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Abstract 

CAD of Solid Carbide End-Mills and its Applications 
Chun Du 

Nowadays, carbide end mills are widely utilized in the aluminum, titanium and steel cutting 

industries, so the more and more high-precision requirements to design of cutters are 

provided by users.  Meanwhile, in order to finish the simulation and analysis of cutting 

processing, it is also important to design more free-control geometry model, and then 

transit into the CAD/CAM systems.  For this purpose, many research works have been 

successfully conducted on optimizing the geometry model of cutters to get more real and 

easy controlled geometry; however, another critical factor, there are still more space to 

optimize the geometry model of cutters.  To finish this task, in this work, first, a method has 

been established and implemented in the MATLAB to convert mathematic model  into a 

free-form geometry model.  Then, an accurate calculation system of area moment inertial 

of cutter is built.  Finally, a detailed discussion on the cutting force of end-mills is provided, 

based on cutting simulation software.  The major contributions of this work include the 

free-form end-mill modeling, which can render the 3-D geometric model of an end-mill in 

CATIA system, and a type of calculation of cutter area moment of inertial.  This work can be 

used, together with an existing cutting force calculation method, to accurately predict 

cutting force during milling in order to get better geometry model of cutter.  Meanwhile, 

solid modelling of the helical cutting tool can be carried out with computer graphics 

programming.  It can also provide more precise 3-D solid models of end-mills for machining 

simulation by using finite element software.  
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Chapter 1 Introduction 

 

1.1 Solid carbide end-mills 

An end-mill is a type of milling cutter, a cutting tool used in industrial milling applications.  

An end-mill can generally cut in all directions, except axially direction.  End-mills are used in 

milling applications such as profile milling, tracer milling, face milling, and plunging.  

Meanwhile, tungsten carbide (WC) is an inorganic chemical compound containing equal 

parts of tungsten and carbon atoms.  Generally, tungsten carbide is often simply called 

carbide. Tungsten carbide is approximately three times stiffer than steel, and is much 

denser than steel or titanium.  Carbide cutting surfaces are often used for machining 

through materials such as carbon steel or stainless steel, as well as in situations where other 

tools would wear away, such as high-quantity production runs.  Carbide generally produces 

a better finish on the part, and allows faster machining.  Carbide tools can also withstand 

higher temperatures than standard high speed steel tools.  The material is usually called 

cemented carbide, hard metal or tungsten-carbide cobalt: it is a metal matrix composite 

where tungsten carbide particles are the aggregate and metallic cobalt serves as the matrix.  

Therefore, solid carbide end-mills are a kind of end-mills with carbide material.  Usually we 

use high speed steel to make tools but for some materials that are not easily cut, tungsten 

carbide comes.  This kind of tools is suitable for cast iron, cast steel, carbon steel, alloy steel, 

quenched steel in CNC machining.  

http://en.wikipedia.org/wiki/Milling_cutter
http://en.wikipedia.org/wiki/Cutting
http://en.wikipedia.org/wiki/Milling_machine
http://en.wikipedia.org/wiki/Tungsten
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Carbide
http://en.wikipedia.org/wiki/Stiffness
http://en.wikipedia.org/wiki/Steel
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Titanium
http://en.wikipedia.org/wiki/Machining
http://en.wikipedia.org/wiki/Carbon_steel
http://en.wikipedia.org/wiki/Stainless_steel
http://en.wikipedia.org/wiki/High_speed_steel
http://en.wikipedia.org/wiki/Cemented_carbide
http://en.wikipedia.org/wiki/Metal_matrix_composite
http://en.wikipedia.org/wiki/Cobalt
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1.2 B-spline Curves 

To model free-form shapes with a parametric representation in computer-aided design 

(CAD), B-spline curves are often used, and they are a major function in commercial 

CAD/CAM software.  B-spline curves mathematically are parametric piecewise polynomials, 

thus, a B-spline curve can well represent complex shapes by specifying a number of control 

points.  It is also very easy to modify the curve shape by changing the locations of the 

control points.  In the conventional methods, a complex shape is usually represented with a 

large number of points, which make it difficult to manipulate and process the shape.  Now, 

the commercial CAD/CAM software systems have the B-spline curve function; therefore, 

complex geometries can be represented more accurately, and they can be processed more 

easily, such as Boolean operations and meshing for finite element analysis.  Since, in this 

research, B-spline curves are employed to represent the complex flute geometry of cutting 

tools, B-spline curves are introduced in detail in this section. 

 

1.2.1 B-Spline Background 

B-spline curves are a special type of spline curve, which was originally developed for ship 

building.  In order to plot a smooth curve through a set of points, ship hull designers found a 

way through these points.  They placed some metal weights called ducks at these points, 

and bent a thin metal or wooden beam called a spline through these weights.  A spline is 

illustrated in Fig 1.1.  It is evident that each weight affects the spline shape at the contacting 

http://en.wikipedia.org/wiki/Computer-aided_design
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point the most and has less effect on the spline shape that is away from it.  Based on the 

concept, the spline theory was established. 

 

Figure 1.1.  Illustration of a craftsman’s wooden spline. 

 

Among the published papers, in 1946, Schoenberg [1] first established the spline 

mathematical model with smooth piecewise polynomials and found that the cubic 

polynomial spline is an accurate mathematical representation of the draftsman's wooden 

beam.  In the 1960s, Bézier proposed a free-form curve representation, Bezier curves.  Then, 

the polynomials were extended to basis splines (B-splines).  Eventually, non-uniform 

rational basis splines (NURBS) were proposed to represent the analytical curves, such as 

circles, ellipses, and parabolas, etc., and free-form curves, such as ship hulls, impellor blades, 

and automotive bodies, etc.  Bezier and B-spline curves are special cases of the NURBS 

curves.  At beginning, NURBS curves were only used in the proprietary CAD packages of the 

automotive companies.  Gradually, NURBS curves became a mathematical model commonly 

used in commercial CAD/CAM software for generating and representing curves and surfaces.  

It is very important to represent complex shapes in mechanical design and modeling. 

 

http://en.wikipedia.org/wiki/Isaac_Jacob_Schoenberg
http://en.wikipedia.org/wiki/Spline_(mathematics)#cite_note-1
http://en.wikipedia.org/wiki/B-spline
http://en.wikipedia.org/wiki/Computer_aided_design
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1.2.2 Application and Capabilities 

Thanks to the unique features of NURBS curves, they are widely applied to the following 

areas: 

1) Computer-aided design and manufacture, 

2) Computer vision and robotics, 

3) Imaging and visualization, 

4) Biosciences, chemistry, physics, geophysics, and meteorology, 

5) Bio-medical engineering, and 

6) Business and social sciences 

 

NURBS curves are mainly used for the following functions: 

1) Parametric modeling of complex curves and surfaces, 

2) Interpolation, 

3) Approximation of functions, 

4) Smoothing noisy data, 

5) Solution of PDE’s, and 

6) Compression and denoising for the image process. 

For interpolation, spline curves are often preferred because they can yield accurate results 

even using low degree polynomials without Runge's phenomenon.  In curve fitting, NURBS 

http://www.wordiq.com/definition/Interpolation
http://www.wordiq.com/definition/Spline_interpolation
http://www.wordiq.com/definition/Runge%27s_phenomenon
http://www.wordiq.com/definition/Curve_fitting


 

5 
 

curves are used to approximate complex shapes.  NURBS curves are a popular model in 

computer graphics.  

 

1.2.3 Advantages 

Compared to the analytical curves, the NURBS curves have the following advantages: 

1) Easy to enumerate points on curve or surface, 

2) Possible to describe complex shapes, 

3) Easy to compute, 

4) Infinitely differentiable, 

5) Flexibility, and 

6) Easy to control 

 

http://www.wordiq.com/definition/Computer_graphics


 

6 
 

However, the NURBS curves have the following disadvantages: 

1) Control mesh must be quadrilaterals, 

2) Continuity constraints difficult to maintain, and 

3) Hard to find NRUBS curve intersections. 

 

 

1.3 Parametric Design 

1.3.1 Definition  

Usually, a mechanical part consists of several geometric features related to its function and 

its manufacturing method.  Now, a kernel technique of the computer-aided design is 

parametric part design and modelling.  In light of a new trend of mechanical part design – 

the part feature optimization, feature-based parametric part design is a dispensable 

advanced technique since the parametric CAD models of the part features can be easily 

modified in the part design optimization process.  Thus, the parametric part modelling 

function in the commercial CAD/CAM software is quite important.  By definition, the 

parametric part design is to determine the key feature dimensions as the parameters and to 

specify the relationships (or constraints) among the parameters and other part dimensions.  

In the parametric modelling function of the CAD/CAM software, the functions of defining 

parameters and constraints are developed, and the parametric part models can be 

constructed without much effort.  By assigning data to the feature parameters, all part 
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dimensions are calculated, and the solid model of the part can be changed accordingly and 

updated in seconds.  

 

1.3.2 Parametric Part Design and Modeling  

Mechanical part design includes a number of decision-making processes and activities, 

which are involved in determining the shape and dimensions of a mechanical part.  

