there are some turbo
coding blocks with a large number of errors even after many iterations. The tubo
coding blocks with a large number of errors are also observed by other researchers as
one of the convergence patterns of MAP turbo decoding (36, 37]. In [36], Takeshita
et al. address the following convergence patterns of turbo decoding:

§

1A frame converges either to zero errors or to a small number of errors (resid-
ual errors), possibly exhibiting a small ptter in the number of errors. after a

moderate number of iterations. (This occurs in the large majority of cases.)

2. A frame maintains a large number of errors for many iterations (possibly many

times larger than the average) before converging to zero errors.

3. A frame has an oscillating number of errors, but with a minimum number of
errors that is very small (on the order of the number of residual errors). The

oscillations may stop after a while or continue indefinitely.

4. A frame converges to a large number of errors (about 10% of the information

bits).

64

5. A frame maintains a large number of errors (about 10% of the information

bits) with some jitter indefinitely without converging.

Note that, in the above description, “frame” has the same meaning as “turbo
coding block” in this thesis and “frame” in this thesis refers to a time sample of
video sequences. Both Cases 4 and 5 in the above list induce the turbo coding blocks
with a large number of errors. Cases 2 and 3 may induce the turbo coding blocks
with a large number of errors depending on how many iterations a turbo decoding
process runs.

The convergence patterns of turbo decoding don’t obviously affect the BER
of a turbo code since the majority of turbo coding blocks converge either to zero
errors or to a small number of errors. When the turbo code is employed to protect
a bit sequence of a compressed video, the turbo coding blocks with a large number

of errors can have a dramatic effect on the video quality.

4.3.2 VP Mixer and VP De-mixer

Last sub-section described the convergence patterns of MAP turbo decoding. In the
convergence patterns, the turbo coding blocks with a large number of erroneous bits
give rise to a challenge for successful design of iterative joint source and chanuel
decoding scheme using turbo codes. The VP Mixer (VPM) and De-Mixer (VPDM)
in the proposed scheme are aimed at addressing this problem.

The functionality of the VPM in the proposed scheme is to distribute the
bits from a VP into several different turbo coding blocks before turbo encoding.
Accordingly, the bits in a turbo coding block must be recovered into their original
VPs at the receiver side, which is done by the VPDM in Figure 4.1. In this way,
a large number of errors in a turbo coding block are located in different VPs so
that the Syntax Checker can detect these errors. In VP mixing, the number of bits
inserted into a turbo coding block from the same VP is limited by parameter N,,,

i.e., the maximum number of bits from the same VP is N,,. Note that, VP mixing

65

introduced here is a common way to re-distribute error bits in order to easily catch
these errors, as used in the previous work [27].

Some simulations are implemented to measure the actual performance of VP
mixing at channel SNR 1.5 and 1.6 dB. In the simulations, the 6-second video
“Table-Tennis” is used, which has a frame size 352 x 240 and is interlaced with 30
frames/second. It is compressed using MPEG-4 at bit rate 2 Mb/s and each row in
a frame has 4 VPs. The turbo code used is the same as the one in Section 3.3.1,
but with interleaver length 1004. The number of FBCs, Ny is chosen as 4 and the
number of VP candidates, Nyp is 16. The modification parameters M1, M2 and
M3 are chosen as 3.0, 0.5 and 0.5, respectively. The number of bits from the same
VP in a turbo coding block is chosen as 20.

As an illustrated example,the turbo coding blocks with a large number of errors
when the scheme, Turbo Decoding(TD), is used (for fair comparison, VP mixing/de-
mixing is also employed by the TD) are listed in Tables 4.2 and 4.3. Tables 4.2 and
4.3 also list the number of error bits for the same turbo coding blocks when the
proposed scheme is employed. Through these two tables, it’s clear that VP mixing
can indeed correct most of the turbo coding blocks with a large number of ervor
bits.

The trade-off for the decreased number of tubo coding blocks of a large number
of errors is the increased complexity, overhead bits and frame delay. The increased
complexity by VP mixing/de-mixing is negligible compared with the interleaving/de-
interleaving operation and MAP decoding algorithm of turbo codes. The overhead
bits are used to send the length of each VP in order to reassemble each VP from the
received turbo coding blocks at the receiver side. The VP length is sent together
with other header bits of a VP using FLC coding. The frame delay is induced
since the source decoder can only work after receiving all the bits in a frame. The

overhcad bits and frame delay will be discussed in detail in the next sectiomn.

66

Table 4.2: Turbo coding blocks with a large number of errors at channel SNR 1.5
dB after 15 iterations

Turbo coding

block No. TD | 1JSCD

1246 62 0
1375 83 105
2163 114 127
4122 39 0
4651 51 64
5342 115 101
5850 91 0
6730 86 0
7569 15 0
7729 17 0
9857 53 0

Table 4.3: Turbo coding blocks with a large number of errors at channel SNR 1.6
dB after 15 iterations

Turbo coding
block No. | 1D | 1JSCD
3790 124 0
9330 106 0
9897 124 0

67

4.4 Performance Evaluation

In this section, the performance of the proposed scheme, IJSCD is evaluated against
the other two schemes, Tubo Decoding (TD) and Syntax Based Error Concealment
using Turbo Codes (SBECTC). The TD is a simple scheme, in which the decoded
bitstream from the turbo decoder is directly sent to the Video Decompressor and
there is no error concealment. The SBECTC is introduced in Chapter 3, which, at
the last iteration, makes use of the soft information provided by the turbo decoder
for syntax based error concealment in the source decoder. It should be pointed out
that the VP mixer/de-mixer is also employed in the TD and the SBECTC to keep
the input bitstream to the turbo encoder identical for all three schemes.

Before evaluating the performance of the proposed scheme, the parameters
associated with the proposed scheme, IJSCD, have to be determined at first. The
parameter determination is discussed in Section 4.4.1.

The performance of the proposed scheme, IJSCD, is assessed objectively and
subjectively. The objective measure includes PSNR, BER and NEB. The simulation
results of objective performance evaluation is presented in Section 4.4.2. Since rig-
orous subjective measurement is costly and time-consuming as discussed in Section
1.3, this thesis provides some frames processed by different schemes for the readers’
own evaluation. Also, comments on subjective quality as observed by the author
are given. The results of subjective performance evaluation are presented in Section
4.4.3.

In addition to evaluating the objective and subjective performance, the com-
plexity of the proposed scheme is also assessed against the other two schemes. The
evaluation results of complexity are described in Section 4.4.4

All the performance evaluation results are obtained through simulations. The
simulations work on two 6-second videos, “Table-Tennis” and “Football”, which have
the frame size of 352 x 240 pixels and are interlaced with 30 frames/second, re-

spectively. The videos are compressed using MPEG-4 at bit rate 2 Mb/s. In the

68

MPEG-4 compression, each row has 4 VPs and thus the video has 10,860 VPs. The
Group of Video Object Plane (GOV) layer is employed in the compression and it
has 15 frames with 1 I-frame, 4 P-frames and 10 B-frames as shown in F igure 2.2.
After compression, the total number of bits in the compressed MPEG-4 bitstream
of “Table-Tennis” is 10, 528,416. Hence, the compression rate is about 17.43. For
“Football”, the total number of bits is 10, 312, 136 and the conmipression rate is about
17.79.

The turbo code employed is the same as that presented in Section 3.3.1 but
with interleaver length 1004. Thus, the number of bits in a turbo code block is 1004,
too. In turbo encoding, only the bits in or below the VP layer and after the VP
header bits are encoded. Other un-coded bits are assumed to be received correctly.
In this case, for “Table-Tennis”, the total number of turbo coding blocks is 10, 084
and turbo encoded bits are 10, 083, 513. The total number of turbo coding blocks is
9,868 and turbo encoded bits are 9,867, 198 for “Football”.

In the simulations, for “Table-Tennis”, the channel SNR ranges from 1.3 dB to
1.8 and the simulations are actually done at channel SNR 1.3, 1.4, 1.5, 1.6. 1.7 and
1.8 dB. respectively. For “Football”, the simulations are actually run at channel
SNR 1.5 and 1.6 dB. Each set of simulation parameters is run 5 times and the
results shown in this section are the average value of all these 5 experiments aftor
15 iterations. The PSNR value is the average of all 181 frames.

