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Abstract

Supply Chain Reconfiguration and Inventory Integration

in Stochastic Environment

Hany Osman, Ph.D. 

Concordia University, 2011

The problem addressed in this thesis concerns a company that recently has been 

failing to fulfill its promised delivery dates to its end customers. The problem is analyzed 

from a supply chain perspective to investigate the reasons behind this failure. The first 

reason for this delivery lag is the existence of some unreliable suppliers that are not 

capable of delivering the raw and the machined components on time. The second reason 

is related to the inefficient inventory systems employed at the existing stockpoints in the 

chain. The inventory policy at each stockpoint not only fails to provide enough inventory 

levels to satisfy the downstream demand but it also ignores demand and lead time 

variations. Furthermore, the company expects a demand increase which will call for a 

long-term capacity reallocation throughout its supply network. This thesis proposes new 

methods for deciding on the updates that should take place at the strategic and tactical 

planning levels of this problem. 

At the strategic decision level, the supply chain is reconfigured to reallocate the 

available capacities and distribute material among the reliable and coordinated suppliers. 

A bilinear goal programming model is developed to represent the strategic 

reconfiguration and supplier selection problem studied at this stage. Three goals are 

considered through this model: distributing material among highly reliable suppliers, 
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distributing material among well-coordinated suppliers, and distributing material in such 

a way as to minimize distribution and inventory costs. A modified Benders 

decomposition algorithm is proposed to handle the complexity of this model. The 

algorithm saves about 75% of the computation time compared to a generic linearization 

scheme. 

At the tactical level, a joint inventory-production system is designed to decide on the 

cycle time, the shipping frequency, the order quantity, and the production sequence at 

each member of the supply chain. A novel formulation of the economic lot and delivery

scheduling problem is established to determine the optimal inventory and production 

sequence policies. Common cycle time and integer-multiplier policies are applied to 

synchronize the supply chain. A hybrid algorithm integrating linearization, outer 

approximation, and Benders decomposition techniques is developed to solve the 

proposed joint inventory-production models. The integer multiplier mechanism attains 

cost savings up to 16.3% as compared to the common cycle time policy. 

To deal with the underlying variations in demand and delivery lead time, two models 

representing decentralized and centralized safety stock placement approaches are 

developed. Order statistics distributions are consulted to determine the functional lead 

time at the multiple sourced stockpoint existing in the chain. Each strategy states the fill 

rates and the safety amounts required to satisfy the desired end customer service level. 

Nonlinearity and binary restrictions involved in the centralized model are handled 

through the Benders decomposition technique. Cost savings between 22.17% and 44.15% 

are achieved when safety amounts are placed using the centralized policy instead of the 

decentralized one.
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In addition to contributing to the field of research through introducing new models 

and solution algorithms, the thesis provides the industry with viable supply chain 

strategies for handling problems such as supplier selection, distribution networks and 

inventory control.
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Chapter 1     

Introduction

1.1 Supply Chain Modeling and Optimization

One of the most important planning stages in supply chain management is modeling 

the processes running across the chain, especially those processes that show interactions 

between supply chain members.  Given the fact that actions taken by one member can 

influence the profitability of others, policies that manage these shared activities should be 

devised from the supply chain global perspectives.  Procurement, resource allocation, and 

demand management are some examples of joint processes in which deciding upon them 

from a supply chain standpoint returns benefits to the all the supply chain members. 

Supply chain operations are managed through three planning levels, strategic, tactical 

and operational. A particular decision is categorized into one of these three levels based 

on how frequently the decision is taken. Table 1.1 classifies decisions considered through 

supply chain operations management.

Decisions deployed at these levels can be optimized in a hierarchical manner in 

which results of a parent level are considered fixed while deciding on a child level. Such 
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an approach to planning is followed in Alebachew et al. (2009) who present two models 

for consecutively establishing strategic and tactical plans. Ahumada et al. (2009) review 

models that have been developed to plan agricultural supply chains strategically, 

tactically and operationally. Alternatively, two or more decision phases can be integrated 

to be planned together. Hammam et al. (2009) plan for strategic and tactical decision

levels simultaneously through one model developed to design a supply chain.

Table 1.1 Hierarchy of supply chain decision levels

Planning level Time horizon Considered decisions

Strategic Long term (2+ years)

 Number, size, location of facilities

 Information and equipment technology required

 Long-term raw material and energy contracts

 Labor skills needed

Tactical Quarter to 2 years

 Operation hours and output rates

 Workforce size

 Production decisions

 Inventory decisions

 Transportation strategies 

 Subcontracting levels

Operational Short term

 Daily production level and distribution planning

 Production scheduling  

 Material and order processing follow-up

 Shipping modes

1.2 Problem Definition

The problem stated in this thesis is a prototype of an industrial case defined at an 

assembly company. The company is looking to update the supplying strategies of one of 

the component families used in the final assemblies. The configuration of the supply 

chain of these components is depicted in Figure 1.1. The last stage of this chain is the 

company which assembles components into finished products. The intermediate stage is a 
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set of Tier1 (T1) suppliers. The company depends on these suppliers as outsources to 

perform the machining processes for the components. The initial stage is the raw 

component suppliers, Tier2 (T2) suppliers. The procurement process starts from the 

company which sends the demand forecast to the outsourcing T1-suppliers. At this 

juncture, this forecast is updated based on the bill of material (BOM) to calculate the 

components forecast which is sent to the raw component T2-suppliers.

The company plans to design new supplying and inventory strategies throughout the 

supply chain for three reasons. The first reason is related to the delay occurring in 

receiving the raw components at the T1-stage, and the machined components at the last

stage. This serious drawback stems from the poor delivery performance of the suppliers

and the inefficient inventory systems employed at each of these stages. These inventory 

systems are established based on random procurement decisions because some suppliers, 

especially at T1-stage, do not know precisely when and how much to order from their 

predecessors. Undoubtedly, these unplanned decisions cause the company to be out of the 

machined components stock required to run its assembly schedules. The second reason is 

T1-Suppliers
(Machining)

T2-Suppliers
(Components)

Assembly
Company

Raw Components Machined Components

Demand
forecast

Raw components
forecast

Figure1.1:  Supply chain network with material and information flows
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that the company wants to place sufficient safety amounts across the supply chain to cope 

with the variations occurring in upstream lead time and downstream demand. The third 

reason is related to the expected demand increase during the next three years which will 

call for the reallocation of the available capacities of the suppliers at each stage.

The problem being addressed incorporates different decisions that should be 

optimized at the strategic and tactical planning levels of the supply chain. Specifically, 

capacity reallocation and supplier selections require the strategic plans to be updated, 

while new tactical plans are required to determine the cycle and safety stock levels across 

the supply chain.

1.3 Research Objectives and Motivations

Throughout the thesis, the problem described in Section 1.2 is analyzed and resolved 

through the introduction of new strategies enabling the company to overcome the 

difficulties related to delayed deliveries and ordering decisions. In addition, the strategies 

introduced will plan for the expected demand increase by reallocating suppliers’ available 

capacities. The problem is investigated from a supply chain perspective, therefore the 

overall objective of the new strategies is to establish a robust supply chain in terms of 

capacity utilization, material delivery and inventory control. The new tactics, developed 

through establishing mathematical models, are not limited to the problem studied in this 

thesis; they can be adapted for application to other supply chains encountering 

deficiencies in their decisions at the strategic and tactical levels. 

To resolve the problem, three planning stages take place through which mathematical 

models are developed and new policies are established. The three stages are detailed 

below in hierarchical order.
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First, to cope with the expected increase in demand and improve the delivery 

performance of the entire supply chain, changes in the current strategic plans should take

place. In this regard, the thesis will introduce a strategic supply chain reconfiguration and 

supplier selection (SCRSS) model that aims at getting rid of those members who cause

the supply chain to fail, and reallocating capacities of the selected suppliers. Primarily, 

the model redistributes material among the reliable and highly coordinated suppliers and 

secondly it keeps distribution costs at minimum. The new strategy attained at this level 

will specify material flow throughout the chain on a yearly basis.

Second, to optimize inventory and production decisions taken at the tactical level of 

planning, a joint inventory-production system will be designed.  The system is formulated 

through the economic lot and delivery scheduling problem (ELDSP) representation. This

representation will be employed to synchronize the supply chain so that it can respond 

rapidly to changes in demand and product designs. Also, synchronization will enhance

the coordination among suppliers. 

A new, efficient formulation of the ELDSP will be introduced based on the quadratic 

assignment (QA) representation. Through this formulation, two policies will be

investigated to carry out the synchronization. The first policy is the just-in-time policy 

that restricts each member of the chain to employing the common cycle time policy, 

while the second is the integer multipliers mechanism that limits the cycle time of a 

member existing at a given stage to being an integer multiplier of the cycle time of its 

downstream stage. Each of these synchronization approaches will establish the new 

ordering and production strategies required at the tactical decision level. This new 

strategy will determine the cycle time, the order quantity, and the shipping frequency at 
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each supplier and the assembly company.  The strategy will also specify the production 

sequence at each supplier facility.

Third, to cope with the uncertainty of customer demand and supplier lead time, 

adequate safety amounts should be placed at the relevant stockpoints throughout the

supply chain. Two safety stock placement (SSP) policies will be designed in order to 

enable the prescribed customer service level to be achieved. 

 The first policy will be designed based on the decentralized approach of 

holding safety stocks, in which each stockpoint is responsible for coping with

the variability of its successor’s demand and predecessor’s lead time.  A 

supply chain SSP model will be developed to specify the fill rate along with 

the sufficient safety amounts that should be employed at each stockpoint to 

meet the underlying uncertainty.  In addition to these two decision variables, 

the recommended strategy at this stage will specify the reorder point at each 

stockpoint to complete the identification of the (Q, r) inventory system that 

should be established.  

 The second policy will be designed to set up safety stock consolidation centers 

throughout the supply chain. In this policy, the safety amounts required from 

all stockpoints placed in a given stage will be consolidated at the most 

relevant one among them. The purpose of such consolidation is to reduce 

these safety amounts, which will be reflected positively on the safety stock 

holding costs. Such a reduction can be accomplished through pooling the 

variability of lead time demand encountered by stockpoints of a given stage at 

one aggregation place. A supply chain consolidation (SSC) model will be 



7

proposed to select these aggregation centers based on capacity restrictions, 

holding costs, and credits given to each candidate center to encourage 

consolidation.

A framework of these planning stages is shown in Figure 1.2. Strategic decisions are 

taken first to reconfigure the supply chain. This includes decisions regarding supplier 

selection, material distribution and capacity utilization. In the intermediate and final 

stages, results of the material distributions obtained from the topmost planning level will 

be introduced into the inventory models to represent the demand at each stockpoint. In 

the same hierarchical manner, the order amounts resulting from the inventory policies 

devised at the second stage will be inserted into the safety stock models to establish 

adequate safety stock levels. 

Strategic decisions
 Selecting suppliers
 Establishing links between suppliers
 Distributing materials among the selected 

suppliers
 Allocating suppliers’ capacities

Tactical decisions
 Shipping frequencies
 Inventory levels
 Production sequence
 Procurement cycle time
 Order amount

Decisions to cope with uncertainty
 Reorder point
 Fill rate
 Safety stock
 Consolidation centers

Figure 1.2 Outline of the decisions considered through the three planning stages 
designed to solve the underlying problem
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1.4 Research Methodology

The research investigates a real life problem to ensure that the strategies proposed in 

this thesis can be applied in the industry. An industrial supply chain problem defined at a 

Canadian aerospace company is studied. Information about the on-time delivery 

performance of each member of the chain and coordination with other members is 

collected. Also, the uncertain environment in which the supply chain functions and the 

strategic and tactical restrictions imposed on the supply chain activities are defined. 

Following this, the new objectives that will identify the new supplying strategies are 

presented.

The decision-making process will take place at three integrated stages, namely the

supply chain strategic reconfiguration phase, the inventory and production control phase 

and the safety stock optimization phase. The relevant literature is reviewed to discover 

how each of these problems has been addressed by other researchers and to provide a 

background that will help in developing efficient solution methodologies. 

The strategic level combines decisions regarding supplier selection and material 

distribution. A bilinear mathematical model will be formulated to represent this problem.

In this model, bilinearity appears in the formulation of the first objective of the model 

related to assigning the largest amount of material to the reliable and coordinated 

suppliers. This is because the amount of material assigned to a given supplier, which is a 

continuous variable, is multiplied by a binary variable representing the decision taken on 

this supplier. In order to deal with the difficulty associated with bilinear terms, two 

mathematical programming techniques can be employed. The first is the linearization 

approach that linearizes the bilinear model into an equivalent linear model. The second is 



9

to apply the Benders decomposition (BD) technique that handles the difficulty of bilinear 

terms through separating binary variables and continuous variables.       

At the tactical planning level, inventory policies and production sequences at each 

member of the chain have to be established. Given that the sequence of production affects 

the inventory holding cost of the unprocessed and finished items, it is more economic to 

incorporate sequencing decisions while determining ordering decisions. The problem 

resulting from this incorporation along with seeking a synchronized supply chain is 

known as the ELDSP. The problem is handled in the literature through heuristic and 

metaheuristic approaches, while it can be handled more efficiently through mathematical 

programming techniques such as linearization, BD, and outer approximation (OA)

techniques. These approaches provide a greater opportunity to reach optimal solutions as 

compared to those techniques applied in the literature.

Prior to design, the safety stock placement model, the lead times at each tier and the 

assembly facility have to be determined. Since all the tiers and the assembly facility 

receive materials from multiple sources having different lead times, the functional lead 

time at each supply chain member can be calculated by consulting order statistics 

probability distributions. 

Safety stock strategies will be established through the development of mathematical 

models that tackle the safety stock placement problem from a supply chain perspective. 

By solving these models through the use of mathematical programming tools, optimal fill 

rates, safety amounts, and consolidation centers can be determined.

Computational experiments are designed to evaluate the ability of the proposed 

models to provide feasible solutions to different supply chain configurations. In addition, 
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these experiments are devised to check the efficiency of the proposed methods in 

reaching optimal solutions to the tested problems. Comparative studies of the alternative 

policies introduced at the tactical planning level are conducted. For confidentiality 

reasons, the actual data related to the real case could not be acquired. Instead, different 

sets of hypothesized data are used to run the experiments.

The methodology used in conducting this doctoral research can be divided into three 

main stages. The first stage includes defining the problem, and establishing a 

mathematical and statistical background. The second stage involves developing 

mathematical models and solution algorithms. In the third stage the proposed models and 

algorithms are validated by conducting computational experiments. Figure 1.3 illustrates 

the outline of the applied research methodology.

  

Defining an Industrial Problem 
(Decisions - Restrictions - Objectives)

Developing Mathematical Models and Algorithms 

Validating the Proposed Solution Approaches
(Computational Experiments and Comparative Studies)

Establishing a Background
(Literature Review - Mathematical and Statistical Considerations)

Strategic 
Reconfiguration and 
Supplier Selection 

Problem 

Joint 
Inventory-Production 

System

Supply Chain Safety 
Stock Placement

Problem

Stage I

Stage II

Stage III

Figure 1.3 Stages of the applied research methodology 
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In this chapter, the supply chain problem under study has been defined. The problem 

will be solved in three stages in chapters 3, 4, and 5. The objectives and motivations of 

this thesis stated in details. The thesis will provide new models, solution approaches and 

polices that will assist supply chain researchers and practitioners while dealing with 

supply chain reconfiguration and inventory integration problems. The applied research 

methodology is discussed to show how the proposed models will be handled through 

decomposition and linearization techniques. The outline of the thesis is depicted in the 

following section.

1.5 Thesis Outline

The thesis is composed of seven chapters. The remaining chapters are organized as 

follows:

 Chapter 2 reviews the literature and summarizes the research that has been 

conducted on the three underlying sub-problems: the SCRSS problem, the

ELDSP, and the SSP problem. 

 Chapter 3 introduces the proposed research concerning the strategic part of the 

problem. The bilinear goal programming model developed to formulate the 

SCRSS problem is discussed.  The chapter also explains the established 

decomposition algorithm that adapts the classical BD approach to handle goal 

programming models. The chapter ends with the numerical experiments 

implemented to validate the model and to compare the proposed algorithm to the 

generic linearization scheme used as an alternative approach to solve the proposed 

SCRSS model. 
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 Chapter 4 deals with the tactical part of the problem. It explains how the proposed 

supply chain joint inventory-production system is designed.  The new formulation 

of the common ELDSP is explained. The hybrid algorithm developed to solve the

two proposed supply chain inventory models is discussed.  Experiments on 

different supply chain problem sizes are conducted to validate the proposed 

models and evaluate the computational efficiency of the hybrid algorithm. A 

comparative study is conducted to compare the applied synchronization strategies. 

 Chapter 5 tackles the uncertain environment surrounding the supply chain. The 

proposed safety stock models representing centralization and decentralization 

strategies of placing safety stocks are demonstrated. The decomposition approach 

used to solve the proposed SSC model is illustrated. Finally, computational and 

comparative studies are conducted to assess the developed models and the 

proposed algorithm, and at the same time show how much saving can be attained 

through consolidating safety stocks based on results of the centralization policy.

 Chapter 6 concludes the thesis and states its contributions to the field of research 

and the supply chain community. In addition, some future extensions to the 

research are suggested.

 The appendix attached at the end of the thesis presents the theory applied in this 

research. The mathematical programming background is given through a 

discussion of linearization and decomposition techniques applied to solve the 

proposed models. Also, some statistical considerations about order statistics (OS) 

and approximation of the standard loss integral (SLI) are indicated.
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Chapter 2   

Literature Review

In this chapter, three independent literature reviews are presented to cover the related 

research that has been conducted on the supplier selection problem, the economic lot and 

delivery scheduling problem (ELDSP), and the safety stock placement (SSP) problem.

Various solution approaches are applied to solve these three models such as mathematical 

programming techniques, simulation, heuristics, genetic algorithms and multi-agent 

systems. However, the literature shows that mathematical programming models and 

techniques are powerful tools that can enable supply chain decision makers to reach 

optimal supply chain policies for these three problems.   

2.1 Supplier Selection Problem

This part of the review focuses on the recent research conducted on the supplier 

selection problem. The relevant articles that have been published since 2000 are reviewed

to show the preferred criteria for selecting suppliers as well as the applied techniques for

solving this problem. This section also includes the application of the Benders 

decomposition (BD) technique to supply chain related problems.
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Supplier selection criteria may differ from one problem to another. Among these 

criteria, cost minimization is the most common one involved in deciding on the selected 

suppliers. For example, in Yan et al. (2003) cost is the single criterion used in the 

supplier selection decision process. Logical constraints representing the relationships 

among products, producers and suppliers are incorporated with system constraints in a 

mixed integer model that minimizes production, transportation, distribution and 

procurement supply chain costs. A simplified representation of these logical constraints is 

developed to obtain a reduced number of inequalities that replace the logical constraints 

in the proposed model. In Tanonkou et al. (2006) suppliers are selected based on 

shipment and ordering costs, and safety stock cost at the supplied distribution centres.

The work integrates the facility location problem with the supplier selection problem in a 

nonlinear programming model that is solved using the Lagrangean Relaxation method. 

Akanle and Zhang (2008) tackle the problem of satisfying customer orders by 

choosing the optimal set of resources, suppliers of various components, assembly plants, 

and transportation options at minimal cost. The time involved in delivering and 

manufacturing components and assembling final products is restricted by the due date of 

the order. A multi-agent system is developed to model the resource options existing in the 

supply chain. An iterative agent bidding process is proposed to allow the agent-based 

supply-chain model to interact with customer orders representing the future demand. 

Other criteria such as delivery performance, customer satisfaction, quality, flexibility 

and environmental performance are also used to decide which suppliers are selected. 

Ehap and Benita (2000) develop an iterative method to solve a multi-objective model 

handling both strategic and operational decisions of the supply chain. Each level of 
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decisions is represented by a sub-model. The strategic sub-model aims at optimizing 

supply chain configuration and material flow decisions, while the operational model aims 

at achieving a trade-off among cost, service level and flexibility measures, and at the 

same time accommodates for anticipated demand.