Generally, the development of a mechanical part has five phases: formulation, concept 

design, configuration design, parametric design, and detail design.  The parametric design is 

now crucial.  With a parametric design of a part, the solid model of a part design can be 

easily attained, and the part can be analyzed in a virtual working environment to 

understand or predict the part performance and functionality. This can greatly reduce the 

leading time in the part design cycle and the cost of making prototype.  To implement the 

parametric part design and modeling, the following five steps are necessary, which are 

1) to define the key dimensions as the parameters, 

2) to define the relationships or constraints between the parameters and the part 

dimensions, 

3) to establish the part model with CAD/CAM software,  

4) to input the parameters and the constraints in the part model, and  

5) to change the part by assigning different parameter values. 
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In the conventional part modeling method, all part dimensions have to be defined 

independently, and they are specified with the design data.  To change a part dimension, 

the dimension has to be found manually and then a new value is assigned.  The 

conventional method is time-consuming and arduous, and some CAD/CAM software now is 

still using this method.  Fortunately, some major CAD/CAM software, such as CATIA V5, 

Pro/E Wildfire, and Siemens NX, now has the parametric modeling function.  In the software, 

the feature parameters and the geometric and dimensional constraints can be specified.  

The parameter values of a part design can be automatically assigned to the parameters of 

the CAD model with a spread sheet, macro script, or by manually changing the parameter 

values.  The solid CAD model of the part can be quickly modified and updated so that it can 

be used for analysis. 

 

 

1.4 Area Moment of Inertia 

The area moment of inertia is the second moment of area around a given axis. Its definition 

is  
2

xI y dA , when the section is symmetrical about the x or y axis. When this is not the 

case, the area moment of inertia around the y axis, yI , and the product moment of area, xyI , 

are required to obtain different area moment of inertia around different axis. It is a 

property of a sectional shape that is used to measure the resistance to bending and 

deflection. The SI unit of the second moment of area is m4. 
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For accurate CNC machining, we need to calculate area moments of inertia of end-mills to 

predict machined errors and to simulate machined surfaces. Prediction accuracy and 

simulation results are depend on how accurate the moments of inertia are. Until now, the 

area moment of inertia of a cutting tool is still approximated as a cantilevered beam with an 

effective radius as 80% of the radius of the cutting tool. But in an actual cutting tool, with 

different cutting flutes, the section of the cutting tool may not be a symmetrical shape. For 

example, a two-flute cutting tool is not a symmetrical one, but the other end-mills are. Their 

deflections caused by the cutting tool in a different axis direction are different.  

 

 

1.5 Literature Review 

Many technical articles have discussed about the generalized models of cutting tools, 

including the mathematical and manufacturing models [1-9].  Engin and Altintas [1] 

described a mathematical model of general end-mills often used in the industry. The end-

mill geometry was modeled with flutes along the helical cutting edge.  Chen et al. [2] 

presented a comprehensive manufacturing model that can be used to produce a concave 

cone end-mill on a 2-axis NC machine.  Based on the design parameters and criteria, the 

equations of the flute and the cutting edge were derived.  Chen et al. [3] provided a method 

for manufacturing concave-arc ball-end cutters using a 2-axis NC machine.  The models that 

are used to calculate the actually obtained flutes and the computer simulation method 

were introduced.  Wang et al. [4] established the geometrical and manufacturing models of 



 

10 
 

the rake face and the flank by introducing a sphere and helicoid model used to grind the 

rake face and the flank of the cutter.  Chen and Lin [5] developed a systematic method that 

integrates design, manufacturing, simulation, and remedy.  Based on the envelope 

condition, the approaches to solving the direct and inverse problems related to the 

manufacturing models were proposed.  Lin and Lai [6] presented a mathematical model for 

a ball end-mill that can be used to design and manufacture by using a 2-axis NC machine.  

Tsai and Hsieh [7] proposed an analysis method that integrates design, manufacturing, and 

numerical simulation to obtain a model for the design and NC manufacturing of a ball end-

mill.  Furthermore, the helical cutting edge, the flute profile, and the cross section of the 

grinding wheel were formulated.  Chen and Chen [8] presented a mathematic model of the 

helical curve of the cutting edge and cutting flute, the des ign of the grinding wheels used in 

the NC machining of toroidal cutters with a concave-arc generator.  Chen [9] built 

mathematical models to overcome the two major problems associated with the design and 

manufacturing of ball end-mills.  The first problem was that the mathematical equation of 

the cutting edge on the hemi-sphere of a ball end-mill, while the second problem was 

related to the grinding wheel feeding speed.  All the nine papers were focused on the NC 

manufacturing model and the envelope model with a cutting flute model.  No CAD model of 

the cutting flute on the ball or the bull head has been developed.  Liu and Chang [10] 

studied the design of hob cutters for generating cutting angles (the radial rake angle, the 

relief angle, and the clearance angel) of cutting tools on a hobing process.  This paper 

discussed manufacturing processes using a hob instead of a grinding wheel. 
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In order to finish the objective of the thesis, which is parametric modeling of the end mills, 

three related papers are reviewed [11-13].  Sheth and Malkin [11] reviewed commercial 

CAD/CAM software for the design and manufacture of components with helical flutes.  The 

CAD system could help engineers design the profile of the tool and the helical flute.  Kaldor 

et al. [12] dealt with geometrical analysis and development for designing the cutter and the 

grinding wheel profile.  The direct and the inverse methods allow prediction of the helical 

flute profile and the cutter profile, respectively.  Kang et al. [13] proposed an analytical 

solution to helical flute machining through a CAD approach, and a generalized helical flute 

machining model using the principles of differential geometry and kinematics, was 

formulated.  These papers covered cutter modeling with CAD software. 

 

With regard to spline applications, three papers are reviewed [14-16].  Xu, et al. [14] 

generated spline tool paths to machine free-form surfaces.  The paths could avoid 

inefficient five-axis machining by automatically creating and verifying feasible tool-paths 

prior to cutting.  Yin [15] presented a CAD representation of a free-form surface from a 

point cloud with NURBS or B-spline, which can be described to generate progressive fitting 

and multi-resolution tool paths.  Razavi and Milner [16] discussed some foundational 

concepts about free-surface applications for computer implementation, lofting techniques, 

or computer-aided design. 

This thesis therefore will focus on a free-form CAD model design of the end mill using 

NURBS curves technique.  
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1.6 Objectives of the Thesis 

The objective of this thesis is to build a parametric solid model of the fillet tapered end-mills 

with the CATIA V5 software, based on all free-form curves.  According to the cutting tools 

from the modern industrial field, the features of the fillet tapered end-mills include several 

flutes which include the relief edge and the clearance edge, rake edge of the side cutting 

edges, the cutting edges, and the first and the second flank faces of the bottom cutting 

edges, the gash, and the neck. In this thesis, all the geometry features will be parameterized 

and their CATIA models will be constructed. Based on this model, their area moment of 

inertia will be calculated, some simulation applications for predicting cutting force will be 

represented.   

 

1.7 Outline of the Thesis 

This thesis comprises of seven chapters.  Chapter one introduces some basic concepts of 

spline curve, parametric design, area moment of inertia, literature review and thesis 

objectives.  Chapter two and three presents the free-form parametric representation of 

cutting edges and cutting flutes, respectively.  Chapter four describes two calculation 

methods of area moment of inertia of cutters: one is based on the sectional flute model 

built in Chapter two and three; another one is related to the special parts, such as the gash 

and the neck.  In Chapters five, some applications of model are presented, the analysis of 

the difference of cutter flutes between the presented models or calculated area moment of 
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inertia is provided.  Chapter six describes the major work of this thesis and future work.  In 

Chapter seven, some of the references are listed. 
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Chapter 2 Parametric Modeling of the Side Cutting 

Edge of the Flute 

 

2.1 List of Nomenclature of the Parametric Model 

Parameters Definition 

  Helical angle of the cutting edge of an end-mill 

SR  Radial distance between the fillet center and the cutter axis 

R  Corner radius of an end-mill 

L  Axial length of a cutter 

  Taper angle of an tapered end-mill 

k  Order of Taylor’s series 

e  Distance error between two points 

  Tolerance for converting a Taylor’s series into a B-spline curve 

n  Number of polynomial pieces 

P  Coordinates of control points  

LR  Maximum radial of cutting 

 r z  Radius of cutting 

  z  Lag angle 

H  Helical cutting edge 

 L z  Longitudinal line 

 ,S z  Tapered cutting surface 

  ,S  Toroidal cutting surface 

  Helical angle of the cutting edge of an end-mill 

SR  Radial distance between the fillet center and the cutter axis  
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2.2 Parametric Representation of the Cutting Surfaces  

The cutting surface of a fillet tapered end-mill is shown in Fig 2.1, and it is defined with a 

group of parameters for the geometric features.  Specifically, the lower part of the cutting 

surface is a toroidal surface with radius of R, and the upper part is a conic surface with the 

tapered angle of   and radius of LR  of the top circle.  The toroidal surface is tangent to the 

conic surface.  The fillet tapered end-mill is in generic shape; for   and R  are zero, it 

becomes a flat end-mill, and for   and sR  are zero, it is a ball end-mill.  Flat, ball, and fillet 

end-mills are popular cutters in milling. 

 

Figure 2.1.  Illustration of a fillet tapered end-mill with parameters. 

 



 

16 
 

To represent the cutting surface geometry of the fillet tapered end-mill, a tool coordinate 

system (X-Y-Z) is built in the following way: the origin of the coordinate system is at point O, 

the Z-axis is the same with the cutter axis, and the X- and the Y-axes are located on the 

bottom plane perpendicular to the cutter axis (see Fig 2.1).  In this coordinate system, the 

parametric equations of the geometric features of the cutting surface will be derived in the 

following sections. 

 

2.2.1 Radius of the Toroidal Cutting Surface 

The radius of the circle on a cross section z of the toroidal cutting surface is 

     2 2
1 Sr z R R z , (2.1) 

where     SR z L  and  sinSL R . 

