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Montréal, Québec, Canada

July 2011

c© Mukti Nath Ghimire, 2011



CONCORDIA UNIVERSITY 
SCHOOL OF GRADUATE STUDIES 

 
 
This is to certify that the thesis prepared 
 
By:  Mukti Nath Ghimire 
  
Entitled: “A Statistical Framework for Discrete Visual Features Modeling 
  and Classification” 
 
and submitted in partial fulfillment of the requirements for the degree of 
 

Master of Applied Science 
 
Complies with the regulations of this University and meets the accepted standards with 
respect to originality and quality. 
 
 
Signed by the final examining committee: 
 
 
 ________________________________________________  Chair 
  Dr.  R. Raut 
 
 
 ________________________________________________  Examiner, External 
  Dr. W. F. Xie, MIE        To the Program 
 
 
 ________________________________________________  Examiner 
  Dr. J. Bentahar, CIISE 
  
 
 ________________________________________________  Supervisor 
  Dr. N. Bouguila 
 
 
 
Approved by:  ___________________________________________ 
                                            Dr. W. E. Lynch, Chair 
                          Department of Electrical and Computer Engineering  
 
 
____________20_____   ___________________________________ 
                          Dr. Robin A. L. Drew 
                                                                                  Dean, Faculty of Engineering and       
                  Computer Science 



Abstract

A Statistical Framework for Discrete Visual Features Modeling and Classification
Mukti Nath Ghimire

Multimedia contents are mostly described in discrete forms, so analyzing discrete data be-

comes an important task in many image processing and computer vision applications. One of the

most used approaches for discrete data modeling is the finite mixture of multinomial distributions,

considering that the events to model are independent. It, however, fails to capture the true nature

in the case of sparse data and leads generally to poor biased estimates. Different smoothing tech-

niques that reflect prior background knowledge are proposed to overcome this issue. Generalized

Dirichlet distribution has suitable covariance structure, so it offers flexibility in parameter estima-

tion; therefore, it has become a favorable choice as a prior. This specific choice, however, has its

problems mainly in the estimation of the parameters, which appears to be a laborious task and can

deteriorate the estimates accuracy when we consider the maximum likelihood (ML) approach.

In this thesis, we propose an unsupervised statistical approach to learn structures of this kind

of data. The central ingredient in our model is the introduction of the generalized Dirichlet distri-

bution mixture as a prior to the multinomial. An estimation algorithm for the parameters based on

leave-one-out (LOO) likelihood and empirical Bayesian inference is developed. This estimation al-

gorithm can be viewed as a hybrid expectation-maximization (EM) which alternates EM iterations

with Newton−Raphson iterations using the Hessian matrix. We also propose the use of our model

as a parametric basis for support vector machines (SVM) within a hybrid generative/discriminative

framework. Through a series of experiments involving scene modeling and classification using

visual words and color texture modeling, we show the efficiency of the proposed approaches.
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CHAPTER 1

Introduction

Due to the advent of digital technology, storing information in multimedia forms has become al-

most the first choice. These are in different forms such as audio, image, video, animation and

graphics. Multimedia collections are tremendously huge and are increasing day-by-day. For

instance, www.flickr.com, a popular photo-sharing service on the web, acknowledges that its

database has crossed five billions by September 2010; furthermore, it claims that more than three

thousands pictures are uploaded every minute [3] ! This is just a small portion in whole internet

multimedia contents. It becomes even bigger if we think of personal and proprietary collections

in local networks. Proliferation of such multimedia contents has created a need to develop ap-

proaches and models to process, manage and categorize them, so that they can be automatically

located and retrieved when it is necessary. There is always such demand for image processing and

computer vision tasks since visual contents serve necessary purposes in almost all areas of science

and industries such as art, medicine, geography and forensic.

Intuitively, the categorization, which is a very common task in machine learning and data min-

ing, involves creating a statistical model which helps to sort similar type of data into same category.

This topic has been extensively studied and has been applied to several tasks in various areas such

as image processing, pattern recognition, machine learning, remote sensing [4], automated text

categorization [4], character [5] and face recognition [6], image categorization and retrieval [7],

and autonomous vehicles [8].
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Finite mixture models are one of the mostly used statistical approaches for categorization [9].

Like in all other generative models, the choice of an appropriate model structure to capture the

characteristics of the features is the key concern here; otherwise, wrong choice may degrade the

model performance. An important step in multimedia data categorization is the extraction of fea-

tures which can be continuous or discrete. For continuous data, Gaussian mixture model (GMM)

is largely adopted, but recent research has shown that it fails to discover the true structure when the

partitions are non-Gaussian [10] such as the cases with discrete features (see, for instance, [11]).

Different assumptions have been made in the case of discrete data. The multinomial, however,

represents the state-of-the-art distribution for discrete data modeling. In spite of its popularity,

recent researches have shown that it has some drawbacks such as considering that the events to

model are independent [11–14]. Another important problem is the parameters estimation in the

case of sparse data1 (i.e. the estimation of the probabilities of rarely observed or unobserved

occurrences) [16, 17]. The severity of this problem, which leads generally to poor biased estimates,

has been widely studied by the natural language processing community, but generally ignored by

image processing and computer vision researchers2. Different smoothing techniques have been

proposed to overcome these problems [19]. The most successful approach is the use of the Dirichlet

distribution as a prior, reflecting a certain background knowledge, to the multinomial which results

in a completely formal statistical model [11, 13].

Indeed, there is a previously proposed framework in which finite mixture of Dirichlet dis-

tributions was used as a prior to the multinomial and applied to different applications such as

texture modeling and narrowing the semantic gap for content-based image summarization and re-

trieval [11, 20, 21]. Recently, it is noticed that even the Dirichlet has some problems such as its

1This is also known as the zero-frequency problem and arises when dealing with observations that never occurred

in the training data [15].
2A main assumption generally considered in image processing and computer vision applications is the Gaussian

mixture (GM) by considering continuous features. This assumption, however, is not realistic when dealing with

discrete data. Moreover, it is well-known that the normal assumption limits the ability to analyze rare events [18].
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very restrictive negative covariance structure which makes its use as a prior in the case of posi-

tively correlated data inappropriate (see [21, 22] for details and discussions). These problems can

be overcame by the consideration of the generalized Dirichlet distribution which is more general

in covariance structure and offers more flexibility [22, 23]. This specific choice, however, has its

problems namely the estimation of the parameters, which appears to be a laborious task when we

consider the maximum likelihood approach, as we will show in Section 2.3.

As this thesis presents a statistical framework to model discrete image features, following back-

ground information will be helpful to understand the context of the work.

1.1 Background

Image categorization incorporates mainly three tasks: features extraction, modeling and classifi-

cation. First, it needs extracting the features that best describe the visual contents of the image.

Second, the classifier, a set of decision rules or algorithm that classifies a query image into one

of the predefined classes, has to be established to get the expected classification result. Finally,

features representing query image are subjected to the classifier, and query image is affected to the

corresponding category.

1.1.1 Visual Features

A very basic idea to classify an image would be to compare it directly against all categories and

to find the category of the best match, but this method consumes a lot of resources and becomes

an inefficient choice. So, there is always a need to represent the image by its features which still

represents the image without the loss of information. Depending on its region of representation,

visual features can be local or global.

3



1.1.1.1 Global Features

Global image features such as color, shape and texture have been widely explored in the context

of content-based image categorization and retrieval [24–27]. Unfortunately, they are not robust

against occlusion, background clutter and other contents change. Moreover, their result is not only

difficult to predict and control [28] but also, by intuition, computationally expensive when it needs

handling a large image database. An example of such global feature is co-occurrence matrix.

Co-occurrence Matrix: Texture analysis is an important topic in image processing and computer

vision field. Many approaches have been proposed to address this problem. These can be grouped

under three methods: structural, statistical and signal theoretic [29]. Majority of these approaches

deal with gray level images while a few of them incorporate color as well as texture information.

The later approaches that combine color and texture information can be summarized into three

groups: parallel, sequential and integrative [30]. Integrative approaches better combine color and

texture information by taking into account the dependency between color and texture features [30,

31].

Figure 1.1: A typical grey scale image and its co-occurrence matrix for a displacement �d = (1, 0).
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A co-occurrence matrix, a second order texture measure, shows how frequently the set of pixels

reoccurs in an image (see Figure 1.1). It is mostly used as an intermediate feature, and further

dimension reduction is performed in computing features of the types described in [32, 33] such as

energy, entropy, contrast, homogeneity and correlation.

1.1.1.2 Local Features

Local interest points such as points, edges or small image patches are characteristic points where

signal changes bidirectionally [34]. In other words, interest points are those which are invariant to

some geometric and photometric transformations. Unlike global features, due to scale and affine

invariant nature, local features-based methods have proven to be useful to solve for many prob-

lems in practical fields such as viewpoint-independent object recognition [35–37], wide baseline

matching [1, 38, 39], image retrieval [40–42], video data mining [43], and texture recognition [44].