Altiparmak et al. (2006) propose a mixed integer nonlinear model with three

conflicting objectives: cost, service level, and capacity utilization balance. The set of 

Pareto optimal solutions is obtained using a genetic algorithm. The model offers different 

alternatives to the decision makers by applying two different weighting approaches to the 

conflicting objectives. Cost, delivery performance and environmental performance are 

the three multi-objectives of the genetic algorithm proposed by Komoto et al. (2005). The 

proposed algorithm selects a suitable reconfiguration rule that governs distribution of 

orders among suppliers. A discrete event simulation technique is used to evaluate these 

objectives. The reconfigured chain is examined to check whether or not it is capable of 

satisfying environmental and delivery requirements. 

In Dotoli et al. (2005), a hierarchical decision system is proposed to design an 

integrated e-supply chain. At the first level, candidates for each stage of the chain are 

ranked based on their financial return and cost, risk management, flexibility, service 

quality, service time, and environmental performance. Then a network design module 

that represents the integrated e-supply chain with a digraph describing partners, material 

and information links, determines the configuration of the network. The selected network 

configuration is evaluated through a validation module by comparing tactical and 

operational performance indices.
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Zhiying and Jens (2007) propose a multi-objective supplier selection model solved 

using a genetic algorithm to recover the nonlinearity of the model. A trade-off among 

four criteria, cost, quality, delivery and flexibility, is used to support the decision for

selecting suppliers. Huang and Keskar (2007) integrate strategic thinking with 

quantitative optimization in order to make the optimal decisions on supplier selection that 

match the targeted business strategy. They propose a set of comprehensive metrics 

classified under seven categories: reliability, responsiveness, flexibility, cost and 

financial, assets and infrastructure, safety, and environmental metrics. 

Other researchers use special techniques to assign weights to the criteria controlling 

the supplier selection decisions. Williams (2007) combines analytic hierarchy process 

(AHP) and goal programming (GP) to model a multi-objective decision-making problem 

that aims at selecting the best warehouses among the possible candidates. The AHP is 

used to give weight or priority to warehouses based on two conflicting criteria: customer 

satisfaction level and operational cost. These priorities are incorporated in a GP model 

that considers system and goal constraints. In Liao and Kao (2010), the AHP approach is 

incorporated with the Taguchi loss function and multi-choice goal programming model in 

an integrated approach to identify the selected suppliers among the candidates. The 

Taguchi loss function is applied to estimate the total deviations from the targets specified 

for the five criteria used to select suppliers. These criteria are product quality, offering 

price, delivery lead time, service, and warranty degree.

Demirtas and Üstün (2008) integrate analytic network process (ANP) and a multi-

objective mixed integer linear programming model to solve the supplier selection and 

order allocation problem. Weights are assigned to the multi-criteria using the ANP 
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approach that extends the concepts of the AHP. The set of the efficient solutions of the 

model is obtained using the ε-constraint and reservation level driven Tchebycheff 

procedure methods. The quality of the solutions obtained by these two algorithms is 

compared using an additive utility function. The suppliers are evaluated according to 14

criteria that are involved in four control hierarchies: benefits, opportunities, cost and 

risks. In Lin et al. (2011), the ANP approach is integrated with the TOPSIS technique to 

evaluate candidate suppliers based on their unit price, quality defect rate and delayed 

delivery rate. The resulted score of each supplier represents the coefficient of the 

objective function of the linear model formulated to represent the supplying process at 

the motherboard manufacturer, Asus Tech., in Taiwan.

Huang and Qu (2008) deal with a specific type of supply chain in which the 

alternative suppliers of a stage have the right to decide autonomously on the

configuration of their respective upstream stages. The methodology applied to configure 

this kind of chain is analytical target cascading (ATC) in which each alternative 

enterprise existing in a stage should be modeled as an individual ATC element. They 

introduce new kinds of elements, ‘‘OR‘‘ elements, to the ATC in order to represent 

alternative enterprises at each stage. Each ‘‘OR‘‘ element will select its best alternative 

element based on predefined internal working logic and evaluation criteria. Table 3.1 

presents a classification of the reviewed articles that investigate the supplier selection 

problem. The table shows fourteen different criteria that can be used individually or 

simultaneously to select a supplier. A detailed review of such a supply chain problem is 

presented in Ho et al. (2010). This review provides more criteria to select suppliers than 

those appearing in Table 2.1.  
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Table 2.1 Taxonomy of  the reviewed articles investigating the supplier selection problem
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Ehap and Benita (2000) * * *
Yan et al. (2003) *
Komoto et al. (2005) * * *
Dotoli et al. (2005) * * * * * *
Altiparmak et al. (2006) * * * *
Tanonkou et al. (2006) *
Zhiying and Jens (2007) * * * *
Huang and Keskar (2007) * * * * * * *
Williams (2007) * *
Demirtas and Üstün (2008) * * *
Akanle and Zhang (2008) *
Liao and Kao (2010) * * * * *
Lin et al. (2011) * * *
This Thesis * * *

The BD technique has been applied to solve supply chain network design problems 

after the generalization of the technique by Geoffrion (1972) in order to handle 

nonlinearity using nonlinear duality theory. In Geoffrion and Graves (1974), a multi-

commodity capacitated distribution system design problem is solved to optimality using a 

small number of Benders cuts. 

Van Roy (1986) introduces a unified framework that combines BD and Lagrangian 

relaxation to solve the capacitated facility location problem. For the same problem, 

Wentges (1996) strengthens Benders cuts through two heuristics that modify a new cut in 

order to accelerate upper and lower bounds convergence. Üster et al. (2007) also 

accelerate the classical BD technique by introducing three different approaches that add 

multiple cuts using dual problem disaggregation. 



19

Dogan and Goetschalckx (1999) have developed an integrated design method based 

on BD to solve a multi-period production-distribution system with seasonal customer 

demand and multiple network configurations. For the supply chain design problem with 

multiple transportation modes, the BD technique outperforms a proposed simplex-based 

branch-and-bound method when applied to complex problems (Cordeau et al., 2006). 

Cakir (2008) reformulates the multi-commodity, multi-mode distribution planning 

problem using the BD approach. The algorithm reaches the optimal solution showing the 

validity of using Benders’ cuts on such problems. Costa (2005) provides a detailed survey 

of the application of the BD approach to the fixed charge network design problem.

In this thesis, the BD approach is adapted to deal with bilinear goal programming 

models. The model proposed in chapter 3 to select suppliers and distribute materials 

among them is decomposed into two goal programming models. The first model which is 

represented by the master problem is formulated to select suppliers based on their on time 

delivery performance and the level of coordination among them. The second model that 

is represented by the sub-problem assigns materials to the selected suppliers showing the 

highest on time delivery performance and level of coordination, and at the same time to 

minimize the supply chain transportation and inventory costs.

2.2 Economic Lot and Delivery Scheduling Problem

The main concern of the ELDSP is how to decide on cycle time at each stage of a 

supply chain as well as production sequence at each supplier node. The objective is to 

fulfill end customer demand with minimum transportation, and inventory holding and 

setup costs. This problem is critical because it not only integrates supply chain stages but 

also incorporates inventory and production decisions. An optimal solution has been found 
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for a single supplier and single assembler running on the common cycle time policy 

(Jensen and Khouja, 2004; Ju and Clausen, 2004; and Torabi et al., 2006). For the same 

policy, the optimal solution is also reached by Nikandish et al. (2009) but for small and 

medium problem instances of a supply chain comprising one supplier at the initial stage, 

multiple manufacturers at the intermediate stage and multiple retailers at the final stage. 

For larger and more complex supply chains, the problem has not yet been tackled, neither 

for the common cycle policy nor for other synchronization policies like the integer 

multiplier mechanism. 

The ELDSP was the motivation for research by Hahm and Yano (1992). The strategy

introduced in their work determines the production and delivery intervals of a single item

through a supply chain including one supplier, and one assembly facility. They prove that 

the optimal solution of such a problem must have an integer ratio between the production 

interval and the delivery interval. This leads to the development of a simple procedure 

that provides optimal values of these intervals by examining different cases for this ratio. 

For the multiple items case, Hahm and Yano (1995-a) apply the common cycle time 

policy at supplier and assembler sites. The objective is to find the production cycle time 

at the supplier site that is followed by a single shipment to the assembler at the end of 

each cycle. A heuristic procedure is proposed to find the cycle time and production

sequence that minimize inventory and transportation costs. An error bound procedure is 

developed to evaluate the quality of the proposed heuristic. Hahm and Yano (1995-b) 

relax the assumption by Hahm and Yano (1995-a) regarding the single shipment at the 

end of each cycle. They allow for multiple shipments through a production cycle which 

requires the multiple items to be partitioned into groups. A lower bounding approach is 
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proposed to assess the quality of the heuristic used in sequencing the items. The heuristic 

is found to be very close to the lower bound and also surpasses the single shipment 

strategy. 

The power of two multipliers policy is proposed by Hahm and Yano (1995-c). In this

policy, each item is produced 2m times, where m is an integer that may differ from one 

item to another. The delivery policy in Hahm and Yano (1995-c) differs from that

proposed by Hahm and Yano (1992-a), in which multiple equally-spaced shipments take

place at each cycle. The experimental study conducted in this work shows two 

distinguished benefits of the power of two multipliers mechanism. First, it outperforms 

the common cycle time policy. Second, it results in cost savings as compared to other 

approaches that sequentially decide on production and delivery decisions. 

Khouja (2000) extends the work of Hahm and Yano (1995-a) to consider quality 

issues that require a rework cost to be added, and volume flexibility that requires the 

production rate to be adjusted. The solution obtained using a proposed heuristic is 

compared to the global optimal solution obtained by enumerating all the possible 

sequences. The algorithm reaches the optimal solution in 68% of the problems tested and 

provides a very close objective value for the rest of the problems.  Khouja (2003) 

proposes some incentive alignment mechanisms to encourage members of a supply chain 

to accept the synchronized policy of running on equal cycle time. The work focuses on 

the simple serial supply chain with one facility at each stage. A heuristic method is 

proposed to sequence the items involved at each stage of the chain. The method employs 

the RAND algorithm proposed by Kaspi and Rosenblatt (1991) and the sequencing rules 

proposed by Hahm and Yano (1995-a).
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Jensen and Khouja (2004) develop an algorithm for solving the ELDSP of a single 

supplier and one assembler inventory system to optimality in polynomial time. The 

algorithm starts with finding upper and lower bounds of the cycle time. Then it partitions 

this feasible range of the cycle time into a number of intervals in which each one has a 

unique optimal sequence. The algorithm guarantees optimality because it enumerates the 

associated cost of each interval, then selects the minimum among them. This algorithm is 

computationally studied in Ju and Clausen (2004). Problems containing a small number 

of items are handled in efficient solution times, but the algorithm takes a longer time for 

large-sized problems.  Consequently, Ju and Clausen (2004) introduce a hybrid algorithm 

that mixes the heuristic proposed by Hahm and Yano (1995-a) with the Jensen and 

Khouja (2004) method. The hybrid algorithm reaches the optimal solution for large-sized

problems in a shorter time as compared to the heuristic proposed by Jensen and Khouja 

(2004) which performs better for small-sized problems.    

Torabi et al. (2006) develop a new mixed binary nonlinear model to represent the 

ELDSP for a simple supply chain. The chain is composed of single supplier 

manufacturing multiple items on a flexible flow line and an assembly facility running on 

the same cycle time as the supplier. An enumeration method that is capable of reaching 

an optimal solution to small scale problems is proposed. For medium and large scale 

problems, a hybrid genetic algorithm is developed. The algorithm not only provides near 

optimal solutions for large scale chains, but also it outperforms the enumeration method 

applied to small-sized chains. 

Another mixed binary nonlinear programming model to represent the ELDSP of a 

two-echelon supply chain is proposed by Torabi and Jenabi (2009). The model allows for 



23

lot streaming at the supplier site to minimize the manufacturing lead time. The proposed 

model could not be solved to optimality. Instead, two hybrid genetic algorithms are 

proposed to solve this complex model under two different strategies. The first algorithm

assumes that each production cycle time is a power of two multiplier of a basic period, 

while the second assumes production cycle time of each product is an integer multiplier 

of this basic period. Computational experiments show that the latter policy gives better 

solution quality than the former, while the former has less computation time than the 

latter.

A more complex inventory system is studied by Kim et al. (2006) in which a single 

manufacturer supplies multiple retailers. Each retailer receives its particular item on a 

number of equal deliveries and all items are rotating on the same cycle time. An efficient 

heuristic is used to decide on the raw material procurement policy, the production 

sequence, and the delivery quantity and frequency of the finished items.

In chapter 4, the ELDSP for a three stages supply chain is addressed. The most 

upstream and intermediate stages are composed of two sets of T2 and T1 suppliers 

respectively. The most downstream stage is an assembler. The problem is formulated in 

the quadratic assignment representation. A hybrid algorithm that combines linearization, 

Benders decomposition and outer approximation approaches is developed to solve large 

scale instances of this problem to optimality. Two synchronization policies are 

investigated to synchronize the supply chain based on the common cycle time approach 

and the integer multipliers mechanism. 
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2.3 Safety Stock Placement in Supply Chains

In the safety stock literature, two concepts can be applied while solving the SSP

problem using analytical models. The first one, proposed by Simpson (1958), is called the

local stock concept, which means that each stockpoint can control its inventory decisions

autonomously.  Alternatively, Clark and Scarf (1960) introduce the echelon stock concept 

wherein each stockpoint has to consider the inventory of its successors. 

Simpson’s (1958) model can be considered as one of the initial works that dealt with 

demand uncertainty in multi-stage production and inventory systems. The model 

determines the combination of service times which refer to the safety stock that should be 

offered by each stage to satisfy customer orders at a predetermined service level.  

Inderfurth (1991) extends this work and establishes the optimal policy for divergent 

supply chains taking into account the impact of demand correlation on SSP using risk 

pooling effects in divergent systems.

The work introduced by Clark and Scarf (1960) started a new research problem of 

safety stock in supply chains by introducing the echelon stock concept. Their model 

focuses on a single-item serial system undergoing stochastic demand and constant lead 

time. The solution algorithm, which is based on discounted cost dynamic programming,

can reach the optimal inventory policy. A similar study is carried out by Schmidt and 

Nahmias (1985) but for a supply chain of one item being assembled from two different 

components. Rosling (1989) generalizes the Clark and Scarf (1960) model by considering 

a general assembly supply chain. This general assembly system can be represented as a 

serial system in which the optimal policy can be found using the Clark and Scarf model.
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Inderfurth and Minner (1998) deal with different service measures that restrict the 

amount of safety stock. These measures are probability of stockout occurrence and 

quantity. Their proposed model seeks to find the safety amount that guarantees covering 

demand fluctuations during a time period called the coverage time. Minner (1997) 

derives the forward and backward recursive formulas to find the optimal policy of these 

coverage times. Dynamic programming algorithms that need little computation are used 

to find the solution for serial, convergent and divergent supply chains.

Graves and Willems (2000) simplify the SSP problem from its stochastic nature to a 

deterministic optimization by imposing some key assumptions. Each stage in the chain is 

assumed to work with a base-stock inventory policy having some guaranteed service time 

or stock to satisfy the stationary demand of its downstream stages. The source of 

uncertainty of the problem is the variability of customer demand while the replenishment 

lead time is assumed to be deterministic. The stochastic lead time demand is bounded by 

a maximum value that can be obtained from its mean and standard deviation for a given 

customer service level. They consider only supply chains that can be represented as a 

spanning tree while general supply chains under the same assumptions are handled by 

Graves and Lesnaia (2004). The optimal solution of such a general case is found using a 

branch and bound algorithm. 

Sitompul and Aghezzaf (2006) extend the problem addressed in Graves and Willems 

(2000), but for serial supply chains, to consider the capacity limitation constraints. They 

state that safety stock amounts have to be updated by a tabulated correction factor that 

relates safety stock with a measure representing degree of capacity to cover demand 

variations. Further relationships between demand variability, capacity, delivery lead time 
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and safety stocks are investigated in Sitompul et al. (2007).  These relationships provide a

deep understanding of the SSP problem in capacitated supply chains. Relying on these 

relationships, a solution approach is proposed and tested using Mont Carlo simulation.

Kim et al. (2005) deal with two echelon supply chains comprising a single supplier 

and multiple retailers under non-stationary demand pattern. Two adaptive inventory 

control models are proposed, namely centralized and decentralized models. In the 

centralized model, the supplier who manages the inventory system for all retailers should 

have a safety lead time to deal with demand uncertainty faced by the retailers. 

Conversely, in the decentralized model, each retailer should hold sufficient safety stock 

amounts to deal with demand variations.  Boulaksil et al. (2009) apply a simulation-based 

approach to determine the safety stocks of a multi-stage, multi-item supply chain. A 

mathematical model representing the supply chain planning problem is solved several 

times under a rolling horizon setting. The model allows backordering at each stage and 

does not state any assumptions about the demand distribution that is generated before 

solving the model in the form of a series of forecasts. The backorder amounts resulting

from the model represent the safety stock size that should be kept in the chain to prevent 

backordering. 

Jung et al. (2008) propose a linear programming model that determines the base stock 

level under dependency of service measures at different stages of a supply chain. The 

inventory level at production facilities and the base stock level at warehouses are also 

constrained by the safety production capacity limit. Louly and Dolgui (2009) consider an 

assembly system facing constant demand and discrete distributed random lead time of 

components delivery. The model is solved using a branch and bound algorithm and is 
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valid for any discrete probability distribution. The model also provides significant 

savings for assembly systems undergoing unreliable component delivery time. Persona et 

al. (2007) tackle the safety stock determination problem for assemble-to-order and make-

to-order systems. Their cost-based analytical models consider demand as a normally 

distributed random variable while they consider constant lead time for delivering the sub-

assemblies. 

The case of stochastic lead time and customer demand for a single stock is handled by 

Eppen and Martin (1988). An exponential smoothing model is proposed to estimate the 

unknown distribution parameters of lead time and demand. Using regression relationships 

implemented through simulation and factorial experiments, Hayya et al. (2009) obtain a 

regression equation that represents optimal cost, order quantity, and the safety stock 

factor in terms of cost parameters, standard deviation of demand, and standard deviation 

of lead time. The proposed model considers order crossover occurrence by working on 

the parameters of the effective lead time demand distribution.  Ettl et al. (2000) develop 

an inventory-queue model generating the base stock level at each store of a supply 

network. The network consists of a collection of stockpoints stocking only one item. The 

nominal lead time at each store is assumed to be independent and identically distributed 

while demand is considered to be non-stationary. The optimal solution is found by 

driving the gradients in explicit form then using a conjugate gradient routine that searches 

for the solution. 

Using Markove chain queue models, Saharidis et al. (2009) analyze two control 

policies for two echelon supply chains: base stock control and echelon base stock control. 

Each echelon has a subcontractor that is required to supply the echelon during stockout 
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periods. The underlying demand follows Poisson distribution while the production time is 

exponentially distributed. Numerical results show that jointly deciding on safety stock, 

subcontracting, and backordering is more profitable than independent control policies for 

these three decision problems.

Simchi-Levi et al. (2005) propose a unified framework that integrates stages 

employing continuous review base stock inventory control for tree structured supply 

chains. The underlying lead time is assumed to be stochastic, sequential and exogenously 

determined with known probability distribution while the customer demand follows an 

independent Poisson process. Based on the stochastic service model approach, a recursive 

equation that shows the backlog at each stage and characterizes the dependencies among 

stages is developed. 

The safety stock placement strategies proposed in this thesis consider the lead time 

and demand as two independent normally distributed random variable. The service level 

applied in the proposed models is the fill rate which represents a specified percentage of 

demand that will be satisfied from stock. The decentralized and centralized strategies 

proposed in chapter 5 establish the safety amounts required to be placed at each of the 

multi-sourced stockpoint, and at each given stage existing in the supply chain 

respectively. 
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Chapter 3   

Supply Chain Reconfiguration and Supplier 

Selection Problem

3.1 Introduction

This chapter discusses the solution methodology used to resolve the strategic part of 

the underlying problem. The objectives at this strategic level are to provide the future 

capacity utilization strategy required to cope with the expected demand increase, and to 

maximize the on-time delivery performance of the supply chain. In this regard, the supply 

chain has to be reconfigured in order to get rid of the unreliable suppliers, and to utilize 

the available capacities of the reliable and highly coordinated suppliers in satisfying the 

future demand. 

Some practical cases of reconfigured supply chains are summarized in Section 3.2. 

