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ABSTRACT 

The mathematical theories for linear systems provide a unified framework for 

understanding all possible linear system behaviors but no correspondingly general 

theoretical ones exist for treating non-linear problems. Due to the inherent nonlinearities 

of almost physical systems, the subject of nonlinear control is an important area of 

automatic control. Among many methods to deal with a nonlinear system, the most 

commonly used one is to linearize it which allows taking advantage of mature linear 

system control techniques to control the nonlinear systems approximately. 

This thesis introduces a wavelet-based linearization method to estimate the nonlinear 

system response based on the traditional equivalent linearization technique. The 

mechanism by which the signal is decomposed and reconstructed using the wavelet 

transform is investigated. The properties and characteristics of some famous harmonic 

wavelet transforms are analyzed. Since the wavelet analysis can capture temporal 

variations in the energy and frequency content, a nonlinear system can be approximated 

as a time dependent linear system by combining the wavelet analysis technique with 

well-known traditional equivalent linearization method. The nonlinear systems including 

Duffing oscillator and bilinear hysteresis system are used as examples to verify the 

effectiveness of the proposed wavelet-based linearization method.  Results from this 

study demonstrate that the wavelet linearization approach is more accurate and promising 

tool compared with traditional equivalent linearization methods in nonlinear control 

systems in the real world. 
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1 INTRODUCTION 

1.1 Motivation  

In engineering applications, the use of a linear model for the system under consideration 

leads to fairly simple and often useful results when the system behaves linearly and 

excitation is stationary. The evaluation of the system response is not difficult. However, 

no real system is exactly linear. In mechanical and structural systems nonlinearities can 

arise in various forms and usually becomes progressively more significant as the 

amplitude of motion increases to excite nonlinear behavior requiring techniques which go 

beyond linear approach. The mathematical theories for linear systems provide a unified 

framework for understanding all possible linear system behaviors but no correspondingly 

general theoretical ones exist for treating non-linear problems. Due to the inherent 

nonlinearities of almost physical systems, the subject of nonlinear control is an important 

area of automatic control. Among many methods to deal with a nonlinear system, the 

most commonly used one is to linearize it which allows taking advantage of mature linear 

system control techniques to control the nonlinear systems approximately. 

This dissertation introduces a wavelet-based method to linearize nonlinear systems to its 

equivalent linearization systems described by their wavelet coefficients. Time-frequency 

localization is the main motivation for using wavelet theory to approximate the nonlinear 
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response as represented in this thesis. 

In this dissertation, the harmonic wavelet function is chosen as the basis function in the 

linearization procedure due to its explicit form in mathematical expression and its 

non-overlapping characteristic in the frequency domain which can be interchanged from 

the scale to frequency band. This thesis also demonstrates that the harmonic wavelet 

function is used for its computational simplicity where there is a simple algorithm for 

harmonic wavelet analysis which uses the Fast Fourier Transform (FFT) and which is 

generally faster than the dilation wavelet analysis algorithm. The mechanism by which 

the signal is decomposed and reconstructed using the wavelet transform is investigated. 

The properties and characteristics of some famous harmonic wavelet transforms are 

analyzed. 

In order to investigate the validity of this proposed method, the Duffing oscillator system 

and the bilinear hysteresis system are used as the examples to illustrate that the 

wavelet-based linearization method is a quite promising tools to find the equivalent linear 

parameters of the nonlinear systems in terms of time-frequency localization.   

1.2 Objectives of the thesis 

In this research, the main goal is to develop wavelet-based linearization method to 

linearize nonlinear dynamic systems. The objectives are listed as follows: 
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 To investigate the mechanism by which the signal is decomposed and 

reconstructed using the wavelet transform and to analyze the properties and 

characteristics of some famous harmonic wavelet transforms,  

 To implement a multi-frequency linearization and wavelet-based linearization 

methods for Duffing oscillator system when the system is subject to multiple 

harmonic inputs, 

 To develop a wavelet-based linearization method for the nonlinear system- 

bilinear hysteresis system and to develop numerical algorithm to find the 

equivalent linear parameters.  

1.3 Thesis Outline 

The thesis is organized as follows. Chapter 1 introduces the motivation, objective and  

contributions of the thesis. The thesis outline is given as well.  Chapter 2 reviews time 

frequency signal analysis and linearization technique as the foundation of this dissertation. 

Chapter 3 focuses on the wavelet transform including its mechanism by which a signal is 

decomposed and reconstructed using wavelet basis function, and how to obtain the 

wavelet function based on dilation equation method. Also some famous wavelet families 

are displayed as some examples to illustrate the signal decomposition at different levels 

and time locations. Finally, the harmonic wavelets and their significant properties are 
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discussed. As the most important features, these characteristics play very critical roles in 

the wavelet-based linearization method.   

Chapter 4 gives the detailed discussion about the statistical linearization procedure for a 

nonlinear system including the traditional equivalent method and the multi-frequency 

linearization. The linearization methods are applied to Duffing oscillator system. The 

wavelet-based linearization approach is implemented. The effectiveness of the proposed 

method is verified by numerical method. 

Chapter 5 addresses the wavelet-based linearization method with application in the 

bilinear hysteresis system and the comparison with statistical linearization method. The 

simulation results demonstrate that the wavelet-based linearization is a promising and 

applicable technique in linearization of bilinear hysteresis systems.       

Chapter 6 concludes the thesis by reviewing the results. In addition, it points out the 

future research work. 
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2  LITERATURE REVIEW 

In this chapter, we will review the methods related to the time-frequency analysis of 

signal processing. The properties and limitations of each method will be given.  Also, 

various kinds of linearization techniques in different engineering areas will be reviewed.   

2.1 Time –Frequency Analysis 

The organization of this section is as follows: Section 2.1.1 starts with Fourier transform 

and its properties as the basic of signal analysis and then extends to Time-Frequency 

analysis. In Section 2.1.2，  the short- time Fourier transform (STFT) and the 

Wigner-Ville（WV） transform are emphasized and their properties and limitations are 

discussed. Next, Section 2.1.3 introduces the concept of wavelets transform, its 

advantages and definitions as the foundation of this thesis. 

2.1.1 Fourier Transform 

Most engineers are familiar with the idea of frequency analysis by which a periodic 

function can be broken down into its harmonic components. And such a periodic function 

may be synthesized by adding together its harmonic components, namely, the Fourier 

series of function f(t) defined on the interval  pp,  is given by:[27] 
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( ) ∑
∞

1=

0 sin+cos+2=
n

nn tp
nbtp

naatf                    (2.1) 

where: 

( )dttfpa
p

p
∫0

1= (1.2)                                          (2.2) 

( ) tdtp
ntfpa

p

p
n cos1= ∫                                      (2.3) 

( ) tdtp
ntfpb

p

p
n sin1= ∫                                       (2.4) 

In order to obtain a representation for a non-periodic function defined for all real t, it 

seems desirable to take the limits as ∞→p , t leads to the formulation of the famous 

Fourier integral theorem. Mathematically, this is continuous version of the completeness 

property of Fourier series. Physically, form (2.1) can be resolved into an infinite number 

of harmonic components with continuously varying frequency (



2

), and 

amplitude   


detf i
2

1 , called Fourier transform whereas the ordinary Fourier 

series represents a resolution of a given function into an infinite but discrete set of 

harmonic components. 

The Fourier transform originated from the Fourier integral theorem is believed to be one 

of the most remarkable discoveries in the mathematical sciences and engineering 

applications including the analysis of stationary signals and real-time signal processing 

which make an effective use of the Fourier transform in time and frequency domains. The 

success of Fourier transform is due to the fact that under some conditions, the function f(t) 
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can be reconstructed by the Fourier inversion formula that defines: 

         titi efdfefFtf 





 


   ,

2
1

2
11                (2.5) 

Thus, the Fourier transform theory has been very useful for analyzing harmonic signal. 

On the other hand, in spite of some remarkable successes, Fourier transform analysis 

seems to be inadequate for studying non-stationary signal that the spectral content of the 

signal changes with time [51]. First, the Fourier transform of a signal does not contain 

any local information in the sense that reflects the change of wave number with space. 

Second, the Fourier transform method can be used to investigate problems either in time 

domain or in frequency domain, but not simultaneously in both domains. There are 

probably the major weaknesses of the Fourier transform analysis. It is necessary to define 

a single transform of time and frequency that can be used to describe the energy density 

of a signal simultaneously in both time and frequency domains. Such a single transform 

would give complete time and frequency information of signal. 

2.1.2 Short Time Fourier Transform 

It is well-known that the Fourier transform analysis is a very effective tool for studying 

stationary signal. However, signals are, in general, non-stationary, and hence cannot be 

analyzed completely by Fourier transform. Therefore, a complete analysis of 

non-stationary signal requires both time-frequency. 
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In order to get information about local frequency spectrum, a lot of research work have 

been carried out to cut the signal to segments with a short data windows centered at time 

t,[70] and spectral coefficients are computed for this short length of data. The window is 

then moved to a new position and the calculation is repeated. This transform is called the 

short time Fourier transform (STFT). Based on such a procedure, Dennis Gabor [24] first 

introduced the windowed Fourier transform (the Gabor transform) to measure localized 

frequency component of signal and used a Gaussian distribution function as window 

function. The main idea was to use a time-localization window function  btga   for 

extracting local information from the Fourier transform of a signal where the parameter a 

measures the width of the window and the parameter b is used to translate the window in 

order to cover the whole time domain. The property of the Gabor transform provides the 

local aspect of the Fourier with time resolution equal to the size of the window.[24] 

       tgigt exp,                                    (2.6)                                                  

As the window function by translating, the Gabor transform of f with the respect to g, is 

denoted by  

       
  ,,,

~
t

i

g gfdetgftf  


                         (2.7) 

And the inversion formula for the Gabor transform is given by Equation (2.6). 

The Gabor transform  ,
~

tfg  of a given signal f(t) depends on both time and frequency, 
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thus the Gabor transform completely describes the spectral signal varying with time and 

changes an one dimensional signal into a complex value function of two real parameters: 

time and frequency in the two dimensional time-frequency space. 

