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Altered growth-mediated signaling in the hearts of NFATc2 null mice 

Patrick Sin-Chan 
An abnormality associated with all forms of cardiovascular diseases is cardiac 

hypertrophy, which is an overall increase in heart mass without improved contractile 

function. Prolonged cardiac hypertrophy eventually leads to heart failure, in which the 

heart can no longer supply adequate amounts of blood to meet the body’s hemodynamic 

demands, resulting in cardiac dilatation, thinning of the myocardial walls, decrease in 

contractile effectiveness, organ failure and death. 

The Ca2+- dependent phosphatase, calcineurin (Cn) and its downstream target, 

nuclear factor of activated T-cells (NFAT), are major intracellular modulators of cardiac 

hypertrophy. In young 1-2 month old mice, the NFATc2 transcription factor has been 

identified as the major NFAT isoform responsible for Cn-mediated cardiac hypertrophy. 

We observed that adult 6-9 month old NFATc2-/- mice were more prone to sudden death, 

suggesting that the loss of NFATc2 was detrimental at later stages of life. Using 

histology, we showed that adult NFATc2-/- mice display left ventricular dilatation and 

thinning of the ventricular walls, characteristic of failure. Western blot and 

immunofluorescene results showed that NFATc2-/- mice displayed alterations in the 

signaling of growth pathways, which predisposed these mice to heart failure. 

Furthermore, angiotensin II-induced cardiac growth revealed that the hearts of NFATc2-

/- mice displayed changes in contractile protein gene expression and an inactivation of 

both transcriptional and translational mechanisms. Our collective findings propose an 

uncharacterized role of NFATc2 for normal heart function and biochemical signaling in 

adult mice, providing further evidence that normal Cn-signaling is crucial in the heart. 
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Chapter 1: Literature Review 

The structure of cardiac muscle cells 

The capacity for cells to utilize biochemical energy to generate both mechanical 

force and movement of the human body is a dominant feature found in muscles. There 

exist three distinct categories of muscle tissue, each differing by specific structural and 

functional properties. These categories include smooth muscle, skeletal muscle and 

cardiac muscle. Smooth muscles are involuntarily contracting, non-striated muscles that 

surround the inside walls of hollow organs such as the urinary bladder, reproductive 

organs, and both the gastrointestinal and respiratory tracts. Its contraction enables and 

regulates the progression of liquid content, such as food, urine and blood, along the 

internal passageways (1). Skeletal muscles are voluntarily contracting, striated muscles 

that attach to bones of the skeleton. The contractions of skeletal muscles are primarily 

responsible for the movement of the skeleton, but also have roles in heat production and 

protection of internal organs (1). Cardiac muscles are an involuntarily contracting, 

striated muscle found exclusively in the walls of the heart, more specifically in the 

myocardium. Contractions of cardiac muscles propel oxygenated blood into the 

circulatory system to deliver oxygen and nutrients to the body and also regulate blood 

pressure (1). 

Cardiac muscle tissue is composed of a network of individual cardiac muscle 

cells, called cardiomyocytes. Cardiomyocytes are small in size, averaging 10-20 µm in 

diameter and 50-100 µm in length, have a single centrally positioned nucleus and connect  
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Figure 1.1: A schematic representation of the structure of cardiomyocytes. Adapted from 
Martini, F. et al. (2009)  (1).  

 

to adjacent cells in a branched manner through specialized sites known as intercalated 

discs (1). Two structures that are found within the intercalated discs are desmosomes and 

gap junctions. Desmosomes are specialized structures involved in cell-to-cell adhesion 

and gap junctions are intercellular channels that connect the cytoplasms of adjacent cells, 

allowing the free passage of molecules, ions and electrical signals.  

Within the cytoplasm of striated muscle cells are long, cylindrical organelles 

termed myofibrils [Figure 1.1]. With a diameter of 1 to 2 µm and numbering between 

hundreds to thousands in a cell, myofibrils are enveloped and grouped together by 

connective tissue called the fasciculus, which forms bundles of myofibrils that span the 
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length of the cell (2). Individual myofibrils can be further divided into two types of 

contractile filaments: thin filaments and thick filaments [Figure 1.2]. These filaments are 

composed primarily of actin and myosin proteins. The thin and thick filaments are 

aligned in a manner where they form repeating structural units along the myofibril. 

Among these structures is the sarcomere, which is a Ca2+-dependent contractile unit 

responsible for muscle contraction and relaxation (2). An increase in cytoplasmic Ca2+ 

influx causes the thin and thick filaments to overlap each other, causing a shortening of 

the sarcomere, leading to a muscle contraction. Alternatively, a decrease in cytoplasmic 

Ca2+ levels causes the thin and thick filaments to pull away from each other, triggering 

muscle relaxation. The specific arrangement of the thin and thick myofilaments is 

responsible for the striated appearance of both skeletal and cardiac muscle tissue. 

 

Figure 1.2: A detailed view of the muscle cell myofibrils. Taken from Marieb, E. et al. 
(2007) (3).   

 

Electrical stimuli, called action potentials, are required for striated muscle cell 

contraction. In skeletal muscles, action potentials are derived from neurons in the brain 

and spinal cord that transmit the signal through the nervous system and innervate muscle 

fibers, causing contraction. However, unlike skeletal muscles, the contraction of cardiac 



 

 
 

4 

muscles occurs without neural stimulation, a property called automaticity (1). This is 

because the heart contains pacemaker cells, which are specialized cells that have no 

contractile function; rather having the ability to initiate and conduct action potentials to 

neighboring cardiomyocytes. Cells which have pacemaker activity constitute 1% of 

cardiac muscle cells, whereas the other 99% are contractile cells (4). The cardiac action 

potential propagates across cardiomyocytes through gap junctions, allowing the cells to 

contract in tandem, which enables the heart to contract as one muscle.  

The conversion of an electrical stimulus into a mechanical response is performed 

through a physiological process known as excitation-contracting coupling (ECC). This 

phenomenon has a critical role in muscle cells as it allows a propagating action potential 

to cause shortening of the sarcomere, leading to muscle cell contraction. When action 

potentials are produced by pacemaker cells, they conduct across the heart by traveling 

along the length of the myofibril on the muscle sarcolemma. An action potential will 

transmit on the sarcolemma until it reaches a transverse-tubule (T-tubule). T-tubules are 

deep invaginations of the sarcolemma that contact the cisternae of the sarcoplasmic 

reticulum (SR), an organelle that functions as a Ca2+ storing body. Resting within the T-

tubules are many ion transporters such as voltage-gated L-type Ca2+ channels and 

Na+/Ca2+ exchangers (5). Upon penetrating the T-tubules, the action potential will open 

and activate these Ca2+-transporters, prompting the entry of extracellular Ca2+ into 

specific microdomains in the cytosol and cause a net depolarization of the membrane 

voltage potential (6). An elevation of cytoplasmic Ca2+ levels will trigger the opening of 

ryanodine receptors (RyR), which are intracellular Ca2+ channels present on the 

membrane of the SR, allowing stored Ca2+ to exit the SR and enter the cytosol. The 
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mechanism of how Ca2+ ions trigger Ca2+ release from the SR was identified by several 

groups in the 1960s, and appropriately termed ‘Ca2+-induced- Ca2+-release’ (7,8).  

An overall increase in intracellular Ca2+ levels causes Ca2+ to bind and induce a 

conformational change in Troponin C, a protein present on actin filaments. This 

conformational change causes a displacement of Tropomyosin, which prevents the 

interaction of myosin protein with actin filaments, thereby allowing myosin to contact 

actin, promoting contraction of the sarcomere. Alternatively, Ca2+ sequestration from 

myofilaments and cytoplasmic depletion prompts a relaxation of the sarcomere. Ca2+ 

depletion from the cytoplasm occurs either by re-entering the lumen of organelles, such 

as the SR and mitochondria, or cellular export by Ca2+ pumps and Na+/Ca2+ exchangers 

on the sarcolemma (5). An overview of the ECC process is summarized below [Figure 

1.3].  

 

Figure 1.3: Overview of muscle cell excitation-contraction coupling process. Adapted 
from Bers, D. (2002) (5).   
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 The efficiency of muscle contraction is partly depicted by the type of myosin 

heavy chain (MyHC) that the cell expresses. MyHC are enzymes, found on the head of 

myosin proteins, which catalyze the hydrolysis of ATP. The rate at which MyHC can 

hydrolyze ATP ultimately defines the speed at which the myofilaments contract, as well 

as the overall energy efficiency of the cell.  In cardiomyocytes, two types of MyHC 

proteins are expressed: α-MyHC and β-MyHC. Table 1.1 represents the distinguishing 

features of the cells that express either α-MyHC or β-MyHC: 

Table 1.1: Characterization of cardiac myosin heavy chains in rodents. Taken from 
Sieck, G. et al. (2001)  (9). 

  Located in ATP source ATPase activity Contraction 
velocity 

Rate of fatigue 

α-MyHC Adult hearts Glycolysis Fast Fast Fast 

β-MyHC Fetal hearts Oxidative 
phosphorylation 

Slow Slow Slow 

 

Similar to skeletal muscles, cardiomyocytes are categorized into two distinct 

classes, based on the type of MyHC that is predominantly expressed. The two categories 

are the glycolytic, less energy efficient cells and the oxidative, more energy efficient 

cells. Cardiomyocytes that mainly express α-MyHC are found in adult hearts, contract in 

a more energy inefficient manner and are quicker to fatigue. In contrast, cardiomyocytes 

that express more β-MyHC are present in fetal and developing hearts, have a more energy 

efficient contraction and are more resistant to fatigue. Although hearts expressing mainly 

α-MyHC are have a higher rate of contraction, those expressing mainly β-MyHC contract 

in a more energy efficient manner (10-12). The contractile velocity of the human heart is 

faster at birth than in adulthood, whereas the opposite is true for rodents. This is because 
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the primary MyHC isoform expressed in human hearts is β-MyHC (>95%), whereas in  

rodent hearts is α-MyHC (>90%) (10). Moreover, β-MyHC is reactivated in 

pathophysiological cardiac growth, associated with the majority of cardiovascular 

diseases, in which adult hearts hypertrophies to a pathological state, leading to contractile 

defects, heart failure and death (13). 

 

Heart failure and pathological cardiac hypertrophy 

Cardiovascular diseases are disorders that prevent the proper functioning of the 

heart and blood vessels, causing abnormalities of the cardiovascular system, which lead 

to defects in the brain, kidneys, lungs and other parts of the body (14). According to the 

World Health Organization, cardiovascular diseases accounted for 29% of global deaths 

in 2004, making it one of the leading causes of death in the world (15). Furthermore, with 

an aging population, the number of patients diagnosed with heart disease in America is 

expected to double within the next 30 years, from 5 million to 10 million (16). In Canada, 

this disease was responsible for 31% of total deaths in 2005 (17).  

An abnormality associated with all forms of cardiovascular diseases is the 

pathological enlargement of the left ventricle of the heart, a characteristic associated with 

a disease known as cardiac hypertrophy. Cardiac hypertrophy is induced by the release of 

hormones, cytokines, chemokines and peptide growth factors, which act on 

cardiomyocytes in an endocrine, paracrine and autocrine manner (18). The release of 
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these factors occurs in response to increased cardiac workload, myocardial injury or 

defects in the contractility of cardiomyocytes (19). 

 The initial events resulting in cardiac hypertrophy are an increased size and cell 

volume of cardiomyocytes, which are required to sustain the increased cardiac workload 

demanded by the hypertrophied heart through a process known as compensatory 

hypertrophy. As the disease progresses, the hypertrophied heart can no longer uphold the 

increased strain required to meet the body’s hemodynamic demands and is subjected to 

pathophysiological remodeling such as dilatation of the left ventricular inner chamber, 

thinning of the heart walls, and an overall decrease in heart contractility and function, 

resulting to heart failure, cardiac arrhythmias and sudden death (20).  

The detrimental consequences on cardiomyocytes as a result of pathological 

cardiac hypertrophy are not present during physiological heart growth, which occurs 

during pregnancy, childhood development, and aerobic training (21). A characteristic of 

pathologically hypertrophied hearts is cellular disarray, which is a disorganization of the 

proper alignment of cardiomyocytes. Misaligned cardiomyocytes disrupt the conduction 

of action potentials across cells, leading to compromised intracellular Ca2+ kinetics and 

decreased shortening of the muscle sarcomere, which compromises the contractitility and 

functionality of the heart. 

A common end stage following cardiac hypertrophy is heart failure, which is 

defined as defects in “cardiomyocyte structure, function, rhythm or conduction” that 

prevents the heart from providing the necessary cardiac output required by the body (22). 

Individuals living with heart failure suffer from severe coughing, shortness of breath, 
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peripheral edema, and chronic venous congestions, all causing decreased exercise 

tolerance, physical and mental health. The most common cause of heart failure is 

ventricular dysfunction, caused by myocardial infarction and hypertension or both. In 

addition, valve diseases, dilated cardiomyopathies and alcoholic cardiomyopathies are 

inducers of heart failure (22). As heart failure progresses, the heart and the left ventricle 

undergo remodeling, resulting in apoptosis or damage to existing cardiomyocytes. 

Molecular, structural and functional changes in the heart due to failure are responsible for 

disrupting action potential conduction, contractile defects, and are detrimental to the 

function of the lungs, blood vessels, kidneys, muscles, liver and other vital organs 

(22,23).  

In the Western world, cases of heart failure are on the rise. They are the fastest 

spreading with highest mortality rate, and leading cause of hospitalization in the elderly 

over the past decade (18). According to epidemiological studies, between 1-2% of adults 

have heart failure, although it mainly affects the elderly, where 6–10% of individuals 

over the age of 65 years develop this disorder (22). Heart failure is as deadly as it is 

disabling. Studies report that approximately 30–40% of patients die within a year of 

diagnosis and 60–70% die within 5 years, most from deteriorating heart function or from 

sudden death (22,24-26). The molecular signaling pathways, responsible for pathological 

cardiac hypertrophy and heart failure, are being extensively studied with the hopes of 

developing therapies to treat and prevent these diseases. 
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The Calcineurin-NFAT signaling pathway 

 The availability of intracellular Ca2+ in mammalian cells is critical for their 

existence and proper function. In addition to its role in muscle cell electrophysiology and 

contraction, Ca2+ acts as a secondary messenger in many signal transduction pathways, 

involved in physiological processes such as fertilization, memory, apoptosis, membrane 

trafficking and cell division (27). Furthermore, at the molecular level, Ca2+ has been 

implicated in regulation of gene transcription, DNA replication, DNA repair and both 

protein synthesis and degradation (28).   

 A common question in muscle cell biology is with its numerous downstream 

targets, how does Ca2+ specify and activate a particular signaling pathway? It is generally 

understood that Ca2+ influxes into the cytoplasm through Ca2+ channels on the 

sarcolemma as waves of Ca2+. In the 1990s, researchers identified that depending on the 

amplitude and frequency at which Ca2+ waves penetrate the cell, different Ca2+-dependent 

signaling pathways are activated, which also affects gene expression and cell 

differentiation (29-31). However, the exact molecular mechanisms in which specific 

Ca2+-dependent pathways in contracting cardiomyocytes are regulated remains disputed 

due to the highly specialized rhythmic cycling of Ca2+ involved in the heart’s ECC. 

Houser et al. (32) have suggested the existence of Ca2+ microdomains in the cytoplasm, 

which are relatively independent of the Ca2+ involved in the ECC. Within these 

microdomains, Ca2+ is locally regulated and can activate protein signaling pathways in 

that particular region.  
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 Many proteins that require Ca2+ to be active cannot readily bind Ca2+, and thus 

use calmodulin (CaM), a high affinity Ca2+-binding protein, as a Ca2+ sensor and signal 

transducer. Expressed in all eukaryotic cells, CaM is a 17 kDa protein composed of four 

EF-hand motifs, each capable of binding a single Ca2+ ion. The affinity by which Ca2+ 

binds CaM depends on changes in intracellular Ca2+ concentrations. When cytoplasmic 

Ca2+ levels are low, CaM exists in a closed conformation, where the EF-hand motifs are 

packed together, masking the Ca2+ binding sites. Alternatively, when intracellular Ca2+ 

levels are high, Ca2+ ions bind to the EF-hand motifs on CaM, causing a conformational 

change that allows Ca2+ to bind more readily to the other motifs, allowing CaM to attain 

an open configuration (33). Because CaM is a small, flexible molecule with numerous 

targets, such conformational changes are required to expose specific hydrophobic regions 

on each domain, which allows the Ca2+/CaM complex to bind and activate specific 

proteins (34).  

 One of the most recognized signaling pathways that requires the Ca2+/CaM 

complex to be activated is the Calcineurin - Nuclear Factor of Activated T-cells cascade. 