Section 3.3 identifies the decisions considered at the strategic planning level along with 

the objectives of the future supplying strategies. Section 3.4 discusses the proposed 

bilinear supply chain reconfiguration and supplier selection (SCRSS) model. The generic 

linearization scheme applicable to linearize this model is illustrated in Section 3.5. The
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modified Benders decomposition (BD) method proposed to handle the SCRSS model is 

explained in Section 3.6. This adapted BD algorithm handles bilinear goal programming 

models in which the complicating binary variables affect the values of the deviational 

variables of goal attainment. Computational experiments recorded in Section 3.7 show 

that the modified BD algorithm outperforms a generic linearization scheme by reaching 

the optimal solution for large-sized problems with about 75% reduction in the 

computation time.

3.2 Supply chain Reconfiguration: Real Cases

Several industrial examples are summarized in this section to show the practical 

reasons that call for reconfiguring a supply chain, and also to emphasize the significant 

role of reconfiguration in saving budgets and utilizing resources. For instance, the rapid 

advancement of technologies in the computer industry was the main driver behind 

reconfiguring the Digital Equipment Corporation supply chain (Arntzen et al., 1995). The 

new strategy reduced the cumulative cost by $1 billion and the assets by $400 million and 

increased unit utilization by 500%. P&G's supply chain has been reconfigured to 

optimize product sourcing problems (Camm et al., 1997). After two years of 

implementing modelling recommendations, 12 sites have been closed and annual savings 

have reached $250 million per year. 

The BASF North American distribution system is also a good example of a company 

that realized great benefits from reconfiguring its supply network (Sery et al., 2001). In 

1995, the firm placed the objectives of reconfiguring this network. The objectives aim at

reducing distribution costs and providing a sufficient level of customer service. The 

proposed model outcomes resulted in cost savings of $10 millions and increasing the 
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volume delivered within one day from 77% to 90%. Hewlett-Packard (HP) achieved cost 

savings of $10 million by reducing the number of contract manufacturers (Laval et al.,

2005). For a divergent supply chain reconfiguration, Vila et al. (2006) analyze raw 

material processing when there is a limited and regulated availability of raw material. The 

study was applied in a partnership with three large Canadian lumber companies and a 

15.4% increase in after tax profits was attained. 

3.3 Strategic Planning Level 

As the company in this study will encounter a demand increase during the next three 

years, plans at the strategic level should have an emphasis on providing the adequate

capacity to face this anticipated demand. Also, the established policies at this level should 

be able to retrieve the company’s competitive position that has been affected by the 

unsatisfactory on-time delivery performance of the unreliable suppliers. Accordingly, the 

company is planning to rely on those suppliers who are capable of fulfilling their 

promised delivery dates and to discard the unreliable suppliers from any future plan.

To establish the strategic plans, the supply chain depicted in Figure (1.1) has to be 

reconfigured in order to select the suppliers, reallocate their capacities and distribute the 

raw and machined components among the selected suppliers. T2-suppliers at the initial 

stage and T1-suppliers at the intermediate stage are chosen based on their ability to 

deliver the raw and machined components on time. The raw components are distributed 

among tiers at these two stages based on their on-time delivery performance and the 

coordination recognized between them. A minimum distribution cost is also considered at 

this level but at a lower priority.
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The strategic reconfiguration problem is handled as a multiple-objective optimization 

problem, in which the company plans to assign the largest amount of material to the 

reliable and coordinated suppliers and at the same time seeks to achieve minimum 

distribution cost. This multi-objective optimization problem is handled through the goal 

programming (GP) approach. The proposed GP model considers strategic constraints that 

are imposed on supply chain reconfigurations. These include constraints specifying the 

size of each stage, the available capacity of each link and node existing in the chain, 

material balance at each node, and inventory constraints. The output of this strategic 

model is the reconfigured chain described by number of selected tiers and material 

distribution among them on an annual basis.

3.4 Supply Chain Reconfiguration and Supplier 

Selection Model

A bilinear GP model is developed to establish the future supplying strategy of the 

company. The model incorporates the three goals concerned with the on-time delivery 

performance of each supplier, coordination among T1- and T2-suppliers, and distribution 

and inventory costs. Based on the priority assigned to each goal, a compromised solution 

is attained that minimizes the deviation from each target planned for each goal.  

1 1 2 2 3 3 (3.1)Min G w d w d w d
    

Subject to

1 1 111 1 1 11 1
(3.2)

I RJ T J K T

j j ijt k k rjkt
ri j j kt t

T L X T L X d d Z
 

    
        
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2 2 21 1 1 1
(3.3)
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   
     
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
     

Objective function (3.1) aims at minimizing the deviations 1d  , 2d  , 3d  from the three 

values Z1, Z2 and Z3 representing the target of each goal. The values of these targets can 

be found by solving the SCRSS model with a single objective that represents each goal 

individually.  The first goal (3.2) seeks to assign as much material as possible to those 

reliable suppliers having the highest on-time delivery performance while the second goal 

(3.3) tries to dispense the raw components among the T1-suppliers preferred by T2-

suppliers. 

The on-time delivery measures Tj and Tk reflect the recognized delivery performance 

of each supplier during the last year. Based on the percentage of the orders delivered on 

time, a given supplier is assigned a score between 0 - 100. The preference measure Fjk

represents how far T1-supplier j is favored by T2-supplier k. Preference is measured on a 

scale between 0 -100 based on the ability of T1-suppliers to forecast the dependent 

demand of the company and the stability of their ordering policy. If the management 

desires to decide on these parameters Tk , Tk , Fjk subjectively, values of these parameters 

can be represented in the model by fuzzy numbers. Distribution and inventory costs are 

kept at a minimum through the achievement of the third goal (3.4). Transportation costs 

are represented as a percentage of unit price at T2-suppliers or unit machining cost at T1-

suppliers and are embedded in the cost parameters Crjkt and Cijt respectively. 
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The first goal (3.2) has the highest priority as it assigns the material to those suppliers 

having the best on-time delivery performance. At a lower level, distributing the raw 

components among the T1-suppliers preferred by T2-suppliers can help in enhancing the 

material on-time delivery performance. Hence, the highest weight is assigned to the on-

time delivery goal followed by the second goal. Cost minimization has to be at the lowest 

priority because distributing the material among reliable and well coordinated suppliers 

might be accompanied by a high distribution cost. Hence, w1, w2, w3, is introduced in the 

model to represent the penalty associated with each unit of deviation from the target of 

each goal. The analytic hierarchy process or the analytic network process could be 

utilized to find values of these weights. Altering the values of these weights results in 

different scenarios among which the decision maker can select the preferred one.

Equations (3.5) and (3.6) restrict the number of selected T1- and T2-suppliers by the 

given parameters LT1 and LT2 respectively. Equations (3.7) and (3.8) ensure that a link is 

established only among the selected suppliers, while equations (3.9) and (3.10) assign 

machined and raw components to those selected suppliers.

1
1

(3 .5 )
J

j
j

L LT

 

2
1

(3.6)
K

k
k

L LT

 

1,2..., , 1,2.... (3.7)jk jL L j J k T  

1, 2..., , 1, 2.... (3.8)jk kL L j J k T  

1,2..., , 1,2..., , 1,2... (3.9)ijt jL L i I j J t T   

1,2..., , 1, 2..., , 1,2... (3.10)rkt kL L r R k K t T   

Relying on a single source to supply the material is very risky. Also, having many 

sources for material procurement may not lead to a highly coordinated supply chain.  The 
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purpose of constraints (3.11) and (3.12) is to assign a given item to at least N number of 

suppliers. This parameter should be set to a value greater than one to avoid relying on a 

single source. Equations (3.13) and (3.14) prevent the assigning of any specific item to 

too many sources through the parameter Pr that forces the assigned material to be greater 

than a fraction of that item’s demand. For example, if it is required to share the item 

among at most five suppliers, Pr should be set equal to 0.2. Moreover, the fraction Pr

restricts the shipping amounts to satisfy a minimum allowed limit assuring the 

practicality of assigning a product to a supplier.

1
1, 2..., , 1, 2... (3.11)

J

ijt
j

L N i I t T

   

1
1, 2..., , 1, 2... (3.12)

K
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
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1,2.... , 1, 2... , 1, 2.... (3.13)X Pr D L i I j J t Tijt it ijt   

1 1
1, 2.... , 1, 2... , 1, 2.... (3.14)

J I

rjkt it ir rkt
j i

X Pr D P L r R k K t T
 
    

Equations (3.15) and (3.16) restrict the total shipping amounts through each link to 

satisfy the maximum capacity of that link at any time period, whereas equations (3.17) 

and (3.18) limit the shipped amount from each item to the allocated capacity to that item 

at each node.

1
1, 2.... , 1, 2.... (3.15)
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1
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In the underlying supply chain, raw material suppliers cannot supply all varieties of 

raw material, which is not the case for T1-suppliers that can perform all required 

machining operations. Equations (3.19) and (3.20) reserve capacity to the items assigned 

to a given supplier. In equation (3.19), if the binary variable Lijt is equal to zero, the 

reserved capacity Rijt will be zero, otherwise this reserved capacity will be positive. 

Similarly in equation (3.20), capacity of a given T2-supplier k is reserved to the assigned 

raw component r if and only if the binary variable Lrkt is equal to 1 and the parameter Srkt, 

that represents the ability of the supplier to provide the raw component r, is equal to 1.

Equations (3.21) and (3.22) ensure that the summation of the quotas assigned to each 

item should not exceed the capacity of each supplier. 

1, 2.... , 1, 2... , 1, 2... (3.19)ijt ijtR M L i I j J t T   

1, 2.... , 1, 2... , 1, 2... (3.20)rkt rkt rktR M S L r R k K t T   

1
1, 2.... , 1, 2.... (3.21)

I

ijt jt j
i

R U L j J t T

   

1
1, 2.... 1, 2.... (3.22),

R

rkt kt k
r

R U L k K t T

   

The company’s demand is met through equation (3.23) while equations (3.24), (3.25) 

and (3.26) are the material balance, inventory and shortage limits at T1-suppliers 

respectively. For some parts, the relation to their raw components is not one to one. 

Parameter pir in equation (3.24) obtained from the bill of material of T1-suppliers 

represents the relation between the machined component i and the raw part r. This 

parameter gives more generality to the model to be used in case of considering T1-

suppliers as assemblers.  As a coordinated supply chain, a shortage policy is placed to 

limit the shortage amount of each item from all the suppliers. Initial inventory and 

shortage amounts are specified through equations (3.27) and (3.28), respectively. The rest 



37

of the equations (3.29)-(3.36) are the non-negativity and binary restrictions on the 

decision variables.

1
1, 2.... , 1, 2.... (3.23)

n

ijt it
j

X D i I t T

   

 1 1
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1, 2,.... (3.32)jL is binary j J

1, 2,.... (3.33)kL is binary k K
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

The first two goals are the sources of bilinearity in the model, because they comprise 

binary variables multiplied by continuous variables. The binary variables represent the 

selected suppliers and the established links among them, whereas the continuous 

variables represent material distribution through the network. Although the model is 

basically proposed to handle a reconfiguration problem, it can be applied to configure 

new supply chains by distributing material among the best candidate suppliers. 
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3.5 Generic Linearization Approach

While dealing with mixed integer bilinear models, one possible way to resolve this 

bilinearity is to linearize the model using linearization schemes (Peterson, 1971; Glover,

1975, 1984; Adams and Sherali, 1990; and Adams and Forrester, 2007). Peterson (1971) 

transforms a bilinear model to an equivalent linear one by applying equations (3.37) and 

(3.38) to the model. Section 2.1.1 provides a background of this linearization approach.

( 3 .3 7 )lL Y u L 

 1 (1 ) ( 3 .3 8 )X u L Y X l L     

Where:

l: is the lower bound on the continuous variable X,

u: is the upper bound on the continuous variable X,

Y: is the new variable replacing the bilinear term LX.

If the binary variable L equals zero, Y will be equal to zero as well because the first 

constraint is binding in this case, while the second constraint is the binding one if the 

value of the binary variable is equal to one. In that case, Y is equal to X. 

Glover’s (1975) scheme is the same as the one proposed in Peterson (1971) except 

that it handles the multiplication of a binary variable by a function F(w) in a discrete or 

continuous variable w. Glover (1984) provides a scheme where the relation between the 

continuous variables and the proposed auxiliary variables replacing the bilinear term is 

not established and hence it does not accommodate for terms including the continuous 

variable only. A more recent scheme introduced by Adams and Sherali (1993) is not 

applicable to the proposed SCRSS model since it restricts each constraint to be a function 

of either the binary or the continuous variable. The SCRSS model, however, involves 

many constraints in which both variables appear together. Because the auxiliary variable 
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Y that replaces LX will appear in equations (3.2) and (3.3), the linearization approach of 

Adams and Forester (2005) is not applicable here. Their reduced scheme is built given 

that the auxiliary variable Y should not appear in the functional constraints. 

The price being paid for these linearization methods is an increase in problem size 

through addition of new variables and constraints. For large scale models, increased 

problem size has a detrimental effect on the computation time because the mixed integer 

programming (MIP) solver will account for these added variables and constraints at all 

branching nodes. Below, the modified BD technique to alleviate this problem and reduce 

the solution time is presented.

3.6 Modified Benders Decomposition Algorithm

A different method for handling bilinear models is to apply the generalized BD

technique (Geoffrion, 1972) which can be used when there are complicating variables 

that prevent the application of a straightforward method to the problem. The BD 

approach transforms a bilinear model to a linear one that optimizes the values of the 

continuous (non-complicating) variables for given values of the binary (complicating)

variables. The master problem, comprising the constraints on these complicating 

variables and the added cuts obtained from the sub-problem, optimizes the values of the 

complicating variables then passes on these values to the sub-problem. After each 

iteration, a step that checks the upper and lower bounds obtained from both problems 

should take place. The background of the BD technique is given in Section A.2.1.

Codato and Fischetti (2006) propose an algorithm to solve MIP problems using 

combinatorial Benders cuts when the master problem is represented by a pure binary 

model. The algorithm can handle two cases. In the first case, the original objective 
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function depends only on the continuous (non-complicating) variables. Consequently, the 

master problem is solved with no objective. Instead, an updated bounding constraint is 

added to the sub-problem to guarantee better values for its objective in the next iteration. 

Whether or not the sub-problem is feasible, a combinatorial Benders cut is added to the 

master problem to avoid reaching a previously obtained solution (0-1 combination). In 

this case, the added constraint acts as a feasibility and optimality cut. The algorithm stops 

when the master problem becomes infeasible which means that all the basic feasible 

points are evaluated. In the second case, the original objective has zero-coefficient for the 

non-complicating variables. Thus, the objective considered in the master problem is the 

original objective, while the sub-problem has no objectives in this case. To solve this, the 

algorithm iterates only with the combinatorial feasibility cut in order to update the values 

of the complicating variables that are optimized based on the objective function of master 

problem.

In the proposed SCRSS goal programming model, the variables appearing in the 

objective function are only the deviational variables 1d  , 2d  , 3d  which can be 

considered as non-complicating variables. These deviational variables are directly 

affected by the complicating binary variables. Consequently, the master problem in this 

particular case can include an objective function that guides the search for the best 0-1 

combination of the binary variables toward faster convergence. For example, if the 

deviational variable of the first goal, shown in equation (3.2), which assigns material to 

reliable suppliers, is required to be minimized, the model should select suppliers having 

the highest delivery performance. This necessitates contemplating a new goal (3.40) that 

considers some parts, ∑TjLj and ∑TkLk, from equation (3.2) in the master problem to 
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select those suppliers. Similarly, another new goal that links each T2-supplier with its 

preferred T1-suppliers (3.41) should be considered which results in formulating the 

master problem as a GP model. The target values of each goal Y1 and Y2 can be obtained 

by maximizing each goal independently subject to the constraints given by equations (3.5) 

- (3.8) and (3.32) - (3.34). 

In the modified BD algorithm, both the master problem and the sub-problem are 

represented as GP models. The objective of the master problem is to select reliable 

suppliers, while the sub-problem optimally distributes material among them. The 

combinatorial Benders cut, given by equation (3.42), is added to the master problem 

when the sub-problem could not reach a feasible solution for the given values of 

complicating variables. On the other hand, if the sub-problem has a feasible solution for 

those given values, the classical Benders cut, shown in equation (3.43), is added to the 

master problem to find better values of the binary variables using duality theory. The 

following subsections show how the BD approach can be adapted to solve the proposed 

SCRSS model. 

3.6.1 Master Problem

In this problem, suppliers are primarily selected and links among them are established 

through optimizing the binary variables Lj, Lk, Ljk considered to be the complicating 

variables. The optimality cut (3.43) updates the values assigned to these variables if they 

are not optimal to the original problem. The other binary variables, Lijt and Lrkt, are 

considered as non-complicating variables since they do not appear in any bilinear terms. 

Hence, their values will be determined from the sub-problem. The branch-and-cut 

algorithm that starts with relaxing the integrality condition on the binary variables is 
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applied to solve the master problem. The objective function of the master problem is 

shown in equation (3.39). In addition to the constraints given by equations (3.5)-(3.8) and 

(3.32)-(3.34), the master problem includes the following equations (3.40)-(3.43). If the 

sub-problem is infeasible, a feasibility cut (3.42) is added (Codato and Fischetti, 2006). 

Conversely if it is feasible, an optimality cut (3.43) is added (Geoffrion, 1972).

1 4 2 5 (3.39)Min g w d w d    
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In the optimality cut (3.43), λj, μk, and γjk are the dual variables associated with the 

constraints that assign values to each of the binary variables Lj, Lk and Ljk respectively in 

the sub-problem. h and p are indices of the feasible and infeasible solutions of the sub-

problem respectively. Based on the values of these dual multipliers, the optimality cut

determines which binary variables should keep their values, which should be leveled up 

to one, and which should be reduced down to zero. Function α provides a lower estimate 

of optimal value of the objective function of the sub-problem for given values of the 

binary variables Lj, Lk and Ljk. In order to ensure the boundedness of this problem, α 

should have a minimum limit. 
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3.6.2 Sub-Problem

In the modified BD algorithm, the objective function of the sub-problem is identical 

to the original objective (3.1). The problem is solved subject to equations (3.2)-(3.4), 

(3.9)-(3.31), (3.35) and (3.36) plus the following equations (3.44)-(3.46) equating the 

values of the complicating variables to those obtained from the master problem.

(3.44): 1, 2....
h

j j jL L j n 

(3.45): 1, 2....
h

k k kL L k t 

(3.46): 1, 2.... , 1, 2....
h

jk jk jkL L j n k t  

3.6.3 Optimality Check

To show the difference between the classical Benders bounds and the applied bounds

in the modified BD algorithm, consider equation (3.47) that shows a typical objective 

function optimizing complicating variables x and non-complicating variables y. Based on 

the BD approach, this objective can be decomposed into two objectives. The first one,

which optimizes the complicating variables (3.48), belongs to the master problem, while 

the second one, optimizing the non-complicating variables for given values of the 

complicating variables (3.49), belongs to the sub-problem (Conejo et al., 2006).

1 1
(3.47)

n m

i i j j
i j

Min c x d y
 
  

1
(3.48)

n

i
i

Min c xi 

 

1
(3.49)

m

j j
j

Min d y



The lower and upper bounds applied in the classical BD approach are shown in 

equations (3.50) and (3.51).  The lower bound is obtained from the relaxed master 

problem while the upper bound is obtained from the restricted sub-problem.
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1
(3.50)

nh h h
i iL

i
Z c x 


 

1 1
(3.51)

n mh h
j jU

i j

hZ c x d yi i 
  

The modified BD algorithm adapts the classical BD technique in order to handle the 

special case of formulating the objective functions considered by the master problem and 

the sub-problem. The deviational variables 1d  , 2d  , and 3d  appearing in the original 

objective function (3.1) depend on both the complicating variables Lj, Lk , and Ljk and the 

non-complicating variables Xijt, Xrjkt , Iijt , and Bijt , while the deviational variables 4d  and 

5d  appearing in the objective function of the master problem (3.39) depend only on the 

complicating variables Lj, Lk and Ljk. So, if the deviational variables 1d  , 2d  , 3d  , 4d  and 

5d  are replaced by complicating and non-complicating variables in both objectives (3.1) 

and (3.39), terms including complicating variables in the master problem and the original 

problem objectives are different.  Moreover, the objective function of the sub-problem is 

the original objective that involves contribution of all the variables. This formulation

differs from that of the classical BD technique, in which the contribution of the 

complicating variable to the original objective is considered in the master problem and 

the contribution of the non-complicating variables is considered in the sub-problem. So, 

the formulation of the objective functions used in the modified BD algorithm is not the 

same as that used in the classical BD approach (3.47)-(3.49). Consequently, the upper 

and lower bounds (3.50) and (3.51) used in the classical BD technique that consider the 

contributions of the complicating variables to both bounds can not be applied in the 

modified BD algorithm. 
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Function α appearing in equation (3.43) aims at finding better values of the 

complicating variables Lj, Lk and Ljk with respect to the original objective function 

represented in the right-hand side of the equation. So, if the value of this original 

objective function obtained by solving the sub-problem is equal to that value of α

determined by solving the master problem, it means that complicating variables have 

reached their optimal values. Equation (3.52) shows the optimality condition used to 

recognize the convergence between master and sub-problem formulated in the modified 

BD algorithm. The left-hand side of the equation is the upper bound obtained from the 

sub-problem while the right-hand side represents the lower bound resulting from the 

master problem. This condition can be recognized in the lower and upper bounds used in 

the classical BD approach (3.50) and (3.51). At the optimal iteration both bounds are 

equal which means that the second term in the right-hand sides of equations (3.50) and 

(3.51) should be equal, justifying the condition. 

