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ABSTRACT 

A mesoscopic whole link continuous vehicle bunch model for multiclass 

traffic flow simulation on motorway networks  

 

Anatolij Karev 

Modeling of heterogeneous driver behaviour is vital to understanding of dynamic traffic 

phenomenon taking place on motorway networks. In this research, we present a 

mesoscopic whole link continuous vehicle bunch model for multiclass traffic flow 

simulation on motorway networks. Two main attributes of traffic flow classification have 

been used are: (i) vehicle type, specifying in turn a vehicle length and, together with type 

of a preceding vehicle, time headway; and, (ii) desired speed, defining together with the 

speeds of the neighbouring vehicles, the vehicle acceleration/deceleration mode. It is 

assumed that vehicles in uncongested to moderate congested flow move in bunches 

dividing the drivers into the two main groups: (i) independent “free” drivers which 

usually manifest themselves as leaders of bunches; and, (ii) followers, or drivers which 

adapt their speed to the leader’s speed and follow each other at constrained headways 

specified by predecessor/successor pairs. The model proposes a solution to arbitrary 

traffic queries involving a motion in bunches having various speed and size by assuming 

the rate of driver arrivals follows semi-Poisson distribution and proportion of free drivers 

is predefined. The solution, assuming limited overtaking possibilities for all drivers, 

involves formation of longer queue behind bunches moving with slower speed and 

transformation of some of the “leaders” into “followers” because of adjustment their 

speed to the speed of the preceding slow-moving bunches. The present solution considers 



 iv

both stochastic and deterministic features of traffic flow and, therefore, may be easily 

extended to a specific uncertainty level.  
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Chapter 1:  

Introduction 

1.1 BACKGROUND 

Traffic congestion continues to be a strong headache for transportation engineers and 

municipal administrations in the industrialized countries. Enormous augmentation of per 

capita number of personal vehicles combined with steadily growing number of transport 

operations during last decades multiplied by constraints in the traffic flow capacities of 

the already developed urban arteries produce a fairly dispirit perspective for the future of 

the vehicular transportation. An appropriate municipal regulation policy (McCarthy, 

2001) and traffic optimisation (Peeta and Ziliaskopoulos, 2001) may help improve the 

current situation when frequent traffic breakdowns become integral part of the vehicular 

transportation. In order to overcome the problems arising from traffic congestion, two 

main methods of investigation have been employed in this field over the last several 

decades, and they will be briefly outlined below. 

     

1.2 TWO APPROACHES IN INVESTIGATING TRAFFIC CONGESTION 

1.2.1 Continuous Field Measurements  

Gathering of natural traffic counts data, together with simultaneous measuring of traffic 

elements in order to find the statistical relationships between them, is one of the ways of 

investigating the transportation phenomenon called traffic congestion. The existence of 

already acquired and pre-processed database containing dynamic traffic attributes such as 

traffic counts (veh./h), vehicle speed (km/h), traffic occupancy (%) and traffic density 
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data (veh./km) together with traffic heterogeneity data for each specific transportation 

region is of major importance for designers of traffic network structures. Also, such a 

database is essential for validation of experimental and theoretical simulations of the 

traffic networks. Typical examples of this type of approach have been considered in the 

studies by Kerner and Rehborn (1997), Windover and Cassidy (2001) and Schönhof and 

Helbing (2007). The disadvantages of this approach involve: i) costs for the installation 

of measurement sites for a specific location; ii) permanent management requirements; 

and, what is the most important, iii) limitations of the objectives of a typical experimental 

study.  

 

1.2.2 Construction of Mathematical /Computational Traffic Flow Models 

Traffic flow modeling remains one of the best methods for investigation of the traffic 

congestion. It allows predicting spatio-temporal characteristics of the anticipated traffic 

congestion and the laws of its spreading inside the transportation network. This method 

involves using theoretical models which are based on the known physics of the traffic 

dynamics, and it has obvious advantages especially when implemented in the form of a 

computational code. The method, however, possesses few disadvantages as well. One of 

the major disadvantages is that it requires the input of traffic attributes associated with a 

particular traffic phenomenon, which, as mentioned earlier, can be laborious and costly to 

monitor in situ. Moreover, since the composition of traffic flow always produces specific 

characteristics, it is sometimes not clear which of these characteristics plays a crucial role 

during specific traffic phenomena. Even such a disadvantage, however, cannot detract 
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from the growing usefulness of this method as it continues to increase in parallel with 

improving computer potentials and advances in computational accuracy.  

 

Traffic flow models can be distinguished from one another by cause effects 

characteristics of traffic phenomenon such as (i) the type of traffic flow phenomena 

modeled; (ii) methods for the solution of a physical problem; and, (iii) the role of certain 

factors involved in the traffic phenomenon. The same models may as well be classified 

according to the physical characteristics of traffic flow such as (i) level of detail 

(microscopic, microscopic and macroscopic); (ii) level of dynamics of the processes 

considered (time-independent and time-dependent); (iii) the extent to which the 

mathematical apparatus is applied; (iv) scale of independent variables (continuous, 

discrete and semi-discrete) and so forth (Hoodgendoorn and Bovy, 2001). 

 

Traffic flow on free motorways without intersections and on-ramp merging zones has 

been modeled since early fifties of the last century by using macroscopic, mesoscopic or 

microscopic approaches. Microscopic traffic flow models consider driver’s psycho-

behavioural perception indicators of the traffic flow such as driver’s sensitivity, 

perception, decision and breaking times and their relationships to the spatio-temporal 

characteristics of a singular transportation unity such as time gaps, headways and passage 

times. These models mostly rely on empirical data collected from field campaigns 

(Banks, 2003). Macroscopic traffic flow models consider the traffic flow as a flow of 

fluid throughout network without distinguishing flow participants. Therefore, such 

models present the traffic flow through typical traffic flow attributes such as fluid flow 
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rate, density and speed which follow standard fluid dynamics laws. These models may be 

fed by both empirical experimental data and physical flow characteristics and validated 

against real traffic data. Mesoscopic models consider combinations of the factors 

important for micro- and macroscopic models. These types of traffic models very 

frequently follow gas-kinetic physical laws (Hoodgendoorn and Bovy, 2001). 

Papageorgiou (1998) aptly argued that, even though the macroscopic flow models are 

closer to the developed domains in physics than the other types of models, it is in no vein 

to expect from them to show the same level of descriptiveness as traditional physical laws 

because they do not account for many traffic specificities. In other words, the 

macroscopic models of traffic flow are rather rough approximation of empirically 

obtained data by using existing physical laws in adjacent scientific fields than precise 

physical laws extracted and validated in the original field.  

 

1.3 TRAFFIC HETEROGENEITY IN LWR MODELS 

The first time dependent macroscopic traffic flow model involving mathematical 

calculation was produced in the early fifties (Lighthill and Whitham, 1955; Richards, 

1956). The model which is frequently called LWR model or simply kinematic wave 

model has established a fundamental relationship among the main traffic attributes such 

as traffic flow, traffic density and vehicle speed based on fluid dynamics laws. The model 

assuming flow continuity proposes existence of an equilibrium state, every deflection 

from which produces kinematical waves.  
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Traffic heterogeneity is an integral part of the traffic flow, the fact that was somehow 

“forgotten” up to the last decade in the modeling of traffic flow at the free motorways 

without intersections and on-ramp merging zones. However, several important extensions 

to LWR model have been proposed over the course of the past decade to account for most 

important microscopic features and driver behavioural attitudes that allowed developing 

of traffic heterogeneity theory (Ossen and Hoogendoorn, 2011). In particular, Lebacque 

et al. (1998) considered different vehicle lengths, Hoogendoorn and Bovy (2000), Wong 

and Wong (2002), Zhang and Jin (2002), Jiang and Wu (2004) scrutinized different 

desired speeds and respective speed gradient appearance in the continuity equation, while 

Chanut and Buisson (2007) and Van Lint et al. (2008) considered both factors, different 

vehicle lengths and different desired speeds. Finally, the different speed-density relations 

were considered by Zhu et al. (2003), while Daganzo with coworkers and colleagues in a 

series of papers (Daganzo, 1997; Daganzo et al., 1997; and, Cassidy et al., 2009) showed 

specifics of the priority vehicles using special lanes. It was shown that considering these 

specifics of traffic flow, it was possible to explain various transportation phenomena 

observed before such as capacity drop, formation and discharge of platoons, moving 

bottlenecks and so forth. Moreover, Treiber and Helbing (1999) were able to explain the 

wide scattering of experimental data on density-flow diagram by varying a proportion of 

light and heavy vehicles in the flow in the course of the time. Even though the 

importance of traffic heterogeneity and speed variation in dissipation of the congested 

flow data was unambiguously underlined in their research, they admitted a predominant 

role of the time headways in the same experimental observations. 
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1.4 THESIS OBJECTIVES  

A network traffic model may solve an arbitrary traffic flow query, a least-cost or a least-

traffic-volume-delay optimization problem or, more generally, any optimal control 

problem in a different way than classical traffic flow models. Network traffic flow 

modeling is an indispensable tool in transportation management allowing for capturing of 

real-time traffic conditions, using transportation-related information effectively and 

choosing efficient routing strategy to timely avoid anticipated congestion. Based on real-

time transportation data, the dynamic network models are capable to (i) accurately locate 

phase transition in the network from the free traffic flow to the congested flow; (ii) 

efficiently predict the main effects of the congestion propagation inside the network; (iii) 

consider the driver reaction on the anticipated congestion; and, (iv) propose possible 

network regulation strategies. A number of network traffic models have appeared during 

the last decades aiming on solving a broad spectrum of problems. Up to now, 

macroscopic traffic flow models were more successful in challenging these tasks because 

of their simpler nature than microscopic models which, though capturing typical driver 

behavioural characteristics, require greater CPU time and system memory.  

 

Recently, however, a new class of the network traffic flow models appeared called 

mesoscopic continuous/discontinuous models of vehicle bunches. This type of modeling 

has already shown to be superior to the previous approaches because of combining 

greater behavioural realism and simplicity of the fluid flow representation together. 

Although a few specific traffic heterogeneity factors have already been considered in the 

macroscopic approach, to the best of authors’ knowledge no attempts have been done to 
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account for the most traffic heterogeneity factors together in continuous modeling of 

vehicle bunches in traffic networks. This would be the principal objective of this thesis 

where we are proposing a completely new continuous single link model of vehicle 

bunches for single link applicable to traffic networks modeling. In particular, we expect 

to elucidate and evaluate the importance of the following heterogeneity factors: vehicle 

type and length, bunch size, vehicle-specified time headways and desired speed 

distribution. The key factors among them will be revealed and quantified, accurately and 

systematically, by using simulation-based approach which will replicate traffic flow 

dynamics features involving aforementioned traffic heterogeneity factors. A further 

objective of this research is to address the abovementioned traffic heterogeneity factors 

by combining both deterministic and stochastic traffic flow features in the complex traffic 

network modeling. The examples of the deterministic features may be the experimental 

time headway and desired speed distributions, while an example of the stochastic feature 

is the way how different flow participants mix inside the entire flow. We will also try to 

address the issue of the spatio-temporal predictability of congestion and its dependence 

on the specific features such as car bunching and network loading procedures. 

 

1.5 METHODOLOGY 

After an extensive review of the literature and revealing advantages and disadvantages of 

the existing whole link models, an analytical study on the traffic heterogeneity factors 

will be performed showing the specific ranges of their importance for the 

parameterization. Our next step will be to propose a mesoscopic continuous vehicular 

bunch single link model capable of taking into account most important features of traffic 
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heterogeneity. Finally, a numerical approach will be developed to provide solution to the 

proposed parameterization.  

 

1.6 STRUCTURE OF THE THESIS 

The rest of the thesis is organised as follows. Some of the traffic features and specific 

phenomena important for description of congestion using macroscopic flow models and 

several classic dynamic traffic assignments models for traffic network will be discussed 

in Chapter 2. Chapter 3 presents the problem description. Chapter 4 presents the elements 

of the proposed mesoscopic continuous whole link vehicle bunch model applicable to 

network traffic modeling and considering several features of traffic heterogeneity. In 

Chapter 5, we will provide a numerical application of the proposed model and compare 

the results of this new-built model with the results obtained from previously known 

models and reveal some eventual improvements over them. Finally, in Chapter 6, we 

present the conclusions and future works. The physics of the traffic phenomena and the 

mathematics of its presentation will also be discussed in full detail.  
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Chapter 2:  

Literature Review 

 

2 EXPERIMENTAL OBSERVATIONS OF TRAFFIC PHENOMENA  

Firstly, we will consider single-lane traffic flow to present the basic phenomena valid for 

such type of traffic flows and physical equations capable to describe them. Then, the 

more complex multi-lane traffic flow will be presented. Finally, the comprehensive flow 

involving acceleration/deceleration and multi-class traffic flow will be described.  

 

2.1. SINGLE-LANE TRAFFIC PHENOMENA 

Early studies did not recognize multi-lane traffic features and considered general traffic 

phenomena derived from either a single-lane traffic experimental data or two-lane 

averaged data. The studies also assumed that the relationships between flow attributes do 

not depend on type of the freeway and type of the traffic flow it serves.  