Calcineurin (Cn), also referred to as protein phosphatase 2B (PP2B), is a Ca2+-dependent 

serine/threonine phosphatase that was first discovered in 1979 as a CaM binding protein 

in brain extracts (35). Further research by Schreiber’s group (36) identified that Cn 

played a prominent role in the immune system, where the addition of immunosuppressive 

drugs, cyclosporine A (CsA) and FK506, decreased Cn’s activity. Cn is ubiquitously 

expressed in all cells and the gene that encodes the Cn protein is conserved from yeast to 

mammals, suggesting a common mode of regulation (34,37).  
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 Once active, Cn can de-phosphorylate a number of transcription factors such as 

myocyte enhancer factor 2 (MEF2), nuclear factor kappa-light-chain-enhancer of 

activated B cells (NFκB) and nuclear factor of activated T-cells (NFAT) (38-41). In 

addition to transcription factors, Cn has been identified as a direct regulator of the pro-

apoptotic factor, Bcl-2 (42). The most characterized downstream targets of Cn is the 

family of NFAT transcription factors. In the heart, the role of the Cn-NFAT signaling 

pathway in mediating pathological cardiac hypertrophy in vitro and in vivo has been 

extensively studied (43-48). Once de-phosphorylated, NFAT transcription factors 

translocate to the nucleus and dimerize with other transcription factors to reactivate 

cardiac fetal genes, leading to hypertrophy of the adult heart [Figure 1.4]. 

 

Figure 1.4: The Cn-NFAT signaling in pathological cardiac hypertrophy. Taken from 
Crabtree, G. et al. (2002) (49). Cytoplasmic Ca2+ interacts with Calmodulim (CaM) and 
the Ca2+/CaM complex activates calcineurin (Cn). Once active, Cn de-phosphorylates 
nuclear factor of activated T-cell (NFAT) transcription factors, mediating their nuclear 
translocation in which NFAT can interact with other transcription factors, such as 
GATA-4 and MEF2, to induce the transcription of cardiac fetal genes. The regulatory 
kinase, Glycogen-Synthase Kinase 3 (GSK3), promotes NFAT nuclear export. 
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The crystal structure of calcineurin 

 The structure of human Cn was first solved in 1995, by Villafranca’s group (50). 

Although sharing similar sequence with other serine/threonine protein phosphatases, the 

structure of Cn is unique due to its requirement of Ca2+ to be activated (51-53).  From its 

structure, it was discovered that Cn exists as a heterodimer, consisting of two subunits: 

the 59 kDa catalytic subunit, calcineurin A (CnA), and the 19 kDa regulatory subunit, 

calcineurin B (CnB) (50). 

 The structure of CnA is comprised of two domains: a catalytic region, found on 

the N-terminus, and a regulatory domain, found on the C-terminal region (34). The 

catalytic domain is comprised of “two β-sheets flanked by a mixed α/β structure on one 

side and α-helices on another side” (54). The regulatory domain consists of three 

subdomains: a CnB binding domain, a CaM binding domain and an autoinhibitory  

 

Figure 1.5: The crystal structure and domains of human Cn. Taken from the RCSB 
Protein Data Bank (55). 
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domain (AI) (54,56). Alternatively, the structure of CnB shares 35% sequence identity 

with CaM and contains four EF-hand motifs, allowing it to bind up to four Ca2+ ions in a 

similar mechanism as CaM (51,57). The structure of the human Cn heterodimer from the 

RCSB Protein Data Bank is shown [Figure 1.5]. 

In non-stimulated muscle cells, Cn is present in its inactive conformation in the 

cytoplasm, where the autoinhibitory domain sterically blocks CnA's catalytic domain, 

rendering the phosphatase inactive. Upon stimulation, cytoplasmic Ca2+ will bind CnB, 

causing a conformational change, which exposes the CaM binding domain on CnA. Once 

the Ca2+/CaM complex docks onto its respective binding domain, another conformation 

change occurs which displaces the autoinhibitory domain from the catalytic domain, 

enabling the enzyme to be active.  

The crystal structure of full length human Cn was solved with a resolution of 

2.1Ǻ. The globular structure of CnA consists of 521 residues, where residues 14-342 

form the catalytic domain and residues 343-373 form an extended amphipathic α-helical 

region that interacts with hydrophobic residues within the CnB binding cleft (50). 

Residues 1-13, 374-468 and 487-521 are not visible in the crystal structure, as they are 

presumed to exist in random conformation (54). The AI domain is represented by a 

segment of residues 469-486, which lies over the substrate-binding cleft on the C-

terminus of CnA.  Residues 469-481 of the AI domain form two short α-helical regions, 

whereas residues 482-486 are in the extended conformation of the AI (54). The residues 

of the AI domain that interact with the substrate-binding cleft of CnA are conserved and 

those that have the strongest interactions are Glu481-Arg-Met-Pro484, where Glu481 

hydrogen-bonds with water molecules bound to metal ions in Cn’s active site (50).  
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 The active site of Cn is composed of two layers of  β-sheets and nine α-helices 

(54). Within the active site are two metal ions, Fe3+ and Zn2+, which serve as Cn’s 

dinuclear metal cofactors. Separated by 3.0 Ǻ, these metal ions are responsible for 

interacting with residues and solvent molecules to maintain the stability of Cn’s protein 

structure, as depicted [Figure 1.6]. 

 

Figure 1.6: Interaction of Fe3+/Zn2+ ions with residues in CnA's active site. Taken from 
Ke, H. et al. (2003) (54). 

 

The Zn2+ metal ion interacts with the side chains of Asp118, Asn150, His199, 

His281, a water molecule and a phosphate oxygen. Alternatively, the Fe3+ ion interacts 

with the side chains of Asp90, His92, Asp118, a water molecule and a phosphate oxygen. 

These interactions stabilize the active site of CnA in an octahedral manner.  Also found 

within or neighboring the active site are Arg112, His151, His155, Tyr159, Phe160, 

Trp232, Asp234, Arg254, Phe306 and Tyr311, which are involved in the binding of a Cn 

substrate (54). 
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The structure and regulation of NFAT proteins 

 NFAT transcription factors were first identified by the Crabtree group (58) where, 

similar to Cn, NFAT played an important role in the regulation of early T-cell activation 

genes. Since its discovery, researchers have provided evidence that the role of NFAT 

proteins was not restricted to T-cells, having been implicated in the “central nervous 

system, blood vessels, heart, kidney, bone, skeletal muscle and haematopoietic stem 

cells” (49,59-62).  

  NFAT proteins are part of the Rel-family of transcription factors. The molecular 

mass of NFAT ranges from 70-200 kDa, which is due to alternative splicing of genes 

resulting in varying protein sizes and differential phosphorylation states (63). The 

primary structure of NFAT consists of a moderately conserved N-homology region 

(NHR), a conserved Rel-homology region (RHR) and a non-conserved C-terminal 

domain (CTD) [Figure 1.7].  

 

Figure 1.7: The primary structure of NFAT proteins. Taken from Macian, F. (2005) (59). 

 

Firstly, the NHR (residues 1-407) contains a transactivation domain (TAD), a Cn 

docking site, a nuclear localization signal (NLS), serine-rich regions (SRR) and repeating 
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Ser-Pro-X-X motifs (SP), where X denotes any amino acid. The TAD is required for 

NFAT to bind the promoter region of genes to initiate transcriptional events. The Cn 

docking domain contains a SPRIEIT sequence, a variant of the PxIxIT motif found on Cn 

regulators, which allows Cn to bind to NFAT and de-phosphorylate serine residues, 

mediating the nuclear shuttling of NFAT. A nuclear export sequence (NES) was detected 

in NFATc1, however the exact location of the NES in the NFAT primary structure is 

unknown because its sequence is not conserved among NFAT family members (64,65).  

Secondly, the RHR (residues 408-677), which is conserved among all Rel 

proteins, confers a shared DNA binding specificity (66). The C-terminus of the RHR 

contains a DNA binding motif, which permits Rel-proteins to bind the 5’-GGAAAAT-3’ 

consensus sequence (58). The N-terminus of the RHR contains a domain that allows 

NFAT to interact with each other as monomers or dimers through the RHR and other 

transcription factors in the nucleus. Such molecular partners include the leucine zipper 

protein activator protein-1 (AP-1) Fos and Jun, the Zn2+-finger protein GATA-4, the 

MCM1, Agamous, Deficiens, SRF (MADS) -box transcription factor myocytes enhancer 

factor-2 (MEF2) and many others (43,49,60,66).   

Lastly, although the exact role of the CTD (residues 678-928) remains ill defined, 

due to the differences in the length of the CTD between NFAT isoforms, it is possible 

that the CTD is responsible for the different transcriptional activity of the NFAT 

isoforms, as shown by several groups (67,68).  

NFAT transcription factors are ubiquitously expressed and consist of five 

isoforms: NFATc1 (a.k.a. NFATc, NFAT2), NFATc2 (a.k.a. NFATp, NFAT1), NFATc3 
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(a.k.a. NFATx, NFAT4), NFATc4 (a.k.a. NFAT3) and NFAT5 (a.k.a. tonicity-responsive 

enhancer-binding protein or TonEBP) (69). Of the five NFAT proteins, only NFATc1, 

NFATc2, NFATc3 and NFATc4 are regulated by Ca2+-Cn signaling and have known 

roles in skeletal and cardiac muscles (63,68). NFAT5 cannot interact with Cn due to the 

absence of a SPRIEIT domain and is, therefore, insensitive to Ca2+-Cn signaling (70). 

Rather, NFAT5 is regulated by osmotic stress and is known to control the expression of 

cytokines, such as tumor-necrosis factor (TNF) and lymphotoxin-β, in lymphocytes 

(59,71). Due to NFAT5’s insensitivity to Cn and its unclear role in muscle cells, the 

remainder of this thesis will focus on the Ca2+-Cn regulated NFAT isoforms: NFATc1, 

NFATc2, NFATc3 and NFATc4.  

 

The regulation of NFAT proteins 

The cellular localization of NFAT proteins depend on the phosphorylation state of 

approximately 14 serine residues on the NHR. Okamura et al. (72) showed that of these 

residues, 13 phosphoserines are targeted by Cn and are located in motifs SRR1, SP2 and 

SP3. Upon de-phosphorylation, the NLS sequence of NFAT is exposed and the NES is 

masked, prompting nuclear entry. NFAT kinases are regulators of NFAT transcription 

factors, which can interact with NFAT and reversibly phosphorylate the same serine 

residues that are targeted by Cn. Known NFAT kinases include Casein Kinase (CK), 

Glycogen-Synthase 3-β (GSK3-β), p38 and Janus-N-Terminal Kinase (JNK) (73-76).  
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Upon re-phosphorylation, the NES sequence is re-exposed whereas the NLS 

sequence is hidden, prompting nuclear export and cytoplasmic retention of NFAT (72).  

These kinases can either be classified as 1) maintenance kinases, which phosphorylate 

NFAT in the cytosol to prevent nuclear import or 2) export kinases, which target NFAT 

in the nucleus to promote nuclear export. Each kinase can phosphorylate serine residues 

on specific motifs. CK acts as both an export and maintenance kinase on SRR1 of 

NFATc2 (77). GSK3-β functions as an export kinase on both SP2 and SP3 of NFATc1 

and SP2 on NFATc2 (59,78). The mitogen activated protein kinase (MAPK) family 

consists of p38, JNK and Extracellular-Regulated-Signal Kinases (ERK) and can 

 

Figure 1.8: The regulation of Cn-NFAT signaling. Adapted from Fiedler, B. et al. (2004) 
(79). Regulatory kinases, located in the cytoplasm and nucleus, regulate the cellular 
distribution of NFAT and GATA transcription factors. Glycogen-Synthase Kinase 3 
(GSK3), Casein Kinase (CK), p38 and JUN-N-terminal Kinase (JNK) promote NFAT 
nuclear export, where as GSK3 mediates GATA export. Alternatively, Extracellular-
Regulated-Signal Kinase (ERK) and p38 increase GATA DNA binding affinity. 
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phosphorylate the first serine of SRR1 on different NFAT isoforms. JNK phosphorylates 

NFATc1, whereas p38 targets NFATc2 (75,76). CK-1 may be responsible for 

phosphorylating the remaining serines on SRR1 (59). Although a cell may have the 

potential to translate the different NFAT isoforms, depending on which NFAT kinase is 

expressed, only certain NFATs may be nuclear localized. An overview of the regulation 

of Cn-NFAT signaling by the regulatory kinases is shown [Figure 1.8]. 

 

Calcineurin-NFAT signaling in heart disease 

 Cn-NFAT signaling is described as a multifunctional regulator, where its function 

depends on the cell type in which this pathway is active. In the brain, Cn-NFAT signaling 

mediates numerous processes, which include memory, brain strokes, ischemic injury, 

Parkinson and Alzheimer’s diseases and the regulation of the cAMP Response Element-

Binding (CREB) transcription factor (80). In the lungs, Cn-NFAT signaling has been 

implicated in perinatal lung maturation and function, and in regulating genes involved in 

the homeostasis of pulmonary surfactant, which is required for proper breathing (81). In 

skeletal muscles, this pathway is required for functional-overload induced skeletal muscle 

hypertrophy and for mediating skeletal muscle-fiber type conversions from fast muscle 

fiber type to slow muscle fiber type (39,82). In the cardiovascular system, Cn is required 

for the early development of the heart, specifically the cardiac septum and valves (83,84).  

During heart disease, Cn-NFAT signaling promotes the reactivation of cardiac fetal 

genes, which are responsible for cardiac growth during development. The reactivation of 
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these genes in the adult heart is responsible for the pathological growth of the heart, and 

not normal physiological growth (85).  

 In 1998, Molkentin et al. (43) first reported the novel role that Cn-NFAT 

signaling played in mediating pathological cardiac hypertrophy. Among the major 

findings of their report was that Cn induces the de-phosphorylation of NFAT3 

(NFATc4), prompting its nuclear entry and allow NFAT3 to interact with the GATA-4 

transcription factor, leading to cardiac hypertrophy. In addition, cultured cardiomyocytes, 

treated with Cn inhibitors CsA and FK-506, blocked angiotensin II and phenylephrine-

induced cardiac hypertrophy. To support their in vitro findings, transgenic mice that 

expressed a cardiac-specific constitutively active form of CnA (CnA*), in which the C-

terminal autoinhibitory domain was cleaved, were generated (86). The hearts of CnA* 

overexpressing transgenic mice, compared to the hearts of wild-type counterparts, display 

a 2-to-3 fold increase in heart weight-to-body weight ratio, a thickening of the left 

ventricular wall and interventricular septum, a 2-fold increase in cross-sectional area of 

cardiomyocytes and extensive fibrosis. Furthermore, CnA* overexpressing mice have 

increased susceptibility to sudden death, mimicking the effects of heart failure in humans. 

Upon treatment with the Cn inhibitor, CsA, the hearts of CnA* transgenic mice were of 

normal size (43). 

Many genes and proteins that are reactivated in response to heart disease have 

prominent functions in embryonic and fetal heart development. For example, cardiac fetal 

genes are active during the physiological growth in developing hearts. This family of 

genes consists of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), α-

skeletal actin, β-myosin heavy chain (β-MyHC), and many others (87). When the heart 
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has fully matured into an adult heart, the expression of these genes becomes dormant. 

During heart disease, hypertrophic stimuli reactivate the expression of these genes in the 

adult heart, which enables the heart to grow to a pathological state (88). 

One of the most studied families of transcription factors that interact with NFAT 

to initiate cardiac hypertrophy are GATA proteins. GATA transcription factors consist of 

two conserved zinc fingers that are required to bind to the consensus DNA sequence 5’-

(A/T)GATA(A/G)-3’, as well as domains that allow GATA to interact with 

transcriptional cofactors (87,89,90). Of the six members of the GATA family (GATA-1 

to GATA-6), GATA-4, GATA-5 and GATA-6 are expressed in the heart (91). Among 

the GATA proteins expressed in the heart, GATA-4 is associated with embryonic 

cardiogenesis, such as heart tube formation, and pathological growth of the adult heart 

(92,93). In addition, GATA-4 is a known regulator of the expression of cardiac structural 

genes during development (94-96). 

 GATA-4 gene targeted mice are embryonic lethal at E7-9.5 due to structural and 

functional defects of the heart (92). Alternatively, cultured cardiomyocyte overexpression 

of GATA-4 causes a 2-fold increase in cell surface area, whereas GATA-4 

overexpressing transgenic mice have increased heart-weight-to-body weight ratio, 

cardiomyopathy features of the cells and upregulation in the expression of cardiac fetal 

genes (97).  

The regulation of GATA-4 occurs post-translationally, where such modifications 

affect its DNA binding ability, transcriptional activity and cellular localization (93). A 

number of chemical stimuli that induce cardiac hypertrophy have been associated with 
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the phosphorylation of GATA-4, which increases both its DNA binding and 

transcriptional activity (87,93). Molkentin’s group (98,99) identified that phosphorylation 

of Ser105 on GATA-4 by the ERK1/2 and p38 MAPK was responsible for GATA-4 

increased DNA binding affinity and transactivation during heart failure. Another kinase 

that targets GATA-4 is GSK3-β, a known negative regulator of cardiac hypertrophy 

(100). GSK3-β-mediated phosphorylation of GATA-4 prompts its export from the 

nucleus, rescuing Cn-mediated cardiac hypertrophy (101).  

 A second family of transcription factors that is reactivated during heart disease is 

the myocyte enhancer factor 2 (MEF2).  There are four members of the MEF2 family 

expressed in vertebrates: MEF2A, MEF2B, MEF2C and MEF2D. MEF2 proteins can 

either homodimerize or heterodimerize with other transcription factors such as NFAT and 

GATA, which can then bind to the DNA sequence 5’-CTA(A/T)4TAG-3’ to carry out 

transcriptional events (40,87,102,103). Although the MEF2 proteins are expressed in 

most cell types, their transcriptional activity is restricted to the immune system, neurons 

and striated muscle cells (104). 