All the simulations are implemented using C/C++ based on the MPEG-4 ref-
erence software, MoMuSys, and run on the Sun system (UNIX). The decompressed
video sequences are also played on the Sun system to watch their performance sub-

jectively.

4.4.1 Parameter Determination

The parameters associated with the proposed scheme, IJSCD, includes:

e Number of FBCs, Ny

69

e Number of VP candidates, Ny p. Ny and Nyp are introduced in Section 3.3.4.
o Modification parameters M1, M2 and M3 introduced in Section 4.2.

e Number of bits from the same VP in a turbo coding block, N,,, described in

Section 4.3.2.

Ny p has a significant effect on both the complexity and performance of the proposed
scheme since it directly decides how many VP candidates need to be tried, and the
bigger the Ny p is, the greater the probability is that the selected VP candidate is of
high quality with fewer bit errors. In the simulations, Ny p is chosen as 16 and 64.
Corresponding to that Ny is chosen as 4 and 6, respectively. Ny, M1, M2, M3 and
Ny, have no significant effect on the complexity of the proposed scheme. However,
their effect on the performance of the proposed scheme needs to be investigated. N,
can affect frame delay and overhead bits as discussed in Section 4.3.2. Thus, the
choice of N, is based on the acceptable delay and overhead bits as well as its effect
on the performance of the proposed scheme. Ny, M1, M2 and M3 are determined
according to the experiment results of evaluating their effect on the performance of
the proposed scheme.

Note that only video “Table-Tennis” is used in the experiments for deter-
mination the parameters associated with the proposed scheme. Further empirical
investigation may allow the parameter values determined in this section to be re-

fined.
1. Determination of the number of FBCs (/)

As stated in Section 3.3.4, the maximum Nyp is 27 after Ny is set up. The
purpose of determination of Ny is to investigate what the effect is on the performance
of the proposed scheme when making Nyp > N 7 = logaNyp. To do this, the number
of VP candidates Nyp is fixed as 16. When investigating the effect of the number
of FBCs Ny on the performance of the proposed scheme, IJSCD, N; is chosen as 4,
10 and 15, respectively.

70

40 T T T T T T

35F e 1

PSNR (dB)

8
lteration time

Figure 4.2: Luminance PSNR (Y) Vs. number of FBCs Ny at channel SNR 1.50
dB. Nyp is fixed as 16.

5000 v

R N’:4
N =10
- - N'=15

4500f -+ -+

4000

3500

30001

NEB

2500

2000

1500

1000}

500} Tl

T/‘

lteration time

Figure 4.3: Number of error bits (NEB) Vs. number of FBCs N at channel SNR
1.50 dB. Ny p is fixed as 16.

71

In the experiments, M1, M2, M3 and N,, are fixed as 3.0, 0.5, 0.5 and 20, re-
spectively. The experiments are implemented at channel SNR 1.50 dB and the other
simulation conditions are the same as those described at the beginning of Section
4.4. Bach set of experiments is also run 5 times. The experiment results, in terms of
luminance PSNR (Y) and NEB, are shown in Figure 4.2 and 4.3, respectively. The
experiment results, in terms of chrominance PSNRs, are similar to that of luminance
PSNR, so they are not presented.

In Figure 4.2, it’s observed that there are no obvious performance improvement
by increasing Ny from 4 to 10, and further to 15, in terms of PSNR, while keeping
Nyp fixed as 16. In Figure 4.3, the performance with N; = 4 is better than other
two cases in terms of NEB. Thus, in later simulations, Nyp is set at first according
to acceptable complexity, and Ny is then chosen as loga Ny p. The simulation results
indicates that the most uncertain bits in a VP are indeed related to the bits with

the smallest |Lo(ug)| as hypothesized in Section 3.3.4.
2. Determination of M1, M2 and M3

The purpose of determination of M1, M2 and A3 is to choose a combination
of Af;’s(z = 1,2.3) so that the proposed scheme can achieve the best performance.
The experiments are carried out ab channel SNR 150 dB. For each combination of
M;’s, the experiment runs only once. In the experiments, the other parameters Ny,
Nyp and N, are fixed as 4, 16 and 20, respectively. The other simulation conditions

are the same as those listed at the beginning of Section 4.4.

72

350
30
@t
z
o
z
1%
a
20
- 0.001.000.00
%~ 0.002.000.00
5r -+~ 0.003.000.00 []
« - 0.004.000.00
—+— 0503.000.50
—e~ 1.003.00 1.00
1oL ; ; X ;

2 4 6 8 10 12 14
Iteration time

Figure 4.4: Luminance PSNR (Y) Vs. modification parameters M1, M2 and M3
at channel SNR 1.50 dB(The numbers in the figure is in the order of M2, M1 and
M3).

5000 - .
- 0.00 1.000.00
4500} 0~ 0.002.00 0.00 |
- 0.00 3,00 0.00
-+ 0.004.000.00 |
4000y —+ 0.503.00 0.50
—o— 1.003.00 1.00
35001
3000}
[as]
=1
@ 2500+
z
oy
%2000}
1500}
1000}
5001
0
h

Figure 4.5: Number of error bits (NEB) Vs. modification parameters M1, M2 and
M3 at channel SNR 1.50 dB(The numbers in the figure is in the order of M2, M1
and M3).

73

The performance of the proposed scheme, IJSCD, with various combinations of
M1, M2 and M3, in terms of luminance PSNR (Y) and NEB, are shown respectively
in Figure 4.4 and 4.5. The values of M1, M2 and M3 corresponding to each curve are
also listed in these two figures. Since the experiment results, in terms of chrominance
PSNR (U) and (V), are similar to that of luminance PSNR, they are not shown for
brevity. From these two figures, it’s observed that the performance of the proposed
scheme with the combination of M1 = 3.00, M2 = 0.50 and M3 = 0.50, in terms
of PSNR, is the best among all the combinations of M;’s, beginning from iteration
11. In terms of NEB, the proposed scheme with the combination of M1 = 3.00,
M2 = 0.50 and M3 = 0.50 achieves the best performance for all 15 iterations.
Hence, M1, M2 and M3 in the proposed scheme will be respectively set as 3.00,
0.50, and 0.50. Note that further empirical investigation may refine M1, M2 and
M3 chosen here.

3. Determination of N,,

‘The number of bits from the same VP in a turbo coding block(N,,) used in the
VPM (Please refer to Figure 4.1) is determined according to the acceptable frame
delay. overhead bits and its effect on the performance of the proposed scheme. In
the experiments, IV, is chosen as 20. 50 and 100, respectively. The other param-
eters Ny, Nyp, My, My and Ms are fixed as 4, 16, 3.0, 0.5 and 0.5, respectively.
The experiments are implemented at channel SNR 1.6 dB and the other simulation
conditions are the same as presented at the beginning of Section 4.4.

First, the frame delay caused by VP mixing is investigated. When turbo
coding/decoding is employed and VP mixing is not used, the compressed bitstream
Is written directly into each turbo coding block in the order they are generated.
Once a turbo coding block is filled, it can be sent over the channel. In this case,
the frame delay caused by blocking bits is trivial since the block length (1,004~
bit) is short, when considering that the bit rate is 2 Mb/s and a VP has several

74

Table 4.4: Maximum frame delay caused by VP mixing Vs. number of bits from
the same VP (N,,) in a turbo coding block

Ny, | Maximum Frame Delay
20 Y
50 1
100 0

hundreds/thousands of bits. However, if the block length is too large, the attention
has to be paid to the delay resulted from blocking bits. When the proposed scheme
is employed, one VP may be encoded into many turbo coding blocks. The delay
caused by VP mixing thus has to be measured carefully.