The short time Fourier Transform (STFT) remains the time information but has strong 

time-frequency resolution limitations. The problem with STFT can be demonstrated by 

Heisenberg`s Uncertainty Principle [38], [71]. According to this principle, it is impossible 

to know the exact time -frequency representation of a signal, but one can obtain the 

frequency bands existing in a time interval which is a resolution problem and once the 

window is chosen, the frequency and time resolution are fixed for all frequencies and all 

times.[77] 

 

Figure 2. 1 Time-frequency plane partition by using STFT [ 69] 

2.1.3 Wigner-Ville Distribution 

Wigner-Ville Distribution (WVD) is another popular tool for time-frequency analysis. It 

can also be thought of as a short time Fourier transform (STFT) where windowing 
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function is time-scaled, time-reversed copy of the original signal. It is the Fourier 

transform of the signal’s autocorrelation function with respect to the delay variable. It has 

much better resolution than STFT.[72] 

In 1948, Ville [65] proposed the Wigner Distribution of a function or a signal  tf  in the 

form: 

  
 

 detftfW iw

tf






















  22

,
                               (2.8) 

For analysis of the time-frequency structure of non-stationary signal, where  tf  is the 

complex conjugate of  tf , this time-frequency representation of a signal  tf  is known 

as the Wigner-Ville Distribution [68] which is one of the fundamental methods which 

have been developed over the years for the time- frequency signal analysis. In the view of 

its remarkable mathematical structure and properties, the Wigner-Ville Distribution is 

now well-recognized as an effective method for the time-frequency analysis of 

non-stationary signals and non-stationary random process based on the generalizing 

relationship between the power spectrum and autocorrelation function. 

Suppose that it is possible to calculate an instantaneous correlation function: 

  


























22
,


 txtxEtRx                                      (2.9) 

 At time t, the operator E denotes the average of a statistical ensemble which is assumed 
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to be available for the analysis. The Fourier transform of  tRx ,  gives: 

      


 ditRS xx  



exp,

2

1
                               (2.10) 

 xS  is called the spectral density of the x  process and is a function of angular 

frequency . It provides information on how the mean square of the ensemble is 

distributed over frequency and time. But in practice, it is never possible to compute 

ensemble average correlation function of  tRx , . Instead, the ensemble averaging 

operation is replaced by: 

    





 ditxtxtx 

















 




exp

2

22

1
, *                      (2.11) 

 tx ,  is called the Wigner-Ville Distribution of x  and * denotes complex conjugate. 

From theoretical and application points of view, the Wigner-Ville Distribution [53] plays 

a central role and has several important structures and properties. 

First, it provides a high-resolution representation in time and in frequency for some 

non-stationary signals. Second, it has the special property of satisfying the time and 

frequency analysis in terms of the instantaneous power in time and energy spectrum in 

frequency. In spite of these desired features, its disadvantage is that although the integral 

is center at time t , it covers an infinite range of   and thus depends on the 

characteristic of x  far away from the local t. Therefore, it does not describe the truly 

local behavior of x  at time t , this is the fundamental uncertainty principle since 
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time-dependent spectral high resolution cannot be obtained simultaneously in time and 

frequency. Also it often possesses severe cross-terms or interference terms between 

different time-frequency regions leading to undesirable properties. 

2.1.4 Wavelets Transform 

In order to overcome some of the inherent weaknesses of the short time Fourier transform 

and the Wigner-Ville Distribution, there has been considerable recent interest in looking 

for a general time-frequency distribution analysis as a mathematical method for 

time-frequency signal. 

Wavelet Transform as the new concept can be viewed as a synthesis of various ideas 

originating from different disciplines including mathematic, physics and engineering [27]. 

The pioneer research work in wavelet transform can be found in [28], [41], [19]. Morlet 

(1984)[28] first introduced the idea of wavelet as a family of function constructed from 

translation and dilation of a single function called ―mother wavelet‖   t  defined by: 

 
 








 


a

bt

a
tba  1

,
;  a, b∈R, a≠0                         (2.12) 

where a  is called a scaling parameter which measures the degree of compression or 

scale, and b  is a translation parameter which determines the time location of the 

wavelet.  
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If |a|<1, the wavelet (2.12) is the compressed version (smaller support in time domain) of 

mother wavelet and corresponds mainly to higher frequencies. On the other hand, where 

|a|>1,  tba,  has a bigger time width than  t  and corresponds to lower frequencies. 

Thus wavelets have time-width adapted to their frequencies. This is the main reason for 

the success of wavelet in signal processing and time-frequency signal analysis. 

It may be noted that the resolution of wavelets at different scales varies in time and 

frequency domains as governed by the Heisenberg uncertainty principle[71][38], that is, 

at large scale, the resolution is coarse in time domain and fine in the frequency domain. 

As the scale a decrease, the resolution in time domain becomes fine whereas the 

resolution in frequency domain becomes coarse. 

 

Figure 2. 2 Partition of the time-scale plane due to the wavelet transform [ 69] 

 

A more extensive study has been carried out by Grossman, [29] and the wavelet 

transform of function  tf  is defined by: 
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        dtttffbafW baba ,,,,  




                               (2.13) 

where  tba,  plays the same role as the kernel  tiexp  in the Fourier transform. 

However, unlike the Fourier transform, the continuous wavelet transform is not a single 

transform, but any transform obtained in this way. The inverse wavelet transform can be 

defined so that  tf  can be reconstructed by means of the formula: 

     dadb
a

bt
bafW

aC
tf 







 
  













,
11

2
                           (2.14)  

where  parameter C  satisfies the so-called admissibility condition; 

 





 



 dC

2
ˆ

2  < ∞                                      (2.15)  

where parameter  ̂  is the Fourier transform of the mother wavelet  t . 

In practical applications involving fast numerical algorithms, the continuous wavelet can 

be computed at discrete grid points. To do this, a general function  tba,  can be defined 

by replacing a  with ma0   1,00 a , b  with  0000 banb m , where  nm,  are integers 

and making  

   00
2

0, nbtaat m
m

nm  


                                       (2.16) 

 The discrete wavelet transform of  tf  is defined as the  

        dtttffnmfW nmnm 




 ,,,,                              (2.17)  
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If the wavelets form an orthogonal basis and complete,  tf  can be reconstructed from 

its discrete wavelet transform     nmfnmf ,,,   by means of the formula 

  nmfW ,  

     tftf nmnm ,,,                                        (2.18)  

provided that wavelets form an orthogonal basis. 

For some very special choices of   and 00 , ba , the nm,  constitute an orthogonal basis 

for L®. In fact, if 20 a  and 10 b , then there exists a function   with good 

time-frequency localization properties:  

   ntt m
m

nm  


22 2
,                                          (2.19)  

It forms an orthogonal basis. These different orthogonal basis functions have been 

founded to be very useful in application to speech processing [73], image processing [76], 

computer vision and so on [66]. 

Generally speaking, comparing with the short time Fourier transform and the 

Wigner-Ville Distribution, wavelet transform has more advantages in time-frequency 

signal analysis due to its localization in time and frequency domains and flexible 

resolution to a certain extent. Meanwhile, wavelet allow complex information such as 

music, speech, images and patterns to be decomposed into elementary forms at different 

positions and scales that are generated from a single function called ―mother wavelet‖ by 
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translation and dilation operations. This information is subsequently reconstructed with 

higher precision. Table 2.1 summarizes the comparison of four methods in signal 

analysis.  
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Table 2.1 Comparison of Four Methods in Signal Analysis 

  
Signal 

Analysis 
Basis Function     Dimension 

        

Resolution 

Fourier 
Transform(FT) 

stationary 
signal 

triangle 
function 

only one, either 
in the time 
domain or in the 
frequency 
domains 

Global function 
without any local 
information in 
time and frequency 
domain. 

Short time 
Fourier 
transform(STF
T) 

non-stationary 
signal 

time 
-localization 
window 
function(a 
Gaussian 
distribution 
function) 

two, both time 
and frequency 
domains 

Local information 
in time and 
frequency but 
their resolutions 
are fixed and no 
any exact amount 
because of 
uncertainty 
principle.    

Wiger-Ville 
Distribution(
WVD) 

non-stationary 
signal 

autocorrelatio
n function 

two, both time 
and frequency 
domaisn 

Better than STFT 
but similar with 
STFT in the 
uncertainty 
principle 

 Wavelet 
Transform(WV) 

non-stationary 
signal 

wavelet 
functions 
which are 
constructed 
from 
translation 
and dilation 
mother wavelet 

two, both time 
and frequency 
domains 

More flexible 
resolution and 
location in time 
and frequency due 
to the wavelets 
have time-width 
adapted to their 
frequency  
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2.2 Linearization Techniques 

In many practical applications, if one wants to predict the system performance accurately, 

the system nonlinearity must be taken into account.  

As it is mentioned previously, the importance of studying nonlinear systems in automatic 

control area lies in: 

 No model of real system is truly linear even if the operating range of a control 

system is small to study its linear approximation by a linearized method. 

 Nonlinear equations cannot be solved analytically and the typical analysis tools 

like Laplace and Fourier transform are not suitable for analyzing the nonlinear 

systems. As a result, nonlinear systems may demonstrate complex effects, such as 

limit cycles, bifurcations and even chaos which cannot be anticipated. 

 In order to design an accurate and desirable controller to meet specified control 

performance, we need some powerful techniques to analyze such system’s 

behaviour which must be predicted and properly compensated for. 

Since the linear control is a mature subject with a plenty of powerful methods and great 

achievements in the industrial and engineering applications, it is natural to adopt linear 

control techniques to analyze nonlinear problems. 

In the following sections, some typical linearization methods are introduced and, first the 
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Lyapunov’s linearization is reviewed in Section 2.2.1. Section 2.2.2 introduces the 

method of feedback linearization. The describing function method is discussed in the 

Section 2.2.3 and the statistical linearization method is introduced in the last section.  

 

2.2.1 Lyapunov’s Linearization 

The main idea of the Lyapunov’s linearization technique [30] is to approximate a 

nonlinear system by a linear one that is around the equilibrium point, and do hope the 

behaviour of the solutions of the linear system will be the same as the nonlinear one.  

We study Lyapunov linearization for autonomous system, and for non-autonomous 

systems that the parameters vary with time, we extend the research of the linearization 

method for non-autonomous nonlinear system. 

Consider an autonomous system of second order differential equation has the form: 

 yxf
dt

dx
,  

 yxg
dt

dy
,                                        (2.20) 

 The constant solution to this system is called equilibrium point that satisfies: 

  0, 00 yxf ,   0, 00 yxg ,                                     (2.21) 

If the system is linear with constant coefficients, we can obtain the solution of this system. 

However,  for the nonlinear system, no method is developed for deriving a general 
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solution to this equation. 

To deal with a nonlinear problem, we must use an approximation method which is called 

linearization approach. As  00 , yx  is an equilibrium point, we try to find the linear 

system when  yx,  is close to  00 , yx , that is, to approximate  yxf ,  and  yxg ,  

when  yx,  is close to  00 , yx . This is to calculate the functions  yxf ,  and  yxg ,  

by the Taylor expansion approximation at a point  00 , yx . 