 

2.1.1 Speed-spacing or speed-density relations  

The first studies on the traffic flow were concentrated on finding maximum theoretical 

capacity of a single traffic lane involving traffic flow attributes such as traffic flow, q , 

measured in number of vehicle per hour; traffic flow density, ρ , measured in number of 

vehicles per km; flow speed, v , measured in  km per hour; and, spacing between 

vehicles, s, measured in meters. The flow was considered as time-independent; while it 

was assumed that, for most of the time, an equilibrium state exists during which the 
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relationship between each two flow attributes may be defined as an algebraic linear or 

non-linear expression. Such relationships called flow diagrams were subjects for the early 

experimental investigations in the field. The two earliest studies of such kind were that by 

Hamlin (1927) and Johnson (1928). Both studies considered the driver behaviour as one 

of the factors defining the relationship between flow speed, v, and vehicle spacing, s, 

which was generally formulated as follows: 

 

                    cbvavs ++= 2                                                       (2.1) 

where a, b and c are constants. Here, the quadratic term represented braking distance; 

linear term represented the driver reaction time; while the free term represented vehicle 

spacing defined for stationary traffic. The relationship between the theoretical maximum 

flow volume for a single lane, maxq , and flow speed, v,  was defined as follows: 

 

                                                   svq /1000max ⋅=                                                          (2.2) 

Here, a factor 1000 appears as result of different units used for flow speed and spacing. 

Combining (2.1) and (2.2), the theoretical maximum capacity of the lane may be found 

corresponding to an optimum speed. The maximum capacity was found to be about 1970 

veh/h for the optimum speed of about 35 km/h in the study by Hamlin (1927) and around 

2650 veh/h for the optimum speed of about 55 km/h in the study by Johnson (1928). 

However, considering the sensitivity of (2.1) to many behavioural drivers’ characteristics, 

it was concluded that the use of empirical relationships between s and v was preferable. 

In the study by Johnson (1928), such empirical relation was defined as follows: 
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          6.4082.0 3.1 += vs                                                   (2.3) 

Where the first term in (2.3) was called inter-vehicle clearance and second one called the 

average vehicle length. Combining (2.2) and (2.3), the real capacity of the lane may be 

found as follows: 

    ( )6.4082.01000 3.1
max += vvq                                         (2.4) 

As mentioned in the introduction, the most important pioneering macroscopic model of 

traffic flow was the one developed by Lighthill and Whitham (1955) and independently 

by Richards (1956). The model frequently known as LWR model uses a simple physical 

relationship between the traffic attributes mentioned earlier and its evolution in time. The 

mathematical definition of this relation is given by: 

 

                         vq ⋅= ρ                                                             (2.5) 

Thus, the density of flow, ρ , may be found by defining vehicle spacing. Even before 

Lighthill and Whitham (1955), Greenshields (1934) first proposed that speed and flow 

density are in the inverse linear proportionality to each other as follows:                                              

     

Figure 2.1  Speed-density and flow-density relations proposed by Greenshields (1934). 
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                                                  )1( jfvv ρρ−=                                                     (2.6)       
 
where fv  is maximum speed of traffic and jρ  represent traffic flow density at jam, 

while traffic flow has symmetric parabolic shape with zero skewness (Fig. 2.1). 

Greenberg (1959) proposed logarithmic relationship between the traffic flow speed and 

traffic density for freeway traffic flows as follows: 

 

                                                     ( )ρρ jCvv ln=                                                  (2.7) 

where Cv  is some characteristic constant, defined as a vehicle space mean speed at which 

maximum flow or capacity is reached. Assuming faster growth of the speed at low flow 

densities and slower speed drop at high flow densities, the relationship between the traffic 

flow and its density is an asymmetric parabola with positive skewness (Fig.2.2).  

   

 
Figure 2.2  Speed-density and flow-density relations proposed by Greenberg (1959). 
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The exponential empirical speed-density relationship was proposed by Underwood 

(1961) for Merrit Parkway data: 

        ⎟⎟
⎠
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C
fs vv

ρ
ρexp                                                 (2.8) 

where sv is space-averaged mean speed, and Cρ  is traffic density corresponding to 

maximum flow rate. Another type of exponential speed-density relationship was 

proposed by Newell (1961): 
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where a new parameter was added λ  which is the slope of spacing-speed curve at 0=v . 

A power relationship between traffic speed and traffic density was proposed by Pipes 

(1967) as follows: 

   n
jfvv )1( ρρ−=                                                   (2.10) 

 
May and Keller (1967) proposed more generalized form of power relationship for 

Eisenhower Expressway data as follows: 

 

      ( )[ ]58.11 ρρ−= ft vv                                         (2.11)  

where tv  is time-averaged mean speed. The space-averaged and time averaged speeds 

are related as follows: 

                          
t

t
ts v

vv
2σ

−=                                                          (2.12) 
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where 2
tσ is variance for time-averaged mean speed. Two power indexes may be further 

also generalized to obtain the following more complex relationship: 

 

                                                    ( )[ ]nm
ft vv ρρ−= 1                                               (2.13)                         

Another complex relationship combining both exponential and power features was 

proposed by Drake et al. (1967) in the following shape: 
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                                        (2.14) 

More recent complex speed-density relationships were proposed by Del Castillo and 

Benítez (1995) and Ou et al. (2006). Recently, Leclercq (2005) and Geroliminis and 

Daganzo (2008) found that the non-linear complex relationship between the flow speed 

and traffic density is universal for both urban and freeway-traffic areas.  

 

Equilibrium state may be defined by any combination of two out of three flow attributes 

together with (2.5). Combining all three plots together into one diagram and considering 

also the driver behaviour, one can obtain fundamental diagram of traffic flow (May, 

1990).The importance of this diagram for understanding several standard traffic flow 

phenomena is beyond question, because it combines operational characteristics of traffic 

with operating traffic volume characteristics. Maitra et al. (1999), for example, propose 

the use of traffic speed/flow  relationship for defining and quantifying congestion 

conditions, while the speed/density part which was called equilibrium function of traffic 

flow is an object of continuous studies on improvement of macroscopic models (Ou et al., 
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2006). Hereafter, the parts of the fundamental diagram will be used for presenting typical 

traffic flow phenomena.  

 

2.1.2 Capacity drop: reversed-lambda or invert-V diagrams 

Figure 2.3 presents several important traffic flow phenomena: a) capacity drop; b) two-

loop hysteresis formation; c) single-loop hysteresis; and, d) platoon dispersion.  

 

Figure 2.3 Traffic flow phenomena: (a) two-capacity phenomenon; (b) two-loop 

hysteresis; (c) single loop hysteresis; (d) platoon dispersion, reproduced from Wong and 

Wong (2002). 

 

Two-capacity or capacity drop (Fig. 2.3a) is the most interesting phenomenon found by 

Eddie (1961) from a study on Lincoln Tunnel traffic data. This phenomenon shows that 

there are two different levels of traffic flow at a specific traffic flow density depending on 

the direction of approaching to the maximum flow rate. Since the left and right curves in 
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Figure 2.3a present the operations at the free and congested flow, respectively, a 

discontinuity in the flow capacity may be observed when the curves are approaching to 

each other. In other words, it means that approaching to the peak in flow rate for the free 

and congested flows is accomplished in completely different ways though in both cases a 

deceleration in the flow rate increase has been observed. Therefore, Eddie’s model 

defined two-phase traffic flow, where each phase had completely different characteristics. 

 

The difference in the capacity at the flow-rate peak was found to be from 6 to 9 percent 

according to various authors. Recall that both researches, done by Greenshields (1934) 

and by Lighthill and Whitham (1955), respectively, have not found this phenomenon due 

to absence of the experimental data referring to the maximum flow rate. Lighthill and 

Whitham (1955), who used speed/traffic flow data for the left curve and headway/speed 

data for the right curve, proposed that both curves are the sides of the same parabola and 

matched them by interpolating both curves to the conjectural region of maximum traffic 

flow rate. Details of Figure 2.3(b-d) will be provided in Section 2.1.3. 

 

A completely different type of this inherent characteristic of the traffic congestion was 

found by other researchers (Fig. 2.4). Koshi et al. (1983) investigated the data for the 

Tokyo expressway and found that an increase in flow rate for congested (stop-and-go) 

traffic flow when approaching to the peak in flow rate distribution may exhibit 

accelerating features instead of the decelerating ones as for developing free flow (Fig. 

2.4a). This type of dependence was later called as reversed-lambda diagram. Another 

type of the flow-density distribution called inverted-V diagram was found by Hall et al. 
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(1986) for Queen Elizabeth Way between Oakville and Toronto (Fig. 2.4b). For this kind 

of distribution the discontinuity in the capacity was found to be very small or almost 

indiscernible.  

 

     

 

              

Figure 2.4  Several variants of the capacity drop phenomenon: a) reversed-lambda law 

discovered by Koshi at al. (1983); b) inverted-V diagram by Hall et al. (1986); c) 

Kerner’s relationship between free and synchronised flows (Kerner, 1998). 

 

Flow 

Density 

qmax 

ρ0            ρj 

b) 

Flow 

Density 

J 
c) 

Density 

Flow 

ΔC 

a) 



 18

A significant advance in understanding of the physics of multiphase multilane traffic flow 

occurred with the researches by Kerner and Rehborn (1997) and Kerner (1998). A three-

phase traffic flow was proposed, including free flow, synchronized flow and jam flow 

(Fig.2.4c). Synchronized flow was defined as a traffic flow when the driver should adjust 

his speed according to the surrounding flow density. Such synchronization included 

either overtaking including changing lane and acceleration or remaining in the same lane 

and adjusting the speed to the speed of the preceding vehicle. Single jam traffic was 

found to be formed from free flow only, while stop-and-go traffic flow characterized with 

numerous narrow jams and accomplished local phase transition from free to synchronized 

flow could be formed from the synchronized flow. The flow density diagram for this 

theory is given if Figure 2.4c. The nature of traffic flow in this theory assumes multi-lane 

traffic presentation and therefore will be considered later on in the subsection devoted to 

the multi-lane flow phenomena. 

 

It appears, therefore, that the type of flow/density distribution cannot be unified for 

various highways since it depends on the type of the highway and type of the traffic flow 

it serves.  

 

2.1.3. Hysteresis phenomena 

The traffic hysteresis (Fig. 2.3b and Fig. 2.3c) is phenomenon consisting in arriving to 

different points of speed-density diagram, i.e. different traffic phases, when one moves 

from different its sides. It was firstly defined and explained by Newell (1965) and 

Treiterer and Myers (1974) who presented the experimental observations of the more 
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complex phenomenon including that explained by Newell (1965). Newell (1965) using 

experimental data acquired by Port of New York Authority defined that the car spacing 

observed during process of acceleration of flow is significantly longer as compared to the 

corresponding spacing observed during deceleration of flow. In the speed-spacing 

diagram (Fig. 2.5), this phenomenon will correspond to the closed-loop observed 

between two different speed-acceleration relationships. Newell explained this observation 

by the late reaction of the succeeding car driver on the sudden acceleration or sudden 

deceleration by the lead car driver. Each subsequent car driver is late with his decision for 

acceleration or deceleration.  Newell considered this assumption even in his earlier 

research (Newell, 1961) to explain the non-linear effects that may be produced by this 

phenomenon.  

 

 

Figure 2.5. Speed-spacing diagram by Newell (1965), reproduced. 
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Disturbance, either deceleration from Vv
2
1

=  to 0=v  (Fig. 2.6) or acceleration from 

0=v  to Vv
2
1

=  (Fig. 2.7), is propagating with a progressively increasing time lag 

between the first lead car and all succeeding cars. That is to say, each subsequent car 

reacts slower than the previous one and so on. A time lag increases rapidly as the 

observer advances from the first succeeding car to the last one. The solution for the 

indefinitely elongated car ( ∞=j ) corresponds to shock wave solution which 

characterised by an abrupt or discontinuous change in the main medium characteristics. 

 

 

 

Figure 2.6  Newell’s solutions for suddenly decelerating lead car (j=0) from 2Vv =  to 

0=v  as a function of rescaled time jτ , reproduced from Newell, (1961). Each car from 

the succeeding cars (j=1 through ∞=j ) reacts with a progressively increasing time lag 

from the lead car. The solution for the last one ( ∞=j ) corresponds to shock wave 

solution.  
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Figure 2.7  Newell’s solutions for suddenly accelerating lead car (j=0) from 0=v  to 

2Vv =  as a function of rescaled time jτ , reproduced from Newell (1961). Each car 

from the succeeding cars (j=1 through ∞=j ) reacts with a progressively increasing time 

lag to the acceleration. The first one reacts faster than the next one and so on. The 

solution for the last one ( ∞=j ) corresponds to shock wave solution. 

 

Treiterer and Myers (1974) who observed two-loop hysteresis presented in Figure 2.3b 

considered more than driver’s behaviour during acceleration and deceleration. Accepting 

the driver’s behaviour to be a part of the entire phenomenon (Part 1 in Fig. 2.3b), they 

assumed that, due to unexplained reasons, beyond the late acceleration or deceleration an 

opposite effect should be observed (Part 2). The nature of this effect which is responsible 

for the formation of the second loop is still unknown. 

 

Most recent experimental observations of this phenomenon were presented by Zhang 

(1999). The theory allowing explanation of both capacity drop and hysteresis phenomena 

at the same time were presented by Zhang and Kim (2005). Zhang (1999) proposed 
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different explanation for this phenomenon as compared to the explanations by both 

Newell (1965) and Treiterer and Myers (1974). Zhang assumed that traffic is realized by 

a driver through three mechanisms: anticipation, relaxation and combination of both of 

them. Under the non-congestion conditions, the driver can always adjust the speed 

according to the driving conditions ahead of him, and therefore the anticipation 

dominates relaxation. Under heavy congestion conditions, when driver cannot anticipate 

the driving conditions ahead of him, his reaction to the speed changes is late. In this case 

relaxation dominates the anticipation. Finally, the third state is characterized by balanced 

state of the traffic containing equally both mechanisms anticipation and relaxation. It is 

not hard to notice that anticipation and relaxation are responsible for different parts of 

loop A and loop B of the two-loop hysteresis in Figure 2.3b. Zhang and Kim (2005) 

proposed four car-following models differencing to each other by the relationship 

between the time-gap for the i car iγ  and inter-vehicle clearance,  id , which is, in fact, 

the first term on the right-hand side in Eq. (2.3) in Subsection 2.1.1.     