1 1 2 2 3 3 (3.52)
h h h h

w d w d w d     

3.7 Computational Experiments

Experiments were performed using a computer with 4-2.2 GHz AMD Opteron 64-bit 

processors and 8 GB RAM. Both algorithms were coded using AMPL (Fourer et al.,

2003), and solved using CPLEX 11. The solver option was set to solve integer problems 

using a branch-and-cut algorithm and to apply the dual-simplex method to solve the 

primal problem of linear models. Other options were also tried but the difference in 

solution time is not found to be significant. 

The proposed algorithm is compared to Peterson’s (1971) generic linearization 

approach (3.37) and (3.38) mentioned in Section 3.5. The linearization approach adds 
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auxiliary variables and constraints to the bilinear SCRSS model in order to develop the 

equivalent linear model.  Table 3.1 demonstrates a comparison between solving the 

SCRSS model through its equivalent model and solving it by the modified BD algorithm.  

For a given problem instance, each algorithm results in a different problem size. To 

illustrate that, consider a supply chain that includes 23 machined components, 25 raw 

components, 25 T1-suppliers, 15 T2-suppliers, and three time periods. The linearization 

approach will add about 58,000 new variables and 174,300 new constraints to the original 

model. On the other hand, the generated cuts through applying the BD approach will not 

yield a model having such a huge size.

Table 3.1 Comparison between the proposed algorithm and the generic linearization scheme proposed by 
Peterson (1971)
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Time
min.

Const. Var. Time

1 4 6 7 6 1213 1458 70 0.1 6032 3049 2.3 sec. --

2 4 6 7 6 1213 1458 155 0.9 6032 3049 3 sec. --

3 7 10 12 8 2960 4747 221 1.6 21074 10754 1.2  min. --

4 7 10 12 8 2960 4747 496 8.3 21074 10754 4.9 min. --

5 10 13 14 10 4658 8515 92 2.2 38796 19850 11.4 min. 81

6 10 13 14 10 4658 8515 365 5.7 38796 19850 27.9 min. 80

7 14 18 17 11 15082 7295 145 2.3 70186 35987 20.8 min. 89

8 14 18 17 11 15082 7295 681 27.3 70186 35987 93.1 min. 71

9 15 20 20 12 9086 20623 191 9.1 98396 50318 25.7 min. 65

10 15 20 20 12 9086 20623 1143 36.5 98396 50318 83.2 min. 56

11 19 22 23 13 11912 28351 248 12.2 134514 69125 55.2 min 78

12 19 22 23 13 11912 28351 532 49.9 134514 69125 5.1 hr. 84

13 23 25 25 15 15370 39426 301 12.9 189632 97396 60.1 min. 79
14 23 25 25 15 15370 39426 1252 72.1 189632 97396 6.6 hr. 82
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The tested problems shown in Table 3.1 are all solved to optimality. Seven different 

problem sizes are tested; each problem size is tested twice with two different sets of input 

parameters to study the effect of changing values of these parameters on solution time. 

This influence is noticeable in Table 3.1 through the 10th and the 13th problems. The 10th

problem, which has smaller dimensions than the 13th problem, has a longer solution time. 

This illustrates that input data can increase the solution time and the number of generated 

cuts required to reach the optimal solution. 

The linearization approach outperforms the modified BD method in solving small-

sized problems, whereas the modified BD algorithm shows its computational efficiency if 

it is applied to larger problem configurations.  To clarify that, consider the linearization 

of the first problem comprising 1,213 constraints and 1,458 variables using Peterson’s

(1971) approach. An equivalent problem including 6,032 constraints and 3,049 variables 

is solved in 2.3 seconds, while the number of generated cuts required to solve this 

problem instance using the modified BD algorithm is 70 and the solution time is 6.7 

seconds. On the other hand, the number of generated cuts required to solve the last 

problem including 15,370 constraints and 39,426 variables is 1,252 and the solution time 

is 72.1min, whereas linearizing this problem instance results in an equivalent problem 

solved in 6.6 hr. Except for the first four problems, the computational results prove the 

efficiency of the modified BD algorithm as compared to the linearization approach for

solving larger models with the same input parameters. For those large models tested, 

solution time saving varies from 56% to 89% as shown in the last column of the table. 

Table 3.2 shows distribution of the solution time between the master problem and the 

sub-problem. By comparing the total solution time, the master-problem solution time and 
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the sub-problem solution time of two problems with the same size, it is noticeable that as 

the number of generated cuts increases, most of the increase occurring in the total 

solution time is consumed in solving the master problem. To clarify that, consider the last 

two experiments that belong to the same supply chain size. In the 13th experiment 

implemented in 12.9 min, there are 302 master problems solved in 5.8 min and the 302 

sub-problems are solved in 7.1 min, while the last experiment, which includes 951 more 

master problems and 951 more sub-problems than the 13th one, is executed in 72.1 min. 

This conclusion is expected given that the number of constraints of the binary master-

problem is increased by one with each added cut, while the size of the sub-problem 

remains constant. Such accumulation of added cuts results in consuming 42 min of the 

59.3 min increase in the total solution time to the master problem.  

Table 3.2 Master and sub-problem solution time through applying the proposed modified 
Benders algorithm
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Generated
cuts

Solution time

Master 
problem

Sub-
problem

Total time

1 1213 1458 70 4.1 sec. 2.6 sec. 6.7 sec.

2 1213 1458 155 43.1 sec. 6.9 sec. 49 sec.

3 2960 4747 221 1.1 min. 0.5 min. 1.6min.

4 2960 4747 496 7.32 min. 59 sec. 8.3 min.

5 4658 8515 92 0.7 min. 1.5 min. 2.2 min.

6 4658 8515 365 2.8 min. 2.9 min. 5.7 min.

7 15082 7295 145 0.7 min. 1.6 min. 2.3 min.

8 15082 7295 681 20.5 min. 6.8 min. 27.3 min.

9 9086 20623 191 4.7 min. 4.4 min. 9.1 min.

10 9086 20623 1143 24.2 min. 12.3 min. 36.5 min.

11 11912 28351 248 4.9 min. 7.3 min. 12.2 min.

12 11912 28351 532 33.4 min. 16.5 min. 49.9 min.

13 15370 39426 301 5.8 min. 7.1 min. 12.9 min

14 15370 39426 1252 47.8 min. 24.3 min. 72.1 min.
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The decisions obtained through solving the SCRSS model establish the future 

supplying strategy of the company. The strategy is characterized by fulfilling the 

company’s requirements regarding demand and delivery performance through utilizing 

the capacities of the reliable and coordinated suppliers. Moreover, results of the SCRSS 

model provide the amounts of raw and machined components distributed among the 

supply chain members on a yearly basis. Consequently, the contribution of this model is 

that it is not only selects suppliers based on three criteria but also it distributes the

material to the selected highly reliable and well coordinated suppliers at minimum 

inventory and transportation costs. Other criteria such as, quality, service level, flexibility, 

and environmental performance could be also considered in the model by formulating the 

goal equation of each of these criteria. Having the results of the strategic level on hand, 

the next step is to design the inventory system at each member to establish the ordering 

policy from upstream stages.
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Chapter 4   

Supply Chain Integrated Production-

Inventory System

4.1 Introduction

Combining inventory with production sequence decisions is a common problem in 

the literature known as the economic lot and delivery scheduling problem (ELDSP). In 

this problem, it is required to establish the synchronization policy that coordinates 

between inbound production scheduling and the outbound deliveries. The overall 

objective is to minimize the transportation, inventory holding and setup costs across the 

entire supply chain. The literature on the ELDSP, reviewed in Section 3.2, shows that a 

supply chain can be synchronized based on a common cycle time policy, an integer 

multipliers policy, and an integer powers of two multipliers policy.  The common cycle 

time policy, which fully synchronizes the supply chain, forces all inventory systems 

existing in the chain to run on equal cycle time T. Such an equal cycle time policy has 

failed to guarantee optimal schedules for the ELDSP problem (Hahm and Yano, 1995).  
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In the integer multipliers policy, which partially synchronizes the supply chain, the cycle 

time at each stage is an integer multiplier of that time at its adjacent downstream stage. 

The cycle time of each firm given by the third policy is an integer power of two 

multiplier of a basic cycle time.  

A new formulation of the ELDSP is proposed in this thesis based on the quadratic 

assignment (QA) representation. The developed nonlinear mixed integer model is solved 

using a hybrid algorithm through linearization, outer approximation (OA) and Benders 

decomposition (BD) techniques. Two cases are studied, the common cycle time policy 

and the integer-multiplier policy. Computational experiments show the efficiency of the 

conducted approach to reach the optimal solution for both cases in a short time. 

Furthermore, experiments demonstrate that a cost saving up to 16.29% can be achieved 

by synchronizing the supply chain inventory system using the integer-multiplier 

mechanism instead of the common cycle time policy.  

The following section identifies the decisions under consideration at the tactical 

planning level of the problem defined in Section 1.2. The section also shows the 

hierarchical link between this level and the results previously obtained in Chapter 4. 

Section 4.3 illustrates advantages of supply chain synchronization policies as compared 

to the independent inventory policies. The proposed joint inventory production model is 

discussed in Section 4.4. The model involves bilinear and polynomial terms, and 

nonlinear terms representing the inventory setup cost. Section 4.5 shows the linearization 

schemes used to transform bilinear and polynomial terms into equivalent linear terms. 

The OA approach is applied to linearly approximate the nonlinear setup cost terms, and 

the BD technique is deployed to handle the complex binary variables existing in the OA
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master problem. The hybrid OA-BD algorithm used to solve the equivalent model 

obtained through the linearization stage is explained in Section 4.6. Section 4.7 shows 

changes that have to be made in the proposed model to represent the ELDSP when the 

supplier stages apply the integer-multipliers policy. Computational experiments 

performed on the proposed model and algorithm are presented in Section 4.8. 

4.2 Tactical Planning Level

The strategic reconfiguration model proposed in Chapter 3 specifies material flow 

through the network on a yearly basis. However, some questions regarding inventory and 

production management have not yet been answered. For example, if the first T2-supplier 

is required to provide the first T1-supplier with a specific amount per year, what is the 

inventory policy that states the number of orders spreading this amount through the year? 

What is the production sequence at each tier? Should all tiers have to be synchronized at 

the same cycle time?

In this chapter, an integrated production-inventory policy is proposed to answer the 

above questions from a supply chain perspective. Results of the proposed model 

determine the tactical inventory and production decisions that should be taken to solve 

the problem addressed in this thesis.  These include decisions regarding shipping 

frequency, replenishment cycle time, order quantity, and production sequence at each 

node of the chain. Other tactical decisions required to cope with the uncertainty of 

demand and lead time will be studied in the following chapter. 

The material distribution strategy proposed at the strategic level is considered while 

designing the joint inventory-production system at the tactical level. Specifically, the 

value of the decision variable Xijt that represents the amount of part i shipped from T1-
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supplier j to the company at time period t is handled here as the input value of the annual 

demand Dji of item i at T1-supplier j. Similarly, the annual demand of each raw 

component at each T2-supplier can be found from the value of decision variable Xrjkt by 

summing the amounts of component r shipped from T2-supplier k to all T1-suppliers.

4.3 Synchronization versus Independent Policies

Independent inventory policies which apply a different cycle time at each stockpoint 

of the chain do not allow for synchronization. Synchronization enhances the coordination 

among stockpoints and allows for better vision of material movement. Moreover, the full 

synchronization of a supply chain leads to a better response to changes in demand and 

product designs as compared to the partial synchronization approach and the independent 

policies (Khouja, 2003). 

Synchronizing a supply chain either through full or partial synchronization strategy 

often represents an advantage for some members of the chain and a disadvantage for 

others. This is because members at different stages have conflicting objectives. For 

example, stockpoints having low holding cost and high setup cost seek to employ their 

independent longer cycle time policies while shorter cycle time policies are favored by 

stockpoints having high holding cost and low setup cost. Khouja (2003) proposes three 

incentive alignments to allow for supply chain synchronization. These incentives call for 

altering the unit holding cost, the ordering cost, and the unit cost in such a way that 

members are encouraged to accept synchronization. 
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4.4 Common Cycle Time Policy

With a common cycle time policy, all stages of the supply chain are fully 

synchronized at an equal cycle time T. Assumptions of the ELDSP for this just-in-time 

policy are given below:

1. All stages are running on an equal cycle time T, which is a decision variable.

2. Components at each supplier node are produced on a single production line.

3. All the components produced are shipped in one shipment at the end of the 

production cycle.

4. Shipping amounts are equal to the units demanded at the subsequent stage.

5. Production and demand rates are deterministic and constant.

6. At downstream stages, the holding cost per unit increases because of the added 

value to the components. 

7. At each supplier node, the setup cost is sequence independent.

8. Delivery charges are constant.

9. The production setup costs and times at the assembly facility are negligible, so they 

do not affect the ordering policy.

To derive the chain wide inventory cost, consider an inventory system of raw material 

and finished items at a given tier, T1 or T2, handing out three items. The profile of this 

inventory system is depicted in parts (a) and (b) of Figure 4.1 respectively. Each of the 

three items has an annual demand D, a production setup time S and a production rate P. 

Part (c) shows the inventory levels of four machined components being assembled in the 

final products at the company site. Each of these items could go into more than one final 

assembly. Using this figure, the chain-wide inventory cost can be easily established. 
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For T1- and T2-suppliers, the model represents an integrated inventory-production 

system. The cycle time T, which stands for the time of replenishing the inventory, covers 

holding the item as a raw material, processing the item, and holding the item as a final 

TD1

TD2

TD3

S1

S2

S3

T

-P1

-P2

-P3

TD1

TD2

TD3

T

P1

P2

P3

T

-D4

-D3

-D2

-D1

TD4

TD3

TD2

TD1

(a)

(b)

(c)

Figure 4.1: Inventory profile at a supplier site; (a) raw material, (b) processed items, and at the assembly 
facility (c).
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product until the shipping date. A given supplier ships the accumulated products after all 

the sequenced items have been produced. For the company which is considered as an 

assembly facility, the cycle time is the same cycle time defined by the economic order 

quantity (EOQ) inventory model.

As shown in Figure 4.1-(a), the raw material of a certain item i is kept in stock until 

the start of its processing. This includes setup time of the production line to process this 

item. If the production sequence of the three items at a given tier is 1-2-3, it means that 

the binary variables, X11, X22, and X33, are equal to 1 and the other variables, X12, X23, X21 , 

X23, X31, and X32, are equal to zero, where the first subscript represents the item and the 

second subscript represents the sequence. Given this sequence of production, the average 

annual inventory of raw material (RMI)123 is given by equation (4.1). Taking T as 

common, and by considering other possibilities of production sequence, 1-3-2, 2-1-3…3-

2-1, the average annual raw material inventory holding cost for n items can be 

represented by equation (4.2).
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As depicted in Figure 4.1-(b), a machined item is kept in stock until end of production 

of the last sequenced item. For a given sequence 1-2-3, the annual average inventory of 

machined components (MCI)123 is given by equation (4.3). Taking T as common, 
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considering other possibilities of production sequence, 1-3-2, 2-1-3…3-2-1, the n

machined components inventory holding cost can be represented by equation (4.4).
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Inventory holding costs (IHC) for all tiers at both stages can be summed as shown in 

equation (4.5). The transportation and setup costs at both types of tier (TSC) are given by 

equation (4.6). At the assembly facility, the inventory profile is depicted in Figure 4.2-(c). 

The transportation and inventory cost (TIC)a at this stage, is shown in equation (4.7).
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The proposed joint inventory-production model is given by equations (4.8)-(4.16). 

The chain-wide inventory costs shown in equation (4.8) are the summation of equations 

(4.5), (4.6), and (4.7).
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The objective function is minimized subject to two sets of constraints. The first set is 

the cycle feasibility constraints, shown in equations (4.9) and (4.10). These constraints 

ensure that the resulting cycle time T is sufficient to set up the equipment used in 

production, and to process the units demanded at any given tier. The second set of 

constraints (4.11), (4.12), (4.13) and (4.14) is the QA constraints that guarantee assigning 

only one item to only one position in the production sequence at each tier. Constraints 

(4.15) and (4.16) are the binary restrictions imposed on the QA variables.

Results of this model answer two of the three questions mentioned in Section 4.2. 

First, by knowing the optimal value of the cycle time T and the annual demand at each 

member of the chain, the inventory policy can be easily established at each of member 

through determining the order amount and the number of orders. Second, results of the 

binary variables Xjiq, and Xkiq specify the production sequence at each supplier.

The developed joint inventory-production model given by equations (4.8)-(4.16) is 

built for a three-stage supply chain including an assembly facility and two stages of 

suppliers. The model can be easily extended to include a retailer stage by adding the 

inventory setup and holding costs at this stage to the objective function (4.8). Inventory 

costs at a given retailer are similar to those shown in equation (4.7) representing the EOQ 

model. Likewise, one or more supplier stages can be easily entered into this inventory 

production system. In such a case, the cycle feasibility and QA constraints as well as the 

inventory cost at the added stages should be added to the model.

Results of this model specify the production sequence that should be implemented at 

any given tier and the cycle time that should be employed at each stage. The ordering 

policy, which states the order amount and ordering frequency at each member of the 
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chain, can be easily determined using the obtained value of the cycle time and the given 

value of the demand. 

4.5 Linearizing Bilinear and 0-1 Polynomial Terms

In the model proposed in Section (4.4), objective function (4.8) includes bilinear 

terms including binary variables Xkiq, Xjiq multiplied by T which is a continuous variable.  

The objective function also involves two kinds of polynomial terms: pure binary 

polynomial terms and mixed binary polynomial terms. The former type of term multiplies 

two binary variables together as is the case in Xkiq×Xkib and Xjiq×Xjib, while the latter kind 

is represented in terms containing the QA binary variables Xkiq×Xkib and Xjiq×Xjib

multiplied by the cycle time T. These nonlinear terms should be linearized in order to be 

handled by a solver. 

Different linearization schemes have been introduced in the literature to overcome 

this difficulty, among which the scheme introduced by Adams and Forrester (2005) is 

applied to linearize bilinear terms, and the one introduced by Hahn et al., (2008) to 

transform the two QA variables into a single binary variable. Section A.1 gives a 

background of the linearization techniques applied in this chapter.

Hahn et al. (2008) introduce a linearization approach to handle the binary polynomial 

terms existing in the generalized QA problem. This approach, discussed in Section 

(A.1.2), is applied to the proposed joint inventory-production model in order to linearize

the binary polynomial terms including Xkiq×Xkib and Xjiq×Xjib. Equations (4.17)-(4.22) 

show the new constraints added to the model, where bl
kiqY and bl

jiqY are two auxiliary

binary variables introduced to replace these binary polynomial terms, respectively.  Other 

generic linearization schemes, such as those of Zangwill (1965) and Glover and Woolsey
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(1974), can be used to linearize this part of the model. These generic schemes are tested 

at the initial stage of the conducted numerical experiments, but the applied scheme is 

found to have better computational efficiency. 
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Once this replacement goes into the joint inventory-production model, a new set of 

bilinear terms will appear by multiplying bl
kiqY and bl

jiqY each by T. The objective function, 

given by equation (4.8), comprises other bilinear terms including Xkiq×T and Xjiq×T. The 

linearization approach of Adams and Forrester (2005), explained in Section (A.1.1), is 

applied to transform these bilinear terms into linear terms. Equations (4.23)-(4.30) show 

the added constraints to the joint inventory-production model, where the auxiliary 

variables kiqV , jiqV , bl
kiqZ and bl

jiqZ are introduced to handle the bilinearity appearing in 

Xkiq×T, Xjiq×T, bl
kiqY × T, and bl

jiqY × T, respectively.
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The lower bound L imposed on the cycle time T represents the minimum value of the 

cycle time satisfying the cycle feasibility constraints given by equations (4.9) and (4.10). 