 In the heart, MEF2 have critical roles in cardiac differentiation. MEF2C null 

mice are embryonic lethal, due to cardiac looping defects, an absence of the right 

ventricle and a downregulation of cardiac structural genes (87,105,106). The majority of 

MEF2A null mice died 2-10 days after birth because of defects in conduction and 

architecture of the heart. Surviving MEF2A null mice display reduced mitochondrial 

content and a less efficient conductive system. (107). In addition, transgenic mice that 

express a dominant negative MEF2 die shortly after birth because of cardiomyocyte 

hypoplasia, thinning of the ventricular walls and heart chamber dilation (87,108).  
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A greater workload imposed on the heart, a phenotype of cardiac hypertrophy, has 

been associated with increased MEF2 DNA binding (109,110). In cultured 

cardiomyocytes, adenoviral-mediated overexpression of MEF2A or MEF2C causes 

sarcomeric degeneration and cell elongation, both of which indicate cardiac dilatation. 

The hearts of transgenic mice overexpressing MEF2A or MEF2C are subject to 

contractile defects, ventricular dilation and are more readily hypertrophied when pressure 

overload stimulation is induced. However, when cells of the transgenic hearts are 

isolated, rather than having a greater cross-sectional area, the cardiomyocytes are more 

elliptical in shape, suggesting that MEF2 does not directly drive cardiac hypertrophy 

(87,111).  

Another transcription factor known to mediate cardiac hypertrophy is cAMP-

response-element binding protein (CREB), which is a 43 kDa leucine zipper that binds to 

the DNA sequence 5’- TGANNTCA-‘3 as either a homodimer or a heterodimer with AP-

1 transcription factors (87,112). CREB is predominantly expressed in excitable tissues, 

such as the brain, skeletal muscle and heart, where its function varies depending on the 

cell type. It is most well characterized in the brain, having roles in the development of 

long-term memory and drug addiction (113,114). In skeletal muscles, preliminary work 

from our lab suggests that CREB mediates the fast muscle fiber type program, causing 

the conversion of slower, more energy efficient muscle fibers to faster, less energy 

efficient muscle fibers. In the heart, CREB was identified as an important transcriptional 

regulator of cardiac hypertrophy (115).  

The cellular localization and transcriptional activity of CREB depends on the 

phosphorylation state of serine residues. In its unphosphorylated state, CREB can readily 
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bind DNA, but cannot initiate transcription (116). CREB phosphorylation of Ser133 

activates CREB and promotes its interaction with CREB-binding protein (CBP), which 

triggers transcriptional events (117,118). Kinases known to phosphorylate CREB at 

Ser133 include protein kinase A (PKA) and Ca2+/CaM-dependent protein kinase, 

isoforms II and IV (CaMKII and CaMKIV)  (119-121). Alternatively, a second site on 

CREB targeted by CaMKII is Ser142, where phosphorylation of this residue negatively 

regulates CREB by preventing PKA mediated phosphorylation and activation (121).  

 In the heart, Fentzke et al. (115) developed transgenic mice that overexpress a 

cardiac specific dominant negative form of CREB, where a Ser133Ala point mutation 

was made. These mice display significant dilated cardiomyopathy, decrease ventricular 

function, reduce contractile response and reactivation of cardiac fetal genes (115). In 

addition, this dominant negative overexpressing CREB transgenic mouse model did not 

improve survival or rescue dilated cardiomyopathy in response to long-term exercise 

(122). These findings suggest that CREB may participate in a signaling pathway 

responsible for regulating cardiomyocyte structure and function.  Furthermore, numerous 

hypertrophic stimuli cause an increase in expression of a negative regulator of CREB 

transactivation, inducible cAMP early repressor (ICER), which leads to decreased cardiac 

hypertrophy and increased cardiomyocyte apoptosis (123,124). Taken together, although 

the exact molecular mechanism implicating CREB in cardiac hypertrophy remains 

unclear, these reports suggest that CREB plays an important transcriptional role in 

regulating the pathophysiological states of the adult heart.  
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IGF-1-AKT signaling in cardiac hypertrophy 

Another major signaling pathway known to mediate heart growth is the IGF-1-

AKT/PKB pathway. Insulin-like growth factor-1 (IGF-1) is among the best characterized 

muscle-promoting growth factors. IGF-1, primarily secreted by the liver, binds to the 

receptor tyrosine kinase IGF-1 receptor (IGF-R) in an autocrine and paracrine mechanism. 

This binding causes the activation of phosphoinositide 3-kinase (PI3K), which in turn 

phosphorylates the 3’carbon of phosphotidylinositols on the cell plasma membrane. Upon 

recognizing the PI3K phosphorylated lipids, inactive AKT (a protein kinase B) translocates 

from the cytoplasm towards the inner surface of the plasma membrane, which causes a  

 

Figure 1.9: IGF-1/AKT signaling in normal and pathological cardiac hypertrophy. Taken 
from Dorn, G. et al. (2005) (125). 
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conformation change and allows AKT to be readily phosphorylated at Ser473 and Thr308 

by pyruvate dehydrogenase kinase-1 (PDK1), rendering AKT active (126). 

Two important protein synthesis pathways downstream of AKT are the mammalian 

target of rapamycin (mTOR) pathway, which is activated by AKT, and the GSK3-β 

pathway, which is inhibited by AKT (127). AKT activates the mTOR kinase by 

phosphorylating and inhibiting tuberous sclerosis 2 (TSC2), which when complexed with 

TSC1, inhibits RHEB, a small G protein required for mTOR activation. Active mTOR 

binds to co-activators GβL and raptor to form mTOR complex (mTORC1), which activates 

ribosomal protein S6 kinase (p70S6K) leading to translational initiation (127). Alternatively, 

GSK3-β is a suppressor of translational initiators by promoting the nuclear export of NFAT 

and GATA transcription factors. The inhibition of GSK3-β by AKT, along with the 

mTORC1 pathway, will promote both gene transcription and protein translation, causing 

muscle hypertrophy and growth (127). The IGF-1/AKT signaling pathway in normal and 

pathological cardiac hypertrophy is depicted [Figure 1.9]. 

Of the three AKT genes expressed in the body (AKT1, AKT2 and AKT3), only 

AKT1 and AKT2 are present in the heart. AKT1 gene targeted mice display a decrease in 

body and heart mass, whereas AKT2 gene targeted mice do not show this phenotype 

(128,129). Furthermore, AKT1 -/- mice do not undergo physiological cardiac hypertrophy 

in response to long-term exercise, compared to wild-type counterparts. These results 

demonstrate the importance of AKT in the physiological growth of the heart. The short-

term activation of the IGF-1/AKT pathway induced compensatory cardiac hypertrophy, 

where heart function remained unchanged. However, transgenic mice overexpressing 

constitutively activated AKT display severe cardiac dysfunction and heart failure, 
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suggesting that the long-term overexpression of AKT was sufficient to cause pathological 

cardiac hypertrophy (18,130). 

To summarize, the understanding of such biochemical growth-associated signaling 

pathways responsible for mediating pathological cardiac hypertrophy and heart failure is 

critical for advancing our comprehension of these diseases at the molecular level. In 

addition, further research into these signaling pathways increases the opportunities to 

develop pharmacological drugs to counteract congenital heart diseases and heart failure.  
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Introduction 
 As cardiovascular disease is one of the leading causes of death in the modern 

world, research in this area has been thriving over the past decade. A common 

abnormality associated with the majority of cardiovascular diseases is pathological 

cardiac hypertrophy, in which hearts are subjected to an increased workload and 

decreased contractile efficiency. Pathological cardiac hypertrophy develops as an 

adaptive response of the heart to hypertension, myocardial infarctions, defects in 

contractile proteins, increased mechanical load and genetic mutations (18,43,131). 

Individuals living with this disease have a greater susceptibility to cardiac arrhythmias, 

organ failure and sudden death (132). A consequence of prolonged cardiac hypertrophy 

leads to heart failure, which the heart can no longer sustain the increased workload 

required to meet the body’s hemodynamic demands, causing left ventricular dilatation, 

thinning of the myocardial walls, and overall decrease in heart contraction and function, 

resulting in eventual death (133). 

 The best characterized intracellular modulator of pathological cardiac hypertrophy 

is the Ca2+/calmodulin (CaM)-dependent phosphatase, calcineurin (Cn) and its 

downstream transcriptional effector, nuclear factor of activated T-cells (NFAT) (85,134-

136).  Of the five known NFAT isoforms, four (NFATc1, NFATc2, NFATc3, NFATc4) 

are regulated by Cn signaling and their presence has been detected in the heart (63,137). 

In unstimulated cells, Cn exists in its inactive heterodimeric form and NFAT proteins 

reside in the cytoplasm in their phosphorylated state (138). Upon stimulation that 

promotes Ca2+ influx into the cytoplasm, Ca2+ ions will bind to CaM, and this complex 

will physically interact and induce a conformational change in Cn structure, exposing 
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Cn’s catalytic domain (80,139). Once active, Cn can de-phosphorylate NFAT proteins, 

enabling NFAT to translocate to the nucleus, where it can interact with other cardiac 

factors to activate the transcription of cardiac fetal genes, which include β-myosin heavy 

chain (β-MyHC), atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), 

thereby initiating the hypertrophic gene program (87). In vivo and in vitro studies have 

previously demonstrated the effectiveness of Cn-NFAT signaling in the mediation of 

cardiac hypertrophy and heart failure (43-48,63,85,140-142). Another well characterized 

inducer of cardiac hypertrophy is the GATA-4 transcription factor, in which transgenic 

mice overexpressing GATA-4 display increased heart sizes, cardiomyopathy and 

reactivation of the cardiac fetal genes (97). In addition, GATA-4 has been shown to 

cooperate with NFAT3 to synergistically activate the BNP promoter to induce cardiac 

hypertrophy (43). 

 Recently, loss-of-function studies have identified that of the NFAT proteins 

expressed in the heart, NFATc2 was the major NFAT isoform responsible for Cn-induced 

pathological cardiac hypertrophy, in that 1-2 month old young NFATc2-/- mice displayed 

a complete inhibition of forced hypertrophy, decreased cardiac fetal gene expression, 

reduced fibrosis  and had restored contractile functions (143). However, the authors of 

this report failed to monitor changes in the biochemical signaling in the hearts of 

NFATc2-/- mice. We observe that 6-9 month old NFATc2-/- mice are physically frailer 

in appearance, are more susceptible to sudden death and have larger hearts upon autopsy. 

These empirical observations lead us to hypothesize that in younger NFATc2-/- mice, 

other transcription factors may be compensating for the absence of functional NFATc2. 
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Overtime, these compensatory transcription factors cannot fully restore normal 

cardiomyocyte growth and function, predisposing these mice to heart failure. 

 We provide evidence that although adult NFATc2-/- mice shared a similar heart 

weight-to-body weight ratio as wild-type mice, NFATc2-/- mice displayed left 

ventricular inner chamber dilatation and thinning of the right ventricle wall, indicative of 

heart failure. We demonstrate that NFATc2-/- mice have increased GATA-4 expression 

and both NFATc1 and GATA-4 nuclear translocation, which may be compensating for 

the loss of NFATc2 in a failed attempt to rescue cardiomyocyte growth. Correlated to 

increased GATA-4 and NFATc1 nuclear presence, we show that the NFAT/GATA-4 

export kinase Glycogen Synthase 3-β (GSK3-β) is downregulated in NFATc2-/- mice. 

Moreover, when inducing cardiac hypertrophy using angiotensin II (Ang II), we observe 

that the overall heart morphology of Ang II-infused NFATc2-/- mice was more dilated 

with thinning of the right ventricular walls, suggesting that an increased workload on the 

hearts of these mice may subject NFATc2-/- mice to a more severe pathological heart 

state. We also show that the expression of β-MyHC was increased in Ang II-stimulated 

NFATc2-/- mice, indicating an alteration in contractile protein expression. Furthermore, 

the expression GATA-4 and activated AKT had a tendency to be downregulated whereas 

eukaryotic initiation of factor 2α (eIF2α) was unchanged in Ang II-infused NFATc2-/- 

mice, compared to wild-type counterparts, suggesting an inactivation of transcriptional 

and translational mechanisms in these mice. Our results suggest that the NFATc2 

transcription factor may have an uncharacterized and essential role for normal heart 

function and growth-mediated biochemical signaling in adult mice, proposing that normal 

Cn-NFAT signaling is required for proper heart function.   
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Material and Methods 
Mouse model, breeding and maintenance 

 Transgenic NFATc2 null (NFATc2-/-) mice were generously provided by Drs. 

Grace Pavlath (Emory University) and Laurie Glimcher (Harvard University). These 

mice harbored a disruption in the NFATc2 gene causing a loss of function mutation, as 

previously described (144). Breeding of heterozygous (NFATc2+/-) or homozygous 

(NFATc2-/-) mice yielded second generation NFATc2-/- mice. For the experimental 

design, NFATc2-/- mice were age and sex matched with wild-type (NFATc2+/+) 

counterparts, which were purchased from Charles River Laboratories, QC or generated 

from breeding. All mice were housed under standard environmental conditions (20-22ºC, 

14:10 hour light:dark cycle) and provided with standard rodent food and tap water ad 

libitum. Mice between 6 and 9 months of age were used for all subsequent analyses. All 

animals were treated in accordance with the institutional guidelines of Concordia 

University Animal Research Ethics Committee (UAREC), set by the Canada Council of 

Animal Care (CCAC).  

Mouse genotyping 

 DNA from mouse tails was amplified by adding 2 µl of cDNA to 1X Taq buffer 

with KCl (Fermentas, ON), 2 mM MgCl2 (Fermentas, ON), 0.2 mM dNTP (Invitrogen, 

CA), 0.5 mM primers (Sigma Aldrich, MO) and 20 U Taq DNA polymerase (Fermentas, 

ON), yielding a final volume of 20 µl. The following primers were used 5’-

gcaagcctcagtgacaaagtatccacttca-3’, 5’-ccacgagctgcccatggtggagagacaaga-3’ and 5’-

agcgttggctacccgtgatattgctgaaga-3’. Cycling conditions were as follows: 1) initial 

denaturation at 95ºC for five minute, 2) denaturation at 94ºC for one minute, 3) primer 
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annealing at 60 ºC for one minute, extension at 72ºC for one minute, 4) cycle to step 2  

for 36 cycles, 5) final extension at 72ºC for ten minutes. PCR products were loaded in a 

1.5% agarose gel stained with ethidium bromide and resolved, after electrophoresis, 

under UV irradiation using the Alpha Innotec Fluorchem system (Cell Biosciences, CA). 

Muscle extraction and preservation 

 Prior to muscle extraction, mice were anesthetized by an intramuscular injection 

of 1.6:1 volume ratio mixture of 100 mg/ml ketamine hydrochloride (Bimeda-MTC 

Animal Health Inc., ON) and 20 mg/ml xylazine (Bayer HealthCare, ON). A dosage of 

0.12 ml/100 g of body weight was administered to each mouse. Hearts for biochemistry 

studies were extracted and frozen directly in liquid nitrogen. For histology, mice were 

euthanized by CO2 asphyxiation  and the hearts were infused with an equal volume of 5% 

gelatin (Sigma-Aldrich, MO) in each ventricle, embedded with Tissue-Tek Optimum 

Cutting Temperature compound (Fisher Scientific, ON) and frozen in a pool of melting 

isopentene cooled in liquid nitrogen. All samples were stored at -86ºC until used.  

RNA extraction and semi-quantitative RT-PCR 

 RNA of mouse hearts was extracted following the procedure as previously 

described (145). Briefly, samples were homogenized in a 1 ml/100 mg of buffer 

consisting of 4 M guanidinium thiocyanate (Sigma-Aldrich, MO), 25 mM sodium citrate, 

0.5% (v/v) N-laurylsarcosine (Sigma-Aldrich, MO) and 0.1 M 2-mercaptoethanol 

(Bioshop, ON).  A one-tenth volume of 0.2 M sodium acetate (pH 4.0) was added and 

vortexed, followed by the addition of one volume of phenol (Sigma-Aldrich, MO) with 

vortexing. A one-fifth volume of a 24:1 volume ratio of chloroform:isoamyl alcohol was 
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added and vortexed until  a white emulsion appeared. Samples were cooled in ice for 

fifteen minutes, and then centrifuged at 10000×g for ten minutes at 4ºC. The aqueous 

layer was collected, followed by the addition of two volumes of 99% ethanol and the 

solution was vortexed. Samples were centrifuged at 10000×g for ten minutes at 4ºC. The 

99% ethanol was decanted and the RNA was resuspended in 200 µl of 70% ethanol, 

followed by a centrifugation at 10000×g for ten minutes at 4ºC. The 70% ethanol was 

decanted and the RNA pellet was air dried and resuspended in 15 µl of RNAse free H2O 

(Bioshop, ON) per 10 mg of tissue. The RNA pellet was dissolved using intermittent 

vortexing and heating at 70ºC. 

RNA concentration and purity was determined using an Eppendorf 

Biophotometer (Eppendorf, ON) at A260nm. To validate RNA integrity, 2 µg of RNA was 

mixed with 12.5 µl of 2:1 formamide:ethidium bromide, 4 µl of formaldehyde (Sigma-

Aldrich, MO), 2.5 µl of 10X MOPS (pH 7.0) and 1 µl of bromophenol blue, heated at 

65ºC for ten minutes and loaded in a 1.5% agarose gel containing 1X MOPS and 1.91% 

(v/v) formaldehyde. The gel image was captured with irradiation using an Alpha Innotec 

Fluorchem system (Cell Biosciences, CA), where visualization of the 5S, 18S and 28S 

rRNA bands indicated intact RNA. 