Their local nature inherits robustness to image clutter, occlusion and partial visibility, and their

invariant nature provides stable representation to affine transform and lighting conditions change.

All these properties make local features stable by producing a relatively repeatable representation

of a particular object.

Interest Point Detectors: Before extracting them, the features have to be located first. Quite

a few interest points detecting approaches have been developed in past few years. The earliest

work can be traced back to Harris [45] who has developed a derivative-based edge and corner de-

tector by measuring the trace and determinant of the gradient distribution matrix around interest

points. Since Laplacian operator correctly extracts more candidate points [41], Mikolajczyk and

Schmid [41, 46] extended it in generating scale space pyramid [47]. There are number of other ap-

proaches available3, but Gaussian blur methods are mostly adopted. As Gaussian function4 is con-

sidered as the best among available scale space kernels [49, 50], scale space pyramid [47] is usually

3An extensive survey on local invariant features and their extraction methods can be found in [48].

4G(x, y, σk) =
1

2π(σk)2
e
− x2+y2

2(σk)2 is a 2-D Gaussian function at scale σk or with radius of blur kσ.
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Figure 1.2: Steps in formation of DOG images. Repeated convolution of an initial image with Gaussian kernel, down

sampling by factor of two after each octave −− doubling the sigma σ finds next octave −− and then subtracting

adjacent scales results pyramid of DOG images (shown in right) in scale space [1].

generated using it. After the application of scale normalized [51] −− scale normalization ensures

average gray levels be same at all scales −− derivative-based operator5 on each scale, keypoints

are located according to cornerness measure (see in [48], for instance, for commonly used corner-

ness measures). To detect local keypoints, Lowe [1, 52] has used scale-normalized Laplacian-of-

Gaussian (LOG) which is implemented by using difference-of-Gaussian (DOG) function6.

5Harris and Hessian operators are typical examples and are are explained in [38, 45].
6DOG function can closely approximate scale-normalized LOG function, σ2∇2G [50]. To prove it, starting with

diffusion equation 1
2∇2G = ∂G

∂t where G is Gaussian operator, let us replace t = σ2 =⇒ ∂t = 2σ∂σ to parameterize

in terms of σ:
1

2
∇2G =

∂G

2σ∂σ

σ∇2G =
∂G

∂σ
(≈ G(x, y, σk)−G(x, y, σ)

σk − σ
)

σ∇2G ≈ G(x, y, σk)−G(x, y, σ)

(k − 1)σ

(k − 1)σ2∇2G ≈ G(x, y, σk)−G(x, y, σ)

(k − 1)σ2∇2G ≈ DOG

The approximation error becomes zero when k = 1, but k has no practical effect on stability of peak detection or

localization; for practical purpose, therefore, k is selected as
√
2 [1].
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Pixel-by-pixel difference between two Gaussian blur images at scales σk and σ results DOG image

at scale σk (see Figure 1.2)7. Out of other derivative functions, DOG function is chosen not only

because its maxima and minima incur the most stable image features but also because it is easy to

compute [53]. Using similar idea of extrema location by Lindeberg [51], the local extrema among

the points in neighboring scale space is located as keypoint [1].

The methods discussed so far are scale invariant; they, however, are not robust against affine

transformation. This problem has been addressed by developing an affine adaption process based

on the second moment matrix [54]. Similar implementations can be found in [46, 55–57].

Local Descriptors: Assigning suitable descriptors to the local keypoints, which are invariant to

class of transformations, is another necessary task. This adds the distinctiveness and robustness

to the features [1]. Although numerous techniques such as gradient distribution [1, 58], Gabor

wavelet [59], moment invariants [60], Harr wavelet filters [61], steerable filters [62], descriptors

based on intensity [44, 63, 64] that are particularly used in texture images, and a technique in-

spired by biological vision [65] are suggested, scale-invariant feature transform (SIFT)-based de-

scriptors [1] have performed the best among other available descriptors [53]. Furthermore, many

approaches8 have been suggested to improve the selectivity, robustness and cost of computation

of SIFT descriptors, but Lowe’s SIFT [1], which carries local gradient information of the patch

around the keypoint, is extensively used, mostly cited and still regarded as de facto descriptor.

As this thesis extensively uses co-occurance matrix [69] and SIFT [1] as visual descriptors, an

extended illustration on how a SIFT feature vector can be extracted from a keypoint is shown in

Figure 1.3 on page 8.

7D(x, y, σk), a DOG image at scale σk, equals L(x, y, σk)−L(x, y, σ), where L(x, y, σk) = I(x, y)∗G(x, y, σk)
is a linear −− Gaussian is also linear −− discrete scale space representation of an image I(x, y): a family of signals

defined for different scales σk∀k ∈ 1, 2, 3, . . . and derived by convoluting the image with a Gaussian blur kernel. Note

that L(x, y, σk) is reduced to the image I(x, y) itself for the scale zero (i.e. k = 0).
8Other variants of SIFT descriptors are also available such as principle component analysis SIFT (PCA-SIFT) [66],

informative SIFT (i-SIFT) [67], and color SIFT (CSIFT) [68].
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Figure 1.3: An illustration showing SIFT descriptor extraction process. (a) A keypoint on the DOG image stacks and

its 16×16 neighborhood image gradients are shown, and the dotted circular window signifies the scale normalization.

(b) 4 × 4 descriptor array is rearranged from 16 × 16 sample array, also the length of each arrow stands for the sum

of gradient magnitudes within corresponding 45◦ bin; as a result, 4 × 4 matrix with 8 vectors on each cell results a

128(=8×4×4)-dimensional SIFT descriptor. (c) Principle orientation, for example it is shown by a flat arrow pointing

upward, is the mean of the dominant bin among 32 orientation bins (10◦/bin). (d) A SIFT feature vector describes

location, scale, dominant orientation and magnitude information of the keypoint.
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Figure 1.4: Representation of an image by BOK. (from left to right) A typical image; local keypoints are detected; a

number of local SIFT descriptors are extracted on each of those keypoints; and the BOK vector representing the image

is calculated.

Bag-of-Visual Words: Using analogy to learning methods using bag-of-words representation

for text categorization [70–72] and motivated by the work of Zhu et al. [73], Csurka et al. [74]

has used bag-of-keypoints (BOK) as visual words for visual categorization task. Visual vocabulary

is represented by homogenous clusters that are obtained by a clustering or vector quantization,

such as K-Means, of training features set. With all feature vectors of an image in hand, the BOK is

formed by bin counts of each cluster (see Figure 1.4). This way, BOK shows the frequency of types

of local image patches in the image; therefore, this approach reduces generic visual categorization

problem into multi-class supervised learning.

1.1.2 Statistical Models

Machine learning involves the development of algorithms and techniques that help us to learn

and to draw inferences on data. Creating a statistical model which captures class(es) information

is a common task that all statistical machine learning methods involve. Depending on the way

the model discriminates the class information, there are broadly two families of approaches for

machine learning: generative and discriminative models.
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1.1.2.1 Generative Models

A statistical approach that explicitly models data using generative distribution p(X|θ) is called

generative model, where X is data variable and θ is the model parameter(s). Now, to classify a

query datum Xi into one of the several categories, a typical approach is to estimate a distribution

p(X|θj) for each of the categories j = 1, 2, 3, ....M , and then to classify the data to the category

that has maximum posterior class probability given the data:

kth
category ⇐ argmax

k
P (θj|Xi) =

p(Xi|θj)P (θj)

P (Xi)
(1.1)

Let’s make it simple! Xi falls on kth category if posterior probability P (θj=k|Xi) is the high-

est among all class posteriors P (θj|Xi); j = 1, 2, 3, ......M . We can see that prior assumption

about the data is updated to posterior probability in the light of class-conditional likelihood. This

is also called Bayes’ rule. Examples of generative models include GMM and other types of mix-

ture models, hidden Markov model (HMM), naı̈ve Bayes’ [75], averaged one-dependence esti-

mators (AODE), latent Dirichlet allocation (LDA) [76], and restricted Boltzmann method [77].

In a situation where strong (naı̈ve) independence can be assumed, the naı̈ve Bayes’ classification

model is quite popular. It is often used in text categorization [78], and its classification accuracy is

typically high [79].

