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ABSTRACT 

Nonlinear and Fault-tolerant Control Techniques for a Quadrotor Unmanned Aerial 

Vehicle 

Tong Li 

Unmanned Aerial Vehicles (UAVs) have become more and more popular, and 

how to control them has become crucial. Although there are many different control 

methods that can be applied to the control of UAVs, nonlinear control techniques are 

more practical since the nonlinear features of most UAVs. In this thesis, as the first main 

contribution, three widely used nonlinear control techniques including Feedback 

Linearization Control (FLC), Sliding Mode Control (SMC), and Backstepping Control 

(BSC) are discussed, investigated, and designed in details and flight-tested on a unique 

quadrotor UAV (Qball-X4) test-bed available at the Networked Autonomous Vehicles 

(NAV) Lab in Concordia University. Each of these three control algorithms has its own 

features. The advantages and disadvantages are revealed through both simulation and 

experimental tests. Sliding mode control is well known for its capability of handling 

uncertainty, and is expected to be a robust controller on Qball-X4 UAV. Feedback 

linearization control and backstepping control are considered a bit weaker than sliding 

mode control. A comparison of these three controllers is carried out in both theoretical 

analysis and experimental results under same fault-free flight conditions. Testing results 

and comparison show the different features of different control methods, and provide a 

view on how to choose controller under a specific condition. Besides, safety and 

reliability of UAVs have been and will always be a critical issue in the aviation industry. 

Fault-Tolerant Control (FTC) has played an extremely important role towards UAVs’ 
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safety and reliability and the safety of group people if an unexpected crash occurred due 

to faults/damages of UAVs. Therefore, FTC has been a very active and quickly growing 

research and development field for UAVs and other safety-critical systems. Based on the 

use of sliding mode control technique, referred to as Fault-Tolerant SMC (FT-SMC) have 

been investigated, implemented, flight-tested and compared in the Qball-X4 test-bed and 

also simulation environment in both passive and active framework of FTC in the 

presence of different actuator faults/damages, as the second main contribution of this 

thesis work. 
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1. Introduction 

1.1. Motivation 

Due to the recent advances in sensing, communication, computing, and control 

technologies, unmanned vehicles have become vitally important in the engineering 

applications and our life. Among many other types of unmanned systems, there are two 

kinds of most widely investigated and developed unmanned vehicles, UAVs (Unmanned 

Aerial Vehicles) and UGVs (Unmanned Ground Vehicles). UGVs can be used as ground 

monitoring robots, and also as a replacement of human force. However there are certain 

limitations. Since UGVs can only be used on the ground, in some difficult terrain 

conditions, ground vehicles cannot reach the desired location.  

Compared to UGVs, UAVs have greater capabilities. Aerial vehicles can be used 

to perform a large amount of tasks, such as monitoring forest fires and volcanic activities. 

They can also support military surveillance and air pollution control etc. There are 

different types of UAVs: fixed-wing airplanes, conventional helicopters and quadrotor 

helicopters.  Fixed-wing airplanes require special runways to take off from. Both regular 

helicopters and quadrotors can overcome this flaw and are more flexible. Between these 

two types, quadrotor helicopters have four rotors more than regular ones, which means 

that they are more convenient and simpler to be built and to fly, and can possibly take 

more payload than the conventional helicopters. Quadrotors have received much more 

attention and interest, because of their special features and advantages. This is one of 

main motivations for the thesis to use a quadrotor helicopter UAV (Qball-X4) for testing 
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developed nonlinear controllers under normal (fault-free) and fault-tolerant controllers 

under fault condition s of the UAV. 

The Qball-X4 quadrotor helicopter will be discussed in the thesis in details later. 

It has six-degree of freedom (6DOF), and four-force inputs to four rotors respectively. 

With all the coupled states, autonomous control could be tricky on occasion. In the 

following sections, three different nonlinear control algorithms, feedback linearization 

control, sliding mode control, backstepping control, as well as concept of fault-tolerant 

control will be reviewed before further discussions.        

1.2. Literature Review 

In this section, existing feedback linearization control, sliding mode control, 

backstepping control, and fault-tolerant control algorithms will be reviewed and other 

commonly used control methods will be discussed for a purpose of comparison. 

1.2.1. Feedback Linearization Control 

Feedback Linearization Control (FLC) is one of the most commonly used 

nonlinear control approaches and can be explained as linearization of a nonlinear system 

through feedback. Unlike the state feedback control, FLC can be applied directly to a 

nonlinear system without linear approximation. This approach transforms the states and 

the dynamics of the nonlinear system into linear ones. Therefore, after such a 

transformation, many linear control algorithms can also be used to make the control 

problem simpler.  

A standard feedback linearization control is developed in [2] for tracking task. 

Since FLC requires invertible matrices, a dynamic extension has been introduced to 
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handle the noninvertible matrices in both [2] and [3]. Kimm et al suggest another solution 

called generalized inverse based on least-square technique that can be used to deal with 

noninvertible or nonsquare matrices [4]. A robust feedback linearization based on 

Sobolev norm is developed in [5]. Mokhtari et al [5] combine both state feedback and 

feedback linearization together to transform the nonlinearity of the quadrotor dynamics 

for inner controller, and an improved H-infinity optimal controller (GH
) is applied for 

outer controller to achieve a desired trajectory tracking performance. Similarly in [6], the 

overall controller of quadrotor is separated into two loops, which are the inner loop and 

the outer loop. The difference between the controllers suggested in [5] and [6] is that the 

one in [6] is using only the feedback linearization control algorithm for both the inner 

loop (pitch-roll-yaw-z) controller, and the outer loop (x-y-z-yaw) controller. The desired 

trajectory will be given to outer loop controller, x, y, and z, and then desired pitch, roll, 

and yaw angles can be found by calculations through position control (outer loop 

controller). A similar procedure is developed in [7]. In previous references, the feedback 

linearization control is realized in different ways, different combinations, and sometimes 

with a high price too, which is caused by differentiating equations to find the control 

inputs. In references [8] and [9], there is a solution by combining the feedback 

linearization with the sliding mode observer. This combination can effectively reduce the 

order of derivatives to a lower level and also the number of sensors by adding an 

estimation of the sliding mode into the overall controller. All the papers introduced so far 

are focused on quadrotor helicopter. For a regular small-scale helicopter, feedback 

linearization control is also possible for implementation. Reference [10] has proved that a 

full nonlinear system of a small-scaled helicopter can be feedback linearized. Feedback 
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linearization is popular as well in other areas. Oriolo et al [12] propose an 

implementation of FLC in wheeled mobile robots tracking task in [10]. From [12], a good 

trajectory tracking performance of PUMA 560 robot manipulator is achieved by using 

discontinuous feedback linearization rather than a PID control, which makes the 

controller more suitable for an electrically driven high speed robot manipulator.  Fuzzy 

control is a powerful tool for handling system uncertainties and noises, and feedback 

linearization needs an inversion of the system. When the system and environment are 

uncertain, feedback linearization control alone might not be suitable enough as the 

controller due to its sensitivity to modeling errors, uncertainties, and noises, and thus 

reference [13] provides a possible solution by the combination of these two methods. In 

reference [14], a popular pendulum problem is solved by an input-output feedback 

linearization cascade controller.     

1.2.2. Sliding Mode Control 

Sliding Mode Control (SMC) is another advanced nonlinear control technique, 

with also strong robust abilities as the main feature of such a controller compared with 

the previous FLC algorithms. Sliding mode control has a sliding surface, which shows 

how the system converges. By adding a sign function, complexity can be reduced to a 

minimum so as to increase the stability of control system. For a rather complicated model 

with some uncertain parameters or dynamics, using controllers such as feedback 

linearization control which requires a precise model, will be inappropriate and inaccurate. 

Hence, the sliding mode control is chosen instead. SMC shows a strong capability of 

dealing with modeling errors, system uncertainties and external disturbances, as long as 

the sliding condition is satisfied.  



 5 

In paper [2], an adaptive sliding mode control is proposed. Combining both 

sliding mode and adaptation law, the controller performs very well against system 

uncertainties and disturbances. Reference [8] shows how the performance can be 

improved after adding sliding mode control. In [15], a sliding mode controller has been 

developed to demonstrate its stability. In [16], Guisser and Medromi present both an 

observer and a controller that all use sliding mode control algorithms. By observing the 

unmeasured parameters, pitch, roll and velocities, the controller of x-y-z-yaw can be 

designed. This paper presents a successful improvement in reducing the number of 

sensors, as well increasing asymptotic stability. Bouadi et al [17] and Mokhtari et al [18] 

provide a similar idea to overcome uncertain parameters and external disturbances. In 

[19], Mokhtari et al present a three-way combination: using GH for outer loop 

controller (x-y-z-yaw), feedback linearization for inner loop controller (pitch-roll-yaw), 

and sliding mode for observer. This work uses the advantages of each control method to 

optimize the overall performance under any circumstances. Reference [20] presents an 

altitude control using sliding mode to stabilize x-y-z directions, as well as pitch-roll-yaw 

angles. Chattering is always a big problem in SMC, authors from reference [21] have 

provided an alternative exponentially decaying function to replace the sign function to 

eliminate chattering as much as possible. For quadrotor UAV, there are four rotors in the 

system. If any one of these four rotors has degradation/malfunction, the entire system will 

be seriously affected. Niu et al present a design using SMC to handle the situation [22]. 

Time delay is another factor that can cause damage in system. In [23], with free 

weighting matrices approach and adaption law added in the controller, SMC has been 

proven effective in the presence of time delay. In other fields, power quality and stability 
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are very crucial. For UAVs, if the power is unstable, the vehicles will crash.  Reference 

[24] has shown by using a SMC the performance of voltage balancing and regulation are 

well achieved, and the response to the transience has become fast. Sliding mode control is 

also effective in formation control, and reference [25] has proved the capability of SMC 

in a general formation of autonomous vehicles. 

   

1.2.3. Backstepping Control 

Back-stepping Control (BSC) is a relatively new nonlinear control technique 

developed since 1990s based on Lyapunov function, which allows us to choose which 

system nonlinearity needs to be cancelled and which can be kept. In comparison, 

feedback linearization cancels all the nonlinearity at the same time, thus barely leaves us 

any choices for faster system response. However with an appropriate Lyapunov function 

chosen, and the necessary system nonlinearity kept, a relatively faster convergence can be 

realized by using BSC concept. When the conditions are met, backstepping is a good 

choice. As the name implies, the principle of the backstepping algorithm is that a 

designed controller starts to control the furthest state from the actual control input, and 

then approaches the input one step at a time. Finally, with all the steps together the 

overall control input is attained and named backstepping control. 

In [26], a backstepping controller has been used as a baseline controller, which 

supports a followed sliding mode control for controlling an indoor micro quadrotor. By 

combining these two controllers,  it can be shown that backstepping control has a strong 

capability in stabilizing system by a good Lyapunov function, which is presented in [27] 

as well. Reference [28] presents a view that underactuated system of quadrotor can be 
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changed into different subsystems, underactuated systems, fully-actuated systems and 

single propeller systems. By adding seven Lyapunov functions into three subsystems, the 

altitude x-y-z and attitude pitch-roll-yaw can be controlled at the same time. In [29], 

authors explained and analyzed in details of designing a backstepping control based on 

Lagrange form, and also estimated the aerodynamic components by introducing two 

neural nets. Reference [30] introduces a combination of control algorithm with 

backstepping and PID. Papers [31] and [32] apply a backstepping controller on a 

quadrotor using a vision feedback for the x-y-z position tracking. In case there are some 

unmeasured states and without use of any observers, implementation of a backstepping 

control will be difficult. Reference [33] presents an alternative way to handle the situation. 

By adding two extended Kalman filters as an estimation method, authors successfully 

develop a backstepping controller to overcome the drawback of unmeasured states or 

system parameters. In [34], a sliding mode based integral filter is used to enhance the 

backstepping control, and the result shows that the backstepping controller has become 

more robust. Reference [35] presents a relatively standard procedure of designing a 

backstepping control for an autonomous helicopter. In [36], a new way of designing PID 

controller has been introduced. By adding the backstepping structure and combining H  

optimal control algorithm, the conventional PID control gains can then be solved by 

Riccati equations and reduced into two parameters for a helicopter hovering problem. 

The model uncertainties and the external disturbances can be solved by the enhanced 

controller. In both references [37] and [38], Saber and Aneke provide some solutions 

based on backstepping methodology to solve the tracking problems of underactuated 

mechanical systems.  
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1.2.4. Fault-Tolerant Control 

The time of travelling to different places could be much shorter than before, due 

to the advanced aviation technology. However, if the system fails, the consequences also 

could be catastrophic. System faults occur rarely, but unpredictably and mostly suddenly. 

Therefore, Fault Tolerant Control (FTC) has become more important than ever.   

A recent comprehensive overview on FTC is presented in [39] which classifies 

FTC strategies as Passive Fault Tolerant Control (PFTC), reconfigurable or Active Fault 

Tolerant Control (AFTC) which makes use of the information from the Fault Detection 

and Diagnosis (FDD) during operation of the FTC system (FTCS). Safety, reliability and 

reconfigurability analysis are also included in the paper to make a link for the currently 

individual research works between control engineering and safety engineering. Some key 

points in FTCS were also summarized in an early review paper [40] for summarizing 

control design methods developed up to 1997. Zhang [41] summarized a fault modeling 

method in FTCS for three different situations on sensor faults, actuator faults, and system 

dynamic faults. Fekih et al [42] presented a passive fault-tolerant control methodology 

using sliding surface and Lyapunov function to eliminate the pre-specified faults for the 

model of an F-18 aircraft. The results show that the design is effective. Reference [43] 

presented an integrated design procedure for fault detection, diagnosis, and 

reconfigurable control. A two-stage adaptive Kalman filter is used in fault detection and 

diagnosis scheme. The reconfigurable feedback and feedforward controllers are 

developed in details as well. Milhim et al [44] designed a gain scheduling based PID 

controller for FTC of a quadrotor UAV under simulation environment.  A backstepping 

control based fault-tolerant control systems is developed for UAV system in [45], and in 
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[46], by combining the idea of adaptive algorithm, the backstepping control has been 

reformed into an adaptive backstepping control with more robustness. In [47], a sliding 

mode based fault-tolerant control has been designed for a civilian fixed-wing aircraft, 

Boeing 747. The elevator failure is simulated and the simulation results show that the 

performance of the controller is good. Alwi and Edwards [48] proposed another method 

using sliding mode scheme with control allocation for fault-tolerant control of B747. 

With on-line control allocation, an active fault-tolerant control has been successfully 

designed and simulated using sliding mode control. 

  

1.3. Thesis Contribution and Organization 

In this thesis, the first goal is to design and implement three nonlinear controllers 

based on three different strategies: feedback linearization, sliding mode, and 

backstepping controls, and to test and evaluate the three algorithms in the real Qball-X4 

quadrotor UAV test-bed available at Concordia University. The second goal is to develop 

and test a passive fault-tolerant control and an active fault-tolerant control strategy based 

on the developed sliding mode control technique for handling actuator faults and 

propeller damages in the UAV test-bed. To achieve the above goals, all these controllers 

are investigated and developed in details. Simulations are used to test if all the 

theoretically designed controllers function properly under different conditions, and 

experiments are the final proof of how they behave. Hence, each controller will be 

focused on practical usage, which means unnecessary assumptions will have to be 

reduced to the minimum in order to have a more realistic situation. Before experimental 

implementation of the controllers, Qball-X4 model has been experimentally identified 
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and tested. The results of both simulations and experiments will provide a detailed insight 

on how to control a quadrotor helicopter.  

Thesis organization is outlined as following: 

Chapter 1 is about the motivation and literature review. Chapter 2 is regarding to 

all the background knowledge and theories of all three controllers, in the preparation of 

the later simulations as well as the experiments. Chapter 3 is modelling of the Qball-X4 

UAV. Before all the simulations and experimental tests are carried out, a good and 

precise model is always needed, especially in this thesis experiments are needed for 

further testing controllers. Therefore, a detailed discussion of the Qball-X4 UAV model 

will be carried out in Chapter 3. Chapter 4 is by the background theories of three 

controllers and the model dynamics equations, practical implementations on specific 

Qball-X4 system will be demonstrated in both mathematical derivations and numerical 

simulations. Experiments will be used as a strong proof to show how the performance of 

the designed controllers is and how close the simulations are to the reality. Chapter 5 will 

introduce the fault-tolerant control concept, and based on the predesigned sliding mode 

controller, a passive fault-tolerant control and an active fault-tolerant control have been 

designed and implemented respectively. Both simulation and experimental testing results 

will show how the control systems behave and if the designs are suitable for the Qball-X4 

system. Chapter 6 concludes all the work that has been done, and summarizes the 

possible improvements as the future work.      