 

2.2.2 Radius of the Conic Cutting Surface 

The radius of the circle on a cross section z on the conic cutting surface is 

        2 tanK Sr z R z L , (2.2) 

where     SR z L L  and   cosK SR R R . 
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2.2.3 Parametric Equation of Cutting Surface 

For the circle on a cross section, the central angle of a point is denoted as  , starting from 

the X-axis.  Since the circle can be represented with parameters, z and  , a parametric 

equation of the cutting surface is 

  

 

 



 

 
 

  
  

cos

, sin

r z

S z r z

z

, (2.3) 

where     SR z L L  and   0 2 . 

 

 

2.3 Differential Form of the Cutting Edge 

Generally, a cutting edge of an end-mill is a helix curve on the cutting surface.  In this work, 

the helical angle of the helix curve at a helix point is defined as the angle between the 

tangent vector to the helix at this point and the longitudinal curve of the cutting surface 

passing through this point.  In this research, for helix curves on toroidal or conic cutting 

surfaces, the helical angles at all points on the curves are the same.  However, based on the 

different requirement, the helical angles can also be defined the different at different points 

on the curves.    Fig 2.2 defines a helical angle of a helix curve on a cutting surface. 
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Figure 2.2.  A helical angle of a helix curve on a cutting surface. 

 

According to the definition of helical angle of a cutting edge, a parametric equation of 

cutting edge can be formulated.  Assume a cross section intersects a cutting edge on the 

cutting surface at a point, the central angle measured from the X-axis is called lag angle 

  z .  The lag angle changes along with the change of the Z coordinate of the cutting edge 

point.  Thus, a cutting edge is denoted as   ,z zH , and a lag angle of a point on a cutting 

edge is shown in Fig 2.3.  The parametric equation of the helical cutting edge  zH  is 

    
    
    



 

 
 

   
 
 

cos

, sin

r z z

z H z z r z z

z

H .    (2.4) 
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Figure 2.3.   Illustration of a lag angle of a point on a cutting edge. 

 

Due to variation of the radius on every surface, surfaces geometries and the helical cutting 

edges are different from each other.  Meanwhile, using this invariable helical angle, the 

parametric equations of cutting edge can also be derived. 

 

2.3.1 Helical Cutting Edge of the Toroidal Cutting Surface 

For a helical cutting edge  1 zH  on the toroidal cutting surface, its lag angle is denoted as 

 1 z , which is a function of the cutting edge parameter z .  The parametric equation of 

this helical cutting edge is 

 

 

 





   
 
 

    
 
  

2 2
1

2 2
1 1

cos

sin

S

S

R R z

z R R z

z

H ,    (2.5) 
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where   1 1 z .  The tangent vector of this helical curve is the first derivative of  1 zH  in 

terms of z,  

 
  



 
   

 

1 11 1 1 1

1

,d zd d

dz dz z dz

HH H H
. (2.6) 

Hence, the differential 1-form of the helical cutting edge 1dH  can be represented as 

 


 
   
 

1 1
1 1

1

( )d z dz d
z

H H
H , (2.7) 

where 





 
  

 
  

     
  

12 2

1
12 2

cos

sin

1

z

R z

z

z R z

H
, and 

 

 






    
 
 

    
  

  

2 2
1

2 21
1

1

sin

cos

0

Rs R z

Rs R z
H

. 

Thus, the following two equations can be attained. 

  

 

 

  

  

 
        

 
 

         
 

  

2 2
1 1 12 2

2 2
1 1 1 12 2

cos sin

sin cos

S

S

z
dz R R z d

R z

z
d z dz R R z d

R z

dz

H , (2.8) 

and 

    


    


2 2 22 2 2 2
1 12 2 S

R dz
d z R R z d

R z
H . 

 

A longitudinal curve of the toroidal surface is on the cutting surface and with a constant lag 

angle, which is independent on the parameter z .  Here, a parametric equation of a 
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longitudinal line on the toroidal cutting surface is denoted as  1 zL .  Thus, it can 

represented with the parametric equation of the cutting surface with a fixed lag angle 1 ,  

 

   

 

 



 

 
 

   
  

1 1

1 1 1 1 1

cos

, sin

r z

z z r z

z

L S , (2.9) 

where     SR z L .  The tangent vector of the longitudinal curve is the first derivative of 

 1 zL  in terms of z , which is equal to the first derivative of  1 zS  in terms of z , 

 





1 1d

dz z

L S
. (2.10) 

So, the differential 1-form of the tangential vector  1
d zL  of the longitudinal line is 

  





 
  

 
  

       
  

12 2

1
1 12 2

cos

sin

z
dz

R z

z
d z dz dz

z R z

dz

S
L , (2.11) 

so  





1 2 2

R dz
d z

R z
L . 

 

By referring to the helix definition, the helical angle   is between the tangent vectors 

 1d zL  and  1d zH , which can be expressed with the following equation. 







1 1

1 1

cos
d d

d d

H L

H L
.                                      (2.12) 
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For a right-hand helix cutting edge, the differential 1-form of the lag angle of  1  relation to 

z  on the toroidal surface can be found as 

 





 
   

1
2 2 2 2

tan

S

R
d dz

R R z R z
.    (2.13)

 
 

2.3.2 Helical Cutting Edge of the Conic Cutting Surface 

For a helical curve  2 zH  of the conic cutting surface with the lag angle  2 z , it can be 

represented as 

 

     
     

 

 

    
 

     
 
 

2

2 2

tan cos

tan sin
K S

K S

R z L z

z R z L z

z

H .         (2.14) 

The tangent vector of the helical curve is the first derivative of  2 zH  in terms of z, which is 

represented as 

  



 
   

 

2 22 2 2 2

2

,d zd d

dz dz z dz

SH S S
.                                   (2.15) 

Hence, the differential 1-form of the tangential vector 2dH  is found in the following 

equation, 




 
   
 

2 2
2 2

2

( )d z dz d
z

S S
H ,                                             (2.16) 

where 
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 

 

 
  

 
 
  

2

2
2

tan cos

tan sin

1
z

S
, and 

 

 

 

 


     
  

     
  

2

2
2

2

( ) tan sin

( ) tan cos

0

K S

K S

R z L

R z L
S

.          (2.17) 

Thus, the differential 1-form can be derived as 

 

  
  

2 2 2

2 2 2 2

tan cos tan sin

tan sin tan cos
K S

K S

dz R z L d

d z dz R z L d

dz

    

    

        
 

         
 
 

H ,               (2.18) 

and     
2

2 2 2
2 22

tan
cos

K S

dz
d z R z L d 


     H . 

 

A longitudinal line of the conic cutting surface is a curve on the surface with a constant lag 

angle, independent of the parameter z .  Thus, the parametric equation of the longitudinal 

line on the conic cutting surface  2 zL  can be represented as 

   

 

 
2 2

2 2 2 2 2

cos

, sin

r z

z z r z

z



 

 
 

   
  

L S , and S SL z L L    .                         (2.19) 

The tangent vector of the longitudinal line is the first derivative of  2 zL  in terms of z , 

which is equal to the first derivative of  2 zS  in terms of z , 

2 2d

dz z





L S
.                        (2.20) 

So, the differential 1-form of the tangent vector is expressed as 
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 
2

2
2 2

tan cos

tan sin

dz

d z dz dz
z

dz

 

 

  
  

    
 
  

S
L ,                                         (2.21) 

and  2
cos

dz
d z


L . 

By referring to the helix definition, the helical angle   is between the tangent vectors 

 2d zL  and  2d zH , which can be expressed with the following equation,  

2 2

2 2

cos
d d

d d







H L

H L
.                                        (2.22) 

For a right-hand helix curve cutting edge, the differential 1-form of the lag angle 2  in 

relation to z  is derived as 

  2

tan

tan cosK S

d dz
R z L




 
 

   
.   (2.23) 
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2.4 Explicit Equation of the Lag Angle of the Cutting Edge 

2.4.1 Lag Angle of the Cutting Edge of the Toroidal Cutting Surface 

To attain an explicit formula of the cutting edge, the lag angle should be represented 

in an explicit form.  Based on the above differential 1-form of the lag angle 1  on the 

toroidal cutting surface, the equation of the lag angle is found by integrating its differential 

form.  For clarity, the differential 1-form of the lag angle 1  is repeated here, 

 
1

2 2 2 2

tan

S

R
d dz

R R z R z





 

   
,    (2.24)

 

where SR z L    .  Here, let
 

sinz R   , 

1

1
tan

cosS

d R d
R R

  


   
 

.                                            (2.25) 

By integrating, the lag angle equation is found,  

  1
1 1

tan
2 tan tan tan

2 2sinS

R
C

R

  
 




  

      
    

,   (2.26) 

where 
1cos

S

R

R
   
  

 
 and sinz R   .  For the boundary conditions of the cutting edge, it 

starts from the bottom of the cutter, which means when 1sz R   and 2
   , the lag 

angle should be zero.  They are expressed as 

1 1 0s z R    , 

and  
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  1
1 1

tan
2 tan tan tan 0

2 4sinS

R
C

R

  
 




  

        
    

. 

Thus, the constant 1C  can be determined as 

1C  . 

Therefore, the explicit equation of the lag angle of the cutting edge on the toroidal cutting 

surface is 

  1
1

tan
2 tan tan tan

2 2sinS

R

R

  
  




  

      
    

.   (2.27) 

The lag angle of the end point of the cutting edge is  

 
 -11 1 sin /S

e L R
  


 . 

Based on this equation, the lag angle of any point on the cutting edge on the toroidal 

cutting surface can be calculated.  Consequently, the coordinates of any point on the helix 

cutting edge can be calculated. 

 

Based on the cutting edge equation, by replacing the parameter z  with  , the equation of 

the cutting edge on the toroidal cutting surface is simplified as
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 

 
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  
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  
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    
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 
 
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 
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S

S

S

S

R
R R

R

R
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H ,   (2.28) 

where 
-1sin

2
SL

R




 
     

 
. 