RT-PCR was performed by combining 2 µg of RNA, ultrapure water, for a final 

volume of 10 µl. The final volume of the RT mixture was 40 µl, which consisted of 0.625 

µM random primer hexamers (Invitrogen, CA), 1X RT-buffer (Ambion, ON), 0.5 µM 

dNTP (Invitrogen, CA), 40 U of RNase Inhibitor (Ambion, ON) and 100 U of MMLV-

RT (Ambion, ON). The RT-PCR program (Fifteen minutes at 20ºC, one hour at 37ºC, 

and ten minutes at 65 º C) was performed using a MJ Research PTC-100 thermalcycler. 
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As a negative control, RT samples were duplicated in the absence of MMLV-RT.  The 

cDNA was stored at -20ºC until used.  

 The cDNA was amplified by adding 2.5 µl of cDNA to 1X Taq buffer with KCl 

(Fermentas, ON), 1.5 mM MgCl2 (Fermentas, ON), 0.1 mM dNTP (Invitrogen, CA), 0.2 

mM primers (Sigma Aldrich, MO) and 0.05 U/µl Taq DNA polymerase (Fermentas, ON), 

yielding a final volume of 50 µl. Primer sequences used are shown in Appendix II. 

Cycling conditions were as follows: 1) initial denaturation at 94ºC for one minute, 2) 

denaturation at 94ºC for one minute, 3) primer annealing at Tm for one minute, 4) 

extension at 72ºC for one minute, 5) cycle to step 2 for X number of cycles, 6) final 

extension at 72ºC for ten minutes, using a MJ Research PTC-100 thermalcycler. PCR 

products were loaded in a 1.5% agarose gel stained with ethidium bromide and resolved 

after electrophoresis under UV irradiation using the Alpha Innotec Fluorchem system 

(Cell Biosciences, CA). 

Protein extraction and Western blotting  

 Whole hearts were homogenized using a hand-held Tissue Tearor homogenizer 

(Biospec Products Inc, OK) in 1X RIPA buffer solution (6 µl/mg of tissue) consisting of 

1X PBS, 1% Igepal, 0.5% Sodium Deoxycholate, 0.1% Sodium Dodecyl Sulfate (SDS), 

0.001 M Sodium Orthovanadate, 0.01 M Sodium Fluoride, 0.01 mg/ml Aprotinin, 0.01 

mg/ml Leupeptin and 1 mM Phenylmethanesulfonyl fluoride (Sigma-Aldrich, MO). 

Homogenates were cooled, followed by a centrifugation at 15000×g for twenty minutes 

at 4ºC. Supernatant was collected and re-centrifuged. The whole cell protein was stored at   

-86ºC until used. Fractionated into cytoplasmic and nuclear protein was performed using 
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the NE-PER® Nuclear and Cytoplasmic Extraction Kit (Pierce Biotechnology, IL), 

according to the manufacturer’s protocol. 

 Between 100 µg -150 µg of protein was loaded in an SDS polyacrylamide gel 

consisting of a 5% w/v stacking gel composed of 3.9% acrylamide (Sigma-Aldrich, MO), 

0.125 M Tris (pH 6.8), 0.1% SDS, 0.06% ammonium persulfate and 0.14% 

Tetramethylethylenediamine (TEMED) (Bioshop, ON) and a 10% w/v separating gel 

composed of 9.9% acrylamide, 0.375 M Tris (pH 8.8), 0.1% SDS, 0.06% ammonium 

persulfate and 0.25% TEMED. Samples were electrophoresed at 120V until the protein 

sizes of interested were visibly separated on using the Amersham Full-Range Rainbow 

Molecular Weight Markers (GE Healthcare Bio-Sciences Corp, NJ).  

 Proteins were transferred onto a PVDF membrane (Millipore, MA) at 100V for 

one hour, followed by blocking in 5% non-fat milk or bovine serum albumin in 0.1% 

Tween-Tris Buffered Saline (T-TBS) for one hour. Antibodies to GATA-4 (sc-25310; 

1°Ab. 1:1000, 2°Ab. 1:2000), JNK-2 (sc-827; 1°Ab. 1:1000, 2°Ab. 1:2000), NFATc2 

(sc-7296; 1°Ab. 1:200, 2°Ab. 1:2000) (Santa Cruz Biotech, CA) Histone H3 (9715; 

1°Ab. 1:1000, 2°Ab. 1:2000), GSK3-β (9315; 1°Ab. 1:1000, 2°Ab. 1:2000), p38-α (9218; 

1°Ab. 1:1000, 2°Ab. 1:2000), ERK1/2 (4695; 1°Ab. 1:1000, 2°Ab. 1:2000), α-tubulin 

(2125; 1°Ab. 1:2000, 2°Ab. 1:2000), phospho-AKT (Ser473) (9271; 1°Ab. 1:1000, 2°Ab. 

1:2000), phospho-eIF2α (Ser51) (9721; 1°Ab. 1:1000, 2°Ab. 1:2000), total eIF2α (9722; 

1°Ab. 1:1000, 2°Ab. 1:2000) (Cell Signaling, MA), total AKT (610861; 1°Ab. 1:1000, 

2°Ab. 1:2000) (BD Biosciences, ON) or GAPDH (ab9484; 1°Ab. 1:2000, 2°Ab. 1:2000) 

(Abcam, MA) were added to membranes based on the manufacturer’s recommendation 

and incubated on a shaker at 4ºC overnight. The following day, membranes are washed 
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three times with 0.1% T-TBS and incubated with secondary antibody (Sigma-Aldrich, 

MO and Cell Signaling, MA) coupled to horseradish peroxidase for one hour. 

Membranes were washed three times with 0.1% T-TBS and developed with enhanced 

chemi-luminescence reagents (Millipore, MA) using the Alpha Innotec Fluorchem 

system (Cell Biosciences, CA). 

Co-immunoprecipitation 

 Protein G Sepharose 4 Fast Flow beads (GE Healthcare Bio-Sciences Corp, NJ) 

were pre-washed three times with sterile water (Bioshop, ON) and two times with 1X 

RIPA buffer by shaking for five minutes, followed by a centrifugation at 1000×g for five 

minutes. The beads were suspended in 1X RIPA buffer to yield a 50% bead 

concentration. For separation, 1X RIPA buffer was added to 50 µg of whole cell heart 

protein to yield a final volume of 850 µl, followed by adding 50 µl of beads. The mixture 

was shaken for one hour, followed by adding 1% goat serum (Sigma-Aldrich, MO) with 

shaking for an additional hour. After a centrifugation at 1000×g for five minutes, 50 µl of 

supernatant was kept as depleted extract and a 1:10 NFATc2 dilution (Santa Cruz 

Biotech, CA) was added to the remaining supernatant with shaking overnight. The 

following day, 50 µl of beads were added to each sample with shaking for two hours, 

followed by three washes with 1X PBS and two times with sterile water with shaking for 

five minutes, followed by centrifugation at 1000×g for five minutes. The supernatant was 

discarded and the pellet kept at -86ºC until used. All work was performed at 4ºC. 
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Angiotensin II infusion 

Alzet 2002 micro-osmotic pumps (Alzet, CA) were placed through a small dorsal 

incision in the skin between the scapulae in six month old female mice anesthetized as 

described above. Pumps were filled with angiotensin II (Sigma-Aldrich, MO), 

administered in a dosage of 432 µg·kg-1·day-1 in 150 mM NaCl-001N acetic acid. 

Angiotensin II was continuously infused into mice for a period of 14 days.   

Histology, Staining and Microscopy 

Hearts embedded in Optimum Cutting Temperature were transversally sectioned 

in 10 µm cuts using a Leica CM3060S cryostat (Leica Microsystems Inc., ON) and 

collected on Superfrost Plus microslides (VWR, PA). Samples were incubated in 0.5% 

Harris haematoxylin (Sigma-Aldrich, MO) for five minutes, rinsed with water, quickly 

immersed in 1% HCl/70% EtOH solution, rinsed with water, incubated in 1% eosin 

(Fisher Scientific, ON) for three minutes and rinsed with water. Slides were subsequently 

incubated in 70%, 80% and 90% EtOH solution for two minutes each and immersed in 

xylene (Fisher Scientific, ON) for thirty seconds. Slides were air dried and mounted in 

Permount (Fisher Scientific, ON). Images were captured on a Nikon SMZ1500 

stereomicroscope. 

 For immunofluorescence, samples were fixed in 2% paraformaldehyde and 

washed with 1X PBS three times for five minutes. Tissues were blocked and 

permeabilized with 2% goat serum (Sigma-Aldrich, MO) and 0.2% Triton X-100 (Sigma-

Aldrich, MO) for one hour. Samples were incubated overnight at 4ºC with primary 

antibody 1:50 NFATc1, 1:25 NFATc2, 1:25 NFATc3 and 1:50 NFATc4 (Santa Cruz 
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Biotech., CA) in 1X PBS containing 1% goat serum and 0.05% Triton X-100. The 

following day, samples were washed three times with 1X PBS and incubated with 1:50 or 

1:100 anti-rabbit Alexa 488 (Molecular Probes, ON) in 1X PBS containing 1% goat 

serum and 0.05% Triton X-100 for one hour at room temperature. Slides are washed five 

times with 1X PBS, dried and mounted with Vectashield with DAPI (Vector Laboratories 

Inc., CA). Images were captures at 40x magnification using a Zeiss Axioplan 

fluorescence microscope. 

Quantification and Statistics 

The level of DNA and protein expression was quantified by measuring the density 

of the band of interest with respect to the control using the Alpha Innotec Fluorchem 

(Cell Biosciences, CA) system. Differences between experimental groups were evaluated 

for statistical significance using a Student's t test for assuming equal variance. All p 

values < 0.05 were considered to be statistically significant. 

 

 

 

 

 

 

 



 

 
 

41

Results 
Characterization of heart phenotype in NFATc2-/- mice 

 NFATc2-/- mice were generated by substituting the NFATc2 N-terminal DNA 

binding domain of the NFAT Rel Homology Domain with a neomycin cassette using  

 

Figure 1. Comparing the hearts of wild-type and NFATc2-/- mice. A) Agarose gel image of PCR 
products from genomic DNA depicting the wild-type, NFATc2 knockout and heterozygous genotypes. B-
C) Freshly extracted mice hearts and quantification of the relative heart weight-to-body weight ratio for 
wild-type (n=14) and NFATc2-/- (n=15) mice. D) Haematoxylin and eosin-stained heart sections and 
quantification of the E) left ventricle chamber inner wall diameter and F) right ventricle wall diameter 
normalized to total heart diameter (n=3 per group). *indicates statistical significance (p<0.05) compared to 
wild-type counterpart. Scale bar represents 1mm.  



 

 
 

42

homologous recombination (144). The genotypes of experimental mice were validated by 

amplifying DNA isolated from the tail by PCR and resolved on an ethidium bromide-

stained agarose gel (Fig. 1A). Wild-type and NFATc2-/- mice were anesthetized and the 

hearts were surgically extracted. Normotensive hearts of NFATc2-/- mice displayed a 

comparable overall gross morphology (Fig. 1B) and a similar relative heart weight-to-

body weight (HW/BW) ratio (Fig. 1C), compared to wild-type mice. To examine heart 

morphology, we monitored changes in the sizes of heart ventricles and myocardial wall 

thickness because these are well-characterized markers of heart disease and failure. To 

determine whether the hearts of NFATc2-/- mice were more susceptible to failure, 

gelatin-infused hearts were transversally sectioned by histology and stained with 

haematoxylin and eosin (Fig. 1D). The ratio of the left ventricular chamber inner 

diameter to total heart diameter showed that the left ventricular chamber of NFATc2 -/- 

mice was approximately 28% more dilated than wild-type hearts (Fig. 1E). In addition, 

the thickness of the right ventricular wall was approximately 25% thinner than wild-type 

hearts (Fig. 1F). The collective findings showed that although hearts of adult NFATc2-/- 

mice shared similar overall shape and morphology as wild-type hearts, changes in both 

ventricular dilatation and thickness of the myocardial wall suggested that adult NFATc2-

/- mice were more susceptible to heart disease and failure.    
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The transcript expression of NFATc1-c4 is unchanged, whereas the nuclear 

localization of NFATc1 is increased in the hearts of NFATc2-/- mice 

 The presence of all four Cn-regulated NFAT isoforms (NFATc1, NFATc2, 

NFATc3 and NFATc4) in the heart has been previously demonstrated (63). To monitor 

the ability of NFATc1, NFATc3 and NFATc4 to compensate for the absence of 

functional NFATc2 at the mRNA level, semi-quantitative PCR was conducted on cDNA 

that was reverse transcribed from RNA isolated from experimental hearts. Results 

showed no significant change in the expression of other NFAT isoforms in normotensive 

hearts of wild-type and NFATc2-/- mice (Fig. 2A, B). Note that the NFATc2 transcript 

remains expressed in NFATc2-/- mice because the NFATc2-/- mouse model used in these 

experiments is a loss-of-function mutation, where a mutant protein is synthesized. As 

transcription factors, NFAT proteins exert their transcriptional activities when localized 

in the nucleus in their unphosphorylated state. We therefore performed 

immunofluorescene to monitor the cellular distribution of NFATc1, NFATc3 and  
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Figure 2. NFATc1 is more nuclear localized in the hearts of NFATc2-/- mice. A-B) Agarose gel image 
of PCR products for NFATc1-c4 and their quantifications normalized to ribosomal 28S gene expression 
(n=3 per group). No template control (NTC) is the addition of water instead of cDNA. C-F) 
Immunofluorescene images and quantifications of positively stained nuclei to total nuclei per field of view 
depicting the localization of NFAT isoforms (n=3 per group). The nuclei are visualized with DAPI, which 
was changed to red. To control for unspecific secondary antibody staining, the negative images have only 
the secondary antibody conjugated to the fluorophor Alexa 488 added, without a primary antibody. Note 
that DAPI does not require antibodies to be visualized, and is detected in the negative control panels. 
*indicates statistical significance (p<0.05) compared to wild-type counterpart. Scale bar represents 20µm.  

 

NFATc4 in the absence of functional NFATc2. Our results showed that of the NFAT 

isoforms, only NFATc1 had a significantly higher nuclear presence in the hearts of 

NFATc2-/- mice (Fig. 2C). The nuclear translocation of NFATc3 and NFATc4 were 

unchanged between wild-type and NFATc2-/- mice (Fig. 2E, F). In addition, NFATc2 

had a decreased nuclear presence in NFATc2-/- mice, which is likely a characteristic of 

the loss-of-function mutation (Fig. 2D). These results showed that, although no change 

was detected in transcript expression of NFAT members, NFATc1 was the only isoform 

which had a higher nuclear transit when functional NFATc2 protein was absent and 

therefore potentially compensates for the absence of non-functional NFATc2. 
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The GATA-4 transcription factor has a higher protein expression and nuclear 

transit in the hearts of NFATc2-/- mice  

 One of the most well characterized proteins required for cardiac morphogenesis 

and a marker of adult cardiac failure is the GATA-4 transcription factor (93). Amongst its 

numerous molecular partners, GATA-4 can interact with NFATc4 to synergistically 

activate the transcription of peptides leading to cardiac growth and eventually heart 

failure (43). Because the Cn-regulated NFAT isoforms share a conserved REL homology 

domain, we wanted to determine whether GATA-4 and NFATc2 could interact and if so, 

whether GATA-4 expression is altered in response to the absence of functional NFATc2. 

Using co-immunoprecipitation, we showed that GATA-4 and NFATc2 interacted and 

that the extent of this interaction was similar in the hearts of wild-type and NFATc2-/- 

mice, which suggests that the mutant NFATc2 protein also binds to GATA-4 (Fig. 3A). 

To control for the NFATc2 immunoprecipitation antibody specificity, we substituted this 

antibody with pre-immune goat serum. Neither GATA-4 nor NFATc2 bands were visible 

in the serum lanes, confirming the effectiveness of the immunoprecipitation assay. 

Furthermore, to test the purity of the immunoprecipitation, non-precipitated supernatant 

was loaded alongside the immunoprecipitated samples. We detected that α-tubulin, a 

globular protein found in the extracellular matrix and does not interact with NFAT, was 

expressed only in the supernatant extract, and not the immunoprecipitated samples. This 

eliminates the possibility that non-NFATc2 interacting proteins were present in our 

immunoprecipitated samples. Although GATA-4 was not upregulated in the hearts of 

adult NFATc2-/- mice at the transcript level (Fig. 3B, C), it was significantly upregulated 

at the protein level (Fig. 3D, E), suggesting that the expression of GATA-4 was increased  
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Figure 3. GATA-4 is increased and has higher nuclear transit in NFATc2-/- mice. A) Western blot 
representing GATA-4 and NFATc2 co-immunoprecipitation (n=3 per group). As a control, 
immunoprecipitated (IP) samples, supernatant extract and goat serum treated samples were loaded together. 
B-C) Agarose gel image of PCR products for GATA-4 and its quantification normalized to ribosomal 28S 
gene expression (n=3 per group). D-E) Western blot of GATA-4 expression in whole heart protein 
homogenate and its quantification normalized to α-tubulin expression (n=3 per group). F-G) Western blot 
and respective quantifications of hearts fractionated in cytoplasmic and nuclear protein extracts (n=3 per 
group). A double band is visualized in the nuclear fraction possibly due to additional phosphorylated sites 
on GATA-4. *indicates statistical significance (p<0.05) compared to wild-type counterpart.  
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to compensate for the loss of a functional DNA binding mutation in the NFATc2 protein. 