1.4. Summary 

This chapter has reviewed the works that have been done on quadrotor using FLC, 

SMC, BSC or FTCS. All the studies have shown these three controllers are effective and 
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have good control performance. However, most of them are achieved in simulation 

environment, lack of practical proof on how well the controllers can behave in reality. 

Therefore, this thesis will redesign all theses controllers, FLC, SMC, BSC, and FTCS to 

control the quadrotor, Qball, and also implement the controllers in real environment to 

show the effectiveness of the control systems in practise as the final goal.  
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2. Background Material 

All the background theories will be introduced in this chapter. Detailed 

mathematical procedure, stability discussion, block diagrams, and some examples to 

demonstrate the implementation of theories into practical controllers will be presented 

and well illustrated. This chapter is served as a detailed technical preparation for Chapter 

4 of the thesis. 

2.1. Feedback Linearization Control 

Feedback Linearization Control (FLC) is a nonlinear control technique that can 

cancel the system nonlinearity and transform a nonlinear system into a linear system, and 

then many control algorithms for linear systems can be applied to the system controller 

design.  By doing such a transformation, nonlinear control problem can be simplified to a 

linear problem.  

An example of the general form of a single-input single-output nonlinear system 

is shown below [48]: 

( ) ( )

( )

x f x g x u

y h x

 


 (2-1) 

where ( ) nx t R is the system state, ( ) mu t R  is the control input, ( ) py t R  is the system 

output, ( )f x and ( )g x  are model functions in 
nR .  

Assuming that all the states are available for measurement, and the control input 

u can be formed in the following format:  

( ) ( )u x x v    (2-2) 

where v  is a new control variable， ( )x  and ( )x  are virtual system functions. 



 13 

In order to design a FLC, a link between the desired output y  and the control 

input u  is needed to be found. The Lie derivative (
fL h ) is introduced into the theory as 

follows [48]: 

0 ( )y h x  (2-3) 

1 ( )fy L h x  (2-4) 

                                                            

1 1 ( )fy L h x    (2-5) 

1( ) ( )f g fy L h x L L h x u     (2-6) 

In equation (2-6), by setting control input u as: 

1 1

( ) 1
( ( ) )

( ) ( )

f

f

g f g f

v L h x
u L h x v

L L h x L L h x





  


     (2-7) 

A simple linear relation is achieved: 

y v   (2-8) 

Functions ( )x and ( )x will be obtained in the following equations [48]: 

1

( )
( )

( )

f

g f

L h x
x

L L h x







  (2-9) 

1

1
( )

( )g f

x
L L h x




  (2-10) 

Therefore, a controller can be designed with the equation (2-7) as control input. A 

diagram is shown as following: 
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                                              Fig. 2-1. Relation between input v and output y 

The stability of a control system is always a big concern, and in a FLC, external 

dynamics can be observed directly when designing an input-output linearization, but 

internal dynamics needs to be investigated carefully. With a certain control input, if 

output can be maintained at zero, then it is called zero-dynamics. When zero-dynamics is 

satisfied, which means a zero input u will make a zero output y at all times, the system is 

considered stable.                

            The general concept of FLC has been discussed above, and what follows are some 

tracking tasks to show how a FLC behaviour has been taken into consideration. There are 

normally two situations when solving a tracking problem. One is when the system has 

only one input, and the other is when the system has more than one input.  

            For a single input system, after a desired trajectory dy  is defined, and the tracking 

error is defined as de y y  , where dy  is the new target output to be controlled. 

Assuming after n times derivatives with respect to output y, the input u appears. Defining 

a control gains matrix f
K ,  

( ) ( 1)

1 0

n n

f fn fv e e k e k e

    K  (2-11) 
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and having (2-11) to be substituted into equation (2-7) to have the tracking control input 

u can be found as shown below [48]:  

            

( ) ( 1)

1 01 1

1

1 1
( ) ( )

  ( ) ( ( ) )

n n n n

f f fn fn n

g f g f

u L e v L e e k e k e
L L e L L e

G x F x v



 



        

  

 (2-12) 

where fk  is the control gain to make the system converge.  

For multiple inputs system, similar to the idea from single input but with a few 

changes, the general form will then be changed to [49]: 

1

1

( ) ( )i i i

j

m
n n n

i f i g f i j

j

y L h x L L h x u




   (2-13) 

The term 1

1

( )i

j

m
n

g f i j

j

L L h x u




 can be translated into a matrix format, and the 

equation (2-13) can then be rewritten as:  

1 1
1 1

1

1

1 1

1 1
1 1 1

1 1

( ) ( )( )

( ) ( ) ( )

j

i i i i

j

n n
n n

g f g f
f

n n n n

i f i g f i g f i j

L L h x L L h xy L h x u

y L h x L L h x L L h x u

 

 

      
      

        
      

       

 (2-14) 

            The control input 1 ju u can be written as: 

     

1 1
1 1

1

1

1
1 1

1 11 1 1

1 1

( ) ( ) ( )

( ) ( ) ( )

j

i i i i

j

n n n n
g f g f f

n n n n

j g f i g f i i f i

L L h x L L h xu y L h x

u L L h x L L h x y L h x


 

 

     
    

     
          

 (2-15) 

            Once the control inputs are found, by letting tracking error as i id ie y y   and 

( ) ( 1)

1 0

n n

i i i fni i f i iv e e k e k e

    
fi

K  (2-16) 

the tracking control can be easily written as: 
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1 1
1

1

1

1
1 1

1 1
1 1 1

1 1

1

( ) ( ) ( )

( ) ( ) ( )

( ) [ ( )]

j

i i i

j

n n
n

g f g f
f

n n n

j g f i g f i i f i

L L h x L L h xu v L h x

u L L h x L L h x v L h x


 

 



     
    

     
          

 G X V F X  

(2-17) 

where ( ), ( ),G X F X V are all in the format of matrices. 

Here is a simple example using feedback linearization control. 

Consider a system described as [48]: 

1 1

2 1

2

1 1

2 2

sin

cos

x u

x u

u

y x

y x

















 (2-18) 

and rewrite it into matrix form as: 

1

1 1 1

2

2 2 2

sin 0
1 0

cos 0
0 1

0 1

x
u y x

x
u y x







  
        

         
           

 (2-19) 

Following the FLC design procedure discussed above, input u  1 2

T
u u  needs 

to be shown in the output y  1 2

T
y y . By taking derivatives on output vector y, 

equation (2-19) can be derived as:  

1 1 1

2 2 1

sin

cos

y x u

y x u





 

 
 

(2-20) 

From (2-20), input 1u  appears, but still missing input 2u . Therefore, a second 

derivative is needed to have the 2u  to appear.  
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1 1 1 1 2 1

2 1 1 1 2 1

sin cos sin cos

cos sin cos sin

y u u u u u

y u u u u u

    

    

   

   
 (2-21) 

Now, all the inputs have been shown and rewritten as: 

1 1

1 2

sin cos

cos sin

u u

u u

 

 

   
    

   
y  (2-22) 

There is one more input 
1u  than original system, and it can be treated simply as a 

derivative of 
1u . In practice, an integrator can be used to turn 

1u  back to 
1u . 

If y v , then equation (2-22) will be transformed into the following: 

1

1

sin cos

cos sin

u

u

 

 

 
  

 
v u  (2-23) 

According to (2-23) the control inputs can be derived as:   

1

1

1

sin cos

cos sin

u

u

 

 



 
  

 
u v  (2-24) 

If 1 2 0u u  , the output 1 1 2 20,  0y x y x    , which is satisfied with zero-

dynamics. The system is then stable. 

To design a controller for this system, v  and k  need to be defined as:  

1 1 1 1 1 1 2 1 1

2 2 2 3 2 2 4 2 2

( ) ( ) ( )

( ) ( ) ( )

d f d f d

d f d f d

v y y k y y k y y

v y y k y y k y y

     

     
 (2-25) 

where the control gains are 1 2 3 48, 10, 8, 10f f f fk k k k    . The simulation 

results are shown in Fig. 2-2 and Fig. 2-3. 

All the initial condition for all the states and inputs are set to 0 s.  

The tracking task is to track the reference trajectory 1 23,  5d dy y  .  

Simulation results show the desired tracking has been achieved successfully.  
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                                                      Fig. 2-2. Tracking of output 1y         
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                                                                 Fig. 2-3. Tracking of output 2y  
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2.2. Sliding Mode Control 

Among robust nonlinear control algorithms, Sliding Mode Control (SMC) is a 

popular control technique. Sliding mode control has a sliding surface which can provide 

the stability of the controller and the system. In a non-ideal model, uncertainties can 

always cause problems for designing a controller. This control technique provides a 

switching control, which can handle the system uncertainties very well by limiting the 

amplitude of signals with constraints.  

In the same form as for feedback linearization control, a single input single output 

system is described as: 

( ) ( )

( )

x f x g x u

y h x

 


         

Sliding surface is the most important component in the system, since it will 

determine the stability of the controller and the control inputs.  

In a real system, ( )f x  and ( )g x  may have some uncertainties, and the goal of 

sliding mode control is to control the uncertainties and set a boundary on any uncertain 

parameters. To do this, an error tracking system needs to be defined to measure the 

difference between desired value, dx , and actual value, x . For such a purpose, the 

tracking error is defined as de x x  , and a sliding surface is then defined as [49]:   

1( ;  ) ( )nd
s e t e

dt
    (2-26) 

For instance, if the order of the system is 2n  , sliding surface can be extended 

as s e e  , where   is defined as a positive value. The order of the system can be 

reduced by 1. 

  If there is a bound on surface vector s , there will be a bound on tracking error 

vector e  as follows [50] 
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( )

0 ,  (2 ) ,  0,1, , 1i it t i n        s e  (2-27) 

where 1/ n    .  

           Lyapunov stability is a powerful tool that can be used to test a system’s stability. If 

a Lyapunov function chosen as 
21

( )
2

V s s  is a positive definite function, then to 

stabilize the system, ( )V s  needs to be a negative semi-definite or negative definite 

function.  

21
( ) 0

2

d
V s s ss

dt
            

By choosing the following condition [49]: 

21
| |

2

d
s ss s

dt
    (2-28) 

where   can take only positive values, surface s  can be kept at zero, and sliding 

condition is then defined.  

 

 

 

 

 

 

 

                                                          Fig. 2-4. Sliding mode condition 

 

Sliding surface s(t) 
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When various system states reach the sliding surface, the system is considered 

stable. Therefore, when system is stably controlled, the tracking error e  will become zero, 

and by (2-26), sliding surface ( )s t can easily be proved as a function of the form. 

1( ;  ) ( ) 0nd
s e t e

dt
     (2-29) 

Once the control system has reached the sliding surface, an equivalent dynamics 

can be derived based on Filippov’s construction. The dynamics of the sliding surface can 

be written as [49]: 

0s   (2-30) 

By solving the equation (2-30), a control input can be found, which is defined as 

an equivalent control input, û . For instance, if we have a single input system similar to 

the form in (2-26), but in second order of the following format:  

( ) ( )x f x g x u   (2-31) 

The sliding surface should be chosen as: 

1( )nd
s e e e

dt
      (2-32) 

By taking the first derivative of the surface s  in equation (2-32) and combining it 

with equation (2-30) to form Filippov’s construction, the following equations would be 

satisfied. 

( ) ( ) ( ) ( )d d d ds e e x x x x x f x g x u x x              (2-33) 

( ) ( ) ( ) 0d ds x f x g x u x x       (2-34) 

Solving equation (2-34), an approximated control input û  can be easily obtained 

as follows: 

1 ˆˆ ( ) ( ( ) ( ))d du g x f x x x x      (2-35) 
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where ˆ ( )f x  is an approximation of ( )f x . The control input of the system can then be 

achieved [49]. 

ˆ sgn( )su u k s   (2-36) 

where 

sgn( ) 1 if 0

sgn( ) 0 if 0

sgn( ) 1 if 0

s s

s s

s s

  


 
  

                    

By defining a function as:   

ˆ| ( ) ( ) | ( )f x f x f x   (2-37) 

and combining it with equation (2-28), the sliding condition can then be derived as: 

21 ˆ( ( ) ( )) | | | |
2

s

d
s ss f x f x s k s s

dt
       (2-38) 

where ( )sk f x   . Thus, sliding condition is satisfied, and the system is considered 

stable.  

The above example is used as a demonstration for a single-input nonlinear system. 

In a multiple-input system, the general form needs to be rewritten in the following form 

[49]. 

( )

1

( ) ( ) 1, , 1, ,i

m
n

i i ij j

j

x f x g x u i m j m


     (2-39) 

Equation (2-39) can be rearranged into matrix format as the following:  

1

1 1 11 1 1

1

( ) ( ) ( )

( ) ( ) ( )i

n

j

n

i i i ij j

x f x g x g x u

x f x g x g x u

      
      

       
            

 
(2-40) 

The sliding mode surface will then be changed accordingly as follows:  

1
( ) in

i i i

d
s e

dt
 

   (2-41) 
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and also the sliding condition will then be [49] 

21
| |

2
i i i i i

d
s s s s

dt
    (2-42) 

Taking 2,n   the sliding surface will then take the form of the equation (2-41). 

i i i is e e   (2-43) 

1

( )

( ) ( ) ( ) 0

i i i i id i i id i

m

id i ij j i id i

j

s e e x x x x

x f x g x u x x

 




     

     
 (2-44) 

Following the procedure of a single input system, û can be written as a matrix: 

               

1

1 11 1 1 1 1 1 1

1

ˆˆ ( ) ( ) ( ) ( )

ˆˆ ( ) ( ) ( ) ( )

j d d

j i ij i id i id i

u g x g x f x x x x

u g x g x f x x x x






        
    

     
             

 
(2-45) 

Hence, overall control input u can be achieved as: 

ˆ sgn( ) 
s

U U K S  (2-46) 

where U , Û , 
s

K , S are all matrices representing overall control inputs, approximated 

control inputs, control gains, and sliding surfaces, respectively, with control gains greater 

than or equal to zero.   

Note: In switching control, a sign function is used to generate two different 

outputs, +1 and -1 in the controller as the switch. This function can improve the 

robustness by constraining control signals to the sliding surface. However, this function 

can also cause a phenomenon known as discontinuity or chattering, where signals jump 

up and down across the surface like series of pulses. In practice, chattering can 

sometimes be intolerable, therefore a saturation function can then be used instead of the 
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sign function. The saturation function will force the signals to go smoothly in the 

boundary layer to eliminate chattering. 

An example is used here to illustrate in details how to construct a sliding mode 

controller.  

Consider a common pendulum system [50] 

1 2

2 1 2

0

sin

x x
u

x a x bx c

     
      

      
 (2-47) 

with    
1 1 3

2 0 3
2 2 2

a b c      , where these three parameters are treated as 

uncertainties.  

             This system has only one input, which makes it an underactuated nonlinear 

system. In order to stabilize both states 1 2,x x , if 1x is chosen as the output, 1y x , then 

the sliding surface has to be chosen according to equation (2-29).    

1 1x xs e e   (2-48) 

where 1 1 1x de x x  , 1 1 1x de x x  . The derivative of surface s  is: 

1 1 1 2 1 1

1 1 2 1 2

( )

sin ( )

x x d d

d d

s e e x x x x

x a x bx cu x x

 



     

     
 (2-49) 

According to equation (2-30), by letting 0s  , the approximated û  is then given 

by 

1 1 2 1 2

1 ˆ ˆˆ ˆ( sin ( ))
ˆ

d du x a x bx x x
c

      (2-50) 

Then, the control input is calculated by equation (2-36) as following: 

ˆ sgn( )su u k s   (2-51) 

Now the stability of this designed control input should be discussed. By sliding 

condition (2-28), it can be easily proven that the following inequality is satisfied.   
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1 2 1 2

1 1 2 2 3 1 2

ˆ ˆˆ(sin ( ) ( ) ( )( ))

( sin ( )) | | | |

d

d

ss s x a a x b b x x

x x x x s s

 

   

      

       
 (2-52) 

where 
1 1 2 2 3 1 2sin ( )dx x x x        . The sliding condition is satisfied, and the 

designed controller is stable.  

A simulation is taken to further demonstrate how the above controller works and 

how the performance is. With gains 5, 15sk   , and uncertain parameters are 

3
, 2, 1

2
a b c   , the results are shown in Fig. 2-5. 