 

2.4.2 Lag Angle of the Cutting Edge of the Conic Cutting Surface 

Similar to the way of finding the explicit equation of the lag angle of the cutting edge on the 

toroidal cutting surface, the equation of the lag angle of the cutting edge on the conic 

cutting surface is derived in this section.  For clarity, the differential 1-form of the lag angle 

2  of the cutting edge on the conic cutting surface is repeated here, 

 
2

tan

( ) tan cosK S

d dz
R z L




 
 

   
,                               (2.29)

 

where SL z L   .  By integrating the above equation, the lag angle equation is 

                
 2 2

tan
( ) ln ( ) tan

sin
K Sz R z L C


 


      ,

 

and SL z L   .  For the boundary conditions, the cutting edge starts at 2s Sz L  , so the lag 

angle is equal to 1e  
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2 1 Ss e z L   ,
 

and  

 2 2 1

tan
( ) ln ( ) tan

sin
K S ez R z L C


  


       , 

Thus, the constant 2C  is determined as 

 2 1

tan
ln

sin
e KC R





   . 

Therefore, the explicit equation of the lag angle of the cutting edge on the conic cutting 

surface is 

   2 1

tan tan
( ) ln ( ) tan ln

sin sin
K S e Kz R z L R

 
  

 
        . (2.30) 

 

Now, any point of the cutting edge on the conic cutting surface can be found.  The cutting 

edge can be represented with a number of points calculated with the above equations.  The 

explicit equation of the cutting edge on the conic cutting surface is
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H ,

 (2.31) 

where -S SL z L L   . 
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2.5 Cutting Edge Representation with a B-Spline 

2.5.1 Cutting Edge Representation with a Taylor’s Series 

To construct a helical cutting edge of a cutter in its solid model with CATIA V5 R20, an 

effective way is to convert the analytical equation of the cutting edge into a B-spline within 

a prescribed tolerance and then to input the B-spline into CATIA to generate the cutting 

edge using the spline function available in CATIA.  In the previous sections, the analytical 

parametric equations of the helical cutting edge were derived; unfortunately, these 

equations cannot be directly applied to CATIA.  To address this problem in my work, an 

effective solution is proposed to convert the analytical equation of the cutting edge using a 

number of Taylor’s series, which are polynomials, and then to convert the Taylor’s series 

into B-spline curves.  Eventually, the B-spline curves are imported into CATIA as the model 

of the helical cutting edge.  A conventional way of representing the cutting edge using its 

analytical equation is to sample a large number of points on the cutting edge by calculating 

their coordinates with the equation and then to feed these points into CATIA.  Compared to 

this method, the newly proposed method in my work is more accurate with the least 

amount of data in representing the helical cutting edge. 

 

First, the aforesaid analytical equations of the cutting edges on the toroidal and the conic 

cutting surface are converted into two Taylor’s series within a prescribed tolerance  .  The 

reason for this is that the analytical forms are not polynomials, and they cannot be directly 
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converted into B-splines.  A Taylor’s series can accurately represent the neighbourhood of a 

function at a certain point, and, mathematically, it is the sum of an infinite number of terms 

including different derivatives and powers at the point.  In practice, a finite number k  of 

terms are used, for example, five to seven terms, for high accuracy and high efficiency.  The 

generic equation of a Taylor’s series at a break point ix a  is 

( )

0

( )
( ) ( )

!

n
n

n

f a
f x x a

n





  .    (2.32) 

For the analytical equations of the cutting edges, they are simply denoted as  

 
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 
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 
 

  
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H , 

where    for the cutting edge on the toroidal surface and   z  for the cutting edge on 

the conic surface of the cutter.  Assume the first break is selected at 1b  and the maximum 

degree of all the terms is k, the first Taylor’s series at the first break is 

 

 

 

 

 

 

 

2 ( )
21 1 1

1 1 1 1
T
1 2 ( )
T 21 1 1

1 1 1 1 1 1

T
1 2 (

21 1
1 1 1

( ) ( ) ( )
( ) ( ) ( ) ... ( )

1! 2! !

( ) ( ) ( )
( ) ( ) ( ) ... ( )

1! 2! !

( ) ( )
( ) ( ) ( ) ...

1! 2!

k
k

k
k

dx b dx b dx b
x b b b b

k
x

dy b dy b dy b
y y b b b b

k
z

dz b dz b dz
z b b b

  



    



 

         

 
 

            
 
 

       

T

)
1

1

( )
( )

!

k
kb

b
k



 
 
 
 
 
 
 

  
  

.  (2.33)

 

By changing the parameter v  in its domain, the deviation between the Taylor’s series and 

the analytical cutting edge equation can be formulated as  

                
2 2 2T T T

1 1 1 e v x v x v y v y v z v z v      .  (2.34) 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Series_(mathematics)
http://en.wikipedia.org/wiki/Derivative
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To ensure the accuracy of the Taylor’s series with regard to the analytic cutting edge 

equation, the maximum derivation between them should be equal to the specified 

tolerance  .  The constraint of the conversion is expressed as 

                
2 2 2T T T

max max 1 max max 1 max max 1 max e v x v x v y v y v z v z v        .  

After finding the maximum value of v subject to the constraint, the first Taylor’s series is 

found, and 
maxv  is taken as the new break point for the second Taylor’s series.  With the 

same procedure, a number of Taylor’s series are found, and the whole cutting edges on the 

toroidal and the conic cutting surfaces are represented with the Taylor’s series.  For each 

Taylor’s series  i vT  at a break 
ib , it can be formulated as 

 

 

 

 

 
       

 
       

 
       

2 ( )
2

T

2 ( )
T 2

T
2 ( )

2

( ) ( ) ... ( )
1! 2! !

( ) ( ) ... ( )
1! 2! !

( ) ( ) ... ( )
1! 2! !

k
i i i k

i i i i

i k
i i i k

i i i i i i

i k
i i i k

i i i i

dx b dx b dx b
x b v b v b v b

k
x v

dy b dy b dy b
y y b v b v b v b

k
z

dz b dz b dz b
z b v b v b v b

k

 




         

 
 

            
 

  
         



T









 
   

. (2.35)

 

where 
iv b .  The Taylor’s series is found when the deviation between it and the cutting 

edge in analytical form.  Finally, a number n of Taylor’s series are found, which are n 

polynomials as 1 2, , n  T T T , and the Taylor’s series will be converted into B-splines.

 
 

2.5.2 Conversion of Taylor’s Series to B-Splines 

In the previous section, the helical cutting edges on the toroidal and the conic cutting 

surfaces are now represented with a number of Taylor’s series.  The Taylor’s series actually 

are piecewise polynomials, and the B-splines mathematically are piecewise polynomials.  
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The method of converting piecewise polynomials into B-splines is well established.  In this 

section, assuming a number of (n) Taylor’s series are found for the cutting edges and the 

order of the Taylor’s series is k.  Each polynomial is converted into a B-spline, whose order is 

five.  A B-spline curve is represented as 

    
5

,5 ,
0

i j i j
j

v N v


 P P ,    (2.36)
 

where  1 , nv b b .  The blending function is defined as 

 
       , 1 1, 1

,

1 1

j j k j k j k

j k

j k j j k j

v t N v t v N v
N v

t t t t

   

   

   
 

 
.  (2.37)

 

The knots of B-spline are defined as 

    
 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1, , , , , , , , , , , , , , ,n n n n nt b b b b b b b b b b b b b b b     .      (2.38)

 

By using the function fm2fn in MATLAB, each Taylor’s series is converted into a B -spline 

curve, where the fm2fn is a function to convert a piecewise polynomial into a B-spline curve. 

 

 

2.6 Application and Analysis  

In this section, the mathematical background of converting the analytical equation of the 

cutting edge into B-spline representation is elaborated.  To demonstrate the process of the 

conversion, this method is applied to a solid carbide fillet tapered end-mill.  The parameter 

values of the tool are listed in Tab 2.1, and the tool model is shown in Fig 2.4. 
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Table 2.1 The parameter values of a solid carbide fillet tapered end-mill. 

RS 

mm 
R 

mm 
L 

mm 
RL 

mm 
RK 

mm 
LS 

mm 
  

deg. 
  

deg. 

7 3 40 12.6 10 0.2 4 40 

 

 

Figure 2.2. A helical cutting edge on the cutting surface of a solid carbide fillet tapered end-

mills in CATIA. 

Based on the parameters of the tool and the cutting edge, the analytical equations of the 

cutting edges on the toroidal and the conic cutting surfaces are found.  The analytical 

equations are converted in a number of Taylor’s series within different tolerances, and then 

the Taylor’s series are re-represented with B-splines.  The numbers of Taylor’s series on the 

toroidal and the conic surfaces are listed, and the total numbers of control points of the B-

spline curves are provided in Tab 2.2.  It is clear that with the increase of the Taylor’ series 

order, the fewer the Taylor’s series, the fewer the control points of the B-spline curve. 
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Table 2.2. Results analysis of conversion of the analytical equation into B-splines. 

