
Encoding Forensic Multimedia Evidence from
MARF Applications as Forensic Lucid Expressions

Serguei A. Mokhov
SGW, EV7.139-2

Department of Computer Science and Software Engineering
Concordia University, Montreal, Quebec, Canada

Email: mokhov@cse.concordia.ca

Abstract—In this work we summarize biometric evidence
as well as file type evidence extraction “exported” as formal
Forensic Lucid language expression in the form of higher-order
intensional contexts for further case analysis by a system that
interprets Forensic Lucid expressions for claim verification and
event reconstruction. The digital evidence is exported from the
Modular Audio Recognition Framework (MARF)’s applications
runs on a set of data comprising biometric voice recordings for
speaker, gender, spoken accent, etc. as well as more general file
type analysis using signal and pattern recognition processing
techniques. The focus is in translation aspect of the extracted
evidence into formal Forensic Lucid expressions for further
analysis.

Index Terms—encoding multimedia evidence, evidence anal-
ysis, forensic case specification, Forensic Lucid, higher-order
intensional contexts, Lucid, MARFL, Modular Audio Recognition
Framework (MARF)

I. INTRODUCTION

Problem Statement: Authors of MARF [1] proposed to
use some of its applications for biometric forensic analysis
of multimedia data such as audio recordings [2] and scanned
handwritten images [3] as well as file-type analysis [4]. On the
other hand, they proposed an intensional scripting language
for dynamic configuration management and scripting of the
said applications, MARFL [5]. Yet they provide no convenient
means to extract and encode the identified evidence for further
processing and case analysis. In our research, we work with
the Forensic Lucid specification language and need to be able
to encode the extracted information as contextual expressions
syntactically and semantically valid in Forensic Lucid.

Proposed Solution: We propose an adapter translator
program, that translates the MARF’s data structures in a way
similar to the way MARFL represents configuration details,
but translated into the Forensic Lucid-compatible definitions.
We add it as back-end plug-in attached to MARF to compile
the resulting data structures into the Forensic Lucid expres-
sions.

A. Forensic Lucid

Forensic Lucid [6], [7] is a forensic case specification
language based on the intensional logic and programming
paradigms [8], [9], [10], [11], [12], [13], [14], [15]. The
authors of Forensic Lucid formally design and specify the
language to be able to “script” in a tool the evidence, sto-
ries told by witnesses, and the case itself as an evidential

statement as a higher-order context specification (all Lucid
dialects are context-oriented with the contexts being first-
class values) as well as the case specification in terms of
inference derivations of the case. Forensic Lucid was created to
address the difficulties and complexity to use the earlier formal
approach [16], [17] that required a potential investigator to
construct a finite-state machine (FSM) and model transitions.
Forensic Lucid inherited some of the terminology and formal-
ities in the specification of events, properties, observations,
observation sequences, evidential statement, and the transition
function and its inverse for event reconstruction and automated
verifiability of traces from the FSM approach. Forensic Lucid’s
compiler and development environment is being realized in a
sister project, the General Intensional Programming System
(GIPSY) [13], [18], [19].

B. MARF and MARFL

MARFL is an intensional Lucid-like configuration speci-
fication language for MARF applications scripting support.
It supports higher-order context definitions for nested con-
figuration parameters. We capitalize on that notion in our
research by translating the results of classification and parts
of the configurations into the Forensic Lucid expressions.
A comprehensive example of a context for processing a
WAV file in the MARF’s pipeline can be modeled as shown
in Figure 1 [5]. In that example the authors of MARFL
illustrate a complex hierarchical context expression where
several nested dimensions are explicitly specified. In general,
MARFL’s context follows the classical Lucid definition, where
it is defined as a collection of <dimension : tag> pairs.
What MARFL does differently is that a single pair may
not necessarily be an atomic context, but may contain sub-
contextual elements. The inner-most context is always simple
and atomic and typically has dimensions of primitive types,
such as integer, IEEE 754 floating point value, or a string. The
outer layers of context hierarchy are composite objects. Thus,
a [sample loader:WAV] denotes a dimension of type
sample loader with its higher-order tag value WAV. The
WAV dimension value can further be decomposed to an atomic
simple context if needed, that contains three dimensions of
primitive types.