         00000000 ,,,, yyyx
y

f
xxyx

x

f
yxfyxf 









  

         00000000 ,,,, yyyx
y

g
xxyx

x

g
yxgyxg 









          (2.22) 

By replacing  yxf ,  and  yxg ,  in (2.20) with their linear approximations 

near  00 , yx , we obtain: 

       00000000 ,,, yyyx
y

f
xxyx

x

f
yxf

dt

dx










  

       00000000 ,,, yyyx
y

g
xxyx

x

g
yxg

dt

dy










             (2.23) 

Since  00 , yx  is an equilibrium point, 

     0,, 0000  yxgyxf . 

     000000 ,, yyyx
y

f
xxyx

x

f

dt

dx










  
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     000000 ,, yyyx
y

g
xxyx

x

g

dt

dy










                    (2.24) 

This is a linear system and its coefficients matrix is: 

   

   0000

0000

,,

,,

yx
y

g
yx

x

g

yx
y

f
yx

x

f

















                                        (2.25) 

This matrix is called Jacobian matrix of system at the point  00 , yx , and the eigenvalues 

of the Jacobian matrix tell the information about the stability of the linear system and that 

of original nonlinear system. 

 If the eigenvalues are negative or complex with negative real part, then the 

equilibrium point is stable, i. e., all solutions are convergent at the equilibrium 

point or if the eigenvalues are complex, then the solution will spiral around the 

equilibrium point. Hence, the linearized system is stable and so is the original 

nonlinear system. 

 If the eigenvalues are positive or complex with positive real part, then the 

equilibrium point is unstable, i.e., all solutions will move away from the 

equilibrium point or if eigenvalues are complex, then the solutions will spiral 

away from equilibrium point. The linearized system is unstable and so is the 

nonlinear one.  

 If the eigenvalues are real number with different sign (one positive and one 
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negative), then the equilibrium point is a saddle. Both of  two systems are 

unstable.  

 If the eigenvalues are complex with real part equal to zero, then the equilibrium 

point is center point, and all solutions form ellipses around the equilibrium point 

in center or at least, there is one on the imaginary axis and another is complex 

with negative part.  The equilibrium point may be stable or unstable and hence 

one cannot draw any conclusion about the stability of the nonlinear system.  

Note that the stability characteristics of linear systems are determined by their 

equilibrium point, therefore, if the nonlinear system is linearized, the local behaviour of 

this nonlinear system can be approximated by its linear replacing one. 

The Lyapunov linearization method for non-autonomous nonlinear system involves more 

conditions and the powerful autonomous theorem does not apply to non-autonomous 

nonlinear system. However, there still exist some rules about instability for 

non-autonomous nonlinear system from that of its linear approximation as long as its 

linear approximation is time invariant.  

In summary, Lyapunov’s linearization method both for autonomous and non-autonomous 

nonlinear system provide the linearization method to analyze the nonlinear system 

stability issue which is critical and essential in nonlinear control system design. 
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2.2.2 Feedback Linearization Method 

Feedback linearization is a common approach [26] used in nonlinear control systems. The 

idea of this method is to transform original system model into equivalent linear one 

which is changed to the state variables and a suitable input instead. 

This method is different from the Jacobian linearization mentioned previously, which is 

approximated by its linearized system, actually, feedback linearization method transforms 

the exact state variables in some algebraic forms so that the nonlinear system is changed 

into a linear one and linear control techniques can be applied. 

As one of the most important control techniques, the feedback linearization is applied 

successfully in the control of high performance aircraft, industrial robots and so on. 

This part provides a procedure of feedback linearization including the basic concepts of 

this method and mathematical tools to transform nonlinear components into linear 

systems. 

First, the basic concept of feedback linearization is to cancel the nonlinearities in a 

nonlinear system so that the closed-loop dynamics is in a linear form [37]. 

The nonlinear system has the forms: 
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     uXbXfx n                                     (2.26) 

where u is the scalar control input, x is the scalar output, and   TnxxxX 1,...,,   is the 

state vector, and  Xf  and  Xb  are nonlinear function of the states. The Equation 

(2.26) can be written as the form: 

    









































uXbXf

x

x

x

x

x

dt

d

n

n

n

......

2

1

1

                              (2.27) 

Thus the system is expressed in the controllability canonical form, and the input u is 

designed as: 

 fv
b

u 
1

 0b ,                                  (2.28) 

We cancel the nonlinearities and obtain the simple input –output relationship in the form 

that is: 

  vx n  ,                                        (2.29) 

We can design the control law that is: 

 1

110 ... 

 n

n xcxcxcv                               (2.30) 

With the parameters ic  chosen so that the polynomial 0

1

1 ... cpcp n

n

n  

  has all its 

roots strictly in the left-half complex plane, the nonlinear system leads to the 

exponentially stable dynamics. 

    0... 0

1

1  

 xcxcx n

n

n                              (2.31) 
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If the control of the tracking problem is considered, the control law can be: 

   1

110 ... 

 n

n

n

d ecececxv                            (2.32) 

where      txtxte d ,  txd  is a desired output. 

Second, some mathematical tool related to feedback linearization technique is introduced. 

Lie derivatives: 

Consider nonlinear system: 

   uxgxfx   

 xhy                                           (2.33) 

where nRx  is the state vector, PRu  is the vector of inputs, and mRy  is the 

vector of outputs. 

     
 

 
 uxg

dx

xdh
xf

dx

xdh
x

dx

xdh

dt

dx

dx

xdh
y               (2.34) 

Defining the lie derivative  xh  along  xf  as 

 
 

 xf
dx

xdh
xhL f  ,                                (2.35) 

And similarly, the lie derivative  xh  along  xg  as 

 
 

 xg
dx

xdh
xhLg                                   (2.36) 

Thus,    uxhLxhLy gf                                    (2.37) 

The goal of the feedback linearization is to find a direct and simple relationship between 

the system output y and the control input u by differentiating the output y until the input u 
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is expressed in the same equation. Thus we obtain: 

 

 

 

   

 

 

 





























































 xhL

xhL

xh

y

y

y

xz

xz

xz

xTz

n

f

f

n

n

11

2

1

..........


                    (2.38) 

 

   
   

    





























 uxhLLxhLz

xzxhLz

xzxhLz

n

g

n

fn

f

f

f

1

3

2

2

21

...







                      (2.39) 

We assumed the relative degree of system is n, the lie derivative of the form  xhLL i

fg  

for i=1…n-2 are all zeros. And the original X coordinate is transformed into the Z 

coordinate so that the new linearized system with z variables is obtained as well as the 

relationship between input and output. Therefore, the control law is that: 

( )
( )( )vxhL

xhLL
u n

fn

fg

+
1

= 1                            (2.40) 

Also the input-output relationship from v  to yz 1  is that  

vz

zz

zz

n 











...

32

21

                                         (2.41) 

Choosing the suitable C  in Czv   with standard linear system methodology, we get 

the linear system with the linearizing state z and linearizing control law v.  
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In summary, feedback linearization method is based on the idea of transforming nonlinear 

system into a linear one by using state feedback with input-state linearization or 

input-output linearization method which can be used for both stabilization and tracking 

control problems and has been applied in many practical nonlinear controlling systems to 

achieve successful results. However, this linearization method needs the exact nonlinear 

function in the system dynamics which is usually difficult to obtain in the real practice. In 

addition, the controller design based on the linearized model will cause infinity control 

action if  xhLL n

fg

1
 in (2.40) becomes very small.  

 

2.2.3 Describing Function Method 

Basically, the describing function method is the statistical extension of [40] linearization 

technique in the electrical engineering literature which is an approximation procedure for 

analyzing certain nonlinear control problems that were originally developed by [12] and 

used as a tool in control engineering. Subsequent developments of this method in this 

field have described in [56] and [25].   

The describing function method is an approximation procedure for analyzing certain 

nonlinear control problems. It is based on replacing each nonlinear element with a 

quasi-linear descriptor which is the approximation of nonlinear system by a linear 
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transfer function whose gain is determined by the input amplitude while a true linear 

system transfer function does not depend on that amplitude. And describing function can 

also be treated as an extended version of the frequency response method to predict 

nonlinear behavior, especially, for limit cycle prediction in nonlinear systems. The 

describing function is a powerful tool to discover the existence of limit cycles and 

determine their stability. [62] 

Before discussing the property of describing function, some assumptions must be given 

to satisfy some conditions: 

 There is only a single nonlinear component. 

 The nonlinear component is the time invariant. 

 Corresponding to a sinusoidal input  tx sin , only the fundamental component 

 ty1  in the output  ty  has been considered. This assumption implies that 

higher frequency harmonics can be neglected, and the approximated linear one 

has low-pass properties. 

 The nonlinearity is odd that means the relationship with input and output of 

nonlinear element is symmetric about origin so that the static term in the Fourier 

expansion of output can be ignored. 
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A. Basic Definitions 

Consider a sinusoidal input  tAx sin to nonlinear element. 

where A  is amplitude and   is frequency, as show in Figure 2.3. 

 

Figure 2. 3 A nonlinear system 

The output y(t) is always a periodic function that is extended by Fourier series expressed 

as: 

      





1

0 sincos
2 n

nn tnbtna
a

ty                             (2.42) 

where the Fourier coefficients nn ba , are determined by 

   tdtya 





1

0                                            (2.43) 

     tdtntyan 





cos

1
                                    (2.44) 

     tdtntybn 





sin

1
                                     (2.45) 

Due to the fourth assumption implying that 00 a ,  the third assumption implies that 

only the fundamental component  ty1  is considered: 

           tMtbtatyty sinsincos 111                  (2.46) 
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where    2

1

2

1, baAM   and   .arctan,
1

1 







b

a
A   

And also this output can be written as : 

          tjtj ejabMety 111 . 

Since the concept of frequency response function is the frequency ratio of the sinusoidal 

input and the sinusoidal output of system, we define the describing function of nonlinear 

element to be complex ratio of the fundamental component of nonlinear element by input 

sinusoidal, that is:  

 
 

 11

1
, jab

A
e

A

M

Ae

Me
AN j

tj

tj










                    (2.47) 

Thus, the describing function [64] can be treated as the approximation of linear one with 

a frequency response function  ,AN , which is considered as an extension of the 

concept of frequency response function. However, the describing function of nonlinear 

element differs from linear system frequency response function in that it depends on the 

input amplitude A . 

B. Describing Function Analysis Nonlinear System 

As we know how to get the describing function for the nonlinear element, we use this 

tool to predict the limit cycles that is based on the linear approach of the famous Nyquist 

criterion in control system to investigate the stability. 

 Consider a self-sustained oscillation of amplitude A  and frequency  in the system of 
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Figure 2.4. 