Taylor’s 
series 

order 

Tolerance of 

converting to 
Taylor’s series 

(mm) 

Number of 
Taylor’s series on 

toroidal surface 

Number of 

Taylor’s series 
on conic 

surface 

Number of 
control points 

of B-splines 

3 

0.1 

4 10 42 

4 3 6 36 

5 2 4 30 

3 

0.01 

7 20 81 

4 4 10 56 

5 3 6 45 

3 

0.001 

16 44 180 

4 7 17 96 

5 4 9 65 

3 

10-4 

34 94 384 

4 12 30 168 

5 6 14 100 

3 

10-5 

74 205 837 

4 21 52 292 

5 10 23 165 

To demonstrate the advantage of this new method over the conventional method, which is 

finding a number of cutting edge points and fitting them with a B-spline in CATIA, a number 

of experiments are conducted and are provided in the following.  In each experiment, a 

number of cutting edge points are sampled and imported into CATIA, and then the points 

are fitted with a B-spline curve in CATIA.  By checking the deviations between the CATIA B-

spline and the analytical cutting edge equation at 100 locations, the maximum of the 

deviations is found.  In the new method, a tolerance of converting the analytical equation 
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into a Taylor’s series is specified, and a B-spline curve is found to represent the cutting edge.  

The deviations between the converted B-spline and the analytical equation at 100 locations 

are computed, and the maximum error is found.  Five experiments are conducted and the 

corresponding results are provided in Table 2.3.  It is evident that the new conversion 

method is more accurate to the analytical cutting edge, compared to the CATIA method.  

The comparison of the accuracy of the new method and the conventional method is plotted 

in Fig 2.5. 

 

 

 

 

 

Table 2.3. Comparison between the new conversion method and the conventional method. 

Number of 
cutting 

edge points 
in CATIA 

Number of 
control 

points of 
CATIA B-

spline 

Tolerance 
of 

converting 
to Taylor’s 

series (mm) 

Number of 
control 

points of B-
spline in 

conversion 

Error of 

CATIA B-
spline (mm) 

Error of 

converted B-
spline (mm) 

4 12 1.5 10 0.1783 0.1746 

6 17 0.2 15 0.0219 0.0200 

7 20 0.05 20 0.0095 0.0042 

11 30 0.01 30 0.0016 0.0008 

13 35 0.005 35 0.0009 0.0005 
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Figure 2.3. Comparison the accuracy between the new method and the conventional 
method using CATIA. 
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Chapter 3 Parametric Modeling of the Solid Cutter 

Flutes 

 

3.1 List of Nomenclature of the Parametric Model 

Parameters Definition 

n  Teeth (or flute) number of the cutter 

1  Rake angle on the cutting flute cross-section 

2  Relief angle on the cutting flute cross-section 

3  Clearance angle on the cutting flute cross-section 

ABl  Length of the line AB on the cutting flute cross-section 

EDl  Length of the line ED on the cutting flute cross-section 

EFl  Length of the line EF on the cutting flute cross-section 

P  Control points  

or  Radius of core cutter 

LR  Radius of cutting 

0  
The angle between the tangent point of flute and center point 
with the x axis 

 

3.2 Introduction 

As a key feature, flutes of solid carbide end mills are also crucial to the cutter performance 

and life.  Specifically, a flute geometrically includes a flute surface and a rake face.  Thus, an 

end-mill’s flutes determine the cutting forces and the core size that is very important to the 
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cutter rigidity; and, at the same time, they provide accommodation for chips and evacuate 

them during machining.   

A flute profile is illustrated in Fig 3.1.  Each section of the flute consists of four segments. 

The straight line AB, which forms a rake angle α1 with the x axis, corresponds to the rake 

face. The NURBS BCD with eight control points is the section of the flute which blends the 

chip. The NURBS BCD is the section of the flute which removes the chip smoothly. Let the 

NURBS BCD pass C and be tangent to core at point C, on the same time, the NURBS BCD is 

tangent to the straight line AB at point B, and tangent to arc ED at point D. The straight line 

DE forms an angle α3 with the tangential line at point F. The straight line EF, which forms a 

relief angle α2 with the tangential line at point F, corresponds to the strip.  

 

Figure 3.1. Sectional view of a cutting flute. 
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3.3 The Coordinates of the Intersection Points of Cutting Flute 

Suppose an end mill cutter has n teeth and the profile of a flute starts at point A (a tooth tip) 

on the X-axis and ends at point F (a neighbouring tooth tip), as shown in Fig 3.1.  In this 

section, the central angle between two adjacent teeth is called a teeth spacing angle, which 

is shown in Fig. 3.1 as ∆AOF, and a teeth spacing angle is equal to 2π/n. The x- and y-

coordinates of points A and F can be found in the tool coordinate system. 

A L

A

A 0

x R

y

   
    
   

r ,                             

and 

L
F

F

F
L

2
cos

n

2
sin

n

R
x

y
R





  
         

       
  

r .                                         (3.1) 

The angle starting from the positive X-axis to line FE is denoted as ξEF, which can be found in 

terms of the relief angle α2, teeth spacing angle, and helical cutting edge direction.  For a 

right-hand helical cutting edge, 

 FE 2

2

n 2

 
    . (3.2) 

According to point F, the coordinate of point E is calculated as 

 
E F FE FE

E

E F FE FE

cos

sin

x x l

y y l





    
        

r . (3.3) 
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Similarly, the angle starting from the positive X-axis to line ED is denoted as ξEF, and it can be 

formulated in terms of the clearance angle α3, teeth spacing angle, and helical cutting edge 

direction.  For a right-hand cutting edge,  

 ED 3

2

n 2

 
    . (3.4) 

The coordinate of point D is calculated as 

D E ED ED

D

D E ED ED

cos

sin

x x l

y y l





    
        

r .                                              (3.5) 

Then, the coordinates of points B can be formulated as 

 
B A AB 1

B

B AB 1

cos

sin

x x l

y l





    
        

r . (3.6) 

Finally, we set the coordinates of points C  

 
 

 
C 0 4

C

C 0 4

cos

sin

x r

y r





  
        

r . (3.7) 

Now, we set up six control points to make the section of the flute.  

First, calculate three slopes of three lines  

 ED EDtank  ,      

AB
A B

A B

y y
k

x x





,       

    C
C

C

x
k

y
  . 

and three constant of three lines function, 

ED E DE Eb y k x   , 
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AB A AB Ab y k x   , 

C C C Cb y k x   . 

P1 should be on the extension of line ED,  

1

1

1 ED 1 ED

 X

Y X

P user input
P

P k P b

   
        

.    (3.8)

 P2 and P3 are input by user, 

2

2

2

 

 
X

Y

P user input
P

P user input

   
    
   

,                                             (3.9)

 and 

3

3

3

 

 
X

Y

P user input
P

P user input

   
    
   

.    (3.10)

 P4 and P5 should be on C line, 

4

4

4 C 4 C

 X

Y X

P user input
P

P k P b

   
        

,            (3.11)

 and 

   

5

5

5 C 5 C

 X

Y X

P user input
P

P k P b

   
        

.    (3.12)

 P6 should be on the extension of line AB,  

6

6

6 AB 6 AB

 X

Y X

P user input
P

P k P b

   
        

.                                          (3.13)

 For all the weights, users can define based on the geometry design. 

                       
 1, 2,  3,  4,  5,  6 w w w w w w w .                   (3.14)

 The spline flute is composed by following control points,  

 

 

, ,

,  ,  ,  ,  ,  ,  1,  2,  3,  4,  5,  6

x yP x y P P

A B C D E F P P P P P P

   


.               (3.15) 
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Figure 3.2.   Diagram of the NURBS 

We make it as a NURBS curve. In order to let this curve pass C point, we set degree as 4. We 

use 18 control points (in the segments AB, DE, EF, the control points will be repeated on E, 

D and B). The demonstration is shown in Fig 3.2. 

 

Due to the number of control points n is 18, and take k=4, the knots t[i] can be calculated 

  1: 1+n+ki , 

when i<(k+2) 

[ ] 0t i  , 

when i>(k+1)&& i<(n+1) 

[ ] 1t i i k   , 
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when i<n 

[ ]t i n k  , 

 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 14 14 14t  . 

The NURBS curve is represented  

 
 

 

,
0

,
0

P ,

n

i i i k
i

x yn

i i k
i

h PN u

u P P

h N u





    




,   (3.16) 

            
   ,

0

n

i i i k
i

x h h x N u


   , 

            
   ,

0

n

i i i k
i

y h h y N u


   , 

           
   ,

0

n

i i k
i

h h N u


 , 

 
       , 1 1, 1

,

1 1

i i k i k i k
i k

i k i i k i

u t N u t u N u
N u

t t t t
   

   

   
 

 
,                 (3.17) 

            
  0, 1+n+ku t . 
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3.4 The 3D Models of Cutting Tools 

Based on CATIA platform, the designed cutter flute can be swept along the two cutting 

edges as guide curve. Finally the solid carbide end mill can be generated. The 

demonstration is shown in Fig 3.3. 

 

 
 

Figure 3.3.   Illustration of solid carbide bull nose end mill. 
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Chapter 4 Area Moments of Inertia of Carbide Cutters 

 

4.1 List of Notation and Introduction 

Parameters Definition 

L  The differential length 

r  The differential thickness 

,tn t  The thickness scalar 

,ln l  The length scalar 

S  The rotation scalar 

 

In calculating the area moment of inertia, first of all, for side cutting edge of cutter, because 

the cross-section of cutter is the regular shape with function, one special method is 

represented.  On every layer, every teeth can be separated into two portions, A (red) and B 

(blue). The result area moment of inertia is the difference between A and B.  In each portion, 

all infinitesimal area and their coordinates can be calculated respectively, where all 

coordinates of portion B need to be rotated to portion B’ to calculate.  In portion A, the 

cutting flute is considered as infinitesimal scaled NURBS splines with the thickness ∆r, and 

each infinitesimal scaled spline is divided into infinitesimal elements with an infinitesimal 

length ∆L.  In portion B, due to the special shape, the cutting flute is divided into 

infinitesimal bands along x-axis with the thickness ∆r, and each infinitesimal band is divided 

into infinitesimal elements with an infinitesimal height ∆L.  By calculating all the area 

moment of inertia of these infinitesimal areas and adding them together, the area moment 
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of inertia of each spline can be obtained, and area moment of inertia of cutting flute can be 

obtained on every teeth.  Finally add all area moment of inertia on all teeth to get the final 

area moment of inertia on each layer.   The demonstration is shown in Fig 4.1, and this layer 

is taken as a reference one at z=0. 