 

Zhang and Kim (2005) proposed four types of relationship between the time-gap for the j 

car jγ  and inter-vehicle clearance, jd , and defined four different solutions for traffic 

flow/density fundamental diagram. Model A (Fig.2.8) which does not account for any 

time lag between accelerating or decelerating lead car and succeeding cars, assumes that 

the propagation of speed changes in the chain of cars occurs instantaneously and, 

therefore, may be considered as an idealization of the real world situation. The time gap 

is given by: 
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                     ( ) ( )td
v

t j
f

j
1

0 += γγ                                         (2.15) 

Thus, such model does not produce either capacity drop or hysteresis, because it does not 

account for different traffic phases. The corresponding traffic flow/density diagram 

presents smooth inverted-parabola function between two flow attributes. This model 

gives the solution very similar to the standard fundamental diagram of traffic flow given 

by Greenberg (1959)  which is presented in Figure 2.2 and by Del Castillo and Benitez 

(1995). 

 

Model A 

Figure 2.8  Model A proposed by Zhang and Kim (2005), reproduced. 

 

Model B (Fig 2.9) assumes that a car driver behaves differently in congested flow as 

compared to the free traffic flow. The time gap is given by: 

     ( ) ( )
f

j
j v

td
t =γ   if  ( )tdd j≤0  and                                                  (2.16a) 

         ( ) 0γγ =tj    if   ( ) 00 dtd j ≤≤                                                  (2.16b) 
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                                                                    Model B 

 

Model C  

 

Figure 2.9  Models B, C, and D proposed by Zhang and Kim (2005), reproduced. 
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Here the congestion traffic is observed in the interval 00 dd j ≤≤ , while the free flow 

traffic may be observed in the interval jdd ≤0 . This model also does not produce either 

capacity drop or hysteresis, however, the traffic flow/density curve looses its smoothness 

transforming into a triangle distribution with a tip of distribution corresponding to the 

location of coexistence of two waves. Either of these two waves with constant wave 

speed is observed on the left- or on the right- hand side of the triangle tip. This model 

provides the traffic flow/density diagram very similar to Newell’s lower order car-

following model (Newell, 2002) and very similar to inverted-V diagram by Hall (1986) 

presented in Figure 2.4b. 

  

Model C  (Fig 2.9) assumes that the time gap may be expressed as follows: 

 

      ( ) ( )
f

j
j v

td
t =γ   if   ( )tdd j≤1    and                                   (2.17a) 

        ( ) 1γγ =tj    if  ( ) 00 dtd j ≤≤                                         (2.17b) 

When ( ) 10 dtdd j ≤≤ , the time gap may take the value expressed in either (2.17a) or 

(2.17b). This model is created on the supposition that the driver accepts very small 

headways in free flow but, in congested flow, he increases headways until the free flow 

can be attained. This model produces traffic flow/density diagram very similar to the 

reversed λ diagram by Koshi et al. (1983) presented in Figure 2.4a and line-J of diagram 

by Kerner (1998) without scattered area. The model also, with some additional 

transformations, may present the fundamental diagram presented by Daganzo (1999), 

which is shown in Figure 2.10.   
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Figure 2.10  Modified C model producing Daganzo’s (2002a) fundamental diagram, 

reproduced from Znang and Kim, (2005). 

 

Model D (Fig.2.9) is the most complex case presented by Zhang and Kim (2005) when 

the time gap ( )tjγ  changes as a function of both gap distance ( )td j  and traffic phases, 

i.e. acceleration, deceleration or casting. As can be seen from Figure 2.8, for this model, 

the changes of time gap may occur in horizontal and vertical direction. This model 

produces correctly hysteresis phenomenon (Newell, 1965), Section 2.1.3, and two 

capacity drop phenomena, Section 2.1.2, one at the onset of the congestion and the other 

at the returning to free flow. The model also correctly reproduces capacity drop, 

hysteresis loops and the waves obtained while transitioning from free flow to congested 

flow. 
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2.1.4 Traffic Flow in Platoon: Formation and Diffusion  

Platoon phenomenon (Fig. 2.3d) was firstly observed and explained by Newell (1959) 

who considered traffic flow in a tunnel. If the traffic flow increases as in a tunnel, the 

vehicles tend to create platoons organized by vehicles with similar speeds. Newell 

considered a two-lane traffic flow with high traffic density in both lanes. This 

phenomenon is considered in the section for single-lane phenomena, since the passing of 

cars is forbidden in a tunnel and the considerations presented by Newell (1959) are very 

similar to those that may be applied for a single-lane flow.  

 

Figure 2.11 presents the main results obtained in the study by Newell (1959). The 

simulations done by Newell’s models may be interpreted as follows. The average car 

speed inside the tunnel increases with the distance from the entrance, assuming that the 

traffic flow at the other side of the tunnel is free and without any additional disturbances 

(Fig. 2.11a). The spacing is also changeable inside the tunnel. Achieving some maximum 

at a certain distance from the entrance, the spacing starts decreasing as the exit from the 

tunnel is anticipated. The platoon, a compact unity of cars forming long special interval 

with constant flow density inside the tunnel, is therefore formed (Fig. 2.11b). However, 

as experimental investigations have shown, the platoons do not remain compact for long 

time but rather tend to diffuse in space after the specific time interval. Dispersion of the 

platoon is related to decreasing the height of the shoulder of platoon and decreasing its 

side slopes. The platoon dispersion is very often studied in the connection with traffic 

signal control. 
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a)                                                                                    b)     

Figure 2.11  Main results of the platoon formation modeling by Newell (1959): a) the 

average car speed as function of the scaled distance from the entrance of tunnel; b) 

average amount by which spacing exceeds Δ. Δ is a distance beyond the entrance to the 

tunnel, reproduced from Newell (1959).   

 

To model platoon dispersion, Grace and Potts (1964) assumed that the speeds of the cars 

in the platoon are distributed according to normal law. They supposed that both 

parameters of this distribution are related to the diffusion constant that measures the 

spreading of the platoon. Figure 2.12 presents main Grace and Potts’s results. The main 

problem in the presentation of the mechanism by Grace and Potts (1964) is symmetric 

presentation of front and rear parts of the platoon. According to the experimental 

observations, the leaders of the platoon move more quickly than the rest of the group, 

while the cars in the rear of the platoon very soon become stragglers from the rest of the 

group. It is known now that the phenomenon is better modeled by multi-class traffic 

model, such as that presented by Wong and Wong (2002). The shapes of the platoon after 

several subsequent time intervals are presented in Figure 2.13. The initial trapezoidal 



 29

shape of the platoon transforms into positive-skewed distribution with lower value of 

peak.   

  

Figure 2.12  The normalized flow of a platoon at three successive points on the highway. 

F and R indicate instances when the front and rear of the platoon reached the points with 

no diffusion, reproduced from Grace and Potts (1964).  

       

Figure 2.13  Platoon dispersion modeled by multi-class traffic flow model by Wong and 

Wong (2002), reproduced.  
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2.2 MULTI-LANE TRAFFIC PHENOMENA 

The two main causes for the formation of congestion which have been heavily scrutinized 

in recent literature are on-ramp vehicle merging into an expressway at the close-to-

maximum capacity (Daganzo, 2002b) and a “phantom traffic jam” formation due to 

nonlinear cluster effect (Kerner and Konhäuser, 1993). Since both of them consider the 

multi-lane traffic flow, they will be considered in a separate section and complemented 

by the description of other multi-lane congestion phenomenon called bottleneck. 

 

2.2.1 On-Ramp Vehicle Merging 

Merging vehicles to the freeway performing at the limits of its capacity may gradually 

increase the traffic density in space and, at some distance beyond the on-ramp, bring it to 

a critical value enough for the transition from free flow to congested flow. The theory for 

the transition and establishment of congestion was developed by Daganzo (2002b). This 

simplified theory recognizes only two types of the drivers, the fast ones, called rabbits 

moving with speed Vf and the slow ones, called slugs moving with speed vf. Two-lane 

traffic flow is considered (Fig. 2.14).  

 

The shoulder lane is the slower lane in which on-ramp merging of vehicles occurs, while 

median or passing lane is the faster lane next to the shoulder lane. In the shoulder lane, 

both slugs and rabbits drive with speed vf some distance beyond on-ramp entrance due to 

awareness, while, in the passing lane, only rabbits drive with speed Vf. For simplification, 

it is assumed that slugs do not change the lane and remain all the time in the shoulder 

lane. On the contrary, at some distance beyond the on ramp, the rabbits start changing the 
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lane from the slower one to the faster one. The theory recognizes three types of stationary 

states of traffic flow according to the speed of the rabbits, V: 

 

Figure 2.14 Pumping effect at on-ramp merging, reproduced from Daganzo (2002b)  

 

i) free/uncongested flow when fVV = ; ii) semi-congested when  ff VVv << ; and, 

iii) congested/queued when fvV ≤ . Therefore, the congested flow was called 1-pipe 

flow, while uncongested and semi-congested flows were called 2-pipe flow. Over-

pumping at on-ramp has as a result the following subsequent events occurring 

downstream of the merge point: i) initial speed reduction in passing lane after saturation 

with merging rabbits; ii) speed reduction in passing line below the slugs’ speed; and, iii) 

collapse of 2-pipe flow  into 1-pipe flow. The first two stages are associated with 

maximum flow in the passing lane. Semi-congested state may either propagate upstream 

of the merge point into infinity or collapse into the 1-pipe regime if an additional flow 

increase is observed. In the last case, if the total arrival rate which is equal to two-lane 
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flow before the on-ramp plus on-ramp flow is greater than the total capacity of two lanes 

beyond the on-ramp, an upstream-propagating queue will be formed at the on-ramp. This 

on-ramp congestion formation is very similar to moving bottleneck which will be 

presented in Section 2.2.3.  

 

2.2.2 Phantom Traffic Jams   

Cluster of cars is a term developed in early nineties of the previous century to represent a 

local conglomeration of cars increasing significantly local traffic density and moving 

together downstream or upstream the traffic flow. In the former case, the speed of the 

cluster is considered to be positive, while in the latter case the speed of the cluster is 

negative. Formation of clusters of vehicles in the initially homogeneous traffic flow 

begins with a birth of a small perturbation in local traffic density bringing the traffic flow 

to a metastable state (Kerner and Konhäuser, 1993). The real cause of the first initial 

perturbation is still unknown. Such metastable state cannot remain indifferent to any 

changes beyond this point and, finally, transits to the more stable state characterized 

either by lower or higher level of serviceability. In the former case, either the speed 

decreases or traffic density increases or both are changed, and a cluster of cars is formed; 

in latter case the system returns to the initial state, and perturbation disappears.  

 

Figure 2.15 presents five regions of stable and metastable flow in traffic flow/density 

diagram. Two  ranges, (i) characterized by traffic density lower than some minimal 

value m
minρρ ≤  and (v) characterized by traffic density greater than some maximal 

value m
maxρρ ≥ , are the regions of stable traffic flow, where a fluctuation in the density 
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immediately extinguishes after initial appearance. The next two ranges, (ii) characterized 

by a traffic density within the following interval 1min c
m ρρρ ≤≤  and (iv) characterized by 

traffic density within the interval 2max c
m ρρρ ≥≥ , are the regions of metastable traffic 

flow, where only those  nonhomogeneous local fluctuations in the density grow whose 

amplitude exceeds some critical density . Finally, the range (iii) confined between two 

critical values of flow density 21 cc ρρρ ≤≤  called a region of unstable state where 

infinitesimal nonhomogeneous long-wave perturbations grow without any pre-

conditioning. 

 

 

Figure 2.15  Traffic flow/density diagram with five regions of stable (i and v), unstable 

(ii and iv) and metastable (iii) traffic flow, reproduced from Herrmann and Kerner 

(1998). F and J stand for free traffic flow and jam, respectively. 

 

Figure 2.16 presents the shape of the perturbation in traffic density having relative value  

ρρ ˆ/Δ  and respective variation in traffic flow, q , and space-averaged speed of vehicles, 

ν . Here ρΔ  is a local absolute variation in traffic density, while ρ̂   is maximum density  
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Figure 2.16. Real (top) and modeled (bottom) shape of the perturbation in traffic density 

and respective variations in traffic flow, q, and space-averaged speed of vehicles, v, 

reproduced from Herrmann and Kerner (1998). ρΔ  is a local absolute variation in traffic 

density, while ρ̂   is maximum density for n-lane road, ln /ˆ =ρ , l is average length of the 

vehicles. 
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for n-lane road, ln /ˆ =ρ , l is average length of the vehicles. It may be seen from the 

lower diagram of Figure 2.16 that the traffic density perturbation consists of several 

important regions. The first of them, in fact, presents the traffic jam itself characterized 

by high traffic density, maxρ . This zone moves upstream, in other words, opposite to the 

direction of traffic flow. The second region is region with homogeneous traffic flow 

downstream to the jam with the local traffic density,  minρ , which  is lower than the initial 

density of the incoming undisturbed traffic flow, hρ . The third region of the local cluster 

of vehicles is a transition layer between the new and initial homogeneous traffic flow 

which moves downstream. Since the jam region moves upstream, whereas the transition 

layer moves downstream, the whole width of the local cluster of vehicles monotonously 

increases in time.  