1.1.2.2 Discriminative Models

Unlike generative approaches, discriminative approaches do not model data explicitly; they, how-

ever, are concerned with defining the boundaries between the categories. The classifier is built by

estimating a decision rule f(j,Xi) straight from the training data. Examples of discriminative mod-

els include logistic regression, linear discriminant analysis (LDA), support vector machine (SVM),

boosting, conditional random fields, linear regression, and neural networks. Discriminative ap-

proaches are implemented in wide range of application fields such as speech recognition [80],

image segmentation [81], object recognition [82], and biomedical and life science [83] .
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In the recent years, SVM is widely used and often known to produce state-of-the-art results for

high-dimensional data [74], and finds its applications ranging from text categorization to pattern

recognition [70, 84]. Data from practical problems may not always be linearly separable, so they

are mapped to a space where the separation using hyperplane will be easier. The SVM classifier

finds a hyperplane which separates two-class data with maximal margin [85]. The classifier’s

parameters are derived in such a way that margin from the closest training points to the separating

hyperplane is maximized. For a given training instances Xi, i = 1, 2, ...., N , and corresponding

labels or indicator vectors Yi that take values ±1, one finds a classification function as follows:

f(X) = Sgn(W TX + b) (1.2)

where Sgn() is signum function. Whole SVM classifier design is the estimation of these hyper-

plane parameters: W and b. To cope with this problem, kernels are in use [86].

Both generative and discriminative approaches have their own pros and cons. Generative mod-

els, for example, are easy to interpret, can be trained quickly, also can be easily extended to incor-

porate a new category by learning new class-conditional density [13]; it, however, may slow down

the response time as these approaches often require iterative solution. Similarly, SVM, a typical

discriminative approach, shows exciting results to high-dimensional data [74]; on the other side,

most of the discriminative models are inherently supervised and can not be easily extended to unsu-

pervised learning. Therefore, the choice of the approach is usually governed by the the constraints

and requirements of the task in hand9. Current research trend is to blend good aspects from both of

these approaches: the outcome is a hybrid generative/discriminative model. Some theoretical stud-

ies have shown its several advantages such as providing lower test error than both generative and

discriminative techniques [88], also it has provided good solutions to various practical problems

such as image classification [89], and object recognition in static images [90].

9Comparative study, in particular to object recognition, can be found in [87], and it indicates that both approaches

have desirable properties under certain conditions.
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1.2 Contributions

This thesis makes following contributions:

� An Efficient Discrete Data Clustering Using Finite Mixture Model: We look into the prob-

lem of discrete data modeling using finite mixture models. We propose a novel approach to

enhance the parameters estimation and learning of the statistical framework, which uses

a generalized Dirichlet mixture as a prior to the multinomial. During the estimation of

model parameters, the iteration steps in expectation-maximization (EM) algorithm, which is

based on leave-one-out (LOO) likelihood and empirical Bayesian inference, involve Newton-

Raphson iteration using the Hessian matrix. With series of comparative experiments against

other discrete mixtures, that involve image and texture databases modelling and classifica-

tion, we verified the efficiency and merits of our proposed approach.

� Integrating the Model as Parametric Basis for Hybrid Generative/Descriminative Framework:

Furthermore, we propose our model as parametric basis for SVM within a hybrid gener-

ative/discriminative framework, and we experimentally demonstrated the improvement in

classification accuracy due to the new kernel.

It is noteworthy that these contributions have been published in the journal of visual communica-

tion and image representation [91].
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1.3 Thesis Overview

The thesis is organized into four chapters:

� In Chapter 1, introduction to selected visual contents representation and a brief literature

review of some contemporary approaches to model such data, which form the basis for

subsequent chapters, are outlined.

� In Chapter 2, we review the multinomial assumption, and both Dirichlet and generalized

Dirichlet distributions are used as priors for smoothing purposes. After suggesting a new

approach for the estimation and selection of multinomial generalized Dirichlet mixture, we

present a generative/disriminative framework based on our developed model and SVM.

� In Chapter 3, we discuss our experimental results in details.

� Finally in the last chapter, our proposed methodologies and contributions are summarized,

and future directions are outlined.
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CHAPTER 2

Statistical Model

2.1 Introduction

Discrete features1 appear in many application areas such as computer vision, image processing and

pattern recognition [2, 11, 96] . As pointed in page 3, discrete data modeling with finite mixture

models has some issues. To cope with that, we propose a statistical framework for discrete data

modeling. We consider the use of generalized Dirichlet mixture as prior to the multinomial to

model and cluster discrete visual feature vectors in the case of some interesting image representa-

tion applications.

We propose a novel approach to enhance the estimation and the learning of our statistical frame-

work parameters. Our approach is based on the maximization of the LOO likelihood through a

hybrid expectation maximization algorithm which alternates EM iterations with Newton-Raphson

iterations using the Hessian matrix. The proposed model is also used for generating SVM kernel

within a generative/dicriminative framework involving mixture model and SVM both in a way that

it combines their respective advantages in order to take into account the discrete nature of the data.

Indeed, mixing generative and discriminative approaches has attracted a lot of attention and some

theoretical studies have shown its several advantages such as providing lower test error than both

1Examples of discrete features include color histograms [92], co-occurrence matrices [69], correlograms [93], color

coherent vectors [94], and the recently proposed keyblocks (i.e. visual keywords) as an analogy to dictionaries in the

case of text documents [73, 74, 95]
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generative and discriminative techniques [88]. Moreover, generative/discriminate approaches have

been found to be useful in many practical applications [89].

2.2 The Discrete Statistical Model

Let �Xi = (Xi1, . . . , XiDi
), i = 1, . . . , N , be a discrete vector representing a given image, Di is

the number of visual features in the image, and each variable Xid, d = 1, . . . , Di, takes on values

on a V -sized visual corpus (or dictionary) that is a finite set of discrete values. Then, a classic

assumption is that �Xi is generated by the following model:

p( �Xi|�π) =
Di∏
d=1

V∏
v=1

πδ(Xid=v)
v =

V∏
v=1

πfiv
v (2.1)

where δ(Xid = v) is an indicator function, {fiv} are the frequencies of values v in �Xi and represent

the sufficient statistics, �π = (π1, . . . , πV ) is the parameter vector of a multinomial,
∑V

v=1 πv = 1.

Recent machine learning researches2, however, have shown that the multinomial assumption

as a naı̈ve Bayes’ approach has several drawbacks and suffers from the zero counts which create

serious obstacles [11–14]. For instance, data sparseness problem makes the maximum likelihood

(ML) approach to estimate the πv parameters unreliable [101]. Indeed, it is easy to show that the

ML estimate is simply

π̂v =
fiv∑V
v=1 fiv

(2.2)

Moreover, it is clear that π̂v is zero for any feature that does not appear in �Xi, since the probabilities

are estimated by the fraction of times the feature occurs over the total number of opportunities. The

unreliability of ML estimates can be generalized for features which appear rarely (i.e. with small

frequency). In order to adjust the ML estimates, a widely used approach is to modify the sample

counts by augmenting them with some chosen values (i.e. pseudo-counts) and a common choice

2Note that the drawbacks underlying the multinomial assumption have been discussed a long time ago by statisti-

cians (see [97–100], for instance).
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is to add 1 to all frequencies3:

π̂v =
1 + fiv

V +
∑V

v=1 fiv
(2.3)

This adjustment is actually a special case of another classic approach to prevent zero probabilities

which is the consideration of a Dirichlet prior for �π:

p(�π|�α) = Γ(
∑V

v=1 αv)∏V
v=1 Γ(αv)

V∏
v=1

παv−1
v

where �α = (α1, . . . , αV ). The Dirichlet distribution depends on V parameters α1, . . . , αV , which

are all real and positive. The choice of the Dirichlet distribution is motivated by the fact that it

is closed under multinomial sampling (i.e. the Dirichlet is a conjugate prior for the multinomial)

[104]. Using the Dirichlet as a prior, we can show that [11]:

π̂v =
αv + fiv∑V

v=1 αv +
∑V

v=1 fiv
(2.4)

where
∑V

v=1 αv is generally called equivalent sample size, since it can be interpreted as augmenting

the actual frequencies by
∑V

v=1 αv virtual ones [105]. Note that the last equation is reduced to

Eq. 2.3 when we consider a symmetric Dirichlet, with unity concentration parameter, as a prior.

In spite of its flexibility and the fact that it is conjugate to the multinomial which have led to its

application in different learning approaches and techniques, the Dirichlet has restrictions: a very

restrictive negative covariance matrix which violates generally experimental observations [106–

108] and the variables with the same mean must have the same variance as shown in [109]. These

problems can be handled by the consideration of a generalized Dirichlet as prior [2]:

p(�π|ξ) =
V−1∏
v=1

1

B(αv, βv)
παv−1
v (1−

v∑
l=1

πl)
γv (2.5)

where the Beta function B(αv, βv) = Γ(αv)Γ(βv)
Γ(αv+βv)

. The generalized Dirichlet contains 2(V − 1)

parameters ξ = (α1, β1, . . . , αV−1, βV−1), which are all real and positive, and γv = βv − (αv+1 +

βv+1) for v < (V − 1) and γV−1 = βV−1 − 1. Note that the generalized Dirichlet is reduced to

3This choice is usually referred to as Jeffrey’s estimate [102, 103, p. 293] or Laplace smoothing [19].
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a Dirichlet with parameters (α1, . . . , αV−1, αV = βV−1) when βv = αv+1 + βv+1. The particular

choice of the generalized Dirichlet as a prior has several advantages which are widely discussed

in [23] such as its general covariance matrix and the fact that it is also conjugate to the multinomial.