 

Figure 4.1.  Illustration of the regular flute shape. 

 

 

4.2 Representation of Splines 

For every cutter teeth, the cutter flute is presented by one spline which can be scaled into nl 

sections along this cutting flute, where we call nl as the length scalar.  Meantime, towards 

to cutter center axis, the cutter teeth layer can be scaled with nt scaled splines with the 

infinitesimal thickness, where we call nt as the thickness scalar.  Moreover, all coordinates 
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of every scaled spline can also be obtained to calculate the length of every section.  The 

control points of initial spline on this flute is   

 , ,x yP x y P P    , 

 

It is a NURBS curve, with 18 control points (in the segments AB, DE, EF, the control points 

will be repeated), where degree is 4.  This NURBS curve had been derived in Chapter Three.  

The demonstration is shown in Figs. 3.2. 

The knots t[i] is non-periodic uniform, which is, 

 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 14 14 14t  , 

NURBS curve is represented  

 
 

 

,
0

,
0

P ,

n

i i i k
i

x yn

i i k
i

h P N u

u P P

h N u





 

    





, 

 
       , 1 1, 1

,

1 1

i i k i k i k
i k

i k i i k i

u t N u t u N u
N u

t t t t
   

   

   
 

 
 

  0, 1+n+ku t . 
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4.3 Differential Method  

The thickness scalar is     

tn 100 , 

  t1:nt . 

The length scalar is     

ln 1000 , 

  l1:nl . 

 

4.3.1  Portion A  

The coordinates of the tth scaled spline are 

    
tn

t

t
P u P u , 

where u  is the parameter of NURBS curve, and t  is number of scaled NURBS curves . 

The thickness ∆r on every infinitesimal scaled spline is  

      
    

2 2

, , ,x , ,y1 , ,x 1 , ,yt l t l t lt l t l
r P P P P ,   (4.1) 

  ,l l t ldr r r . 

The calculation of the length of every spline 
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      
    

2 2

, , ,x , ,y, 1 ,x , 1 ,yt l t l t lt l t l
L P P P P .   (4.2) 

In order to get the angle between 
,t lL and 

,t lr , 
rl can be used, 

            
    

2 2

1 , ,x , 1 ,x 1 , ,y , 1 ,yr t l t l t l t l
l P P P P ,   (4.3) 

The angle between  ,t lL and  ,t lr  is rl  

 
    


 

2 2 2
, ,

, ,

cos
2

t l t l r

r

t l t l

L r l
l

r L
, 

     2sin 1 cosr rl l . 

As the profile of one cutter flute changes, the infinitesimal length and thickness of each 

point on the spline of this profile will be represented in different formula.  All these 

formulas can be deduced regarding to their profiles functions. 

 

For one teeth of the first flute, the area moment of inertial can be calculated based on the 

below differential equations developed.  Every infinitesimal area is enclosed by ∆r and ∆L in 

this teeth profile.  

         , ,sin sinr t l t l rdA dr dL l r L l .   (4.4) 

The area moment of inertia of each element around the x axis of each element is 

            2 2 2
A, , ,x y , ,y , ,sin sint l r t l t l t l rdI y dA P dr dL l P r L l .     (4.5) 

The area moment of inertia of each element around the y axis of each element is 
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            2 2 2
A, , ,y x , ,x , ,sin sint l r t l t l t l rdI x dA P dr dL l P r L l .    (4.6) 

The product moment of area of each element is, 

               , , , y , ,x , ,y , ,sin sinA t l x x y r t l t l t l t l rdI x y dA P P dr dL l P P r L l .       (4.7) 

 

4.3.2  Portion B  

Only one spline is used 

   tP u P u . 

The thickness ∆r on every infinitesimal band is  

   
1x xi i

r P u P u


   ,    (4.8) 

ldr r . 

The calculation of the length of every infinitesimal band is 

 
 

y i

l

P u
L

n
.           (4.9) 

For one teeth of the first flute, the area moment of inertial can be calculated based on the 

below differential equations developed.  Every infinitesimal area is enclosed by ∆r and ∆L in 

this teeth profile.  

dA dr dL r L    .                         (4.10) 

If the cutter has n tooth, the coordinates in portion B’ be calculated by rotating an angle 

2 n   from those in portion B. 
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 

 

    
      

   

    
      

   

, ,x x y

, ,y x y

2 2
cos sin

2 2
sin cos

t l

t l

P P P
n n

P P P
n n

. 

The area moment of inertia of each element around the x axis of each element is 

       2 2 2
, ,x y , ,yt l t ldI y dA P dr dL P r L .   (4.11) 

The area moment of inertia of each element around the y axis of each element is 

       2 2 2
, , ,y x , ,xB t l t ldI x dA P dr dL P r L .   (4.12) 

The product moment of area of each element is, 

          , , , y , ,x , ,yB t l x x y t l t ldI x y dA P P dr dL P P r L .                        (4.13) 

 

4.4  Calculation of Area Moment of Inertia 

By adding all the area moment of inertia around the x axis of each element in portion A, and 

subtracting all the area moment of inertia around the x axis of each element in portion B, 

the area moment of one certain spline around the x axis is calculated. 

 


   
nl

nl
, , , ,x , , ,x

1
t x A t l B t l

l
I dI dI .                                              (4.14) 

By adding all the area moment of inertia around the x axis of each spline, the area moment 

of inertia around the x axis of first flute is obtained.  

 
nt

nl
x _

1
t x

t

I I


  .                                    
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The area moment of inertia around the y axis of one certain spline is obtained by adding all 

the area moment of inertia around the y axis of each element, and subtracting all the area 

moment of inertia around the x axis of each element in portion B,  

 


   
nl

nl
,y , , ,y , , ,y

1
i A t l B t l

l
I dI dI ,                                                (4.15) 

The area moment of inertia around the y axis of the first flute is calculated. 



 
nt

nl
y ,y

1
t

t

I I .                    (4.16) 

For the product moment of area of one certain band, by adding all the product moment of 

area of each element together, and subtracting all the area moment of inertia around the x 

axis of each element in portion B, the product moment of area of one band is obtained,  

  


   
nl

nl
, , , , y , , , y

1
t xy A t l x B t l x

l
I dI dI , (4.17) 

By adding all product moment of area of each band, we can have the product moment of 

area of the first flute. 

 


 
nt

nl
xy ,

1
t xy

t

I I . (4.18) 

 

Supposed the cutter has n tooth, thus, the area moment of inertia of each flute can be 

calculated by rotating an angle
2

n


, from its previous one.  Furthermore, every tooth can be 
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considered as a new coordinate system rotated relative to the previous one by
2

n


.  To 

calculate this, the product moment of area is also required. 

Considering the new coordinate system that is rotated relative to the original one by an 

angle
2

n


, then, the coordinates  ' ',x yP P  in the new system can be calculated in terms of the 

coordinates  ,x yP P  in the original one. 

' 2 2
cos sinx x yP P P

n n

    
      

   
,              (4.19) 

 ' 2 2
sin cosy x yP P P

n n

    
      

   
.                                                (4.20) 

All infinitesimal areas don’t change. Substituting above now coordinates into the area 

moments of inertia equations, the area moments of inertia in new tooth can be obtained, 

 ' 2 2
cos 2 sin 2

2 2

x y x y

x xy

I I I I
I I

n n

      
        

   
,  (4.21) 

 ' 2 2
cos 2 sin 2

2 2

x y x y

y xy

I I I I
I I

n n

      
        

   
,  (4.22) 

And the product moment of area can be obtained.  

 ' 2 2
sin 2 cos 2

2

x y

xy xy

I I
I I

n n

     
         

   
,  (4.23) 

where 
2

n


 is the angle of rotation. 
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xI , yI  and xyI  are the area moments of inertia and the product moment of area in the 

original coordinate system. 

'
xI , '

yI  and '
xyI  are the area moments of inertia and the product moment of area in the 

rotated new coordinate system. 

In the first tooth, the area moments of inertia and the product moment of area are
 

1
x xI I , 

1
y yI I  

1
xy xyI I  

Applying to every tooth on cutter flute, from the second one to last one, the area moment 

of inertia and product moment of area on every tooth can be expressed,  

 
1 1 1 1

x y x y 1
x xy

2 2
cos 2 sin 2

2 2 n n

m m m m

m mI I I I
I I

 
   


     

         
   

,  (4.24) 

 
1 1 1 1

x y x y 1
y xy

2 2
cos 2 sin 2

2 2 n n

m m m m

m mI I I I
I I

 
   


     

         
   

, (4.25) 

 
1 1

x y 1
xy xy

2 2
sin 2 cos 2

2 n n

m m

m mI I
I I

 
 


    

         
   

, (4.26) 

 2:nm  

Thus the area moment of inertia of the cutter can be calculated. 

 
n

x x
1

m

m

I I


 ,  
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n

y y
1

m

m

I I


 ,  

 
n

xy xy
1

m

m

I I


 .    