 

Figure 2. 4 A linearization system 

The variables in the loop must satisfy the following relations: 

 

 wjGy

xANw

yx











,  

Therefore,     yANjGy   , . And 0y .                      (2.48) 

So,     01,  ANjG  and it can be written as: 

   
,

1
AN

jG                                             (2.49) 

The amplitude A  and frequency  of the limit cycles must satisfy (2.49), if the above 

equation has no solution and the nonlinear system has no limit cycles.  

However, it is difficult to get the solution by this analytical approach, especially, for 

higher order system, thus the graphical way is usually used. The idea is to plot both sides 

of (2.49) in complex plane and find the intersection points of two curves. And also 

according to Nyquist criterion, we can determine the stability of limit cycles  as shown 

in Figure 2.5. 
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Figure 2. 5 Detection of limit cycle 

Generally speaking, the describing function method which is an extension of the 

frequency response method of linear control can be used as the approximate analysis to 

predict some important characteristics of nonlinear system including systems with hard 

nonlinearities such as, saturation, backlash and hysteresis [1]. Particularly, it is the main 

tool to predict the limit cycles in the nonlinear system in the graphical nature of 

frequency domain [52].    

2.2.4 Statistical Linearization Method 

Among those various possible approaches which are available, the statistical method or 

equivalent linearization method has proven to be very useful approximate technique in 

structure dynamics and earthquake engineering [6].  

Methods of predicting the random vibration response of mechanical and structural system 
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to random external forces has grown rapidly. Since the excitation and response of such 

system are always non-periodic, highly irregular and no repeatability, linear method is not 

suitable to apply, and new techniques are required. 

However, in engineering application, because the linear system is fairly simple and there 

a lot of resources to obtain the useful and desired solution, the systems can be modeled in 

terms of the linear differential equations of motion. Although no real system is exactly 

linear, in mechanical and structural systems, non-linearity can arise in various forms and 

usually become more significant as the amplitude of vibration increase. In order to 

predict the response of this kind of system or to get an approximation solution of 

non-linear equation, the statistical method or equivalent linearization method is applied to 

estimate the accurate equivalent linear parameters.  

The statistical equivalent linearization method is based on the idea that the non-linear 

system is replaced by an equivalent linear equation by minimizing the difference between 

the two systems in some appropriate sense. This technique has been used for 

deterministic non-linear problems for many years, for instance, referred to as ―describing 

function‖ method [40], and the adaptation of approach to deal with stochastic problem 

was first developed by [12] to use as a tool in control engineering And subsequent 

developments of this field have been described by[56],[25],[57]. This method known as 
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statistical linearization or equivalent linearization was proposed by [14], [15]as a way to 

solve nonlinear vibration problems, furthermore, the statistical method is applied and 

served as the fundamental concept[58],[59] to propose the novel wavelet-based 

linearization method.[8],[9] 

In summary, this part reviews some typical linearization methods and their applications in 

the nonlinear system control design and analysis.  Comparing with their properties and 

limits, it provides fundamental background knowledge for the proposed linearization 

method that is based on the statistical linearization approach. The details about this 

method will be discussed in the Chapter 4 & 5 by using some typical nonlinear systems 

as the examples. 

 

2.3 Conclusion 

In this chapter, comprehensive review and introduction on time-frequency analysis of 

signal processing and linearization techniques are given. The properties and limitations of 

each method have been analyzed.  
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3 WAVELET TRANSFORM  

This chapter presents the mechanism by which the signal is decomposed and 

reconstructed using the wavelet transform and introduces some famous wavelet basis 

functions. The properties and characteristics of the harmonic wavelet transform are 

discussed. The discrete harmonic wavelet transform will be also described.  

 

3.1 Signal Decomposition and Reconstruction Using the Wavelets 

 

The discrete wavelet scheme is used for this presentation due to its simplicity and ease of 

implementation. In discrete wavelet transform (DWT), a time-scale representation of a 

digital signal is obtained using digital filtering techniques [44]. At each of filtering 

process, a signal is decomposed in high scale-low frequency components which are 

called approximations (A) and in low scale-high frequency components which are called 

details (D). This signal is passed through a series of low- pass filters to analyze the low 

frequencies and pass through a series of high- pass filters to analyze the high frequencies. 

During the decomposition process, twice the amount of the original signal data is 

generated at each stage. To avoid this result, the data has to been down-sampled by a 

factor of 2 that is shown as: 
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That means a discrete time signal f(t) consists of omitting every other value and we can 

think of a system whose input is f(t) and whose output is g(t)=f(2t). The same calculation 

holds for the detail coefficients. 

The filter process is demonstrated in Figure 3.1   

 

Figure 3. 1  Two-level wavelet decomposition using high-pass and low-pass filters. 

 

The decomposition process can be iterated with successive approximations being 

decomposed in turn [42] so that one signal is broken down into many lower resolution 

components. This is called wavelet decomposition tree which is shown in Figure 3.2 

 



 

37  

 

Figure 3. 2 The wavelet decomposition tree 

The decomposition lasts until the detail coefficients consist of repetitions of a single 

sample. To synthesize the signal, the inverse process of up sampling and filtering is 

followed by using the low (L’) and high (H’) pass reconstruction filters. Up sampling of 

discrete time signal f(t) consists of inserting zeros between the values. We can think about 

a system with input f(t) and output g(t)=f(t/2) for even values of t, and g(t)=0 for odd 

values of t shown as: 

 

 

 

The design of the low and high pass filter for the decomposition and reconstruction 

process is very important because it determines the shape of the wavelet function used in 

analysis.[61],[20],[44],[74],[75] In fact, the filter design and wavelet function choice 
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develop at the same time. 

The filters used in the decomposition and reconstruction process are different  in that 

they must be satisfied some conditions:[20] 

Condition 1: 

        0
2

1
2

1   LLHH                          (3.1) 

where H    and  L  are Fourier transform of high-pass filter h and low-pass filter l, 

also H’ and L’ are conjugate to H and L and the same as h and l to h’ and l’. It is defined 

by, 

     n

n

enhH 2                                     (3.2) 

And  

     n

n

engL 2                                       (3.3) 

Condition 2: 

        1  LLHH                                 (3. 4) 

 In the signal decomposed or reconstructed process, the function is involved into 

successive two filters L (low frequency) and H(high frequency) or their conjugate filter L’ 

and H’ that so-called quadric mirror filters.  
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 Figure 3. 3 Two-level wavelet reconstruction using high-pass and low-pass filters. 

 

There are infinite numbers of possibility to choose the analyzing wavelet. However, only 

a small group of these meets the conditions that are necessary if the wavelets are given an 

accurate decomposition and reconstruction and also be orthogonal to each other[45]. This 

is extremely critical and efficient for computing wavelet transform which does for 

wavelet analysis the same as what FFT (fast Fourier transform) does for Fourier analysis. 

3.2   Wavelet Function Design 

 

As mentioned previously, the wavelet function design is based on accuracy and 

calculating efficiency. There are two classes of orthogonal wavelets-- Dilation wavelet 

and harmonic wavelet.  

First we consider the theory of dilation wavelets and later discuss harmonic wavelet. 

The successful development of dilation wavelet in mathematical community has been led 
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by Daubechies[19], [20], [21] who invented so-called dilation schemes and for first time 

gave the method to calculate the dilation wavelet coefficients. 

 

3.2.1 Dilation Equations  

To dilate is to spread out so that dilation means expansion [61]. The basis function   φ

(x) is a dilated horizontally version φ (2x) that has the same height but is stretched over 

twice the horizontal scale of x, where x is a independent variable that may represent time 

or position depending on the applications. In dilation equation, φ (x) is expressed as a 

finite series of terms, each of which involves φ (2x).  Each of these  φ (2x) terms is 

positioned at different places on the horizontal axis by making the translation (2x-k) 

instead of 2x, where k is an integer(positive or negative). 

The dilation equation has a form: 

         3222122 3210  xcxcxcxcx                  (3.5) 

where c’s are numerical constants. It is impossible to solve (3.5) directly to find function

φ (x) except for very simple case. But indirectly setting up an iterative algorithm in 

which each new approximation  xj  is calculated from the previous 

approximation  xj 1  by the scheme: 

         3222122 13121110   xcxcxcxcx jjjjj          (3.6) 
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The iterative process continues until   xj  becomes the same as  xj 1 . 

Consider starting from a box function:   

10    10  x ;  

elsewhere,0=0 . 

After one iteration the box function over interval x=0 to 1 has expanded into a staircase 

function over the interval x=0 to 2 also shown in the Figure 3.4 

 

 

Figure 3. 4 Construction of the scaling function 

 

Each contribution to  x1  is shown separately and then four contributions are shown 

added together. A particular set of the coefficients 321,0 ,, cccc have been obtained as 
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follows: 

  ;4/310 c   ;4/331 c  

  ;4/332 c   ;4/133 c                                   (3.7) 

 This is the orthogonal D4 wavelet. The D stands for Daubechies. 

The function  x  coming from a unit box (unit height and length) is called scaling 

function and a corresponding wavelet function will be obtained from it. When the 

iterative process continues, it has been seen that the first iteration produces the four 

coefficients ,321,0 ,, cccc at x=0, 0.5, 1, 1.5. At the second process, each coefficient 

produces another four coefficients. For example, 0c  at x=0 produces four new 

coefficients which are ,, 10

2

0 ccc ,30,20 cccc  at x=0, 0.25, 0.5, 0.75; and 1c  at x=0.5 

contributes to four new coefficients 3121

2

1,01 ,, ccccccc  at x=0.5, 0.75, 1, 1.25; and so on. 

After second iteration, all the resulting ordinates corresponding to the coefficients are 

obtained. Figure 3.5 displays the first eight iterations of the development of the D4 

scaling function. Figure 3.6 shows scaling function for D4 wavelet calculated for 12288 

points.  
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X 

Figure 3. 5 Construction of D4 scaling function by iteration from a box function over the 

interval x=0 to 1 

From this process we find the matrix scheme 
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where rM  denotes a matrix of order    222222 11   rrrr  in which each 

column has a sub-matrix of coefficients 321,0 ,, cccc positioned two places below the 

sub-matrix to left.  

The number of points increases in the sequence and after eight iterations it reaches 766 

points and each of them spaced 1/
82 =1/256. Although the iteration method is not an 

efficient way, it is simple to understand and easily to be programmed. 

 

Figure 3. 6 Scaling function for D4 wavelet calculated for 12288 points  
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3.2.2 Dilation Wavelets 

The wavelet function W(x) is derived from scaling function by taking differences. For the 

four –coefficient scaling function defined by (3.5) the dilation wavelet function is 

         3222122 0123  xcxcxcxcxw         (3.8) 

The same coefficients are used as scaling function  x  but in reverse order and with 

alternate terms having their signs changing from plus to minus.  