 

Figure 2.17 which is reproduced from Herrmann and Kernerr (1998) presents the location 

of the maximum of absolute perturbation in traffic density relatively to the location of 

maximum of traffic flow. It may be seen from the figure that as the traffic density grows 

from minρ  to crρ  and conditions for jam denoted by letter J are already reached, the 

undisturbed free traffic flow denoted by letter F still have chances to develop inside the 

zone of the metastable traffic flow. This happens due to capacity drop effect conditioning 

the achievement of metastable state only from free traffic state and never from jam flow 

state. Metastable state may very simply develop into the first zone of cluster of cars. 
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Figure 2.17. Location of the maximum of absolute perturbation in traffic density (lower 

graph) relatively to the locations of free flow and jam at the traffic flow/density 

diagram(upper graph), reproduced from Herrmann and Kerner (1998). 

 

Figure 2.18 presents three dissimilar results of the traffic cluster formation and 

development. As it has been previously noticed, in all cases, the perturbation is widening 

in time expanding in both upstream and downstream directions. While in the first two 

cases the density perturbation propagates upstream with almost constant downstream 

minimum (empty zone), in the third case the perturbation created by collision of the two 

initial perturbations moving in dissimilar fashion propagates downstream in considerably 

different manner. The well-expressed secondary maximums may be observed 

downstream in this case.  
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a) b)                         

      c) 

Figure 2.18  Three possible outputs of the cluster formation: a) fast upstream motion of 

the perturbation; b) moderate upstream motion of the perturbation; c) slow or moderate 

upstream motion combined with propagating downstream secondary maximums  damped 

over the distance from the initial location, reproduced from Kerner and Konhäuser 

(1994). 

 

The secondary maximums damp over the distance remaining almost unchangeable as 

time progresses. Applying the results of this theory and processing recently obtained 
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empirical observations in the field, Kerner and H. Rehborn (1997) and Kerner (1998, 

1999) were able to show that the accepted before two-phase flow conception involving 

only free and congested flows fails to explain the real-life data and should be altered by 

the three-phase flow theory. Such a theory developed later by Kerner (2004) includes 

three different traffic flow phases free flow, synchronised flow and jams formation. All 

traffic models using the standard traffic flow/density diagram for equilibrium state were 

questioned. 

 

Figure 2.19 Typical traffic flow phases accepted in the conception of synchronized flow 

by Kerner (2004). 

 

Figure 2.19 presents various flow phases involved in the proposed new concept. Due to 

high dispersion of experimental data from the descending part of flow/density diagram, a 

wide zone of synchronized flow was defined, such as presented in Figure 2.4c.  Both high 

density and jam phases were called together as synchronised flow. Conception of 
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synchronised flow was seriously criticised by Schönhof and Helbing (2007) and some 

explanations for the questioned “out-of-flow-diagram” data were presented. 

 

Either conception involves metastable phase which may be easily achieved from free-

flow phase, but not from congestion phase. Another feature is queue formation which is a 

part of the so-called stop-and-go phenomenon. The next subsection will consider 

development and persistence of a queue as a result of bottleneck formation.   

 

2.2.3 Moving and Stationary Bottlenecks 

Bottleneck is a traffic phenomenon produced by sudden drop in the capacity of a freeway 

and resulting in slower motion of the vehicles through the location and queue formation 

upstream of the considered location. Stationary bottleneck is a drop of capacity of a 

multi-lane freeway resulting from decreasing the total number of lanes available for 

traffic flow. Moving bottleneck may appear as a result of presence of a slow-moving 

vehicle in one of the lanes of multi-lane highways.  

 

Figure 2.20 presents contemporaneous conception of bottleneck formation. A semi-

infinite bottleneck on a two-lane freeway has been created at x0 position by complete 

closing one of the lanes for traffic flow (left hand side of the figure). Formation of the 

bottleneck is reflected in transfer from outer flow/density curve representing two-lane 

traffic to inner flow/density curve representing one-lane traffic (right hand side of the 

figure). 
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Figure 2.20. Typical bottleneck formed by decreasing the number of lanes available for 

traffic from two to one (on the left hand side) and respective flow/density diagram (on the 

right hand side) presenting flow drop (from square on the outer curve to triangle on the 

inner line) for a stationary bottleneck. For moving bottleneck (diamond), the flow drop is 

created together with discontinuity and queue upstream bottleneck. 

 

It is hypothesized that the demand is equal to half of the initial flow. As a result, no queue 

is formed upstream of the bottleneck, which may start moving slowly if the bottleneck 

moves with some constant speed Ub. This type of traffic phenomena requires at least two-

lane highway with a possibility for overtaking. Gazis and Herman (1992) developed a 

theory to explain queue formation upstream a slow-moving vehicle on the two-lane 

highway during the periods of heavy and moderate traffic flow. Total flow is considered 

as a sum of two traffic flows. The first flow component, 1q , is a pack of the vehicles in 

both blocked and unblocked lanes, which moves  with the speed of slow vehicle, 1v , 

while the second flow component, 2q , is a pack of the vehicles in the unblocked lanes 

moving with speed 2v . The total bottleneck capacity may be determined as follows:   

       21211 )(2 ρρ vvvq −+=                                             (2.18)                         
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A newer type of theory was recently developed by Muñoz and Daganzo (2002) and Juran 

et al. (2009). 

All traffic flow phenomena considered here involve various values of speed for different 

flow parts. As was seen, the speed difference between different flow parts is a ‘motor’ of 

the formation, development and persistence of the phenomena such as bottleneck, platoon 

diffusion and so forth. Only several LWR extension models attempted to introduce the 

traffic heterogeneity such as speed difference or speed gradient in existing macroscopic 

models. No one of the existing network link travel models, however, manages with traffic 

heterogeneity directly when using various macroscopic models as the tools. Two 

solutions are possible to improve network traffic models. One of them is to alter 

macroscopic models used in network traffic modeling by LWR extension models. 

However, every LWR extension model deals with only one specific factor and changes 

LWR equations accordingly. In other words, each LWR extension model presents a local 

solution, which may not be applied for considering other extension factors. Another 

approach, which is more cardinal, is to use some microscopic features such as length and 

speed local variations to present traffic heterogeneity. It is required, therefore, to 

understand how the ‘macroscopic’ travel time is calculated in the existing network traffic 

models. Next Section will be dealing with this specific task. 

 

2.3 NETWORK TRAFFIC MODELING 

2.3.1 Background 

As mentioned earlier, the purpose, design and solution of a network traffic model are 

completely different when compared to simple macroscopic traffic flow models for free 
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motorways without intersections and on-ramp merging zones. They may solve a free 

traffic flow query, a least-cost or a least-traffic-volume-delay optimization problem or, 

more generally, any optimal control problem. The least-traffic-volume-delay optimization 

problems considering unvarying flow (e.g. Nguyen and Florian, 1976) and called static 

traffic assignment (STA) problems already considered origin-destination (O/D) pairs in 

searching of equilibrium flow. Yet, such solutions have not considered within-day traffic 

demand variations which always follow several standard variation patterns. The first 

least-cost optimisation model considering both O/D pairs and varying within-day traffic 

flow (Merchant and Nemheuser, 1978) pioneered a new generation of equilibrium flow 

models known as the dynamic traffic assignment (DTA) models. Contemporaneous 

approach to equilibrium network flow considers a complex efficient routing strategy 

which is not only a reckoning of shortest or cheapest path dealing with the network 

geometry or cost minimization problems, but a master plan considering the congestion 

nests across the network and proposing an efficient strategy for their avoidance (Yan et 

al., 2006). 

 

To facilitate the traffic flow modeling in a complex network, the latter is represented by a 

family of separate freeways called links or arcs united by a family of nodes (see Astarita, 

2002, for exhausting review). The incoming traffic flow to a singular node may be either 

merging or constant (ordinary), while the exiting one may be either diverging or constant 

(ordinary). Because rapidity in the reaction seems to be one of the most important 

features of network traffic management, and because network equilibrium may not 

overlap with an equilibrium flow along an individual link, it is clear that the required 
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solution to the network traffic model should be faster and simpler than the respective 

solution to the LWR model, but converge to it under appropriate conditions and account 

for all microscopic and driver behavioural specificities just mentioned. As for the 

simplicity and rapidity of the solution as well its convergence to the LWR solution is 

concerned, a number of “whole-link” models have been proposed. The most frequently 

cited of them will be shortly reviewed in this chapter.  

          

2.3.2  Types of  Whole-Link Models 

2.3.2.1 Exit Flow Functions  

Merchant and Nemheuser (1978) proposed discretization of the number of vehicles on the 

link N in the following shape: 

              ( )iiii NguNN −+=+1                                                (2.19)             

where index i is time interval counter, iu is inflow at the link, ( )iNg  is a link exit-flow 

function representing outflow at the link.  ( )iNg  should be non-decreasing and concave. 

Index a showing appurtenance to a specific link is dropped in order to avoid unnecessary 

redundancy. Several authors (Carey, 1987; Friesz et al., 1989; Wie et al., 1990, and, Wie 

et al., 1994) followed the same approach called now Merchant Nemheuser model (MN), 

in which the shape of an a priori given function of the current number of vehicles in the 

link could define the current outflow. Then, if the inflow is known, the number of 

vehicles in the link at the next time interval may be estimated accordingly to (2.19). 

Finally, the link time travel could be defined. In particular, Merchant and Nemheuser 

(1978) proposed ( )iNg  functions to be linearly increasing for traffic flow lower than a 

link capacity, aC , and constant, i.e. constrained, for traffic flow equal to link capacity, 
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while Wie et al. (1994) proposed exponential function tending asymptotically to the link 

capacity. Recall, that the link flow capacity, aC , is defined as maximum traffic flow 

volume that is feasible for given link. Nie and Zhang (2005) tested such model for several 

inflow profiles and found that it does not perform well for both empty charging and 

totally discharging links. In the former case, any change in the inflow produces an instant 

reaction of the entire flow along the link, and as a result, the outflow starts at the same 

time interval as the inflow, i.e. travel time for the empty link is zero. In the latter case, 

because the travel time of the last vehicles tends to infinity, the vehicles may indefinitely 

remain in the link if there is no new inflow. Both drawbacks may produce significant 

distortion in calculating travel time, particularly, for rapidly varying inflows.  

 

2.3.2.2  Link Travel Time Models  

Friesz et al. (1993) proposed to calculate link travel time, ( )tτ ,  directly from the number 

of vehicle in the link by using the following linear function: 

 

                                   ( ) ( )tbNat +=τ                                                     (2.20) 

where the constants a and b, having the physical meaning of free flow travel time, 0τ , 

and reciprocated value to link flow capacity, aC , respectively, may be found from the 

link calibration. It is clear, that no traffic flow is possible at the link travel time lower 

than 0τ .  

 

Testing of more complex functions such as parabolic one (Wu et al., 1998; and Xu et al., 

1999) having the following shape:  
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                                              ( ) ( ) ( )tcNtbNat 2++=τ                                                 (2.21) 

has not showed any improvement in the final result since the first-in-first-out (FIFO) rule 

was found to be violated for such travel time shapes.  Some authors have tried to use the 

Bureau of Public Roads (BPR) formula for computing travel time in the link which looks 

as follows: 
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for producing a new modified BPR volume delay function (e.g. Fernandez and Cia, 

1994). Both the original and modified BPR formulas, however, were found to not respect 

FIFO rules and violated the traffic flow capacity of the subsequent link. 

 

The main problem of both exit flow function and link travel time models is in confusing 

the instant flow attributes of the entire link with the averaged over the time local flow 

attributes. Namely, when one considers the travel time of the specific vehicle, only a part 

of the flow volume surrounding the vehicle participates in the influence on the value of 

travel time. In that way, when the considered vehicle enters the link, it is mainly affected 

by the inflow characteristics and local number of vehicles near the link entrance, while 

when the vehicle exits the link, it is mainly affected by the outflow characteristics and 

local number of the vehicles near the link exit. Some improvement in this direction has 

been done in a series of papers by Carey et al. (2003), Carey and Ge (2004), and Carey 

and Ge (2007) proposing a new formulation of link travel time model. In fact, instead of 

looking for the relationship between the travel time and the number of vehicles in the 

entire link, Carey and coworkers proposed that the travel time might be a function of a 
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weighted average of (i) the inflow measured at the enter time interval, and (ii) the outflow 

measured at the exit time interval as follows: 

 

                                          ( ) ( ) ( ) ( )[ ]{ }ttwtuft τββτ +−+= 1                                       (2.23) 

where β  is  a weighting constant 10 ≤≤ β . Rewriting the outflow as follows: 

 

                                ( )( ) ( )
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                                               (2.24) 

travel time may be presented with the first order ordinary differential equation:  

 

                ( ) ( ) ( )
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11                                            (2.25) 

It was shown that such model satisfies FIFO if function ( )f  is chosen to be 

nondecreasing.  The main drawback of this model is in the necessity to know exact value 

of either outflow after link travel time, ( )[ ]ttw τ+ , or ( )τ1−f  for time interval ( )tτ . In both 

cases the approximate iterative value of travel time together with weighting constant 

should be given before calculation, which is very often impracticable.  

 

A link travel time model based on an iterative procedure involving the input and output 

link flow capacities, jam density, flow-adjusting speed and travel time was proposed by 

Awasthi et al. (2006). No bounding procedure, however, was proposed for the speeds 

both increasing and decreasing in time. 
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2.3.2.3 Cell-Transmission-Based Models 

 The main point of the cell-transmission model (CTM) proposed by Daganzo (1994) for 

approximate solving of LWR model and then extended by the same author with 

coworkers (Daganzo, 1995; Cayford et al., 1997) for network traffic modeling is in 

dividing the link lengthwise into equally-long space intervals called cells and, then, 

defining the number of the vehicles in each of them at any time interval by the following 

system of equations: 

 

                                      1,,,,1 ++ −+= jijijiji uunn                                                (2.26) 

             
⎭
⎬
⎫

⎩
⎨
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v
wQnu                             (2.27) 

where index i, a time interval counter, is supplemented by index  j which is a space 

interval counter having value of zero for the first cell and increasing in the direction from 

the link entrance to the link exit; jin ,  stands for the number of vehicles in the cell j at the 

time interval i; jiQ , is  capacity flow of the cell j, or the maximum number of vehicles that 

can enter into cell j; max
, jin is maximum number of the vehicles that can be in cell j at the 

time interval i; v is free flow speed; w backward wave speed, i.e. speed of disturbance 

propagation in congested traffic. In the system of equations (2.26) and (2.27), (2.26) is a 

simplified rewriting of conservation equation, while (2.27) defines that the inflow to the 

cell j at the time interval i cannot be greater than any of these values: (i) the instant 

number of the vehicles in the neighboring preceding cell; (ii) the capacity flow of the 

considered cell; or, (iii) amount of empty space in the considered cell, and should be 

chosen as a minimum value between them. The expression for inflow ensues from the 
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flow-density diagram having non-isosceles trapezoidal shape and side slopes v and w, 

while also constrained by jiQ , (Fig.2.21). 