If a cutter size is scaled by S, all coordinates on cutter flute are scaled by S. The new 

coordinates  ' ',x yP P is,  

'
x xP S P  ,      (4.27) 

'
y yP S P  .      (4.28) 

The original width of the band r is the distance between two points, so new one becomes, 

 'r S r   .                     (4.29) 

The original length of the band L is the distance between two points, so new one becomes, 

'L S L   .          (4.30) 

 

The new area moment of inertia of each element around the x axis becomes 

 2 2 4
y' ' ' 'x xdI y dA P r L S dI       , (4.31) 

 4'x xI S I  .        (4.32) 

The new area moment of inertia of each element around the y axis becomes  

2 2 4
x' ' ' 'y ydI x dA P r L S dI       ,                                       (4.33) 

 
4'y yI S I  .            (4.34) 
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The product moment of area can be calculated. 

4
x y' ' ' ' 'xy xydI x y dA P P r L S dI         ,                                  (4.35) 

 4'xy xyI S I  .        (4.36) 

If dividing the cutting tool into layers along the tool axis, which has a layer thickness dz , for 

different layer, the area moment of inertia would be different due to the lag angle of helix 

curve shape cutting edges.  The area moment of inertia of different layer can be calculated 

by rotating the reference one a lag angle j , which can be obtained in Chapter 2.  

    x y x y4
x xycos 2 sin 2

2 2
j

j j j

I I I I
I S I 

  
        

 
, (4.37) 

    x y x y4
y xycos 2 sin 2

2 2
j

j j j

I I I I
I S I 

  
        

 
,  (4.38) 

    x y4
xy xysin 2 cos 2

2
j

j j j

I I
I S I 

 
        

 
.  (4.39) 

 

4.5 Calculate of Area Moment of Inertia on the Gash and the Neck 

Due to the fact that the cross-section on the gash or the neck of cutter is not regular, this 

cross-section shape can be taken by CAD software, such as CATIA. Two demonstration 

examples are shown in Figs 4.2.1 and 4.2.2. 
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Figure 4.2.1.  Illustration of irregular gash cross-section shape. 

 

Figure 4.2.2.  Illustration of irregular neck cross-section shape. 
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We can use general method to calculate the area moment of inertia. The differential 

method will be shown following. 

The x-axis scalar is     

tn 100 , 

  t1:nt . 

The y-axis scalar is     

tn 100 , 

  t1:nl . 

First find out all point include this area, see Figs 4.3.1 and 4.3.2. 

 

Figure 4.3.1. The differential method on the gash corss-section. 



 

59 
 

 

Figure 4.3.2. The differential method on the neck corss-section. 

Then calculate each small area, see Figs 4.4.1. and 4.4.2. 

 

Figure 4.4.1.  The searching method on the gash cross-section. 
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Figure 4.4.2.  The searching method on the neck cross-section. 

The thickness ∆t and the length ∆l on every infinitesimal band is  


   

2

t

R
t l

n
.            (4.40) 

For gash, the area moment of inertial can be calculated based on the below differential 

equations developed. Every infinitesimal area is enclosed by ∆t and ∆L in this area. 

dA dt dl t l    .                                              (4.41) 

The area moment of inertia of each element around the x axis of each element is 

 2
, ,xt ldI l dA .                       (4.42) 

The area moment of inertia of each element around the y axis of each element is 

 2
, ,yt ldI t dA .          (4.43) 
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The product moment of area of each element is, 

  , , yt l xdI t l dA .          (4.44) 

Thus the area moment of inertia of the cutter on the gash and on the neck can be calculated. 

 



n

x , ,
1

t l x
i

I dI ,   

       



n

y , ,
1

t l y
i

I dI ,  

         

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n

xy , ,
1

t l xy
i

I dI . 
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4.6 Result Analysis 

4.6.1 Influence of the Cutting Flutes  

In Table 4.1, the calculation results of the area moment of inertia of cutting tools with 

different diameters on same layer are shown.  In this example, for each cutting tools, 0 8  , 

1 6  , 
2 10  , and 3 30  , the area moments of inertia for at different positions are 

shown in Table 4.1.  Those four parameters of cutters from column 3 to 6 are the same for 

the same diameter.  Column 1 is the diameter and column 2 shows the number of flutes.  

From Figs 4.5 and 4.6, apparently, using approximate method, no matter how many flutes, 

the area moment of inertia is a constant, but by using this new proposed method, the area 

moment of inertia is changed with different flutes, the maximum deviation is about 30%.  If 

the cross section is symmetric, product moment of inertia is equals to 0, the area moment 

of inertia around axis are the same.  However, for a 2-blade cutter, the area moment of 

inertia about x axis and y axis are completely different.  Actually, in many manufacturing 

plants, 2 blades cutters are largely applied for the roughing machining, the area moments of 

inertia around different axis are quite different.  If using approximate method, the final 

result for a 2-blade cutter, no matter how hard work, the deflection is not accurate, and the 

compensation of the CNC tool paths is not accurate.  The surface error is not accurate 

enough, either. 
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Table 4.1. Area of moment of inertia of different end-mills. 

Ra. 
(mm) 

Flute No. 
r0 

deg. 
lAB 

(mm) 
lDE 

(mm) 
lEF 

(mm) 
Ix 

(mm4) 
Iy 

(mm4) 

3 

2 

2 0.6 1 0.4 

20.76 31.82 

3 33.17 33.17 

4 36.12 36.12 

5 38.82 38.82 

6 41.06 41.06 

4 

2 

2.8 0.8 1 0.4 

72.32 105.29 

3 106.18 106.18 

4 113.55 113.55 

5 121.17 121.17 

6 127.52 127.52 

5 

2 

3.6 1.0 2 1 

231.76 290.85 

3 325.87 325.87 

4 337.60 337.60 

5 353.37 353.37 

6 364.83 634.83 

6 

2 

4.4 1.2 2 1 

441.55 601.92 

3 620.11 620.11 

4 671.70 671.70 

5 683.82 683.82 

6 730.86 730.86 

7 

2 

5.2 1.2 2.6 1.4 

856.15 1147.13 

3 1261.82 1621.82 

4 1290.12 1290.12 

5 1351.80 1351.80 

6 1438.24 1438.24 

8 

2 

6.0 1.4 2.6 1.4 

1358.73 1903.22 

3 2028.31 2028.31 

4 2136.79 2136.79 

5 2261.82 2261.82 

6 2347.82 2347.82 
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Figure 4.5. Area moment of inertia and number of flutes. 

 
 

 

Figure 4.6. Area moment of inertia of cutter. 
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4.6.2 Influence of the Cutting Radius  

For a symmetric section of a fillet tapered end-mill, at any position of the cutting edges 

along the tool axis, the area moment of inertia around the x and y axes are the same at the 

same layer.  For example, for a fillet tapered cutting tool, 3R  , 5Rs  , taper angle 3 , 

0 1.8r  , 
EF 0.6l  , 

ED 1.0l  ,
AB 0.8l  , 1 8o  , 2 12o  , and 3 30o  , the cutting edge, flutes 

shape information and the area moments of inertia for at different positions are shown in 

Table 4.2. In Figure 4.7, the data from Table 4.2 is better demonstrated.    
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Table 4.2.   Data for symmetric section fillet tapered end mills. 

Parameters of cutter 

Cutting edge (mm) Flute (mm) 

R Rs L a θ r0 α1 α2 α3 lAB LEF LDE 

3 5 40 3° 30° 1.8 8° 12° 30° 0.8 0.6 1.0 

Symmetric section (n=4) Area moment of inertia  

z Helix Lag Angle r S Ix Iy 

-3.0000 0.0000 5.0000 1.0000 37.859 37.859 

-0.9971 0.3124 7.8294 1.5659 227.628 227.628 

1.0027 0.4584 8.0567 1.6113 255.197 255.197 

3.0025 0.6010 8.1615 1.6323 268.763 268.763 

5.0024 0.7418 8.2663 1.6533 282.863 282.863 

7.0023 0.8808 8.3711 1.6742 297.439 297.439 

9.0021 1.0180 8.4759 1.6952 312.646 312.646 

11.0019 1.1536 8.5807 1.7161 328.352 328.352 

13.0018 1.2875 8.6855 1.7371 344.722 344.722 

15.0016 1.4199 8.7903 1.7581 361.696 361.696 

17.0015 1.5506 8.8951 1.7790 379.204 379.204 

19.0013 1.6798 8.9999 1.8000 397.429 397.429 

21.0012 1.8076 9.1047 1.8209 416.211 416.211 

23.0010 1.9338 9.2096 1.8419 435.746 435.746 

25.0009 2.0587 9.3144 1.8629 455.961 455.961 

27.0008 2.1821 9.4192 1.8838 476.769 476.769 

29.0006 2.3042 9.5240 1.9048 498.387 498.387 

31.0005 2.4249 9.6288 1.9258 520.732 520.732 

33.0003 2.5443 9.7336 1.9467 543.707 543.707 

35.0001 2.6625 9.8384 1.9677 567.551 567.551 

37.0000 2.7794 9.9432 1.9886 592.051 592.051 
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Figure 4.7.  Area moment of inertia along axis-z. 

 

For a symmetric section of a cutting tool, the area moments of inertia around the x axis 

equates to the area moments of inertia around the y axis, but obviously, for an asymmetric 

section of a cutting tool, the area moment of inertia around the x axis and y axis are not 

equal to each other.   

In this work, the product area moments of inertia for any kind of fillet tapered end mills 

equates to zero, no matter how many cutting flutes, and no matter how shapes of cross-

section of cutter.   
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4.6.3 The Results on the Gash and the Neck 

In this section, the method for calculating area moment of inertia on the gash and the neck 

is elaborated.  To demonstrate this method better, this method is applied to a solid carbide 

flat end-mill.  The parameter values of the tool are listed in Table 4.3.  Thirty experiments 

are also conducted and the corresponding results are provided in Table 4.3.  It is evident 

that it is more accurate calculation for the area moment of inertia.  The results of the 

accurate area moment of inertia are plotted in Figure 4.8. 