All the initial conditions of input and states are set to 0 s, and the tracking requires 

to follow the reference 4y  . 
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                                                    Fig. 2-5. Tracking of output y  
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                                                Fig. 2-6. Tracking of output y  

For the same reference trajectory, using different sets of system coefficients do 

not affect the tracking performance, therefore the parameter uncertainties can be handled 

very well by sliding mode control.    

 

2.3. Backstepping Control 

Backstepping Control (BSC) is the third nonlinear control algorithm investigated 

in this research. As it is evident from the name, the algorithm is going backward through 

the process, starting from the furthest state and going back step-by-step to the control 
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input. When the procedure reaches the control input, the overall controller of the system 

becomes available.  

Since backstepping control is a direct Lyapunov-based method, which requires to 

find the appropriate Lyapunov candidate. Searching for the possible candidate will not 

only make sure that the needed control input can be correctly produced, but it will also 

show how the chosen Lyapunov function will determine the stability of the overall 

system.  

    A relatively simple system is considered as following [50]: 

1 1 1 2

2 1 2 1 2

( ) ( )

'( , ) '( , )

x f x g x x

x f x x g x x u

 

 
 (2-53) 

To design a stable controller for the system, based on backstepping scheme, 1x  

must be stabilized first, before 2x . By assuming 2 1( )x x is a stable control input 

for 1 1 1 2( ) ( )x f x g x x  , following transformation can be made: 

1

1 2 1 2'( , ) ( ' '( , ))u g x x u f x x   (2-54) 

By substituting equation (2-54) into equation (2-53), a simpler relation can be 

found. 

2 'x u  (2-55) 

The equation (2-53) can then be simplified. Assuming a Lyapunov function 1 1( )V x  is 

satisfied by the inequality 1 1( ) 0V x  , and defining and rearranging the equation (2-53), 

the following can be easily shown [51]: 

1 1 1 1 1 1 1 1

1

( ) ( )( ( )) ( ) ( ) ( ) ( )

' ( )

x f x g x x f x g x g x x

u x

   

 

     

 
 (2-56) 

where 2 1( )x x    and 2 1( )x x   . From Fig. 2-7, the following equation can be 

derived [51]. 
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1 1 1 2 1 1 1 1

1 1

( ) ( ( ) ( ) ) ( ( ) ( ) ( ) ( ))
d d

x f x g x x f x g x g x x
dx dx

 
        (2-57) 

By assuming another Lyapunov function 
2 ( )V x  as [51]: 

2

2 1 1

1
( ) ( )

2
V x V x    (2-58) 

2 ( ) 0V x   (2-59) 

and substituting equations (2-56), (2-57) and (2-58) into (2-59) to satisfy the inequality, 

two possibilities can occur.  

Case 1: If 
1 2 1 2'( , ) 0, '( , ) 1f x x g x x  , the system control input can be represented as [50]: 

1
1 1 2 1 2 1

1 1

' ( ( ) ( ) ) ( ) ( ( ))
dVd

u f x g x x g x x x
dx dx


       (2-60) 

Case 2: If 1 2 1 2'( , ) 0, '( , ) 1f x x g x x  , the system control input can be simply attained [50]. 

1 1
1 2 1 1 2 1 2 1 1 2

1 1

'( , ) ( ( ( ) ( ) ) ( ) ( ( )) '( , ))
dVd

u g x x f x g x x g x x x f x x
dx dx


      

 

(2-61) 

where the control gain is 0  . 

       

Fig. 2-7. Backstepping scheme 

The procedure of designing a backstepping controller is further explored by the 

following process.  
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Consider the same system as in form (2-53). By first picking a Lyapunov 

candidate as 2

1 1 1

1
( )

2
V x x , and taking the first-order derivate on 

1 1( )V x , it can be easily 

proven that   

                 1 1 1 1 1 1 1 2 1 1 1 1( ) ( ( ) ( ) ) ( ( ) ( ) ( ))V x x x x f x g x x x f x g x x      (2-62) 

To guarantee system is asymptotically stable, 
1 1( )V x needs to be a negative 

definite function. This can be achieved by  

              
1

1 1 1 1 1( ) ( ) ( ( ) )x g x f x x     (2-63) 

where 
1 0  . By substituting equation (2-63) into (2-62), a negative definite Lyapunov 

function can be acquired, where 1( )x  is the virtual control input for the first equation in 

the form as (2-52). 

                    
1 1 1 1 1 1 1 2 1 1 1 1

1 2

1 1 1 1 1 1 1 1 1

( ) ( ( ) ( ) ) ( ( ) ( ) ( ))

         ( ( ) ( ) ( ) ( ( ) ))) 0

V x x x x f x g x x x f x g x x

x f x g x g x f x x x



 

    

      
 (2-64) 

Now the second equation with the actual control input needs to be stabilized. 

Again, another Lyapunov candidate is chosen as 2 2

2 1

1 1
( ) ,

2 2
V x x z   with 2 1( )z x x  . 

2 1 1

1 1 1 2 1 2 1 2 1

1 1 1 1 1 1 2 1 2 1

1 1 1 1 1 2 1 2 1 1 1

1 1 1

( )

( ( ) ( ) ) ( '( , ) '( , ) ( ))

( ( ) ( ) ( ) ( ) ) ( '( , ) '( , ) ( ))

( ( ) ( ) ( )) ( '( , ) '( , ) ( ) ( ))

( ( ) ( )

V x x x zz

x f x g x x z f x x g x x u x

x f x g x x g x z z f x x g x x u x

x f x g x x z f x x g x x u x x g x

x f x g x



 

 



 

    

     

     

  1 1 1
1 1 2 1 2 1

1 1

( ) ( )
( )) ( '( , ) '( , ) ( ))

d x dV x
x z f x x g x x u g x

dx dx


   

 

(2-65) 

Similarly, 2 ( )V x needs to be a negative definite function. Letting  
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1 1 1
1 2 1 2 1 2 1

1

1 1 1 1
1 2 1 2 2 2 1 1

1 1

( )
'( , ) ( '( , ) ( ) ( ))

( ) ( )
  '( , ) ( '( , ) ( ( )) ( )))

dV x
u g x x f x x x z g x

dx

d x dV x
g x x f x x x x g x

dx dx

 


 





    

     

   (2-66) 

where 
2 0  , a negative definite function can be deduced as: 

2 1 1

1 1 1
1 1 1 1 1 2 1 2 1

1 1

2 1 1 1 1 1 1
1 1 1 2 1 2 2 1 1

1 1 1 1

( )

( ) ( )
        ( ( ) ( ) ( )) ( '( , ) '( , ) ( ))

( ) ( ) ( ) ( )
        ( '( , ) [ '( , ) ( )] ( ))

        

V x x x zz

d x dV x
x f x g x x z f x x g x x u g x

dx dx

d x dV x d x dV x
x z f x x f x x z g x g x

dx dx dx dx




 
 

 

     

         

2 2

1 1 2 0x z    

 

(2-67) 

Therefore, the overall system control input u is determined by equation (2-66). 

 If 
1 2'( , ) 0,f x x   and 

1 2'( , ) 1g x x  , the input then becomes 

1 1 1
2 1

1 1

( ) ( )
' ( )

d x dV x
u z g x

dx dx


    (2-68) 

Similar to feedback linearization and sliding mode control, a simple example 

demonstrates more clearly in designing the above BSC.      

            Consider a system described as [52]: 

2

1 1 2

2

1

x x x

x u

y x

 





 (2-69) 

To solve a tracking problem, the tracking error can be defined as following: 

1 1 1de x x   (2-70) 

Now the problem becomes to stabilize 1e  instead of state 1x , a negative definite 

Lyapunov function needs to be defined as: 

2

1 1 1

1
( )

2
V e e  (2-71) 
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By taking the first-order derivative of 
1 1( )V e , equation (2-72) can be acquired. 

                
2 2

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1( ) ( ) ( ) ( ( ))d d dV e e e e x x e x x x e x x x          (2-72) 

where 
2 1( )x x , and by letting  

2

1 1 1 1 1( ) edx x x     (2-73) 

it can be proven that  

2 2

1 1 1 1 1 1 1 1 1 1( ) ( ( )) 0dV e e e e x x x e         (2-74) 

Similarly, by defining another tracking error 

2

2 2 1 2 1 1 1 1

2 2

1 1 1 1 1 1 1 1 1

( ) d

d

e x x x x x e

x x x x e e e

 

 

     

       
 (2-75) 

1 2 1 1e e e    (2-76) 

2 2

2 1 2

1 1
( ) e

2 2
V e e   (2-77) 

the derivative of 2 ( )V e is  

2 1
2 1 1 2 2 1 2 1 1 2 2

1

2 1
1 2 1 1 2

1

( )
( ) ( )

( )
( )

d x
V e e e e e e e e e x

dx

d x
e e e e u

dx







      

    

 (2-78) 

Then, control input u can be chosen as: 

1
1 2 2 1 1 1 1 1 1 2 2

1

( )
2 ( )d d

d x
u e e e x x x x e

dx


            (2-79) 

Therefore, 2 ( )V e can be found as: 

2 1
2 1 1 2 2 1 2 1 1 2

1

2 2

1 1 2 2

( )
( ) ( )

0

d x
V e e e e e e e e e u

dx

e e




 

      

   

 (2-80) 
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Equation (2-80) shows that 
2 ( )V e  is negative definite.  

Fig. 2-8 - Fig. 2-9 show the simulation results with the control gains
1 40   and 

2 20.   Similarly to feedback linearization and sliding mode control, all the initial 

conditions are set to 0, and tracking task requires to follow the reference 4y  . 
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Fig. 2-8. Tracking of output y  
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                                 Fig. 2-9. Relation between state 2x and function 1( )x  

2.4. Summary 

The background material of three nonlinear control techniques including FLC, 

SMC, and BSC have been introduced and studied in this chapter. The following Qball-X4 

flight control systems will be designed and implemented by the principle that has been set 

up in this chapter. The experimental testing results will show if the theoretical designs are 

appropriate or not.  
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3. Modelling and Identification of the Qball-X4 System 

A mathematical model is always a crucial groundwork before any further control 

designing task. If an accurate model is available, then a controller can be designed as 

close as possible to the real application, and to handle the practical problems very well. If 

not, the controller will have to be designed based on some unknown dynamics or 

parameters, which may cause a major difference from theoretical simulations to practical 

implementation. This chapter introduces the mathematical modelling of Qball-X4 system 

and unknown parameters identification of the Qball-X4 system. By system analysis, a 

dynamic model can be derived, and by experiments, some unknown parameters can be 

attained to have the model as accurate as possible. 

3.1. Experimental Setup 

In this section, all the experimental equipments used for later parameter 

identification and real implementation are introduced.  

The name of Quadrotor helicopter in the thesis is Qball-X4, because of the ball-

shape protection cage surrounding the quadrotor. Four propellers are lined up 

orthogonally as shown in Fig. 3-1. The black box at the center is the control device that 

sends control signals to control the attitude of Qball-X4 during the flight, to generate 

different pulses to each rotor for pitch, roll, and yaw commands with the control 

algorithm implemented in software format in the on-board Gumstix single-chip micro-

computer (control device).  
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Fig. 3-1. The Qball-X4 structure 

Inside the black box, there is a data acquisition board named HiQ and a Gumstix 

micro-computer. During the flight, all the data from sensors and ground station are 

collected through the HiQ board.  

 

Fig. 3-2. The HiQ board with Gumstix and sensors 

The Gumstix is a single-chip micro-computer which provides an embedded 

development platform. In Qball-X4 system, the Gumstix computer has a Linux operating 

system with a control software, QuaRC, installed, and is acting as a central processor that 
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processes all the raw data collected from sensors and data received from the ground 

station. Once the data has been processed, it will be sent to drive the rotors. The 

communication between Qball-X4 and the ground station is established by wireless 

connection. As Fig. 3-2 shows, an analog device includes gyroscope, accelerometer, and 

magnetometer which can  measure the angular velocity of x,y,z axes, acceleration of x,y,z 

and also the magnetic field.  There is another sensor, sonar, available for height 

measurement.  

The power source of the system is two 3-cell 2500mAH LiPo batteries, which can 

provide a continuous supply for about 15 minutes, and batteries are strapped at the 

bottom of the black box. The capacity of batteries can be measured from the HiQ board.  

                  

                                                    Fig. 3-3. Batteries and installation  

For the system, not only are the inertial sensors on HiQ board used, but also 

vision sensors are in use. Hence, the location of Qball-X4 can be indicated by the 

feedback from a set of high-precision cameras as shown in Fig. 3-4. The direct global 

positions can be easily attained, and a direct position x-y-z control becomes possible as 
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well. If necessary, the controller of Qball-X4 system can then be separated into two 

independent parts, attitude controller and altitude controller. 

 

Fig. 3-4. Cameras for vision feedback 

A joystick is used for safety reason, in case the Qball-X4 loses control during 

flight. The joystick can be used to cut Qball-X4 power by moving the left lever down to a 

zero position. This action will force Qball-X4 to land.   

 

Fig. 3-5. The joystick 

A single computer is used as the ground station. The control software installed is 

named QuaRC, the same as installed in Gumstix computer. QuaRC is a programming 



 38 

tool based on Matlab/Simulink, and is used as a main developing, designing, and 

implementing platform in this thesis. 

The ground station computer has two separate programs designed in QuaRC. One 

program is the server which connects to joystick and cameras to receive the real-time 

feedback of safety signals and global coordinates. The other program is the client, which 

contains all the other feedbacks from sensors, and the main controllers of the system. 

Once the output of the server confirms that Qball-X4 is within range, the client can be 

started. First of all, the server starts to run to make sure Qball-X4 is within range. 

Secondly, the client starts to connect to the system for the sensors feedback, and readies 

the controllers. Thirdly, once the joystick is released from zero, all four rotors will be 

started by the commands given from the controllers. Qball-X4 will then start to follow 

the desired path. All the communications use TCP/IP (Transmission Control 

Protocol/Internet Protocol) protocol through wireless connections.  

 

3.2. Dynamic Model 

The groundwork of a controller designing process is always based on a 

mathematical model of the system to be controlled. In this thesis, a dynamic model is 

needed because forces generated by four propellers are the main move that the quadrotor 

flies and these propellers need to be controlled in appropriate ways for different flight 

modes and flight conditions. Fig.3-6 shows the attitude movements of the Qball-X4 [54]. 
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                                                      Fig.3-6. The Qball-X4 motions 

Fig. 3-7 shows more clearly on the relation between movements and forces. 

Positive direction of pitch, roll and yaw angles have been presented as well. 
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                                            Fig. 3-7. Qball-X4 attitude definitions 

Qball-X4 is a rigid body, and two sets of frames have been used to formulate the 

system dynamic equations. One frame is the body-fixed frame in which the origin is 

located at the center of the mass of Qball-X4 as shown in Fig. 3-7. The other frame is the 

earth-fixed frame, also known as global frame, in which the origin can be chosen as 

desired. The coordinates, , ,q q qx y z , are defined in body frame, and , ,x y z  are defined in 

earth frame.  
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Qball-X4 can be considered as a local frame rotating and translating in the global 

coordination. Euler rotation and translation matrix has been introduced here to generate 

the general transformation. In three dimensional axes x, y, z, there are three different 

rotation matrices [55]. The rotation matrix for x axis can be written as: 

1 0 0

( ) 0 cos sin

0 sin cos

  

 

 
 

 
 
  

x
R  (3-1) 

Similarly for y and z axes, 

cos 0 sin

( ) 0 1 0

sin 0 cos

 



 

 
 


 
  

y
R  (3-2) 

cos sin 0

( ) sin cos 0

0 0 1

 

  

 
 


 
  

z
R  (3-3) 

where   is the pitch angle along x axis,   is the roll angle along y axis, and   is the yaw 

angle about z axis.  

The general rotation matrix of all three axes can be written as: 

cos cos cos sin sin cos sin cos sin cos sin sin

sin cos sin sin sin cos cos sin sin cos sin cos

sin sin cos cos cos

           

           

    

  
 

   
 
  

z y xR R R R

 

(3-4) 

 

 The velocity transformation from earth frame to body frame is: 

q

q

q

x x

y y

z z

  
  

   
     

R    (3-5) 

where , ,x y z and , ,q q qx y z  are positions of earth frame and body frame respectively.  
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cos cos (cos sin sin cos sin ) (cos sin cos sin sin )

sin cos (sin sin sin cos cos ) (sin sin cos sin cos )

sin sin cos cos cos

q q q

q q q

q q q

x x y z

y x y z

z x y z

           

           

    

    

    

   

 (3-6) 

Each rotor has a PWM input and the relation between input and output is 

described as [54]: 

aK
s







F W  (3-7) 

where F is the thrust vector generated by rotor, W is the PWM input vector,   is the 

actuator angular velocity, and 
aK is the gain.  