The results of making the calculation (3.8) for D4 scaling function in Figure 3.6 are 

shown in Figure 3.8 and the iteration of development of the D4 wavelet is shown in 

Figure 3.7. 

So far using the scaling function  x  to construct orthogonal wavelet function which 

has been developed by Daubeches[19] [20], [21] who first computed the values of 

required number N of coefficients 10 ,...,
1 Nccc  in order to achieve accurate level 

expansion for signal decomposition and reconstruction 
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Figure 3. 7 D4 wavelet calculated by iteration 

 

Figure 3. 8 D4 wavelet according to (2.8) from scaling function in Figure 3.6 
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3.2.3 Wavelet Family Introduction 

 

There is a lot of wavelet functions which can be used as the mother wavelet function to 

achieve a signal’s wavelet transform. Among those choices we introduce some very 

commonly used wavelets in engineering applications. [38] 

First, it is the Haar wavelet which is the simplest orthogonal basis function. Figure 3.9 

shows how a signal is decomposed in levels. 

 

Figure 3. 9 Haar wavelet with unit amplitude plotted for level -1, 0, 1, 2 

 

The Haar wavelet function is:
 

  











12/11

2/101

xforxw

xforxw
               (3. 9) 
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The time or position x is plotted along the horizontal axis and wavelet function  xw  is 0 

to 1 which are located at different position along x axis. 

There are two half length wavelets represented by )2( xw  and  12 xw  and 

four-quarter length wavelets represented by        ,34,24,14,4  xwxwxwxw  as 

shown in Figure 3.9. The scale and position can be obtained from its argument. For 

example,  12 xw  is the same as  xw  except that it is compressed into half the 

horizontal length and it begins at x=1/2 instead of x=0. 

 The wavelet’s level is determined by how many wavelets fit into the unit interval x=0 

to1. At level 0 there is  120   wavelet like the third top view of Figure3.9. And there 

are 221   wavelets which fit between 0 to 1and at level 2,  there are 422   wavelets 

which fit between 0 to1 like the top view Figure 3.9 and so on. 

The decomposition of a signal or function f(x) is the same as its Fourier transform in 

which the sequence length N of signal being analyzed determines how many separate 

frequencies can be represented. In the wavelet transform, the sequence length determines 

how many wavelet levels there are with different scales and positions in which the 

sequence of N= n2  points consist of n+1 levels (scales) running from -1 to n-1 and 12 n  

position. 
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           

   

 kxwaa

xwaxwa

xwaxwaxwaxwaxwaaxf

j

j k
k

j

j 















2

......3424

144122

0

12

0
20

76

543210

         (3.10) 

There are some other wavelet family functions such as Mexcian hat wavelet whose 

analytical expression is:[21] 

    224
1

2

1
3

2
x

exx










                              (3.11) 

And Morlet wavelet is defined as: 

  tj
x

eex 0

2

2 


   where  75.10                              (3.12) 

Both basis wavelet functions shown in Figure 3.10 are applied in different signals 

analysis and other engineering applications. Therefore mother wavelets choice should 

take into account the details and particular application so that the wavelet transform can 

represent function characteristics effectively.  

 

Figure 3. 10 Morlet and Mexican hat Wavelet forms 
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3.3   Harmonic Wavelet 

 

In this section harmonic wavelet is introduced and its properties and characteristics are 

discussed as the fundamental concept to construct the rest of this thesis.  As the number 

N of wavelet coefficients is increased, the wavelet’s Fourier transform becomes compact. 

Only the values of N up to 20 are included in the program. However the number of 

wavelet coefficients for N> 20 is required to be computed and it turns out that the 

spectrum of a wavelet with N coefficients are more like box-like as N increases. This fact 

lead Newland [46] to seek a wavelet  xw  whose spectrum is exactly like a box so that 

the magnitude of Fourier transform  w  is zero except for an octave band of 

frequencies. A simple way to define  xw  is shown in Figure 3.11. 

 

Figure 3. 11 Magnitudes of the Fourier transforms of harmonic wavelets of different level 

 



 

51  

All the Fourier transforms are identically zero for 0 , and for level zero the definition 

of  xw  is : 

 

elsewhere

forw

0

42
2

1



 



                              (3. 13) 

By calculating the inverse Fourier transform of  w , we obtain the corresponding 

complex wavelet as: 

   
xi

ee
xw

xixi





2

24 
                                    (3.14) 

whose real and imaginary parts are shown in Figure 3.12 and Figure 3.13 

 

Figure 3. 12 Real part of the harmonic wavelet (3.14) 
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Figure 3. 13 Imaginary part of the harmonic wavelet (3.14) 

 

For the general complex wavelet, at level j and translated by k step of size j2
1 we 

define: 

   
elsewhere

forew jjj
j

ki

0

24222
2

1 2



  





                       (3. 15) 

By calculating the inverse Fourier transform, this gives: 

 
    

 kxi
eekxw j

kxikxi
j

jj






22
2

2224





                   (3.16) 

 

where ∞∞=,∞0= toktoj . For level -1 with the frequency band  20   in 

Figure 3.11 the wavelet is defined as 
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   
elsewhere

forew ki

0

20
2

1



  


 

                             (3. 17) 

The scaling function is defined as: 

 
  

 kxi
e

x
kxi












2
12

                                (3. 18) 

∞∞= tok , the real and imaginary parts of  x  are shown in Figure 3.14 and Figure 

3.15. 

 

Figure 3. 14 Real part of the harmonic scaling function (3.18) 
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Figure 3. 15 Imaginary part of the harmonic scaling function (3.18) 

 

The idea to choose the wavelet and scaling function is that they form the orthogonal set 

and have the properties: 

    022 * 



dxsxwkxw rj  for all j, k, s; j, r0                   (3.19) 

    022 



dxsxwkxw rj  for all j, k, r, s; j, r 0                (3.20) 

Except for the case when r=j, and s=k. when   j
j dxkxw

2
12

2





 

Also     0



dxsxkx   for all k, s                              (3. 21) 

    0* 



dxsxkx   for all k, s                                (3. 22) 

Except s=k, when   1
2





dxkx   

And finally,     02 



dxsxkxw j   for all j, k, s; (j 0 )            (3. 23) 
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    02 * 



dxsxkxw j   for all j, k, s; (j )0                      (3. 24) 

The proof of these results depends on the properties of their Fourier transform and 

derives from two results from Fourier transform theory of w(x) and v(x) respectively, 

then one has [48]  

         dVWdxxvxw  







2                              (3. 25) 

         dVWdxxvxw ** 2 







                              (3.26) 

From  Equations(3.15),(3.16),(3.17), the wavelets of different of levels have Fourier 

transform that occupy different frequency band while for the wavelets in the same 

frequency band, each wavelet is only orthogonal to the complex conjugate of another 

wavelet. 

The result of all this is that the  kxw j 2  defined by (3.16) together with  kx   

defined by (3.18) construct an orthogonal family of wavelet that offer an alternative to 

wavelet family from dilation equation.  

The differences of two wavelet functions are that Harmonic wavelet can be described by 

a simple analytical formula which are compact in frequency domain and can be described 

by a complex function so that there are two real wavelets for each j, k pair. While 

Dilation wavelets can not be expressed in functional form. They are compact in x-domain 

and there is one real wavelet for each j, k pair. 

Harmonic wavelet has an advantage that is computation simplicity which uses FFT (fast 
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Fourier transform) to harmonic wavelet analysis to a signal or function. 

 

3.4 Discrete Harmonic Wavelet Transform 

 

Because of complex wavelets, two amplitude coefficients have to be defined as 

follows:[46] 

   dxkxwxfa jj

kj  



22 *

,
                                     (3.27) 

   dxkxwxfa jj

kj  



22~

,
                                      (3.28) 

If f(x) is a real function, kja ,
~  is the complex conjugate of kja , . However, if f(x) is 

complex kja ,
~  and kja ,  are different. 

Similarly, 

   dxkxxfa k  




*

,                                            (3.29) 

   dxkxxfa k  



 ,

~                                           (3.30) 

In terms of these coefficients, the wavelet expansion of a general function f(x) for which 

  



dxxf

2

    
(3.31)    is given by: 

           













0

*

,,

*

,, 2~2~

j k

j

kj

j

kj

k

kk kxwakxwakxaxaxf   (3.32)                                                                              

Now we try to find out an algorithm to compute the coefficients ka , , ka ,
~
 , kja , , kja ,

~  

in this expansion. As an example, consider kja ,  in (3.27). First substitute for 
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 kxw j 2*  in terms of its Fourier transform where from (3.15) 

    






deekxw xi

ki
jj j

j

j



 2
24

22

* 2
2

12                               (3.33) 

So that  kja ,  in (2.27) becomes 

  dxexdxfeda xi
ki

kj

j

j

j 












 
24

22

2
, 2

1                              (3.34) 

Since the Fourier transform of  kxw j 2*  is zero outside jj w 2422    and second 

term integral over x is just the Fourier transform of f(x) multiplied by 2  so that 

  



deFa

j
j

j

ki

kj
2

24

22
,                                           (3.35) 

 Now we replace integral by summation to get the discrete form of the wavelet transform. 

In this case, we step samples in increment of 2 in frequency band so that there j2 steps 

in level j. Then  F  is replaced by the discrete coefficient 
sjF

2
 when 

  sFF j

sj 


222
2

 . 

And the integral in (3.35) becomes the summation 

 
j

j

s
sk

ksi
eFa

j

jj

2
22

12

0
22










                                    (3.36) 

Because  2  cancels with 
2

1  from (3.27) and 12 kie   for all integer k we 

obtain the formula: 

j

j

jj

ski

s
sk
eFa 2

212

0
22









  k=0 to 12 j                                 (3.37) 

This is the inverse discrete Fourier transform for the sequence of frequency 

coefficients
sjF

2
, s=0 to 12 j . 
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To compute the wavelet amplitude coefficients by a discrete algorithm, we begin by 

representing f(x) by the discrete sequence f(r), r=0 to N-1(where N is power of 2). Next 

FFT is used to compute the set of complex frequency coefficients F(p), p=0 to N-1, then 

octave blocks of F(p) are processed by IFFT to generate the amplitudes of the harmonic 

wavelet expansion of f(r) with the coefficients: 

     
j

j

jj

ski

s
sk
eFa 2

212

0
22

~



   k=0 to 12 j

              (3.38) 

Because the discrete Fourier transform does not have negative indices but instead of sF  

by SNF   that becomes: 

   







1_2

0

2
2

22

~
j

j

jj

s

ski

sNk
eFa



                                     (3.39) 

As an example, for N=16, Figure 3.16 shows how the algorithm works in diagram. For (a) 

f(r) is a real function and 
kja

2

~  are complex conjugates of 
kja

2
.  It is not necessary to 

calculate these coefficients. And in Figure 3.17 for (b) f(r) is complex as shown. And the 

computation of 0a  and 
2

Na  in algorithm involves special cases. 