The upper bound U imposed on the cycle time T should be equal to the time horizon of 

the model. The model is developed to establish the inventory policy that will be 

implemented annually. Thus, through the conducted experiments this bound is set equal 

to one year.

The equivalent model includes the two sets of equations (4.17)-(4.22) and (4.23)-

(4.30) in addition to the constraints of the inventory model given by equations (4.9)-

(4.16). The new objective function resulting from linearizing the polynomial and bilinear 

terms existing in the original objective function (4.8) is given by equation (4.31). This 

function still has nonlinearity owing to the nonlinear terms of the setup cost. The 

following section illustrates how this nonlinearity is resolved by decomposing the model 

using the OA approach.        



63

   

   

2 1

1 1 1 1

2

1 1

2

2

k k k

kiq kiq kiq

k k

kiq kiq kiq

n n n q
r bl bl blki kb
ki kiq kiq ki ki kiq ki kb

i q b lki kb
b i

n n
f bl bl blki kb

ki kiq kiq ki kb
b l qki kb
b i

Min TC

D D
h V LX D S X D S Y Z LY

P P

D D
h V LX D S Y Z LY

P P



   


  




 
           

 


      
 



  



   

 

1

1 1

2 1

1 1 1 1

2

1

2

2

k k

j j j

jiq jiq jiq

j

jiq

K

k n n

i q

n n n q
ji jbr bl bl bl

ji jiq jiq ji ji jiq ji jb
i q b lji jb

b i

n
jif

ji jiq jiq ji jb
l qji

D D
h V LX D S X D S Y Z LY

P P

D
h V LX D S Y

P



 



   


 

 
 
 
 

 
 
 

     

              

 


 

  

  
1

1 1 1

1 1 1 1 1

1
(4.31)

2

j j j

jiq

ja k

J

j n n n
jbbl bl bl

jiq
i q b jb

b i

nn nK J

ai ai k ki j ji a
i k i j i

D
Z LY

P

T
D h A B A B A

T



  


    

 
 
 
 
 

               
   

               


  

    

4.6 Decomposition of the Equivalent Model

After linearizing the bilinear and polynomial terms of the objective function (4.8), a 

decomposition stage has to be established in order to handle other difficulties resulting

from nonlinear setup cost terms and binary restrictions on the QA variables. This 

decomposition stage takes place in two steps. The first stage is to decompose the 

equivalent model given by equations (4.9)-(4.31) into a mixed integer master problem 

and a nonlinear sub-problem using the OA decomposition approach. The theory of the 

OA method is discussed in Section A.2.2. The purpose of this decomposition is to 

linearly approximate the nonlinear setup cost terms. In the second step, the difficulty 

resulting from the binary variables incorporated in the master problem is resolved 

through decomposing it further by the BD technique. A background of the BD approach 

is explained in Section A.2.1.
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4.6.1 Applying Outer Approximation Decomposition Technique

Decomposing the equivalent model using the OA approach yields an integer linear 

master problem and a nonlinear sub-problem. The master problem is basically formulated

to find feasible values of binary variables jiqX , kiqX , bl
kiqY and bl

jiqY . The master problem 

objective function (OAM) is depicted in equation (4.32) which is the original objective 

except that nonlinear terms represent setup costs. Constraints of the master problem are 

all the constraints considered by the equivalent model represented by equations (4.9)-

(4.31) in addition to the linear constraint (4.33). This linear constraint is generated at each 

iteration g to approximate the nonlinear terms embedded in the objective function (4.27).

Also, this constraint represents the connection between the master problem and the sub-

problem. 
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The sub-problem finds optimal values of the cycle time T and the auxiliary variables

jiqV , kiqV , bl
kiqZ and bl

jiqZ based on values of the other decision variables jiqX , kiqX ,

bl
kiqY and bl

jiqY , obtained from the master problem.  This can be done through minimizing 

the sub-problem objective function (OAS) shown in equation (4.34) and satisfying 

constraints (4.9), (4.10), and (4.35)-(4.38). 
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 * *1 1, 2,...., , 1, 2,...., , 1, 2,...., ,

1, 2,...., , 1, 2,...., : , (4.35)
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 * *1 1, 2,...., , 1, 2, ...., , 1, 2, ...., ,

1, 2, ...., , 1, 2, ...., : , (4.36)
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      

   

 * *1 1,2,...., , 1,2,...., , 1,2,...., (4.37)kiq kiq kiq k kV T U X L X k K i n q n      

 * *1 1,2,...., , 1,2,...., , 1,2,...., (4.38)jiq jiq jiq j jV T U X L X j J i n q n      

In order to run the iterations between the master problem and the sub-problem there 

should be an initialization stage that provides a feasible solution of the decision variables. 

An initial problem is solved in this stage that minimizes only the inventory holding cost 

terms given in objective function (4.27), and considers all the constraints appearing in the 

equivalent model. The optimal solution is reached when the lower bound resulting from 

the relaxed master problem (OAM) equals the upper bound resulting from the restricted 

sub-problem (OAS). 

The OA master problem is a mixed integer model that can be solved using Cplex, 

while the sub-problem is a nonlinear model that needs a nonlinear solver like Minos or 

Snopt. In the conducted experiments, the sub-problem is solved using Cplex by 

considering some properties of this problem. The first property is the convexity of 

objective function (4.34) in the continuous variable T for given values of other 

variables jiqX , kiqX , bl
kiqY , bl

jiqY , jiqV , kiqV , bl
kiqZ and bl

jiqZ . Equation (4.39) shows that the

second derivative of this function with respect to cycle time T is positive. Secondly, 

equations (4.35)-(4.38) find feasible values of the variables jiqV , kiqV , bl
kiqZ and bl

jiqZ from 

the given values of variables jiqX , kiqX , bl
kiqY and bl

jiqY obtained from the master problem.  
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So, the continuous variables jiqV , kiqV , bl
kiqZ and bl

jiqZ can be replaced in equation (4.34) 

by T if their corresponding variables jiqX , kiqX , bl
kiqY ,and bl

jiqY equal one, while they equal 

zero if their corresponding binary variables equal zero.

2

2 3
1 1 1 1

1
(4.39)
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   

Equation (4.40) shows the value of T that minimizes the total cost equation (4.34) 

derived by differentiating equation (4.34) with respect to T. By considering the 

constraints given by equations (4.9) and (4.10) that ensure the feasibility of T to cover 

setup and production times of all products, the optimal value of T can be found as the 

maximum between feasible T resulting from the constraints shown in equations (4.9) and 

(4.10) and T obtained from equation (4.40).
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6
1 1 1 1 1

1

(4.46)
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4.6.2 Decomposing the Outer Approximation Master Problem

Experiments were conducted by solving the linearized version of the proposed model 

using the OA decomposition approach. The solver reached the optimal solution for the 

first four problems as shown in Table 4.2. None of the other problems could be solved in 

twelve hours. The algorithm is interrupted while solving the fifth problem instance and it 

is found that the solver stalls in solving the master problem. The master problem of this 

problem instance, which is lager than the first four problems, is solvable without 

considering the optimality cut given by equation (4.33) into its formulation. This implies 

that large-sized master problems have to be decomposed further in order to be solved. 

Therefore, the generalized BD technique is deployed to decompose this master problem 

into a master problem and a sub-problem.

What calls for applying BD technique here is that it separates between the constraints 

imposed on the binary variables to be considered in the master problem and the 

constraints imposed on the continuous variables, including equation (4.33), to be 

considered in the sub-problem. The binary variables, considered as complicating 

variables, are optimized through a master problem while the continuous variables, 

considered as non-complicating variables, are optimized through a sub problem.   

Another complexity of the OA master problem is related to equations (4.23) and (4.24). 

Initial results of the tested problem instances indicate that the master problem is solved 

faster if these two constraints are not considered in the formulation. Consequently,   these 

constraints should be separated from the pure binary constraints while decomposing this 
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problem using the BD technique. Equations (4.11)-(4.16), (4.17)-(4.22), (4.47) and (4.48)

build the Benders master problem. The objective function (BM) considers those terms of 

the objective function (OAM), equation (4.32), related to the binary variables

jiqX , kiqX , bl
kiqY and bl

jiqY . Equation (4.48), called the optimality cut, is used to adjust 

values of the binary variables bl
kiqY and bl

jiqY based on the results of the sub-problem. At 

each iteration f, the master problem finds the values f
jiqX , f

kiqX , blf
kiqY and blf

jiqY of binary 

variables, while the sub-problem finds values of continuous variables jiqV , kiqV , bl
kiqZ and 

bl
jiqZ . Also, the sub-problem finds dual variables blf

kiq and blf
jiq associated with equations

(4.54) and (4.55) respectively in order to generate the optimality cut. Function β provides 

a lower estimate of optimal value of the sub-problem objective function (BS) for the 

given values of the binary variables bl
kiqY and bl

jiqY .
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   
1 1 1 1 1 1 1 1 1 1

1,2,....

(4.48)
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The sub-problem objective function (BS) considers those terms of the objective 

function (OAM), equation (4.32), related to the non-complicating variables jiqV , kiqV ,

bl
kiqZ , bl

jiqZ , T and α. The problem tries to satisfy all the constraints on these non-

complicating variables for those given values of the complicating variables. Equations 

(4.9), (4.10), (4.27)-(4.30), (4.33) and (4.49 - 4.55) represent the formulation of this sub-

problem.
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Equations (4.9, 4.10, 4.27 - 4.30, 4.33)
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 1 1, 2,...., , 1, 2,...., , 1, 2,...., ,

1, 2,...., , 1, 2,...., : , (4.51)

bl bl bl
jiq jiq jiq j j

j j

Z T U Y LY j J i n q n

b n l n i b l q

      

   
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* : 1, 2, ...., , 1, 2, ...., , 1, 2, ...., ,

1, 2, ...., , 1, 2, ...., : , (4.55)
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The combinatorial feasibility cut can be discarded here because the Benders sub-

problem gives feasible solutions of the continuous variables jiqV , kiqV , bl
kiqZ , bl

jiqZ and T  

for any 0-1 combination, *
jiqX , *

kiqX , *bl
kiqY , and *bl

jiqY , of the binary variables passed from 

the Benders master problem. Furthermore, the Benders sub-problem has two important 

characteristics that should be utilized in formulating the optimality cut (4.48). First, for a 

given tier j, if item i is sequenced on any position q, this makes the corresponding 

jiqX variable equals one and jiqV equals T. The same relation applies to variables

kiqX and kiqV for a given tier k. So, the impact of changing the sequence of an item on the 

Benders sub-problem objective function is always T. Consequently, the binary variables

jiqX and kiqX do not affect the objective function of the Benders sub-problem and can be 

excluded from the optimality cut (4.49). 

The second characteristic of the Benders sub-problem is related to the dual variables 

associated with constraints (4.54) and (4.55).  Each of these dual variables is fixed at one 

value at any feasible iteration. To explain this characteristic, two features of the 

continuous variables bl
jiqZ and bl

kiqZ have to be demonstrated. First, for bl
jiqZ , its value is 

determined by the given value of bl
jiqY through the applied linearization scheme. This

linearization scheme forces bl
jiqZ to be equal to T when bl

jiqY equals one, and to be equal 

to zero when bl
jiqY equals zero. The second feature is that the variables bl

jiqZ do not 

appear in any other constraints that have influence on the objective function (4.49). This 
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implies that if the binary variable bl
jiqY is equal to one, the continuous variable bl

jiqZ will 

appear in the sub-problem objective function with the value of T. The variable bl
jiqZ will 

not contribute to the sub-problem objective function if the binary variable bl
jiqY equals 

zero. Consequently, the unit price of variable bl
jiqY is the coefficient of bl

jiqZ in the 

objective function (4.49) multiplied by T. Similarly, the unit price of variable bl
kiqY is the 

coefficient of bl
kiqZ in the objective function (4.49) multiplied by T. These two 

characteristics of the optimality cut and the value of the dual variables have great 

influence on the convergence between the Benders master problem and sub-problem. 

Such an effect is recognized in the very small number of Benders iterations, between four 

and eight, required to reach optimal solutions of the tested problems in Section 4.7.

The lower bound, obtained from the relaxed master problem, is equal to the value BM

given by equation (4.47), while the upper bound, shown in equation (4.56), is the value 

BS obtained from the restricted sub-problem plus the contribution of the binary variables 

to objective function (4.32).
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4.7 Integer Multiplier Policy

The second policy investigated in this thesis that partially synchronizes the multi-

stage inventory system is the integer-multiplier mechanism. In this policy, the cycle time 

at each stage is an integer multiplier of the cycle time at its successor stage. In the three-

stage inventory model, the cycle time at the company is T and m1T at any T1-supplier 

while it equals m1m2T at any T2-supplier. Except for updating the cycle times at all stages, 

the annual inventory cost function can be derived using Figure 5.1 and the analysis 

followed in Section 4.2. The inventory model representing this strategy is shown in 

equations (4.57)-(4.66). 
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For fixed values of the multipliers m1 and m2, the model can be solved using the 

hybrid algorithm discussed in Sections 4.3 and 4.4. An optimal solution can be found for 

a specified range of each multiplier. This can be done through running the algorithm over 

a nested loop that alters the combination of multipliers m1 and m2. The optimal 

combination is the one that results in minimum chain-wide inventory cost.

4.8 Computational Results

Experiments were performed using a computer with 4-2.2 GHz AMD Opteron 64-bit 

processors and 8 GB RAM. The hybrid algorithm was coded using AMPL (Fourer et al., 

2003), and solved using CPLEX 11.0. Sixteen problems representing different supply 

chain configurations are tested to evaluate the performance of the hybrid method. The 

configuration of these problems is depicted in Table 4.1. 
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Table 4.1: Supply chain structure of the 16 tested instances of the ELDSP
J: number of T1-suppliers, nj: number of items at each of the jth T1-supplier
K: number of T2-suppliers, nk: number of items at each of the kth T2-supplier
na: number of items at the assembly facility

Problem 
number

J nj K nk na

1 1 2 1 3 2
2 1 3 1 3 3
3 2 2,2 2 2,2 3
4 2 3,3 2 3,3 4
5 3 5,4,4 3 5,4,5 7
6 4 5,6,4,6 3 5,6,4 9
7 6 3,5,6,4,5,4 4 3,4,5,3 8
8 3 8,8,8 3 8,8,8 14
9 5 8,9,6,7,5 4 5,7,8,6 10

10 12 9,7,5,8,10,5,6,8,9,7,6,10 10 6,8,5,9,5,7,8,9,8,7 15
11 10 7,9,8,10,8,9,8,9,10,9 5 7,8,5,8,6 19
12 4 7, 10, 10, 9 11 6,5,8,7,5,7,8,9,7,10,8 18
13 6 8,11,10,11,9,10 10 8,7,9,7,8,11,7,9,8,6 17
14 10 7,10,9,10,8,9,10,9,10,9 11 7,5,8,9,5,7,8,10,7,6,8 18
15 9 8,10,12,10,11,12,13,9,10 13 9,8,10,10,8,9,12,9,8,10,9,7 16
16 15 8,11,10,10,9,10,11,10,11,11,9,10,7,10,8 12 9,7,10,11,7,9,10,11,9,8,10,9 20

A comparison between solving the equivalent model given by equations (4.9)-(4.31) 

using the OA approach and the proposed hybrid OA-BD algorithm is shown in Table 4.2. 

Results shown in the second and third columns conclude that the OA method outperforms 

the hybrid OA-BD in the first two problems, while the next two problems show the 

opposite. Starting from the fifth problem, the OA approach could not provide an optimal 

solution in 12 hours. Throughout these 16 problems, the number of iterations required to 

reach the optimal solution is at most two OA iterations. Each OA iteration includes at 

most four Benders iterations.

Table 4.2 details the solution time elapsed in solving a given problem using the 

proposed hybrid OA-BD method. The fourth column gives the time taken to provide a 

feasible solution required to start the iterations. Looking to the fifth and sixth columns, it 

is clear that as the problem size increases the Benders master problem consumes most of 

the elapsed solution time, while the Benders sub-problem takes a longer time than the 
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Benders master problem for smaller supply chains.  The last two columns depict the 

number of variables and constraints resulting from decomposing the equivalent non-

linear model through the proposed OA-BD method.

Table 4.2: Computational results of the OA approach and the proposed hybrid OA-BD algorithm applied 
to the common cycle time policy 
N.S: Not Solvable 

Number

OA 
solution 

time
(sec.)

OA-BD solution time (sec.) OA-BD problem size

Total
Initial 

problem
Benders 
master 

problem

Benders 
sub-

problem

OA-Sub-
problem

Number 
of 

variables

Number of 
constraints

1 0.09 0.12 0.015 0.03 0.06 0.02 223 107
2 0.11 0.13 0.015 0.03 0.06 0.02 363 178
3 0.21 0.13 0.016 0.02 0.06 0.02 163 70
4 3.53 0.15 0.018 0.04 0.07 0.02 723 354
5 N.S. 0.36 0.03 0.09 0.21 0.02 5535 3449
6 N.S. 0.69 0.08 0.19 0.39 0.02 11683 7847
7 N.S. 0.51 0.06 0.14 0.28 0.02 8739 5562
8 N.S. 4.20 0.55 1.55 2.05 0.03 49923 38120
9 N.S. 4.11 0.62 1.41 2.05 0.02 47655 35730
10 N.S. 18.9 3.99 7.22 7.70 0.04 167931 129540
11 N.S. 19.82 3.85 8.33 07.6 0.03 172663 136086
12 N.S. 16.83 3.13 6.38 7.27 0.04 136995 106849
13 N.S. 27.42 5.60 12.20 9.58 0.04 219471 175117
14 N.S. 27.63 5.19 11.60 10.79 0.04 225567 177248
15 N.S. 46.62 10.30 20.06 16.20 0.05 345843 276832
16 N.S. 82.35 20.82 38.18 23.25 0.08 478311 385598

Experiments related to the integer multipliers policy are shown in Table 4.3. The 

same 16 problem instances used in testing the common cycle policy are exercised here. 

Each of the multipliers, m1 and m2, is considered to be an input parameter that takes a 

value from 1 to 6. So for each problem, the proposed model given by equations (4.57) -

(4.66) is linearized first then solved 36 times using the proposed OA-BD algorithm to 

search for the optimal multiplier values at each stage.  The proposed algorithm shows a 

reasonable solution time for solving large scale supply chains, such as the last three 

problem instances.
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The last column of Table 4.3 demonstrates the percentage of cost savings by applying 

the integer multipliers policy instead of the common cycle approach to synchronize the 

supply chain. As shown in this column, the integer multipliers policy gives the same 

results of the common cycle time policy for only three problems, the fifth, sixth and 

eleventh problems. Results of the other problems show that synchronizing the supply 

chain at the integer multipliers policy results in a cost reduction that can reach 16.3% 

compared to the common cycle time policy. This implies that the common cycle time 

strategy is not guaranteed to be the optimal tactic to synchronize the supply chain. 

Consequently, the integer multipliers mechanism should be investigated to answer the 

third question mentioned in Section 4.2 regarding the synchronization of all tiers at the 

same cycle time. On the other hand, the common cycle time approach could be a better 

choice to synchronize a supply chain if the products under consideration undergo changes 

in their design.

Table 4.3: Computational results of the hybrid OA-BD applied to the integer multiplier policy 
over a specified range of m1, m2: m1≤ 6 , m2≤ 6
m1: multiplier at T1-stage       m2:  multiplier at T2-stage 

P
ro

bl
em

Multipliers Solution time
% cost 
savingm1 m2 Total

Initial 
problem

(sec.)