In the body frame, all the four forces generated by four rotors are along z axis, 

which is in the form of the following. 

1 2 3 4

0

0

xq

yq

zq

F

F

F F F F F

   
   

   
       

 (3-8) 

where iF  is the force generated by each rotor, and iqF  is the force along each axis. Using 

the rotation matrix (3-4), the forces in earth frame can be found as: 

x xq

y yq

z zq

F F

F F

F F

  
  

   
     

R  (3-9) 

In the extension of the above equation, forces based on earth frame can be generalized.  

cos cos cos sin sin cos sin cos sin cos sin sin

sin cos sin sin sin cos cos sin sin cos sin cos

sin sin cos cos cos

cos sin cos sin sin

sin sin cos

x xq

y yq

z zq

F F

F F

F F

           

           

    

    

 

     
    

       
         



 sin cos

cos cos

zqF  

 

 
 


 
  

 

(3-10) 
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By Newton’s second law for motion, F ma , and taking friction factor f into 

consideration, the acceleration of each axis in earth frame can be extracted as 
F f

a
m


 . 

cos sin cos sin sin
1 1

sin sin cos sin cos

cos cos

x x x

zq

y y y

z z z

x F f f
F

y F f f
m m m

z F G f G f

    

    

 

        
       

    
       
                

 (3-11) 

where m is the mass of Qball-X4, and G mg is the gravitational field. The drag 

forces xf , yf , and zf  are defined according to aerodynamics [55] as: x xf d x , y yf d y , 

z zf d z ,    

Positions, velocities and accelerations are the altitude of Qball-X4, which are 

caused by the change of the attitude pitch, roll, and yaw angles. Attitude is determined 

directly from the force generated by each rotor. For instance, from Fig. 3-7, if forces 1F  

and 2F  change, the torque of x axis in body frame will be changed by the 

difference 1 2F F , so as to the change of pitch angle,  . Similarly, roll angle,   will be 

changed by the difference 3 4F F , and yaw angle,   will be changed by 

1 2 3 4F F F F   .  

Newton’s second law for rotation is 

2F r mr    (3-12) 

where  is the torque, F  is the centripetal force, r  is the length between the center and 

the desired point on the rigid body, and   is the angular velocity. By definition of 

moment of inertia,  

2J mr  (3-13) 

and the combination of translation and rotation motions of the desired point is 
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c cmV v r    (3-14) 

where 
cmv is the linear velocity of the center of mass, and   is the angular velocity. A 

translational momentum M of the Qball-X4 rigid body can be written as [56]:  

   

  

q
M H H H

H

q

q q q

ω

J ω ω
 (3-15) 

and in terms of 
q

M in body-fixed frame  

( ) [ ( )]     
q q q

M H Mq q q q q q qω J ω J ω J ω-1 -1
 (3-16) 

where H is the matrix of the angular momentums in earth-frame, 
q

H  is the matrix of the 

same momentums in body-frame, qω contains all the angular velocities of body-frame, 

and 
q

J is the inertia matrix about axes , ,q q qx y z  of body-frame as [56]: 

xx xy xz

xy yy yz

xz yz zz

J J J

J J J

J J J

  
 

   
   

qJ  (3-17) 

1 2 3
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3 5 6
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| |

k k k

k k k

k k k

 
 


 
  

qJ
qJ
-1

 (3-18) 

with  

2

1 2 3

2 2

4 5 6

2 2 2

( ) ( ) ( )

( ) ( ) ( )

| | 2

yy zz yz yz zx xy zz xy yz zx yy

zz xx zx xy zx yz xx xx yy xy

xx yy zz xy yz zx xx yz yy zx zz xy

k J J J k J J J J k J J J J

k J J J k J J J J k J J J

J J J J J J J J J J J J







     

     

    

 
 

  
 
 

q
J

qω

 
(3-19) 
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Based on the principal axes theory, the inertia matrix can be reduced into a simple 

diagonal matrix.  

0 0

0 0

0 0

1
0 0

1
0 0

1
0 0

x

y

z

x

y

z

J

J

J

J

J

J

 
 


 
  

 
 
 
 

  
 
 
 
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q
J

qJ
-1

 (3-20) 

where 
xJ , yJ , 

zJ  are inertias about , ,x y z  axes.  

It is known that the torque on a body is equal to the rate of change of the same 

body’s angular momentum. For Qball-X4 system, the body-fixed momentum 
q

M is 

defined by using length of lever L  and c  in , ,q q qx y z  axes with body-fixed torque 
q

  as: 

1 2

3 4

1 2 3 4

( )

( )

( )

l F F

l F F

c F F F F

 
 

   
 
    

q q q
M H   (3-21) 

Thus, from equation (3-16), the following can be obtained: 

1 2

3 4

1 2 3 4

( ) ( )

( ) ( )

( ) ( )

x y z

y z x

z x y

J J J l F F

J J J l F F

J J J c F F F F

 

 

 

     
     

        
            

 (3-22) 

Due to the gyroscopic effects [57] on four rotors, two more terms need to be 

added into equation (3-22) as rJ   , rJ  respectively for   and  , with   defined as 

a disturbance 1 2 3 4    . The angular velocity for each rotor is i  and rJ is 

the moment of inertia of each rotor.  
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Including drag forces as frictions, the Qball-X4 attitude dynamics is then written 

as: 

1 2

3 4

1 2 3 4

( ) ( )

( ) ( )

( ) ( ) 0

x y z r

y z x r

z x y

J J J l F F J f

J J J l F F J f

J J J c F F F F f







  

  

 

           
        

              
                   

 (3-23) 

where f d  , f d  , and f d   are drag forces with 
id  as the drag coefficient 

for both altitude and attitude.  

The overall system is described by combining equations (3-11) and (3-23) as 

follows: 

1 2 3 4

1 2 3 4

1 2 3 4
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


   
  

 
(3-24) 

 

3.3. Parameter Identification 

In the previous section, a mathematical model has been discussed and developed. 

However, how accurate the system parameters are needs to be determined. Table 3-1 and 

Table 3-2 have listed all the theoretical parameters. 
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Table 3-1 Inertia parameters 

Parameter 
xJ  

yJ          
zJ  

Value 0.03(kg. 2m ) 0.03(kg. 2m ) 0.04(kg. 2m ) 
                                                           

Table 3-2 System parameters  

Parameter  
aK            m              L 

 Value  120(N)  15(rad/sec)  1.422(kg) 0.2(m) 
                                                               

In practise, due to the error of measurements and noise, theoretical parameters 

sometimes are different from those in real application. Hence, with a set of inaccurate 

parameters, the designed controllers might only work in simulations. In order to have a 

better controller and a better experimental result, parameter identification procedure is 

then used. Through a series of experiments, by knowing the inputs and the outputs, 

parameters can be identified, and the Qball-X4 model equations from theories can also be 

verified if it is applicable in practise.  

           Before identifying all the needed parameters, the model equations have to be 

changed into the following format: 

1 2 1 2 3 4

5 6 3 4 7 8

9 10 1 2 3 4 11

( )

( )

( )

p p F F p p

p p F F p p

p p F F F F p

   

   

  

    

    

     

 (3-25) 

All the angular velocities of  ,  , and   can be given from the sensors 

measurements, and the inputs of 1 2( )F F , 3 4( )F F , and 1 2 3 4( )F F F F    are the 

output forces from each actuator. By actuator dynamics equation (3-7), it can be known 

the force is controlled by PWM wave, which is preset to the desired values. In expansion, 

the above equation (3-25) can be rewritten in more details as: 
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1 2 1 2 3 4

5 6 3 4 7 8

9 10 1 2 3 4 11

( )

( )

( )

a a

a a

a a a a

p p K W K W p p
s s

p p K W K W p p
s s

p p K W K W K W K W p
s s s s

 
   

 

 
   

 

   
  

   

    
 

    
 

     
   

 

                                                                             

(3-26) 

so that   

1 2 1 2 3 4
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 (3-27) 

where a ap K
s







 is the actuator coefficient, and a new set of parameters has been 

chosen as 2 2 ap p p ,  6 6 ap p p , 10 10 ap p p  

 The angular accelerations  ,  , and   are calculated by the definition of 

derivative  

( ) ( )y i dt y i
y

dt

 
  (3-28) 

where dt  is a small number to provide enough precision.   

   For Qball-X4 operating at a low speed, the following sections ignore all the 

drag forces.      

3.3.1. Pitch Identification 

For pitch angle, once the input 1 2( )F F , and output   are known, the equation 

from (3-25) can be rewritten as: 
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 1 2 3 1 2p p p F F





 
 

     
  

  (3-29) 

 
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1 2 3 1 2p p p F F
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 
 
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  

  
(3-30) 

Each experiment has thousands of values for each parameter, thus pseudo inverse 

approach is needed to calculate the inverse of non-square matrices.  
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1 2

1 2 3
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n n

n

i i i n

p p p

F F

p p p







  
        
      

nθ  
(3-31) 

where 1, ,n i .  

The input signals have been given to maximize the changes of the output, so that a 

close enough approximation of the practical model can be achieved. The range of input is 

PWM waveform from 0.055 to 0.1 to drive the motor to rotate. In this thesis, the result of 

1 2F F  is the input of the actuators, which has been set to square wave with a magnitude 

from -0.02 to 0.02 for the first initial condition (IC1). The second initial condition (IC2) 

and the third initial condition (IC3) have been set from -0.01 to 0.01 and -0.015 to 0.015 

respectively as shown in the following tables.  

Table 3-3 Estimated parameters of attitude pitch for IC1 

Set No. IC1 

Times 
Parameters 

1p  2p  3p  

1 -3.0699 3.1029 2.8679 

2 -0.3252 2.4674 -4.7796 

3 0.1762 4.3268 -7.2080 

4 0.1482 6.6427 -8.9897 
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Average -0.7677 4.1349 -4.5274 

error bounds  2.3022  2.5078  4.4623 
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Fig. 3-8. PWM input for pitch of IC1 

0 1 2 3 4 5 6 7 8 9 10
-30

-20

-10

0

10

20

30

Time (s)

A
n

g
u

la
r 

a
c
c
e

le
ra

ti
o

n
 (

ra
d

/s
2
)

 

 

Experiment

Simulation

 

                                                          Fig. 3-9. Result of initial condition 1 
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Table 3-4  Estimated parameters of attitude pitch for IC2 

Set No. IC2 

Times 
Parameters 

1p  
2p  

3p  

1 -0.0531 -0.2917 -4.1946 

2 -1.6056 5.4627 2.7320 

3 1.4168 1.7824 -1.6919 

4 -0.3608 4.2282 -5.0817 

Average -0.1507 2.7954 -2.0591 

error bounds  1.5675  2.6673  4.7911 
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                                                    Fig. 3-10. PWM input for pitch of IC2 
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                                              Fig. 3-11. Result of initial condition 2 

 

Table 3-5 Estimated parameters of attitude pitch for IC3 

Set No. IC3 

Times 
Parameters 

1p  2p  3p  

1 -0.7962 -2.1213 -4.8125 

2 0.1648 4.0321 -3.0568 

3 1.0136 0.5105 -0.7622 

4 -0.7999 2.2020 -1.2323 

Average -0.1044 1.1558 -2.4659 

error bounds  1.1180  3.2771  2.3466 
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                                             Fig. 3-12. PWM input for pitch of IC3 
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                                            Fig. 3-13. Result of initial condition 3 
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3.3.2. Roll Identification 

Similarly, for roll angle, the equations are written as: 

 5 6 7 3 4p p p F F





 
 

     
 
 

  (3-32) 
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i i i n

p p p
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p p p
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  
        
     

n  
(3-33) 

where 1, ,n i .  

The inputs of roll identification are changed to 3 4F F , with a square wave 

magnitudes from -0.02 to 0.02 for IC1, from -0.01 to 0.01 for IC2 and from -0.015 to 

0.015 for IC3  as the same as in previous section.  

Table 3-6 Estimated parameters of attitude roll for IC1 

Set No. IC1 

Times 
Parameters 

5p  6p  7p  

1 0.4846 1.0983 1.5755 

2 -0.5849 2.2949 -1.0558 

3 0.3840 1.0421 7.4659 

4 0.6892 2.0951 0.2552 

Average 0.2432 1.6326 2.0602 

error bounds  0.8281  0.6623  5.4057 
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                                                 Fig. 3-14. PWM input for roll of IC1 
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                                                  Fig. 3-15. Result of initial condition 1 
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Table 3-7 Estimated parameters of attitude roll for IC2 

Set No. IC2 

Times 
Parameters 

5p  
6p  

7p  

1 -1.2261 1.3172 -1.1282 

2 -1.4324 5.4702 -0.5925 

3 -0.1349 2.3934 -0.9432 

4 0.9382 1.6203 -0.6028 

Average -0.4638 2.7003 -0.8167 

error bounds  1.4020  2.7699  0.3115 
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                                                     Fig. 3-16. PWM input for roll of IC2 
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                                             Fig. 3-17. Result of initial condition 2 

 

Table 3-8 Estimated parameters of attitude roll for IC3 

Set No. IC3 

Times 
Parameters 

5p  6p  7p  

1 -0.7034 2.2475 -1.4136 

2 1.8087 2.3508 0.5491 

3 0.9004 2.2209 -0.3518 

4 2.7565 0.0436 0.6769 

Average 1.1906 1.7157 -0.1349 

error bounds  1.8940  1.6721  1.2787 
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                                              Fig. 3-18. PWM input for roll of IC3 
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                                              Fig. 3-19. Result of initial condition 3 
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3.3.3. Yaw Identification 

For yaw angle, the equations are as follows: 

   9 10

1 2 3 4

p p
F F F F

 
  

   
  (3-34) 

 
119 110

1 2 3 4

9 10

( )

n n

n

i i

p p

F F F F
p p

 
 

  
         

nψ  (3-35) 

The input of yaw is different from the previous two sections in the form of 

1 2 3 4F F F F   . The parameters can be identified through four sets of experiments listed 

below.  

 

Table 3-9 Estimated parameters of attitude yaw for IC1 

Set No.                IC1 

Times 
         Parameters 

9p  10p  

1 -0.3036 37.3767 

2 7.7218 44.9528 

3 10.7151 41.5903 

4 10.0678 44.6962 

Average 7.0503 42.1540 

error bounds  7.3539  4.7773 
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                                            Fig. 3-20. PWM input for yaw of IC1 
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                                             Fig. 3-21. Result of initial condition 1 
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Table 3-10 Estimated parameters of attitude yaw for IC2 

Set No.                 IC2 

Times 
           Parameters 

 
9p  

10p  

1  -8.2324 51.2026 

2  5.6769 54.8508 

3  7.7716 74.1427 

4  2.3841 81.0267 

Average  1.9001 65.3056 

error bounds   10.1325  15.7211 
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                                             Fig. 3-22. PWM input for yaw of IC2 
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                                             Fig. 3-23. Result of initial condition 2 

 

Table 3-11 Estimated parameters of attitude yaw for IC3 

Set No.                IC3 

Times 
         Parameters 

9p  10p  

1 1.2428 91.1459 

2 4.0248 71.9005 

3 6.4178 75.6902 

4 10.4587 79.1548 

Average 5.5360 79.4728 

error bounds  4.9227  11.6731 
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                                            Fig. 3-24. PWM input for yaw of IC3 

0 2 4 6 8 10 12
-15

-10

-5

0

5

10

15

20

25

Time (s)

A
n

g
u

la
r 

a
c
c
e

le
ra

ti
o

n
 (

ra
d

/s
2
)

 

 

Experiment

Simulation

 

                                             Fig. 3-25. Result of initial condition 3 
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3.4. Summary 

The Qball-X4 dynamics have been derived and identified. The practical controller 

and the future experimental flight tests will be designed and conducted based on the 

model equations and system parameters developed in this chapter. Since the thesis targets 

to do experimental test on the real Qball-X4 UAV test-bed available at the Networked 

Autonomous Vehicles (NAV) Lab of Concordia University, it is very crucial to have 

correct and precise mathematical model of the system. If the model dynamics and system 

parameters are close enough to the reality, the better testing results can be obtained. 

Therefore, this chapter has laid the ground work for the later experimental flight tests.  
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4. Nonlinear Control of the Qball-X4 System  

In Chapter 2, all the background theories and procedures needed for the controller 

design of the Qball-X4 system have been explained and illustrated in details. In this 

chapter, practical design and implementation will be carried out according to what have 

been discussed before for feedback linearization control, sliding mode control and 

backstepping control, respectively. As verification, simulations will not be the only 

approach, and experimental flight tests on the Qball-X4 system will be another strong 

proof and comparison of the performance of the designed controllers.  