In particular, during the turbo encoding process, the index of the last turbo
coding block for transmitting a VP is written down for each VP. This index is
denoted as V;; where 7 is the frame index and j is the VP index, When measuring
the frame delay, the maximum V;; in a frame (denoted as F}, where i is the frame
index) is found and saved for each frame. It’s known that a VP cannot be decoded
until all the bits in a VP are received and a frame cannot be decompressed until
all the bits in this frame are received. Frame delay (denoted by D,. where i is the
frame index) is generated if all the bits in the current frame are received while not
all the bits in its past frames have been received. The frame delay D, is measured
as the frame distance between the current frame i and its past frame ip, which is
the farthest frame resulting in Fi, > F;. The maximum D; is the maximum frame
delay. The experiment results are shown in Table 4.4.

Table 4.4 shows that the maximum frame delay decreases as the number of
bits from the same VP N,, in a turbo coding block increases. The maximum frame
delay is 5 and thus é second, which is acceptable for non-interactive applications.

Note that B-frames (which are used in the simulations), are also not generally used

in interactive applications.

75

In addition to frame delay, the number of overhead bits caused by VP mixing
also needs to be calculated. As mentioned in Section 4.3.2, each VP’s length is sent
as side information together with the VP’s header bits using FLC coding so that
the mixed bits can be recovered into their original VPs. Like other bits such as the
bits in a syntax layer higher than the VP, the overhead bits for sending VP length
are also assumed to be received correctly.

Given the current simulation conditions described at the beginning of Section
4.4, the total bits after compression are 10,528,416 and the total number of VPs
is 10,860. It’s noticed that, under the current compression conditions, each VP
contains several thousands of bits, which requires 13 or 14 bits for coding the length
of a VP. Thus, the overhead bits account for about 1.34 - 1.44% of the compressed
bitstream. It should be noted that the number of overhead bits are not affected by
Ny

After considering the frame delay caused by N,, and overhead bits required
by VP mixing, the effect of N,, on the performance of the proposed scheme, in
terms of PSNR, BER and NEB, is evaluated when N,, is chosen as 100, 50 and 20,
respectively. Since the output bitstream from the Video Compressor in Figure 4.1 is
tixed while N, changes, the bitstreams sent over the channel are different for three
different V,,'s. Hence, to evaluate the effect of N,,. it’s necessary to compare the
performance of the proposed scheme with the other two decoding schemes, the TD

and the SBECTC, to see which N, can result in the best performance improvement.

76

Table 4.5: Performance versus number of bits from the same VP (N,,) after 15
iterations at channel SNR 1.6 dB

PSNR | PSNR | PSNR
N, | Scheme BER NEB v) U) V)
TD 3.76 x 107> | 396.2 | 34.238 | 39.204 | 38.311
100 | SBECTC | 3.73 x 107° | 392.6 | 34.376 | 39.277 | 38.436
[JSCD |4.02x107° | 423.6 | 34.384 | 39.264 | 38.438
TD 2.87 x 107° | 302.2 | 32218 | 36.948 | 35.924
50 | SBECTC | 2.76 x 107° | 292.2 | 32.614 | 37.223 | 36.254
[JSCD | 2.15x107°|226.2 | 32996 | 37.546 | 36.717
TD 3.78 x 107° | 398.4 | 32.378 | 37.048 36.05
20 | SBECTC | 3.43 x 10™° | 361.2 | 33.744 | 38.587 | 37.679
[JSCD |9.35x107%| 984 | 35501 | 40.052 39.33

Each set of experiment is run 5 times. Table 4.5 shows the average results
of all 5 experiments. When [V, is 20, the proposed scheme raises PSNR (Y) by
3.123 dB and the number of bit errors is decreased from 398.4 to 98.4 compared
to the TD. Table 4.5 shows the performance improvement while N,, decreases as
expected. Since, when N,, is chosen as 20, the frame delay is acceptable and the
best performance can be achieved comparing to that N,, = 50 and N, = 100, N,

is set as 20 in the proposed scheme.

In summary, the parameters associated with the proposed scheme, [JSCD, are
determined as follows: The modification parameters M1, M2 and M3 are chosen as
3.00, 0.50 and 0.50, respectively. The number of VP candidates Ny p is set according
to the acceptable complexity and can be chosen as 16 or 64. The number of FBCs
Ny is chosen as loga Ny p after Nyp has been set up. The number of bits from the

same VP in a turbo coding block N, in VP mixing is set as 20.

77

4.4.2 Objective Performance

To evaluate the performance of the proposed scheme, PSNR, BER and NEB arc
chosen as the objective measures. The performance evaluation is carried out by
simulations. In the simulations, two videos, “Table-Tennis” and “Football”, are
used. The number of VP candidates (Nyp) is chosen as 16 and 64 so that the
corresponding Ny is 4 and 6, respectively. The other parameters required by the
proposed scheme are set up as discussed in Section 4.4.1. The other simulation
conditions are the same as described at the beginning of Section 4.4.

For performance comparison, the SBECTC and the TD are also simulated at
the same simulation conditions. It should be noted again that the VPM/VPDM is
also applied to these two schemes to keep the turbo encoded bitstream identical for

all three schemes.
1. Objective performance when Video “Table-Tennis” employed

The simulations are actually run at channel SNR 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8
dB. Each set of simulation parameters are run 5 times and the simulation results
shown in this part are the average values of these 5 experiments.

Figures 4.6, 4.7 and 4.8 shows the objective performance comparison, in terms
of luminance PSNR (Y), blue chrominance PSNR (U) and red chrominance PSNR
(V), among three schemes, the TD, the SBECTC and the proposed scheme, IJSCD.
The performance comparison, in terms of bit error rate (BER) and number of error
bits (NEB) in the recovered bit sequences, are shown in Figures 4.10 and 4.9. For
comparison, bit error rate P, in case that no channel coding is applied for the
compressed bitstream is calculated according to Equation 4.5 [5] (note, this equation

can be applied to BPSK and QPSK modulations.) and presented in Figure 4.10.
2F,
P = -l 4.5
V= Q (,/ -) (4.5

78

40 T T T T T T T T

35

301

PSNR (dB)
N
w

20/

Y]
._. SBECTC, N,= 4
__ 1JSCD,N =4

1 % SBECTC.N,=6
% WSCD.N, =6
k. N
0 ; ; : i i . i ; j
13 1.35 1.4 145 15 1.55 16 1.65 1.7 175 1.8

Channel SNR (dB})

Figure 4.6: Luminance PSNR (Y) Vs. channel SNR and the number of FBCs Ny

Figures 4.6, 4.7 and 4.8 clearly show that the proposed scheme indeed has
significant performance improvement in terms of PSNR and the performance is
further improved as the number of FBCs Ny is increased. At channel SNR 1.4
dB, the proposed scheme with N; = 6 can achieve about 30 dB in PSNR (Y) and
at this PSNR, the reconstructed video is viewable. Uunlike that, PSNR (Y) of the
reconstructed videos by the SBECTC and the TD is below 25 dB, which is not
acceptable. At channel SNR 1.5 dB, PSNR (Y) of the reconstructed videos by the
TD is still below 25 dB and PSNR (Y) achieved by the SBECTC with Ny =6is
about 29 dB. In contrast, the proposed scheme with N s = 6 can get about 35 dB
of PSNR (Y). At channel SNR 1.6 dB and N; 4, the proposed scheme can achieve
35.501 dB in terms of luminance PSNR (Y), which is 3.123 dB higher than the
TD and 1.757 dB higher than the SBECTC. Similar performance is also achieved
in terms of red chrominance and blue chrominance as presented in Figures 4.7 and
4.8. At channel SNR 1.7 and 1.8 dB, the performance achieved by three schemes,
in terms of PSNR, are quite close because the actual BER is very low, which is in

the order of 107° as shown in Figure 4.10.

79

45 T T T i T g T T T

40r-

35

: : : : -~ 1D
20k /- R ST e) . SBECTO N =4
- __ WSCD,N,=4
—x SBECTC,N =6
{ % WSCD,N=6

10 1 I 1 : | I 1
13 1.35 14 1.45 15 1.55 16 1.65 1.7 1.75 18
Channel SNR (dB)

Figure 4.7: Blue chrominance PSNR, (U) Vs. channel SNR and the number of FBCs
Ny

45 T T T T T T T T T

40+ ke :;’—4"7&:‘::-:?