Such a way of context representation of the higher-order
context by the MARFL authors is similar to equivalent defi-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Concordia University Research Repository

https://core.ac.uk/display/211512021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mokhov@cse.concordia.ca


nitions described by Swoboda et al. in [20], [21], [22], [23],
where a tree of contexts is defined for languages like iHTML
(with nested tags), functional intensional databases annotated
with XML, etc.

II. METHODOLOGY

A. Translation into Forensic Lucid

The higher-order contextual specification of Forensic Lu-
cid goes (top to bottom) from evidential statement,
to observation sequence, to observation, to
(P,min,max), where the observed property P is an arbitrary
object, usually a human-readable description of the state or
event, and [min,min+max] is the duration of the observation
of that property [16], [17]. Thus, at the higher order we need
something similar to Listing 1’s o1. We borrow the mapping
of the properties P (that can be strings, integers, or even
any-order contextual or otherwise expressions) to a human-
readable rewrite string, similarly to what is in Listing 2 after
the => sign. We also assume that a P by itself is a syntactic
sugar of (P, 1, 0).

e v i d e n t i a l s t a t e m e n t e s = u n o r d e r e d {os1 , os2 , os3 } ;
where

o b s e r v a t i o n s e q u e n c e os1 = o r d e r e d {o1 , o2 , o3 } ;
o b s e r v a t i o n s e q u e n c e os2 = o r d e r e d {o4 , o5 , o6 } ;
o b s e r v a t i o n s e q u e n c e os3 = o r d e r e d {o7 , o8 , o9 } ;
where

o b s e r v a t i o n o1 =
[

p : ‘ ‘ ID : 2 3 : JoeAverage ’ ’ => ‘ ‘ s p e a k e r ID i s 23 , Joe
Average ’ ’ ,

min : 1 ,
max : 0

] ;
. . .

end ;
end ;

Listing 1. Forensic Lucid Contextual Expression

B. MARF Evidence

The evidence extracted from the analysis results of
MARF comes from the several internal data struc-
tures, namely Result, ResultSet, TrainingSet, and
Configuration.

The Result consists of tuples containing ID and
outcome, which are the properties of a single result. The result
set, ResultSet, is a collection of such tuples. Processed
utterances (a.k.a feature vectors or clusters of doubles),
alongside with the training file names and IDs comprise the
training set data, and configuration is a collection of processing
settings that led to the current results given the training set.

We need to specify what is the property P in the three
categories (configuration, training set, and the result set) and
what is its observed duration. We set it as follows: it is
a default of (1, 0), as the notion of duration varies per
configuration, so we are only interested in of how we arrive
from the given configuration and training set to the results.

We syntactically write observation o = P, which is
equivalent to (P, 1, 0) as mentioned earlier. We need to then

MrA @ es mra
where

e v i d e n t i a l s t a t e m e n t es mra = {os mra , o s f i n a l ,
o s u n r e l a t e d } ;

o b s e r v a t i o n s e q u e n c e os mra = ( $ , o u n r e l a t e d c l e a n , $ ,
o b l a c k m a i l , $ ) ;

o b s e r v a t i o n s e q u e n c e o s f i n a l = ( $ , o f i n a l ) ;
o b s e r v a t i o n s e q u e n c e o s u n r e l a t e d = ( $ , o u n r e l a t e d , $ , (

Ct , 0 , 0 ) , $ ) ;

o b s e r v a t i o n o f i n a l = ( 1 , ” u ” , ” t 2 ” ) ;
o b s e r v a t i o n o u n r e l a t e d c l e a n = ( 1 , ” u ” , ” o1 ” ) ;

/ / . . .

i n v t r a n s (Q, es mra , o f i n a l ) = b a c k r a c e s
where

/ / l i s t o f a l l p o s s i b l e d i m e n s i o n s

o b s e r v a t i o n Q = l e n g t h s box l e f t p a r t box r i g h t p a r t ;

/ / e v e n t s

o b s e r v a t i o n l e n g t h s = u n o r d e r e d {0 , 1 , 2} ;

/ / s y m b o l i c l a b e l s m a p t o h u m a n d e s c r i p t i o n s

o b s e r v a t i o n l e f t p a r t = u n o r d e r e d {
” u ” => ” u n r e l a t e d ” ,
” t 1 ” => ” t h r e a t s−o b s c u r e d p a r t ” ,
” o1 ” => ” o t h e r d a t a ( l e f t p a r t ) ”