From Chapter 3, the system parameters are identified and the theoretical model 

dynamics have been proven effective. However, due to the limitations of experimental 

equipment, the identified parameters only have the overall system information. For 

instance, instead of identifying ,x yJ J , and zJ  respectively, the identification procedure 

can only calculate the parameter ip  as the combination of the individual inertia. 

Therefore, the identified parameter ip  is not used directly in the design process, but used 

in the practical implementation, especially for the disturbance between attitude pitch and 

roll. 

The Qball-X4 system is an underactuated system, but all the inputs are fully 

controllable. In practical systems, not all the states have direct feedback, due to the limit 

of available sensors. However, the missing states can be either calculated or estimated.   
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4.1. Feedback Linearization Control 

4.1.1. Controller Design 

Based on the design procedure of multiple inputs system (2-13)–(2-17) with 

tracking errors, both position ( , ,x y z ) and attitude ( , ,   ) controllers can be designed.  

The cancellation of system nonlinearity is achieved through the matrix inversion 

1( )G x  , which requires that the matrix ( )G x  has to be invertible. Taking system model 

(3-24) into consideration, it can be seen there are only four inputs 1 2 3 4, , ,u u u u , which 

make only four states can be controlled. To control the positions and attitude of x-y-z-yaw, 

the model equations can be represented as follows:  

1

1

1
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4

(cos sin cos sin sin )

(sin sin cos sin cos )

(cos cos )
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 (4-1) 

where 1 2 3 4
1

F F F F
u

m

  
 , 1 2

2

x

F F
u

J


 , 3 4

3

y

F F
u

J


 , and 1 2 3 4

4

z

F F F F
u

J

  
 .   

Regroup into the format of ( ), ( )F X G X , one obtains 

( ) ( )

( )

 



X F X G X U

Y H X
           (4-2) 

where  
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Due to the fact of non-invertible matrix of G , a dynamic extension is used to 

reform G . More derivatives will be taken, and constant c  will become to 0; therefore, 

yaw has to be taken to the attitude control of pitch-roll-yaw.  

There is another factor that could have an influence on the performance of the 

controller, which is noise caused by more derivatives. To minimize the noise sensitivity 

as much as possible but also keep the derivatives, an assumption of 0   is taken into 

consideration and as well for the sliding mode control and backstepping control. By 

doing this, the original equations are reduced, and so is the sensitivity of noise. Besides, 

the assumption of 0   is practically possible, due to the independency of control input 

4u . 

 Four derivatives are taken on ( )Y H X to form the new ( ), ( )F X G X  as shown:                   
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     (4-3)     
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Regroup the above equation into the format of ( ), ( )F X G X  as indicated in 

equation (4-2) and place ,  into the equations as following: 
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where using sin ,  sin ,  cos ,  coss s c c           , the elements of matrix ( )F' X  
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1 1 1

1 2

1 1 3

sin cos cos cos sin sin

'( ) sin 0 cos '

cos cos sin cos cos sin
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lu u
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   
   
       

G X U   

For a tracking task, tracking errors of x-y-z are defined as the following: 

(4) (3)

1 2 3 4

(4) (3)

1 2 3 4

(4) (3)

1 2 3 4

0

x fx x fx x fx x fx x

y fy y fy y fy y fy y

z fz z fz z fz z fz z

e k e k e k e k e

e k e k e k e k e

e k e k e k e k e

    
 

     
     

 (4-6) 

where  ;  ;  .x d y d z de x x e y y e z z     
 

The overall system controller for altitude x-y-z is then designed as: 

(4) (4) (3)

1 1 2 3 4

(4) (4) (4) (3)

2 1 2 3 4

(4) (4) (3)

3 1 2 3 4

d fx x fx x fx x fx x
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            

Y V            (4-7) 
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G X F X V
 

          (4-8)   

where  , ,fxi fyi fzik k k , 1, ,4i   are control gains.  

            Two simple integrations can get 1u  from 1u . To control the atitude of pitch-roll-

yaw, the model equations are giveb by: 
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 
   

 
   


  

 
          (4-9) 

Similar to the procedure of the x-y-z controller, regroup the above equations into 

the format of ( ), ( )F X G X to obtain following matrix-vector format:  
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G X U   

Since the matrix G  is already invertible, no extension is needed. The tracking 

errors for , ,    are defined as the same as , ,x y z .  

1 1 2

2 1 2
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d f f

d f f

d f f
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Y V  (4-10) 

where , , ,f i f i f ik k k   1,2i   are control gains, and ,de     ,de     

de    . 

The overall system controller for attitude pitch-roll-yaw is then designed as:  

2

3

4

( ( ) )

u

u

u

 
 

  
 
  

G F X V
(-1)

 (4-11) 

For either position controller or attitude controller, when control inputs are set to 

zeros, the outputs become zeros. Zero dynamics applies to both controllers, and the 

system is stable.   
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4.1.2. Simulations 

In this section, the performance of designed controller will be tested, by giving a 

desired path in the form of coordinates to x-y-z. The position controller or attitude of the 

Qball-X4 will be shown to prove the stability and tracking performance of the controller. 

Ignoring all the drag forces for , , , , ,x y z     and setting 0,d   and without 

disturbance, the results are shown in details for both x-y-z coordinates and pitch, roll and 

yaw angles. The control inputs are shown as well in both Voltage (u) and Newton (F).  
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                                                 Fig. 4-1. 3-dimensional path tracking  
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                                                    Fig. 4-2. Position tracking in x axis 
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                                                     Fig. 4-3. Position tracking in y axis 
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                                                      Fig. 4-4. Position tracking in z axis 
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Fig. 4-5. Pitch and roll angles 
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                                                   Fig. 4-6. Attitude of yaw angle 

0 10 20 30 40 50 60 70 80 90 100
-50

-40

-30

-20

-10

0

10

20

30

40

50

Time (s)

In
p

u
t 
fu

n
c
ti
o

n
 o

f 
u

1
 (

V
) 

a
n

d
 u

2
 (

V
)

 

 

input of u1

input of u2

 

                                            Fig. 4-7. Control inputs of 1u and 2u  
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                                                Fig. 4-8. Control inputs of 3u and 4u  
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                                             Fig. 4-9. Propellers forces 1F and 2F  
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                                                 Fig. 4-10. Propellers forces 3F and 4F  

 

The results show the controller behaves properly. Overall system is stable and the 

desired path has been tracked. To test the robustness of the controller, disturbances and 

noises need to be added. Hence, drag forces and gyroscopic effect   are added randomly, 

and so are the sensor noises. With the same controller, another set of simulation results 

are presented in Fig. 4-11 to Fig. 4-20 as follows.  

The tracking performance is deteriorated than the previous case due to the effects 

of highly coupled matrix '( ) 'G X U , extra disturbances and noises. However, the 

controller can still be able to stabilize the system and to follow the same desired 

trajectory.  

 



 76 

-10
0

10
20

30
40

50

-20

0

20

40

60
-0.5

0

0.5

1

1.5

2

2.5

 

Position of x (m)Position of y (m)

 

P
o
s
it
io

n
 o

f 
z
 (

m
)

Actual positions

Reference positions

 

                                              Fig. 4-11. 3-dimensional path tracking  
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                                               Fig. 4-12. Position tracking in x axis 
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                                                Fig. 4-13.  Position tracking in y axis 
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                                                Fig. 4-14. Position tracking in z axis 
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                                                  Fig. 4-15. Attitude of pitch and roll angles 
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                                                    Fig. 4-16. Attitude of yaw angle 
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                                                     Fig. 4-17. Control inputs of 1u and 2u  
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                                                    Fig. 4-18. Control inputs of 3u and 4u  
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                                               Fig. 4-19.  Propellers forces 1F and 2F  
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                                               Fig. 4-20. Propellers forces 3F and 4F
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4.2. Sliding Mode Control 

4.2.1. Controller Design 

Through equations (2-39)-(2-46) in Section 2.2, position ( , ,x y z ) and attitude 

( , ,   ) controllers can be realized using sliding mode technique for the Qball-X4.     

By equation (3-24), the system is in second-order, and only six states as 

, , , , ,x y z    
   are not adequate for feedback. Therefore, an expansion of the states has 

been taken into consideration as:  

1 2 3 4 5 6 7 8 9 10 11 12, , , , , , , , , , , [ , , , , , , , , , , , ]
T

TX x x y y z z x x x x x x x x x x x x        

 

    (4-12) 

In details, it can be written as: 
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(4-13) 
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where 1 2 3 4
1

F F F F
u

m

  
 , 1 2

2

x

F F
u

J


 , 3 4

3

y

F F
u

J


 , 1 2 3 4

4

z

F F F F
u

J

  
 . 

cos sin cos sin sinxu        as a virtual input, and as well a virtual input of 

cos sin sin sin cosyu       .   

In order to follow the desired path, a tracking error needs to be defined as 

mentioned in Chapter 2, i.e., i d ie x x  , where n

ix R . Instead of choosing equation 

(2-26) as the sliding surface, an integration of tracking error component has been 

introduced into the surface. Therefore, a faster convergence and a smoother tracking 

trajectory would be achieved by the following equations: 

( )i i i i pi is t e e k e            (4-14) 

                 

To stabilize the controller, sliding condition has to be satisfied, which is 0i is s   

for , , , , ,i x y z    . By the principles (2-29) and (2-30), the sliding mode controller can 

then be derived.  

From (4-14), one can obtain 

         2 1 1 1 2 1 1( )x d x p x d x x d p xs x x e k e x u u d x x x k e            (4-15) 

a tracking error component pi ik e  is used to obtain a faster convergence and a better 

stability. A function i pi is k e   is also needed to be chosen instead of the original 0is  . 

Then, the approximation of control input xu  is given by:  

1 2 1

1

1
ˆ [ ( ) 2 ]x d d x p xu x x x d x k e

u
      (4-16) 

where  ˆ
xu  is a virtual control input approximation with 1u  as a constant.  
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Then, the control input is derived as: 

1
ˆ ( )x x s xu u k sign s   (4-17) 

From equations (2-37) and (2-38), (4-16) can be written as:  

1 2 1 1 1

1 1

1 1 ˆˆ [ ( ) 2 ] [ ( ) ( ) 2 ]x d d x p x d d p xu x x x d x k e x x x f x k e
u u

            (4-18) 

Then, sliding condition of (2-28) is satisfied.  
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              ( ) ( ) }
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d p x

p x s

d
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dt

s x u x x x f x k e k sign s
u

f x x x k e

f x f x k e s k s s
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      

   

     

 

            

(4-19

) 

where 1
ˆ| ( ) ( ) | ( )p xf x f x k e f x    and 1 ( )sk f x   . The rest of control inputs as 

, , , ,y zu u u u u    are all followed the same stablilization rules of equations (4-18) and 

(4-19). 

Following the similar procedure, sliding condition for y-position controller can be 

obtained based on the controller structure given in equation (4-14).                                  

1 4 2 2( )y d y y d p ys y u u d x y y k e       (4-20) 

with 2y p ys k e  , and  

2 4 2

1

1
ˆ [ ( ) 2 ]y d d y p yu y y y d x k e

u
      (4-21) 

so that the virtual control input yu  is,   

2
ˆ ( )y y s yu u k sign s   (4-22) 

             Similarly, for , , ,z    , one can obtain following conditions: 
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 (4-23) 

all the approximations are written as the following: 
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      

 
      


     62 )pk e

 (4-24) 

so that, the final control inputs are represented as:  

ˆ ( )i i si iu u k sign s   (4-25) 

where i , sik , and pik  are all positive gains.  

 

4.2.2. Simulations  

By using the same desired path as given to FLC, the performance of position and 

attitude control of the Qball-X4 system will be tested to show the stability and tracking 

performance of the designed SMC. 
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Ignoring all the drag forces for , , , , ,x y z     and maintaining desired 
d  angle at 

zero at all times, simulations without disturbance are shown for position in x,y,z, altitude 

in pitch, roll, and yaw, and the control inputs in both Voltage (u) and Newton (F).  
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                                              Fig. 4-21. 3-dimensional path tracking  
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                                        Fig. 4-22. Position tracking in x direction  
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                                                  Fig. 4-23. Position tracking in y direction    
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                                           Fig. 4-25. Attitude of pitch and roll angles 
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                                                    Fig. 4-26. Attitude of yaw angle 
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                                              Fig. 4-27. Control inputs of 1u and 2u   
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                                                   Fig. 4-28. Control inputs of 3u and 4u       
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                                            Fig. 4-29. Propellers forces 1F and 2F  
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                                         Fig. 4-30. Propellers forces 3F and 4F  

Figures 4-21 to 4-30 have shown that excellent tracking performance has been 

achieved. Without any coupled matrix as in the FLC, the change of one control input of 

SMC will not affect the other inputs. All the control inputs are maintained within a 

relatively small range, and the trajectory is tracked smoothly. 

For robustness, drag forces, sensors noises and disturbance   are added 

randomly. Using the same controller, another set of simulations have been carried out and 

the results are shown below, as the same sequence as previously. The tracking 

performance of the sliding mode controller is expected to be deteriorated, however the 

overall system should still be under control, as it can be seen from Figures 4-31 to 4-40. 

The augmented sliding surface has ensured the robustness of the control system.  
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Fig. 4-31.  3-dimensional path tracking 
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Fig. 4-32. Position tracking in x direction 
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Fig. 4-33. Position tracking in y direction 

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

2.5

Time (s)

P
o

s
it
io

n
 o

f 
z
 (

m
)

 

 

z position

Reference of z position

 

Fig. 4-34. Position tracking in z direction 
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Fig. 4-35. Attitude of pitch and roll angles 
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                                                  Fig. 4-36.  Attitude of yaw angle 
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                                                   Fig. 4-37. Control inputs of 1u and 2u  
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                                             Fig. 4-38. Control inputs of 3u and 4u  
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                                             Fig. 4-39. Propellers forces 1F and 2F  
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                                              Fig. 4-40. Propellers forces 3F and 4F  
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4.3. Backstepping Control 

4.3.1. Controller Design 

Similar to both feedback linearization control and sliding mode control, by 

equations (2-62)–(2-66), a multiple-input multiple-output (MIMO) controller on both 

position and attitude control can be implemented.  

Based on the principles of backstepping and the model of the Qball-X4, equation 

(3-24) has not enough states for a back stepping control. Hence, state expansion (4-13) is 

used.   

For position x , the state equations are represented by: 

1 2

2 1 2(cos sin cos sin sin ) x

x x

x u d x    



  
 (4-26) 

1x  needs to be stabilized first and then 2x . Defining a tracking error to change the system 

into a tracking task, 1x de x x   is used to track the first state 1x  with the desired value. 

Lyapunov function is then chosen as: 

2

1 1

1
( )

2
x xV e e  (4-27) 

then,  

1 1 1 1 1 2( ) ( ) ( )x x x x d x dV e e e e x x e x x      (4-28) 

where 2x  is the virtual control input.  

Defining  

2 1 1( ) d xx x x e     (4-29) 

the above equation (4-28) can be rewritten as: 
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2

1 1 2 1 1 1( ) ( ) ( ( )) 0x x d x d xV e e x x e x x e         (4-30) 

Therefore, 
1xe  has been stabilized. Defining a second tracking error as 

2 2 ( )xe x x  , 

Lyapunov function needs to be augmented.  

2 2

1 2 1 2

1
( , ) ( )

2
x x x xV e e e e   (4-31) 

Similarly, from 
2 2 ( )xe x x  , it can be derived as follows:  

2 2 2 1 1 1 1 1

1 2 1 1

( )x d x x x

x x x

e x x x x e e e

e e e

  



       

  
 (4-32) 

            

2

1 2 1 1 2 2 1 2 1 1 2 2

2

1 2 1 1 2 1 2 1 1

2

1 2 1 1 2 1 2 1 2 1 1

( , ) ( ( ))

( )

( ( ))

x x x x x x x x x x

x x x x x x d x

x x x x x x d x x

V e e e e e e e e e e x x

e e e e u u d x x e

e e e e u u d x x e e

 

 

  

      

      

       

 (4-33) 

In order to have a negative Lyapunov function, virtual control input xu  has been 

chosen as:  

            1 1 2 1 1 2 2 2

1

1
( ( ) )x x d x x x xu e x e e d x e

u
         (4-34) 

Replace equation (4-34) into (4-33), the chosen Lyapunov function can be proven 

as a negative function and the two states 1 2,x x are stable.  

