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ABSTRACT

Breast Cancer is one of the most deadly cancers affecting middle–aged women. Accurate diagnosis and prognosis
are crucial to reduce the high death rate. Nowadays there are numerous diagnostic tools for breast cancer
diagnosis. In this paper we discuss a role of nuclear segmentation from fine needle aspiration biopsy (FNA) slides
and its influence on malignancy classification. Classification of malignancy plays a very important role during
the diagnosis process of breast cancer. Out of all cancer diagnostic tools, FNA slides provide the most valuable
information about the cancer malignancy grade which helps to choose an appropriate treatment. This process
involves assessing numerous nuclear features and therefore precise segmentation of nuclei is very important.
In this work we compare three powerful segmentation approaches and test their impact on the classification of
breast cancer malignancy. The studied approaches involve level set segmentation, fuzzy c–means segmentation
and textural segmentation based on co–occurrence matrix.
Segmented nuclei were used to extract nuclear features for malignancy classification. For classification purposes
four different classifiers were trained and tested with previously extracted features. The compared classifiers
are Multilayer Perceptron (MLP), Self–Organizing Maps (SOM), Principal Component–based Neural Network
(PCA) and Support Vector Machines (SVM). The presented results show that level set segmentation yields the
best results over the three compared approaches and leads to a good feature extraction with a lowest average
error rate of 6.51% over four different classifiers. The best performance was recorded for multilayer perceptron
with an error rate of 3.07% using fuzzy c–means segmentation.

Keywords: malignancy grading, nuclear segmentation, Bloom–Richardson scale, breast cancer malignancy
classification

1. INTRODUCTION

Malignancy grading allows doctors to precisely estimate cancer behavior with or without undertaking treatment
and therefore is called a prognostic factor. It plays an important role in breast cancer diagnosis and the ap-
propriate treatment is chosen accordingly to this factor. This is a complicated process that involves assessing
numerous nuclear features that allow for malignancy grading. Cancer malignancy grading is frequently based on
a numeric scale that was introduced by Bloom and Richardson in 1957.1 The grading scheme proposed by the
authors was derived to assess malignancy from histological slides and is now widely used by pathologists to grade
not only histological but also cytological tissue. According to the Bloom and Richardson scheme, malignancy is
evaluated based on three factors. These factors take into consideration different features of the nucleus. Each of
the three factors is evaluated on a three–point scale and based on that evaluation, cancer is assigned one of the
three grades:
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• Grade I - Low malignancy

• Grade II - Intermediate malignancy

• Grade III - High malignancy

These grades are determined as a summation of the awarded points according to Fig. 1 (taken from Bloom and
Richardson1):

Points︷ ︸︸ ︷
3 4 5︸ ︷︷ ︸
GradeI

6 7︸︷︷︸
GradeII

8 9︸︷︷︸
GradeIII

Figure 1. Grade distribution.

When cancer is assigned with one of the three grades, the appropriate treatment is undertaken which assumes
precise estimation of malignancy. Malignancy estimation is a subjective procedure which lacks repeatability.2

To overcome this problem Bloom–Richardson scheme can be converted into a classification problem, where each
class is represented by the cancer malignancy.
In the literature one can find various approaches for breast cancer classification.3–7 Most of these approaches
involve classification of breast cancer to two classes: benign or malignant. Schnorrenberg et al.6 presented an
automated approach to classification of breast cancer from histological slides using receptive fields for nuclear
segmentation. Their algorithm was able to classify these types of images with 28% error. Cheng et al.5,8

presented a parallel approach for grading histological tissue during breast cancer diagnosis. Both of these
approaches are attempts of grading and classifying of histological images. In our work we are concerned with
cytological examination of a breast which is performed before a histological examination. Approaches presented
by Street et al.,3,9 Walker et al.4 and Nezafat et al.10 deal with classification of cytological tissue. To date only
Street et al.3 described an attempt of breast cancer malignancy grading. They also presented a set of nuclear
features that are widely used for classification purposes. Attempts by Nezafat et al. involved testing of different
classifiers on the database provided by Street et al.9 and describing which features are the most discriminatory.
Jeleń et al.7 presented a system for grading of breast cancer malignancy based on level set segmentation of
nuclei from fine needle aspiration biopsies. Level sets have proved their good performance in medical image
segmentation.11,12

In this work we compare three powerful segmentation approaches and test their influence on the classification of
breast cancer malignancy. The compared approaches involve level set segmentation, fuzzy c–means segmentation
and textural segmentation based on co–occurrence matrix. All of the segmentation techniques have been shown
to be effective for segmentation of medical images.13–17 This observation provides motivation for testing their
segmentation quality for breast cancer nuclei extraction. Results of the comparison can be found in section 3
followed by conclusions on the influence of these techniques on malignancy classification results. More detailed
discussion of the images and methods used in this study is presented in section 2.