&30
A
o
5
a 25 B
20y 0 ’ b
. SBECTC,N,=4
— NSCD, N =4
e -x- SBECTC,N, =6 |
-%. NSCD,N =6
10 Il I | | i 1 1 1 I
13 1.35 14 1.45 15 1.55 16 1.65 17 1.75 18

Channel SNR (dB)

Figure 4.8: Red chrominance PSNR (V) Vs. channel SNR and the number of FBCs
Ny

30

14000 T T T T T T T T T

D
_. SBECTG.N, =4

- 1JSCD, N = 4
120008 - — B\ .
—% SBECTC,N,=6
. MSCD.N,=6
10000 J
a
B
S 8000 B
£
D
5
=)
8 6000 -
E
=
=z

4000

2000

0 : .
13 135 1.4 145 15 1.65 1.6 1.65 1.7 1.75 18
Channel SNR (dB)

Figure 4.9: Number of error bits (NEB) Vs. channel SNR and the number of FBCs
Ny

107k

™
. SBECTC, Nf =4
— WsCDh, N' =4
10°°Y - SBECTC,N, =6
% SCD,N=6 :
—0— no channel coding |17 1

1 1 1 3 1 1 1 L

, :
1 i

1.3 1.35 14 145 15 1.55 16 1.65 17 1.75 18
Channel SNR (dB)

Figure 4.10: Bit error rate (BER) Vs. channel SNR and the number of FBCs N;

31

For more objective performance comparison, the required channel SNR is mea-
sured for three schemes to reach identical PSNR and BER. This result is given in
Table 4.6 where the data are extracted from Figure 4.6, 4.7, 4.8 and 4.10.

Table 4.6 shows that, in terms of BER, the required channel SNR of the
proposed scheme using Ny = 6 is about 0.13 dB less than the TD and about 0.125
dB less than the SBECTC. In addition, the proposed scheme using Ny = 6 and
Nyp = 64 can achieve 35 dB in terms of luminance PSNR (Y) at channel SNR 1.50
dB, while the TD gets the same performance at channel SNR 1.68 dB. At this point,
the required channel SNR of the proposed scheme using Ny = 6 is 0.18 dB less than
the TD.

Table 4.6: Required channel SNR to achieve the same performance when different
decoding schemes employed

Performance IJ%V%D:Vgth Y S]\(fiD:“Zth SBECTC TD
PS3§ P?l?Y) 1.50 1.56 1.66 | 1.68
PSNE (U) b o G
Q.SBXElRQS |47 151 1625 | 1.63
1,0B><E}1£‘5 155 1.585 1.675 | 1.68

According to the simulation results shown in Figures 4.6, 4.7 and 4.8 for
“Table-Tennis”, there are two cases that the proposed scheme can achieve con-
siderable performance improvement and the quality of the reconstructed videos is
close to the available maximum PSNRs, which are presented in Table 4.7. One is
using Ny = 6 at channel SNR 1.5 dB, the other is using Ny = 4 at channel SNR 1.6
dB.

82

Table 4.7: Maximum PSNR from the video compressor for “Table-Tennis”

PSNR (Y) | 36.371584
PSNR (U) | 40.837548
PSNR (V) | 40.246831

2. Objective performance when Video “Football” employed

The simulations on “Football” are actually run at channel SNR 1.5 and 1.6
dB. At channel 1.5 dB, N; = 6 while at channel 1.6 dB, Ny = 6. These two
cases can provide PSNR close to the available maximum PSNRs, and at the same
time, the performance is improved considerably comparing to the other two schemes,
the SBECTC and the TD, as shown by the simulation results for “Table-Tennis”.
The other simulation conditions are the same as listed at the beginning of Section
4.4. For comparison, the available maximum PSNRs, which are calculated for the
compressed but noisy free bitstream, are presented in Table 4.8.

Each set of simulation parameters are run 5 times and the simulation results
shown in this part are the average values of these 5 experiments.

The simulation results at channel 1.5 and 1.6 dB are given in Table 4.9 and
Table 4.10, respectively. Tables 4.9 and 4.10 indicate that the objective performance
achievement using “Football” is similar to what is achieved using “Table-Tennis”.
That is, in these two cases, the performance improvement is considerable and the

achieved PSNRs are close to the available maximum PSNRs.

Table 4.8: Maximum PSNR from the video compressor for Video “Football”

PSNR (Y) | 33.786
PSNR (U) | 36.64
PSNR (V) | 37.93

83

Table 4.9: Objective performance comparison at channel SNR 1.5 dB when employ-
ing different schemes and Video “Football”

Performance LJISCD with SBECTC TD
Ny=6

PSNR 32.788 30.421 26.293
(Y)

PSNR 35.861 33.87 29.761
(U)

P<S\1>I)R 37.144 34.869 30.586
NEB 350 1230.8 1402.4

Table 4.10: Objective performance comparison at channel SNR 1.6 dB when em-
ploying different schemes and Video “Football”

Performance LI5CD with SBECTC TD
Ny=4

PSNR 33.283 32.472 31.254
(Y)

PSNR 36.31 35.643 34.494
(U) |

P(S\EI)R 37.701 36.802 35.693
NEB 117.2 371.6 427.2”“

4.4.3 Subjective Performance

The subjective performance of the proposed scheme is also evaluated for two videos,
“Table-Tennis” and “Football”, through simulations and the simulation conditions
are exactly the same as what are used for objective performance evaluation in Section
4.4.2.

For subjective performance evaluation, the reconstructed videos at different,

channel SNR by three different decoding schemes, the TD, the SBECTC and the

84

proposed scheme, are played on the computer. The author’s comments on recon-
structed videos are provided. Also, for the reader’s own assessment, some frames

from the reconstructed videos are presented.

1. Subjective performance when Video “Table-Tennis” employed

When “Table-Tennis” is employed, the videos reconstructed by the proposed
scheme are obviously better than the other two schemes. The SBECTC is better
than the TD. In particular, at channel SNR 1.60 dB and N ¢+ = 4, as well as channel
SNR 1.50 dB and N; = 6, all stripes are removed and video scene shifts are corrected
when employing the proposed scheme. Moreover, no obvious defects can be found.
However, when using the TD at channel SNR 1.5, there are defects in about 80%
frames while at channel SNR 1.60 dB, there are defects in about 22% frames. In
these two cases, the SBECTC is better than the TD, but much worse than the
proposed scheme.

For the reader’s own assessment, Frame 73 at channel SNR 1.50 dB and Frame
166 at channel SNR 1.60 dB from the reconstructed videos by the TD. the SBECTC
with two different Ny and the proposed scheme with two ditfereut Ny are presented.
In the simulations, Ny is chosen as 4 and 6. respectivels. The corresponding two
frames from the original video are also shown for performance cowmparison. All the
video frames are shown in Figure from 4.11 to 4.22. The corresponding PSNRs of
Frame 73 and Frame 166 reconstructed by different decoding schemes are listed in
Table 4.11 and 4.12, respectively. Note that the first row in these two tables shows
the PSNR values after video compression and before transmission, which represent
the best achievable PSNR values. Both PSNR and picture quality indeed show
that the proposed scheme IJSCD can improve the performance compared with the

SBECTC and the TD.