To determine whether there was also an increased nuclear transit of GATA-4 in the hearts 

of adult NFATc2-/- mice, we fractionated the hearts into cytoplasmic and nuclear protein 

extracts using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Histone H3 as 

protein controls to verify the purity of the fractionation. Results showed that GATA-4 

expression was comparable in the cytoplasmic fraction of wild-type and NFATc2-/- mice 

cardiomyocytes, whereas GATA-4 was significantly upregulated in the nuclear fraction 

of these cells in NFATc2-/- mice, compared to the wild-type counterparts (Fig 3F, G). 

Note that two bands are visible in the GATA-4 nuclear fraction because GATA-4 may be 

phosphorylated at other serine residues (146). These results indicated that as a molecular 

partner of NFATc2, GATA-4 was both upregulated and had an increased nuclear transit 

when functional NFATc2 was not available, suggesting that GATA-4 compensated for 

the mutated NFATc2 in a failed attempt to rescue cardiac growth and overt cardiac 

failure. 

 

The expression of GSK-3β is lowered in the hearts of NFATc2-/- mice, whereas 

MAPK and CK-1α expression remain unchanged  

 Several kinases, such as GSK3-β, CK and the family of mitogen activated protein 

kinases (MAPK): JNK, p38 and ERK, are known to regulate the cellular locations of 

NFAT and GATA-4 transcription factors through their phosphorylation status. GSK3- β 

is a known NFAT/GATA export kinase, CK-1α and JNK-2 are NFAT export kinases, 

whereas p38-1α and ERK1/2 are also NFAT exporters, but increase GATA-4 DNA 
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binding under hypertrophic stimulations (93). Because the nuclear presence of NFATc1 

and GATA-4 was increased in NFATc2-/- mice, we monitored the expression of these 

kinases to determine whether changes in their expression were representative of the  

 

 

Figure 4. GSK3-β expression is downregulated in the hearts of NFATc2-/-mice. A-B) Agarose gel 
image of PCR products for GSK3-β, CK-1α, JNK-2, p38-1α and ERK1/2 and their quantifications 
normalized to ribosomal 28S gene expression (n=3 per group). C-D) Western blots of total kinase 
expression and their quantifications normalized to α-tubulin expression (n=3 per group). *indicates 
statistical significance (p<0.05) compared to wild-type counterpart.  
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increased nuclear localization of these factors. At the transcript level, the expression of 

these kinases were not different between the wild-type and NFATc2-/- hearts (Fig. 4A, 

B). At the protein level, only GSK3-β was found to be significantly downregulated in the 

absence of functional NFATc2, whereas the expressions of members of the MAPK 

family were unchanged (Fig. 4C, D). As a major regulator of pathological cardiac 

hypertrophy and heart failure, the collective results suggested that this change in the 

expression of GSK3-β correlates with the increased nuclear presence of NFATc1 and 

GATA-4 in normotensive hearts of adult NFATc2-/- mice. 

 

Angiotensin II-mediated cardiac hypertrophy suggests NFATc2-/- mice have 

exacerbated morphological and anatomical markers of heart failure 

 Because normotensive adult NFATc2-/- mice displayed both physiological and 

biochemical alterations indicative of heart failure, we induced acute cardiac hypertrophy 

in these mice using angiotensin II (Ang II) administration. Ang II is a peptide from the 

renin-angiotensin system known to promote vasoconstriction, increases in blood pressure 

and rapid cardiac hypertrophy (147). We hypothesized that by imposing further strain on 

NFATc2-/- mice by using a functional overload, the hearts of these mice would display a 

more severe pathological state. Ang II-mediated cardiac hypertrophy was validated by a 

15% increased HW/BW ratio (Fig. 5A) and elevated expression of the cardiac fetal 

genes, β-MyHC, ANP and BNP, in wild-type mice (Fig. 5E-H). We observed that Ang II-

infused adult NFATc2-/- mice had a similar HW/BW ratio as non-infused NFATc2-/- 

mice (Fig. 5A), suggesting that the hearts of normotensive NFATc2-/- mice are already in 
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Figure 5. Ang II-infused NFATc2-/- mice display a more severe heart pathology. A) HW/BW ratio of 
non-stimulated and Ang II-infused adult wild-type and NFATc2-/- mice (n=3 per group). B) Haematoxylin 
and eosin-stained heart sections of Ang II-infused hearts and its quantification of the C) left ventricle 
chamber inner wall diameter and D) right ventricle wall diameter normalized to total heart diameter (n=1 
per group). E-H) Agarose gel image of PCR products for β-MyHC, ANP and BNP and their quantifications 
normalized to ribosomal 28S gene expression (n=3 per group). *indicates statistical significance (p<0.05). 
Scale bar represents 1mm. 
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an advanced pathological state. When comparing the left ventricular inner chamber 

diameter and thickness of the right ventricular wall in Ang II-infused wild-type and 

NFATc2-/- mice, we observed that NFATc2-/- mice had a more drastic left ventricular 

heart chamber dilatation and thinning of the ventricle walls, implying that imposed acute 

pharmacological stress on these mice causes these hearts to undergo morphological 

changes towards a more advanced state of failure (Fig. 5B-D). Also, these data present 

the idea that hearts of NFATc2-/- mice are in a diseased state not because of the usual 

markers of cardiac hypertrophy (ie: HW/BW ratio), but moreso as a result of more 

accurate morphological markers of heart chamber dilatation and thinner ventricular walls. 

The reactivation and increased expression of cardiac fetal genes are another hallmark 

feature of hearts undergoing a pathophysiological hypertrophy and damage. We showed 

that of all fetal genes tested, only the β-MyHC gene was increased in expression, whereas 

both ANP and BNP genes were either unchanged or downregulated in expression, when 

comparing Ang II-induced NFATc2-/- mice to wild-type counterparts (Fig. 5E-H). These 

results suggest that not only is Ang II-stimulation causing the hearts of NFATc2-/- mice 

to exhibit more severe morphological signs of failure, but that changes in the expression 

of cardiac fetal genes may be regulated by separate mechanisms.   
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GATA-4 and phospho-AKT tends to be downregulated, whereas phospho-eIF2 is 

unchanged in hearts of angiotensin II-infused NFATc2-/- mice,  

Because we hypothesized the hearts of Ang II-stimulated NFATc2-/- mice were 

more likely to fail due to an acutely increased workload on an already failing heart, we 

were interested in determining whether GATA-4 would be produced at a higher level in 

the hearts of Ang II-infused NFATc2-/- mice. Our preliminary data (n=2) suggested that 

GATA-4 expression tended to increase in the hearts of Ang II-infused wild-type but 

decreased in Ang II-infused NFATc2-/- mice, compared to non-stimulated hearts (Fig. 

6A, B). This suggests that in the normotensive hearts of NFATc2-/- mice, NFATc1 and 

GATA-4 are compensating for the mutated NFATc2 protein, in an effort to promote 

increased gene transcription and heart growth. However, because functional NFATc2 is 

absent in these mice, these hearts cannot readily hypertrophy, causing increased imposed 

cardiac workload in NFATc2-/- mice. When cardiac hypertrophy was induced, GATA-4 

protein expression in Ang II-infused NFATc2-/- mice was not different from the hearts of 

unstimulated wild-type mice, which implies that the additional cardiac workload in 

NFATc2-/- mice caused an inactivation of transcription-mediated growth in these mice.  

We then investigated whether pathways regulating protein translation were also 

inactivated in Ang II-infused NFATc2-/- mice. The IGF-1/AKT signaling pathway is one 

of the most studied growth pathways involved in promoting both gene transcription and 

protein translation, as well as inhibiting the activation of pathways resulting in protein 

degradation. In addition, phospho-AKT (Ser473), the active form of AKT, negatively 

regulates GSK3-β activity, which in turn promotes the nuclear export of NFAT and 

GATA-4 transcription factors. Based on our findings that GATA-4-mediated gene 
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transcription was shut down in Ang II-induced cardiac hypertrophy of NFATc2-/- mice, 

we speculated that the expression of activated AKT would also be downregulated in Ang 

II-infused NFATc2-/- mice. Preliminary data (n=2) suggested that phospho-AKT 

expression was upregulated in the hearts of Ang-II wild-type mice but downregulated in  

 

Figure 6. GATA-4 and AKT are decreased in Ang II-infused NFATc2-/- mice. A-B) Western blot of 
GATA-4 expression in non-stimulated and AngII-infused wild-type and NFATc2-/- mice and its 
quantification normalized to α-tubulin expression (n=2 per group). C-D) Western blot of phospho-AKT 
(Ser473) expression in non-stimulated and AngII-infused wild-type and NFATc2-/- mice and its 
quantification normalized to total AKT expression (n=2 per group). E-F) Western blot of phospho-eIF2α 
(Ser51) expression in non-stimulated and AngII-infused wild-type and NFATc2-/- and its quantification 
normalized to total eIF2α expression (n=2 per group). *indicates statistical significance (p<0.05) compared 
to wild-type counterpart.  
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Ang II-infused NFATc2-/- mice, compared to non-stimulated hearts (Fig. 6C, D).   

Although two bands are visible when probing for total AKT, the lower band was deemed 

unspecific in mice using alkaline phosphatase treatment and western blots on rat muscles 

(data not shown).  

 As a marker to measure translational control in NFATc2-/- mice, we monitored 

the expression of eukaryotic initiation factor 2 (eIF2), a protein required for transferring 

the tRNAmet to the 40S ribosome in a GTP-dependent manner to initiate protein 

translation. Furthermore, eIF2 promotes protein translation by exchanging GDP to GTP, 

which is catalyzed by the guanine nucleotide exchange factor, eukaryotic initiation factor 

2B (eIF2B). When eIF2 is phosphorylated at Ser51 on its α-subunit by serine kinases, 

phosphorylated eIF2 has an increased affinity to bind eIF2B, which decreases eIF2 

activity by inhibiting the GDP to GTP exchange, therefore blocking successive rounds of 

protein translation (148). Our results showed that the expression of phospho-eIF2α 

(Ser51) was unchanged between Ang II-mediated cardiac hypertrophy of wild-type and 

NFATc2-/- mice, which correlated with a downregulated activated AKT expression, 

suggesting that translation in the hearts of Ang II-infused NFATc2-/- mice was switched 

off. These results suggest the increased strain that Ang II infusions have on the hearts of 

NFATc2-/- mice causes a shutdown of both transcriptional and translational mechanisms, 

which prevents the heart from attempting to hypertrophy, possibly to avert cell damage 

and eventual heart failure. 
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Discussion 

 Recently published work proposed that young 1-2 month old NFATc2-/- mice are 

more resistant to Cn-mediated cardiac hypertrophy and have restored heart function 

(143).  This finding suggested that the NFATc2 transcription factor was the major NFAT 

isoform involved in promoting pathological cardiac hypertrophy and heart failure; 

however the authors failed to study the molecular mechanisms implicated in this 

response. We thus set out to explore the changes in growth-mediated signaling pathways 

in the hearts of NFATc2-/- mice.  

During the initial phase of our study, we observed that adult 6-9 month old 

NFATc2-/- mice were more susceptible to sudden death and had enlarged hearts when 

autopsied. Our results demonstrate that adult NFATc2-/- mice displayed left ventricular 

inner chamber dilatation and thinner ventricular walls, characteristic of heart failure. In 

addition, modulations in the Cn-NFAT signaling, as well as other growth-mediated 

pathways parallel to Cn-NFAT, are indicative that other transcription factors compensate 

for the genetic loss of NFATc2, in a failed attempt to promote cardiac growth. By 

administering Ang II to impose an increased cardiac workload on NFATc2-/- mice, we 

also observed an inactivation of transcriptional and translational mechanisms, suggesting 

that increased strain on these mice inhibits pro-survival and growth-mediated signaling. 

Thus, our findings appear to be in contrast to previous work done in younger mice, which 

proposes that a loss-of-function mutation in NFATc2 may appear beneficial in young 

mice based solely on improved physiological appearance and heart function, although 

these young NFATc2-/- mice could display changes in biochemical signaling. Overtime, 
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changes in growth-mediated signaling may predispose these mice to eventual heart 

deterioration and overt heart failure, which is seen in adult NFATc2-/- mice. 

 

Functional NFATc2 is required for proper heart function in adult mice 

One finding which we did not anticipate in this study was that, although the hearts 

of 6-9 month old NFATc2-/- mice shared an overall similar gross morphology and 

HW/BW ratio as age and sex-matched wild-type mice, NFATc2-/- mice displayed a more 

dilated left ventricular chamber inner diameter and a thinner right ventricle wall, both of 

which are characteristic of compromised cardiac contractility and eventual heart failure. 

Previously published work (143) has demonstrated that hearts of 1-2 month old NFATc2-

/- mice displayed no significant change in left ventricular internal diameter and 

contractility of the left ventricle compared to wild-type mice, which diverges from our 

findings in adult mice. The idea that adult 6-9 month old NFATc2-/- mice exhibited heart 

failure-like symptoms correlated with our empirical observations that these mice 

appeared frailer, more susceptible to sudden death and displayed cardiac dilatation upon 

autopsy. Our findings support the idea that the absence of functional NFATc2 (ie: with 

DNA binding ability) appears to be beneficial in the early stages of physiological 

development as a mean to resist stress-induced cardiac hypertrophy and failure, but may 

be detrimental towards overall heart function at later stages of life. Because NFATc2 was 

shown to be the major isoform responsible for cardiac hypertrophy, a scenario which may 

explain the idea that NFATc2-/- mice are more susceptible to long-term heart failure is 

that in younger mice, other transcription factors may be compensating for the absence of 
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NFATc2, which allows these mice to overcome heart failure. However, in adulthood, 

these transcription factors no longer compensate for NFATc2, which may also shutdown 

pro-growth signaling pathways, thereby disposing adult NFATc2-/- mice to physiological 

and biochemical characteristics of heart failure. 

 

NFAT isoforms are differentially localized in the hearts of NFATc2-/- mice 

In the heart, the four Cn-regulated NFATs are expressed and exist in multiple 

splice variants, which are encoded by four independent genes.  Because no compensation 

by NFATc1, NFATc3 and NFATc4 for the absence of functional NFATc2 was detected 

at the transcript level, we opted to monitor NFAT cellular localization. As transcription 

factors, NFAT proteins effectuate their transcriptional activities upon being de-

phosphorylated by Cn, enabling nuclear translocation which leads to transactivation of 

cardiac fetal genes during heart disease. Our immunofluorescene results indicated that the 

nuclear translocation of NFATc1 was significantly higher, whereas nuclear NFATc3 and 

NFATc4 levels were unchanged in the normotensive hearts of NFATc2-/- mice. In 

addition, a decreased nuclear presence of NFATc2 in NFATc2-/- mice is likely attributed 

to the inability of mutant NFATc2 to bind to DNA, resulting in NFATc2 being more 

readily exported from the nucleus by export kinases.  

Because NFATc1 has higher nuclear transit in the hearts of NFATc2-/- mice, it 

may be compensating for NFATc2 in an attempt to increase growth-mediated 

transcription. Dunn et al. (149) have identified that Cn-mediated de-phosphorylation of 

NFATc1 was correlated with increased muscle usage, in which normal weightbearing 
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soleus and functional overload-induced plantaris muscles expressed more de-

phosphorylated NFATc1. In addition, Shen et al. (150) have demonstrated that NFATc1 

has a higher cytoplasmic to nuclear shuttling in resting skeletal muscle cells, compared to 

other NFAT proteins, which suggests that the Cn-NFATc1 has a higher basal activity 

than other NFAT isoforms. In addition, the role of the NFATc1 transcription factor in 

heart function remains the least understood of all the isoforms because although NFATc1 

is important in the formation of the heart valves and cardiogenesis,  NFATc1-/- mice are 

embryonic lethal and die at E14.5, whereas other NFAT knockout models remain viable 

(83). This suggests that NFATc1 is likely an important factor for physiological heart 

growth, which may explain why NFATc1, but not NFATc3 or NFATc4, is the NFAT 

isoform which compensates for the genetic loss of NFATc2 function in the heart. 

However, although NFATc1 has an increased nuclear translocation in response to the 

absence of NFATc2, NFATc1 might not be able to fully restore proper cardiomyocyte 

growth, function and size because NFATc2-/- mice display changes in the ventricles 

which are characteristic of heart failure.  

 

The loss of functional NFATc2 alters the signaling of other cardiac growth-mediated 

pathways  

 NFAT transcription factors are known to interact with molecular partners in the 

nucleus to reactivate cardiac fetal genes in response to hypertrophic stimuli leading to 

heart failure (43,49,60,66). Our results demonstrate that GATA-4 and NFATc2 can co-

precipitate, suggesting they interact to modulate cardiac gene expression, which is in 
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correlation to findings form other groups (43,151,152). Previous work has shown that 

NFATc4 and GATA-4 binding sites exist upstream and proximal to the BNP promoter, a 

known cardiac fetal gene, and that the dimerization of both transcription factors is 

required to activate BNP transcription, inducing the cardiac hypertrophic response 

(43,94).  As in all Rel proteins, NFATc2 shares the conserved C-terminal DNA binding 

domain of the RHR, enabling NFATc2 to bind to NFAT binding sites near the BNP 

promoter. In addition to BNP, GATA-4 has been shown to directly bind to the promoters 

of the ANP, α-MyHC and β-MyHC genes, regulating their expression in the heart (91). 