2. IMAGE SEGMENTATION AND CLASSIFICATION

Classification is a task of assigning an item to a certain category, called a class, based on the characteristic
features of that item. This task in any classification system is performed by a classifier that takes a feature
vector as an input and responds with a category to which the object belongs. A feature vector is a set of features
extracted from the input data. To be able to extract features, the unwanted data from the image has to be
removed. This is where segmentation algorithms are applied. In this study we make use of three segmentation
approaches such as level sets, fuzzy c–means and segmentation based on textural information.
Level sets were first described in 1988 by Osher and Sethian18 as a method for capturing moving fronts. In the
level set formulation, the segmentation problem is equivalent to the computation of a surface Γ(t) that propagates
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in time along its normal direction. The Γ surface is also called a propagating front, which according to Osher
and Sethian18 is embedded as a zero level of a time–varying higher dimensional function φ(x, t):

Γ(t) = {x ∈ R3/φ(x, t) = 0} (1)

An evolution equation for φ, from which we can determine Γ, where Γ is a closed curve in R2, can be written in
a general form as:19

∂φ

∂t
+ F |∇φ| = 0, (2)

The function φ describes a curve defined by φ(x, t) = d, where d is a signed distance between x and the surface
Γ. If x is inside (outside) of Γ then d is negative (positive). Function F is a scalar speed function that depends
on image data and the function φ.
The main drawback of this procedure is that during the evolution, φ can assume sharp or flat shapes. To
overcome this problem φ is initialized as a signed distance function before evolution. Later, during evolution, it
is periodically reshaped to be a signed distance function.11

Here, the approach proposed by Li et al.11 is used. The authors proposed a modification of the traditional
variational level sets of Osher and Sethian18 to overcome the problem of reshaping function φ to be a distance
function within the evolution cycle. They proposed an evolution equation of the form:

∂φ

∂t
= −∂E

∂φ
(3)

where ∂E
∂φ is a Gateaux derivative of the energy function E and is represented by:

∂E
∂φ

= −μ[Δφ− div(
∇φ

|∇φ| )]− λδ(φ)div(g
∇φ

|∇φ| )− νgδ(φ), (4)

where Δ is the Laplacian operator, div is the divergence operator, μ > 0 is a parameter controlling the effect of
penalizing the deviation of φ from a signed distance function, g is an edge indicator function, λ > 0 and ν are
constants.
Another segmentation method taken into consideration is a fuzzy approach of Klir and Yuan20 that can be used
to partition the image information to extract nuclei. In general, a set of data X = {x1, x2, ..., xn} is supposed
to be divided into c clusters with assumption that P = {A1, A2, ..., Ac} is known pseudo–partition where Ai is a
vector of all memberships of xk to cluster i. Now, the centers of the c clusters can be calculated by the following
equation:21

vi =
∑n

k=1[Ai(xk)]mxk∑n
k=1[Ai(xk)]m

, i = 1, 2, ..., c (5)

where m > 1 is a weight that controls the fuzzy membership. The memberships are defined by equation 6 below
if ‖xk − vi‖2 > 0 for all i ∈ {1, 2, ..., c}. If ‖xk − vi‖2 = 0 for some i ∈ I ⊆ {1, 2, ..., c} the memberships are
defined as a nonnegative real number satisfying equation 7 below for i ∈ I.

Ai(xk) = [
c∑

j=1

(
‖xk − vi‖2
‖xk − vj‖2 )

1
m−1 ]−1 (6)

∑
i∈I

Ai(xk) = 1 (7)

The clustering algorithm seeks a set P that minimizes the performance index Jm(P ) which is defined by the
following:

Jm(P ) =
n∑

k=1

c∑
i=1

[Ai(xk)]m‖xk − vi‖2. (8)

The optimal solution to this problem was presented by Bezdek.22 The third segmentation technique we used
was image textural description based on second order statistics to generate grey level co–occurrence texture
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features.23 Here, for a spatial window inside the image the conditional joint probabilities, Cij are calculated
according to the following for all pairwise combinations of grey levels assuming that distances between pixels are
known:

Cij =
Pij∑G−1

i,j=0 Pij

, (9)

where Pij is a frequency of occurrence of two grey levels i and j and G is a number of quantized grey levels. The
probabilities are stored in a gray level co–occurrence matrix, where (i, j) element of the matrix represents the
probability Cij . To identify textures within an image we derive four features from the dependency matrix. The
four features consist of entropy, correlation, inertia (correlation) and energy. These properties are described by
the following equations:

Entropy = −
G−1∑
i,j=0

Cij lnCij , (10)

Contrast =
G−1∑
i,j=0

Cij(i− j)2, (11)

Inertia =
G−1∑
i,j=0

(i− μx)(j − μy)Cij

σxσy
, (12)

Energy =
G−1∑
i,j=0

C2
ij , (13)

where σ is a standard deviation and μ is a mean.
From all compared segmentation techniques fuzzy c–means algorithm doesn’t require any additional processing
and was applied to segment color information in the image. The remaining two techniques require the image to
be converted to gray scale. Textural segmentation uses a typical average conversion to gray scale, where a gray
level value is an average of the RGB channels. Level set segmentation requires an initial contour, called initial
level set, which was obtained by thresholding of the image red channel which provides best information about
nuclear structures out of the three RGB channels. During the staining process nuclei stain with shades purple
and when red channel is extracted all the nuclear features are preserved while the background information is
lost.
Based on the segmentation results five features were extracted: area, perimeter, eccentricity, convexity and
texture measure. Area is calculated as the sum of all pixels of the segmented nucleus. Perimeter is the length
of the nuclear envelope, calculated as length of the polygonal approximation of the boundary. Convexity is
calculated as the ratio of nucleus area and its convex hull,24 which is the minimal area of the convex polygon
that can contain the nucleus. Eccentricity is calculated as the ratio of the distance between the foci of an ellipse,
that has the same second–moments as the extracted nuclei, and its major axis length.
Classifiers used in this study include Multilayer Perceptron (MLP), Self–Organizing Maps (SOM), Principal
Component based Neural Network (PCA) and Support Vector Machines (SVM). MLP is a collection of neurons
(a device with many inputs and one output that are trained to fire, or not, for particular input patterns) that
are connected to one another. Each connection is assigned an initial weight during the training process. These
weights are then adjusted to give a proper answer. The final decision is based on the interaction of weights
and the feature vector. MLP is trained using backpropagation learning algorithm in a supervised manner.25

A backpropagation algorithm adjusts weights of the network by propagating the output layer values of the
network back towards the input layer through all hidden layers. SOMs networks reduce the input space into
representative features with the use of self–organizing neural networks.26 SOMs are trained in an unsupervised
manner to produce a map of similarities of the input data by grouping the similar data items together. PCA
are a combination of supervised and unsupervised trained neural networks. At first principal components are
found in unsupervised manner from input data and then the supervised MLP is used for classification of the
components.27 In SVM the classification process is based on nonlinear transformation of a feature vector into a
higher dimensional space where a separating hyperplane is constructed. During the training process only those
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vectors that are closest to the separating plane are used because they carry the most valuable information about
classification.28

3. RESULTS

This section presents some of the obtained nuclear segmentation results and demonstrates the performance of
the tested classifiers. In the experiments 110 images of fine needle aspirates were used with known malignancy
grades collected at the Department of Pathology of Medical University of Wroc�law, Poland. All of the images
in the database were stained with the Haematoxylin and Eosin technique (HE) which yielded purple and black
stain for nuclei, shades of pink for cytoplasm and orange/red for red blood cells. All the images were obtained
by Olympus BX 50 microscope with mounted CCD–IRIS camera connected to a PC computer with MultiScan
Base 08.98 software.
There were 44 images with high malignancy (G3) and 66 images with intermediate malignancy (G2). The bench-
mark grades were assigned by an expert pathologist. Since 2005 none of the performed biopsies were assigned
with a low malignancy grade, therefore all cases included in the database are graded as intermediate or high
malignancy. Here, each classifier was trained with 30% of all intermediate malignancy cases and 50% of high
malignancy cases. All the remaining cases were used to create a testing set. Examples of the extracted features
for each segmentation technique are presented in Table 1.