85

Table 4.11: PSNR of Frame 73 of Video “Table-Tennis” at channel SNR 1.5 dB
when employing different schemes and Video “Table-Tennis”

Scheme PSNR PSNR PSNR
(Y) (U) (V)
Video 36.889660 | 40.156043 | 39.899125
after compression
TD 16.917741 | 18.514108 | 17.897322
SBECTC 17.787194 | 19.966472 | 19.250924
Ny, =4
LISCD 28.428199 | 38.887521 | 39.573244
Ny =4
SBECTC 25.239704 | 33.653227 | 34.915951
Ny =6
}gSC% 36.889660 | 40.156043 | 39.899125
f pra—

36

Figure 4.11: Frame 73 from the original error-free video “Table-Tennis”

i e, TSRS

Figure 4.12: Frame 73 from the decompressed video “Table-Tennis” reconstructed
by the TD

Figure 4.13: Frame 73 from the decompressed video “Table-Tennis” reconstructed
by the SBECTC with N, = 4

87

Figure 4.14: Frame 73 from the decompressed video “Table-Tennis” reconstructed
by the SBECTC with Ny =6

Figure 4.15: Frame 73 from the decompressed video “Table-Tennis” reconstructed
by the proposed scheme, IJSCD, with N; = 4

88

Figure 4.16: Frame 73 from the decompressed video “Table-Tennis” reconstructed
by the proposed scheme, [JSCD, with N; =6

Table 4.12: PSNR of Frame 166 of Video “Table-Tennis” at channel SNR 1.6 dB
when employing different schemes and Video “Table-Tennis”

S here PSNR PSNR PSNR,
(Y) (U) (V)
Video 33.867538 | 40.164476 | 38.658096
after compression
TD 13.510562 | 17.005029 | 16.471387
SBECTC 19.344450 | 22.574711 | 22.369391
Ny=4
LISCD 33.572512 | 40.164476 | 38.658096
Ny=4
S]%ECEC 19.344450 | 22.574711 | 22.369891
f:
]I\‘;SC% 33.867538 | 40.164476 | 38.658096
=

89

.A

Cholsy drmaion

Srwsirs

Figure 4.17: Frame 166 from the original error-free video “Table-Tennis”

o AR
I N T
ey 45

Figure 4.18: Frame 166 from the decompressed video “Table-Tennis” reconstructed
by the TD

90

g

JB W 314748
Whtomaton Davecss Sitages

Figure 4.19: Frame 166 from the decompressed video “Table-Tennis” reconstructed
by the SBECTC with Ny =4

Figure 4.20: Frame 166 from the decompressed video “Table-Tennis” reconstructed
by the SBECTC with Ny =6

91

S pEeRT
g A P!

Figure 4.21: Frame 166 from the decompressed video “Table-Tennis” reconstructed
by the proposed scheme, IJSCD, with Ny = 4

Figure 4.22: Frame 166 from the decompressed video “Table-Tennis” reconstructed
by the proposed scheme, 1JSCD, with N, =6

92

From the simulation results shown in Tables 4.11 and 4.12, it can be seen
that the proposed scheme with both Ny = 6 at channel SNR 1.50 dB and N; = 4
at channel SNR 1.60 dB achieves the available maximum PSNR. Although that is
the case for most frames, it’s possible that some errors can’t be corrected by the
proposed scheme. The example is Frame 90 at channel SNR 1.60 dB and N; = 4.
Table 4.13 shows PSNR values recovered by three different schemes. The original

error free frame and the recovered frames are shown in Figures 4.23 to 4.26.

Table 4.13: PSNR of Frame 90 of Video “Table-Tennis” at channel SNR 1.6 dB
when employing different schemes and Video “Table-Tennis”

PSNR PSNR PSNR

Scheme
(Y) (U) (V)
Video 34.089445 | 37.800852 | 37.094272
after compression

TD 91.250589 | 21.983037 | 19.326565
SBECTC 92.492425 | 24.160063 | 21.362955
Ny =4

}3391?4 92584420 | 24.160063 | 21.362955
‘=

93

Figure 4.23: Frame 90 from the original error-free video “Table-Tennis”

Figure 4.24: Frame 90 from the decompressed video “Table-Tennis” reconstructed
by the TD

94

Figure 4.25: Frame 90 from the decompressed video “Table-Tennis” reconstructed
by the SBECTC with N; =4

Figure 4.26: Frame 90 from the decompressed video “Table-Tennis” reconstructed
by the proposed scheme, IJSCD, with N; = 4

95

2. Subjective performance when Video “Football” employed

When “Football” is employed, the simulations are implemented at channel
SNR 1.60 dB and Ny = 4, as well as channel SNR 1.50 dB and Ny = 6. The quality
of the videos reconstructed by the proposed scheme are also obviously better than
the other two schemes, and the SBECTC is better than the TD.

For the reader’s own assessment, Frame 89 at channel SNR 1.50 dB and Frame
31 at channel SNR 1.60 dB from the reconstructed videos by the TD, the SBECTC
and the proposed scheme are presented. The corresponding two frames from the
original video are also shown for performance comparison. All the video frames are
shown in Figures from 4.27 to 4.34.

The PSNRs of Frame 89 and Frame 31 reconstructed by different decoding
schemes are listed in Table 4.14 and 4.15, respectively. Both PSNR and picture
quality indeed show that the proposed scheme achieves much better performance

than the SBECTC and the TD.

Table 4.14: PSNR of Frame 89 of Video “Football” at channel SNR 1.5 dB when
employing different schemes

PSNR PSNR PSNR

Scheme (Y) () (V)
Video 30.592183 | 35.060759 | 36.873958
after compression
TD 16.334625 | 17.750338 | 15.482097
SBECTC 26.491166 | 28.047710 | 26.301719
Ny =6
JI\‘;SSD(), 30.592183 | 35.060759 | 36.873958
;=

96

Table 4.15: PSNR of Frame 31 of Video “Football” at channel SNR 1.6 dB when
employing different schemes

Schome PSNR PSNR PSNR
(Y) (U) (V)
Video 31.821580 | 35.297888 | 36.414425
after compression
™D 14.291031 | 15.633579 | 12.891659
SBECTC 20.325286 | 22.005553 | 19.672725
Ny =4
}\‘IJSCZ 31.821580 | 35.297838 | 36.414425
f:

97

Figure 4.27: Frame 89 from the original error-free video “Football”

Figure 4.28: Frame 89 from the decompressed video “Football” reconstructed by
the TD

Figure 4.29: Frame 89 from the decompressed video “Football” reconstructed by
the SBECTC with Ny =6

98

Figure 4.30: Frame 89 from the decompressed video “Football” reconstructed by
the proposed scheme, IJSCD, with Ny =6

Figure 4.31: Frame 31 from the original error-free video “Football”

99

Figure 4.32: Frame 31 from the decompressed video “Football” reconstructed by
the TD

Figure 4.33: Frame 31 from the decompressed video “Football” reconstructed by
the SBECTC with N; = 4

100

Figure 4.34: Frame 31 from the decompressed video “Football” reconstructed by
the proposed scheme, IJSCD, with Ny = 4

4.4.4 Computational Time Complexity

Only computational time complexity is consider in this work. The computational
time complexity of the proposed scheme IJSCD is evaluated by comparing it with
those of the other two schemes, the SBECTC and the TD. The complexity evaluation
is carried out through simmulations and the simulation conditions are the same as what
are used for objective and subjective performance evaluation for “Table-Tennis” .

There are two components of complexity which are common for all three
schemes. One common complexity is spent on the turbo decoding process. The
time-unit complexity of MAP decoding algorithm of a single RSC code (n, 1, m) has
been presented in Section 2.2.5. n and m of the RSC code used in this thesis, which
are introduced in Section 3.3.1, are equal to 2 and 4, respectively. It’s known that
the complexity of MAP turbo decoding is high.

The other common complexity comes from the video decompressing process.
Unlike the complexity of turbo decoding process, the complexity of video decom-
pression is hard to quantify since the Video Decompressor is quite a corplicated

system. Previous work introduces a method of complexity evaluation by counting

101

the number of extracted bits and slices(VP in MPEG-4 terminology) [35, 38]. In
this thesis, the number of extracted bits and VPs are also used to measure the com-
plexity in video decompression. It should be noted that the number of extracted
bits and extracted VPs are two different measures for evaluating one thing, i.e., the
complexity of video decompression. Since many syntax errors can be caught before
the end of a VP, it seems that the complexity is measured more accurately by the
number of extracted bits than that of extracted VPs. However, both measures are
still used in later complexity evaluation.