Benders 
master 

problem

Benders 
sub-

problem

Sub-
problem

(sec.)
1 2 1 5.59 sec 0.02 1.39 sec 2.69 sec 0.80 2.99
2 4 1 5.03 sec 0.02 1.22 sec 2.51 sec 0.72 16.30
3 2 1 4.27 sec 0.01 0.96 sec 2.11 sec 0.71 1.29
4 2 1 5.37  sec 0.02 1.28 sec 2.68 sec 0.73 1.69
5 1 1 12.63  sec 0.04 3.07 sec 7.2 sec 0.73 0
6 1 1 12.29  sec 0.04 3.11 sec 6.88 sec 0.74 0
7 2 2 18.37  sec 0.06 5.01 sec 10.14 sec 0.75 5.94
8 1 2 2.49 min 0.64 53.60 sec 73.62 sec 0.99 8.50
9 2 1 2.37  min 0.66 47.73 sec 69.81 0.94 1.69
10 3 1 11.37 min 4.55 4.39 min 4.48 min 1.45 4.27
11 1 1 12.17 min 3.93 5.10 min 4.59 min 1.42 0
12 3 2 16.18 min 5.93 7.32 min 5.99 min 1.64 12.95
13 3 2 16.70 min 5.80 7.22 min 5.94 min 1.72 15.01
14 1 2 16.52 min 5.75 7.03 min 6.11 min 1.72 9.33
15 2 1 20.09 min 10.21 7.83 min 5.78 min 1.36 1.91
16 2 2 48.13 min 18.71 22.55 min 13.50 min 2.23 6.75
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Results of the experiments demonstrate the efficiency of the methodology introduced 

in this chapter in designing the supply chain joint inventory-production system. Optimal 

inventory policies are obtained for multiple-stage supply chains under deterministic 

demand and lead time assumptions. The proposed synchronization strategies state the 

cycle time and the production sequence at each stage of the supply chain. Given the cycle

time on hand, ordering frequency and the order size can be determined. The next chapter 

continues planning the tactical level by establishing the safety stock strategy required to 

cope with the uncertainty of demand and lead time.
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Chapter 5   

Safety Stock Placement Optimization

5.1 Introduction

In today’s competitive environment, uncertainty is considered to be an inherent part 

of most supply chain inventory systems. This uncertainty is caused by several factors 

among which are customer demand and supplier lead time. To cope with fluctuations 

occurring in these two random variables, safety amounts should be placed at the relevant 

supply chain stocking nodes. From the economic aspect, the safety stock placement (SSP)

problem should be given more attention by supply chain management researchers and 

practitioners, since understocking leads to customer dissatisfaction and overstocking

results in high investment in inventory holding costs. 

In this chapter, the SSP problem of the underlying multi-stage supply chain is tackled. 

The supply chain includes multiple-sourced stockpoints, in which each stock point 

undergoes demand and lead time fluctuations. Concepts of order statistics (OS) are 

incorporated in the proposed methodology to find the parameters of the lead time 

probability distribution at each stockpoint. Two safety stock positioning models are 

proposed to establish the fill rates along with the safety amounts across the chain. The 



80

recommended fill rates and safety amounts should lead the entire supply chain to meet a 

pre-specified end customer service level that represents a prescribed percentage of 

satisfied demand. The decentralized policy, characterizing the first model, allows each 

stockpoint to individually handle changes in its downstream demand and upstream lead 

time. On the other hand, the centralized policy proposed by the second model seeks to 

achieve cost savings through pooling the variability of lead time demand occurring at

each stage at one aggregation center. The decentralized model is solvable to optimality 

using the nonlinear commercial solver Minos, whereas a decomposition technique based 

on the Benders decomposition (BD) technique is developed to solve the safety stock 

consolidation (SSC) model. 

The establishment of the complete inventory system at each stockpoint in the supply 

chain is described in the following section. The specific underlying problem is defined in 

Section 5.3. Next, Section 5.4 discusses the application of normal OS to obtain the 

parameters of the lead time probability distribution at the multiple-sourced stockpoints.  

The SSP and the models are presented in Sections 5.5 and 5.6, respectively. The BD 

algorithm proposed to handle the difficulty embedded in the mixed integer nonlinear SSC 

model is explained in Section 5.7. A comparison between the two models is conducted in 

Section 5.8. This section also shows the computational efficiency of the decomposition 

method used to solve the SSC model.

5.2 Establishing the (Q, r) Inventory System

The inventory-production model developed in Chapter 4 ignores the stochastic 

environment surrounding the supply chain. Cycle time T and order quantities Q at each 

member of that chain have been determined either by the common cycle time policy or 
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by the integer multipliers mechanism based on the deterministic assumption of customer 

demand. Moreover, lead time variability has not yet been accounted for. 

To establish the (Q, r) system, in which r is the reorder point, one of two approaches 

can be followed. The first one is to simultaneously decide on the two decision variables Q

and r. In this case the uncertainty of the random variables (e.g., lead time and demand) is 

considered through establishing the inventory system. The difficulty of this approach 

belongs to the complexity of the model that jointly finds optimal values of Q and r, and 

the computations required to find this optimal solution. The other method finds Q first,

based on the average value of the demand, and then a subsequent safety stock model is 

established. The purpose of the safety stock model is to specify the reorder point r based 

on the predetermined value of the order amount Q. In this research the second approach is 

followed to decide sequentially on Q and r. 

To set up the (Q, r) inventory system at each stockpoint existing in the supply chain 

under consideration in this thesis, the order amount Q at each stockpoint of the chain is 

simply determined from the deterministic models proposed in Chapter 4. This can be 

done through multiplying the obtained cycle time T by the given value of the average 

demand D. Subsequently, the reorder point r is determined by summing the safety stock 

amount to the average lead time demand. Establishing the (Q, r) system this way does not 

guarantee reaching the optimal policy of such a stochastic inventory system.  A future 

extension to the research conducted in this part of the thesis is to develop the 

mathematical model and solution approach required to establish the optimal (Q, r) system

of the stochastic inventory problem under study.
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5.3 Safety Stock Problem Description and Assumptions

At each member of the supply chain depicted in Figure (1.1), there is a stockpoint 

facing a stochastic environment resulting from volatile downstream demand and variable 

predecessor lead time.  The lead time is defined here as the time elapsed in shipping 

material from one stockpoint to its successor. The underlying stochastic environment is 

characterized by independent and normally distributed demand and lead time. 

The current inventory strategies applied at each member of the supply chain ignore 

the uncertainty of downstream demand and upstream lead time. This represents an 

incentive to set up a safety stock strategy that can fulfill the end customer demand at a

certain service level. The service level employed represents the percentage of demand 

satisfied from the shelf (i.e., the fill rate). The new strategy is expected to establish the fill 

rates and allocate the adequate safety amounts at the relevant places throughout the 

network. The overall objective is to fulfill the company’s end customer demand at 

minimum safety stock holding cost across the entire chain. Such a strategy should respect 

the material distribution results proposed by the strategic reconfiguration and supplier 

selection model developed in Chapter 3. In addition, the strategy should consider the 

underlying assumptions of the economic lot delivery and scheduling models proposed in 

Chapter 4, that are used to specify replenishment intervals and order amounts at each 

stockpoint.  These assumptions are:

1. A single item can be replenished from multiple locations.

2. Replenishment cycle time is common among suppliers of a given stage.

3. Production can start upon receiving shipments ordered from the multiple sources.
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The first and third assumptions call for applying OS concepts in order to figure out 

the delivery time used in calculating safety stock at each stockpoint. Since each 

stockpoint receives material from multiple sources, the lead time for receiving an item is 

considered as the maximum among these multiple-source lead times. Consequently, this 

maximum is considered as a random variable having a probability distribution. To 

determine the maximum of a set of random variables, OS theory should be consulted.  

Section 6.4 illustrates the application of OS to find parameters of the maximum delivery 

time at each stockpoint.

To solve the above-mentioned safety stock problem, two models are developed in this 

chapter. The first model, the SSP model, is established based on the decentralized 

approach of allocating safety stocks. Following this approach, each stockpoint is required 

to keep sufficient safety amounts from each item at its site to meet both kinds of 

variability mentioned above.  The second model, the SSC model, is formulated based on 

the centralization principles of safety stock distribution. Centralization principles require 

safety pooling to be applied at each stage. This can be attained by consolidating the 

safety amounts of each single item required at all stockpoints of a given stage at that 

which has the lowest inventory holding cost and enough capacity.  Stockpoints preferred 

to be consolidation centers will be given an amount of credits to cover their 

responsibilities for holding the consolidated safety amounts. In return, a consolidation

center is required to cope with the variations of lead time demand of other stockpoints by 

shipping a sufficient amount of stock to their downstream stage. The impact of such

consolidation is that smaller overall amounts of safety stock are kept as a consequence of 

the resulting decrease in variability due to SSC at each stage.  
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5.4 Variable Lead Time of Multiple-Sourced Stockpoints

The problem of the multiple sourced inventory system has been widely investigated 

by researchers to figure out the effect of order splitting on the lead time distribution, in 

which the entire order is distributed among multiple sources instead of being replenished

from a sole source (Sculli and Wu, 1981; Pan, 1987; Ramasesh, 1988; and Pan et al.,

1991). Another problem relating to a multiple-sourced stochastic inventory system arises 

when the lead time is considered as the maximum among the multiple-sourced lead times. 

An assembly system is a common example that exhibits this way of calculating lead time, 

where assembly cannot start until all the required components being assembled have been 

received. Also, a production batch of a single item may require all the raw material 

supplied from multiple vendors to be processed in one production run. In that case,

production of this item starts once all the required material is on hand. 

In the problem being studied, a multiple-sourced stockpoint faces the stochastic 

problem of determining delivery lead time of its input material, specifically the elapsed 

time to transport these materials from upstream stages to the stockpoint. If a stockpoint 

receives material from n sources considering their lead time as independent and 

identically normally distributed random variables, the maximum among these n variables 

equals the maximum of a random sample of size n taken from a normally distributed 

population (Clark, 1961). Consequently, if the delivery time is a normally distributed 

random variable, the maximum among them is also a normally distributed random

variable. The determination of this maximum can be found by consulting OS

distributions and moments (David and Nagaraja, 2003). The mean of this random 
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variable is the expected lead time that will be used along with its variance in calculating 

the safety amounts required to cope with the stochastic environment of the supply chain.

The expected value of the ith order statistics for a set of independent standard normal 

random variables X1, X2… Xn is given by equation (5.1) where i represents the order. If i

equals n, it represents the maximum of this OS. 
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Godwin (1949) establishes tables of mean, variance and covariance of NDOS of size 

10 or less. For samples of 20 or less, tables of the expected value of the ith order statistics 

are established by Teichrow (1956). For larger sample sizes of 2(1) 100(25) 250(50) 400, 

Harter (1961) presents the expected values of NDOS. Federer (1951), Blom (1958), 

Wescott (1977), and Royston (1982) introduce algorithms to approximate the expected 

values of OS. These algorithms apply numerical methods and do not provide closed form 

solutions to find moments of OS.

Simchi-Levi et al. (2005) consider such a case of lead time representation in their 

model and apply the approximation method introduced by Clark (1961) to determine the 

lead time at assembly facilities.  Clark (1961) finds the maximum among a finite set of 

random variables through successive iterations that require searching in the standard 

normal table each time. However, searching in the normal table is time-consuming and is 

found to be difficult to put into a computer code. Further inventory models that 

incorporate explicit forms for determining the maximum lead time at assembly facilities 

have to be introduced to facilitate handling the difficulty of variable lead time.
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The algorithm introduced by Ozturk and Aly (1991) is applied here to approximate 

parameters of the normally distributed lead time random variable at each stockpoint. The 

algorithm approximates the expected value and variance of NDOS using the generalized 

lambda distribution (GLD). In this case, the moments of GLD order statistics are used as 

an approximation to the moments of standard NDOS. In addition to providing results 

with small errors, the algorithm proposed by Ozturk and Aly (1991) is straightforward 

and needs less computational efforts compared to Clark’s (1961). Table 5.1 shows a 

comparison between these two approximation methods. The second column of the table 

represents the upper bound of the error in estimating the maximum among a set of 

random variables using the GLD algorithm proposed by Ozturk and Aly (1991), and

Clark’s (1961) error values are depicted in the third column. Clark’s (1961) error results 

are subjected to increase if an approximation method is used instead of searching in the 

normal table. 

Table 5.1: Comparison between the absolute error in estimating the mean of the maximum among n
standard normal random variables using Ozturk and Aly (1991) and Clark (1961). 

n Ozturk and Aly (1991) Clark (1961)

2 0.00019 0.00000

3 0.00029 0.00130

4 0.00074 0.00260

5 0.00122 0.00130

6 0.00146 0.00070

7 0.00151 0.00000

8 0.00171 0.00060

9 0.00195 0.00130

10 0.00208 0.00210

The inverse distribution function of the GLD proposed by Ramberg and Schemeiser 

(1972) is shown in equation (5.2) where λ1, λ2, λ3 and λ4 are the parameters of the 

distribution. For 0, 0.1975, 0.1349 and 0.1349 given values of these parameters, 
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Schemeiser (1977) shows that the maximum absolute error through approximating the 

standard normal distribution by the GLD is 0.001. Equations (5.3) and (5.5) represent the 

closed form given by Ozturk and Aly (1991) to approximate mean and variance of 

standard NDOS using the GLD. The β function used to calculate the variance is shown in 

equation (5.7).
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The parameters mi and vi of the standard NDOS are used to drive mean E(Xi) and 

variance Var(Xi) of the original OS. If the n lead times at a given stockpoint are 

represented by identical normal distributions having mean μ and variance σ2, parameters 

of the maximum lead time distribution are given by equations (5.8) and (5.9) where i

equals n. 

( ) (5.8)i iE X m  

2( ) (5.9)i iVar X v
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5.5 Decentralized Safety Stock Placement Model

In this section, the proposed SSP model that is based on the decentralized approach is 

discussed. The contribution of this model is the incorporation of the service per units 

demanded (i.e., fill rate) as a measure of service in a multi-stage supply chain. The supply 

chain, which comprises multiple-sourced stockpoints, faces customer demand and 

supplier lead time variability. Another original aspect of this model concerns the relation 

between the fill rates required to be established from a supply chain perspective. Each

item moves throughout the network on a path that starts from the T2-suppliers stage until 

it reaches the company. The expected fill rates at the stockpoints placed on a given path 

should satisfy the end customer service level. This is ensured through satisfying the 

constraint setting the service level as a lower bound on the multiplication of these fill 

rates.  

The mean ijkl and variance ijkl of the delivery time of item k at stockpoint j placed in 

stage i are calculated using equations (5.8) and (5.9), respectively. Equation (5.10) 

represents the standard deviation of lead time demand in the case of variable demand and 

variable lead time. Equation (5.11) shows the relationship between standardized stockout 

quantity per order cycle and the fill rate of a single item at a given stockpoint (Tersine,

1988). This equation will be extended in the model to be applied in a supply chain 

context.

2 2 2 (5.10)ijk ijk ijk ijk ijkl d d l   

( )
1 (5.11)

E Z
sl

q


 
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The SSP model proposed to establish the safety stock decisions regarding the fill rates 

and the safety amounts is given by equations (5.12)-(5.16).

1 1 1

(5.12)
iJI K

ijk ijk ijk
i j k

Min SSHC h Z
  

 
Subject to

1 2 3 2 31,2,... , 1, 1,2,... , 1,2,..., : 1 (5.13)rk sk tk k krstF F F sl k K r s J t J U       
(1 )

( ) 1,2,... 1,2,... 1, 2,... (5.14)ijk ijk
ijk i

ijk

F q
E Z i I j J k K




   

2-1.75294 +0.4442135 ( ) - 0.07061455 ( )

( ) - 0.38984228 0.17592241 0.0012267386
- -

( ) +0.044212641 ( ) +0.00030570313

1,2,... 1, 2,... 1, 2,... (5.15)

ijk ijk

ijk ijk

ijk ijk

i

E Z E Z

Z E Z

E Z E Z

i I j J k K

 
      
 
 
  

, ( ) , 0 1, 2,... 1, 2,... 1, 2,... (5.16)ijk ijk ijk iZ E Z F i I j J k K   

Objective function (5.12) minimizes the safety stock holding cost at each stockpoint. 

The amount ijkijk Z is the safety stock of item k that should be kept at stockpoint j in 

stage i per cycle. The desired service level of item k is satisfied through equation (5.13)

where Ukrst is a four dimensional binary matrix. For the case handled in this thesis in 

which the supply chain composed of three stages, the entries Ukrst specify whether or not 

item k passes through the stockpoint r located at the most downstream stage where i =1,

and the stockpoint s located at the intermediate stage where i = 2, and the stockpoint t

located at the most upstream stage where i = 3. This equation ensures that each path of a 

given item k on the network will yield a service level greater than or equal to the desired 

one. The multiplication of the fill rates on a given path gives the model the flexibility to 

assign high fill rate to the stockpoints having low holding cost and assign lower fill rate at 

the stockpoints incurring high holding cost. Equation (5.14), which is driven from 

equation (5.11), calculates the standard stockout quantity E(Z)ijk of item k at stockpoint j
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in stage i. Brown’s (1967) nonlinear approximation is shown in equation (5.15). This

convex nonlinear approximation is used instead of searching in statistical tables to find 

value of Zijk for a given value of E(Z)ijk. The drawback of this function is that it does not 

provide a reasonable approximation when it is applied to large absolute values of E(Z) 

close to 4.5. The non-negative restriction on the decision variables is insured by the last 

constraint. 

The reorder point of each item k at stockpoint j in stage i can be directly determined 

by adding the safety stock ijkijk Z to the average lead time demand ijkijk dl . The model is 

coded using Ample (Fourer et al., 2003), and is solvable directly to optimality using 

Minos. 

When a stockpoint undergoes order crossover effects resulting from receiving a 

recently placed order before the order placed earlier, μ and σ2 appearing in equations (5.8) 

and (5.9) refer to the effective lead time normal distribution. Effective lead time can be 

obtained from the original lead time by considering the time elapsed between placing the 

first order and receiving the first delivery (Hayya et al., 2009). Another approach to 

considering order crossover while setting up safety stock plans is to design the safety 

levels with regard to the shortfall distribution instead of the lead time demand distribution 

(Bradley et al., 2005; Robinson et al., 2008). Shortfall and lead time demand distributions 

have the same mean, while the variance of the shortfall distribution is affected by 

parameters of the number of outstanding orders. Robinson (2001) demonstrates how 

these parameters can be derived from probability distribution of the lead time demand.  

To apply this approach in the proposed model, the standard deviation of lead time 

demand ijk in equation (5.14) is replaced by the standard deviation of the shortfall 
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distribution. So, whether the effective lead time or the shortfall distribution is used, the 

proposed SSP model is still valid for handling stochastic lead times with order crossover.

5.6 Safety Stock Consolidation Model

SSC is recommended to reduce variability, especially when a supply chain faces high 

demand and lead time variations. The inventory consolidation problem has been studied 

in the literature to examine the effect of consolidation on inventory cycle stock and safety 

stock savings. Wanke (2009) classifies major papers handling this problem. The 

consolidation models proposed by these papers are built given that both cycle stock and 

safety stock of decentralized locations are consolidated in one or more centralized 

locations. 

Because the consolidation model proposed in this thesis is designed to handle 

variability in delivery lead time and customer demand in the context of an integrated 

production inventory system, it is preferred to keep the cycle stock close enough to the 

production line. This will facilitate shipping on the promised delivery dates. In such cases, 

consolidation takes place in safety stock only. In addition to this unique way of 

consolidating safety stock, the proposed model differs significantly in three aspects from 

those appearing in Maister (1976), Zinn et al. (1989), Mahmoud (1992), Evers and Beier

(1993), Tallon (1993), Evers (1995), Caron and Marchet (1996), Evers and Beier (1998), 

Tyagi and Das (1998), Das and Tyagi (1999),  Ballou and Burnetas (2003), Ballou (2005), 

and Wanke (2009). 

First, the service level considered in the proposed model represents the probability of 

stockout amount while that employed in the literature is the probability of stockout 

occurrence. Probability of stockout amount service level is more informative than 
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probability of stockout occurrence since it shows how many of the demanded units are 

not satisfied.

Second, the safety factor associated with the underlying service level in the proposed 

SSC model is a decision variable while that used in other models appearing in the above 

cited papers is a known parameter. Moreover, in the proposed SSC model, the value of 

that factor is decided upon from the viewpoint of the whole supply chain while its value 

is set by each consolidation center prior to solving those models. 