1 2 1 1 2 2

2

1 2 1 1 2 1 2 1 1

2

1 2 1 1 2 1 1 1 2 1 1 2 2 2

1

2 1 2 1 1

2 2

1 1 2 2

( , )

( )

1
( ( ( ) )

   ( ))

0

x x x x x x

x x x x x x d x

x x x x x d x x x x

x d x x

x x

V e e e e e e

e e e e u u d x x e

e e e e u e x e e d x e
u

d x x e e

e e

 

   

 

 

 

      

        

   

   

 (4-35) 
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Similar procedure for position y  with the states 
3 4,x x . First of all, define a 

tracking error 
1 ,y de y y  and a Lyapunov function as 

2

1 1

1
( )

2
y yV e e . Then the following 

can be attained easily:  

1 1 1 1 1 4( ) ( ) ( ) 0y y y y d y dV e e e e y y e y x       (4-36) 

where 4 3 1( ) d yy x y e     is the virtual control input. By choosing an augmented 

Lyapunov function  

2 2

1 2 1 2

1
( , ) ( )

2
y y y yV e e e e   (4-37) 

where 2 4 ( )ye x y  , and 1 2 3 1y y ye e e   , so that 

2

1 2 1 1 2 2 1 2 3 1 2 4

2

1 2 3 1 2 1 4 3 1

2

1 2 3 1 2 1 4 3 2 3 1
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

 

(4-38) 

 

with the virtual control input yu  as:      

1 3 2 3 1 4 4 2

1

1
( ( ) )y y d y y y yu e y e e d x e

u
         (4-39) 

For the rest of states , , ,z    , defining the tracking errors as:  

1 1

1 1

z d d

d d

e z z e

e e



 

 

   

   

   
 (4-40) 

and Lyapunov functions as:  
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 (4-41) 

all the virtual control inputs need to be chosen as:  

6 5 1 8 7 1

10 9 1 12 11 1

( ) ( )
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z x z e x e
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 (4-42) 

Augmented Lyapunov functions are  

2 2

1 2 1 2 1 2 1 1 2 2

2 2

1 2 1 2 1 2 1 1 2 2

2 2
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 (4-43) 

where 2 6 ( )ze x z  , 2 8 ( )e x    , 2 10 ( )e x    , and 2 12 ( )e x    , then the 

control inputs are:  

1 1 5 2 5 1 6 6 2
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8
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J J
e x x d x e
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  

 (4-44) 

where i  1, ,12i   are all the positive control gains.   
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4.3.2. Simulations 

As similar as previous sections, setting all the drag forces and desired yaw angle 

to zeros, simulations without disturbance ( 0 ) or noise are shown as follows. The 

behaviours of positions, attitudes, and control inputs can be seen respectively in Figures 

4-41 to 4-50.    
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                                              Fig. 4-41. 3-dimensional path tracking  
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                                              Fig. 4-42. Position tracking in x direction 
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                                                Fig. 4-43. Position tracking in y direction 
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                                                 Fig. 4-44. Position tracking in z direction 
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                                         Fig. 4-45.  Attitude of pitch and roll angles 
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                                                 Fig. 4-46. Attitude of yaw angle 
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                                               Fig. 4-47. Control inputs of 1u and 2u  
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                                                Fig. 4-48. Control inputs of 3u and 4u  
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                                           Fig. 4-49. Propellers forces 1F and 2F  
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                                           Fig. 4-50. Propellers forces 3F and 4F  

The same controller is used to test the robustness of the controller, while noise 

and disturbance are added. Simulation results have been shown in Figures 4-51 to 4-60.                                           
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                                          Fig. 4-51. 3-dimensional path tracking  
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                                                    Fig. 4-52. Position tracking in x direction 
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                                               Fig. 4-53. Position tracking in y direction 
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                                                          Fig. 4-54. Position tracking in z direction 
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                                                  Fig. 4-55.  Attitude of pitch and roll angles 
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                                                   Fig. 4-56. Attitude of yaw angle 
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                                                  Fig. 4-57. Control inputs of 1u and 2u  
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                                                  Fig. 4-58. Control inputs of 3u and 4u  
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                                           Fig. 4-59. Propellers forces 1F and 2F  
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                                            Fig. 4-60. Propellers forces 3F and 4F  

From all the results shown above, it can be learnt that backstepping controller 

behaves properly, but differently from feedback linearization control and sliding mode 

control. If the control inputs need to be in a certain range, backstepping control needs a 

trajectory with a slow speed. Since BSC tends to generate a larger control input to 

achieve fast convergence, tracking performance becomes deteriorated when the reference 

trajectory has some critical points (derivatives undefined) or changes quickly. After 

noises being added into the system, the control capability has been worsen, but the 

control effort is still being made by the backstepping controller. 
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4.4. Experimental Testing Results 

The experimental tests are carried out in the Networked Autonomous Vehicles 

(NAV) Lab at the Concordia University. The experimental setup includes six cameras 

playing as the GPS system, a joystick as the safety control, and a desktop as the ground 

station as mentioned in Chapter 3. The six cameras are mounted on the lab ceiling to have 

a better 3-dimensional position feedback of the Qball-X4 UAV. The sensors, gyroscope, 

accelerometer, and magnetometer installed on the Qball-X4 system send back the status 

of vehicle during real time flight. When all the necessary states of Qball-X4 are received 

for the controller on ground station through TCP/IP wireless connection, the control 

inputs will be generated from the ground station and sent to the Qball-X4 system. The 

process is then complete.  

4.4.1. Feedback Linearization Control 

Figures 4-61 to 4-70 show the performance of feedback linearization controller in 

the real flight tests. The tracking task is still to follow a square as in the simulations. 

However, due to the size of the lab, the desired square has been reduced to 21.5 1.5m .   
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Fig. 4-61. 3-dimensional path tracking 
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Fig. 4-62. Position tracking in x direction 
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Fig. 4-63. Position tracking in y direction 
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Fig. 4-64. Position tracking in z direction 
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Fig. 4-65. Attitude of pitch and roll angles 
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Fig. 4-66. Attitude of yaw angle 
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Fig. 4-67. Control inputs of 1u and 2u  
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Fig. 4-68. Control inputs of 3u and 4u  
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Fig. 4-69. Propellers forces 1F and 2F  
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Fig. 4-70. Propellers forces 3F and 4F  
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From the above figures shown, it can be seen that the feedback linearization 

controller controlled the Qball-X4 to finish the trajectory tracking successfully. However, 

as expected, due to the highly coupled matrix '( ) 'G X U , the change of any control input 

will lead to the rest of the control inputs change. Then, the corresponding attitudes and 

positions will change accordingly. Therefore, FLC kept trying to stabilize the Qball 

during the whole flight test, and this is the reason why the performance of the tracking 

task seems very jumpy. 

4.4.2. Sliding Mode Control 

For the same desired square trajectory of 21.5 1.5m , the SMC has also been 

implemented and fully tested. The results are listed in Figures 4-71 to 4-80 to 

demonstrate the performance of the control system and for the comparison with the other 

controllers.  
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Fig. 4-71. 3-dimensional path tracking 
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Fig. 4-72. Position tracking in x direction 
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Fig. 4-73. Position tracking in y direction 
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Fig. 4-74. Position tracking in z direction 
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Fig. 4-75. Attitude of pitch and roll angles 
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Fig. 4-76. Attitude of yaw angle 
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Fig. 4-77. Control inputs of 1u and 2u  
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Fig. 4-78. Control inputs of 3u and 4u  
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Fig. 4-79. Propellers forces 1F  and 2F  
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Fig. 4-80. Propellers forces 3F  and 4F  

From the results, the sliding mode controller has been proven a very robust 

controller. By adding the augmented sliding surface, the desired trajectory has been 

tracked almost perfectly, and the task is very well accomplished. From Figures 4-71 to 4-

74, it can be seen that the integration component in the sliding surface does not only 

increase the stability of the control system, but also smoothens the tracking trajectories.  

4.4.3. Backstepping Control 

Based on the exactly same condition and desired trajectory, backstepping control 

has been implemented and tested as well, which are showed in Figures 4-81 to 4-90. The 

results show that the tracking task is well accomplished and reveal the differences 

between the behaviours of backstepping controller and that of feedback linearization 

controller and sliding mode controller.  
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Fig. 4-81. 3-dimensional path tracking 
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Fig. 4-82. Position tracking in x direction 
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Fig. 4-83. Position tracking in y direction 
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Fig. 4-84. Position tracking in z direction 
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Fig. 4-85. Attitude of pitch and roll angles 
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Fig. 4-86. Attitude of yaw angle 
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Fig. 4-87. Control inputs of 1u and 2u  
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Fig. 4-88. Control inputs of 3u and 4u  
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Fig. 4-89. Propellers forces 1F and 2F  
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Fig. 4-90. Propellers forces 3F and 4F  
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In this thesis, the backstepping controller is designed to have some robustness by 

decoupling the control inputs. The results have proven that for the same Qball-X4 system, 

the backstepping technique is more stable than the feedback linearization technique, and 

less stable than the sliding mode technique, as shown from Fig. 4-81 to Fig. 4-84 of the 

actual trajectory of the system. 

   

4.5. Comparison of the Three Controllers 

From the previous three sections, simulation results have shown all three 

controllers are tested successfully under both noiseless and noisy conditions. The 

performance of each controller varies from others, due to its own feature. The differences 

will be discussed in the following.  

When there is no noise added in all three control systems, through Fig. 4-1 to Fig. 

4-4, feedback linearization controller has shown that the tracking task is achieved. 

However, at each turn of the square trajectory, FLC has a small curve and delay to follow 

the desired path on x, y, and z axes. From equation (4-5), it can be seen that all the control 

inputs except for 4u  are coupled in the matrix '( ) 'G X U . This means that if any control 

input changes, it will cause the changes of the rest inputs, and then changes of the 

positions. This is the reason why in z axis height position is changed every time x or y 

position changes. Unlike FLC, SMC and BSC decouple the matrix '( ) 'G X U . All four 

inputs 1 2 3 4, , ,u u u u  have been separated into individual control from equations (4-44). 

Hence, any one changes will not cause the changes of others, which also can be seen in 

Fig. 4-21 to Fig. 4-24 and Fig. 4-41 to Fig. 4-44 that positions maintain stable on the 
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desired path. The difference between SMC and BSC is that if the start point of desired 

path is far from the start point of controller or the desired speed is too fast, backstepping 

control will generate a huge control input to track the path as shown in Fig. 4-27 to Fig. 

4-30 and Fig. 4-47 to Fig. 4-50, due to the square term of ( )e e   in equation (4-44). 

This is why for the same length of time, BSC can only track a shorter square trajectory 

than both FLC and SMC. Based on the testing results, it may show SMC is the best 

control algorithm in the application to the Qball-X4 test-bed; however, it shows in Fig. 

4-24 that maintaining control inputs at all times may cause a delay in tracking.      

When there is noise added into the system, the robustness of controllers can be 

shown clearly. For FLC, Fig. 4-11 to Fig. 4-20 show the performance of tracking has 

become affected by noise. Positions of x, y, and z can no longer be stabilized and because 

of the control inputs matrix coupling issue, height z position is even worse. The attitude 

parameters of pitch and roll are as well unstable compared to no noise condition, for 

following the desired path is adjusted by the changes of pitch and roll attitude. For BSC, 

although the overall performance has been deteriorated as shown in Fig. 4-51 to Fig. 4-60, 

all the positions and the attitudes are still being controlled to maintain a certain steady 

path by the decoupled control inputs. The only difference here is there is always an error 

between the reference path and the actual path. At last but not least, SMC shows a strong 

capability of dealing with noise as shown in Fig. 4-31 to Fig. 4-40. The actual tracking 

path is still very close to the reference. The attitude of pitch and roll become a bit 

unstable, because the controller tries to overcome the influence imposed on Qball-X4. 

Trying to adjust pitch and roll attitudes at all times is the effort of tracking the reference 
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path. Switch function effect from equation (4-25) has secured once again for relatively 

stable control inputs and robustness.  

The simulation results of each control system have been discussed and compared 

above. The sliding mode controller has been proven the best controller among the three 

nonlinear control techniques investigated in this thesis. However, the simulations are still 

based on theoretical assumptions. The actual applications are much more persuasive on 

comparing these three different nonlinear control algorithms. From the three sets of 

experimental testing results, it can be seen clearly that the sliding mode control technique 

is truly the most robust and high performance control algorithm investigated in this thesis. 

From all the figures of control inputs 1 2 3 4, , ,u u u u  and 1 2 3 4, , ,F F F F  of three experiments, 

the values are within the same range which makes all three controllers succeed in 

completing the tracking task. From the figures of 3-dimensional path tracking and 

tracking of positions x, y, and z, it can be seen that the tracking error of sliding mode 

controller is the smallest. Thus, the desired trajectory and the actual trajectory of the 

Qball-X4 system are extremely close to each other by SMC. For backstepping controller, 

the tracking errors become larger. The overshoot happened more often than with SMC, 

especially at the turning points on each axis. The backstepping controller responds to the 

change of the situation a bit slower. The feedback linearization controller has the worst 

performance of tracking. Due to the highly coupled control inputs, the controller had to 

adjust the inputs all the time. A small disturbance on one direction could lead to the 

changes of all the directions and control inputs. Therefore, from the figures of feedback 

linearization control experiments, the system is barely reached to steady-state and hardly 

followed the desired path, especially for x and y axes. The tracking errors are also the 
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largest. Some numeric comparisons are listed in Table 4-1 to 4-3 to show the different 

behaviours of these three controllers. By the numbers from the experiments, it can be 

showed that the sliding mode controller is the best, and then backstepping controller, and 

the last is feedback linearization controller.  

      Table 4-1 The comparison of position x 

Time  5 – 15 
(seconds) 

15 – 30 
(seconds) 

 30 – 45          
(seconds) 

45 – 60                                                                                   
(seconds) 

60 – 75           
(seconds) 

Overall 
 

Ref Mean 0 0 -0.7500 -1.500 -0.7500 -0.5375 

FLC 

 

Mean -0.0252 -0.0485 -0.6755 -1.5670 -0.8386 -0.5768 

Variance -0.000295 0.0041 0.1644 0.0115 0.1800 0.4086 

SMC 
 

Mean 0.0196 -0.000783 -0.7581 -1.4975 -0.7772 -0.5433 

Variance 0.000131 0.000630 0.1857 0.000184 0.1784 0.3834 

BSC Mean -0.0823 -0.0462 -0.6946 -1.5085 -0.7742 -0.5602 

Variance 0.0020 0.0017 0.2029 0.0034 0.2280 0.3851 

 

                                             Table 4-2 The comparison of position y                                                                         

Time  5 – 15 
(seconds) 

15 – 30 
(seconds) 

 30 – 45          
(seconds) 

45 – 60                                                                                   
(seconds) 

60 – 75           
(seconds) 

Overall 

Ref Mean 0 0.7500 1.5000 0.7500 0 0.5375 

FLC 
 

Mean -0.1112 0.7372 1.5132 0.6984 0.6984 0.5444 

Variance 0.0023 0.2293 0.0100 0.1414 0.0048 0.3958 

SMC 
 

Mean -0.0020 0.7474 1.4994 0.7566 0.7566 0.5345 

Variance 0.000193 0.1937 0.000336 0.1797 0.000897 0.3871 

BSC Mean 0.0023 0.7397 1.5164 0.7629 0.7629 0.5562 

Variance 0.000381 0.1538 0.0014 0.1682 0.0011 0.3805 

 

                                             Table 4-3 The comparison of position z                                            

Time  5 – 15 
(seconds) 

15 – 30 
(seconds) 

 30 – 45          
(seconds) 

45 – 60                                                                                   
(seconds) 

60 – 75           
(seconds) 

Overall 

Ref Mean 0.4000 0.4000 0.4000 0.4000 0.4000 0.3679 

FLC 

 

Mean 0.3588 0.3933 0.3958 0.3970 0.3932 0.3509 

Variance 0.0196 0.0000376 0.000141 0.0000605 0.0000972 0.0152 

SMC 
 

Mean 0.3599 0.4015 0.3969 0.4001 0.3945 0.3408 

Variance 0.0202 0.0000245 0.0000416 0.0000266 0.0000414 0.0191 

BSC Mean 0.3333 0.3790 0.3878 0.3915 0.3890 0.3361 

Variance 0.0155 0.0000599 0.0000529 0.0000719 0.000164 0.0157 

 

To further test these three controllers, the speed of Qball-X4 has been increased to show 

the upper limits of controllers’ responding time and capabilities of handling more 

disturbances. The results have been shown below, and the performance of SMC is still 

proven to be the best. 
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Fig. 4-91. Position tracking in x direction 
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Fig. 4-92. Position tracking in y direction 
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Fig. 4-93. Position tracking in z direction 

 

There is a LQR controller implemented in the Qball-X4 system as the baseline 

controller. Due to some limitations of the indoor testing environment, Qball-X4 model 

dynamics become linear on occasion. Therefore, a linear control algorithm LQR can be 

implemented for this UAV under the linear condition. The tracking performance of the 

original LQR controller is shown as following. From the position tracking Figures 4-94 to 

4-96, when the Qball-X4 system works in a linear situation, the controller behaviour is 

similar to the behaviour of BSC.   
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Fig. 4-94. Position tracking in x direction 
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 Fig. 4-95. Position tracking in y direction 
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Fig. 4-96. Position tracking in z direction 

 

In one words, all the control algorithms discussed in the thesis have different 

behaviours, but attitude yaw has been controlled very well by these three controllers at all 

times. From all the simulation results and experimental testing results, it can be learnt that 

SMC has been proven as a very practical control algorithm in dealing with noise and 

uncertainties. Backstepping control can be used if decoupling is needed. Feedback 

linearization control is easy to use but may come with a price, such as an enormous 

number of matrix calculations and instability caused by coupled control inputs, and 

sensitivity to modeling errors, uncertainties and noises. 
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4.6. Summary 

The three popular nonlinear control algorithms have been designed and tested 

successfully in the Qball-X4 UAV test-bed. For the flight tests, all three controllers have 

been focused on attitude control. Since once all the control inputs for attitudes (pitch, roll, 

and yaw) have been controlled properly, the trajectory tracking can then be realised easily.  