In addition to the common complexity, each scheme compared may have its
own requirement on complexity. The complexity of the TD is simple and is made
up of the two common requirements discussed above. Besides the complexity on
turbo decoding and video decompression, the SBECTC has extra complexity for
constructing and decompressing multiple VP candidates at the last iteration, which
is done by the MVPCG module. The proposed scheme, IJSCD, requires extra com-
plexity at each iteration for constructing and decompressing multiple VP candidates
as well as modifying L$,(ux) of the bits, which is done by the MM, in the best VP
candidates which has been considered as error-free by the Video Decompressor.

The complexity on constructing multiple VP candidates can be divided info

Iwo parts:

e Choosing Ny bits with the smallest |Ly(uy)] in a video packet

When the number of bits in a VP is denoted as x and Quicksort algorithm is
employed for this job, the complexity is x log, z, which is used for comparison
between two real numbers [39]. In the simulation while counting the number

of extracted bits, the number of bits in the VP (z) is also counted.

e Choosing Nyp VP candidates from the possible 2V combinations

This job is similar to the above job, except that 27 is much smaller than the

number of bits in a VP (z). In the simulations, the maximum number of N,

102

is 6. Hence, the complexity of this job can be neglected.

Modification on L§; (ux) of the bits in a VP is an addition operation as dis-
cussed in 4.2. When a VP is considered as error free, modification is required no
matter that this VP is the original one from the turbo decoder or from the multi-
ple VP candidates. If the number of bits in the VP is x, the complexity is just z
additions. The number of bits is obtained when counting the extracted bits.

To compare the complexity of three schemes, some simulations have been
implemented based on the above discussions. The simulations are run at channel
1.60 dB. Nyp and Ny are chosen as 16 and 4, respectively. The other simulation
conditions are the same as in Section 4.4. The first experiment in this case is used
for complexity comparison, not with 5 experiments as what have done before.

Table 4.16 lists the complexity of three different schemes after 15 iterations.
From this table, it can be observed that the total complexity on addition, mul-
tiplication and exponential operation of three schemes are very close due to the
huge complexity on the turbo decoding process. The comparison operation can
be neglected since it’s in the order of 10® while the addition, multiplication and
exponential operation are in the order of 10,

In terms of the complexity on the extracted bits/VPs, the proposed scheme is
much higher than the other two schemes. At channel SNR 1.6 dB and Ny =4, the
complexity of the proposed scheme, in terms of the extracted bits, is in the order of
10® and about 43.46 times that of the TD. The complexity of the SBECTC is about
2.155 times that of the TD. It should be noted that the number of extracted bits has
a rough relation to how many times a video is decompressed. However, the video
decompression operations on checking syntax errors as in the proposed scheme are
much less than those of full decompression of videos.

In addition, the complexity is also compared in terms of run time after 15-
iteration of turbo decoding. The run time of the proposed scheme is about 1.5 times

that of the TD, and the SBECTC is about 1.05 times that of the TD. However, the

103

extra complexity results in improved performance, in terms of PSNR and NEB, as

shown in Table 4.16.

Table 4.16: Complexity comparison at channel SNR 1.6 dB after 15 iterations (V,, =
20, Nyp = 16, Ny = 4, “Table-Tennis”.)

TD SBECTC 1JSCD
Ethi‘;ted 10,329,000 | 22,261,593 | 448,973,070
EXt;alfted 10,860 12,120 504 982
Addition
Turbo decoding, | 3.3712 x 101 | 3.3712 x 10'° | 3.3722 x 10%°
g
Modification)
(xfégﬁﬁiﬁg) 4.9809 x 1010 | 4.9809 x 10'° | 4.9809 x 100
Exponential

operation e”
(Turbo decoding)

1.9438 x 101°

1.9438 x 101°

1.9438 x 100

C&H\l}?gg 0 3,505,679 | 337,141,395
P(Sg)R 33.306371 34.001393 36.332587
NEB 363 345 14

104

For complexity comparison, the complexity is also calculated when the pro-
posed scheme and the SBECTC, after a certain iterations, achieve similar or better
performance than 15 iterations of the TD. The results are presented in Table 4.17.

Table 4.17 shows that the proposed scheme achieves similar performance as
both the TD and the SBECTC while requiring much lower complexity on addi-
tion, multiplication and exponential operations since the required iteration time is
decreased dramatically. These operations are still in the order of 10'°. The total ad-
dition, multiplication and exponential operations required by the proposed scheme
is about 53 percent of those required by the TD. These operations required by the
SBECTC is about 93 percent of those required by the TD.

In terms of the number of the extracted bits, the bits extracted by the SBECTC
are about 2.18 times those extracted by the TD. The bits extracted by the proposed
scheme are about 28.99 times of those extracted by the TD.

From the comparison above, the complexity of the proposed scheme, in terms
of extracted bits/VPs is much higher than the SBECTC and TD. However, the point
is that the objective and subjective performance achieved by the proposed scheme
as shown in Section 4.4.2 and 4.4.3 can’t be reached by either the SBECTC or the

D,

105

Table 4.17: Complexity evaluation at channel SNR 1.6 dB when achieving similar
performance in terms of PSNR and NEB(N,, = 20, Nyp — 16, Ny = 4, “Table-
Tennis”.)

TD SBECTC 1JSCD
Exf;zted 10,329,000 | 22,473,407 | 299.501,103
EXt\rf;fted 10,860 12,289 424714
Addition
(Turbo decoding, | 3.3712 x 10'° | 3.1465 x 10'° | 1.8026 x 10°
Modification)
(Tl\ffé?ﬁ;ﬁgi?g) 4.9800 x 100 | 4.6489 x 1010 | 2.6565 x 1010
Exponential

operation e* 1.9438 x 10'0 | 1.8142 x 10'% | 1.0367 x 10'°
(Turbo decoding)

?&”{}’;8?; 0 4,239,768 | 324,254,448
P(Sg)R 33.306371 33.534134 | 34.830597
NEB 363 368 366
s [w |

4.5 Summary

This chapter has discussed the proposed scheme, iterative joint source and channel
decoding (LJSCD) in detail in Section 4.1. The proposed scheme provides the inter-
activity between the channel decoder(turbo decoder) and the source decoder. The
soft output of the turbo decoder is iteratively used for syntax based error conceal-
ment in the source decoder, which is done through the Syntax Checker and MVPCG
in Figure 4.1. The extracted syntax/semantic information from the source decoder

is iteratively fed back to the turbo decoder to improve the error performance of

turbo codes through the MM in Figure 4.1.

106

The performance of the proposed scheme is evaluated from the viewpoint of
objective performance, subjective performance and complexity in Section 4.4. The
simulation results show that the proposed scheme can achieve better performance
than the other two schemes, the TD and the SBECTC, in terms of PSNR, BER
and subjective video quality. In particular, the proposed scheme with 4 FBCs at
channel SNR 1.5 dB and with 6 FBCs at channel SNR 1.5 dB can achieve consider-
able performance improvement and reconstruct the videos with quality close to the
available maximum PSNR. Moreover, the required channel SNR by the proposed
scheme is about 0.18 dB less than the other two schemes while all three schemes
reach the same PSNR. However, the complexity of the proposed scheme is higher
than the other two schemes.

It should be noted that the parameter values employed in the simulations can

be refined through further empirical investigations.

107

Chapter 5

Conclusion and Future Work

108

5.1 Contributions

This thesis proposes an iterative joint source and channel decoding scheme for ro-
bust MPEG-4 video transmission. The proposed scheme uses turbo codes to provide
error protection for MPEG-4 compressed bitstreams. In the decoding process, on
one hand, the soft output from the turbo decoder is served as a reliability measure
of the corresponding hard decision of each received bit and used for syntax based
error concealment in the source decoder. On the other hand, the extracted syn-
tax/semantic information from the source decoder is fed back to the turbo decoder
by modifying the extrinsic information generated by the MAP decoder 2, one of
the two constituent MAP decoders inside the turbo decoder. In this way, the in-
teractivity between the source decoder and channel decoder is constructed and this
interactivity works iteratively along with the turbo decoding process. These are the

main contributions of this work.