Third, previous research consolidates cycle stock and safety stock of decentralized 

locations placed at one stage at the chosen independent consolidation centers. The 

complexity of the proposed model lies in the constraint imposed on the fill rates at the

selected consolidation centers at each stage of a multi-stage supply chain. This

relationship, which has not been considered before in a consolidation model, implies that 

the fill rates of these centers should yield a customer service level greater than or equal to 

the desired one. In addition to the capacity of a candidate center and its holding cost per 

unit, the amount of credit that is given to each center affects the decision of selecting the 

consolidation centers. This credit is considered as a motivation to accept the 

responsibility of holding such consolidated safety stock. 

The operational analysis given by Evers and Beier (1998) recommends pooling

variability of demand instead of pooling variability of lead time demand at each 

candidate consolidation center. Their model considers only the variability of lead time at 

each candidate consolidation center to go through safety stock calculations. In contrast to 

the proposed model, variability of lead time at decentralized locations is discarded

because no inventory is kept there.  In the proposed consolidation model, given the fact 
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that each facility is responsible for meeting its cycle demand, equation (5.17) shows the 

pooled variability that sums the independent lead time demand variances at each 

stockpoint of a given stage where each entry 2
ijk is obtained from equation (5.10).  

2

1

(5.17)
J

ik ijk
j

 


 

In the SSP model proposed in Section 5.5, each stockpoint is responsible for meeting

its ongoing fluctuations in demand and lead time by keeping sufficient safety amounts. 

The concept of consolidation is applied here to centralize the safety amount of each item 

to be located in one place at each stage. As such, if any stockpoint faces demand or lead 

time positive variations, the consolidation center is required to ship an amount sufficient 

to meet such variations to the downstream stage. The impact of this concept is a reduction 

in the total safety amounts of each item stored at each stage.

Throughout the SSC model given by equations (5.18)-(5.26), the previously defined 

decision variables are used to represent each stage instead of each stockpoint. For 

example, the decision variable Fijk appears here as Fik to symbolize the fill rate of item k

required from stage i to meet the service level slk for this item k. A binary decision 

variable Xijk is defined to decide on which stockpoint j is used to hold the consolidated 

safety amount of each item k at stage i. 

Two more parameters are introduced, cij that represents the total capacity of 

stockpoint j in stage i, and the motivation cost wijk that indicates the amount of money 

paid by the supply chain partners to stockpoint j in stage i as an incentive to take the 

burden of handling the consolidated safety stock of item k. Through objective function 

(5.18), these motivating dollars along with the holding cost are used to select the most 
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relevant stockpoint among the feasible candidates to be the safety consolidation center of 

item k at stage i.  Constraint, given by equation (5.19), ensures that the consolidated

safety amount of item k is assigned to only one stockpoint among the available Ji points 

at stage i. Capacity restriction of stockpoint j at stage i to hold one or more items is 

satisfied through equation (5.20).

1 1 1

(5.18)
iJI K

ijk ijk ijk ik ik ijk
i j k

Min ASC w X h Z X
  

 
Subject to

1

1 1,2,... 1,2,... (5.19)
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X i I k K

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1

1,2,... 1, 2,... (5.20)
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Z X c i I j J


  

1

1,2,... (5.21)
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1
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1,2,... 1, 2,... (5.23)
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ik ik

ik ik

E Z E Z

Z E Z

E Z E Z

i I k K

 
    
  

 
1, 2,... 1, 2,... 1, 2,... (5.24)ijk iX is binary i I j J k K  

, ( ) , 0 1,2,... 1,2,... (5.25)ik ik ikZ E Z F i I k K  

5.7 Decomposition of the Consolidation Model

The difficulty with the SSC model lies in the binary variable Xijk, and the nonlinear 

approximation (5.23). The binary variable hinders Minos from solving this model since it 

is a nonlinear solver, while the nonlinear constraint, given by equation (5.23), prevents 
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Cplex from solving the model directly.  Consequently, the model is decomposed into a 

binary master problem that is solved using Cplex and a continuous nonlinear sub-problem 

that is solved using Minos. This kind of decomposition follows the generalized BD 

technique discussed in Section 2.2.1, in which the complicating variable takes its value 

from the master problem then the sub-problem finds the solution of other variables for 

these given values of the binary variable. 

5.7.1 Master Problem

The master problem is solved to find the optimal values of the complicating binary 

variables Xijk, where these values are then sent to the sub-problem. If the sub-problem is 

infeasible to those given values of the complicating variables Xijk, it adds the feasibility 

cut (5.27) to the master problem. The feasibility cut used here is the combinatorial cut 

proposed by Codato et al. (2006). According to the model constraints, it is better to apply 

the cut only to those stockpoints that show insufficient capacity in a previous infeasible 

iteration s. This accelerates the master problem toward reaching a feasible 0-1 

combination by minimizing the number of Xijk candidates included in the cut. The 

parameters s
ijkX and s

ikZ are the recorded values of the binary variable Xijk and the standard 

normal Zik at the infeasible iteration s. The cut searches for new combinations of 0-1 

value of the complicating variables that were not considered infeasible before. 

To guide the master problem to the best Xijk combination for the sub-problem, the 

optimality cut (5.28) is added after each feasible iteration of the sub-problem. The 

multiplier λijk appearing in this cut reflects the change in the sub-problem objective 

function when the associated Xijk changes from 0 to 1. This multiplier λijk is calculated as 

follows: since each stage i accepts only one Xijk to be 1 over the subscript j, the sub-
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problem is solved ik(j-1) times to evaluate the change λijk due to replacing the Xijk leveled 

at 1 by the other binary variables Xijk leveled at 0 individually. Based on the passed 

values λijk from the sub-problem, the optimality cut (5.28) gives more opportunity to 

assign 1 to the Xijk variable that has minimum value of the multiplier λijk. In the classical 

BD approach, this multiplier is the dual variable associated with constraint (5.28). The 

dual variable cannot be used in the optimality cut (5.28) because its returned values by 

the sub-problem are non-negative. This non-negativity is a result of the positive increase 

hijk Xijk in objective function (5.29) associated with increasing Xijk from 0 to 1. The master 

problem is thus stated as follows:

1 1 1

(5.26)
I Ji K

ijk ijk
i j k

Min MP w X 
  

 
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1 1 1 11: 0 1: 1
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1 1
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t t t
ijk ijk ijk

i j k

SP X X t T 
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   

5.7.2 Sub-Problem

The sub-problem finds optimal values of E(Z)ik, Zik and Fik for the given values t
ijkX of 

the complicating variables Xijk at the feasible iteration t. The sub-problem is given by the 

following equations:
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1 1 1

(5.29)
I Ji K

ijk ik ik ijk
i j k

Min SP h Z X
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 
Subject to 

Equations (5.20)-(5.23), (5.25)

: 1, 2,... 1,2,... 1, 2,... (5.30)t
ijk ijk ijk iX X i I j J k K   

The algorithm iterates between both problems until an optimal solution is obtained.  

This can be attained when the lower bound (5.31) obtained from the relaxed master 

problem equals the upper bound (5.32) resulting from the restricted sub-problem. 

Equality of both bounds implies that no more improvement in the values of the 

complicating variables can be achieved.

1 1 1

(5.31)
I Ji K

t
ijk ijk

i j k

LB w X 
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1 1 1 1 1 1
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ijk ijk ijk ik ik ijk

i j k i j k

UB w X h Z X
     

  

5.8 Computational Experiments

The computational efficiency of solving the consolidation model through 

decomposition as well as the savings that can be obtained from distributing safety stock 

based on the obtained results of the SSC model are evaluated in this section. Experiments 

were conducted on AMD Sempron™ processor 3400+ 1.8GHz and 1 GB of RAM. 

A comparison between the SSP model and the SSC model is shown in Table 5.2. 

Results are tabulated for seven different supply chain sizes. The first stage of the chain is 

a single stockpoint while the number of stockpoints at Tier-1 and Tier-2 stages is shown 

in the second and third columns. 



98

The SSC model gives less safety amount than the SSP model as a result of 

introducing the safety pooling concept into the consolidation model. Consequently, it has 

less investment in the holding cost. The motivation cost is the first term of the objective 

function (5.18) which represents the amount of money paid to the selected centers to 

entice them to handle the consolidated safety stock.

The assumed range in which the annual holding cost per unit takes its input values is 

$50-$150, while the assumed range of the motivation cost per class of item per year is 

$30,000-$50,000. The third-to-last column shows cost savings that can be attained by 

applying the SSC model to optimize the safety stock positioning throughout the chain. 

Based on the assigned ranges of cost parameters, cost savings that range from 22.17% -

44.15% can be achieved annually as shown in the second-to-last column. The last column 

shows the percentage reduction in safety stock size attainable through applying the 

centralization model. This percentage reflects the portfolio effect of SSC, introduced by 

Table 5.2: Comparison between the SSP model and the SSC model
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Zinn et al. (1989), shown in equation (5.33). Up to 62% of the safety amounts resulting

from the decentralized model can be saved if the consolidation model is employed.

Sumof safetystockatconsolidationcenters
PortfolioEffect = 1 - (5.33)

Sumof safetystockatdecentralizedlocations

Each of the seven problem instances of the multi-item model is solved directly using 

Minos in less than a second. Table 6.3 illustrates the computational experiments 

regarding the SSC model. Ten different problems with different values of input 

parameters are tested to check the computational efficiency of the proposed consolidation

model and solution methodology. These different figures of the input parameters lead to 

solving the problems in different numbers of added cuts to the master problem. For 

example, in the sixth problem all the stockpoints have enough capacity to handle any 

number of products. Thus, no feasibility cuts are added to the master problem as depicted 

in the fifth column. In contrast, in the seventh problem, 219 feasibility cuts are added to 

the master problem in order to provide feasible Xijk solutions to the sub-problem. 

Table 5.3: Computational efficiency of the decomposition method used to solve the SSC model
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Because of the efficiency of the ijk multiplier in building the optimality cuts, the 

number of these cuts throughout the experiments is considered to be low, ranging from 4-

30 cuts as shown in the sixth column. The drawback of the multiplier ijk is the time it 

takes to be calculated. As shown in the last three columns of the table, the solution time 

of the master and sub-problems is very short compared to the total time of solving a 

problem. This indicates that most of the solution time of a given problem is consumed to 

calculate the multipliers at each iteration. The third-to-last column demonstrates the 

efficiency of the proposed BD method to reach the optimal solution of the SSC model. 

The solution time elapsed to solve any of the 10 different problems is very short, between 

10 and 83 seconds.

The safety stock strategies introduced in this chapter handle the SSP problem from a 

supply chain perceptive, in which the overall objective is to minimize the placement costs 

of safety amounts across the chain. The first strategy identifies the optimal fill rate and 

safety amounts that should be placed at each stockpoint to face the uncertainty 

surrounding the supply chain.  The second strategy aims at aggregating the safety stock 

placed at each stockpoint in a given stage at one aggregation center. The developed BD 

technique reaches the optimal consolidation policy that minimizes the safety stock 

placement cost through the entire supply chain. The resulting cost savings favor the 

consolidation approach to establish the safety stock policy required to cope with the 

variations in supplier lead time and customer demand.
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Chapter 6     

Conclusions and Future Work

6.1 Summary and Conclusion

Supply chain reconfiguration, inventory control, and safety stock placement problems 

are tackled in this thesis. These problems are investigated in order to make strategic and 

tactical decisions such as supplier selection, material distribution, capacity utilization, 

shipping frequency, order quantity, production sequence, safety amounts and fill rate,

from a supply chain standpoint. 

The problem under study replicates a real-life problem faced by an assembly 

company.  This company has decided to resolve two problems existing in its current 

supplying strategies. The first problem is related to the delivery performance of the 

suppliers providing the company with raw and machined components.  Some of these 

suppliers are unable to deliver these components on time to their downstream stage.  This 

directly affects the promised delivery dates of the final assembly to the end customer.  

The second problem is related to the inefficient inventory systems employed at the 

stockpoints existing in the supply chain. First, these inventory systems do not provide 

adequate stocks due to random ordering from upstream stages.  Second, no safety stock 
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strategy is being applied at these stockpoints to cope with the uncertainty of downstream 

demand and upstream lead time. Moreover, the company expects a demand increase that 

requires suppliers’ available capacity to be reallocated. The company seeks to establish 

new supplying and inventory strategies to fulfill this demand increase and handle the 

deficiencies of the current strategies. 

The thesis solves the underlying problem in three hierarchical decision stages. In the 

first stage, strategic decisions such as supplier selection, material distribution and 

capacity utilization are established. These strategic decisions are respected while 

designing the integrated inventory-production system in the second stage. At the final 

stage that handles the uncertainty present in the chain, the proposed safety stock strategy 

also respects the results obtained in the previous strategic and tactical stages. 

Through these decision stages, mathematical models are developed to formulate the 

underlying problem. These models are not limited to the problem studied in this thesis 

but they can be applied to handle vital industrial supply chain problems. For example, the 

strategic supplier selection model can represent a supply chain that has to be reconfigured 

in order to increase the amount of material delivered on time. 

The second model characterizes a joint inventory-production system that aims at 

minimizing the supply chain inventory cost. The system is represented by the economic 

lot and delivery scheduling problem (ELDSP) formulation which is a common problem 

in the literature.  The resulting optimal strategies guide supply chain partners to jointly 

decide on cycle time, order amounts and production sequence at each member of the 

chain from a supply chain perspective.  
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The third model determines the safety stock strategy required to face the fluctuations 

of demand and lead time in order to meet a predefined customer service level. Details of 

these models along with the proposed algorithms to solve them are discussed separately 

below. 

The research is presented in three integrated parts. In the first part, the supply chain 

reconfiguration and multi-criteria supplier selection problem is addressed to select the 

best suppliers and reallocate their capacities. The problem is formulated as a bilinear goal 

programming model which aims at achieving three objectives. The first and second 

objectives are to maximize the amount of material assigned to the highly reliable and well 

coordinated suppliers, respectively. The third objective is to minimize the distribution 

and inventory costs. Achieving these objectives leads the new reconfigured supply chain 

to meet the expected demand increase, overcome the customer dissatisfaction caused by

late deliveries. 

Improvements in the on-time delivery performance of the supply chain may lead to an 

increase in the distribution cost as compared to the current strategy that aims at 

minimizing the cost as a single criterion. The distribution cost increase is expected as it 

conflicts with the other two goals that aim at improving the on-time delivery performance 

of the supply chain. Although the proposed model reconfigures an existing supply chain, 

it can be applied to configure new chains considering the suppliers as candidates; among 

them the model selects the best.

The strategic model is decomposed into a master problem and a sub-problem to 

resolve the bilinearity resulting from multiplying a binary variable by a continuous 

variable. The master problem and the sub-problem are formulated as two interrelated 
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goal programming models. The sub-problem minimizes the deviations from the three 

goals considered in the proposed model, while the master problem selects the highly 

reliable and well coordinated suppliers. Following the Benders decomposition (BD)

approach, the master problem finds the optimal values of the complicating binary 

variables representing supplier selection decisions, while the sub-problem optimizes 

values of the non-complicating variables, representing the material distribution decisions,

for those given values of the complicating variables. A modified BD technique is 

developed to solve these goal programming models. 

Experiments conducted on large-sized supply chains demonstrate that the modified 

BD technique efficiently outperforms the classical linearization approach used to 

linearize the proposed model. The proposed method reaches optimal solutions with a 

reduction in solution time ranging from 56% to 89% as compared to the classical 

linearization approach. 

The economic lot and delivery scheduling problem for a multi-stage supply chain is 

investigated in the second part of the research. The problem is formulated in a new 

context through a quadratic assignment representation. The proposed constrained 

nonlinear mixed integer model is handled through a hybrid algorithm. The algorithm 

combines a linearization technique and outer approximation (OA) and BD techniques. 

The linearization scheme is applied to linearize bilinear and 0-1 polynomial terms 

existing in the chain-wide inventory cost function. The nonlinearity of terms representing 

the setup costs are handled by the OA method that decomposes the model into a master 

problem and a sub-problem. Since the OA master problem includes complex binary 

variables, it is found to be intractable by the commercial solver used in the experiments. 
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BD is applied to overcome this obstacle by decomposing the master problem into two 

problems. 

The computational experiments detailed in Table 4.2 show a solution time of 0.15

seconds for a small scale supply chain including a combination of two-three suppliers at 

each stage.  For a large scale supply chain including 15 suppliers at the initial stage and 

12 suppliers at the intermediate one, the solution time reaches 82.35 seconds. Moreover, 

an optimal solution is attained for the case of the integer-multiplier policy over a 

specified range for each multiplier in a relatively short time. As shown in Table 5.3, a 

cost reduction up to 16.3% can be accomplished by applying the integer-multiplier policy 

rather than the common cycle time policy to synchronize the supply chain. 

In the third part of the research, two safety stock placement models are proposed to 

allocate optimal safety amounts to the existing stockpoints in the supply chain. The 

supply chain faces variable demand and lead times among its stocking nodes. An explicit 

form is applied to determine the characteristics of the lead time at the multiple-sourced

stockpoints by following order statistics concepts. The first model is developed based on 

the decentralized approach of safety stock allocation. The objective is to place minimum 

safety stock amounts at each stockpoint of the chain in order to achieve the desired end 

customer service level.  The second model takes advantage of variability reduction 

resulting from safety pooling. At each stage, the amount of safety stock required from a 

given item is placed at the most appropriate stockpoint. This stockpoint behaves as a 

safety consolidation center that handles any fluctuations of upstream delivery time and 

downstream demand encountered at that stage. 
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The safety consolidation model includes nonlinear and integrality constraints that 

inhibit commercial solvers from handling it directly. A BD method is established to 

decompose this model into two problems. The resulting master and sub-problem 

problems are solvable directly by Cplex and Minos respectively. Benders optimality cuts 

and combinatorial Benders cuts are generated to converge between the master problem 

and the sub-problem. Computational experiments recorded in Table 5.3 show that the 

proposed decomposition method solves the nonlinear mixed integer safety consolidation 

model in a very short time, between 10 and 83 seconds.

The comparison made between the decentralized and the safety consolidation models 

illustrated in Table 5.2 shows that cost savings between 22.17% and 44.15% can be 

accomplished by employing the safety consolidation model. Also, a reduction up to 62%

in safety amounts can be achieved by applying the consolidation policy. 

6.2 Originality of the Thesis

The thesis contributes to the field of supply chain modeling and optimization research 

by developing new mathematical models and efficient solution techniques. The proposed 

techniques reach the optimal solutions of the developed nonlinear mixed integer models

in reasonable time. From the industrial point of view, the research presents strategies that 

assist supply chain practitioners to establish their strategic and tactical level plans by

specifying which suppliers are selected, how material is distributed among them, and how 

to control the inventory in both deterministic and stochastic environments. The achieved 

contributions can be stated as follows:

 The strategic model that reconfigures the supply chain selects suppliers based on a 

new combination of objectives. These objectives aim at selecting suppliers and 
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allocating their capacities so as to dispense material among the highly reliable and 

well coordinated suppliers at the lowest possible distribution and inventory costs. 

The optimal strategy resulting from solving this model satisfies strategic 

constraints imposed on configuring a supply chain and designs the distribution 

network over a given number of time periods.

 A novel formulation of the common ELDSP based on the quadratic assignment 

representation is introduced. This new approach to modeling the ELDSP, along 

with the developed algorithm, makes it easier to attain the optimal design of 

multiple stages joint inventory-production systems. 

 The thesis provides a comparative study that evaluates the synchronization of a 

multi-stage supply chain using the common cycle time approach and the integer 

multiplier mechanism. The comparison shows the computational time and the 

inventory costs of each case by examining different supply chain configurations.

 Two new supply chain safety stock placement models are proposed. The supply 

chain comprises multiple stages in which each stage involves multiple-sourced 

stockpoints. Each stockpoint faces variations in customer demand and supplier 

lead time. Order statistics theory is applied to decide on the functional lead time at 

each stockpoint. The two models are developed based on the centralized and 

decentralized approaches of placing the required safety amounts. Connected 

stockpoints are optimized simultaneously to establish the economic fill rates that 

satisfy the end customer service level. 

 The safety stock consolidation model that represents the centralization approach

of holding safety stocks differs from those models proposed in the literature in 
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two main ways. First, it consolidates safety stock but does not consolidate cycle 

stock. Secondly, fill rates employed at the consolidation centers are optimized 

simultaneously in order to provide a service level greater than or equal to the 

desired one. This gives the flexibility of establishing higher fill rates at the centers 

that have low placements costs and lower fill rates at the centers that have higher 

placement costs. The placement costs include the inventory holding cost and the 

amount of credits paid to a candidate center to handle the uncertainty of lead time 

and demand of an entire stage.