 

Table 4.3.  The area moment of inertia on the gash and on the neck. 

Flute 
Parameters of 
cutting flute 

Area moment of inertia (mm4) 

Gash Flank Neck 

Ra. 

(mm) 

Flute 

No. 
1  

Deg. 
2  

Deg. 
3  

Deg. 
Z 

(mm) 
Ix Iy 

Z 

(mm) Ix Iy 
Z 

(mm) Ix Iy 

10 4 12 2 12 

1 1995 1837 6 3120 3120 31 3190 3190 
1.5 2791 2578 10 3120 3120 32 3438 3438 

2 2944 2734 12 3120 3120 33 3794 3794 
2.5 3028 2834 15 3120 3120 34 4258 4258 

3 3081 2924 17 3120 3120 35 4868 4868 
3.5 3057 2938 20 3120 3120 36 5606 5606 

4 3112 3040 22 3120 3120 37 6452 6452 

4.5 3091 3050 23 3120 3120 38 7232 7232 
5 3134 3129 25 3120 3120 39 7800 7800 

5.5 3116 3116 30 3120 3120 40 7854 7854 
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Figure 4.8.   Area moment of inertia on the gash and neck cross-section. 

 

 

 

4.6.4 Comparision between Two Different Methods   

 

In this research, two methods for calculating area moment of inertia on different cutter 

positions are proposed.  The calculation efficiency and accuracy of these two methods is 

shown in Table 4.4.   A circle with 10mm radius is used as reference to compare these two 

methods’ accuracy.  Results show that the special method is more efficient and accurate. 
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Table 4.4.  The calculation efficiency.  

Cutter 
 positions 

1st  

scalar 
2nd  

scalar 

Calculation 

steps 

Area moment 

of inertia of 
circle 

Area moment 

of inertia of 
methods  

Special 
 method on 

 Cutting edge 
103  102  105  

7854mm4 

7854mm4 

General 
 method on 

Gash or neck 
103  102  nX105 7800mm4 

where n is the number of intersections points from CAD software. 
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Chapter 5 Applications 

 

5.1 Introduction 

The cutting edges and the cutting flutes of an end-mill significantly affect cutter’s area 

moment of inertia; furthermore, they are also the most important factors to affect cutting 

force.  In order to find the relationship between different cutter geometry and area 

moment of inertia, the area moments of inertia of several cutting tools with the different 

flutes will be calculated and the results will be compared.  In the examples, the design 

parameters such as the rake, relief, clearance angles, and the number of flutes of the 

cutting tool are the variable.  In order to apply the proposed CAD model for simulation, the 

cutting simulation software, ThirdWave System, will be used to predict the cutting force.  

Third Wave Systems' analysis software is the ideal tool for designers in the metalworking 

industry.  With the software suite, the time and the money can be reduced during designing, 

testing, and delivering to market for new cutting tools.  Finally in this research, two 

simulations will be conducted, in each simulation, different cutters model with different 

parameters can be applied for predicting the cutting force. 
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5.2 Influence of the Rake Angle to Area Moment of Inertia 

In this section, some parameters will be considered as to how they affect the area moment 

of inertia.  For example, rake angle 
1  is taken into consideration.  In Table 5.1, based on 

the above CAD cutters’ models, the result of comparison is shown.  As the change of the 

rake angle, the area moment of inertia of the cutting tool changes too.  In Figs 5.1, the data 

from Table 5.1 is better demonstrated. 

 

 

Table 5.1. Comparison of the effect of the rake angle. 

Flute Parameters of cutting flute 
Area moment of 

inertia 

R. 
(mm) 

Flute 
no. 

r0 
(mm)  

lAB 
(mm) 

lDE 
(mm) 

lEF 
(mm) 

1  

deg. 
2   

deg. 
3   

deg. 
0   

deg. 

Ix 
(mm4) 

Iy 
(mm4) 

10 4 7 1.6 2.4 1.2 

2 

12 30 8 

3977.21 3977.21 

5 4020.71 4020.71 

8 4054.56 4054.56 

11 4096.77 4096.77 

14 4128.18 4128.18 

17 4165.20 4165.20 
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Figure 5.1.  The Effect of α1 for four cutting teeth. 

 

 
 

5.3 Cutting Force Analysis based on the Change of Rake Angle 

About the prediction of cutting force, Third Wave Systems can be applied.  Third Wave 

Systems is the simulation software for high speed machining processes.  It can provide 

many cutting parameters under some cutting conditions, such as cutting force, cutting 

temperature and stress and so on.  In Table 5.2, the geometry parameters of tools and work 

piece based on CAD model in this research are listed.  Table 5.3 the simulation parameters 

of Third Wave Systems are listed.  It is clear that, as the change of the rake angle, the 

maximum cutting force changes too.   
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Table 5.2.   The parameters of cutter and the geometry of workpiece. 

Tool geometry parameters  
Workpiece 
parameters 

Cutting radius 10mm Workpiece 
width 

1mm 
Core radius 7mm 

Cutting edges 4 
Workpiece 

height 
0.5mm Rake angle 5˚/11˚/17˚ 

Relief angle 12˚ 
Clearance angle 30˚ 

Workpiece 
length 

1mm Length of cutter 4mm/20mm 

Helix 30˚ 

 

Table 5.3.  The parameters of simulation. 

Machining parameters FEA parameters 

Tool material 
Carbide-
Grade-P 

Min. element 

edge length 
 (chip bulk) 

0.010305mm 

Workpiece 

material 
Ti-6Al-4V Min. element 

edge length 
 (cutter edge) 

0.00788mm 
Spindle speed  

(RPM) 
1273 

Feed per 
tooth 

(mm/tooth) 
0.03 Radius of  

refined region 
 (cutter edge) 

0.03897mm 
Radial width 

of cut (mm) 
2 

Angle of 
rotation 

10˚ 
Maximum 

element size 
0.5mm 

Milling option 
Side 

milling 
Minimum 

element size 
0.008mm 
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Figure 5.3.  The plot of the maximum cutting force curve at different rake angles. 

 

In Figure 5.3, the result from ThirdWave System is better demonstrated.  However, in CNC 

machining, if cutter’s rake angle is too big, cutter’s rigidity will come down.  Generally, rake 

angle of milling cutters is smaller than 20 degree.  So considering this situation, based on 

the simulation results, the cutter with 17 degree rake angle is better.  

 

5.4 Cutting Force Analysis based on the Change of Helical Angles 

Another cutting simulation is to analysis cutting force based on different helical angles of 

cutting edge.  In Table 5.4, the geometry parameters of tools and work piece based on CAD 

model in this research are listed.  The simulation parameters of Third Wave Systems are 

same with last simulation.   
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Table 5.4.   The parameters of cutter and the geometry of workpiece. 

Tool geometry parameters  
Workpiece 
parameters 

Cutting radius 10mm Workpiece 
width 

1mm 
Core radius 7mm 

Cutting edges 4 
Workpiece 

height 
0.5mm Rake angle 11˚ 

Relief angle 12˚ 
Clearance angle 35˚/40˚/45˚ 

Workpiece 
length 

1mm Length of cutter 4mm/20mm 

Helix 30˚ 

 

 

 

Figure 5.4.  The plot of the maximum cutting force curve at different helical angles. 

In Figure 5.4, the result from ThirdWave System is better demonstrated.  It is clear that, as 

the change of the helical angles, the maximum cutting force changes too. During CNC 

machining, if the helical angle is too big, it is difficult to move out chips .  So considering 
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these situations, based on the simulation results, for different cutting style and different 

workpiece material, we can find what geometry is better for cutting tools.  According to this 

simulation, the cutter with 40 degree helical angle is better. 
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Chapter 6 Conclusions and Future Research 

 

6.1 Conclusions 

In this work, a parametric modeling of the carbide end mills has been constructed which can 

be automatically and efficiently built 3-D solid model for CAD model, and an accurate 

approach to compute the area moments of inertia of the toroidal tapered end mills has also 

been derived.  More specifically, the research work includes: (1) establishment of a free-

form mathematical model of a helix curve cutting edge, (2) establishment of a free-form 

mathematical model of a cutting flute, and (3) calculation of the area moment of inertia of 

the cutting tool.  The purpose of building the free-form mathematical model of the cutting 

tool is that, in all the current CAD/CAM software, all solid models are represented by the 

free-form curves and the surfaces. This makes: (1) the prediction of machined error and 

deflection more accurate, (2) when simulating the machined surface in CAM software, the 

displayed machined surface is accurate enough, and (3) it is easier to control the geometry 

of CAD model. 

The data tables and figures are shown to clarify the difference of the area moment of 

inertia of the real design models of the cutting tool.  And, some other parameters of the 

cutting flutes are also listed.  This work can be used, together with an existing cutting force 

calculation method, to accurately predict cutter deflections during milling in order to 
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compensate them in CNC tool paths.  It can also provide more precise 3-D solid models of 

end-mills for machining simulation by using finite element analysis. 

 

6.2 Future Research  

The following topics are suggested for a future work to expand the present research work:  

 Using the built mathematic model to predict cutting force 

In my current thesis, the mathematical model of cutting tool is built, which can be used in 

the visual machining and cutting force prediction.  

 Using the built mathematic model to predict analyze of the stress of cutting tool  

 The CAD model can be applied into CAE software 

 The area moment of inertia can be applied into CAE software 

In current trend software, the area moment of inertia is calculated by approximating the 

cutting tool as a cantilever.  It is hoped this numerical method can be applied in the 

commercial software to predict the machined error and deflection.  
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