Feature
Segmentation

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
technique

Area
Level set 417 506 442 3045 3802 1611
Fuzzy C 288 381 500 12786 8928 11370
Textural 100 288 142 303 187 152

Perimeter
Level set 75 91 82.1 265.5 280 166
Fuzzy C 60 69 77 533 279 353
Textural 33 60 38 61 48 38

Eccentricity
Level set 0.6519 0.7517 0.7012 0.6820 0.8000 0.7000
Fuzzy C 0.6125 0.6435 0.6345 0.6412 0.7342 0.7206
Textural 0.5697 0.6538 0.6701 0.6698 0.5410 0.6002

Convexity
Level set 0.9309 0.9038 0.9085 0.8580 0.8000 0.9000
Fuzzy C 0.9422 0.9533 0.9491 0.9007 0.9561 0.9255
Textural 0.9539 0.9396 0.9743 0.9272 0.9330 0.9677

Texture
Level set 122.4 124 104.6 91.4 60.5 59.1
Fuzzy C 115.8 116.9 108.9 105 71 84
Textural 80.3 86.8 31 32.8 14.4 5.2

BR Grade G3 G3 G3 G2 G2 G2
Table 1. Some of the calculated features along with pathologist grading

From the table we can see the influence of the nuclei representation obtained with all three segmentations on
class separation. Fig. 2 shows the obtained nuclear representations after application of the three compared ap-
proaches. Fig. 3 shows the typical nuclear boundaries calculated during the segmentation process and compares
level set, fuzzy c–means and textural segmentation approaches.

a) b) c) d)
Figure 2. Nuclear boundaries: a) Original, b) obtained with level sets, c) obtained with fuzzy c–means, d) obtained with
textural segmentation.

The presented figures support our findings on influence of segmentation on the feature extraction and further
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a) b)

c) d)
Figure 3. Segmentation results: a) Original, b) obtained with level sets, c) obtained with fuzzy c–means, d) obtained with
textural segmentation.

Classifier
Segmentation technique

Level set Fuzzy c–means Textural

SOM 6.32% 15.66% 25.67%
MLP 6.73% 3.07% 23%
SVM 5.76% 22% 22.58%
PCA 7.22% 16.72% 25.19%

Avg. 6.51% 14.36% 24.11%
Table 2. Recorded error rates

on classification. All classifiers were trained and tested with the previously described features. Classification
performance of all classifiers is summarized in Table 2 and obtained error rates for all tests show that MLP per-
formed best for features extracted from images segmented with fuzzy c–means algorithm while all the remaining
classifiers achieved best performance for images segmented with level sets. This is also reflected by calculated
average performance of each segmentation technique.
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4. CONCLUSIONS

In this work, the influence of different types of nuclear segmentation from fine needle aspiration biopsy images
on breast cancer malignancy classification is presented. Section 2 describes used segmentation techniques and
tested classifiers. The presented results show the behavior of the three segmentation algorithms from which the
following conclusions can be drawn:

1. Level sets segmentation

• Precise method for boundary representation.

• This method requires an initial level set – initial boundary.

• The running time of level sets is much faster than the running time of another segmentation technique
called the Hough transform, see Jeleń et al.29 The initial boundary can be obtained with thresholding
which reduces the computational load.

• Provides a very good trade–off between the running time and boundary representation precision.

2. Fuzzy c–means segmentation

• This method is based on color classification of the neighboring pixels.

• Provides good representation of the boundaries.

• The boundary representation is better than that obtained with Hough transform and textural seg-
mentation but not as good as with level sets.

• Fuzzy c–means does not require any initial boundary.

3. Textural segmentation

• Segmentation is based on textural description of the nuclei.

• Similarly to fuzzy c–means, gray level quantization does not require any initial contours.

• The boundary representation is better than with Hough transform but not as precise as with either
level sets or fuzzy c–means.

In general, it can be noticed that although fuzzy c–means provides better nuclei segmentation then textural
segmentation, the level sets represent the nuclear boundary the most precisely. It can easily be noticed in Fig. 3
that textural segmentation algorithm loses a lot of nuclear information during the segmentation.
The results presented in section 3 support our findings that level set segmentation provides most valuable
nuclear information when compared with the remaining two approaches. This conclusion is also supported by
the achieved classification rates presented in Table 2. Here we can notice that MLP classifier performs best for
features extracted from nuclei obtained by fuzzy c–means segmentation yielding an error rate of 3.07%. It can
also be seen that textural segmentation provides the worst representation of nuclei, which is supported by the
error rates achieved for all tested classifiers. We can conclude that, on average, level sets are a better choice
for segmentation achieving 6.51% average error rate. Finally, we can conclude that the representation of nuclei
obtained by segmentation strongly influences the classification performance.
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