} ;

o b s e r v a t i o n r i g h t p a r t = u n o r d e r e d {
” t 2 ” => ” t h r e a t s i n s l a c k ” ,
” o2 ” => ” o t h e r d a t a ( r i g h t p a r t ) ”

} ;

b a c k t r a c e s = [ A, B , C , D, ] ;
where
. . .
end ;

end ;
end ;

Listing 2. Blackmail Case Modeling in Forensic Lucid

determine what is an observation sequence. We define it
as a sequence of three “observations”, each observation per
category. The observations must be ordered: (1) configuration
configo, (2) training set tseto, and (3) the classification
result resulto. The meaning of this observation sequence
is that given some MARF configuration settings and the
existing training set, the system produces the classification
result. If we are performing the training, the observation
sequence is slightly different, but also has three observations:
configuration, incoming sample, and the resulting training set,
which would be encoded accordingly as all the necessary
primitives for that are already defined. With such notions
in mind we come up with the complete exportable Forensic
Lucid expression as a 3-observation sequence, e.g. presented in
Listing 2. As with our simplifying assumption, we can remove
the (1, 0) syntactical constructs, and just keep the P , which
in this case is a higher-order context specification, as shown
in Figure 3.

We define some syntactic examples and the corresponding
simplifications to illustrate a few points:

• an observation sequence OS is a sequence of three
observations, where the last one is the “no-observation”
$ construct:
os = { o1, o2, $ };



[
sample loader : WAV [ channels: 2, bitrate: 16, encoding: PCM, f : 8000 ],
preprocessing : LOW-PASS-FFT-FILTER [ cutoff: 2024, windowsize: 1024 ],
feature extraction : LPC [ poles: 20, windowsize: 1024 ],
classification : MINKOWSKI-DISTANCE [ r : 5 ]

]

Fig. 1. Example of hierarchical context specification for a evaluation configuration of MARF.

MARFos = { confo, tseto, resulto } =
{
([
sample loader : WAV [ channels: 2, bitrate: 16, encoding: PCM, f : 8000 ],
preprocessing : LOW-PASS-FFT-FILTER [ cutoff: 2024, windowsize: 1024 ],
feature extraction : LPC [ poles: 20, windowsize: 1024 ],
classification : MINKOWSKI-DISTANCE [ r : 5 ]

], 1, 0),

([data:{[5.2,3.5,7.5],[3.6,2.5,5.5,6.5]}, files:[‘‘/foo/bar.wav’’,‘‘/bar/foo.wav’’]], 1, 0),

([ID:5, outcome:1.5], 1, 0)
}

Fig. 2. Example of a three-observation sequence context exported from MARF to Forensic Lucid.

MARFos = { confo, tseto, resulto } =
{

[
sample loader : WAV [ channels: 2, bitrate: 16, encoding: PCM, f : 8000 ],
preprocessing : LOW-PASS-FFT-FILTER [ cutoff: 2024, windowsize: 1024 ],
feature extraction : LPC [ poles: 20, windowsize: 1024 ],
classification : MINKOWSKI-DISTANCE [ r : 5 ]

],

[data:{[5.2,3.5,7.5],[3.6,2.5,5.5,6.5]}, files:[‘‘/foo/bar.wav’’,‘‘/bar/foo.wav’’]],

[ID:5, outcome:1.5]
}

Fig. 3. Example of a simplified three-observation sequence context exported from MARF to Forensic Lucid.

• if observations of properties P1 = [a : 1, b : 2] and P2 =
[s : 4, g : 7] (which happened to be contexts themselves
here) have a duration of 1 (one) they can be shortened in
their expression to just P . E.g. the following observation
sequences are equivalent:
os = {[a:1,b:2], [s:4,g:7]};
os = {([a:1,b:2],1,0), ([s:4,g:7],1,0)};

• in generic observation sequences where min and max
duration parameters are not zero, cannot be implicit. In
the below is an example of a “complex” observation
sequence where P1 and P2 have several possible dura-
tions, e.g. in os − {o1, o2}, where o1 = (P1, 5, 4) and
o2 = (P2, 1, 2), would result in:
os = {([a:1,b:2],5,4), ([s:4,g:7],1,2)};

• As a “syntactical sugar” we allow a declaration of an
observation sequence os that consists of only a single
observation o1, we allow dropping of the curly braces:
os = o1; <=> os = {o1};

III. LIMITATIONS

There are a number of current limitations with the approach
that are to be addressed in the upcoming future work. We list
some of them here:

• At this point the investigator will have to “copy-paste” the
produced output into their Forensic Lucid case specifica-
tion for further evaluation after the output is produced,
i.e. there are now friendly user-interface or any other type
of integration of the exporter code, MARF, and GIPSY.