Using this prior, we can show that [23]:

π̂v =
αv + fiv

αv + βv + niv

v−1∏
l=1

βl + nil+1

αl + βl + nil

(2.6)

where nil = fil + fil+1 + . . . + fiV . For more flexibility we can even go further by considering a

finite mixture of generalized Dirichlet distributions as a prior:

p(�π|Θ) =
K∑
k=1

ωk

V−1∏
v=1

1

B(αkv, βkv)
παkv−1
v (1−

v∑
l=1

πl)
γkv

where the parameter set Θ = (�ω, {ξk}) includes parameters from generalized Dirichlet mixtures

ξk = (αk1, βk1, . . . , αkV−1, βkV−1) and �ω = (ω1, . . . , ωK) that represents the mixing parameters

vector of our mixture model ωk > 0 and
∑K

k=1 ωk = 1. Using a generalized Dirichlet mixture as a

prior, we can show that the marginal distribution of �Xi is given by [2]

p( �Xi|Θ) =
K∑
k=1

ωk

V−1∏
v=1

Γ(αkv + βkv)

Γ(αkv)Γ(βkv)

V−1∏
v=1

Γ(α
′
kv)Γ(β

′
kv)

Γ(α
′
kv + β

′
kv)

(2.7)

which we call the multinomial generalized Dirichlet mixture (MGDM), where α
′
kv = αkv + fiv

and β
′
kv = βkv + fiv+1 + . . . + fiV for v = 1, . . . , V − 1. Besides, it is straightforward to prove

that [2]:

π̂v =
K∑
k=1

p(k| �Xi; Θ)
α

′
kv

α
′
kv + β

′
kv

v−1∏
l=1

β
′
kl

α
′
kl + β

′
kl

(2.8)

where p(k| �Xi; Θ) = ωkp( �Xi|ξk)
p( �Xi|Θ)

and represents the posterior probabilities (i.e. the probability that

a given �Xi will be assigned to cluster k). Note that, when K = 1, Eq. 2.8 is reduced to Eq. 2.6

which is itself reduced to Eq. 2.4 when βv = αv+1 + βv+1 (i.e. when the generalized Dirichlet is

reduced to the Dirichlet).
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2.3 Model Learning and Estimation of the Parameters

2.3.1 Leave-one-out (LOO) Likelihood Estimation

Let X = { �Xi}Ni=1 be a set of independent vectors represented by the mixture model in Eq. 2.7. An

important problem is the estimation of the set of parameters Θ defining our model. The usual candi-

date for parameters estimation in the case of finite mixture models is the EM algorithm [110] where

the E-step is devoted to compute the expected values of the class assignments (i.e. posterior prob-

abilities p(k| �Xi; Θ)) and the M-step updates the parameters estimates to refine the learned model

by maximizing the following function
∑N

i=1

∑K
k=1 p(k| �Xi; Θ) log(wkp( �Xi|ξk)) which is actually

the conditional expectation of the complete-data log-likelihood. By maximizing this function, it is

easy to find the following estimate for the wk parameters:

wk =
1

N

N∑
i=1

p(k| �Xi; Θ) (2.9)

The maximization with respect to the ξk parameters, however, involves the Gamma special func-

tion, Γ(α) =
∫∞
0

tα−1e−tdt, and by computing its derivatives other special functions such as the

digamma (or the psi function) Ψ(α) = ∂ log(Γ(α)
∂α

and trigamma Ψ′(α) = ∂Ψ(α)
∂α

occur which makes

the parameters estimation intractable [2]. In this thesis, we use another approach based on the max-

imization of the LOO likelihood4 which has been shown to be an efficient approach when dealing

with the estimation of small probabilities in the case of sparse data [112]. Given the set of inde-

pendent vectors X , the LOO likelihood corresponding to an M -component MGDM is obtained by

replacing the estimates given by Eq. 2.8 in Eq. 2.1 for all the �Xi:

fLOO(X|Θ) =
N∏
i=1

V∏
v=1

π̂fiv
v =

N∏
i=1

V∏
v=1

( K∑
k=1

p(k| �Xi; Θ)
α

′
kv

α
′
kv + β

′
kv

v−1∏
l=1

β
′
kl

α
′
kl + β

′
kl

)fiv

(2.10)

That is the product of the probability of each sample, given the remaining data and parameters

[113, 114]. Note that our approach can also be viewed as an empirical Bayes’ technique5, since we

4The leave-one-out estimator was proposed and applied originally by Mosteller and Wallace [111].
5This terminology was introduced by Robbins in [115] (See [104] for more details about empirical Bayes’

approaches).
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are using the data to help estimate the parameters by maximizing implicitly over the generalized

Dirichlet prior mixture parameters Θ as opposed to the parameters of the multinomials �π. The

LOO log-likelihood is given by

LLOO(X|Θ) =
N∑
i=1

V∑
v=1

fiv log

( K∑
k=1

p(k| �Xi; Θ)
α

′
kv

α
′
kv + β

′
kv

v−1∏
l=1

β
′
kl

α
′
kl + β

′
kl

)
(2.11)

In order to estimate the {ξk}, we use a second-order method which is Newton-Raphson approach

based on the first, second and mixed derivatives of the LOO log-likelihood. We will therefore

compute these derivatives. By computing the first derivatives of the LOO log-likelihood (see Ap-

pendix A), we obtain

∂LLOO(X|Θ)

∂αkv

=
N∑
i=1

fivLikv

[
1

α
′
kv

− 1

α
′
kv + β

′
kv

]
(2.12)

∂LLOO(X|Θ)

∂βkv

=
N∑
i=1

fivLikv

[
− 1

α
′
kv + β

′
kv

]
(2.13)

where Likv =
p(k| �Xi;Θ)

α
′
kv

α
′
kv

+β
′
kv

∏v−1
l=1

β
′
kl

α
′
kl

+β
′
kl

∑K
k=1 p(k| �Xi;Θ)

α
′
kv

α
′
kv

+β
′
kv

∏v−1
l=1

β
′
kl

α
′
kl

+β
′
kl

and can be interpreted as the posterior probability

that a given feature v will occur in a given vector �Xi assigned to cluster k.

By computing the second and mixed derivatives of the LOO log-likelihood, we obtain (see

Appendix B)

∂2LLOO(X|Θ)

∂αkv1∂αkv2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑N
i=1 fivLikv

[
1

(α
′
kv+β

′
kv)

2
+

(Likv−1)β
′
kv

α
′
kv(α

′
kv+β

′
kv)

2
− β

′
kvLikv+α

′
kv

(α
′
kv)

2(α
′
kv+β

′
kv)

]

if v1 = v2 = v

0 otherwise .... (a)

∂2LLOO(X|Θ)

∂βkv1∂βkv2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑N
i=1 fivLikv

[
1

(α
′
kv+β

′
kv)

2
+

(Likv−1)β
′
kv

α
′
kv(α

′
kv+β

′
kv)

2
+ (1−Likv)

α
′
kv(α

′
kv+β

′
kv)

]

if v1 = v2 = v

0 otherwise .... (b)
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∂2LLOO(X|Θ)

∂αkv1∂βkv2

=
∂2LLOO(X|Θ)

∂βkv2∂αkv1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑N
i=1 fivLikv

[
1

(α
′
kv+β

′
kv)

2
+

(Likv−1)β
′
kv

α
′
kv(α

′
kv+β

′
kv)

2

]

if v1 = v2 = v

0 otherwise .... (c)

(2.14)

Then, the Hessian matrix (i.e. the matrix of the second derivatives of the LOO log-likelihood) has

a block-diagonal structure:

H(ξk) = block-diag
{
H1(αk1, βk1), . . . , HV (αkV , βkV )

}
(2.15)

where

Hv(αkv, βkv) =

⎛
⎝ ∂2LLOO(X|Θ)

∂2αkv

∂2LLOO(X|Θ)
∂αkv∂βkv

∂2LLOO(X|Θ)
∂βkv∂αkv

∂2LLOO(X|Θ)
∂2βkv

⎞
⎠ (2.16)

and we have [116, Theorem 8.8.16]

H(ξk)
−1 = block-diag

{
H1(αk1, βk1)

−1, . . . , HV (αkV , βkV )
−1
}

(2.17)

We remark that Hv(αkv, βkv) can be written as

Hv(αkv, βkv) = D + γ�a�atr (2.18)

where D = diag[D1, D2] = diag

[
−∑N

i=1 fivLikv
β
′
kvLikv+α

′
kv

(α
′
kv)

2(α
′
kv+β

′
kv)

,
∑N

i=1 fivLikv
(1−Likv)

α
′
kv(α

′
kv+β

′
kv)

]
,

γ =
∑N

i=1 fivLikv

[
1

(α
′
kv+β

′
kv)

2
+

(Likv−1)β
′
kv

α
′
kv(α

′
kv+β

′
kv)

2

]
, �atr = 1, and γ �= (

∑2
k=1

a2k
Dkk

)−1.