 

Figure 2.21  Flow density diagram used for Daganzo cell model, reproduced from 

Daganzo(1995).  

 

Assuming that all traffic flow participants have the same spatial (i.e. cell and vehicle 

length) and spatio-temporal (i.e. vehicle speed) characteristics, each cell will have the 

same capacity flow, jiQ , , defined by spatio-temporal flow characteristics, and the same 

maximum number of the vehicles in the cell, max
, jin , giving jam density when divided with 

cell length and, therefore, defined by spatial flow characteristics only. Under these 

conditions, the CTM very realistically presents real world link travel time uncongested 

and moderately-congested traffic flows, while, under heavily-congested flow, it aptly 

presents domination of queuing in the flow dynamics (Nie and Zhang, 2005). Recently, it 
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was shown that CTM can be derived from the exit flow function model, when the exit-

flow function is properly selected and discretized (Nie, 2010). The complexity appears 

when the flow participants with various length and desired speed take part in the traffic 

dynamics. In that case, both jiQ ,  and max
, jin  become the variables dependable on the facts 

such as (i) how many vehicles with specific length have been found  in the considered 

cell; and, (ii) what is the distribution of the desired speed for these vehicles. Clearly, the 

existence of dissimilar jiQ ,  and max
, jin values for every single link in the network and their 

subsequent time dependence will introduce an additional complexity to the solution by 

requiring both excessive CPU time and increased system memory. 

 

2.3.2.4  Point-Queue Models 

Drissi-Kaїtouni and Hameda-Benchekroun (1992) proposed a model for network traffic 

flow in which link travel time is considered as a sum of travel time in free flow traffic 

along the link plus the time interval spent in a zero-long queue at the link exit (Fig.2.22). 

Such decomposition of the space into the link-long interval in which space and time have 

been interrelated and a single point in which space and time have been independent 

allowed extending the original space network into a new modified space-time network 

having additional space-time links. Thus, a complex DTA problem could be redefined as 

a relatively simpler STA problem expanded in time and resolved by manipulating n times 

with STA solutions. The main simplification of this model is in disregarding the length of 

the vehicles and, therefore, the length of queue forming at the link exit in congested 

traffic. Because of attaching physically nonexistent queue to one single point at the link 

exit, the model has been called point-queue model (PQM). Second simplification is in 
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assuming free flow traffic everywhere along the link while the vehicle passes from the 

link entrance to the link exit. Several authors (Kuwahara and Akamatsu, 1997; and, Li et 

al., 2000) followed similar approach. 

   

Figure 2.22  Sketch of point-queue model 

 

Both CTM and PQM represent relatively well moderately-congested traffic dynamics, 

while the dominant role of the queue is emphasized under heavily-congested traffic. As 

the queue develops, the greater part of the link is occupied by the vehicles in queue 

decreasing the effective capacity flow and maximum number of vehicles that can be in 

the link. Again, neither PQM nor CTM are capable of representing traffic flow dynamics 

consisting of vehicles having various lengths and various desired speeds. 

 

2.3.2.5  Performance Models 

Astarita (1996) first proposed the link performance model by considering link travel time 

as dependable on the instant number of vehicles in the link per unit of length, i.e. flow 
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density, averaged spatially. Instead of discretizing the link in space and solve the 

discretized parts in the time, Gentile et al. (2005) proposed, in their performance model, 

to model every link by three unequally long parts: (i) an infinitesimally long input 

bottleneck having the capacity equal to flow capacity; (ii) a running link which is 

approximately link-length long; and, (iii) an infinitesimally long output bottleneck having 

capacity below the flow capacity or equal to it (Fig. 2.23).  

 

 

Figure 2.23 Sketch of performance model 

 

Both bottlenecks have been purposely designed to model the respective queues forming 

at the edges of the links. The input bottleneck keeps the inflow to the running link to be 

bounded below the flow capacity and, thus, helps avoiding heavy-congested flow in the 

second part of the link. The output bottleneck might be thought to model the queue 

appearing at the link exit because of nonconformity between the output flow capacity of 

the preceding link and the input flow capacity of the succeeding link. Finally, the running 

link models the consistent moderately-congested flow disturbed from time to time by the 
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back-propagating kinematic waves initiated by the vehicle interactions. Thus, the 

variability of the flow states along the link has been seemingly presented. Under such a 

formulation, the link exit time has been a function of both the output bottleneck capacity 

and inflow profile in time.  

 

The major simplification here is in assigning a particular flow phenomenon to the 

specific location on the link, while completely excluding other phenomena locally. For 

example, assuming the bottlenecks to be infinitesimally long, queuing at congested flow 

is forced to be modeled by vertically propagating virtual queue. Another, by no means, 

non-irrelevant drawback is in neglecting an interaction between the locally modeled flow 

phenomena. For example, assuming the running link is unaffected by the output 

bottleneck and so forth. Despite the presented shortcomings, the model presents a 

noticeable advance by trying to unite the vehicle transportation together with kinematic 

wave theory. The further simplifications such as applying simplified kinematic wave 

theory or presenting inflow as piece-wise constant function in time may be counted as 

irrelevant as compared to the objectives and achievements in this unification.  

  

2.3.2.6 Vehicle-Discrete-Packet Models  

The next progress in representing the vehicle traffic dynamics on a link in traffic network 

while solving the optimization or free traffic query problems may be considered by the 

research done by Di Gangi (1992) and Dell’Orco (2006). Di Gangi modeled flow 

propagation by considering continuous packets of vehicles with an idea to apply car-

following modeling which from the time of its first appearance has been counted as 
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effective but not efficient method requiring high amount of CPU time. In his research, De 

Gangi (1992) defined several important drawbacks in modeling continuous vehicular 

packet as a single car, which were related to various flow attributes. Trying to overcome 

the difficulties encountered during modeling of traffic flow by vehicle-continuous 

packets, Dell’Orco (2006) proposed a new model, called vehicle-discrete packet model, 

in which all vehicles in the packet were attached to one single point in the head of the 

packet (Fig.2.24).  

  

Figure 2.24 Sketch of discrete packet model 

 

 The positions of packets represented by points moving at the same initial speeds were 

resolved at each time interval by the method of final differences. In fact, a space-discrete 

approach already had have been applied even before development of vehicle-discrete-

packet model by Dell’Orco (2006), but in a different context. In particular, most of the 

researches proposed exit flow function applications such as ones done by Merchant and 

Nemheuser (1978) and by Wie et al. (1994) were length-discrete models. Applying 

length-discrete approach to the vehicle packets modeling (Dell’Orco, 2006), the problem 
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of the time headway distributions inside each packet, which is a central one for car-

following modeling, has, therefore, been avoided. Recall, that the time headway is the 

time interval measured between the passings of the front bumpers of the two vehicles 

following one after another. The models for headway distributions since long time have 

been built on the assumption a distinction between the leader and follower (Cowan, 1976) 

and, more lately, on assigning completely different distributions to different traffic 

volumesα . However, even such complex representation was found to be unsatisfactory 

for the entire spectra of the headway distributions observed in meanwhile. Therefore, on 

the one hand, avoiding application of the time headways between the vehicles in the 

packet is, obviously, a step forward in the link traffic flow modeling, because packet 

presentation of flow would significantly save CPU time and decrease system memory 

requirements. On the other hand, the headway distributions between the packets and the 

number of the vehicle in each packet yet need to be resolved. Moreover, because of 

miscount of space taken by each packet, the vehicle-discrete-packet approach 

complicates precise determination of both the flow capacity and jam density. Also, the 

equal initial, though the uniformly accelerated in time, speed for all packets, as it was 

modeled by Dell’Orco (2006), has been a significant simplification of real world of 

heterogeneous traffic flow.  

 

2.4. CONCLUSIONS 

A few conclusions should be drawn concerning the reviewed link models. Despite all 

mentioned shortcomings, the packet-flow approach has been an improvement over the 

existing macroscopic approaches because, in contrast to all of them, allows considering 
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the traffic non-homogeneities related to both the varying desired speed and the spatial 

inequality of traffic participants. Such an approach may combine the best features of the 

macroscopic and microscopic modeling in solving various optimal control problems. In 

particular, the improved discrete-packet-flow approach was recently used for resolving an 

optimization problem very similar to the DTA problem (Celikoglu and Dell’Orco, 2007). 

We think that if the link flow capacity is solved integrally with time headway problem, the 

continuous-packet-flow approach may be even greater improvement.  
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Chapter 3:  

Problem Statement 

 

3.1. ASSUMPTIONS 

The assumptions used before modeling the whole link continuous bunch model are as 

follows: 

• traffic flow is heterogeneous consisting of flow participants of different lengths 

moving with different desired speeds; 

• driving styles of truck drivers and passenger car drivers are different; 

• driving styles within a group of vehicles moving together as compact group are 

similar as far as their car-following behaviour is concerned; 

• nonlinear effects such as shock waves are excluded in heterogeneous network 

traffic modeling; 

• no overtaking takes place along the considered one-lane freeway.  

 

3.2 NETWORK LINK PROBLEM FORMULATION 

Let us  represent the network by a graph, ( )ΡΑΓ , , which is formed by a set of  arcs 

(links), Α ,  and  a set of  nodes, Ρ , (Fig. 3.1). For each arc a, the following conservation 

equation is valid: 

  

             
( ) ( ) ( )twtu
dt

dttdNa −=
+

                                               (3.1) 



 57

   

Figure 3.1 Configuration of the traffic network 

 

where ( )tNa  is the number of vehicles in the link a at the time t, ( )tu is the inflow to the 

link a at the time t; ( )tw is the outflow from the link a at the time t; and, ( )tdN a  is a 

change in the number of vehicles in the link a produced during the time interval [t; t+dt]. 

In the macroscopic approach to the traffic flow modeling, the following formulations 

may be defined for the inflow and outflow, respectively: 
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where the link a is located between the nodes p and p+1, having  the traffic flow  ( )
p

tQ  

and ( )
1+p

tQ across them, respectively.  
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Our main objective is to propose a mesoscopic continuous whole-link vehicle bunch 

model (considering traffic heterogeneity features) that can be conveniently applied to any 

kind of optimal control problem and network configuration. The main challenge in 

presentation of traffic heterogeneity in network traffic modeling is how to combine the 

singular traffic participant’s car-following behavior which is pure microscopic feature 

with macroscopic continuous traffic flow representation generally used in whole link 

modeling. Three completely distinct approaches are possible.  

• First one is to use LWR model as a basis for the subsequent LWR extensions 

considering, one by one, microscopic features of traffic heterogeneity. This type 

of approach, however, as was explained in previous chapter, usually presents only 

so-called ‘’local’’ LWR solution extended for a specific microphysical feature 

and cannot be applied to the other traffic heterogeneity feature.  

• Second approach is to use car-following behavior theory as a basis to introduce 

macroscopic features of traffic flow.  

• Finally, the last approach which is called coupling approach is to develop a hybrid 

model in which the two traffic models, one based on microscopic car-following 

behavior and another based on continuum LWR presentation, can be coupled 

together to understand where, i.e. under what conditions and at which modeling 

features, one of them performs better than the other. Such comparative coupling 

allows progressively defining advantages and drawbacks of each modeling 

approach and estimating the corresponding level of uncertainty to be applied for 

specific modeling. For instance, the nature of most traffic phenomena is both 

stochastic and deterministic, while proportion of the respective representation 
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depends on type of phenomenon. Therefore, application of coupling approach 

may help classifying the phenomena according to the respective level of 

uncertainty in order to define the preferred tool for their modeling. 

 

Despite the great advantages of the hybrid method, it requires great time and 

computational resources, which were limited in this research. Therefore, the 

presented approach is closer to the second approach in which we distinguish flow 

representation and flow participant representation. We would try to develop the dual 

representation of main traffic features in order to be able to vary stochastic and 

deterministic features as will be required by specific traffic phenomena in the future.  