• The concrete syntax and semantics of Forensic Lucid
and MARFL, are not fully finalized as of this writing
as they both go through the design, formalization, and
analysis phases with relatively frequent adjustments as
the research moves forward.

• There are no correctness proofs yet for the Forensic Lucid
code itself as well as the correctness of implementation



of MARF and GIPSY, which are necessary to be valid
for the tool to be usable in court.

IV. CONCLUSION

We devised a basic methodology of exporting and trans-
lating the evidence contained within MARF’s data structures
represented in the higher level in the MARFL language, as
a collection of contextual expressions in Forensic Lucid. The
evidence of biometric origin, file type analysis, writer analysis
and others can therefore be exported into Forensic Lucid for
case formulation later on. An investigator can simply use
the provided expression in their Forensic Lucid case as-is
to maintain the library of observation sequences with the
collected evidence.

V. FUTURE WORK

This sections lists a number of items to improve in the
near future work in the Forensic Lucid language and the
surrounding systems. These are mostly there to address the
limitations described earlier and enhance overall usability,
applicability, and standardization of the language:

• Prove the correctness of the MARF code and its storage
modules in the internal representation of the evidence.

• Complete formal definition of Forensic Lucid and
MARFL, and then formally verify the correctness of the
adapter/exporter code and prove its equivalence between
the MARFL and Forensic Lucid representations in Is-
abelle [24].

• Provide equivalent translation and export tools for the
JPF-based forensic toolkit [25], [26], [27] plug-ins for
memory, log, and email analysis evidence as evidential
expressions specified in Forensic Lucid.

• Export MARF pipeline as a transition function ψ for
complete specification of the MARF-based system in
Forensic Lucid.

ACKNOWLEDGMENT

The author thanks Drs. Joey Paquet and Mourad Debbabi
for the helpful and detailed review, suggestions, support, and
comments about this work. We acknowledge reviewers who
took time to review this work and provide us with constructive
feedback. This work is sponsored in part by the Faculty
of Engineering and Computer Science, Concordia University,
Montreal, Canada.

REFERENCES

[1] The MARF Research and Development Group, “The Modular Audio
Recognition Framework and its Applications,” SourceForge.net, 2002–
2008, http://marf.sf.net, last viewed December 2008.

[2] S. A. Mokhov, “Study of best algorithm combinations for speech
processing tasks in machine learning using median vs. mean clusters
in MARF,” in Proceedings of C3S2E’08, B. C. Desai, Ed. Montreal,
Quebec, Canada: ACM and BytePress, May 2008, pp. 29–43, ISBN
978-1-60558-101-9.

[3] ——, “Writer Identification Using Inexpensive Signal Processing Tech-
niques: Experimental Results,” 2008, unpublished.

[4] S. A. Mokhov and M. Debbabi, “File type analysis using signal
processing techniques and machine learning vs. file unix utility for
forensic analysis,” in Proceedings of the IT Incident Management and IT
Forensics (IMF’08), O. Goebel, S. Frings, D. Guenther, J. Nedon, and
D. Schadt, Eds., Mannheim, Germany, Sep. 2008, pp. 73–85, LNI140.

[5] S. A. Mokhov, “Towards syntax and semantics of hierarchical contexts
in multimedia processing applications using MARFL,” in Proceedings
of the 32nd Annual IEEE International Computer Software and Ap-
plications Conference (COMPSAC). Turku, Finland: IEEE Computer
Society, Jul. 2008, pp. 1288–1294.

[6] S. A. Mokhov and J. Paquet, “Formally specifying and proving opera-
tional aspects of Forensic Lucid in Isabelle,” Department of Electrical
and Computer Engineering, Concordia University, Tech. Rep. 2008-1-
Ait Mohamed, Aug. 2008, in Theorem Proving in Higher Order Logics
(TPHOLs2008): Emerging Trends Proceedings.