NFAT proteins can regulate certain T-cell genes by binding to a common DNA sequence 

with AP-1 factors. Although the exact mechanism of how NFAT and GATA proteins 

interact remains ill-defined, due to the binding sites of both these factors not being 

immediately adjacent to one another, it could suggest that they cooperate either by 

intermediate players or by looping of the DNA (43,153). To address this point, 

immunoprecipitation, EMSA and ChIP could be used to identify other interacting 

proteins in the NFAT-GATA complex bound, their DNA binding ability and sequence, as 

well as in vitro luciferase assays to monitor transcriptional activities of possible 

intermediate factors. 

In addition, we show that the overall expression and nuclear translocation of 

GATA-4 protein is significantly elevated in both whole homogenate and fractionated 

hearts of NFATc2-/- mice. As a well characterized marker of cardiac hypertrophy, such 

an increased level of GATA-4 protein is a strong indicator of a heart that is diseased, 

overly stressed and more likely to fail. Both in vitro and in vivo overexpression of 

GATA-4 is necessary and sufficient to induce morphological, functional, molecular and 
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structural changes resulting in cardiomyocyte remodeling and failure (97,154,155). Liang 

et al. (97) used adenoviral-mediated gene transfer to overexpress GATA-4 in neonatal 

cardiomyocytes, which resulted in a 2-fold increase in cardiomyocyte area and increased 

protein translation. In addition, transgenic mice overexpressing GATA-4 in the heart 

displayed increased cardiac hypertrophy, fibrosis, reactivation of cardiac fetal genes and 

reduced function (97). Despite GATA-4 -/- mice being embryonic lethal, Oka et al. (156) 

successfully generated a cardiac-specific GATA-4 deletion in mice using a Cre-loxP 

method of recombination. In addition to these mice failing to undergo pressure overload 

and exercise-induced cardiac hypertrophy, they also displayed a compromised 

contractility, induced dilatation, enhanced myocyte apoptosis, increased β-MyHC gene 

expression and decreased lifespan following pressure overload, all of which implies that 

controlled levels of GATA-4 are required for normal maintenance and function of the 

heart. In response to forced swimming, the hearts of GATA-4 deleted hypertrophied to a 

lesser extent compared to wild-type mice, suggesting that GATA-4 may have a role in 

physiological cardiac growth (156).  

The significant increase in GATA-4 protein expression and nuclear import in 

NFATc2-/- mice suggests that GATA-4 is compensating for the absence of functional 

NFATc2. Similar to NFATc1, GATA-4 may be attempting to promote transcriptional 

growth in the hearts of NFATc2-/- mice, but cannot completely compensate for the lack 

of NFATc2, causing these hearts to fail in adulthood. Another possibility is that GATA-4 

is increased in overall expression is that because mutant NFATc2 cannot bind to DNA, as 

its transcriptional partner, GATA-4 may also have an impaired ability to bind DNA. This 
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may promote more GATA-4 cytoplasmic to nuclear shuttling, while the cell continues to 

produce more GATA-4 in response to the absence of NFATc2.   

GATA-6, another GATA protein expressed in the heart, has been identified as a 

regulator of pathological cardiac hypertrophy, where it was found to be necessary and 

sufficient to regulate the cardiac hypertrophic response, either independently or in 

coordination with GATA-4 (157). GATA-6 deleted mice are resistant to pressure 

overload and Ang II-induced cardiac hypertrophy, but developed heart failure whereas 

mice with a deletion of both GATA-4 and GATA-6 resulted in severe dilated 

cardiomyopathy. Both models showed cardiac dilatation, thinned myocardial walls, 

decreased functionality, severe heart failure, and the GATA-4/GATA-6 deleted mice died 

by 4 months of age (157). Because GATA-6 deleted mice remain viable, whereas GATA-

4/GATA-6 deleted mice are not, this suggests that GATA-4 may be compensating for 

GATA-6, in a failed attempt to restore normal cardiac growth, which is similar to our 

findings that NFATc1 and GATA-4 are striving to compensate for a mutant NFATc2.   

In parallel with our finding that both NFATc1 and GATA-4 have higher nuclear 

levels in the absence of functional NFATc2, we observed that GSK3-β was significantly 

downregulated, whereas the expression of p38, ERK1/2 and JNK were unchanged in the 

hearts of NFATc2-/- mice. GSK3 kinase has been previously described as the master 

regulator of growth and death in cardiac myocytes because of its ability to counter and 

reverse stress-induced cardiac hypertrophy and failure (158). Haq et al. (100) identified 

that GSK3-β was phosphorylated on Ser9, thereby inhibiting GSK3-β activity, in 

response to endothelin-1 (ET-1) in cultured cardiomyocytes. In addition, a mutation of 

GSK3-β Ser9Ala was sufficient to prevent phenylephrine (PE) and ET-1-induced 
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cardiomyocyte hypertrophy and sarcomere rearrangement (100). In addition, Antos et al. 

(140) showed that transgenic mice overexpressing GSK3-β in the heart were resistant to 

isoproterenol, pressure overload and CnA*-induced cardiac hypertrophy.  Furthermore, 

stimulation of cardiomyocytes with β-adrenergic receptor agonists promoted GSK3-β-

mediated nuclear export of GATA-4, suggesting that GATA-4 was a key downstream 

target of GSK3-β (101). The lowered protein expression of GSK3-β found in the hearts of 

NFATc2-/- mice is in agreement to the increased nuclear presence of both GATA-4 and 

NFATc1, which further suggests that signaling which promotes cardiac hypertrophy and 

failure are activated in NFATc2-/- mice.  

Based to the observed increased GATA-4 nuclear presence, we speculated the 

expression of p38 and ERK protein kinases would be increased in NFATc2-/- mice, 

because of their role in mediating the phosphorylation of Ser105 of GATA-4, which 

promotes increased DNA binding activity in response to cardiac hypertrophy stimulation 

(98,99,159). ERK is proposed to be a regulator of basal GATA-4 activity; whereas both 

p38 and ERK activate GATA-4 when stimulated with endothelin-1 (93). Although we did 

not observe any changes in expression of total ERK or p38 protein expression, there 

exists additional, unknown mechanisms, other than ERK and p38, that could potentially 

regulate GATA-4 Ser105 phosphorylation (93). Arceci et al. (146) have identified that 

GATA-4 contains at least six other serine residues which could be targets of the MAPK 

or other regulatory mechanisms to control the cellular localization and DNA binding 

activity of GATA-4. In addition to total ERK and p38 expression, future experiments 

consist of monitoring the expression of activated phospho-ERK1/2 (Thr202/Tyr 204, 

Thr185/Tyr187) and phospho-p38 (Thr180/Tyr182). It is noteworthy to also monitor 
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upstream regulators of the MAPK, with specific emphasis on MAPK kinase kinases 

(MEKK and Raf) and MAPK kinases (MEK1/2, MKK3/6 and MKK4/7), which in turn 

phosphorylate and activate the MAPK (135).  

 

Stress-induced cardiac growth of NFATc2-/- mice leads to alterations in fetal gene 
expression and growth mediated-signaling 

Because some changes in signaling are minimal or absent in normotensive hearts, 

we stimulated cardiac hypertrophy in mice using Ang II. As observed in normotensive 

hearts, the HW/BW ratio of adult 6 month old Ang II-infused NFATc2-/- mice was 

similar that of Ang II-infused wild-type mice, which differs from previous work showing 

that younger 1-2 month old Ang II-infused NFATc2-/- mice displayed a HW/BW ratio 

that was significantly lower than wild-type counterparts (143). The Ang II-infused adult 

NFATc2-/- mice also displayed a much thinner right ventricular wall and increased left 

ventricular inner chamber diameter, compared to the hearts of normotensive adult 

NFATc2-/- mice, which suggests that by imposing increased cardiac workload, adult 

NFATc2-/- mice are more likely be subjected to severe heart failure.    

We expected that the transcript expression of β-MyHC, ANP and BNP would be 

increased in Ang II-stimulated adult NFATc2-/- mice, which would suggest of that these 

mice are more vulnerable to cardiac disease. Our results were unexpected because 

although we observed increased β-MyHC expression, ANP expression was unchanged 

and BNP expression was lowered in Ang II-infused NFATc2-/- mice. The regulatory 

mechanisms that control the expression of cardiac fetal genes is complex and remains 

poorly understood. Yokota et al. (160) first proposed that hypertension-induced cardiac 
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hypertrophy, α and β-MyHC isoform conversion and the production and secretion of 

natriuretic peptides were differentially regulated based on the location of the heart and 

stage of heart failure. One report has shown that aldosterone-stimulated cardiac 

hypertrophy did not induce an α-to-β-MyHC conversion in rat hearts (161). Furthermore, 

ANP and BNP are differentially regulated, in which ANP plasma levels are increased in 

both compensatory cardiac hypertrophy and overt heart failure, which is indicative of 

atrial hemodynamic overload (162). Alternatively, BNP plasma levels are increased only 

in overt heart failure, which is reflective of ventricular hypertrophy and heart failure. As a 

major structural protein in the myocardial sarcomeric contractile unit, β-MyHC is thought 

to be a more representative indirect marker of pathological cardiac hypertrophy and 

failure (163). Abraham et al. (163) found that β-MyHC transcript expression 

incrementally declined when treating patients with idiopathic dilated cardiomyopathy 

with β-blockers, whereas ANP expression decreased in both placebo and β-blocker 

treated groups. This indicates that ANP responds non-specifically to the method of 

treatment and that the regulation of other cardiac fetal genes is controlled by a separate 

mechanism from the cardiac MyHC isoforms.  

Because we found that β-MyHC was the only cardiac fetal gene tested to be 

upregulated in Ang II-infused NFATc2-/- mice, it suggests that NFATc2-/- mice may 

have defective contractile proteins, which would compromise its ability to properly 

contract. Because we aren’t seeing this change in normotensive hearts, it supports our 

hypothesis that GATA-4 and NFATc1 are attempting to accommodate for the absence of 

functional NFATc2. However, once the hearts of NFATc2-/- mice are hypertrophied with 
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Ang II, we see changed in contractile protein expression, which suggest that these hearts 

are more likely to fail.  

Our preliminary data suggested that GATA-4 protein expression had a tendency 

to be upregulated in the Ang II-infused wild-type mice, but decreased in Ang II-infused 

NFATc2-/- mice, with respect to unstimulated hearts. This observation suggests that 

GATA-4 can compensate in normotensive hearts for a mutant NFATc2 by attempting to 

promote cardiomyocyte growth. Upon imposing a greater cardiac workload on these 

mice, GATA-4 transcriptional activity is shut down, causing increased likelihood of heart 

failure and cell death in NFATc2-/- mice. Furthermore, we observed that activated AKT 

tended to be increased in the hearts of Ang II-infused wild-type mice but decreased in the 

hearts of Ang II-infused NFATc2-/- mice, which suggests an inactivation of translational-

mediated cardiac growth in NFATc2-/- mice. Interestingly, we observed no change in 

phospho-eIF2α protein expression in Ang II-infused NFATc2-/- mice, which reinforces 

our findings that growth-mediated mechanisms are shut down in the heart once NFATc2-

/- mice are subjected to increased cardiac workload, which disposes these mice to heart 

failure and death. Biswas et al. (164) have recently shown that Cn could mediate the de-

phosphorylation of eIF6, another eukaryotic initiation factor, promoting its nuclear 

shuttling which leads to the biogenesis of the 60S ribosome. It would be interesting to 

monitor changes in eIF6 expression, where we hypothesize that its expression would also 

be decreased in Ang II-infused NFATc2-/- mice, supporting our hypothesis of 

translational silencing in these mice.  

Because AKT has multi-functional roles in numerous biological processes, this 

decrease in activated AKT expression in the hearts of Ang II-infused NFATc2-/- could be 



 

 
 

67

affecting other branches of IGF-1/AKT pathway (165). Apart from proliferation, protein 

synthesis, transcription and cell survival, AKT is a known regulator of protein 

degradation, where activated AKT mediates the phosphorylation of the Forkhead family 

of transcription factors (FOXO). In its unphosphorylated state, FOXO induced the 

transcription of ubiquitin ligases Murf-1 and atrogin-1, leading to muscle degeneration. 

Upon phosphorylation by AKT, FOXO transcription factors are exported from the 

nucleus, thereby inhibiting protein degradation and muscle breakdown (166). This could 

suggest that decreased phospho-AKT expression in Ang II-infused NFATc2-/- mice 

could also contribute to increased muscle atrophy in the hearts of adult NFATc2 hearts, 

causing increased fibrosis, cell damage and eventually cell death. 

 The data presented in this study suggest an uncharacterized yet necessary role for 

the NFATc2 transcription factor for normal heart contractile function and cardiac 

biochemical signaling required for non-pathophysiological changes. Both normotensive 

and Ang II-stimulated NFATc2-/- mice were subjected to increased left ventricular inner 

chamber dilation and thinning of the right ventricular wall, a characteristic we believe is 

associated with the inability of NFATc1 and GATA-4 to fully compensate for the 

absence of functional NFATc2 in the heart, leading to eventual heart failure. Although 

our results provide further evidence towards clarifying our understanding of the Cn-

NFATc2 pathway in the mediation of heart failure in adult mice, there is still much to be 

explored about this branch of Cn-mediated cardiac hypertrophy. Bourajjaj et al. (143) 

proposed that because the hearts of young 1-2 month old NFATc2-/- or NFATc3-/- mice 

are either totally or partially impaired in their ability to grow in response to Cn-mediated 

hypertrophy, a combined NFATc2c3-/- mouse would display an even more complete 
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inhibition to hypertrophy. Unpublished results from our lab show that the HW/BW of 

NFATc3-/- mice is the same as wild-type mice (4.711±0.336 vs 5.513±0.131) whereas 

adult NFATc2c3-/- mice display a significantly higher HW/BW ratio compared to wild-

type animals (7.200±0.961 vs 5.153±0.131). This suggests that other transcription factors 

do not adequately compensate for a combinatorial deletion of NFATc2 and NFATc3, 

which would cause severe heart failure in these mice.  

 There are many signaling effectors that can regulate both physiological and 

pathophysiological cardiac growth and it is difficult to identify which other pathways 

could be activated or inactivated in the NFATc2-/- mouse model. An interesting pathway 

to investigate in NFATc2-/- mice would be the Ca2+/CaM dependent kinases (CaMK) 

because it is likely that a disruption of Cn-NFATc2 signaling may be compensated by a 

parallel branch of the Ca2+/CaM pathway. Transgenic mice overexpressing CaMKII in 

the heart are subjected to cardiac hypertrophy, which is likely caused by increased 

dissociation and nuclear export of class II histone deacetylases (HDAC) from the DNA, 

allowing MEF-2 and other transcription factors to bind DNA more readily to compensate 

for the absence of NFATc2 (93,167-169). Another interesting transcription factor to 

study is CREB, which is a known regulator of cardiac hypertrophy (115). Upon 

phosphorylation of Ser133 by PKA, CREB can initiate its transactivation activities in the 

nucleus. It is hypothesized, from unpublished work in our lab, that CREB is responsible 

for activating the switch to a less energy efficient muscle program, in which we would 

expect higher phospho-CREB (Ser133) nuclear presence in NFATc2-/- mice, based on 

the idea that these mice are more likely to undergo heart failure.   
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 Our work provides evidence that normal Cn-NFAT signaling has a crucial role in 

the normal function of the adult heart, which is contrary to the general understanding that 

Cn signaling is responsible cardiac disorders, heart failure and sudden death. 

Physiological and biochemical signaling alterations in the hearts of NFATc2-/- mice 

indicate that these mice are susceptible to disease, which provides us with further insights 

towards understanding the importance of the Cn-NFATc2 pathway in the adult heart.    
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Chapter 3: Conclusion 

As one of the best characterized mediators of pathological cardiac hypertrophy and 

heart failure, research to better understand how alterations in the Cn-NFAT pathway affect 

the heart is the focus of many labs across the globe. We provide evidence that NFATc1 and 

GATA-4 compensate for the absence of functional NFATc2 in adult mice, however these 

transcription factors cannot fully restore normal cardiomyocyte growth, predisposing these 

mice to heart failure. This is evidenced by NFATc2-/- mice models displayed left 

ventricular inner chamber dilatation and a thinner right ventricular wall. In addition, Ang 

II-infused NFATc2-/- mice displayed an inactivation of transcriptional and translational 

mechanisms, and changes in β-MyHC gene expression, indicative of contractility defects, 

severe heart failure and increased cell damage. Based on these findings, we propose that 

normal Cn-NFAT signaling may have a beneficial role in maintaining normal heart 

physiology and biochemical signaling in adult mice, which is contrary to the idea that the 

Cn-NFAT pathway induces only heart disease, pathological cardiac hypertrophy, and overt 

heart failure in adulthood.  