5.2 Conclusions

According to the work in this thesis. the following conclusions can be drawn:

» As expected, the soft output L;(uy) associated with a received bit from a
turbo decoder can be used to measure the reliability of the corresponding
hard decision made by the turbo decoder. In general, correctly decoded bits

have large |L;(ux)| values with high possibility.

e Syntax/semantic errors in a compressed bitstream results in the most serious

degradation in terms of PSNR and subjective video quality since they often

make a VP un-decodable.

e A compressed bitstream is sensitive to channel induced errors due to error
propagation. On the other hand, this sensitivity can be an advantage for

Syntax Based Error Concealment(SBEC). That is, if a few erroneous bits in a

109

frame are corrected by SBEC, the picture errors in several frames referred to

this frame can also be corrected.

e The residual redundancy remaining in compressed video bitstreams can be

easily accessed if there are only a few bit errors in one VP.

e The information from the channel is useful for source decoding and the residual
information from the source is also helpful for channel decoding. A joint source
and channel decoding scheme works better than separate decoding schemes,

in terms of the quality of reconstructed sources and bit error rate.

5.3 Future Work

The residual information considered in this thesis is only the syntactic/semantic
correctness of a VP candidate, other residual information such as the discontinu-
ity measure introduced in Section 3.1 can be employed in future work. It can be
expected that more information from the source can be more helpful for channel
decoding, and error concealing in post-processing of videos.

Some work can be done to optimize the proposed scheme aitiing Lo reduce
the complexity. For example, the feedback scheme may begin to work after 2 or 3
iterations of turbo decoding. Also, the number of VP candidates doesn't need to be
fixed. Instead, it can be associated to the results of last iteration.

The feedback scheme, which sends the information from the source to the turbo
decoder, is based on a simple principle in this thesis, that is, if the hard decision
of a bit made by the source decoder is in agreement with the one made by the
turbo decoder, the feedback scheme increases the absolute value of its corresponding
soft output from the turbo decoder. Otherwise, the feedback scheme decreases it.
How much the absolute value of the soft output from the turbo decoder can be

increased/decreased is determined by experiments. In future work, some theoretical

110

work on the feedback scheme needs to be developed and the ultimate goal is to
convert the extracted source information to soft values at bit level in a mathematical

way.

111

REFERENCES

1]

8]

Y. Wang and Q.-F. Zhu, “Error control and concealment for video communi-

cation: a review,” Proceedings of the IEEFE, vol. 86, pp. 974-997, May 1998.

P. Symes, Video Compression Demystified. New York: Mcgraw-Hill, 1st ed.,
2001.

J. Watkinson, The MPEG Handbook. 225 Wildwood Avenue, Woburn, MA
01801-2041: Focal Press, 1st ed., 2001.

I. Moccagatta, S. Soudagar, J. Liang, and H. Chen, “Error-resilient coding in
JPEG-2000 and MPEG-4," [EEFE journal on selected areas in communica-
tions, vol. 18, pp. 899-914, June 2000.

B. Sklar, Dugital Communications Fundamentals and Applications. Upper Sacl-

dle River,N.J 07458: Prenticec Hall, 2nd ed., 2001.

S. Lin and D. J. C. Jr., Error control coding Fundamentals and Applications.
Englewood Cliffs, New Jersey 07632: Prentice Hall, 1st ed., 1983.

I. E. G. Richardson, H.264 and MPEG-4 video compression. The Atrium,
Sothern Gate, Chichester, West Sussex PO19 85Q, England: John Wiley &
Sons Ltd., Ist ed., 2003.

The official MPEG committee website, http://wwuw. chiariglione.org/mpeq/.

112

[9]

[10]

[14]

[16]

“Information technology - generic coding of audio-visual objects,” ISO/IEC

14496-2, 1998,

F. Pereira and T. Ebrahimi, The MPEG-/ Book. Upper Saddle River, NJ
07458: Prentice Hall PTR, 1st ed., 2002.

R. Talluri, “Error-resilient video coding in the ISO MPEG-4 standard,” [EEE
Communications Magazine, pp. 112-119, June 1998.

A. E. Walsh and M. Bourges-Sévenier, MPEG-/ Jump-Start. Upper Saddle
River, NJ 07458: Prentice Hall PTR, 1st ed., 2002.

W. E. Lynch, V. Papadakis, R. Krishnamurthy, and T. Le-Ngoc, “Syntax based
error concealment,” Signal Processing: Image Communication, vol. 16, pp. 827—

835, June 2001.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: turbo codes,” Proc. 1993 Inter. Conf. Com-

mun., pp. 1064-1070, 1993.

5. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on paral-
lel concatenated coding schemes,” TEEE Transactions on Information Theory,

vol. 42) pp. 409-428, March 1996.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decod-
ing: turbo codes,” IEEE Transactions on Communications, vol. 44, pp. 1261

1271, October 1996.

S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional
codes,” [EEE Transactions on Communications, vol. 44, pp. 592-600, May
1996.

113

[18] B. Vucetic and J. Yuan, Turbo codes: principles and applications. 101 Philip
Drive, Assinippi Park, Norwell, Massachusetts 02061: Kluwer Academic Pub-
~ lishers, 1st ed., 2000.

[19] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Transactions on Information

Theory, pp. 284-287, March 1974.

[20] J. Hagenauer, E. Offer,‘ and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Transactions on Information Theory, vol. 42,

pp. 429-445, March 1996.
[21] W. E. Ryan, “A turbo code tutorial,” http://www.ece.arizona.edu/ ryan/.

[22] Z. Peng, Y.-F. Huang, and D. J. Costello, “Turbo codes for image transmission-
a joint channel and source decoding approach,” IEEE Journal on Selected Areas

in Communications, vol. 18, pp. 868-879, June 2000.

[23] C. W. Chen, P. Cosman, N. Kingsbury, J. Liang, and .J. W. Modestino, “Error-
resilient image and video transmission,” IEEFE journal on selected areas in com-

munications, vol 18, pp. 809-3813, June 2000.

124] Y. Wang, 5. Wenger, J. Wen, and A. K. Katsaggelos, “Error resilient video

coding techniques,” IEEE Signal Processing Magazine, pp. 61-82, July 2000.

[25] S. Valente, C. Dufour, F. Groliere, and D. Snook, “An efficient error con-
cealment implementation for MPEG-4 video streams,” IEEE transactions on

consumer electronics, vol. 47, pp. 568-578, August 2001.

[26] J. Hagenauer, “Source-controlled channel decoding,” IEEE Transactions on

Communications, vol. 43, pp. 2449-2457, September 1995.

114

[27]

28]

31]

]
[
e

W. E. Lynch and T. Le-Ngoc, “Syntax and discontinuity based error conceal-
ment for compressed video in a packet environment,” ITCC-01, pp. 258262,
2001.

Y. Mei, T. Le-Ngoc, and W. E. Lynch, “A combined multiple candidate like-
lihood decoding and error concealment scheme for compressed video transmis-

sion over noisy channels,” Signal Processing: Image Communication, vol. 18,

pp- 971-980, October 2003.

W. Xu, J. Hagenauer, and J. Hollmann, “Joint source-channel decoding using

the residue redundancy in compressed images,” Data Compression Conference,

pp. 142-148, 1996.

J. Kliewer and N. Gortz, “Iterative source-channel decoding for robust image
transmission,” Acoustic, Speech, and Signal Processing, 2002 IEEE conference,

vol. 3, pp. 2173-2176, 2002.

Z. Peng, Y.-F. Huang, D. J. Costello, and R. L. Stevenson, “Joint channel and
source decoding for vector quantized images using turbo codes,” ISCAS-98,

1998.

Z. Peng, Y.-I'. Huang, D. J. Costello, and R. L. Stevenson, “Joint decoding of
turbo codes for subband coded image,” ICIP 98, vol. 1, pp. 329-333, October
1998.

S. Aign, “Error concealment enhancement by using the reliability outputs of a

sova in MPEG-2 video decoder,” ISSSE 95, pp. 25-27, 1995.

M. Bystrom, S. Kaiser, and A. Kopansky, “Soft source decoding with applica-

tions,” IEEE transactions on circuits and systems for video technology, vol. 11,

pp- 1108-1120, 2001.