Therefore, the mesoscopically represented results obtained in this research may be 

used for finding further relationships with LWR-based modeling by recalculating 

from them all macroscopic characteristics such as flow volume, density and 

macroscopic distribution of speed. This, however, may be an objective for the next 

investigations in the field. In this thesis, our objective is confined to initial 

formulation of mesoscopic continuous whole link model based on understanding of 

heterogeneous traffic phenomenon to be used for network traffic modeling as future 

works.        
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Chapter 4:  

Solution Approach 

 
 
 
MESOSCOPIC WHOLE LINK CONTINUOUS VEHICLE BUNCH MODEL  

4.1. NOMENCLATURE 

Ca  link flow capacity 

( )tf   composite time headway p.d.f., ( ) ( ) ( ) ( ) ( ) ( )thtgthtgtf ∗∗ +=⋅−+⋅= θθ 1 , (-); 

( )tg   constrained component of time headway p.d.f. (-);  

( )tg∗   nonnormalized constrained component of time headway p.d.f., ( ) ( )tgtg ⋅= θ* , (-); 

( )th   free component of time headway p.d.f. (-); 

( )th∗  nonnormalized free component of time headway p.d.f., ( ) ( ) ( )thth ⋅−=∗ θ1 , (-); 

K  constant in Hyperlang distribution; 

al   link length (m); 

( )tL j  and jiL , the length of the bunch j at time t and  its counterpart obtained by time 

discretization (m); 

Lc, Lt and Lb the length of the passenger car, semi-trailer (truck) and bus respectively, (m); 

jnL the length of the last car in the bunch, (m); 

( )tNa  and Ni,j number of the vehicles on the link a observed at time t  and its counterpart 

obtained by time discretization (veh.);  
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jn    bunch size, i.e. number of the vehicles in the bunch j, which is time-independent 
value (veh.); 

,, tc pp and bp  proportions of the passenger cars,  semi-trailers (trucks) and busses in the 

traffic volume; 

t  time; 

0
jν   desired speed for the bunch j ( 1−⋅ sm ); 

00 , tc νν , and 0
bν  desired speeds for passenger car, semi-trailer (truck) and bus, respectively 

(-); 

( )tv j  and jiv ,  real speed for bunch j and its counterpart obtained by time discretization 

(m/s); 

Greek symbols: 

α   parameter in  Borel-Tunner distribution, (-); 

β   parameter in equation for real speed, (-) 

Δ   minimum headway between vehicles, (s); 

1δ   minimum free headway, (s); 

2δ   minimum  constrained headway, (s); 

1γ   average headway of free vehicles, (-); 

2γ   average headway of constrained vehicles, (-); 

*θ   conditional probability for a vehicle to be constrained, ( ) ( ) ( )tftgt ∗=θ , (-); 

φ   proportion of the constrained vehicles, (-); 

λ   arrival rate of free vehicles, (s-1);  

τ   link travel time, (s); 
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j,1τ   link travel time for the first car in the bunch j, (s); 

jn j ,τ  link travel time for the last car in the bunch j, (s); 

 

Subscripts 

1    free vehicles in the traffic volume; 

2   constrained vehicles in the traffic volume; 

a   arc or link; 

b   bus; 

c   passenger car; 

t    truck  

Indexes: 

i   time interval counter; 

j  bunch counter; 

jj  counter for real speed data; 

I=1,2,3….24 hour counter starting from 12:00 AM 

    

4.2 BACKGROUND  

To overcome the difficulties presented in modeling of heterogeneous traffic flow in 

discrete packet approach (Dell’Orco, 2006), a new continuous vehicle bunch model is 

proposed here based on the experimental time headways distributions found in recent 
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research study by Ye and Zhang (2009). We favour the earlier term for a group of 

vehicles proposed by Cowan (1976), i.e. the vehicle bunch, to the latest one proposed by 

Di Gangi (1992) and Dell’Orco (2006), i.e. the vehicle packet. In this chapter, the main 

elements of such a continuous time link model for multiclass traffic modeling  using 

vehicle-specified time headway distributions is presented. 

 

Two main attributes of traffic flow classification have been used: (i) a vehicle type 

specifying, in turn, a vehicle length and vehicle-specified time headways; and, (ii) a 

driver-desired vehicular speed defining, together with the speeds of the neighbouring 

vehicles, the vehicle acceleration/deceleration mode. Generally, three vehicle types have 

been used: passenger car, semi-trailer and bus. For each vehicle type, a specific normal 

distribution has been used for the driver-desired vehicular speed. According to the earlier 

experimental observations and their theoretical comprehension, it is assumed that 

vehicles in uncongested through moderate congested flow move in the bunches dividing 

drivers into the two main groups: independent, i.e. “free”, drivers which usually manifest 

themselves as the leaders of the bunches and followers, i.e. “tracker”, drivers which adapt 

their speed to the leader’s speed and follow each other at the time headways specified by 

predecessor/successor pairs. It is assumed that the number of the vehicles in a bunch is 

approximately proportional to the traffic flow rate and, therefore, is calculated by using 

traffic flow-defined normal distribution. Thus, it contains both stochastic and 

deterministic components. A semi-Poisson mixed model has been used for calculating the 

time headways of both constrained and free vehicles. As the congestion continues to 

develop, more and more “leaders” became “followers”, since the highly congested flow 
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obliges them to adjust their flow attributes to the attributes of the preceding bunch.  To 

summarize, the following distinct features of continuous bunch traffic flow are assumed:  

-traffic may be represented by vehicle bunches, all vehicles inside a bunch move with 

approximately the same speed; 

-each bunch consists of one leader and several followers repeating leader’s behaviour 

concerning the desired speed and acceleration/deceleration procedures; 

-speeds of two neighbouring bunches may be completely different depending on the 

desired speed of the respective bunch leader;  

-the bunch length is a physical value defined by the length of time headways between the 

drivers and the length of the vehicles in the bunch; 

-no overtaking is allowed in traffic flow represented by vehicle bunches. 

  

4.3 MODELLED TRAFFIC HETEROGENEITY ELEMENTS 

4.3.1 Hourly vehicle counts decomposition 

The total vehicle count per hour, denoted by I number, may be decomposed into three 

main components as follows: 

 

                 IbItIcI NNNN ,,,, ++=Σ                                             (4.1) 

where IN ,Σ  is the total number of vehicles per hour; IcN ,  is  the absolute number of 

passenger cars that moved on this link during considered period I; ItN ,  is absolute 

number of   semi-trailers, i.e. articulated trucks; and, finally, IbN ,  is absolute number of 

buses on the link during considered periods. The proportions of the mentioned vehicle 

types may be defined as follows:  
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4.3.2 Vehicle type  

It is supposed that the total number of the vehicles is distributed according the standard 

normal distribution, i.e. Z ~ ( ))1,0N . Defining two threshold values as Itpz ,1 =  and  

Ibpz ,2 1−= , it is possible now to formulate the choice of the vehicle type as follows: 

     If ( ) ( )1Pr1,0 zZNRand ≤≤  truck is chosen,  

       if ( ) ( )2Pr1,0 zZNRand ≤≥  bus is chosen 

         else if ( ) ( ) ( )21 Pr1,0Pr zZNRandzZ ≤≤≤≤  passenger car is chosen               (4.4) 

 

4.3.3 Time headways 

Cowan (1976) and Branston (1976) published the results of their experimental 

observations of traffic flow as the groups of vehicles moving together and called as 

bunches. Cowan defined several potential laws according to which the time headways 

between the vehicles may be distributed. Each bunch consisted of one leader imposing 

his own driving attitudes on several drivers that followed him and several followers each 

one of whom was tracking his predecessor in his anticipation of driving conditions and 

eventual congestion. Therefore, the free drivers usually drive at a distance called free 

headway from preceding vehicles, while followers drive at a distance called constrained 

headway from the preceding vehicles. Cowan (1976) and Branston (1976) defined a 

generalized queuing model accounting for the distinctions between the free drivers and 
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followers. Even earlier, a similar composite time headway model called semi-Poisson 

was proposed by Buckley (1968). The probability distribution function (p.d.f.) of such 

composite models may be presented as follows:   

 

( ) ( ) ( ) ( )thtgtf ⋅−+⋅= θθ 1                                              (4.5) 

where θ  proportion of the constrained vehicles, (-); ( )tg  constrained component of time 

headway p.d.f. (-); ( )th  free component of time headway p.d.f. (-). Wasielevski (1974) 

proposed to rewrite the probability distribution function of such composite time headway 

as follows: 

 

                                   ( ) ( ) ( )thtgtf ∗∗ +=                                                           (4.6) 

where ( )tg∗  is nonnormalized constrained component of time headway p.d.f., 

i.e. ( ) ( )tgtg ⋅= θ* , (-), while ( )th∗  is nonnormalized free component of time headway 

p.d.f., ( ) ( ) ( )thth ⋅−=∗ θ1 , (-). 

 

After more than 30 years of extensive research in the field of the time headways (Cowan, 

1976; Branston, 1976, and Ye and Zhang, 2009) it became clear that the headway 

distributions depend not only on division on free and follower drivers, but also on the 

vehicle-type-specific pair participating in interaction, the level of traffic flow and even 

type of the highway (rural or freeway). Hoogendoorn and Bovy (1998) proposed a 

technique for obtaining vehicle-type-specific headway distributions considering some of 

the factors mentioned. However, their technique considered only one vehicle from the 

interacting pair, while data were concerned to the rural area. The most extensive research 
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in the field considering all factors just mentioned, in our opinion, represents the study 

performed by Ye and Zhang (2009). In their study, however, the composite time headway 

model was applied for one homogeneous pair only, while, for the rest pairs, simple 

models were applied. An excellent flexible composite model combining shifted 

exponential distribution and Erlang distribution was proposed even earlier by Dawson 

and Chimini (1968). Archilla and Morrall, (1996) improved the model by Dawson and 

Chimini and presented it as cumulative distribution function (c.d.f.) as follows: 
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where 1δ  and 2δ are minimum free and constrained headways, respectively in (s), 1γ  

and 2γ are average headways of free and constrained vehicles in (s), respectively, while K 

is a parameter in Erlang distribution. Analysing the data by Ye and Zhang (2009) for 

various values of traffic volume flow, presenting the average values for each specific 

gradation of traffic flow volume, and using the composite formula by Wasielewski 

(1974) we were able to use the extremely low and extremely high traffic flow volumes 

for obtaining free and constrained components of the distributions, respectively. An 

example of application of such formula obtained for truck/passanger car pair for various 

values of θ  is presented in Figure 4.1. We used the data by Dey and Chandra (2009) for 

desired time gapes to calculate empty zone values, i.e. minimum constrained headways, 

for all homogeneous and heterogeneous pairs of vehicles. 
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Figure 4.1 C.d.f. of heterogeneous pair of vehicles truck/passenger car for various 

proportions of constrained vehicles, θ. 

 

Figure 4.2 shows that the difference created by various values of the proportion of 

constrained vehicles is more significant then the difference produced as result of various 

vehicle combinations. 

 

Thus, all heterogeneous vehicle pairs, i.e. all except car-car, truck-truck and bus-bus pairs 

were treated according to modified Hyperlang model and original Erlang model (Dawson 

and Chimini, 1968; Archilla and Morrall, 1996; and Ye and Zhang, 2009) presented here 

by Eq.(4.7). The following vehicle type-specific headways are calculated according to 

this formula: tcHw − ; bcHw − ; ctHw − ; cbHw − ;  btH − ; and, tbHw − Values of every constants 

were different for various headways groups as obtained from the data by Ye and Zhang 

(2009). 
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Figure 4.2. Comparison of the C.d.f.’s of headways for two heterogeneous pairs of 

vehicles car/truck and truck/car for various proportions of constrained vehicles, θ. 

 

Recalling that the headways of homogeneous pairs would be best represented by the pair 

of shifted negative distribution, we have chosen Schuhl model (Schuhl, 1955) for the rest 

of vehicle pairs, i.e. for all homogeneous pairs such as car-car, truck-truck and bus-bus.  

All these groups of headways were calculated according to the following formula 

(Schuhl, 1955; Archilla and Morrall, 1996): 
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In other words, the following vehicle-type-specific headways were calculated according 

to this formula: ccHw − ; ttHw − ; and, bbHw − . 

 

4.3.4. Bunch size 

We considered initially several probability generating functions (p.g.f.’s) for bunch size 

calculation such as geometric distribution, Borel-Tunner distribution (Tanner, 1961), 

Miller distribution (Miller, 1961) and Consul distribution (Islam and Consul, 1991). 

Because of absence of real bunch size database in our research, we could not compare the 

calculated values of bunch size to real-life data. However, comparing them to each other, 

we were able to realize that Borel-Tunner distribution is more stable than Miller 

distribution, while Consul distribution is the more general one reducing to either 

geometrical or Borel-Tunner distributions for some limiting cases.   

The probability that the size of the bunch j is jn  (for 10 ≤=≤ θα m ) according to 

Borel-Tunner distribution may be calculated as follows: 
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where +∈ Nm , 0<θ <1, such that 11 −≤≤ θm , or  m<0, θ <0 such that 1≤θm . The 

Consul distribution may be calculated as follows: 
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Figure 4.3  Comparison of Consul distribution to Borel-Tanner distribution for the 

bunch size. Consul distribution for m=1 reduces to geometric distribution. 

 

As an example, Figure 4.3 presents comparison of Consul distribution to Borel-Tanner 

distribution.  For visual demonstration only, the discrete distributions are presented by 

solid lines. It seems that Consul distribution is more general, though it has some 

limitations for vehicle constraint because of the condition 1≤θm . 

 

4.3.5. Desired speed  

The anticipation of both the safety requirements and the current driving conditions by 

various drivers is usually not the same. Therefore, their choice of the speed which is most 

suitable for the present situation or, in other words, their choice of the desired speed is 
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never the same. If there is no changing the lanes, then a vehicle moving with the lower 

speed, by preventing the faster vehicles from going ahead, affects the speed of the 

vehicles following it on the same lane. Many authors considered the desired various 

speed distributions for specific vehicle types on completely different manner. 

Hoogendoorn and Bovy (2000) introduced speed dependence in LWR model, Wong and 

Wong (2002) proposed to write down main LWR equations p times equal to classes of 

the desired speed, while Jiang and Wu (2004) introduced speed gradient in the LWR 

model. 

 

For the desired speed treatment, the exact values collected during experimental series 

may be used which should be fixed for the already existing impeding (Archilla and 

Morall, 1996).  