First, for 
0

a  consider 

      deekx xiki


                                      (3.40) 

      kixiki

k eFdexfeddxa 



    









2

0

*

,                  (3.41) 

Because    is zero except for  20   when it is 
2

1  , the integral is 

covered by a single of 2 . If the value of )0( F is replaced by 0F ,  then 
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 040  FF ,
2

0
0,

F
a  ,

2
~ 0

0,

F
a  . Hence, 00,0,0

~ Faaa   . 

Second, for 
2

Na , the initial FFT operation which transform f(r) to F(p) preserves the 

mean square so that     
21

0

211

0

1 









N

r

N

p

rf
N

pF holds. Each subsequent IFFT operation 

on octave bands of  pF  for p<N/2 or its complex conjugate on octave band for p>N/2 

similarly preserves the mean square in octave bands so that 

2
12

0=
+2

2
12

0=
+2

∑∑ ==
2

1
j

j

j

j

k
k

k
k

j Fa holds. Hence one has 
22

NN Fa  . 

The Parseval’s theory in form is: 
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jj              (3.42) 

The summation is made over all levels j=0 to n-2, the highest level n-2 being the 

maximum that can reach with initial sequence of length n2 . For example an original 

sequence length of 1624   can provide harmonic wavelet amplitudes at level -1, 0, 1, 

and n-2=2, comparing with the levels that obtained from the dilation wavelet, the levels 

from -1, 0, 1, 2 and n-1=3. Since for each pair of j, k, the dilation method has only one 

real dilation wavelet whereas harmonic wavelet has two real ones that are even and odd 

which are given by the real and imaginary parts of the complex harmonic wavelet [49]. 

The algorithm illustrated in Figure 3.16 is a fast way to compute the discrete harmonic 

wavelet transform and for the inverse transform, the same algorithm works in reverse 
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starting at the bottom of diagrams in Figure 3.17. 

In summary, the wavelet determined from the dilation equation is a sequential algorithm 

in the sense that successive wavelets levels are calculated in sequence. In contrast, the 

FFT algorithm for harmonic wavelets are parallel method that FFT is only used once to 

get full sequence and then in the second time in octave block all of which are computed 

simultaneously. Therefore, for application which is involved very long sequence or 

complicate signal processing, harmonic wavelet transform algorithm is a very significant 

time-saving method. 
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Figure 3. 16 FFT algorithm to compute the harmonic wavelet transform: (a) for a 

sequence of 16 real elements;[46] 
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Figure 3. 17 FFT algorithm to compute the harmonic wavelet transform: (b) for a 

sequence of 16 complex elements [46] 
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3.5 Conclusion 

In this chapter, the mechanism of a signal decomposition and reconstruction is presented 

based on the wavelet filter processing. The properties and characteristics of some typical 

harmonic wavelet transform are discussed with emphasis on two types of wavelet basis 

functions i.e. dilation wavelet function and harmonic wavelet function. Comparing these 

two wavelet functions, the conclusion is drawn that the harmonic wavelet function is 

more suitable to be the basis function in the wavelet-based linearization method which 

will be introduced in Chapters 4 & 5.   
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4 WAVELET-BASED LINEARIZATION FOR DUFFING 

OSCILLATOR SYSTEM  

In this chapter, we will first introduce one kind of nonlinear system-Duffing oscillator 

system with non-linear stiffness. A multi-frequency linearization and wavelet-based 

linearization methods are implemented and compared for Duffing oscillator system when 

the system is subject to multiple harmonic inputs.  

4.1 Duffing Oscillator System Model 

To illustrate the procedure of equivalent linearization theory, first we consider the 

following oscillator with non-linear stiffness [54], as shown in Figure 4.1: 

 

 

 

 

Figure 4. 1 SDOF mass-spring-damper system [ 54] 

The ordinary differential equation of motion can be written as: 

       tFxgtxctxm                                             (4.1)            

where m is the mass, c is the viscous damping coefficient, F(t) is the external excitation, 
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and x(t) is the displacement response of system.  

Dividing the equation by m, the equation becomes: 

   tfxhtxtx  )()(                                              (4.2)  

where   is the damping parameter,  xh  is the non-linear restoring force that could 

depend on displacement, and  tf  is a zero mean stationary random excitation. 

We can always find a way to decompose the non-linear restoring force to one linear 

component plus a non-linear component, that is: 

  xHxxh n   2)(                                            (4.3) 

where   is the non-linear factor that presents the type and degree of non-linearity in the 

system, and 
n

  is the un-damped natural frequency for linear system. 

The idea of linearization is replacing the equation (4.2) by the following linear system: 

 tfxxx eqeq  2                                              (4.4)  

where 
eq

  is the equivalent linear damping coefficient per unit mass, 
2

eq
  is the 

equivalent linear stiffness coefficient per unit mass, and 





eq

n
eq  ,  to find an 

expression for 
2

eq
  is to minimize the expected value of the mean square error which is: 

  xxh eq

2                                                (4.5) 

The way that minimizes the expected value of mean square error, is shown: 

  02

2








E

eq

                                                 (4.6) 
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By substituting (4.5) into equation (4.6), and carrying out the differentiation, the 

following equations for  
2

eq  is shown as: 

  
 

  
22

2

x

eq

xxhE

xE

xxhE


                                          (4.7) 

where x  is the standard deviation of x(t). By substituting the expression for  xh , 

given by (4.3), into equation(4.7), the result is: 

  












2

22 1
x

neq

xxHE


                                          (4.8) 

This expression shows, very clearly, how the non-linear component of the stiffness 

element influences the value of 
2

eq
 . In equation (4.8), the exact evaluation of 

 









2

x

xxH
E


 requires a knowledge of the first order density function of the response 

process x(t) which is unknown [54]. However the displacement x(t) is assumed to be 

Gaussian and  Equation (4.7) becomes: 















x

h
Eeq

2 



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












dx

dH
En  12                                 (4.9) 

For example, the Duffing oscillator is used to illustrate this procedure by which the 

non-linear restoring force is written as: 

   32 xxxh n                                                (4.10) 

In this case, 
2

eq  can be expressed: 

  222 31 xEneq                                              (4.11) 
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And by defining: 

 2xEA                                                      (4.12) 

Then assume the density function of x(t) to be the Gaussian form: 

 
  












2

2

2
1 2

exp
2

1

xx

x

x
xf


                                     (4.13) 

To combine (4.12) and (4.13) together, one has 

   dxxfxxEA x



 22                                         (4.14)  

And by performing integration the equation (4.14) with the Gamma function, the result is 

obtained: 

22

2

32
xxA 











                                            (4.15) 

The next step is to evaluate x and the procedure is to use the frequency domain. The 

input-output formula  fS  is the spectral density for  tf  and  xS  is the spectral 

density for output  tx .  Use the well-known relationship in the linear vibration : 

      fx SS
2

                                              (4.16) 

where    is the frequency response function given as: 

 
 eqeqeq i 


2

1
22 

                                      (4.17) 

Once  xS  is determined, x  is found from the equation: 

   dSxx 



2

                                               (4.18) 
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The equations (4.16), (4.17), and (4.18) yield a relationship between eq  and x . 

Another independent relationship between two quantities can be found from Equations 

(4.11) (4.14), (4.13) and (4.15). Hence, two algebraic relationship are obtained for two 

unknowns, eq  and x , and the formulas for eq  and x  expression are formed. By 

iterative process the equivalent coefficient finally is computed. The procedure can be 

described as follows: 

1. Assign an initial value of equivalent coefficient eq  . 

2. Use equation (4.16), (4.17), (4.18) to get x  . 

3. Solve equation (4.11) and (4.14) for the new eq . 

4. Repeat step 2 and step 3 until the new eq  converge to the old eq within a 

pre-defined threshold.  

 

4.2 Multi-Frequency Linearization for Stationary Inputs 

 

In this section, we will discuss the multi-frequency-linearization method based on the 

equivalent linearization procedure and use Duffing system as an example. 

For this kind of system, the non-linear factor only depends on the displacement so that 

the nonlinearity restoring force can be decomposed by linear one term and another 



 

69  

non-linear one that mentioned in previous part. That is: 

)()( xhkxxh nl                                              (4.19) 

The equivalent method is to replace the original non-linear system given by: 

   tfxhxx                                                (4.20) 

with the linear system given by 

 tfxkkxxx nl                                            (4.21) 

where nlk  is the equivalent coefficient which needs to be found out. Following the 

method proposed by Caughey [13][14], it is assumed that the damping   is very small 

and  tf  is a wide-band process. Under these circumstances the solution of equation 

(4.21) is the narrow-band process and one can write 

 )(cos)()( tttAtx eq                                          (4.22) 

   )(sin)( tttAtx eqeq                                       (4.23) 

where nleq kk 2                                             (4.24) 

When   is small,  tA  and  t  will be slowly varying function of time over one 

cycle of response in period of 
eq

T


2
 .  Thus the expected value in the equation (4.7) 

can be treated as average value over one cycle. On minimizing the mean square of error 

one cycle of response, nlk  is obtained as: 

 






dxx

xdxxh
eq 2

2                                                 (4.25) 
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For Duffing oscillator,  the non-linear term is given by 

3==)( kxxkxh nlnl                                              (4.26) 

And equation (4.20) becomes: 

 tfkxkxxx  3                                          (4.27) 

And the equivalent stiffness is obtained according to equation (4.25)  






T

T

nl

dxx

dxxk
k

0

2

0

4
                                                (4.28) 

From the linear vibration theory, the input signal is a sum of sinusoids: 

       tFtFtFtf NN  sin...sinsin 2211                         (4.29) 

An then the output will be: 

       NNN tXtXtXtx   sin...sinsin 222111         (4.30) 

where
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Substituting  tx  from (4.30) into (4.28), the additional stiffness due to the nonlinearity 

found for each frequency of excitation is calculated as 
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
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kXk                 (4.32)    

To obtain the solution for this equation, we need the iterative scheme. Starting with 

0, inlk  and 

   2
2

,

2

iinli

i
i

kk

F
X

 

  for i=1:N              (4.33) 

The coefficient 
nlk  is computed by equation (4.32) until it is converged and the result 

for above system only produces the same frequency as the excitation one. It has been 

shown that (Stoker 1965) [63] when the harmonic solution is known, the response of the 

Duffing oscillator to a single frequency can be expressed by 

     t
Xk

t
Xk

tXtx i

i

i

i

i

i

iii 








 5sin

1296
3sin

36
sin)(

4

52

2

3

                  (4.34) 

The whole response can be calculated by summing up all the response components as 

   



N

i

i txtx
1

                                                  (4.35) 

The example is given to display this procedure. The system is: 

 tfkxkxxx  3 ,     000  xx  , 1,16,5.0 2   k  and 

         tttttf 16sin512sin58sin104sin15                       (4.36) 

The input and output process are shown as in Figure 4.2 

.
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Figure 4. 2 Equivalent linearization for stationary input 
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The Figure 4.2 shows that the linearization method yields a nice approximation of the 

original system response because of the stationary excitation. In the next section, a 

wavelet-based linearization method is proposed for Duffing oscillator.  