Then, the inverse of the matrix Hv(αkv, βkv) is another block diagonal matrix, composed of the

inverse of each block [116, Theorem 8.3.3]:

Hv(αkv, βkv)
−1 = D∗ + δ∗a∗a∗tr (2.19)

where D∗ = D−1 = diag[1/D1, 1/D2], a
∗tr = (a1/D1, a2/D2), and δ∗ = −γ(1 + γ(1/D1 +

1/D2))
−1. Given a set of initial estimates, Newton-Raphson method can now be used. The iterative

scheme of the Newton-Raphson method is given by the following equation:

ξ
(t+1)
k = ξ

(t)
k −H(ξ

(t)
k )−1∂LLOO(X|Θ)

∂ξ
(t)
k

(2.20)
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2.3.2 Complete Learning Algorithm

One of the major problems arising from mixture models application is how the optimum number

of components is determined, and many methods have been proposed [9]. In this work, we have

used a penalized likelihood approach based on the mixture minimum description length (MMDL)

proposed initially in [117] and used successfully for the problem of images classification in [27],

that is given by

MMDL(K) = − log(p(X|Θ)) +
NK

2
log(N) +

N1

2

K∑
k=1

logwk (2.21)

where NK = K(2V − 1) is the number of parameters in our mixture model, N1 = 2(V − 1)+1 =

2V −1 is the number of parameters defining each component, and (p(X|Θ)) =
∏N

i=1 p(
�Xi|Θ) is the

likelihood function. As we can see from Eq. 2.21, the MMDL is actually a minimum description

length (MDL) type criterion. Indeed, the MDL is given by

MDL(K) = − log(p(X|Θ)) +
NM

2
log(N) (2.22)

By comparing Eq. 2.21 and Eq. 2.22, we can see that MMDL(K) = MDL(K)+N1

2

∑K
k=1 logwk.

The extra negative term N1

2

∑K
k=1 logwk is introduced to overcome the fact that the MDL criterion

considers that all the vectors to cluster have equal importance for each component. That is not true

in the case of mixture models where each vector has its own importance (i.e. weight) in estimating

the parameters. This fact can be shown through the Fisher information matrix of a mixture model

(See [117] for more details). Having the MMDL criterion in hand, the complete algorithm for

estimation and selection is as the following:

Algorithm

For each candidate value of K:

1. Initialize the parameters Θ(0) using the initialization algorithm proposed in [2].

2. Iterate the two following steps until convergence:

21



(a) E-Step: Compute p(k| �Xi; Θ) = ωkp( �Xi|ξk)
p( �Xi|Θ)

.

(b) M-Step:

i. Update the w
(t)
k using Eq. 2.9.

ii. Update the ξ
(t)
k using Eq. 2.20.

3. Calculate the associated criterion MMDL(K) using Eq. 2.21.

4. Select the optimal model M∗ such that:

K∗ = argmin
K

MMDL(K)

2.4 A Generative/Discriminative Model

Different approaches have been proposed to manage, filter and retrieve visual information. Two

main categories of approaches are: model-based approaches and discriminative classifiers. Model-

based approaches are based on generative probabilistic models and discriminative classifiers allow

the construction of flexible decision boundaries. Both models have achieved great successes in

a variety of applications in terms of the improvement of data classification accuracies, and the

modeling of complex data and concepts, respectively. SVM is a well known example of discrimi-

native classifiers [118]. An important problem when considering SVM is the choice of the kernel.

Choosing an appropriate kernel function for a given type of data in a particular application is a

challenging and difficult problem and remains largely unresolved. One of the most successful ap-

proaches is the Fisher kernel proposed in [119] and which can be obtained from the generative

model describing the data. In the following, we will investigate the derivation of a Fisher kernel

from our statistical model (Eq. 2.7) and its application to SVMs. The Fisher kernel was proposed

initially in [119] and is computed at the estimated Θ on the resulting statistical manifold as follows:

K( �X, �Xi) = U tr
�X
(Θ)I(Θ)−1U �Xi

(Θ) (2.23)
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where U �X(Θ) denotes the Fisher score (i.e. the gradient of log probability with respect to Θ), and

I(Θ) is the Fisher information matrix given by

I(Θ) = E �X [U �X(Θ)U tr
�X
(Θ)] (2.24)

and the expectation is over p( �X|Θ). The role of the Fisher information matrix, however, is less

significant as shown in [119] and then can be approximated by the identity matrix.

In the following, we shall derive the Fisher kernel for our generative K-component mixture

model. By computing the gradient of log probability with respect to our model parameters: wk,

αkv and βkv, k = 1, . . . , K, v = 1, . . . , V − 1, we obtain

∂ log p( �Xi|Θ)

∂αkv

= p(k| �Xi; Θ)

(
Ψ(αkv + βkv)−Ψ(αkv) + Ψ(α

′
kv)−Ψ(α

′
kv + β

′
kv))

)

∂ log p( �Xi|Θ)

∂βkv

= p(k| �Xi; Θ)

(
Ψ(αkv + βkv)−Ψ(βkv) + Ψ(β

′
kv)−Ψ(α

′
kv + β

′
kv))

)

∂ log p( �Xi|Θ)

∂wk

=
p(k| �Xi; Θ)

wk

It is noteworthy that this Fisher kernel takes into account the posterior probabilities and then uses

the totality of the data set as a background information.
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CHAPTER 3

Experiments

3.1 Experimental Results

In this section, we conduct some comprehensive experiments in order to investigate the effective-

ness of the proposed approach. Our experiments involve the important problem of image databases

categorization using low-level images contents. Texture and color are widely accepted as being two

key low-level features in image representation. On the other hand, bag-of-visterms (BOV) (or bag-

of-visual words) [95] that is based on local keypoint features has attracted a lot of research attention

recently. Thus, our experiments take into account both of these approaches. Indeed, results will be

first presented for an application involving scene modeling and classification using visual words.

Second, we propose a novel model for color texture images modeling and categorization.

3.1.1 Scene Modeling and Classification using Visual Words

Our first application involves an important and difficult problem in computer vision which is vi-

sual scene modeling and classification1 using the text-like BOV representation, which is actually

the BOK [74] with quantized local descriptors, as an analogy to dictionaries in the case of text

1Many psychophysical and psychological studies have shown that humans may identify scenes independently of

objects identification [120–122].
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documents2, and recently extensively studied in [95]. Note that the authors in [74] have used

multinomial mixture and support vector machine with some classic kernels for classification. Vi-

sual scene modeling and classification may be used for different other applications such as image

databases browsing, objects recognition and content-based retrieval or recommendation. In con-

trast to previous approaches based on global visual features, the BOV approach is based on features

computed over local areas in the image (i.e. local descriptors) which have been shown to be ef-

ficient in many complex applications by providing stable representation and robustness to image

clutter, occlusion and partial visibility [95]. After detecting local keypoints using one of the ex-

isting detectors (see in subSection 1.1.1.2 to recall), next important step in this approach is the

extraction of local descriptors that should be invariant to images transformations, occlusions and

lighting variations [74]. Keypoints are then grouped into a number of homogenous clusters V ,

using a clustering or vector quantization algorithm such as K-means, according to the similarity of

their descriptors. Each cluster center is then treated as a visual word, and we obtain a vocabulary

of V visual words describing all possible local image patterns. Having this vocabulary in hand,

each image can be represented as a V -dimensional vector each component of which contains the

frequency of each visual word in that image. The resulting feature vector can be used then for the

categorization task.