                  ( )220 3.2;3.27 === ccc N σμν  

                                         ( )220 5.1;6.26 === ttt N σμν  

                                        ( )220 36.1;5.26 === bbb N σμν                                             (4.11) 

 

It should be noticed that the values measured at low traffic volume flow do not 

correspond to the desired values at high traffic volume. These three normal distributions 

are presented in Figure 4.4. Car data are more dispersed as compared to truck and bus 

data. The authors (Archilla and Morall, 1996) do not mention, whether the data is already 

fixed for the constrained part during measurements. Recall, that the unconstrained data 

may be obtained from censored speed data by using modified Kaplan-Meier survival non-

parametric distribution as follows (Hoogendoorn, 2005; Catbagan and Nakamura, 2008): 
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where ( )0vF∞  represents free speed cumulative distribution for specific type of vehicles, 

0v
M is number of samples of jjv  that are smaller or equal to 0v , M is total number of 

headway observations. 
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Figure 4.4 Three standard normal distributions obtained from (4.11) for car, truck and 

bus.  

 

4.3.6. Real speed  

For calculating the real speed of the current bunch, an inequality was developed in this 

research comparing the free headway between the first car in the current bunch j and the 

last car in the preceding bunch j-1, i.e. either cHw ,1 , tHw ,1  or bHw ,1 , on the one hand, 

and desired time gap (Dey and Chandra, 2009) between the first car in the current bunch 
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j and the last car in the preceding bunch j-1, i.e. c,1Δ  , t,1Δ  or b,1Δ , on the other hand.  To 

take a decision whether to apply deceleration of the current vehicle bunch, the following 

inequality was obtained in this research comparing the desired gap and free headway 

between j and j-1 bunches moving at  speeds jv  and 1−jv , respectively: 

 

( ) ( ) ( )
( )( )

1),,(,1
1

1

1

1 1,),,(,1 2
1

11
2

−
−

−

−
+ ≤

+−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++−
++Δ ∑ jbtc

jj

jj

F

j

n
kkkkbtc vHw

vv
vv

L
Hw

β
ββ

 

Desired gap                                                                                            Free headway 

                              Bunch length calculated as a weighted value 

                               of the lengths at the present and next time steps   

(4.13) 

where β  is a coefficient which is very close to the perception coefficient,  and kk is a 

counter for the number of the vehicles inside each bunch. The subscripts c, t and b stand 

for car, truck and bus, respectively. Recall that time gap between two vehicles, Δ , is a 

time headway between them decreased for the value of time required to cover the length 

of the first vehicle. If the calculated gap between leader of the present bunch and the last 

driver of the preceding bunch, i.e. free headway minus the length of the last vehicle in 

previous bunch, is lower than the desired time gap for the same pair of vehicles, the 

deceleration should be applied. 

 

For calculating the acceleration/deceleration, the formula of intelligent driver model 

(IDM) by Treiber et al. (2000) was used in the following shape: 

                                    ( )( )2240
max )(1 Δ−−= ∗Svvav jjj&                                    (4.14) 
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where amax is maximum acceleration, amax=0.73 m/s2 ; 0
jv  is desired speed for bunch j; 

jv is real speed for the same bunch; Δ  is desired gap between first vehicle in the current 

bunch j and the last vehicle in the preceding bunch j-1, while ∗S  is real distance between 

them (bumper to bumper) calculated as follows: 

 

                                              
0max

0 2 ba
vv

TvsS j
j

Δ
++=∗                                                (4.15) 

where: 20 =s m; 6.1=T s; 67.10 =b m/s2; vΔ  is speed difference between the bunches. 

More about acceleration/deceleration procedure, as well about the way of its application 

to the last follower and the related problems will be mentioned in Section 5.6.  

 

4.3.7. Bunch length 

The average length of each type of the vehicle mentioned in Subsection 4.3.1 has been 

chosen in accordance with existing data in literature: the average passenger car length is 

4.5 m; the average length of eighteen-wheeler is up to 25 m; the length of the school bus 

is up to 12.5 m. As mentioned before, three solutions for presenting the vehicles with 

various lengths were proposed in previous research studies (Lebacque et al., 1998; 

Chanut  and Buisson, 2007; and Van Lint et al., 2008). The first solution was defined for 

presenting flow dynamics of buses which generally are longer and slower in the 

acceleration than the rest of the traffic participants. Such approach consisted of 

decreasing the value of link flow capacity by the value of flow covered by the length of 

the bus with all ensuing consequences such as decreasing of the flow capacity and jam 

density. This type of the solution could not be applied directly to network traffic 
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modeling since both traffic flow characteristics mentioned will become dependable on 

the time and length of the link. Both the recent studies done by Chanut and Buisson 

(2007) and by Van Lint et al. (2008) used term called passenger car equivalent, obtained 

for car and trucks together. It expresses a new flow capacity and jam density which 

became weighted functions of the flow capacities and jam densities calculated for two 

flows consisted of car and trucks only, respectively. Again, such a solution could not be 

applied directly to network traffic modeling. Because the effect of time headways 

between the vehicles was found to be dominating over the effect of the vehicle length on 

both the flow capacity and jam density (Treiber and Helbing, 1999) and because the time 

headways were found to be defined by the vehicle type and volume of traffic flow (Ye 

and Zhang, 2009), we define here nine different time headway distributions depending on 

the predecessor/successor pair. The values of the parameters in the defined distributions 

are dependable on the classification of the traffic flow related to congestion development. 

The discrete value of bunch length calculated after each acceleration/deceleration 

procedure may be found as follows:  

                                         )( 1

1 1,,, F
n

kk kkkkjiji LHwvL j += ∑ −

= +                                           (4.16) 

where 1, +kkkkHw  are constrained time headways, i.e. headways inside the bunch, FL  is 

length of the last follower in the bunch, and jiv ,  is  real speed of the bunch, kk is counter 

inside the bunch. 

 

4.4. CALCULATION PROCEDURE 

Initially the bunch size and type of vehicles in the bunch are calculated for each bunch. 

For the first vehicle in the bunch, the desired speed is calculated. The procedure for 
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adoption of desired speed in the model will be explained in detail in the next section. 

Time headways are calculated for each pair of the vehicles inside the bunch according to 

(4.7 or 4.8). For every time step (i counter), the conditional length of the bunch is 

calculated, i.e. jiL , , (4.16) and the distance it travels on the link may be found as 

τΔ⋅= jivS ,  . During each time step, the speed of each bunch is fixed. At the fist time 

step only it is equal to the desired speed, i.e. 0
jv . At every next time step, the current real 

speed of bunch, jiv , , is calculated  which is a function of the speed at the previous time 

step, jiv ,1− , and of the current speed of preceding bunch, 1, −jiv . No overtaking is allowed. 

Same procedure is repeated j times (number of bunches) for the entire vehicle counting 

during the current hour I (traffic volume per one hour).  

 

The calculation for one hour is performed in Matlab according to flow chart presented in 

Figure 4.5. If new proportions of the type of vehicles are introduced, the process is 

repeated. The critical issue is here in how to design several consecutive i loops (time 

counter) and j loops (bunch counter). For each subsequent bunch, speed and current 

distance from the link input will be dependable on the positions of the vehicle ahead and 

the information should be available concerning the drivers in the preceding bunch. 

Current bunch moving with the slow speed may have influence on one or many following 

bunches depending on the dynamic conditions and the speed difference between bunches.  

 

Minimum desired gaps for specific vehicle pair are introduced as constant in the shape of 

matrix. Also traffic counts per hour decomposed into the main three components are 

introduced at this stage in the shape of proportions.  
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Figure 4.5. The flow chart for model calculation of link travel time during one hour. 
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Bunch counter starts, and at this stage the bunch size, the types of vehicles and both free 

and constrained headway are calculated. After calculating bunch desired speed and bunch 

traveled distance, the latter is compared to the traveled distance concerning the previous 

bunch at the same time step. The inter-bunch distance is calculated and it is compared to 

the minimum desired time gap between two specific vehicles. The info about the last 

driver in the preceding bunch is saved at previous bunch counter loop. If the first vehicle 

in the current bunch gets into empty zone, the calculation for real speed performed by 

using deceleration formula. After speed adjustment and new travel distance calculation, a 

new inter-bunch distance is calculated. Next time step, an additional speed adjustment 

will bring the speed of the current bunch closer to speed of preceding bunch. The number 

of the steps during adjustment procedure depends on the time step. In this research a time 

step of 10 s was used, which required only three four adjustment to reach the new speed 

value. After checking if arrival destination is reached, a new time step is performed and 

previously explained procedure for inter-bunch distance evaluation is repeated. After 

reaching the destination, it is checked if the current bunch was the last bunch in the hour. 

After the last bunch is reached, the calculation either continues for the next hour with 

new vehicle type proportion data or finally stops.       

 

4.5 OUTPUT 

The travelled distance is calculated at each time step τΔ =10 s according to the following 

simple formula: 

                                    τΔ⋅+= − jijiji vSS ,,1,                                           (4.17) 
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The link travel time is calculated for each bunch separately as a sum of the time steps 

required to cover the entire distance equal to the length of the link plus travel time for the 

part of last time step required to the first car finish the distance al as follows: 

 

                 τςτξττ Δ⋅+Δ⋅+Δ⋅−= LLLjL i )1(,  

                                      τζτξττ Δ⋅+Δ⋅+Δ⋅−= FFFjF i )1(,                                    (4.18) 

 

Where iL and iF are numbers of the whole time steps required to cover distance la by the 

leader and last follower in the bunch, respectively, ξL, ζL ξF and ζF are respective parts of 

time step, when the travel starts and/or finishes inside the time step for the leader and for 

the last follower in the bunch, respectively. The travel time for the last car in the bunch is 

fixed for the length of the bunch at the beginning of travel.  

 

As may be seen, the link travel time becomes dependable on many parameters mentioned 

such as initial desired speed, real speed, time headway distribution and conditional 

probability for a vehicle to be constrained.  
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Chapter 5:  

Numerical Application 

 

5.1. INPUT DATA  

In this chapter, an implementation of the continuous whole link model developed in the 

previous chapter is presented. The heterogeneous traffic flow on the modelled link 

contains the vehicles of various types moving in bunches with different desired speeds. 

To make the features of heterogeneous traffic and certain specific issues of flow 

dynamics resulting from this heterogeneity more visible, we decided to modify a few 

flow elements used as model input in this preliminary assessment. Our concerns here 

have been put on the flow attributes whose variations for various flow participants 

usually occur in similar fashion within a confined area. Therefore, as they are, such 

variations cannot normally induce some conclusive evidence of their anticipated impact 

from a few singular observations only. Quantifying the level of heterogeneity, for 

example, by using delta-function, may help to distinguish the main trends in the 

anticipated impact and give an answer to the question if the consideration of this factor is 

important for the modeling at all and at what cost. 

 

5.1.1. Desired speed   

Particularly, we speak here about the flow speed and bunch size quantification. As was 

seen in previous chapter, the desired speed, for all three traffic flow participants 

considered, usually vary following normal distribution in very narrow speed interval 
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(Fig.4.3). However, although the expected values of some normal distributions are 

relatively close, such as those of bus and articulated truck, their statistical variations may 

be either similar or different. In particular, the standard deviation of the desired speed for 

passenger cars is almost twice greater than that for bus and articulated truck. Thus, we 

propose to represent the flow speed variations for each traffic participant type by delta 

function achieving the discrete values of 20, 25 and 30 m/s. The respective probability 

mass function is presented in Figure 5.1.  
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Figure 5.1. The modeled probability mass function shaped as delta function with the 

values of the desired speed of 20, 25 and 30 m/s used for the model initiation. A 

comparison is made to the three real-life normal distributions for car, truck and bus.  

 

Notice, that the proposed discretization of the continuously varying input parameter is 

accepted to be the same for all traffic participants. In other words, considering three types 



 83

of flow participants with three discrete values of the desired speed produces totally 9 

(3x3) different classes of traffic participants. Each of them may represent a specific group 

of the   entire driver community population. The aged cautious drivers may be 

represented by the delta function value at 20 m/s, while reckless and young drivers may 

be represented by the delta function value of 30/m and so forth. With such formalization, 

the main concern in future work will only be devoted to a proper definition of the 

nominal value of delta function for each group.  
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Figure 5.2. The modeled cumulative probability mass function of a delta function with 

the desired speed  20, 25 and 30 m/s as compared to the three  normal distributions for 

car, truck and bus. 

 

For example, Figure 5.2 presents the comparison of the cumulative distribution functions 

for the three vehicle types to the cumulative probability mass function for the proposed 

three-value discrete speed distribution. It is seen from figure 5.2 that the appropriate 
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decrease of the delta function value for the speed of 20 m/s and 30 m/s together with 

respective augmentation of the value of the function for the speed of 25m/s (performed to 

keep the total value of the cumulative probability mass function equal to a unity) will get 

cumulative mass distribution function significantly closer to the experimental curves.    

 

5.1.2. Bunch size treatment 

The next input parameter, bunch number and bunch size, may be modeled by using two 

different approaches. One of them is to generate the random numbers by using one of the 

bunch probability mass functions defined in Section 4.3.4 with the predefined total event 

number N and percentage of constrained drivers, θ; another one deals with simplifying 

the modeling by assumption that the average bunch size is somehow proportional to the 

traffic flow volume. In the first approach, the random numbers have been generated by 

using random number generator (RNG) and compared at each step to the value of the 

chosen cumulative mass distribution function unfolded from the long range tail. The 

description of the entire procedure may be found in statistical literature. The outcome is 

more successful, when the trials with greater amounts of random numbers are performed. 

Figure 5.3 compares two samples obtained by using Consul distribution model for m=1 

and 7.0=θ . 
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Figure 5.3. Two sets of randomly generated bunch size distributions obtained by using 

Consul bunch distribution model for N=110, m=1 and 7.0=θ (geometrical distribution 

with respective value of θ).  