 

 

 

 

 

 

 

 

4.3 Wavelet-Based Linearization for Duffing Oscillator  

 

Although the method of equivalent linearization to analyze the non-linear system 

response is quite successful in engineering applications, it is still limited at some aspects 

that the response must be harmonic in nature. Thus if the response energy fluctuates 
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temporally, a time –frequency representation may approximate the response of the system 

better. 

Since the wavelet analysis provide a powerful way  for response of system subjected to 

the non-stationary signal, especially,  wavelet transformation can be used to obtain the 

time-frequency local information  of functions very well, to develop a wavelet-based 

method might be a good alternative to traditional equivalent linearization method. 

In this section we introduce the harmonic wavelet function as the basis function to 

develop the wavelet-based linearization method. 

The harmonic wavelet has some typical features different with others.  First, it has 

explicit form function and the definition of a harmonic wavelet at a particular scale is 

quite easy, unlike the dilation wavelets that must be calculated by iterative process. 

Second, due to its compact supported form in frequency domain that builds up the 

non-overlapping frequency bands to form an orthogonal basis, the level of a wavelet is 

interchangeable with its frequency band. And also because of its frequency characteristic, 

the fast algorithm can be implemented to reduce the burden of computation. 

 As any function can be expressed by a series of linear combination components with 

decomposed scales and positions of harmonic wavelet functions, one has: 

   txtx
n

j

j





2

0

                                                  (4.37) 
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with 

     ktwaktwatx j

kj

j

k

kjj

j






22 **

,

12

0

,                            (4.38) 

where the symbol * denotes complex conjugate. For zero mean and real value  tx  

   







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



12

0

, 2Re2

j

j

k

j

kj ktwatx                                      (4.39) 

where Re[] represents the real part of a complex number. The harmonic wavelet 

coefficients are defined as [46], 

   dtktwtxa j

kj 



 2*

,
                                        (4.40) 

In the frequency domain, equation(4.40) becomes 

      XWA kjkj ,,   for  4222
j

j   

  0, kjA , else.                                                 (4.41) 

For the level j and translated by k steps of size j2
1 , the wavelet transform is: 

  j
ki

j

kj eW
2

2
2

1
,






 for  4222

j
j   

0, kjW , elsewhere                                              (4.42) 

And for a discrete sequence nx , n=1 to N-1, discrete Fourier coefficients of harmonic 

wavelet transform for level j can be expressed as 

*

kkk WXA   for 120  jtok                                      (4.43) 

where kX for 120  jtok  are the Fourier coefficients of nx  for  n=1 to N-1, and the 

square of the absolute values are: 
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222

kkk WXA   for 120  jtok                                      (4.44)  

From equation (4.42), the absolute value of harmonic wavelet for scale j is: 

  j

kjW  2
2

1
,


       4222

j
j   

   0, kjW , else.                                              (4.45) 

Substituting equation (4.45) into (4.44), a relationship between the absolute values of 

Fourier coefficients of response and its wavelet coefficients is clearly displayed. 
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Or changed to: 

  2222 24 k

j

k AX        for 120  jtok . 

02 kX , else.                                                  (4.47) 

Using equation (4.47) in equation (4.32), the scale dependent equivalent stiffness values 

are calculated as 
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and the transfer function is updated. The equation (4.48) expresses that for the level j, 

there are j2  equivalent stiffness coefficients, each j2
1 units apart on the time axis, the 

process is iterated until the solution converges. 

The wavelet-based linearization results are displayed and compared with numerical 

method of the 4
th

 Runge-Kutta as shown in Figure 4.3. 

 

Figure 4. 3 Wavelet-based linearization solution 

 

For a given system and the input signal with the length N, the response is obtained by 

using the Fourier transform of the excitation multiplying the frequency response function 

but ignoring the non-linearity. Next, every level (scale) of the wavelet coefficient of the 
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response in the frequency domain is calculated with the Newland dyadic harmonic [46] 

wavelet as the basis function. At last, the equivalent parameters are obtained when the 

iterative process converges. 

In order to illustrate the procedure validity, the wavelet-based linearization method is 

applied to the system defined in equation (4.36). Figure 4.2 shows the excitation and 

system response by using equivalent linearization method. Figure 4.3 shows the response 

of non-linear system using the wavelet-based method comparing with the numerical 

solution of ordinary differential equation using 4
th

 order Runge-Kutta algorithm. From 

figures, the wavelet-based algorithm developed above yields a good approximation of the 

exact response.  

In summary, the statistical linearization method provides the way that obtains the 

parameters in the equivalent linear model by minimizing the mean square of the equation 

deficiency, but this procedure needs the knowledge of the probability distribution 

function. In order to avoid the complication of computing, an alternative approach is 

required called multi-frequency linearization method with some assumptions, the 

parameters are obtained by iterative algorithm. Since the harmonic wavelets function is 

compact in the frequency domain, its Fourier transform offers explicit form to the 

wavelet coefficients with the algebraic transformation of the response in frequency 

domain.  The equivalent linearization parameters are obtained in both time and 
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frequency domain by using wavelet-based linearization technique.   

4.4  Conclusion 

 This chapter presents the procedure of linearzing the Duffing oscillator system by using 

traditional and wavelet-based equivalent linearization methods. First of all, it introduces 

the statistical linearization method and then extends to the multi-frequency approach 

which is based on this statistical method to derive the equivalent linearization parameters 

in this Duffing system. The parameters can be determined by multi-frequency Fourier 

transform of responses according to the multi-frequency system excitations respectively. 

By using the harmonic wavelet basis function which provides the non-over lapping 

frequency bands and scale, a wavelet-based linearization method for the Duffing system 

is proposed and the simulation results are compared with the numerical method 

Runge-Kutta to show that the proposed linearization method is an appealing approach to 

linearize the nonlinear Duffing systems. 
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5 WAVELET-BASED LINEARIZATION FOR BILINEAR 

HYSTERETIC  SYSTEMS  

 

In this chapter, the wavelet-based linearization method is developed for another type of  

nonlinear system- bilinear hysteresis system. The organization of this chapter is: Section 

5.1 introduces bilinear hysteresis system model. Section 5.2 describes the statistic 

linearization equivalent method for the bilinear hysteresis system.  The basic concept of 

wavelet transform for the relationship of input and output in the linear system is 

introduced in Section 5.3.  In the Section 5.4, a wavelet-based linearization method is 

proposed to obtain equivalent linear parameters based on both frequency and time 

information of the nonlinear system. The numerical results are provided in Section 5.5. 

5.1  Bilinear Hysteretic System Model 

 For the system of bilinear hysteresis, the system model is 

   tftxxhxx  ,,       000  xx                              (5.1) 

where the hysteretic force is 

     yxyxhxtxxh ;,1,, 0
                      (5.2)  

 
yxyxhy ;,1

                                    (5.3) 

where              xuxyuxuxyuxxyuxyuyh yyyyy
 0                                                                
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            xuxyuxuxyuxyuxyuxh yyyy
 1               (5.4) 

where y is the relative displacement of the purely elasto-plastic component 0h , the 

hysteresis force of  txxh ,,   is assumed to have the characteristic as shown in Figures 

5.1-5.3, 5.0  and 1yx  are respectively the second slope ratio and the yield 

displacement,  u  is a unit step function. 

 The bilinear hysteresis and elasto-plastic hysteresis loops are shown in Figures 5.4 and 

5.5. 

 

Figure 5. 1 The bilinear system model 
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Figure 5. 2 The bilinear hysteresis force h  characteristic  tan  

 

Figure 5. 3 Elasto-plastic hysteresis
0

h  

 



 

83  

 

Figure 5. 4 The bilinear hysteresis loop 

 

                        Figure 5. 5 The elaso-plastic hysteresis loop 

 

The equivalent linearization model to the system is given by the formula: 

    tfxcxcxxx  211                                    (5.5) 

ycxcy 43                                                       (5.6) 
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Equation (5.5) can be written as: 

       tfxcxcx  21 11                           (5.7) 

( )tfxxx eqeq =++ 2  ,(5.7a)     11ceq ,(5.7b) ( )( )
2

2 1+= ceq  (5.7c)     

where eq  and 
2

eq  are the equivalent linearized parameters.       

5.2 Statistical Linearization for Bilinear Hysteretic System 

The statistical linearization technique is used to investigate this proposal method [58], 

[59]. Consider the same bilinear hysteresis system given by 

   tftxxhxx  ,,        000  xx                                (5.8) 

where 02.0  and          tttttf 16sin512sin58sin104sin15      (5.9) 

The hysteretic force      yxyxhxtxxh ;,1,, 0
                     (5.10) 

                   
yxyxhy ;,1

                                  (5.11) 

where              xuxyuxuxyuxxyuxyuyh yyyyy
 0                                                             

            xuxyuxuxyuxyuxyuxh yyyy
 1       (5.12) 

where 5.0  and 1yx  are respectively the second slope ratio and the yield 

displacement,  u  is a unit step function. The numerical method is used to obtain 

solution of 0h  and displacement of x . 

Meanwhile, we use the statistical linearization method [7] that replaces the nonlinear 

system in equation (5.8) with the linear one as: 
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    

yCxCy

tfxCxCxxx

43

211







 
                               (5.13) 

where the equivalent coefficients 4321 ,,, CCCC  can be calculated by assuming a 

Gaussian probability distribution of the multi-dimensional response process which are 
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(5.14) 

 

In which x  and y  are respectively the root mean square value of x , the 

parameters y ,   are the coefficient of correlation of x  and y , and  erf  and 

 erfc  are respectively the error function and complementary error function. 

5.3 Input - Output Relationship for a Linear System 

Since the wavelet transform is the convolution operation in time, where the signal to the 

wavelet transform is decomposed in the distinct scales and translation values, the wavelet 

coefficients calculation is quite similar to the calculation of the response of linear system 
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that the convolution operation is implemented using impulse response function in the LTI 

system. In the LTI system, the response calculation in the wavelet basis is obtained to 

replace the impulse function with the wavelet function. 