3.1.1.1 Classification of Vacation Images

In the first experiment and following [27], we consider the particular problem of binary hierarchical

classification of vacation images by performing multiple two class classifications. At the highest

of the hierarchy level images are classified as indoor or outdoor. Then, we further classify outdoor

images as city or landscape [123]. Finally, landscape images are classified into forest and mountain

classes. To evaluate our model, we use a database of 5000 vacation images (3000 outdoor and 2000

indoor) collected from different sources. Among the 3000 outdoor images, 1200 are city images

2See [95] for an interesting discussion about this analogy.
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Figure 3.1: Sample images from each group. Row 1: Outdoor landscape images (forest), Row 2: Outdoor landscape

images (mountain), Row 3: Indoor images, Row 4: City images.

and the rest represents the class landscape (1000 and 800 images are in the subclasses mountain

and forest, respectively). Figure 3.1 shows some images from our database. From this database,

2000 images were taken, randomly, to construct the visual vocabulary. The interest points were

detected using the DOG point detector since it has shown excellent performance [1, 95]. Then, we

have used SIFT descriptors, based on the grayscale representation of images, which performs better

than the majority of the existing descriptors [1, 53], computed on detected keypoints of all images

and giving 128-dimensional vector for each keypoint. Moreover, extracted SIFT vectors were

clustered using the K-means algorithm providing 300 visual-words. Each image in the database

was then represented by a 300-dimensional vector of frequencies.
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Table 3.1: Average rounded confusion matrices for the different classification problems using: (a-c) MGDM. (d-f)

MDM. (g-i) MM.
Indoor Outdoor City Landscape Mountain Forest

(a) (b) (c)

Indoor 1889 111 City 1086 114 Mountain 892 108

Outdoor 254 2746 Landscape 159 1641 Forest 86 714
(d) (e) (f)

Indoor 1856 144 City 1043 157 Mountain 853 147

Outdoor 268 2732 Landscape 187 1613 Forest 88 712
(g) (h) (i)

Indoor 1798 202 City 1015 185 Mountain 832 168

Outdoor 313 2687 Landscape 203 1597 Forest 99 701

Table 3.2: Average per class errors (± standard deviation) for the different approaches.

Indoor vs. Outdoor City vs. Landscape Mountain vs. Forest

MGDM 7.30%±0.96 8.24%±0.98 10.30%±1.03

MDM 9.10%±1.03 11.47%±1.08 12.94%±1.13

MM 10.78% ± 1.14 13.05%±1.13 14.83%±1.22

For the indoor vs. outdoor classification, 1750 images were used for training (1000 outdoor

and 750 indoor). For the city vs. landscape classification problem we have used 1000 images

for training (500 images for each class). In addition 500 images were used as a training set for

the mountain (300 images) vs. forest (200 images) classification problem. Each training set was

modeled by an MGDM using the algorithm presented in subSection 2.3.2. Tables 3.1.a-i represent

the rounded confusion matrices (we ran our algorithm 20 times with different training sets) for

the different classification problems using the MGDM, multinomial Dirichlet mixture (MDM),

and multinomial mixture (MM). Table 3.2 summarizes the average per class errors. Note that we

have used laplace smoothing for the MM to avoid zero frequencies. According to the results, it is

clear that the best results are obtained using the MGDM (the difference is statistically significant

according to a T-test).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Average classification error and standard deviation as a function of the number of images in the training

set. (a)(b) Indoor vs. Outdoor, (c)(d) City vs. Landscape, (e)(f) Mountain vs. Forest.

Figure 3.2 shows the average classification errors and standard deviations as a function of the

number of training images. These figures show that increasing the number of training images

reduces both the average errors and standard deviations.
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(a) (b)

(c)

Figure 3.3: Evolution of the classification error with the number of visual words. (a) Indoor vs. Outdoor, (b) City vs.

Landscape, (c) Mountain vs. Forest.

We also conducted experiments to study the influence of the number of visual words on the clas-

sification performance. Figure 3.3.a-c show the evolution of the error with the number of visual

words. According to these figures, we can see that the classification errors does not change much

when the number of visual words is taken between 300 and 800.

In the second experiment, we consider the classification of the whole data set into 4 groups

namely indoor, city, mountain, and forest. The first goal of this experiment is to compare the

accuracy of mixture estimation and selection using the novel algorithm that we propose in this

thesis and the approach that we previously introduced in [2]. The second goal is to compare the

modeling capabilities of the MGDM against MDM and MM in a multiclass classification problem.

We take the same number of training images and visual words used in the previous experiments.
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Table 3.3: Loglikelihoods (average and standard deviation over 20 runs) of the training data in the different classes

when using MGDM learned by both the approach in this thesis and the one in [2].

indoor city mountain forest

New approach -395.73 ± 0.97 -400.09 ± 1.11 -439.94 ± 1.21 -417.28 ± 1.26

Algorithm [2] -397.73 ± 1.12 -403.12 ± 1.56 -443.51 ± 1.14 -421.47 ± 1.41

Table 3.3 shows the loglikelihoods (measured in bits, i.e. base-two logarithm is used) of the train-

ing data in the different classes when using MGDM learned by both the approach in this thesis and

the one in [2]. In the reported results, the values of the loglikelihoods are divided by the number

of vectors in each training class. The table shows the clear dominance of the novel learning ap-

proach, looking at the increased likelihood, over the previously proposed one. Tables 3.4 and 3.5

show the confusion matrices using both approaches. The results show again that the performance

is improved by the new learning and estimation algorithm.

Table 3.4: Confusion matrix for the 4 classes image categorization problem using MGDM learned by the proposed

algorithm.

indoor city mountain forest class error

indoor 1886 61 27 26 5.70%

city 27 1033 67 73 13.91%

mountain 9 28 852 111 14.80%

forest 4 11 88 697 12.87%

Table 3.5: Confusion matrix for the 4 classes image categorization problem using MGDM learned by the algorithm

in [2].

indoor city mountain forest class error

indoor 1879 65 29 27 6.05%

city 29 1018 74 79 15.16%

mountain 13 32 828 127 17.20%

forest 6 15 103 676 15.50%
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Table 3.6: Confusion matrix for the 4 classes image categorization problem using MDM

indoor city mountain forest class error

indoor 1866 71 35 28 6.70%

city 32 1001 79 88 16.58%

mountain 17 35 821 127 17.90%

forest 12 19 117 652 18.50%

Table 3.7: Confusion matrix for the 4 classes image categorization problem using MM

indoor city mountain forest class error

indoor 1843 84 42 31 7.85%

city 37 975 89 99 18.75%

mountain 21 42 807 130 19.30%

forest 17 24 127 632 21.00%

Tables 3.6 and 3.7 represent the confusion matrices by applying MDM and MM. By analyzing

these four tables, we can see that an important part of the misclassified images are made by moun-

tain vs. forest which is caused by the fact that some mountain images contain forest, too. Moreover,

we can conclude that MGDM reaches the best results in term of classification error reduction with

an overall classification error of 10.64% (11.98% when using the algorithm in [2]) as compared to

the 13.20% and 14.86% when we use the MDM and MM, respectively.

3.1.1.2 Other Data Set

In the third experiment, we evaluate the performance of our model on a challenging database

containing 13 categories of natural scenes [124]: highway (260 images), inside of cities (308

images), tall buildings (356 images), streets (292 images), suburb residence (241 images), forest

(328 images), coast (360 images), mountain (374 images), open country (410 images), bedroom

(174 images), kitchen (151 images), livingroom (289 images), and office (216 images). Figure 3.4

shows examples of these images which have an average size of approximately 250 × 300 pixels.

Each extracted vector, representing frequencies of visual words, are separated into the unknown
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 3.4: Sample images from each group. (a) Highway, (b) Inside of cities, (c) Tall buildings, (d) Streets, (e) Suburb

residence, (f) Forest, (g) Coast, (h) Mountain, (i) Open country, (j) Bedroom, (k) Kitchen, (l) Livingroom, (m) Office.

or test set of vectors, whose class is unknown, and the training set of vectors (we take randomly

100 vectors for training from each class), whose class is known. Tables 3.8, 3.9 and 3.10 show

the average confusion matrices reported by MGDM, MDM, and MM, respectively, by running the

estimation algorithms 10 times with varying random selection of the training set. From these table,

we can see that the average classification accuracies were 73.44% (653 misclassified images),

71.24% (707 misclassified images) and 67.22% (806 misclassified images), respectively.