 Integrating decisions resulting from establishing the joint inventory-production 

policy with those obtained from the decentralized safety stock policy introduces a 

new (Q, r) control system. This system forms the inventory strategy at multiple-

sourced stockpoints of a multiple-stage supply chain facing demand and lead time 

fluctuations. 

 A modified BD method is established to overcome the difficulties associated with 

applying the classical BD approach to solve goal programming models. This can 

be done through adapting the algorithm to cope with a master problem and a sub-

problem formulated as two goal programming models having different objective 

function structures compared to the traditional Benders method. The modified 

algorithm can be generally applied to bilinear goal programming models in which 

the complicating variables directly affect the minimization of the deviational 

variable associated with each goal.

 The hybrid algorithm developed to solve the proposed inventory models shows 

that linearization and decomposition approaches can be integrated to solve 
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complex nonlinear models. The algorithm incorporates two linearization schemes 

and two decomposition approaches to solve a model including nonlinear, bilinear, 

and polynomial terms in addition to binary restrictions on decision variables.

6.3 Future Work

Supply chain modeling and optimization is an attractive field of research that calls for

more researchers to add their contributions. Extensions to the research conducted in this 

thesis can be viewed from two different angles: extensions to the entire work which 

covers the three decision stages, or extensions to each stage individually.

It would be interesting to further investigate the second part of the research that 

decides on the order amounts at each stockpoint and the third part that determines the 

reorder point, safety stock amounts and fill rate.  The order quantity at a given stockpoint 

influences the reorder point and thus the safety stock level required at this stockpoint. 

Therefore, developing a new model that decides simultaneously on the optimal values of 

order quantity and reorder point could result in cost savings.  The negative side of such a 

model lies in its complexity that may not allow for reaching optimal solutions. However, 

if a suboptimal solution is attained, it could provide lower inventory costs as compared to 

results obtained from deciding separately on order amount and reorder point.

The strategic reconfiguration and supplier selection model is established to 

redistribute material among reliable and coordinated suppliers at minimum cost. The 

model could be extended to consider other important criteria in selecting suppliers such 

as quality, agility and financial stability.  Changing the approach used to represent the 

model parameters could be an interest for further research. For instance, instead of 

reconfiguring the supply chain based on a deterministic demand assumption, this demand 
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could be represented as a random variable. In such a case, stochastic programming 

techniques would be used to solve the model. Other parameters of the model such as 

delivery cost, unit price cost, and suppliers’ capacities could be introduced in the model 

in the uncertain or ambiguous representations. 

Several extensions to the research related to the ELDSP could be conducted. The 

integer power of two multipliers mechanism could be investigated to synchronize the 

supply chain. The proposed joint inventory production model could be extended to 

handle the case when setup cost and time are sequence dependent. Another extension

could be to allow suppliers to employ volume flexible production rate instead of the 

assumed fixed rate. Other issues such as considering imperfect quality equipments, 

incurring variable delivery charge per shipments, and delivering on multiple shipments 

could add more value to the model.

The proposed safety stock placement models could be extended by considering other 

probability distributions rather than the normal distribution to represent lead time and 

demand variability. The proposed consolidation model assumes that stockpoints placed at

a given stage employ the same cycle time. By relaxing this assumption the problem can 

be investigated with different cycle times at the same stage. Also, the consolidation 

model only considers the cost savings from setting up consolidation centers at each stage; 

the problem could also be investigated to consider the effect of safety consolidation on 

the delivery time.
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Appendix

Mathematical and Statistical Considerations

A brief background to the theory applied in the research is discussed in this chapter. 

The mathematical programming part includes linearization and decomposition techniques 

applied to handle the proposed mixed integer nonlinear (MINL) models. The second part 

is related to some statistical considerations that enable better understanding of the 

research concerning the safety stock placement (SSP) problem presented in Chapter 6. 

A.1 Linearization

MINL models are often intractable to be handled directly by commercial solvers. A 

common way to overcome this characteristic of MINL models is to approximate the 

convex hull of feasible integer linear solutions through applying linearization schemes.  

A linearization scheme is considered to be efficient if it closely approximates this convex 

hull by providing a tight linear programming relaxation and simultaneously keeps the 

model computationally tractable (Adams and Sherali, 1990).

In this section, common linearization techniques employed to handle MINL models 

that comprise bilinear and polynomial terms are explained. To distinguish between these 

two terms, a bilinear term is that term that includes a binary variable multiplied by a 
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continuous one, while a polynomial term includes two or more binary variables 

multiplied together.

A.1.1 Linearization of Bilinear Terms

Consider the bilinear term xy where x is a binary variable and y is a continuous one. 

Consider also L and U as lower and upper bounds imposed on the continuous variable. A 

variable z can replace the bilinear term as shown in equation (A.1) if the four inequalities 

depicted in equations (A.2) and (A.3) are satisfied (Peterson, 1971). 

( .1)z xy A
( .2)Lx z Ux A 

(1 ) (1 ) ( .3)y U x z y L x A     

Through these four inequalities, if the binary variable x equals zero, z will equal zero 

as well because equation (A.2) is active in this case. On the contrary, equation (A.3) is 

the active one when the value of the binary variable is equal to one which forces z to be

equal one.

Given that z does not appear in any other constraints of a minimization problem, the 

right inequalities of equations (A.2) and (A.3) can be ignored if the objective function 

coefficient of variable z is non-negative while a non-positive coefficient leads to 

discarding the left inequalities. The same reduction can take place if there are constraints 

in the form of equations (A.4) and (A.5) correspondingly, where aj and k are non-

negative scalars (Adams and Forrester, 2007).

1

( .4)
n

j j
j

a z k A




1

( .5)
n

j j
j

a z k A



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If this generic scheme demonstrated by equations (A.1), (A.2) and (A.3) is applied to 

n bilinear terms existing in an MINL model, n continuous variables (z) and 4n

inequalities will be added to the model. Adams and Forester (2005) modify this scheme 

to omit 3n inequalities and keep only n structural inequalities. Derivation of the modified 

scheme can be reached as follows: if z has a non-negative objective coefficient, the slack 

variable v that should be added to the left inequality of equation (A.2) can appear in the 

objective function and all constraints instead of z as shown in equation (A.6). In this case 

the four inequalities of equations (A.2) and (A.3) are replaced by the non-negativity 

restriction on v shown in equation (A.7) and the constraint represented in equation (A.8). 

( .6)z v Lx A 
0 ( .7)v A

(1 ) ( .8)v y U x Lx A   

A.1.2 Polynomial Linearization 

Given a polynomial term that includes the product of binary variables, this 

multiplication can be replaced by one binary variable and two inequalities as shown in 

equations (A.9) and (A.10).

1

( .9)
J

j
j

x x A




1 1

1
( 1) ( .10)

J J

j j

xj J x xj A
J 

    

The two inequalities (A.10) obligate x to be equal one if all the J binary variables xj

equal one, while the binary variable x will lie between a non-positive and a non-negative 

number if at least one of the J binary variables xj equals zero. In such a case, x will be 

zero and the two inequalities are redundant. This linearization technique is introduced by 
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Zangwill (1965) for a multiplication of two binary variables. Watters (1967) extends this 

technique for polynomial terms including the product of two or more binary variables. 

Glover and Woolsey (1974) establish another method to linearize polynomial terms. 

Their approach adds│J│ more constraints than the two inequalities (A.10) but the 

introduced variable x is a non-negative continuous variable. If at least one xj equals zero, 

set of equations (A.11) and equation (A.12) will combine together to form an equality 

constraint forcing x to be zero. If all xj equal one, equation (A.13), which is the left 

inequality introduced in equation (A.10) jointly with set of equations (A.11), will 

constrain x to be equal to one.

1,....., ( .11)x xj j J A 
0 ( .12)x A

1

( 1) ( .13)
J

j

x xj J A


  
      

Hahn et al. (2008) introduce a special linearization technique to linearize polynomial 

terms appearing in the quadratic assignment (QA) problem. This special class of 

polynomial terms takes into account the pair-wise interactions between binary variables. 

Each polynomial term xijxkn, which represents assigning job i, machine j and job k to 

machine n, is replaced by a non-negative continuous variable vijkn as shown in equation 

(A.14). The binary variable vijkn equals one if and only if job i is assigned to machine j

and job k is assigned to machine n. Since xijxkn equals xknxij, the equality constraint, shown 

in equation (A.15), is added to the model to insure such equivalence. Another equality 

constraint, shown in equation (A.16), is added to assign job k to machine n given that job 

i is assigned to machine j.
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, , , ( .14)ijkn ij knv x x i j k n A 

, , , , ( .15)ijkn knijv v i j k n i k A  

, , , , ( .16)ijkn ij
n

v x i j k n i k A  
0 , , , ( .17)ijknv i j k n A 

A.2 Decomposition Techniques 

In practice, the size of mathematical models can be large, consisting of a huge 

number of variables and constraints. Commercial solvers cannot handle these models 

directly if the models include complicating variables or constraints. Moreover, 

mathematical models may show another kind of difficulty represented in the form of non-

linear, bilinear, or polynomial terms. 

Decomposition techniques are useful tools to deal with intractable models including 

such different kinds of complexity. Among these techniques, the generalized Benders 

decomposition (BD) technique introduced by Geoffrion (1972), and the outer 

approximation (OA) approach developed by Duran and Grossman (1986) are discussed in 

this section.

A.2.1 Benders Decomposition Technique

The BD technique is suitably applied to mathematical models including complicating 

variables. A variable is considered to be complicating if it appears in all the constraints of 

a given model and prevents solving it by blocks.  Also, if relaxing integrality or binary 

restrictions imposed on a variable will lead to solving the model easily, such an integer 

variable is considered to be complicating. 
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Equations (A.18), (A.19), (A.20) and (A.21) represent a mathematical model 

including two sets of variables. The complicating variable is considered to be xi, while 

the non-complicating variable is yj (Conejo et al., 2006).

1 1

( .18)
I J

i i j j
i j

Min c x d y A
 

 
Subject to 

1 1

1,....., ( .19)
I J

li i lj j l
i j

a x e y b l L A
 

   
0 1,....., ( .20)up

i ix x i I A  

0 1,....., ( .21)up
j jy y j J A  

Using the BD technique, this problem is decomposed into a master and a sub-problem. 

The master problem presented by equations (A.22), (A.23), (A.24) and (A.25) determines 

the optimal value of the complicating variables xi while the sub-problem illustrated in 

equations (A.26), (A.27), (A.28) and (A.29) finds the optimal values of the non-

complicating variables yj given those optimal values of the complicating variables k
ix at 

iteration k. At each feasible iteration, an optimality cut (A.23) is added to the master 

problem. This cut, also called Benders cut, is built based on duality theory by considering 

the dual variables associated with constraint (A.29). Benders cut is used to drive the 

objective function of the master problem to move toward the objective function of the 

sub-problem through minimizing function α. 

1

( .22)
I

i i
i

Min c x A



Subject to 

1 1

( ) 1,....., 1 ( .23)
J I

k k k
j j i i

j i

d y xi x k v A 
 

     
0 1,....., ( .24)up

i ix x i I A  
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( .25)down A 

1

( .26)
J

j j
j

Min d y A



Subject to 

1 1

1,....., ( .27)
I J

li i lj j l
i j

a x e y b l L A
 

   
0 1,....., ( .28)up

j jy y j J A  

: 1,....., ( .29)v
i i ix x i I A 

An optimal solution is found when the lower bound (A.30) obtained from the relaxed 

master problem equals the upper bound (A.31) resulting from the restricted sub-problem.

1

( .30)
I

v v v
down i i

i

z c x A


 

1 1

( .31)
I J

v v v
up i i j j

i j

z c x d y A
 

  

In this thesis, the BD technique is applied to deal with the complexity of binary 

variables. The master problem, which is a pure binary model, provides 0-1 combination 

to those binary variables. If the sub-problem is infeasible to those values, a combinatorial 

feasibility cut (A.32), introduced by Codato and Fischetti (2004), is added to the master 

problem after each infeasible iteration t to look for a feasible binary combination. This 

can be done through leading the master problem to generate a sum of 0-1 combination 

that differs from any previous infeasible combination by at least one. The feasibility cut 

may take different forms depending on the constraints included in the sub-problem.

: 0 : 1

(1 ) 1 1,....., ( .32)
t t
i i

I I

i i
i x i x

x x t T A
 

    
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A.2.2 Outer Approximation Approach

Duran and Grossman (1986) establish an OA approach to solve a particular class of 

mixed integer nonlinear models. The characteristics of this class of models are the 

linearity of the integer variables and the convexity of the nonlinear function with respect 

to the continuous variables. The algorithm iterates between solving a relaxed mixed 

integer master problem and a nonlinear sub-problem. 

A mixed integer nonlinear mathematical model that belongs to the specific class 

mentioned above is shown in equations (A.33), (A.34) and (A.35) (Li and Sun, 2006). 

Functions f and g are convex in y and linear in the integer variable x.  It is assumed that Y

is a non-empty convex set and X is a finite integer set.

( , ) ( .33)Min f x y A
Subject to 

( , ) 0 1,....., ( .34)ig x y i I A 

, ( .35)m nx X y Y A   

This model can be decomposed using the OA method into a master problem and a 

sub-problem. The master problem, which is depicted in equations (A.36), (A.37), (A.38) 

and (A.39), solves a mixed integer linear model considering the linear estimation of 

nonlinear functions f and g. For given values of the integer variable x obtained from the 

master problem, the sub-problem finds optimal value of the continuous variable y by 

solving the nonlinear model given by equations (A.33), (A.34) and (A.35). After each 

iteration a convergence check is taking place to recognize lower and upper bounds 

obtained from the master problem and the sub-problem respectively.

( .36)Min A
Subject to
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( , ) ( , ) 1,....., ( .37)
k

k k K k k

k

x x
f x y f x y k K A

y y


 
     

0 ( , ) ( , ) 1,....., ( .38)
k

k k K k k

k

x x
g x y g x y k K A

y y

 
     

1, , ( .39)m nx X y Y A    

If the OA is applied to a 0-1 mixed integer nonlinear model, the combinatorial 

feasibility cut (A.32) is added to the master problem after each infeasible solution of the 

sub-problem. 

A.3 Order Statistics

Order statistics (OS) deals with ordered random variables and studies their properties 

and applications. If the random variables X1, X2,…, Xn are arranged in an ascending order 

where X(1) ≤ X(2) ≤…..≤  X(n) , then X(r) is called the rth OS. Assuming that these n random 

variables are independent and identically distributed with the probability density function 

(pdf) ( )f x and the cumulative distribution function (cdf) F(x), the pdf of the rth order 

statistic is given by equation(A.40) where r = 1, 2,..., n (Rose and smith 2002).

1!
( ) ( )[1 ( )] ( ) ( .40)

( 1)!( )!
r n r

r

n
f x F x F x f x A

r n r
  

 

In the safety stock positioning models proposed in this thesis, the delivery times of 

input materials coming from multiple sources are assumed to be independent and 

normally distributed random variables. So, for a given stockpoint, determining 

parameters of the probability distribution representing the maximum delivery time 

random variable is an example of OS. In particular, mean and variance of a standard 
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normally distributed order statistics (NDOS) have to be calculated before starting to solve 

the safety stock analytical models. For NDOS, the pdf of the rth  OS is shown in equation 

(A.41) while equation (A.42) demonstrates the mean of that particular OS. 

1!
( ) { ( )} {1 ( )} ( ) ( .41)

( 1)!( )!
r n r

r

n
f x x x f x dx A

r n r
 


 



 
  

1!
( ) { ( )} {1 ( )} ( ) ( .42)

( 1)!( )!
r n r

r

n
E X x x x f x dx A

r n r
 


 



 
  

Godwin (1949) establishes tables of mean, variance, and covariance of NDOS of size 

10 or less. For samples of 20 or less, tables of the expected value of the rth OS was 

established by Teichrow (1956). For larger sample sizes of 2(1) 100(25) 250(50) 400, 

Harter (1961) present the expected values of NDOS. Federer (1951), Blom (1958), 

Wescott (1977), and Royston (1982) introduce algorithms to approximate the expected 

values of OS. These algorithms apply numerical methods and do not provide any simple 

explicit form to find moments of OS.

Ozturk and Aly (1991) introduce an algorithm to approximate parameters of NDOS. 

The algorithm approximates the expected value and variance of NDOS using the 

generalized lambda distribution (GLD). In such cases, the moments of GLD OS are used 

as an approximation to the moments of standard NDOS. 

The inverse distribution function of the GLD proposed by Ramberg and Schemeiser 

(1972) is shown in equation (A.43) where λ1, λ2, λ3 and λ4 are parameters of the 

distribution. For 0, 0.1975, 0.1349 and 0.1349 given values of these parameters, 

Schemeiser (1977) showed that the maximum absolute error through approximating the 

NDOS by the GLD is 0.001. Equations (A.44) and (A.46) show the closed form given by 
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Ozturk and Aly (1991) to approximate mean mr and variance vr of NDOS using GLD.

The β function used to calculate the variance is shown in equation (A.48).

  43

1
1

2

1
( ) ( .43)

p p
F p A






  
 

1

2 1

( .44)r n r
r

n

C C
m A

C
 






3

1

1
Where 1 ( .45)

r

r
k

C r A
k




   
 


     

   23 3 4 4
12

2

2 , 2 , , 2
( .46)

,r r

r t r t r t
v m A

r t

      


 
     

  

Where 1 ( .47)t n r A  

     
 

1 ! 1 !
and , ( .48)

1 !

x y
x y A

x y


 


 

Parameters mr and vr of the standard NDOS are used to drive mean E(Xr) and 

variance Var(Xr) of the original OS. If n OS are represented by identical normal 

distributions having mean μ and variance σ2, parameters of the maximum OS distribution 

are given by equations (A.49) and (A.50) where r equals n. 

( ) ( .49)r rE X m A  
2( ) ( .50)r rVar X v A

A.4 Approximation to the Standard Loss Integral

In a stochastic inventory system, the lead time demand is handled as a random 

variable. To deal with such variability of lead time demand, an adequate safety amount 

should be kept in stock so as to fulfill a specific customer service. If the desired service 

level refers to a given fill rate, the standard normal deviate Z should be determined from 

the partial expectation E(Z). The partial expectation stands for the expected number of 

stockouts during one cycle. The relation between Z and E(Z) can be established using the 
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standard loss integral (SLI) shown in equation (A.51) (Tersine, 1988). Fig A.1 depicts 

such a relationship between Z and E(Z).

( ) ( ) ( ) ( .51)
z

E Z t Z f t dt A


 
       

   

Brown (1967) established the original table of SLI using the functional approximation 

illustrated in equation (A.52). This approximation is widely applied in the literature to 

find the standard normal deviate Z from the partial expectation E(Z).

 
2-1.75294+0.4442135 ( )-0.07061455 ( )

( )-0.38984228 ( .52)0.17592241 0.0012267386
- -

( )+0.044212641 ( )+.00030570313

E Z E Z
Z E Z A

E Z E Z

 
    
  

Shore (1982) provides equation (A.53) to approximate E(Z) in terms of the 

distribution function F(Z). In addition, other approximations are proposed to find Z using 

the inverse cumulative function. So, Z can be found from E(Z) in two steps.
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Fig A.1: Standard Normal Loss Integral
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0.4115{1 ln[ ( ) / (1 ( )]}, ( ) 0.5
( ) ( .53)

0.4115[ ( ) / (1 ( )], ( ) 0.5

F Z F Z if F Z
E Z A

F Z F Z if F Z

   
    

Keaton (1994) introduces three alternative exponential approximations to find 

standard normal deviate Z from the partial expectation E(Z). The function is depicted in 

equation (A.54) while the alternative values of the parameters of this function are shown 

in Table A.1.

( ) exp{ ( ) } ( ) ( .54)Z E Z E Z E Z A   

Table A.1: Coefficients of alternative loss integral approximations introduced by Keaton (1994)

Parameters
Approximation

1 2 3

 1.94519891 1.83513389 1.82268153

 -0.06100591 -0.06567952 -0.06609373

 -2.70426869 -2.62970236 -2.65829265

 0.50840810 0.54505649 0.56235517