By the theoretical and experimental analysis and comparison, FLC has been proven to 

have the worst performance on the Qball-X4 system, and SMC has the best performance 

for tracking task. Based on the testing result, investigation of this chapter has also shown 

the best possible candidate for the FTCS, the SMC. Therefore, in next chapter, SMC has 

been selected for Fault-Tolerant Control (FTC) of the Qball-X4 in the presence of 

actuator faults or propeller damages during flight. 
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5. Fault-Tolerant Control of the Qball-X4 System 

5.1. Overview 

Modern technologies have realized many different devices and systems. For 

instance, cars and planes are becoming more and more important than ever in our daily 

life. A safe and reliable control system is then desired in these applications, since the 

consequences of faults occurrence can lead to the loss of lives. Building a fault free 

system is not realistic, therefore it is necessary to design a control system that can tolerate 

the faults. By adding a fault-tolerant controller into the system, the reliability, availability 

and maintainability of the system will be improved. 

There are three different fault scenarios generally considered: actuator faults, 

sensor faults, and component faults.       

Actuator faults are those faults when the system loses partial or total control 

function due to actuator malfunctions. For example, if one of the aircraft engines is 

malfunctioning, the whole actuation from the actuators of the system will be reduced no 

matter what control input is applied for. The system will become unbalanced may loss 

control.  

Sensor faults are those faults when the sensors do not give the correct 

measurements. This can be caused by connection of wires, or the noise from the 

environment.  

Component faults are those faults when the faults that associated with system 

components other than actuators or sensors. This is caused often by plant itself, such as 

system coefficients.  
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For fault-tolerant control, there are two different types of control strategies. One is 

Passive Fault Tolerant Control (PFTC), and the other is Active Fault Tolerant Control 

(AFTC) [1].  

Passive fault-tolerant control needs a fixed controller that can be used for normal 

and all possible fault cases to minimize the worst case performance. The system diagram 

is shown below. 

 

Fig. 5-1. A PFTC system diagram 

Active fault-tolerant control needs a controller reconfiguration mechanism, and a 

Fault Detection and Diagnosis (FDD) component. The controller that can be used in 

AFTC has to have the reconfigurable capability. Since the controller can be reconfigured 

when the faults occur, AFTC has a stronger capability than PFTC. The system diagram is 

shown below. 
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Fig. 5-2. An AFTC system diagram 

5.2. Sliding Mode-based Fault-Tolerant Control 

A fault-tolerant control is a special type of control techniques that can handle the 

faulty situations, hence a robust control algorithm is needed to ensure the reliability of the 

fault-tolerant control system. As introduced and tested in the previous chapters, sliding 

mode control is a robust control methodology and provides the best performance among 

three nonlinear control techniques in the application to the Qball-X4 system under normal 

flight conditions. Due to its unique design of sliding surface, SMC can be used to deal 

with uncertainties, which also makes it a strong candidate for fault-tolerant control. In the 

following section, a sliding mode-based fault-tolerant control will be developed. 
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5.2.1. Passive Fault-Tolerant Control for Qball-X4 System 

From Chapter 4, the sliding mode controller has already been designed, which has 

also included an augmented algorithm by adding an integration component into the 

sliding surface. In other words, an extra proportional control can be achieved by taking 

the first derivative on the integration, as equation (4-15) indicates. Therefore, by using 

this idea, equations (4-24) and (4-25) have shown a very robust sliding mode controller. 

However, equations (4-24) and (4-25) are derived without the consideration of faulty 

situations. In order to handle the faults which are mainly the actuator faults in this 

research, a few changes need to be done to the previous designed controller in Chapter 4. 

A trade off needs to be added into the control system, in order to balance the performance 

between faulty situation and fault-free situation, using only one controller, therefore 

named as passive fault-tolerant controller or reliable controller. In other words, the only 

controller for both situations will be weaker than it is for each different individual 

situation. Therefore, all the control gains have to be reset. The following equations have 

shown the controller for PFTC with the new gains.  

1 2 1
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 (5-1) 

so that the final control inputs are obtained by: 
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ˆ ( )pi pi psi iu u k sign s   (5-2) 

where 
pi , 

psik , and 
pik  are all positive gains.  

A new saturation function is needed to eliminate the nonlinearity caused by the 

occurrence of a fault, and also to achieve a relatively fast convergence of the system. 

Rewrite the equation above into the following format: 

ˆ ( )

ˆ

ˆ ( )

pi pi psi i

pi pi psi i i

pi pi psi i

u u k if s

u u k s if s

u u k if s

 

 

 

     


   


  

<  (5-3) 

where   is the boundary of the saturation, and is set small enough.   

The simulation is carried out under the situation of 15% loss of control 

effectiveness in the fourth propeller. The results shown in Figs. 5-3 to 5-12 have proved 

the PFTC controller has the ability of handling the actuator fault of 15% force loss. The 

task is still to track a square trajectory as what has been done in previous sections. After 

the occurrence of the fault, the original trajectory tracking needs to be maintained without 

any degradation to demonstrate the capability of the sliding mode-based passive fault-

tolerant controller. The following figures have shown the performance of the tracking 

task is good. The desired path along all three axes x, y, and z has been well followed. The 

fault occurred at 20 seconds for all the following tests, including simulations and 

experiments for both PFTC and AFTC. 
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Fig. 5-3. 3-dimensional path tracking 
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Fig. 5-4. Position tracking in x direction 
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Fig. 5-5. Position tracking in y direction 
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Fig. 5-6. Position tracking in z direction 
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Fig. 5-7. Attitude of pitch and roll angles 
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Fig. 5-8. Attitude of yaw angle 
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Fig. 5-9. Control inputs of 1u and 2u  
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Fig. 5-10. Control inputs of 3u and 4u  
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Fig. 5-11. Propellers forces 1F and 2F  
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Fig. 5-12. Propellers forces 3F and 4F  
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5.2.2. Active Fault-Tolerant Control for the Qball-X4 System 

In this section, an AFTC is designed based on SMC technique with the presence 

of faults, and only actuator faults are considered in the design procedure. 

 When the actuator faults occur, the system model will be changed. The state 

equation can be expressed as [48]:  

( ) ( ) ( ) ( ) ( )i i ix t x t u t k t u t  A B B            (5-4) 

and  

1( ) 0 ( ) 0

( ) ( )

0 ( ) 0 ( )

1

m m

u t k t

t t

u t k t

   
   

 
   
      

U K            (5-5) 

 

where 
nRA , 

mRB , ( ) ( )iu t tU , and ( ) ( )ik t tK  is the effectiveness gain, with 

0 ( ) 1ik t  . If  ( ) 0ik t  , the thi  actuator is functioning perfectly, and if ( ) 1ik t  , the thi  

actuator has failed completely.  

For the same state equation, the above equation can be rearranged as:  

( ) ( ) (1 ( )) ( )i ix t x t k t u t  A B            (5-6) 

Due to the highly coupling feature of the quadrotor system, the control input ( )iu t  

is related with multiple actuator inputs ( )iF t . Therefore, the effectiveness gain needs to 

be multiplied with the actuator inputs. From equation (4-13), the following equations can 

be defined as follows: 
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           (5-7) 

 

To generalize the above equation, it can be defined as: 

U F            (5-8) 

where    is the mapping matrix,  U is the control inputs, and F  is the actuator inputs. 

Since the actuator failure applies directly on F , the following relation is satisfied. 

( ) ( ) ( )f t t tF = K F            (5-9) 

From equation , the new states equation can be obtained as following: 

( ) ( ) ( ) ( )i fix t x t u t u t  A B B          (5-10) 

where ( )fiu t  is the control input with fault. 

Further, the following equations can be derived: 

( ) ( ) ( ) ( ))i fix t x t (u t u t  A B          (5-11) 

In general,  

( ) ( ) ( ))ft t ( (t) t  X AX B U F          (5-12) 

1( ) ( ) ( ) ( )( ( ))))ft t ( t t t   X AX B U K U   (5-13) 

where ( )tU  indicates the new control inputs of the quadrotor. 

With the redefined states after the actuator faults occurrence as follows: 
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the state equations from (4-13) can also be rearranged into the following format: 
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(5-15) 

with  
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4
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K  (5-16) 

where 0 ( ) 1ik t  . 

From equation (4-14), the derivative of sliding surface has been changed to 

fi i ai i api is e e k e    (5-17) 

In expansion, 

                 
1

i( ( ( ))) )fi ri i i i i f ai i api is x A x B u e k e      K U   (5-18) 

where ix  is the reference input. 
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Then, following the same procedure, if the fourth actuator failed, the 

approximation of control input 
3

ˆ
fu  can be derived from equations  and . 

4 4
3 1 4 4 8

4

4

6 5 5

2 ( ) ( )
ˆ (

( ) 4 4

        ( ) 2 )

y z xz z
f d f f f f

y y y y y

r f

f a fd f ap

y

J J Jl m mk l k J J
u u u x x

l k J J J J J

J x
d x k e

J
 



  

 
    




    

   (5-19) 

The sliding condition can be easily proven as 

21
0

2

d
s ss

dt
   (5-20) 

Therefore, the control system is stable. 

In general, the overall control inputs can be expressed as: 

ˆ ( )fi fi asi fiu u k sign s     (5-21) 

where ai , asik , and apik  are all positive gains of the changed sliding mode based fault-

tolerant control.  

The simulated tracking task is the same as in passive fault-tolerant control, and 

with the same fault scenario. Since the system is in active mode, there are two separate 

controllers in use for normal condition and fault condition separately. The first controller 

is from equation (4-24) used before the occurrence of fault, and the second one is from 

equation  used after the occurrence of fault on the fourth propeller. In the combination of 

two different controllers, the overall performance can be improved, since each controller 

will handle only one situation. The fault is the same as in PFTC about 15% force loss of 

the fourth actuator. The results have shown the performance of the tracking is excellent, 

and it can be seen that the controller responds to the fault more accurate from Fig. 5-19 to 

Fig. 5-22. 
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Fig. 5-13. 3-dimensional path tracking 
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Fig. 5-14. Position tracking in x direction 
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Fig. 5-15. Position tracking in y direction 
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Fig. 5-16. Position tracking in z direction 
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Fig. 5-17. Attitude of pitch and roll angles 
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Fig. 5-18. Attitude of yaw angle 
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Fig. 5-19. Control inputs of 1u and 2u  
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Fig. 5-20. Control inputs of 3u and 4u  
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Fig. 5-21. Propellers forces 1F and 2F  
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Fig. 5-22. Propellers forces 3F and 4F  
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5.3. Experimental Testing Results 

The following experiments are done in the same indoor environment and by the 

same equipments mentioned in Chapter 3. The only difference is that an extra device is 

used for generating fault scenario during real-time flight to be used for testing fault-

tolerant control strategy. The device is shown below to break the fourth propeller blade 

during the flight. Thus, the fault can be generated. The behaviours of PFTC and AFTC 

can be tested based on this test bed.  

 

Fig. 5-23. The mechanism to injecting damaged propeller during flight 

 

5.3.1. Passive Fault-Tolerant Control 

            Using the same experimental setup, the PFTC controller can be implemented and 

fully tested. The following figures show the performance of the Qball-X4 using the 

sliding mode-based PFTC controller. The task is to maintain the original tracking of the 

square 21.5 1.5m  after the fault occurrence. The results have shown the test is successful, 

except for a small disturbance caused by the communication delay of the camera system 
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in Fig. 5-27, around 60 seconds. The robustness of PFTC is a bit weak after the fault 

occurred, since there is only one controller in effect for all the situations. A trade off has 

been made, thus the performance is worse in any scenarios.  
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Fig. 5-24. 3-dimensional path tracking 
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Fig. 5-25. Position tracking in x direction 
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Fig. 5-26. Position tracking in y direction 
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Fig. 5-27. Position tracking in z direction 
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Fig. 5-28. Attitude of pitch and roll angles 
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Fig. 5-29. Attitude of yaw angle 
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Fig. 5-30. Control inputs of 1u and 2u  
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Fig. 5-31. Control inputs of 3u and 4u  
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Fig. 5-32. Propellers forces 1F and 2F  
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Fig. 5-33. Propellers forces 3F and 4F  
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5.3.2. Active Fault-Tolerant Control 

The following results show that the active fault-tolerant control system has been 

tested successfully. The robustness of the AFTC has been proven stronger from the 

comparison of Fig. 5-27 and Fig. 5-37 in altitude tracking. In the same environment, with 

a new designed controller handling the faulty situations, no control trade off needs to be 

made. Therefore, active control is more robust than passive control on dealing with faults.  
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Fig. 5-34. 3-dimensional path tracking 
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Fig. 5-35. Position tracking in x direction 
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Fig. 5-36. Position tracking in y direction 
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Fig. 5-37. Position tracking in z direction 
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Fig. 5-38. Attitude of pitch and roll angles 
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Fig. 5-39. Attitude of yaw angle 
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Fig. 5-40. Control inputs of 1u and 2u  
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Fig. 5-41. Control inputs of 3u and 4u  
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Fig. 5-42. Propellers forces 1F and 2F  
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Fig. 5-43. Propellers forces 3F and 4F  

5.3.3. Comparison  

The experimental flight testing results have shown in the previous section, and 

from the figures, it can be learnt that both passive fault-tolerant control and active fault-

tolerant control worked properly on the Qball-X4 system. However, if there is extra 

disturbance other than the faults, passive fault-tolerant control system is more vulnerable 

to be affected than active fault-tolerant control system. Some numeric comparisons listed 

in Table 5-1 to 5-3 are used to further demonstrate the difference between these two 

techniques.   
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Table 5-1. The comparison of position x                                                  

Time  5 – 15 
(seconds) 

15 – 30 
(seconds) 

 30 – 45          
(seconds) 

45 – 60                                                                                   
(seconds) 

60 – 75           
(seconds) 

Overall 

Ref Mean 0 0 -0.7500 -1.500 -0.7500 -0.5484 

PFTC 

 

Mean -0.0505 -0.0135 -0.7275 -1.4939 -0.7609 -0.5418 

Variance 0.000496 0.000328 0.1878 0.000306 0.1836 0.3702 

AFTC 
 

Mean 0.0026 -0.0128 -0.7393 -1.5035 -0.7518 -0.5510 

Variance 0.000172 0.000183 0.1951 0.000531 0.1939 0.3843 

     

Table 5-2. The comparison of position y                                                         

Time  5 – 15 
(seconds) 

15 – 30 
(seconds) 

 30 – 45          
(seconds) 

45 – 60                                                                                   
(seconds) 

60 – 75           
(seconds) 

Overall 

Ref Mean 0 0.7500 1.5000 0.7500 0 0.5484 

PFTC 
 

Mean -0.0157 0.7538 1.4981 0.7631 0.7631 0.5401 

Variance 0.0000428 0.1877 0.000722 0.1851 0.000358 0.3890 

AFTC 
 

Mean -0.0486 0.7238 1.4993 0.7638 0.7638 0.5384 

Variance 0.000621 0.1911 0.0011 0.1895 0.000387 0.3936 

 

Table 5-3. The comparison of position z                                            

Time  5 – 15 

(seconds) 

15 – 30 

(seconds) 

 30 – 45          

(seconds) 

45 – 60                                                                                   

(seconds) 

60 – 75           

(seconds) 

Overall 

Ref Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.4672 

PFTC 
 

Mean 0.4221 0.4802 0.4926 0.4953 0.4942 0.4190 

Variance 0.0316 0.000189 0.0000657 0.000351 0.0000451 0.0288 

AFTC 

 

Mean 0.3971 0.4903 0.4962 0.4979 0.4970 0.4252 

Variance 0.0424 0.000162 0.0000943 0.0000858 0.0000546 0.0286 

 

5.4. Summary 

Based on what have been achieved in Chapter 4, SMC has been chosen as the best 

candidate for fault-tolerant control of the Qball-X4 UAV test-bed. Using the same 

structure as designed in Chapter 4, with all the redesigned control gains and saturation 

function, PFTC has been tested successfully in the experiments. For AFTC, by 

eliminating the lost force from actuator, a new control structure has been designed. With 

the new controller, the tracking performance of AFTC has been shown excellent. The 

experimental figures and numerical tables show AFTC is more robust than PFTC on 

handling extra disturbances. 
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6. Conclusions and Future Work 

In this thesis, Feedback Linearization Control (FLC), Sliding Mode Control 

(SMC), and Backstepping Control (BSC) have been discussed in details from basic 

theories to designs with real applications to the Qball-X4 UAV. They have been 

investigated thoroughly to develop three different controllers that can be used on the 

Qball-X4 system and fully tested under different flight conditions. The goal is to design a 

practical controller, thus there is only one assumption as attitude yaw is zero. This 

assumption is practically possible and has been tested both in simulations and 

experiments. The results show all three controllers work properly and all can deal with 

some noisy conditions. SMC is the most robust controller and provides the best tracking 

performance as expected. FLC and BSC behave equally in general. A comparison has 

shown each control algorithm has its own advantages and disadvantages, which can be 

used as a future reference when designing another controller in practice. The model 

parameters have been identified as well, which can be used as another reference in 

experiments.  