3.1.2 Application to SVM

In this subsection, we investigate the performance of the hybrid model presented in Section 2.4 by

applying it to previously introduced scenes classification problems described in subSection 3.1.1.1

and 3.1.1.2. Through this application, we compare the effectiveness of our MGDM kernel with

other different kernels: a Fisher kernel based on MDM, a Fisher kernel based on MM, polynomial
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Table 3.8: Average rounded confusion matrix for the 13 classes image categorization problem using MGDM.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) accuracy

Highway 134 4 0 5 0 0 10 2 5 0 0 0 0 83.75%

Inside 4 156 11 9 12 6 0 7 3 0 0 0 0 75.00%

Tall buildings 0 25 183 14 0 11 0 23 0 0 0 0 0 71.48%

Streets 4 5 9 149 11 10 0 4 0 0 0 0 0 77.60%

Suburb 0 9 0 8 111 9 0 4 0 0 0 0 0 78.72%

Forest 6 10 3 17 14 161 0 9 8 0 0 0 0 70.61%

Coast 17 0 0 0 0 9 209 6 19 0 0 0 0 80.38%

Mountain 0 4 14 5 3 16 2 206 24 0 0 0 0 75.18%

Open country 7 9 3 16 11 17 5 39 203 0 0 0 0 65.48%

Bedroom 0 0 0 0 0 0 0 0 0 58 5 6 5 78.37%

Kitchen 0 0 0 0 0 0 0 0 0 3 39 5 4 76.47%

Livingroom 0 0 0 0 0 0 0 0 0 16 17 118 38 62.43%

Office 0 0 0 0 0 0 0 0 0 7 11 19 79 68.10%

Table 3.9: Average rounded confusion matrix for the 13 classes image categorization problem using MDM.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) accuracy

Highway 129 5 0 6 0 0 12 3 5 0 0 0 0 80.62%

Inside 4 151 13 10 13 6 0 8 3 0 0 0 0 72.59%

Tall buildings 0 26 176 16 0 13 0 25 0 0 0 0 0 68.75%

Streets 4 5 9 146 14 10 0 4 0 0 0 0 0 76.04%

Suburb 0 9 0 8 108 11 0 5 0 0 0 0 0 76.59%

Forest 6 10 5 17 15 155 0 11 9 0 0 0 0 67.98%

Coast 18 0 0 0 0 11 204 8 19 0 0 0 0 78.46%

Mountain 0 4 14 7 3 16 2 204 24 0 0 0 0 74.45%

Open country 8 9 5 16 11 17 6 39 199 0 0 0 0 64.19%

Bedroom 0 0 0 0 0 0 0 0 0 55 6 8 5 74.32%

Kitchen 0 0 0 0 0 0 0 0 0 3 38 6 4 74.50%

Livingroom 0 0 0 0 0 0 0 0 0 19 19 114 37 60.31%

Office 0 0 0 0 0 0 0 0 0 10 14 19 73 62.93%

kernel of degree 2, Gaussian kernel, and a generalized form of radial basis functions (RBF) kernels

Kd−RBF ( �Xi, �Xj) = e−d( �Xi, �Xj) [125], where d( �Xi, �Xj) is a given distance. As we are dealing with

discrete data, we have taken χ2 function as a distance dχ2( �Xi, �Xj) =
∑V

v=1
(fiv−fjv)

2

fiv+fjv
[125], also

one-against-all approach is adopted to extend SVM to multi-class problems.
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Table 3.10: Average rounded confusion matrix for the 13 classes image categorization problem using MM.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) accuracy

Highway 121 4 0 4 0 0 17 6 8 0 0 0 0 75.62%

Inside 5 141 9 9 21 9 0 8 6 0 0 0 0 67.78%

Tall buildings 2 24 169 16 1 12 3 29 0 0 0 0 0 66.01%

Streets 6 6 9 136 11 17 2 5 0 0 0 0 0 70.83%

Suburb 1 15 2 9 97 10 0 7 0 0 0 0 0 68.79%

Forest 7 12 7 23 14 145 1 9 10 0 0 0 0 63.59%

Coast 21 1 3 0 1 9 189 8 28 0 0 0 0 72.69%

Mountain 3 3 15 8 5 16 4 191 29 0 0 0 0 69.70%

Open country 9 14 9 19 12 17 5 35 190 0 0 0 0 61.29%

Bedroom 0 0 0 0 0 0 0 0 0 54 6 8 6 72.97%

Kitchen 0 0 0 0 0 0 0 0 0 5 33 6 7 64.70%

Livingroom 0 0 0 0 0 0 0 0 0 18 21 116 34 61.37%

Office 0 0 0 0 0 0 0 0 0 8 13 24 71 61.20%

Table 3.11 represents the confusion matrices for the different binary classification problems

described in the previous section using different kernels. The results for these binary classification

problems and the 4 classes categorization one are summarized in table 3.12, which shows the av-

erage error rates using the different tested kernels. For the 13 classes categorization problem the

average classification accuracies were 74.12%, 72.04%, 68.03%, 68.79%, 67.88% and 68.03% us-

ing MGDM, MDM, MM, RBFχ2 , polynomial and RBFGaussian kernels, respectively. According

to the results, it is clear that the MGDM-based kernel gives the best performances since it takes

into account the discrete nature of the features. Moreover, it is noteworthy that introducing the

different generative models as kernels for SVM gives better results than using them directly for

classification. This is actually an expected result since it was shown in [119] that kernel classifiers

employing the Fisher kernel would be at least as powerful as the generative model used to develop

the kernel.
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Table 3.11: Confusion matrices for the different binary classification problems using the different kernels. (a-c)

MGDM. (d-f) MDM. (g-i) MM. (j-l) RBFχ2 . (m-o) Polynomial. (p-r) RBFGaussian .
Indoor Outdoor City Landscape Mountain Forest

(a) (b) (c)

Indoor 1894 106 City 1106 94 Mountain 902 98

Outdoor 224 2776 Landscape 125 1675 Forest 73 727
(d) (e) (f)

Indoor 1837 163 City 1064 136 Mountain 875 125

Outdoor 262 2738 Landscape 160 1640 Forest 73 727
(g) (h) (i)

Indoor 1810 190 City 1025 175 Mountain 879 121

Outdoor 288 2712 Landscape 173 1627 Forest 102 698
(j) (k) (l)

Indoor 1815 185 City 1000 200 Mountain 860 140

Outdoor 304 2696 Landscape 162 1638 Forest 93 707
(m) (n) (o)

Indoor 1793 207 City 1017 183 Mountain 834 166

Outdoor 300 2700 Landscape 206 1594 Forest 97 703
(p) (q) (r)

Indoor 1791 209 City 1023 177 Mountain 840 160

Outdoor 374 2626 Landscape 215 1585 Forest 108 692

Table 3.12: Average error rates using the different tested kernels.

Outdoor vs. Indoor City vs. Landscape Mountain vs. Forest 4 classes

SVM+MGDM 6.60% 7.30% 9.50% 9.78%
SVM+MDM 8.50% 9.86% 11.01% 12.09%

SVM+MM 9.56% 11.60% 12.38% 13.93%

SVM+RBFχ2 9.78% 12.06% 12.94% 13.21%

SVM+Polynomial 10.14% 12.96% 14.61% 14.03%

SVM+RBFGaussian 11.66% 13.06% 14.88% 14.22%

3.1.3 Color Texture Modeling and Classification

An important topic in the fields of image processing and computer vision is texture analysis. Many

approaches have been proposed for this problem and can be classified into three classes: structural,

statistical and signal theoretic methods [29]. The majority of these approaches, however, have been

devoted to gray level images and their transfer to the color domain is still a challenging problem.

According to [30], the techniques combining color and texture can be grouped into parallel, se-

quential and integrative. While parallel approaches separate the processing of color and texture,
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sequential approaches use color analysis as a preprocessing step to analyze texture. The most

successful techniques are called integrative since they take into account the dependency between

color and texture features [30, 126]. A well-known technique to analyze color texture is the use of

co-occurrence matrices [69]. Co-occurrence matrices are mostly used as intermediate features and

dimensionality reduction is performed in computing features of the types described in [32, 127]

such as energy, entropy, contrast, homogeneity and correlation. Dimensionality reduction, how-

ever, causes the lost of important information contained in the distributions of co-occurrence ma-

trices contents. In this subsection, we propose a statistical model, based on co-occurrence matrices

and MGDM without dimensionality reduction, that integrates both color and texture to describe

color texture images. The objectives we set in this subsection are three-fold: (1) propose a new

approach for color texture modeling based on our discrete mixture; (2) determine the contribution

of color information to the classification performance; and (3) investigate its performance when

combined with visual words.

3.1.3.1 The Model

In what follows, we will use {I(x, y), 0 ≤ x ≤ K − 1, 0 ≤ y ≤ L− 1} to denote a K × L image

with gray levels {c1, . . . , cG}, also resulting G×G co-occurrence matrix for a displacement vector

�d = (d1, d2) is denoted as C�d . Therefore, an entry C�d(ci, cj) of the co-occurrence matrix C�d is the

number of occurrences of the pair of pixels with gray levels ci and cj which are a distance �d apart.

Formally, it is given as:

C�d(ci, cj) = fci,cj = Card{(r, s) : I(r, s) = ci, I(r + d1, s+ d2) = cj} (3.1)

where Card{} refers to the number of elements of a set (see Figure 1.1). Generally, to get a good

image texture representation, we need to assign co-occurrence matrices for each of the considered

displacements {�di;i = 1, 2, ...T}. So, a color image I = (I1, ...IZ) defined in a Z-dimensional
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cartesian space3, for a given displacement vector �d, retains Z co-occurrence matrices. In this

thesis, we propose to model the color texture information using discrete finite mixture models by

observing that for each pair (ci, cj) in each color channel Z, we can associate a T -dimensional

vector of counts, by considering T displacements {�di}, described as follows:

�f z
ci,cj

= (f z,d1
ci,cj

, . . . , f z,dT
ci,cj

) (3.2)

Then, the color texture information is represented by Z×G2 T -dimensional vectors of frequencies

which can be modeled by our MGDM.