[7] S. A. Mokhov, J. Paquet, and M. Debbabi, “Formally specifying
operational semantics and language constructs of Forensic Lucid,” in
Proceedings of the IT Incident Management and IT Forensics (IMF’08),
O. Goebel, S. Frings, D. Guenther, J. Nedon, and D. Schadt, Eds.,
Mannheim, Germany, Sep. 2008, pp. 197–216, LNI140.

[8] E. A. Ashcroft and W. W. Wadge, “Lucid - a formal system for writing
and proving programs,” SIAM J. Comput., vol. 5, no. 3, 1976.

[9] ——, “Erratum: Lucid - a formal system for writing and proving
programs.” SIAM J. Comput., vol. 6, no. (1):200, 1977.

[10] ——, “Lucid, a nonprocedural language with iteration,” Communication
of the ACM, vol. 20, no. 7, pp. 519–526, Jul. 1977.

[11] W. Wadge and E. Ashcroft, Lucid, the Dataflow Programming Language.
London: Academic Press, 1985.

[12] E. Ashcroft, A. Faustini, R. Jagannathan, and W. Wadge, Multidimen-
sional, Declarative Programming. London: Oxford University Press,
1995.

[13] J. Paquet, “Scientific intensional programming,” Ph.D. dissertation,
Department of Computer Science, Laval University, Sainte-Foy, Canada,
1999.

[14] R. Lalement, Computation as Logic. Prentice Hall, 1993, C.A.R. Hoare
Series Editor. English translation from French by John Plaice.

[15] P. Rondogiannis, “Higher-order functional languages and intensional
logic,” Ph.D. dissertation, Department of Computer Science, University
of Victoria, Victoria, Canada, 1994.

[16] P. Gladyshev, “Finite state machine analysis of a blackmail investiga-
tion,” in International Journal of Digital Evidence. Technical and
Security Risk Services, Sprint 2005, Volume 4, Issue 1, 2005.

[17] P. Gladyshev and A. Patel, “Finite state machine approach to digital
event reconstruction,” in Digital Investigation Journal, vol. 2, 2004.

[18] J. Paquet and P. Kropf, “The GIPSY architecture,” in Proceedings of
Distributed Computing on the Web, Quebec City, Canada, 2000.

[19] J. Paquet, “A multi-tier architecture for the distributed eductive execution
of hybrid intensional programs,” 2008, submitted for publication at
SAC’09.

[20] P. Swoboda, “A formalisation and implementation of distributed inten-
sional programming,” Ph.D. dissertation, The University of New South
Wales, Sydney, Australia, 2004.

[21] P. Swoboda and W. W. Wadge, “Vmake, ISE, and IRCS: General
tools for the intensionalization of software systems,” in Intensional
Programming II, M. Gergatsoulis and P. Rondogiannis, Eds. World-
Scientific, 2000.

[22] P. Swoboda and J. Plaice, “A new approach to distributed context-
aware computing,” in Advances in Pervasive Computing, A. Ferscha,
H. Hoertner, and G. Kotsis, Eds. Austrian Computer Society, 2004,
ISBN 3-85403-176-9.

[23] ——, “An active functional intensional database,” in Advances in Per-
vasive Computing, F. Galindo, Ed. Springer, 2004, pp. 56–65, LNCS
3180.

[24] L. C. Paulson and T. Nipkow, “Isabelle: A generic proof assistant,”
University of Cambridge and Technical University of Munich, 2007,
http://isabelle.in.tum.de/, last viewed: December 2007.

[25] M. Debbabi, A. R. Arasteh, A. Sakha, M. Saleh, and A. Fry, “A
collection of JPF forensic plug-ins,” Computer Security Laboratory,
Concordia Institute for Information Systems Engineering, 2007–2008.

[26] A. R. Arasteh and M. Debbabi, “Forensic memory analysis: From stack
and code to execution history,” Digital Investigation Journal, vol. 4,
no. 1, pp. 114–125, Sep. 2007.

[27] A. R. Arasteh, M. Debbabi, A. Sakha, and M. Saleh, “Analyzing multiple
logs for forensic evidence,” Digital Investigation Journal, vol. 4, no. 1,
pp. 82–91, Sep. 2007.

http://marf.sf.net
http://isabelle.in.tum.de/

	Introduction
	Forensic Lucid
	MARF and MARFL

	Methodology
	Translation into Forensic Lucid
	MARF Evidence

	Limitations
	Conclusion
	Future Work
	References