By identifying that NFATc2 plays a major role in the heart, it is interesting to 

pursue further work in NFATc2-/- mice to gain further of understanding of cross talk 

between growth signaling pathways, such as IGF-1/AKT, myostatin, and CaMK/CREB in 

the heart. This would advance our understanding of the roles that these proteins have in the 

progression of heart disease and failure at the molecular level. In addition, further work in 

these pathways would provide increased opportunities to develop biochemical and 

pharmacological treatments to prevent or completely reverse pathologically hypertrophied 

hearts, which may restore normal heart function and quality of life. 
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Appendix I: Experimental Animals 

Animal Genotype D.O.B Extracted HW (mg)  BW (g)  Experiment 
X6-1 WT 25/05/2009 12/04/2010 231.0 35.2 WC 
N112-2 KO 19/05/2009 12/04/2010 233.5 34.2 WC  
BalbC WT 20/06/2008 23/06/2009 111.7 N/A WC  
N99-1 KO 06/08/2008 23/06/2009 134.4 28.0 WC  
X15-5 WT 03/03/2010 04/10/2010 142.0 31.4 WC  
N123-2 KO 10/02/2010 04/10/2010 130.4 30.0 WC  
BalbC-1 WT R.B 14/04/2009 135.1 25.5 WC  
N95-2 KO 18/02/2008 27/03/2009 154.4 32.5 WC  
BalbC-2 WT R.B 14/04/2009 129.7 25.0 WC  
N95-3 KO 19/02/2008 27/02/2008 157.4 33.0 WC  
BalbC-2 WT 18/02/2010 24/09/2010 136.4 24.0 WC AngII  
N121-1 KO 09/02/2010 24/09/2010 122.8 24.0 WC AngII  
BalbC-4 WT 18/02/2010 24/09/2010 117.3 21.0 WC AngII  
N120-1 KO 04/01/2010 24/09/2010 176.2 30.0 WC AngII  
BalbC-1 WT 03/03/2010 24/09/2010 128.2 25.0 WC AngII  
N120-2 KO 04/01/2010 24/09/2010 162.1 30.0 WC AngII  
BalbC-55 WT 11/08/2009 18/12/2009 136.9 30.0 C/N  
N113-1 KO 31/08/2009 10/12/2009 120.8 28.0 C/N  
BalbC-52 WT 11/08/2009 18/12/2009 135.2 31.0 C/N  
N113-2 KO 31/08/2008 10/12/2009 131.4 28.0 C/N  
BalbC-3 WT R.B 14/04/2009 147.3 29.6 C/N  
NN20-1 KO/WT 07/04/2008 27/03/2009 136.4 28.0 C/N  
BalbC.1 WT 12/08/2009 26/05/2010 129.5 27.2 IP 
N111-1 KO 19/05/2009 26/05/2010 139.0 27.5 IP 
BalbC.2 WT 12/08/2009 26/05/2010 116.5 26.2 IP 
N111-3 KO 19/05/2009 26/05/2010 110.6 25.5 IP 
BalbC.3 WT 12/08/2009 26/05/2010 120.3 24.1 IP 
N111-4 KO 19/05/2009 26/05/2010 110.8 26.8 IP 
BalbC WT R.B 25/05/2009 116.5 26.0 RNA 
N102-1 KO 28/12/2008 25/05/2009 133.3 28.0 RNA 
K36-2 WT 02/09/2008 12/05/2009 185.2 37.0 RNA 
N98-1 KO 06/08/2008 12/05/2009 176.1 38.0 RNA 
X1-1 WT 12/08/2009 22/02/2010 141.0 31.2 RNA 
N115-2 KO 19/10/2009 22/02/2010 127.3 27.0 RNA 
BalbC WT 15/07/2008 13/02/2009 158.9 35.0 RNA 
N96-6 KO 01/06/2008 13/02/2009 129.1 27.8 RNA 
BalbC-2 WT 03/03/2010 24/09/2010 140.0 22.5 AngII RNA 
N122-1 KO 16/02/2010 04/11/2010 133.5 23.5 AngII RNA 
BalbC-3 WT 10/02/2010 09/08/2010 148.7 25.5 AngII RNA 
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N122-2 KO 16/02/2010 04/11/2010 126.7 27.5 AngII RNA 
BalbC-4 WT 03/03/2010 24/09/2010 136.2 21.7 AngII RNA 
N122-4 KO 16/02/2010 04/11/2010 147.1 26.0 AngII RNA 
X7-1 WT 25/11/2009 03/08/2010 N/A 35.5 Histology 
N119-1 KO 04/01/2010 04/08/2010 N/A 35.0 Histology 
X8-1 WT 03/12/2009 03/08/2010 N/A 36.5 Histology 
N117-2 KO 31/12/2009 04/08/2010 N/A 28.0 Histology 
X8-2 WT 03/12/2009 03/08/2010 N/A 37.0 Histology 
N117-3 KO 31/12/2009 04/08/2010 N/A 29.0 Histology 

 

D.O.B: Date of Birth 

HW: Heart Weight 

BW: Body Weight 

R.B: Retired Breeder 

WC: Whole Cell Protein Extraction 

C/N: Cytoplasmic/Nuclear Protein Extraction 

IP: Immunoprecipitation 
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Appendix II: PCR Primer Sequences 

 

Gene Forward Primer Reverse Primer Size   
(bp) 

NFATc1 5’-ttccagcaccttcggaagggtgc-3’ 5’-agtgagccctgtggtgagac -3’ 205 

NFATc2 5’-tctgctgttctcatggatgccc-3’ 5’-ggatgcagtcacagggatgct-3’ 282 

NFATc3 5’-cgatctgctcaagaactccc-3’ 5’-ggcagatgtaactgctgggt-3’ 246 

NFATc4 5’-ctgaggatcgaggtacagcc-3’ 5’-ttgttctctgggagcaaggt -3’ 293 

GATA-4 5’-gatgacttctcagaaggcag-3’ 5’-catggagcttcatgtagagg-3’ 283 

GSK-3β 5’-tgtgattctggagaactggttgccat-3’ 5’-ggacgtgtaatcagtggctccaaagatc-3’ 483 

CK-1α 5’-gtacagagacaacaggacaa-3’ 5’-caacaggagtggacatcttc-3’ 248 

JNK-2 5’-ctctggagcccaaggaattgtttgt-3’ 5’-agtcaaggatcttgagggtacagtctga-3’ 410 

p38-1α 5’-ccagagatcatgctgaattgg-3’ 5’-tgatcctcttatctgagtcc -3’ 322 

ERK1 5’-gctttctgacggagtatgtg-3’ 5’-atgcaattaaggtcctcctg-3’ 220 

ERK2 5’-ccattcagctaacgttctgc-3’ 5’-atagcatctctgccaggatg-3’ 248 

β-MyHC 5’-gccaacaccaacctgtccaagttc-3’ 5’-tgcaaaggctccaggtctgagggc-3’ 205 

ANP 5’-ttggcttccaggccataattg-3’ 5’-aagagggcagatctatcgga-3’ 282 

BNP 5’-atggatctcctgaaggtgct-3’ 5’-tcttgtgcccaaagcagctt-3’ 505 

28S 5’-ttgttgccatggtaatcctgctcagtacg-3’ 5’-tctgacttagaggcgttcagtcataatccc-3’ 132 
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Appendix III: PCR Quantification Data 

             NFATc1:28S 
 Raw value Normalized 

Balbc 0.428 1 
N102-1 0.402 0.939252336 
K36-2 0.396 1 
N98-1 0.378 0.954545455 
Balbc 0.485 1 
N115-2 0.623 1.284536082 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.059444624 
Variance 0 0.038058093 
Observations 3 3 
Pooled Variance 0.01902905  
Hypothesized Mean Difference 0  
Df 4  
t Stat -0.5277761  
P(T<=t) one-tail 0.31278771  
t Critical one-tail 2.13184678  
P(T<=t) two-tail 0.62557543  
t Critical two-tail 2.77644511   

 

 

           NFATc2:28S 
 Raw data Normalized 

Balbc 1.924 1 
N102-1 2.143 1.113825364 
K36-2 1.91 1 
N98-1 1.427 0.747120419 
Balbc 0.408 1 
N115-2 0.433 1.06127451 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 0.974073431 
Variance 0 0.03932115 
Observations 3 3 
Pooled Variance 0.01966058  
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Hypothesized Mean Difference 0  
df 4  
t Stat 0.22646056  
P(T<=t) one-tail 0.41597258  
t Critical one-tail 2.13184678  
P(T<=t) two-tail 0.83194515  
t Critical two-tail 2.77644511   

 

 

          NFATc3:28S 
 Raw data Normalized 

Balbc 2.12 1 
N102-1 2.12 1 
K36-2 2.34 1 
N98-1 1.49 0.636752137 
Balbc 1.62 1 
N115-2 1.66 1.024691358 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 0.887147832 
Variance 0 0.047175919 
Observations 3 3 
Pooled Variance 0.023588  
Hypothesized Mean Difference 0  
df 4  
t Stat 0.8999334  
P(T<=t) one-tail 0.2095185  
t Critical one-tail 2.1318468  
P(T<=t) two-tail 0.419037  
t Critical two-tail 2.7764451   

 

 

           NFATc4:28S 
 Raw data Normalized 

Balbc 0.426 1 
N102-1 0.329 0.772300469 
K36-2 0.565 1 
N98-1 0.732 1.295575221 
Balbc 0.728 1 
N115-2 0.514 0.706043956 
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t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 0.924639882 
Variance 0 0.104292251 
Observations 3 3 
Pooled Variance 0.05214613  
Hypothesized Mean Difference 0  
df 4  
t Stat 0.40418126  
P(T<=t) one-tail 0.35337854  
t Critical one-tail 2.13184678  
P(T<=t) two-tail 0.70675707  
t Critical two-tail 2.77644511   

 

 

            GATA-4:28S 
 Raw value Normalized 

Balbc 2.11818182 1 
N96-6 2.22101449 1.048547615 
Balbc 1.98333333 1 
N102-1 1.5 0.756302521 
K36-2 2.61888112 1 
N98-1 2.21328671 0.845126836 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 0.883325657 
Variance 0 0.022446161 
Observations 3 3 
Pooled Variance 0.01122308  
Hypothesized Mean Difference 0  
df 4  
t Stat 1.34885403  
P(T<=t) one-tail 0.12434371  
t Critical one-tail 2.13184678  
P(T<=t) two-tail 0.24868742  
t Critical two-tail 2.77644511   
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            GSK3-β:28S 
 Raw data Normalized 

Balbc 0.40022422 1 
N102-1 0.31550218 0.788313579 
K36-2 0.32653061 1 
N98-1 0.35623679 1.090975159 
Balbc 0.20848375 1 
N115-2 0.37399031 1.793858269 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.224382335 
Variance 0 0.266128137 
Observations 3 3 
Pooled Variance 0.13306407  
Hypothesized Mean Difference 0  
df 4  
t Stat -0.7533623  
P(T<=t) one-tail 0.24657354  
t Critical one-tail 2.13184678  
P(T<=t) two-tail 0.49314708  
t Critical two-tail 2.77644511   

 

 

          CK-1α:28S 
 Raw data Normalized 

Balbc 0.4246862 1 
N102-1 0.2227074 0.524404672 
K36-2 1.2209302 1 
N98-1 1.1 0.900952381 
Balbc 0.4055375 1 
N115-2 0.5 1.232931727 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.658220073 
Variance 0 2.450501678 
Observations 3 3 
Pooled Variance 1.2252508  
Hypothesized Mean Difference 0  
df 4  
t Stat -0.7282898  



 

 
 

84

P(T<=t) one-tail 0.2533911  
t Critical one-tail 2.1318465  
P(T<=t) two-tail 0.5067822  
t Critical two-tail 2.7764509   

 

 

              JNK-2:28S 
 Raw data Normalized 

Balbc 0.326335878 1 
N102-1 0.362416107 1.110561639 
K36-2 0.3608 1 
N98-1 0.3655 1.013026608 
Balbc 0.4264 1 
N115-2 0.3775 0.885318949 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.002969065 
Variance 0 0.012759433 
Observations 3 3 
Pooled Variance 0.006379716  
Hypothesized Mean Difference 0  
df 4  
t Stat -0.045526545  
P(T<=t) one-tail 0.482934914  
t Critical one-tail 2.131846486  
P(T<=t) two-tail 0.965869828  
t Critical two-tail 2.776450856   

 

 

            p38-1α:28S 
 Raw data Normalized 

Balbc 0.111635 1 
N102-1 0.181319 1.624206779 
K36-2 0.602326 1 
N98-1 0.623684 1.035460272 
Balbc 0.191489 1 
N115-2 0.109037 0.569417158 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 
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Mean 1 1.076361403 
Variance 0 0.279399963 
Observations 3 3 
Pooled Variance 0.1397  
Hypothesized Mean Difference 0  
df 4  
t Stat -0.25022  
P(T<=t) one-tail 0.407372  
t Critical one-tail 2.131846  
P(T<=t) two-tail 0.814744  
t Critical two-tail 2.776451   

 

 

            ERK1:28S 
 Raw data Normalized 

Balbc 1.025641 1 
N102-1 0.66 0.6435 
K36-2 1.66875 1 
N98-1 1.636612 0.980741 
Balbc 0.55119 1 
N115-2 0.860179 1.560584 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.061608 
Variance 0 0.215165 
Observations 3 3 
Pooled Variance 0.107583  
Hypothesized Mean Difference 0  
df 4  
t Stat -0.23005  
P(T<=t) one-tail 0.414671  
t Critical one-tail 2.131846  
P(T<=t) two-tail 0.829342  
t Critical two-tail 2.776451   

 

 

           ERK2:28S 
 Raw data Normalized 

Balbc 1.257813 1 
N102-1 1.325243 1.053609 
K36-2 3.056 1 
N98-1 2.837607 0.928536 
Balbc 0.586134 1 
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N115-2 1.323529 2.258065 
 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.413403 
Variance 0 0.539 
Observations 3 3 
Pooled Variance 0.2695  
Hypothesized Mean Difference 0  
df 4  
t Stat -0.9753  
P(T<=t) one-tail 0.192317  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.384635  
t Critical two-tail 2.776445   

 

 

                              ANP:28S 
     Non-stimulated        Angiotensin II 

  Raw Data   Raw Data 
Balbc 0.25 BalbC-2 0.376687 
N102-1 0.33651551 N122-1.2 0.509662 
K36-2 0.16359773 BalbC-3 0.546203 
N98-1 0.15633245 N122-2.2 0.543316 
Balbc 0.24224022 BalbC-4 0.503484 
N115-2 0.3 N122-4.2 0.524876 

 

Non-stimulated NFATc2:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.25483788 0.264282656 
Variance 0.00631222 0.00907328 
Observations 3 3 
Pooled Variance 0.00769275  
Hypothesized Mean Difference 0  
df 4  
t Stat -0.1318853  
P(T<=t) one-tail 0.45072141  
t Critical one-tail 2.13184678  
P(T<=t) two-tail 0.90144282  
t Critical two-tail 2.77644511   
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Angiotensin II WT:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.21861265 0.475458 
Variance 0.002285034 0.007773 
Observations 3 3 
Pooled Variance 0.005029005  
Hypothesized Mean Difference 0  
df 4  

t Stat 
-

4.435844281  
P(T<=t) one-tail 0.005685224  
t Critical one-tail 2.131846782  
P(T<=t) two-tail 0.011370448  
t Critical two-tail 2.776445105   

 

Angiotensin II NFATc2:Non-stimulated NFATc2 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.264283 0.525951 
Variance 0.009073 0.000284 
Observations 3 3 
Pooled Variance 0.004679  
Hypothesized Mean Difference 0  
df 4  
t Stat -4.68529  
P(T<=t) one-tail 0.004705  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.009411  
t Critical two-tail 2.776445   

 

Angiotensin II NFATc2:Angiotensin II WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.475458 0.525951 
Variance 0.007773 0.000284 
Observations 3 3 
Pooled Variance 0.004028  
Hypothesized Mean Difference 0  
df 4  
t Stat -0.97433  
P(T<=t) one-tail 0.192532  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.385064  
t Critical two-tail 2.776445   
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                            β-MyHC:28S 
    Non-stimulated      Angiotensin II 

  Raw Data   Raw Data 
Balbc 0.40642077 BalbC-2 0.958282 
N102-1 0.40811456 N122-1.2 1.211353 
K36-2 0.65864023 BalbC-3 0.66962 
N98-1 0.49208443 N122-2.2 1.125134 
Balbc 0.33873144 BalbC-4 0.941928 
N115-2 0.25647059 N122-4.2 1.464552 

 

Non-stimulated NFATc2:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.46793081 0.385556526 
Variance 0.02842302 0.01426012 
Observations 3 3 
Pooled Variance 0.02134157  
Hypothesized Mean Difference 0  
df 4  
t Stat 0.69059607  
P(T<=t) one-tail 0.2639014  
t Critical one-tail 2.13184678  
P(T<=t) two-tail 0.5278028  
t Critical two-tail 2.77644511   

 

Angiotensin II WT:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.467930812 0.85661 
Variance 0.028423022 0.026291 
Observations 3 3 
Pooled Variance 0.027356902  
Hypothesized Mean Difference 0  
df 4  
t Stat -2.878085098  
P(T<=t) one-tail 0.02254996  
t Critical one-tail 2.131846782  
P(T<=t) two-tail 0.04509992  
t Critical two-tail 2.776445105   

 