Consider a linear SDOF system with the equation motion: 

       tftkxtxtx                                              (5.15) 

where   is damping parameter, k  is stiffness parameter. By performing the wavelet 

transform both sides of (5.15), one has [9], [10]: 

       bafWbaxkWbaxWbaxW ,,,,                            (5.16) 

where fWxWxWxW  ,,,   denote the wavelet transform of fxxx ,,,   respectively, 

performing the integration by part on  baxW ,
  according to the characteristic of fast 

decaying for wavelet basis, the following expression can be obtained: 

   baxW
a

baxW ,
1

,
2                                              (5.17) 

where the term on the right hand side is the wavelet transform with the wavelet basis  , 

the second order partial differential equation of  baxW ,  with respect b  can be 

expressed as: 

    dt
a

bt
tx

b
baxW

b







 













 2

2

2

2

,                                (5.18) 

Exchanging the differential operator with the integral operator on the right hand side the 

equation (5.18) can be written as  
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   baxW
a

baxW
b

,
1

,
22

2

 



                                      (5.19) 

Thus, one has 

   baxWbaxW
b

,,
2

2


 




                                         (5.20) 

Similarly, the following is obtained 

   baxWbaxW
b

,, 
 




                                          (5.21) 

The equation (5.16) can be expressed by:[8] 

       bafWbaxkWbaxW
b

baxW
b

,,,,
2

2

  








                 (5.22) 

From this equation, the wavelet coefficient of the output can be obtained from the 

wavelet coefficient of the input. Because the parameter b  contains time information, the 

information of response output in time domain is achieved as well. 

It is noted that in the LTI linear system, the wavelet coefficients of response output 

calculation is obtained through the way that replaces impulse response function in time 

domain convolution operation in the response calculation by the wavelet basis function. 

Thus, we can have the response information about time-frequency combination. 

5.4 Wavelet-Based Equivalent Linearization 

Considering the bilinear system (5.1), by using the input-output relationship introduced 

previously and performing the wavelet transform on both sides of the equation (5.8) and 
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(5.7a), the following form can be obtained:[8][9] 

       bafWbahWbaxW
b

baxW
b

,,,,
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                 (5.23) 

       bafWbaxWbaxW
b

baxW
b

eq ,,,, 2

2

2
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







               (5.24) 

Following the basic procedure of the traditional equivalent linearization approach, one 

can first find the mean square least error between the equations (5.23) and (5.24) 

    222 ),,( bahWbaxWeq                                       (5.25) 

In fact, the wavelet coefficients are calculated numerically. In this case, parameters ba,  

will be discretized as ja 2  and jkb 2 . By summing the discretized error over all j 

values and by multiplying by the factor j2
1 , which represents the error in the 

instantaneous energy of the response at a instant time interval k, then minimizing the 

square error with respect 
2

eq , the instantaneous equivalent natural frequency will be 

obtained [62]. 
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,



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allj

kj

keq
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

                                         (5.26) 


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
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kj
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kjkj

keq
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hxWW
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,,

2

,                                      (5.27) 

Also by summing the discretized error for all the time positions over k which represents 

the frequency dependent equivalent parameter, one obtains 
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,                                           (5.29) 

Thus, the wavelet method can examine the error between the nonlinear and linearized 

system either at each time interval or each frequency band corresponding to wavelet scale. 

This flexible feature is very important to solve the nonlinear response of systems.  

One can compare with the same equivalent linearization model: 

 tfxxx eqeq  2                                            (5.30) 

with 

    11ceq (5.31), and   2

2 1 ceq                      (5.32) 

The output  tx  and  ty  can be decomposed by using the harmonic wavelet transform 

to obtain: 
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ktwa                        (5.33) 

where Re[] represents the real part of a complex number. The harmonic wavelet 

coefficients are defined as [46], 

   dtktwtxa j

kj 



 2*

,                                   (5.34) 

Similarly, 
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where 

   dtktwtya j

kj 



 2' *

,
                                 (5.36) 

where  ktw j 2  is the harmonic wavelet transform function represented by the level 

(scale) j  and time position of k . kja ,  and kja ,'  are the wavelet coefficients of 

 tx and  ty  respectively, also giving the assumption that  tx  and  ty  are both real 

functions. 

In order to obtain the equivalent liner damping and stiffness parameters, also the 

equivalent linear parameters 3c  and 4c , we use the method discussed previously that is 

called wavelet-based linearization method. 

Performing the wavelet transform on both sides of the equations (5.9) and (5.30), the 

following equations can be obtained: 
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The square of error between the nonlinear and linearized formulation at each scale j and 

time position k of the wavelet transform is: 

2
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 (5.39)                                             

The above error, when multiplying with reciprocal of the scale j2
1  and summing over 
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all that scale values, represents the error in the instantaneous energy of the response at the 

time t=k. By minimizing this error of the instantaneous energy with respect to the 

equivalent damping parameter eq  and stiffness parameter
2

eq , the instantaneous 

equivalent damping and stiffness parameters of the linearization can be obtained. 

Hence, a time variant linear system model is derived. The minimization conditions are: 
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Substituting equation (5.39) to (5.40) and (5.41) respectively, one has: 
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Similarly, when summing the error for all the time positions, the error represents the 

energy of the process at each frequency band corresponding to a wavelet scale. Thus, the 

equivalent damping and stiffness parameters of this linearized system are determined as 

shown: 
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Thus, one has  
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For the equations (5.3) and (5.6), taking the wavelet transform on both sides of two 

equations, we obtain the formulations: 
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Similarly, taking the square of error between the equation (5.48) and (5.49) at every scale 

j and time position k of their wavelet basis function, one obtains: 
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By using the same technique of finding the equivalent damping and stiffness parameters 

to obtain the parameters 3c  and 4c  under the minimization conditions, we obtain the 

following formulations: 
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These two formulations are defined by summing the square of errors over all the scale 

values j to represent the energy of the process at the instantaneous k, so that the 

information about linear time variant systems are obtained with equivalent parameters 

3c  and 4c  at time locations. The same ideas are taken to sum the square of errors over 

all the time positions k to get the equivalent parameters 3c  and 4c  at the frequency 

dependent representations. 
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From equations (5.51) and (5.52), we obtain the equivalent parameters 
3c  and 4c  at 

the time location presentations: 
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Similarly, from equations (5.53) and (5.54), we obtain the equivalent parameters 3c  and 

4c  at the frequency band presentations: 
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In the case of a stochastic system, the equivalent parameters are obtained by minimizing 

the expected value of the mean square of the error between the nonlinear system and the 

linearized system [33], [34]. 

For eq  and 
2

eq , one has 
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For 3c  and 4c , one has 
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Using these three methods, we can obtain the responses of the hysteresis system. In the 

next section, we will show the linearization results by using traditional equivalent and 
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wavelet-based linearization method.  

5.5 Linearization Results 

The main objective of this part is to compare the wavelet-based linearization method with 

the statistical equivalent technique and verify the feasibility of this method. The 

displacement response of the bilinear hysteresis system under the multi-frequency 

excitation is compared to numerical solution of the same system response to check the 

results as well. 

We set the system to be a unit mass system with 02.0 , 5.0  and the initial 

equivalent parameters 0,0 2  eqeq  , the sampling time is 0.01 sec. and time period 

sec23.10t , N= 122 , 1yx , the hysteretic force:      yxyxhxtxxh ;,1,, 0
                         

 
yxyxhy ;,1

   

where              xuxyuxuxyuxxyuxyuyh yyyyy
 0                                                             

            xuxyuxuxyuxyuxyuxh yyyy
 1  

The system is excited by the signal        tttttf 16sin512sin58sin10)4sin(15   

and the initial conditions are 0,0 2  eqeq  . 

Assume that the system is a linear one to obtain the responses at the different frequencies. 

By using the procedure demonstrated above and substituting the response to the 

expressions of equivalent parameters eq and
2

eq in equations (5.42) and (5.43), the 
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parameters converged after 4 times iteration. Therefore, the time varying linear system is 

obtained and the similar procedure can be applied to the equivalent parameters 3c and 

4c  as well. Thus, the bilinear hysteresis system can be linearzed as this time varying 

linear system and these results are compared with those responses which are obtained by 

the statistical method and numerical method. These results are shown in Figures 5.6 and 

5.7. 

 

Figure 5. 6 Numerical solution of bilinear hysteretic system to stationary excitation 
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Figure 5. 7 Wavelet-based linearization method comparing with numerical solution 

5.6 Conclusion 

In this chapter, a wavelet-based linearization method is developed for bilinear hysteresis 

system. The equivalent parameters in this bilinear hysteresis systems can be obtained in 

time dependent and frequency dependent respectively, thus, the nonlinear system is 

linearized to be the time varying linear system. The simulation results are compared with 

those of numerical method and the traditional equivalent method to demonstrate this 

wavelet-based linearization method is a promising tool in linearizing nonlinear systems to 
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their approximate linear ones.
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6 CONCLUSIONS 

6.1 Contribution of the Thesis 

In this dissertation, a wavelet-based linearization method for approximating the nonlinear 

system behavior to its equivalent linearized system is presented. This method has been 

compared with the traditional equivalent technique. The whole procedure for this novel 

approach has been demonstrated by using the SDOF Duffing oscillator and bilinear 

hysteresis nonlinear models as examples to verify the feasibility of this method. 

The contributions of the thesis are summarized as: 

 A comprehensive literature survey on time-frequency analysis and linearization 

techniques has been carried out.  

 The mechanism by which the signal is decomposed and reconstructed using the 

wavelet transform is presented. The properties and characteristics of some famous 

harmonic wavelet transforms are investigated.  

 A multi-frequency linearization and wavelet-based linearization methods are 

implemented and compared for Duffing oscillator system when the system is 

subject to multiple harmonic inputs. 

 A wavelet-based linearization method is developed for another nonlinear system- 

bilinear hysteresis system. The wavelet transform for the relationship of input and 
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output of the linear system is implemented and the differential equation of 

nonlinear system is expressed in terms of time-frequency localization. The 

comparison between wavelet-based linearization and statistical equivalent 

linearization for bilinear hysteresis system has been carried out. 

6.2 Future Work 

 Considering the results of the research project, the author summarizes the following 

research topics to be investigated in the future: 

 It will be worthwhile investigating some other types of nonlinear system to see 

the feasibilities of wavelet linearization method on different cases. Especially, for 

some multi-degree freedom system. If the general form of wavelet-based 

equivalent linearization method can be obtained, it will be a valuable contribution. 

 Another possible extension is to find different wavelet basis functions in this 

approach because so many mother wavelets can be chosen. It might be 

worthwhile checking some different wavelets for different applications. 

 The very promising application is to use this technique to design the nonlinear 

control system to meet control requirement.  
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