Based on the simulation and experimental results of passive fault-tolerant control 

and active fault-tolerant control strategies using SMC, it can be seen that the designs of 

both passive fault-tolerant control system and active fault-tolerant control system has 

been proven appropriate for Qball-X4 system. Both controllers worked properly. 

According to the theories, passive fault-tolerant control has a trade off for both faulty 

situation and fault-free situation. Hence, the performance of PTFC is supposed to be 

imperfect under each situation, which has been proven by the experiment results. If there 
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is an extra disturbance, the control system will be affected easily. However, active fault-

tolerant control can solve this problem by adding two separate controllers in the system 

under normal and fault flight conditions respectively. Once the fault occurs, the control 

system will switch to the controller that is designed to compensate the effects due to 

faults. Thus, the performance of  the control system under both fault-free and fault 

situations can be optimized to the maximum.  

 Future work will be trying to improve the robustness of each controller in the 

thesis. A combination of different control methods can be taken into consideration, such 

as sliding mode control with backstepping control. This can maximally eliminate the 

disadvantages of each controller working alone. Also, for active fault-tolerant control, a 

relatively precise fault detection and diagnosis scheme should be considered to be added 

into the overall control system.   

 

 

 

 

 

 

 

 

 

 

 



 171 

References 

[2] D. Lee, H. J. Kim, and S. Sastry, “Feedback linearization vs adaptive sliding mode 

control for a quadrotor helicopter,” International Journal of Control, Automation, 

and Systems, pp. 419-528, December 2008. 

[3] S. A. Al-Hiddabi, “Quadrotor control using feedback linearization with dynamic 

extension,” in Proceeding of the 6th International Symposium on Mechatronics 

and its Applications (ISMA09), March 24-26, 2009. 

[4] D. H. Kimm, J. H. Oh, “Tracking control of a two-wheeled mobile robot using 

input-output linearization,” Control Engineering Practice, vol. 7, pp. 369-373, 

September 1998. 

[5] A. Mokhtari, A. Benallegue, and B. Daachi, “Robust feedback linearization and 

GH
 control for a quadrotor unmanned aerial vehicle,” Journal of  Electrical 

Engineering, vol. 57, no. 1, pp. 20-27, 2006. 

[6] H. Voos, and B. Nourghassemi, “Nonlinear control of stabilized flight and landing 

for quadrotor UAVs,” in Workshop on Advanced Control and Diagnosis, Mobile 

Robotics Lab, University of Applied Sciences, Germany, 2009. 

[7] H. Voos, “Nonlinear control of a quadrotor micro-UAV using feedback-

linearization," in Proceedings of the 2009 IEEE International Conference on 

Mechatronics, pp 1-6, April 2009. 

[8] A. Benallegue, A. Mokhtari, and L. Fridman “High-order sliding-mode observer 

for a quadrotor UAV,” International Journal of Robust and Nonlinear Control, 

vol. 18, no. 4-5, pp 427-440, May 2007. 

[9] A. Mokhtari, A. Benallegue, and Y. Orlov, “Exact linearization and sliding mode 

observer for a quadrotor unmanned aerial vehicle,” International Journal of 

Robotics and Automation, vol. 21, pp. 39-49, January 2006. 

[10] B. Song, Y. Liu, and C. Fan, “Feedback linearization of the nonlinear model of a 

small-scale helicopter,” IET - Control Theory and Applications, vol. 8, no. 3, pp. 

301-308, January 2010. 

[11] G. Oriolo, A. D. Luca, and M. Vendittelli, “WMR control via dynamic feedback 

linearization: design, implementation, and experimental validation,” IEEE 



 172 

Transactions on Control Systems Technology, vol. 10, no. 6, pp. 835-852, 

November 2002. 

[12] A. Izadbakhsh, M. M. Fateh, and M. A. Sadrnia, “Discontinuous feedback 

linearization of an electrically driven fast robot manipulator,” World Academy of 

Science, Engineering and Technology, 29, pp. 217-222, 2007. 

[13] R. Boukezzoula, S. Galichet, and L. Foulloy, “Fuzzy feedback linearizing 

controller and its equivalence with the fuzzy nonlinear internal model control 

structure,” Int. J. Appl. Math. Comput. Sci, vol. 17, no. 2, pp. 233-248, 2007. 

[14] I. Hassanzadeh, S. Mobayen, and A. Harifi, “Input-output feedback linearization 

cascade controller using genetic algorithm for rotary inverted pendulum system,” 

American Journal of Applied Sciences 5, vol. 10, pp. 1322-1328, 2008. 

[15] H. Bouadi, M. Bouchoucha, and M. Tadjine, “Sliding mode control based on 

backstepping approach for an UAV type-quadrotor,” International Journal of 

Applied Mathematics and Computer Sciences, vol. 4, no. 1, pp. 12-17, 2007. 

[16] M. Guisser, and H. Medromi, “A high gain observer and sliding mode controller 

for an autonomous quadrotor helicopter,” International Journal of Intelligent 

Control and Systems, vol. 14, no. 3, pp. 204-212, September 2009. 

[17] H. Bouadi and M. Tadjine, “Nonlinear observer design and sliding mode control of 

four rotors helicopter,” International Journal of Mathematical, Physical, and 

Engineering Sciences, vol.1, no.2, pp. 115-120, 2007. 

[18] A. Mokhtari, A. Benallegue, and A. Belaidi, “Polynomial linear quadratic 

Gaussian and sliding mode observer for a quadrotor unmanned aerial vehicle,” 

Journal of Robotics and Mechatronics, vol. 17, no. 4, pp. 483-495, March 2008. 

[19] A. Mokhtari, A. Benallegue, and B. Daachi, “Robust inner outer controller and 

sliding mode observer for a quadrotor UAV,” ICGST-ARAS Journal, vol. 6, pp. 

17-26, April, 2007. 

[20] M. Efe, “Robust low altitude behaviour control of a quadrotor rotorcraft through 

sliding modes,” in Proceedings of the 15th Mediterranean Conference on Control 

& Automation, pp. 1-6, July, 2007. 

[21] A. R. Husain, M. N. Ahmad, and A. H. M. Yatim, “Chattering-free sliding mode 

control for an active magnetic bearing system,” World Academy of Science, 



 173 

Engineering and Technology, vol.39, pp.385-391, 2008. 

[22] Y. Niu, and X. Wang, “Sliding mode control design for uncertain delay systems 

with partial actuator degradation,” International Journal of Systems Science, vol. 

40, no. 4, pp. 403-409, April 2009. 

[23] Y. Xia, Z. Zhu, C. Li, H. Yang, and Q. Zhu, “Robust adaptive sliding mode 

control for uncertain discrete-time systems with time delay,” Journal of the 

Franklin Institute, vol. 347, pp. 339-357, October 2009. 

[24] T. Chatchanayuenyong, “Power quality improvement using a sliding mode control 

of a series active filter,” American Journal of Applied Sciences 5, vol. 8, pp. 1029-

1033, 2008. 

[25] F. Fahimi, “Sliding mode formation control for under-actuated autonomous 

surface vehicles,” in Proceedings of the 2006 American Control Conference, pp. 

4255-4260, June 14-16 2006. 

[26] S. Bouabdallah, and R. Siegwart, “Backstepping and sliding-mode techniques 

applied to an indoor micro quadrotor,” in Proceedings of the 2005 IEEE 

International Conference on Robotics and Automation, pp. 2259-2264, April 2005. 

[27] L. Pollini, and A. Metrangolo, “Simulation and robust backstepping control of a 

quadrotor aircraft,” in AIAA Modeling and Simulation Technologies Conference 

and Exhibit, AIAA 2008-6363, August 18-21, 2008. 

[28] T. Madani and A. Benallegue, “Backstepping control for a quadrotor helicopter,” 

in Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent 

Robots and Systems, pp. 3255-3260, October 9-15, 2006. 

[29] A. Das, F. Lewis, and K. Subbarao, “Backstepping approach for controlling a 

quadrotor using lagrange form dynamics,” J. of Intell Robot Systems, 56, pp. 127-

151, March 2009. 

[30] A. A. Mian, and B. Wang, “Modeling and backstepping-based nonlinear control 

strategy for a 6 DOF quadrotor helicopter,” Chinese Journal of Aeronautics, vol. 

21, pp. 261-268, March 2008. 

[31] E. Altug, J. P. Ostrowski, and C. J. Taylor, “Control of a quadrotor helicopter 

using dual camera visual feedback,” The International Journal of Robotics 

Research, vol.24, no.5, pp. 329-341, May 2005. 



 174 

[32] E. Altug, J. P. Ostrowski, and R. Mahony, “Control of a quadrotor helicopter using 

visual feedback,” in Proceedings of the 2002 IEEE International Conference on 

Robotics & Automation, pp. 72-77, May 2002. 

[33] A. Soumelidis, P. Gaspar, G. Regula, and B. Lantos, “Control of an experimental 

mini quad-rotor UAV,” Technical Report, Computer and Automation Research 

Institute of the Hungarian Academy of Sciences, pp. 1-6, June, 2000. 

[34] C. Li, W. Jing, and C. Gao, “Adaptive backstepping-based flight control system 

using integral filters,” Aerospace Science and Technology, vol. 13, no. 2-3, pp. 

105-113, 2009. 

[35] E. Frazzoli, M. A. Dahleh, and E. Feron, “Trajectory tracking control design for 

autonomous helicopters using a backstepping algorithm,” in Proceedings of the 

American Control Conference, pp. 4102-4107, June 2000. 

[36] W. A. Pradana, E. Joelianto, A. Budiyono, and W. Adiprawita, “Robust MIMO 

H  integral-backstepping PID controller for hovering control of unmanned model 

helicopter,” Journal of Aerospace Engineering, pp. 1-29, August 2010. 

[37] R. Saber, “Nonlinear control of underactuated mechanical systems with 

application to robotics and aerospace vehicles,” PhD Thesis, Department of 

Electrical Engineering and Computer Science, MIT, pp. 1-307, February 2001. 

[38] N. P. I Aneke, “Control of underactuated mechanical systems,” Thesis, 

Technische Universiteit Eindhoven, pp. 1-176, April 2003. 

[39] Y. M. Zhang, and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant 

control systems,” Annual Reviews in Control, vol.  32, pp. 229-252, March 2008 

[40] R. J. Patton, “Fault-tolerant control systems,” in IFAC Symposium on Fault 

Detection Supervision and Safety for Technical Processes, pp. 1033-1054, 1997 

[41] Y. M. Zhang, “Fault diagnosis and fault tolerant control systems,” Lecture Notes, 

pp. 20-33, September 2010. 

[42] A. Fekih, and P. Pilla, “A passive fault tolerant control strategy for the uncertain 

MIMO aircraft model F-18,” in Thirty-Ninth Southeastern Symposium on System 

Theory, pp. 320-325, 2007. 

[43] Y. M. Zhang, and J. Jiang, “Active fault-tolerant control system against partial 

actuator failures,” IEE Proc-Control Theory & Applications, vol. 149, no. 1, pp. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4160780
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4160780
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4160780


 175 

95-104, January 2002. 

[44] A. B. Milhim, and Y. M. Zhang, “Gain scheduling based PID controller for fault 

tolerant control of a quad-rotor UAV,” in AIAA Infotech@Aerospace 2010, AIAA 

2010-3530, pp. 1-13, April 2010. 

[45] X. B. Zhang, Y. M. Zhang, C.-Y. Su, and Y. Feng, “Fault tolerant control for 

quadrotor UAV via backstepping approach”, in Proc. of the 48th AIAA Aerospace 

Sciences Meeting, AIAA. 2010-947, Jan. 2010. 

[46] X. Zhang and Y. M. Zhang, “Fault tolerant control for quad-rotor UAV by 

employing adaptive backstepping approach”, in 2010 AIAA Guidance, Navigation, 

and Control Conference, AIAA 2010-8052, Aug. 2010 

[47] H. Alwi, and C. Edwards, “Fault tolerant control of a civil aircraft using a sliding 

mode based scheme,” in Proceeding of the 44th IEEE Conference on Decision and 

Control and the European Control Conference, pp. 1011-1016, December 2005. 

[48] H. Alwi, and C. Edwards, “Fault tolerant control using sliding modes with on-line 

allocation,” Automatica, vol 44, no. 7, pp. 1859-1866, July 2008 

[49] 

 

J. K. Hedrick and A. Girard, “Control of nonlinear dynamic Systems: theory and 

applications,” Chapter 8, pp.133-160, 2005. 

[50] 

 

J.J. Slotine and W.Li, “Applied nonlinear control,” Chapter 6-7, Prentice Hall, pp. 

207-307, 1990. 

[51] H. K. Khalil, “Nonlinear systems,” Chapter 13, Prentice Hall, pp. 577-650, 1996. 

[52] 

 

C. Manzie, and M. Good, “Advanced control and automation, Sontags formula 

backstepping control,” Lecture Notes, University of Melbourne, Australia, 2005. 

[53] 

 

O. harkegard, “Backstepping, from simple designs to take-off,” In Internal 

Seminar of Control & Communication Linkopings University, pp. 1-11, January 

27, 2005. 

[54] Quanser, “Quanser Qball-X4,” User Manual, pp. 1-27, 2010. 

[55] J. J. Craig, “Introduction to robotics: mechanics and control,” Chapter 2, Addison 

Wesley Longman, pp. 19-59, August 2004. 

[56] 

 

J. D. Anderson, Jr, “Fundamentals of aerodynamics,” Chapter 2, McGraw-Hill, 

pp. 95-181, 2007. 

[57] B. L. Stevens, and F. Lewis, “Aircraft control and simulation,” Chapter 1, John 



 176 

 Wiley & Sons, pp. 1-59, 2003. 

[58] 

 

M. J. Stepaniak, “A quadrotor sensor platform,” PhD Thesis, the Russ College of 

Engineering and Technology of Ohio University, pp. 57-69, November 2008. 

[59] 

 

P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a quad-rotor 

robot,” Australian Robotics & Automation Association Inc, pp. 1-10, May 2006.   

[60] 

 

G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Quadrotor 

helicopter flight dynamics and control: theory and experiment,” in AIAA 

Guidance, Navigation and Control Conference and Exhibit, AIAA 2007-6461, pp. 

1-20, August 20-23, 2007. 

[61] 

 

 

M. J. Stepaniak, F. V. Graas, and M. U. Haag, “Design of an electric propulsion 

system for a quadrotor unmanned aerial vehicle,” Journal of Aircraft, vol. 46, no. 

3, pp. 1050-1058, June 2009. 

 