3.1.3.2 Results

In the first experiment and in order to validate the proposed model, we used the Vistex color texture

database obtained from the MIT Media Lab4. In our experimental framework, each of the 512 ×

(a) (b) (c) (d) (e) (f)

Figure 3.5: Sample images from each group. (a) Bark, (b) Fabric, (c) Food, (d) Metal, (e) Sand, (f) Water.

512 images from the Vistex database was divided into 64 × 64 images. Since each 512 × 512

mother image contributes 64 images to our database, ideally all 64 images should be classified

in the same class. In the experiment, six homogeneous texture groups, “bark”, “fabric”, “food”,

“metal”, “water” and “sand”, were used to create a new database. A database with 1920 images

of size 64 × 64 pixels was obtained. Four images from the bark, fabric and metal texture groups

3For instance, an image defined in RGB spaces will have three co-occurrence metrics (one for each color channel).

Besides RGB, we have also tested the algorithm using other color spaces (HSI, YIQ, CIE-XYZ and CIE-LAB) but we

did not remark much changes in the results which is in agreement with the conclusions outlined in [126], for instance.
4http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

37



were used to obtain 256 images for each of these categories, and 6 images from water, food and

sand were used to obtain 384 images for those categories. Examples of images from each of the

categories are shown in Fig. 3.5.

After randomly selecting 600 images, 100 from each category, as training data and computing

the co-occurrence matrices (we consider 8 displacements) for each color channel and for each

image, a MGDM is trained on each category of color texture. Finally, in the classification stage

each image is assigned to the class increasing more its loglikelihood. The confusion matrices for

the color texture images classification using MGDM, MDM and MM are given in tables 3.13,

3.14 and 3.15, respectively. These matrices show that the average numbers of misclassified images

were 28 (i.e. average error rate of 1.45%), 44 (i.e. average error rate of 2.29%) and 55 (i.e. average

error rate of 2.86%) using MGDM, MDM and MM, respectively. The average error rates, by

running the estimation algorithms 10 times with varying random selection of the training images,

using different classification approaches are summarized in table 3.16. According to these results,

we can say that the incorporation of the color information enhances the performance of texture

classification. It is noteworthy that this conclusion was previously suggested by psychological

studies that have shown that color of textural elements helps in the discrimination of texture by

the human visual system [128]. Results show also that MDM performs better than MM, and the

MGDM performs even better.

Table 3.13: Average rounded confusion matrix for color texture image classification using MGDM.

Bark Fabric Food Metal Sand Water

Bark 252 0 0 0 4 0

Fabric 0 250 6 0 0 0

Food 0 6 378 0 0 0

Metal 0 0 0 256 0 0

Sand 2 0 0 0 382 0

Water 3 0 0 5 2 374
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Table 3.14: Average rounded confusion matrix for color texture image classification using MDM.

Bark Fabric Food Metal Sand Water

Bark 248 0 0 3 3 2

Fabric 0 246 5 0 3 2

Food 0 4 376 4 0 0

Metal 0 0 0 252 1 3

Sand 4 0 0 0 377 3

Water 2 0 0 2 3 377

Table 3.15: Average rounded confusion matrix for color texture image classification using MM.

Bark Fabric Food Metal Sand Water

Bark 247 0 0 3 4 2

Fabric 0 246 5 0 3 2

Food 0 9 371 4 0 0

Metal 0 0 0 252 1 3

Sand 4 0 0 0 377 3

Water 2 0 0 5 5 372

Table 3.16: Average error rates (± standard deviation) for the color texture images classification problem using differ-

ent approaches.

with color without color

MGDM 1.45% (±0.13) 2.18% (±0.19)

MDM 2.29% (±0.41) 2.60 % (±0.43)

MM 2.86% (±0.38) 3.08% (±0.40)

SVM+MGDM 1.04% (±0.17) 2.03% (±0.18)
SVM+MDM 1.56% (±0.35) 2.34% (±0.39)

SVM+MM 1.92% (±0.39) 2.85% (±0.37)

SVM+RBFχ2 1.87% (±0.24) 2.68% (±0.27)

SVM+Polynomial 2.93% (±0.22) 3.41%(±0.26)

SVM+RBFGaussian 2.98% (±0.25) 3.52% (±0.31)

In the second experiment, we investigate the performance when color texture features are com-

bined with visual words. Table 3.17 shows the classification results using different approaches. By

comparing the results in this table and the performances presented in the previous sections (refer
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Table 3.2 and 3.12 to made a comparison), we can see clearly that by combining color texture

features and visual words the performance is further upgraded.

Table 3.17: Average error rates (± standard deviation) for different classification problems using different approaches

by combining color texture and visual words.

Out vs. In City vs. Landscape Mountain vs. Forest 4 classes

MGDM 5.24% (±0.77) 6.53% (±0.88) 8.13% (±0.93) 8.62% (±0.79)

MDM 7.29% (±0.79) 9.81% (±0.81) 10.07% (±0.89) 11.24% (±0.85)

MM 9.16% (±0.80) 11.12% (±0.83) 12.54% (±0.85) 12.22% (±0.88)

SVM+MGDM 4.21% (±0.68) 5.13% (±0.69) 7.26% (±0.71) 7.41% (±0.73)
SVM+MDM 6.12% (±0.70) 7.20% (±0.77) 9.33% (±0.81) 10.11% (±0.80)

SVM+MM 7.98% (±0.91) 9.88% (±0.92) 10.84% (±0.92) 11.19% (±0.85)

SVM+RBFχ2 7.68% (±0.80) 9.99% (±0.81) 11.81% (±0.83) 12.77% (±0.78)

SVM+Polynomial 9.13% (±0.83) 10.44%(±0.86) 12.53%(±0.85) 12.05%(±0.84)

SVM+RBFGaussian 9.93% (±0.95) 10.90% (±0.94) 12.93% (±0.97) 12.49% (±0.89)

We have also investigated the effect of feature selection in this experiment. The main goal is to

study if feature selection can improve classification based on discrete visual features. Indeed, some

of the features may be irrelevant and/or redundant and then may affect negatively the classification

accuracy. In this application, we have studied the effect of some feature selection methods that

have been previously used in the case of text categorization. The feature selection criteria that we

have considered are document frequency (DF), χ2 statistics (CHI), mutual information (MI), and

pointwise mutual information (PMI) (see [129], for instance, for more details about these criteria).

In particular, for DF we have adopted two selection criteria: DFmax which removes features above

a certain threshold and DFmin which removes features below a threshold. Figures 3.6, 3.7, 3.8 and

3.9 summarizes the classification results for the different categorization problems. These figures

show that feature selection improves the classification accuracy which is consistent with the results

obtained in the case of text categorization [129]. We can see also that χ2 statistics, MI, and PMI

criteria reached the best results.
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Figure 3.6: Feature Selection for the indoor vs. outdoor categorization problem.

Figure 3.7: Feature Selection for the city vs. landscape categorization problem.
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Figure 3.8: Feature Selection for the mountain vs. forest categorization problem.

Figure 3.9: Feature Selection for the 4 classes categorization problem.
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CHAPTER 4

Conclusions

In this thesis, first we have introduced a novel statistical learning framework for discrete visual

features modeling using a mixture model based on both multinomial and generalized Dirichlet

mixture distributions as a prior. Second, the proposed model has been suggested as parametric

basis for SVM within a hybrid generative/discriminative framework. Improvement in classification

accuracy due to the new kernel is demonstrated through series of experiments.

Learning the parameters of this framework involves the computation of special functions which

are intractable and can deteriorate the estimatation accuracy. This drawback motivated the devel-

opment of a novel learning approach which attempts to use the LOO likelihood technique and

shown to be more accurate. Effectiveness of the proposed method is demonstrated by applying it

to several challenging problems such as scene classifications that involve discrete visual features

modeling using visual words, also an accurate and stable statistical representation for color tex-

ture is developed. We have also proposed a hybrid generative/descriminative framework, that has

shown encouraging results, by using fisher kernel from our generative model for SVM.

Our experiments were restricted to multimedia contents analysis for image processing and

computer vision applications. As future work, the excellent performance of the proposed approach

assures that it can also be extended to a broad range of other domains that handle features not only

from discrete-valued variables but also from a mixture of continuous and discrete-valued variables

which are very common in practice.
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APPENDIX A

Proofs of Equations 2.12 and 2.13

By computing the first derivatives of the LOO log-likelihood, we obtain
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APPENDIX B

Proofs of Equations 2.14(a-c)

By observing that the first derivatives of Likv w.r.t αkv′ and βkv′ , where v �= v′ can be neglected
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And
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