Angiotensin II NFATc2:Non-stimulated NFATc2 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 
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Mean 0.385557 1.267013 
Variance 0.01426 0.031125 
Observations 3 3 
Pooled Variance 0.022692  
Hypothesized Mean Difference 0  
df 4  
t Stat -7.16648  
P(T<=t) one-tail 0.001004  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.002007  
t Critical two-tail 2.776445   

 

Angiotensin II NFATc2:Angiotensin II WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.85661 1.267013 
Variance 0.026291 0.031125 
Observations 3 3 
Pooled Variance 0.028708  
Hypothesized Mean Difference 0  
df 4  
t Stat -2.96658  
P(T<=t) one-tail 0.020642  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.041284  
t Critical two-tail 2.776445   

 

 

                                BNP:28S 
      Non-stimulated       Angiotensin II 

  Raw Data   Raw Data 
Balbc 0.04166667 BalbC-2 0.206748 
N102-1 0.18019093 N122-1.2 0.152174 
K36-2 0.1203966 BalbC-3 0.225316 
N98-1 0.09894459 N122-2.2 0.169519 
Balbc 0.0802969 BalbC-4 0.216028 
N115-2 0.11647059 N122-4.2 0.192786 

 

Non-stimulated NFATc2:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.08078672 0.131868703 
Variance 0.00154978 0.001828068 
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Observations 3 3 
Pooled Variance 0.00168892  
Hypothesized Mean Difference 0  
df 4  
t Stat -1.5223281  
P(T<=t) one-tail 0.10129281  
t Critical one-tail 2.13184678  
P(T<=t) two-tail 0.20258561  
t Critical two-tail 2.77644511   

 

Angiotensin II WT:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.080786721 0.216031 
Variance 0.001549781 8.62E-05 
Observations 3 3 
Pooled Variance 0.000817987  
Hypothesized Mean Difference 0  
df 4  
t Stat -5.791502237  
P(T<=t) one-tail 0.0022091  
t Critical one-tail 2.131846782  
P(T<=t) two-tail 0.004418201  
t Critical two-tail 2.776445105   

 

Angiotensin II NFATc2:Non-stimulated NFATc2 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.131869 0.171493 
Variance 0.001828 0.000415 
Observations 3 3 
Pooled Variance 0.001122  
Hypothesized Mean Difference 0  
df 4  
t Stat -1.44902  
P(T<=t) one-tail 0.110459  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.220918  
t Critical two-tail 2.776445   

 

Angiotensin II NFATc2:Angiotensin II WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 
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Mean 0.216031 0.171493 
Variance 8.62E-05 0.000415 
Observations 3 3 
Pooled Variance 0.000251  
Hypothesized Mean Difference 0  
df 4  
t Stat 3.444901  
P(T<=t) one-tail 0.013088  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.026176  
t Critical two-tail 2.776445   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

92

Appendix IV: Western Blot Quantification Data 

         GATA-4:α-tubulin 
 Raw value Normalized 

Balbc 0.319205804 1 
NN16-2 0.913907285 2.863066003 
BalbC 1 0.196959459 1 
N95-2 0.778585592 3.953024616 
Balbc 2 0.293008413 1 
N95-3 0.735336608 2.509609196 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 3.108566605 
Variance 0 0.566064928 
Observations 3 3 
Pooled Variance 0.283032464  
Hypothesized Mean Difference 0  
df 4  
t Stat -4.854168274  
P(T<=t) one-tail 0.004157147  
t Critical one-tail 2.131846782  
P(T<=t) two-tail 0.008314293  
t Critical two-tail 2.776445105   

 

 

        GATA-4:GAPDH     GATA-4:Histone H3 
          Cytoplasmic                Nuclear 

  Raw Data Normalized Raw Data Normalized 
Balbc 0.37623 1 1.850746 1 
NN20-1 0.543422 1.44438774 3.200535 1.729321582 
BalbC 53 0.887 1 1.629 1 
N95-2 0.729 0.82187148 2.952 1.812154696 
Balbc 52 1.006 1 1.715 1 
N95-3 0.66 0.65606362 2.659 1.550437318 
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Cytoplasmic Fraction 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 0.97410761 
Variance 0 0.17274561 
Observations 3 3 
Pooled Variance 0.086373  
Hypothesized Mean Difference 0  
df 4  
t Stat 0.107902  
P(T<=t) one-tail 0.459635  
t Critical one-tail 2.131846  
P(T<=t) two-tail 0.919269  
t Critical two-tail 2.776451   

 

Nuclear Fraction 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.697304532 
Variance 0 0.017892815 
Observations 3 3 
Pooled Variance 0.008946  
Hypothesized Mean Difference 0  
df 4  
t Stat -9.02909  
P(T<=t) one-tail 0.000417  
t Critical one-tail 2.131846  
P(T<=t) two-tail 0.000833  
t Critical two-tail 2.776451   

 

 

         GSK3-β:α-tubulin 
 Raw value Normalized 

Balbc 1.082 1 
N112-1 0.9054 0.836783734 
BalbC 1 1.197 1 
N95-2 0.8714 0.727986633 
Balbc 2 1.327 1 
N95-3 0.9843 0.741748304 
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t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 0.768839557 
Variance 0 0.003509654 
Observations 3 3 
Pooled Variance 0.001754827  
Hypothesized Mean Difference 0  
df 4  
t Stat 6.758370206  
P(T<=t) one-tail 0.001249919  
t Critical one-tail 2.131846486  
P(T<=t) two-tail 0.002499838  
t Critical two-tail 2.776450856   

 

 

         JNK-2:α-tubulin 
 Raw value Normalized 

X6-1 0.21298 1 
N112-2 0.254912 1.19688538 
BalbC  0.215696 1 
N99-1 0.291164 1.34987925 
Balbc 2 0.208732 1 
N95-3 0.121924 0.58411706 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.04362723 
Variance 0 0.16421398 
Observations 3 3 
Pooled Variance 0.082107  
Hypothesized Mean Difference 0  
df 4  
t Stat -0.18647  
P(T<=t) one-tail 0.430575  
t Critical one-tail 2.131846  
P(T<=t) two-tail 0.86115  
t Critical two-tail 2.776451   
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         ERK1/2:α-tubulin 
 Raw value Normalized 

X6-1 1.87717 1 
N112-2 1.832464 0.97618479 
BalbC  2.111832 1 
N99-1 2.735373 1.295260691 
Balbc 2 3.077399 1 
N95-3 2.187417 0.710800422 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 0.994081968 
Variance 0 0.085638683 
Observations 3 3 
Pooled Variance 0.042819  
Hypothesized Mean Difference 0  
df 4  
t Stat 0.035027  
P(T<=t) one-tail 0.486868  
t Critical one-tail 2.131846  
P(T<=t) two-tail 0.973736  
t Critical two-tail 2.776451   

 

 

        p38-α:α-tubulin 
 Raw value Normalized 

X6-1 0.575434 1 
N112-2 0.766076 1.331301 
BalbC  1.178626 1 
N99-1 1.780998 1.51108 
Balbc 2 0.766254 1 
N95-3 0.724368 0.945336 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.262572 
Variance 0 0.083559 
Observations 3 3 
Pooled Variance 0.04178  
Hypothesized Mean Difference 0  
df 4  
t Stat -1.5733  
P(T<=t) one-tail 0.095379  
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t Critical one-tail 2.131846  
P(T<=t) two-tail 0.190758  
t Critical two-tail 2.776451   

 

 

                                                 GATA-4:α-tubulin 
                          Non-stimulated                          Angiotensin II 

  Raw Data  Normalized   Raw Data  Normalized 
Balbc 0.212496227 1 BalbC-4 0.305983 1.439947507 
N99-1 0.378378378 1.780635749 N120-1 0.37082 1.745064735 
Balbc 1.136585366 1 BalbC-2 1.200784 1.056484053 
N112-2 1.807860262 1.590606668 N121-1 0.874057 0.769020385 

 

Non-stimulated NFATc2:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.09311932 
Variance 0 1.021709228 
Observations 2 2 
Pooled Variance 0.510854614  
Hypothesized Mean Difference 0  
df 2  
t Stat -0.130284016  
P(T<=t) one-tail 0.454131874  
t Critical one-tail 2.91998558  
P(T<=t) two-tail 0.908263748  
t Critical two-tail 4.30265273   

 

Angiotensin II WT:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.24821578 
Variance 0 0.07352211 
Observations 2 2 
Pooled Variance 0.036761  
Hypothesized Mean Difference 0  
df 2  
t Stat -1.2946  
P(T<=t) one-tail 0.162388  
t Critical one-tail 2.919986  
P(T<=t) two-tail 0.324775  
t Critical two-tail 4.302653   
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Angiotensin II NFATc2:Non-stimulated NFATc2 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1.685621 1.25704256 
Variance 0.018056 0.476331287 
Observations 2 2 
Pooled Variance 0.247193  
Hypothesized Mean Difference 0  
df 2  
t Stat 0.86201  
P(T<=t) one-tail 0.239766  
t Critical one-tail 2.919986  
P(T<=t) two-tail 0.479532  
t Critical two-tail 4.302653   

 

Angiotensin II NFATc2:Angiotensin II WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1.248216 1.257043 
Variance 0.073522 0.476331 
Observations 2 2 
Pooled Variance 0.274927  
Hypothesized Mean Difference 0  
df 2  
t Stat -0.01683  
P(T<=t) one-tail 0.494049  
t Critical one-tail 2.919986  
P(T<=t) two-tail 0.988097  
t Critical two-tail 4.302653   

 

 

                                               pAKT(Ser473):Total AKT 
                            Non-stimulated                         Angiotensin II 

  Raw Data Normalized   Raw Data Normalized 
Balbc 0.201530612 1 BalbC-4 0.430414 2.135725764 
N99-1 0.53298153 2.644667847 N120-1 0.238964 1.185745897 
Balbc 0.296714076 1 BalbC-2 0.524614 1.768078911 
N112-2 0.308714919 1.040445817 N121-1 0.243146 0.819462531 

 

Non-stimulated NFATc2:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 
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Mean 1 1.842556832 
Variance 0 1.28676416 
Observations 2 2 
Pooled Variance 0.64338208  
Hypothesized Mean Difference 0  
df 2  
t Stat -1.050424214  
P(T<=t) one-tail 0.201862587  
t Critical one-tail 2.91998558  
P(T<=t) two-tail 0.403725174  
t Critical two-tail 4.30265273   

 

Angiotensin II WT:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.95190234 
Variance 0 0.0675821 
Observations 2 2 
Pooled Variance 0.033791  
Hypothesized Mean Difference 0  
df 2  
t Stat -5.17835  
P(T<=t) one-tail 0.017664  
t Critical one-tail 2.919986  
P(T<=t) two-tail 0.035328  
t Critical two-tail 4.302653   

 

Angiotensin II NFATc2:Non-stimulated NFATc2 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1.842557 1.002604214 
Variance 1.286764 0.067081752 
Observations 2 2 
Pooled Variance 0.676923  
Hypothesized Mean Difference 0  
df 2  
t Stat 1.020905  
P(T<=t) one-tail 0.207344  
t Critical one-tail 2.919986  
P(T<=t) two-tail 0.414687  
t Critical two-tail 4.302653   
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Angiotensin II NFATc2:Angiotensin II WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1.951902 1.002604 
Variance 0.067582 0.067082 
Observations 2 2 
Pooled Variance 0.067332  
Hypothesized Mean Difference 0  
df 2  
t Stat 3.658408  
P(T<=t) one-tail 0.033633  
t Critical one-tail 2.919986  
P(T<=t) two-tail 0.067265  
t Critical two-tail 4.302653   

 

 

                                            peIF2α(Ser51):Total eIF2α 
                           Non-stimulated                            Angiotensin II 

  Raw Data Normalized   Raw Data Normalized 
Balbc 0.113463447 1 BalbC-4 0.120616 1.063041613 
N99-1 0.202443857 1.784220935 N120-1 0.130468 1.149867722 
Balbc 0.492985002 1 BalbC-2 0.23 0.466545633 
N112-2 0.406464251 0.824496179 N121-1 0.17967 0.36445311 

 

Non-stimulated NFATc2:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1 1.304358557 
Variance 0 0.460535804 
Observations 2 2 
Pooled Variance 0.230267902  
Hypothesized Mean Difference 0  
df 2  
t Stat -0.634262178  
P(T<=t) one-tail 0.295390292  
t Critical one-tail 2.91998558  
P(T<=t) two-tail 0.590780583  
t Critical two-tail 4.30265273   

 

Angiotensin II WT:Non-stimulated WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 
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Mean 1 0.76479362 
Variance 0 0.17790373 
Observations 2 2 
Pooled Variance 0.088952  
Hypothesized Mean Difference 0  
df 2  
t Stat 0.788627  
P(T<=t) one-tail 0.256482  
t Critical one-tail 2.919986  
P(T<=t) two-tail 0.512964  
t Critical two-tail 4.302653   

 

Angiotensin II NFATc2:Non-stimulated NFATc2 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 1.304359 0.757160416 
Variance 0.460536 0.308438056 
Observations 2 2 
Pooled Variance 0.384487  
Hypothesized Mean Difference 0  
df 2  
t Stat 0.882478  
P(T<=t) one-tail 0.235304  
t Critical one-tail 2.919986  
P(T<=t) two-tail 0.470608  
t Critical two-tail 4.302653   

 

Angiotensin II NFATc2:Angiotensin II WT 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.764794 0.75716 
Variance 0.177904 0.308438 
Observations 2 2 
Pooled Variance 0.243171  
Hypothesized Mean Difference 0  
df 2  
t Stat 0.015479  
P(T<=t) one-tail 0.494528  
t Critical one-tail 2.919986  
P(T<=t) two-tail 0.989055  
t Critical two-tail 4.302653   
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Appendix V: Immunofluorescene Data 
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                  NFATc1 

 Positive Nuclei/Total Nuclei (%) 
X8-1 13.9 
N117-2 22.9 
X8-2 14.3 
N117-3 21.3 
X7-1 14.9 
N119-1 21.8 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 14.36666667 22 
Variance 0.253333333 0.67 
Observations 3 3 
Pooled Variance 0.461666667  
Hypothesized Mean Difference 0  
df 4  
t Stat -13.75927649  
P(T<=t) one-tail 8.08348E-05  
t Critical one-tail 2.131846486  
P(T<=t) two-tail 0.00016167  
t Critical two-tail 2.776450856   

 

 

                 NFATc2 
 Positive Nuclei/Total Nuclei (%) 

X8-1 7.16 
N117-2 2.74 
X8-2 8.72 
N117-3 4.87 
X7-1 8.54 
N119-1 5.17 
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t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 8.14 4.26 
Variance 0.7284 1.7553 
Observations 3 3 
Pooled Variance 1.24185  
Hypothesized Mean Difference 0  
df 4  
t Stat 4.264251239  
P(T<=t) one-tail 0.006504748  
t Critical one-tail 2.131846486  
P(T<=t) two-tail 0.013009496  
t Critical two-tail 2.776450856   

 

 

                 NFATc3 
 Positive Nuclei/Total Nuclei (%) 

X8-1 10.5 
N117-2 12.3 
X8-2 9.46 
N117-3 7.06 
X7-1 10.4 
N119-1 9.97 

 

t-Test: Two-Sample Assuming Equal Variances  
   

  Variable 1 Variable 2 

Mean 10.12 9.776667 
Variance 0.3292 6.892433 
Observations 3 3 
Pooled Variance 3.610816667  
Hypothesized Mean Difference 0  
df 4  
t Stat 0.221288518  
P(T<=t) one-tail 0.417852642  
t Critical one-tail 2.131846486  
P(T<=t) two-tail 0.835705284  
t Critical two-tail 2.776450856   
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                 NFATc4 
 Positive Nuclei/Total Nuclei (%) 

X8-1 13.4 
N117-2 13.9 
X8-2 9.5 
N117-3 9.35 
X7-1 9.03 
N119-1 8.43 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 10.64333333 10.56 
Variance 5.754633333 8.5783 
Observations 3 3 
Pooled Variance 7.166466667  
Hypothesized Mean Difference 0  
df 4  
t Stat 0.038125175  
P(T<=t) one-tail 0.485707387  
t Critical one-tail 2.131846486  
P(T<=t) two-tail 0.971414775  
t Critical two-tail 2.776450856   
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Appendix VI: Heart Histology Data 

 Left Ventricle Inner Chamber Diameter: Total Heart Diameter 
X8-1 0. 440678 
N117-2 0. 62931 
X8-2 0. 42029 
N117-3 0. 555556 
X7-1 0. 511278 
N119-1 0. 575221 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.457415 0.586696 
Variance 0.00228 0.001459 
Observations 3 3 
Pooled Variance 0.001869  
Hypothesized Mean Difference 0  
df 4  
t Stat -3.66221  
P(T<=t) one-tail 0.010769  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.021538  
t Critical two-tail 2.776445   

 

 

 Right Ventricular  Wall Diameter: Total Heart Diameter 
X8-1 0. 152542 
N117-2 0. 068966 
X8-2 0. 086957 
N117-3 0. 083333 
X7-1 0. 105263 
N119-1 0. 106195 

 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2 

Mean 0.114921 0.086165 
Variance 0.001145 0.000353 
Observations 3 3 
Pooled Variance 0.000749  
Hypothesized Mean Difference 0  
df 4  
t Stat 1.286941  
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P(T<=t) one-tail 0.13377  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.26754  
t Critical two-tail 2.776445   
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