115

[35] W. E. Lynch, V. Papadakis, R. Krishnamurthy, and T. Le-Ngoc, “Syntax and
discontinuity based error concealment,” ISCAS, pp. IV-235 — 268, May 1999.

[36] O. Y. Takeshita, O. M. Collins, P. C. Massey, and J. Daniel J. Costello, “On
the frame-error rate of concatenated turbo codes,” IEEE transactions on com-

munications, vol. 49, pp. 602-608, April 2001.

(37] A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in
turbo-decoding,” [EEE transactions on communications, vol. 49, pp. 2045-

2051, December 2001.

[38] V. Papadakis, W. E. Lynch, and T. Le-Ngoc, “Syntax based error concealment,”
ISCAS, pp. IV-265 — 268, June 1998.

[39] W. H. Press, S. A. Teokoisky, W. T. Vetterling, and B. T. Flannery, Numerical
Recipes in C. The Pitt building, Trumpington Street, Cambridge, CB2 1RP:
Cambridge University Press, 2nd ed., 2002.

116

Appendix A

Programs

117

A.1 Smallest Combination Algorithm

#include <string.h>
#include <assert.h>
#include <stdio.h>

struct combination_data {

Double num; /* logarithm difference summation %/
Int nElen; /* Number of indexes to produce the above number */
Int *elem; /* Indexes to produce the above number */

};

typedef struct combination_data CombinationData;

/* Comment the following #define to remove the debug message */
#define __SMALLEST_COMBINATION_DEBUG _

void smallestCombination(double *num, int numSize,
CombinationData* result, int resultSize){

int i, j, k, 1, m, lastResult, lastResultIndex, pos,
newNum, hasCommonElement, isRepeated;

int *el, *e2, *e;

CombinationData newComb;

/* Precondition */
assert (numSize>0 &&% resultSize>0 && num!=0
&& result!=0);/* numSize>=resultSize %/

/* Allocate initial memory to store the indexes */
for (i=0; i<resultSize; i++){

result{i] .nElem 1;

result[i] .elem (int*)malloc(sizeof (int));

}

i

/* Initialize result with smallest single "resultSize" numbers x/
lastResult=0; lastResultIndex=resultSize-1;

result[0] .nElem = 1;

result [0] .num = num[0] ;

result [0] .elem = (int*)malloc(sizeof(int));
result[0] .elem[0] = O;

for (i=1; i<numSize; i++){
assert(num{i] >= 0);
/* Precondition: All numbers must be non-negative */

/* Find the insertion position "pos" */
if (num[il>=result[lastResult].num) {

118

}

}

if (lastResult<lastResultIndex){
/* Set insertion to the 1 past last location (append) */
lastResult++;
pos = lastResult;
}
else continue;
/* No room => Current element must not be in the result set */

else {

for (pos=0; pos<=lastResult; pos++)
if (num({i] < result(pos].num)
break;

if (lastResult<lastResultIndex) lastResult++;
else free(result[lastResult].elem);
for (j=lastResult; j>pos; j--) result[jl=result([j-1];

/* Insert num[i] to "pos" */

result[pos].nElem = 1;

result [pos] .num = num[i];

result[pos].elem = (int*)malloc(sizeof (int));
result[pos].elem[0] = i;

#ifdef __SMALLEST_COMBINATION_DEBUG_ _

Printf (M- \n");
printf("Index: Number: Element Index\n");

for (k=0; k<=lastResult; k++){

printf ("%6d4%8.2f:" k,result[k] .num) ;

e

= result[k] .elem;

for (1=0; 1<result(k].nElem; 1++)

printf (" %3d",e[11);

printf("\n");

printf("\n");
#endif

/* Main loop to find out the smallest combinations */
for (i=0; i<lastResult; i++){

/* Fast termination condition */
if (result[i].num+result[i+1] .num>=

result[lastResultIndex] .num /* New number is too big */
&% lastResult==lastResultIndex /* No room to append */){
#ifdef __SMALLEST_COMBINATION_DEBUG__

printf("i = 2d: Fast termination (No need to continue) !\n", i);

#endif
return;

119

b

for (j=i+l; j<=lastResult; j++){
#ifdef __SMALLEST_COMBINATION_DEBUG__
printf("i = %2d, j = %2d\n",i,j);
#endif

newNum = result[i].num + result[j].num;

if (newNum>=result[lastResultIndex].num &&
lastResult==lastResultIndex) {
#ifdef __SMALLEST_COMBINATION_DEBUG__
printf(" Skipped: Combination>

Last result and No room to append.\n");

#endif
break;

¥

/* Check if there are common elements
among result[i].elem and result[j].elem */
hasCommonElement=0; el=result(i] .elem; e2=result[j].elen;
for (k=0; k<result([i].nElem; k++)
for (1=0; 1<result[j].nElem; 1++)
if (ellk]==e2[1]) {
hasCommonElement=1; break;
+
if (hasCommonElement!=0) {
#ifdef __SMALLEST_COMBINATION_DEBUG__
printf(" Skipped: Has common elements.\n");
#endif

continue; /* Not a valid combination (has repeated element)
+
/#* Create new combination (not insected yet) */
newComb . num = pewlNum;
newComb.nElem = result[i] .nElem + result[j] nElem;
newComb.elem = (int*)malloc(newComb.nElem*sizeof (int));
k=0; e=newComb.elem; el=result[i] .elem; e2=result[j].elenm;

for (k=0,1=0,m=0; k<newComb.nElem; k++){
/* Create a sorted merged list */
if (eif1]<e2[m]){
elk] = e1[1]; 1++;
if (l==result[i].nElem) break;
+
else {
elk] = e2[m]; m++;
if (m==result[j].nElem) break;
}
}
if (l<result[i] .nElem){
for (k++; k<newComb.nElem; k++, 1++) elkl=el[l];
}

120

else if (m<result[j].nElem){
for (k++; k<newComb.nElem; k++, m++) e([k]=e2[m];

+

#ifdef __SMALLEST_COMBINATION DEBUG__

printf ("New Combination: %8.2f: ", ,newComb.num);

for (k=0; k<newComb.nElem; k++) printf("%2d ",e(k]);
#endif

/* Check if the new combination is
already presented in the result */
isRepeated = O;
for (k=j; k<=lastResult && isRepeated==0; k++){
if (newComb.num==result [k].num &&
newComb.nElem==result [k] .nElem) {
/* Check if all elements are the same (
Note: both lists are sorted) */
el=result(k].elem;
for (1=0; l<newComb.nElem; 1++) {
if (e[1]'=e1[l]) break;
/* There is at least one element that is different */
}

if (l==newComb.nElem) {
isRepeated = 1; break;
+
+
}

if (isRepeated!=0){
#ifdef _ SMALLEST _COMBINATION DEBUG__
printf (" <= Repeated.\n");
#endif
free(newComb.elem) ; /* Free memory */
continue;

+

/* Insert the new combination into the result set */
/* Find the insertion position */
for (pos=0; pos<=lastResult; pos++)
if (newNum < result(pos].num)
break;

if (lastResult<lastResultIndex) { /* Append: There is room */
lastResult++;
#ifdef __SMALLEST_COMBINATION_DEBUG__
printf (" <= Append at index %i\n",pos);
#endif

}

else { /% Insert: Last result is always gone */
free(result[lastResult] .elem);

121

#ifdef __SMALLEST_COMBINATION_DEBUG__
printf (" <= Insert at index %i\n",pos);
#endif

+

/* Insert newNum into the result */
for (k=lastResult; k>pos; k--) result[k]=result[k-1];
result[pos] = newComb;

#ifdef __SMALLEST_COMBINATION_DEBUG_ _
printf("Index: Number: Element Index\n");
for (k=0; k<=lastResult; k++){
printf("%4d %c%8.2f:" ,k, (k==pos?’*’:’ ?) result[k].num);
e = resultl[k].elem;
for (1=0; l<result[k].nElem; 1++)
printf (" %3d",e[1]);
printf("\n");

printf ("\n");
#endif

122