 

In the second method used to generate bunch samples, we use a simple assumption that 

the average bunch size may be in some power law relationship with the traffic flow 

volume. This assumption seems to be logical if a chain of events related to the traffic 

flow volume increase is recollected. Namely, the greater flow volume produces greater 

number of the follower drivers, which in turn generally results in the increased average 

bunch size. The number of impeded drivers forced to be follower progressively increases, 

though the number of those willing to leave the bunch increases as well. Even though 

some of them may leave the present bunch at any lucky situation, they will be 

immediately forced to take their place in another bunch and so on. This dynamical birth-
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and-destroy process (Islam and Consul, 1991) will continue until the substantial changes 

in the flow conditions occur. To account for the variations in the averaged number of the 

drivers impeded by the traffic flow volume and forced to take their place inside a bunch 

and to leave it out after a while, we propose to represent the averaged bunch by delta 

function with three possible values. 
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Figure 5.4. The assumed probabilities of the average bunch size for various flow volume 

values: uncongested 400≤Q  veh/h; low congested  400 veh/h ≤≤ Q 800 veh/h; 

moderately congested hourvehQhourveh /1500/800 ≤≤ ; and, heavily congested 

1500≥Q veh/h. 

 

Figure 5.4 presents the assumed theoretical probability mass distribution functions for the 

average bunch size at various levels of the traffic flow volume. Again, the nominal values 
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of bunch size are taken arbitrary. Such representation of the average bunch size by delta 

function has a number of advantages over the previous traditional approach such as 

saving CPU time by avoiding tedious calculations of numerous bunches with one vehicle 

only and by counting the anticipated queue length during congestion conditions in 

number of the bunches of specific size. The choice of traffic flow volume classification 

was according to the classification proposed by Ye and Zhang (2009). The main 

disadvantage of this method of bunch size modeling is, of course, absence of bunch 

randomness inherent with its birth-and-destroy dynamical structure. In other words, the 

process is closer to steady state than to any other transitional process. 

 

5.1.3. Generating the time headways  

The samples of randomly chosen constrained and free headways for various 

combinations of vehicle pair have been generated by using RNG and the headway 

distributions defined in Section 4.3.3 on the same way as it has just been explained for 

the bunch size. As an example, Figure 5.5 presents the time headways for heterogeneous 

pair truck-truck,  which were randomly generated by using shifted exponential 

distribution with shifted value of 1.3 s (Ye and Zhang, 2009), which is specific case of 

the Schuhl distribution (Schuhl, 1955) presented here in Section 4.3.3. The sample size 

was 90=N .  Again, as in the case with randomly generated bunches, it may be observed 

that the nonproportionally large values are possible even in such small samples. 



 88

 

Truck-truck pair

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Headway (s)

nt
r-

tr
 (-

)

 

Figure 5.5. The randomly generated time headways for the homogeneous vehicle pair 

truck-truck obtained by using shifted exponential distribution with shifted value of 1.3 s. 

Sample size is 90=N .   

 

5.1.4. Real vehicle counts and designing suitable dataset 

We collected directional traffic counts available for the wide community from the Open 

data catalogue of the site of city Vancouver. Data, collected by automatic vehicle 

detectors, i.e. loop detectors, from Trans-Canada Highway, coordinates 570296 and 

570297, do not contain any additional information concerning traffic heterogeneity since 

such data are typically not collected at an individual vehicle level, but at some short time 

interval such as part of the minute.  Therefore we required to modify initial data 

generating the drivers of different classes.   
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Figure 5.6. Two typical within-day variations of traffic flow volume on Trans-Canada 

Highway at Vancouver with morning (afternoon) primary peak and afternoon (morning) 

secondary peak. 

 

The generated heterogeneous data in this research, of course, are subjective, since their 

generation was done according to our comprehension of the within-day demand for slow, 
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fast, light and heavy vehicles. However, having real heterogeneous data would not 

change the entire calculation procedure. Usually, such diversification in traffic flow 

follows the standard within-day traffic flow volume variations. The two typical non-

resemble within-day variations on Trans-Canada Highway at Vancouver are presented in 

Figure 5.6. As an example of redesigning these data by taking into account (2x2) traffic 

heterogeneity, in Table 5.1, we present the classification of the flow volume for the main 

four pre-defined groups according to speed factor and vehicle type.      

Hour of the 
day 

V1 (Slow 
Car) 

V2 (Fast Car) V3 (Slow 
Truck) 

V4 (Fast 
Truck) 

Total
570296 WB 

1 18 25 8 42 93 
2 8 15 7 18 48 
3 3 12 1 15 31 
4 5 8 2 8 23 
5 12 17 11 5 45 
6 25 140 14 15 194 
7 45 540 23 65 673 
8 57 1130 30 100 1317 
9 60 1275 50 150 1535 

10 140 750 30 157 1077 
11 280 300 71 190 841 
12 350 204 65 225 844 
13 400 205 48 150 803 
14 302 250 70 120 742 
15 225 202 110 250 787 
16 190 800 65 57 1112 
17 210 920 50 45 1225 
18 180 939 60 80 1259 
19 250 468 45 85 848 
20 133 248 90 40 511 
21 100 95 100 95 390 
22 90 65 110 102 367 
23 85 85 35 55 260 
24 75 60 11 25 171 

  

Table 5.1. Diversification of driver classes in order to obtain (2x2) traffic heterogeneity 

by using within-day traffic counts. 
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5.2. TRAVEL TIME COMPUTATION  

Figure 5.7 presents a test link with 2 vehicle bunches containing 5 and 7 vehicles, 

respectively. The time headways inside the bunch, i.e. constrained headways, and the 

time headways between bunches, free headways, may be generated by using RNG and 

proposed  functions after the type of each vehicle is randomly generated by using normal 

distribution and proposed vehicle proportions. Knowing headways and initial speed 

allows computing length of the bunch.    

                                                      

 

 

 

 

 

Figure 5.7 Test link for numerical example 

 

We consider here a 6-km long link where the type of vehicles move in bunches in the 

sequence presented in Table 2. The desired speed is chosen by the leader and accepted by 

all followers in the bunch. It is assumed that the presence of slowly moving bunch ahead 

of the current one will gradually reduce the speed of some bunches behind it to the 

specific value equal or greater than the speed of slowly moving bunch. Although no 

overtaking is not allowed, we assume that impeded driver may accelerate immediately 

after the last slowly moving car in the bunch ahead has reached the link output. Such 

Free Headway

Bunch 2 Bunch 1 

v3 v5 v4 v2 v1v7v8v9 10 11 12

Constrained Headway

V6
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assumption is valid for the link output being a diverging node of the traffic network. In 

such a case, the leader of the present bunch may start acceleration procedure immediately 

after he has noticed the direction chosen by  slowly moving bunch ahead and has 

anticipated to choose an alternative link.  

 

Bunch 
number 

Bunch 
size 

Desired 
speed 

Leader Second 
veh. 

Third 
veh. 

Fourth 
veh. 

Fifth 
veh. 
Condit 
Last 

Sixth 
veh. 
Condit 
Last 

Seventh 
veh. 
Condit 
Last 

Note 

1 5 20 Car truck car bus  truck    
2 7 30 Truck bus truck car bus car car  
3 5 25 Truck truck bus car car    
4 7 25 Truck  car car truck car truck car  
5 6 30 Car bus bus truck car truck   
6 7 20 Car bus car bus truck bus truck  
7 5 25 Car car car bus car    
8 5 20 Truck  bus truck truck bus    
9 7 30 Truck  truck bus bus truck bus truck  
10 5 25 Car bus truck truck car    
11 7 20 Car bus car  bus car bus car  
12 6 30 Truck truck car car car car   
13 5 20 Car  truck car car car    
14 5 25 Car truck bus bus car    
15 7 30 Truck truck bus bus car bus car  

 
Table 5.2. First fifteen randomly generated bunches. 

 

The computational steps involved in calculating the travel time of the first 12 vehicles 

(v1-12) using the proposed model are presented as follows: 

 

1).Time t=0, 

First Bunch: The number of vehicles present in Bunch 1 is 5 (v1, v2, v3, v4 and v5). The 

free time headway with the preceding vehicle is 11.51 s. The initial speed of the bunch is 

20 m/s and the location of the first vehicle is at the start of the test link, while the 

positions of the vehicles inside the bunch are defined by the respective time headways 

calculated for specific vehicles pairs. For instance, the headway between the leader and 
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the succeeding vehicle is 8.36 s, while the free headway between the last vehicle in 

Bunch 1 and the first vehicle in Bunch 2 is 34.5 s. The time counter starts, when first 

vehicle starts entering the link, so at this time interval all vehicles are outside the link. 

Second Bunch: The number of vehicles in Bunch 2 is 7, and initial speed accepted for this 

bunch is 30 m/s. The headway of the first vehicle with the succeeding vehicle is 10.32 s. 

 

It should be mentioned here that the positions of the vehicles in the bunch are calculated 

only at this time interval. After the bunch length is calculated, only the positions of front 

bumper of the leader and the rear bumper of the last follower in the bunch are followed in 

space. This simplified calculation procedure, which save a great amount of calculation 

time, is a crucial distinction of this model with the classical car-following models where 

the position of each vehicle is permanently followed in space.  

   

2).Time t= 10 s, 

The front line of Bunch 1 has entered the link at the distance 200 m. The Bunch 2 still has 

not entered the link.  

 

3).Time t=40 s, 

The rear line of Bunch 1 has past the distance 43 m inside the link. The Bunch 2 still has 

not entered the link. 

 

4).Time t=80 s, 



 94

The front line of Bunch 1 has covered distance of 1600 m, no interference is observed 

since the low traffic flow volume is considered, while the bunch moves with lower value 

of desired speed.  The front line of Bunch 2 has entered the link at the distance 152 m.  

5).Time t=140 s, 

The comparison of the free headway and desired time gap between the front line of 

Bunch 2 and rear line of Bunch 1 reveals that the Bunch 1 may get inside empty zone. 

This means that application of deceleration is required for Bunch 1 starting from previous 

time step. Calculated deceleration for t=130 s is -0.69 m/s2. Therefore, the value of speed 

at this time interval is 23.1 m/s. For the next time interval new value of deceleration is 

calculated which is equal to -0.236 m/s2.  The decoration for the last follower is 

calculated in similar manner with the time lag equal to sensn τ⋅− )1( , where n is a number 

of the driver in bunch and sensτ  is reaction or sensitivity time required for driver to start 

reacting correspondingly on acceleration or deceleration of preceding driver. It occurs 

that this time may have also heterogeneous nature and nay be different for various types 

of drivers. However, for the purposes of this research this value was taken as constant for 

all drivers.  

  

This way the computation continues until all the vehicles exit the link. The travel time for 

each leader and last follower in all bunches are calculated accordingly to (4.15). It is clear 

now that the Lξ  and Fξ  are, in fact, ratios between the distance covered by either front 

line or rear line of bunch during time interval starting when cross the link start line and 

maximal distance that can be covered during time interval of 10=Δt s with the desired 

speed. Respectively, ζL and ζF   are the ratios between overdriven distance over kmla 6=  
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and maximal distance that can be covered during time interval of 10=Δt s with the real 

speed for respective bunch. 

 

5.3. MODEL RESULTS 

As an example, we present in Table 5.3  the final results for the leaders and last followers 

of first 3 bunches for different time instances until all the vehicles exit the link. 

Time 
Step 

Bunch–
Vehicle 

Event Position 
on link 
(m) 

Acceleration/ 
Deceleration 

Travel 
Speed 

Travel 
Time 

T=0 B1-L 
B1-F 
B2-L 
B2-F 
B3-L 
B3-F 

enters 0 
-757 
 

0 
0 
 

20 
20 
30 
30 
25 
25 

- 

T=140 B1-L 
B1-F 
B2-L 
B2-F 
B3-L 
B3-F 

 
 
decceleration 

2800 
2043 
1917.5 
336.5 
 
 

0 
0 
-0.69 
-0.73 

20 
20 
23.1 
28.9 
25 
25 

- 

T=300 B1-L 
B1-F 
B2-L 
B2-F 
B3-L 
B3-F 

exit 
 
 
 
 

6000 
5243 
5140.4 
4063.4 
3906.5 
2948.5 

0 
0 
0 
0 

20 
20 
20 
20 
25 
25 

300 

T=350 B2-L 
B2-F 
B3-L 
B3-F 

exit 
 
 
 

6140.4 
5063.4 
4955.1 
4141 

0 
0 
-0.08 
-0.19 
 
 

20 
20 
21.6 
22.1 

297.1 

T=400 B3-L 
B3-F 
 

exit 
 

6191.5 
5358 

0.11 
-0.01 

25.2 
24.8 

284.5 

 

Table 5.3 Model results for first three bunches. 
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5.4 MODEL VERIFICATION 

To examine the correctness of the model, in this section some link travel time 

calculations will be presented under uncongested and congested conditions. We would 

like to reveal the advantages and disadvantages of this model and to provide a qualitative 

assessment of the level of its accuracy and predictive capacity as regards to the results 

obtained by simple time travel calculated either as time of point moving from link input 

to link output or as a function of the number of vehicles on the link. We would also like 

to clear up the role of two main attributes of traffic flow classification used: a vehicle 

type specifying, in turn, a vehicle length and vehicle-specified time headways; and, a 

driver-desired vehicular speed in the value of obtained link time travel. 

 
5.4.1. Uncongested flow  

We consider here the traffic flow with a very low flow volume as obtained for after-

midnight hours in Table 5.1.  Even under such conditions, the presence of slowly moving 

bunch, which we call here bottleneck initiator, is decisive factor in reaching or non-

reaching the anticipated travel time by the present bunch. The first twelve travel curves 

for the six leaders and six last drivers in the first six bunches are presented in Figure 5.8. 

This type of model allows obtaining the same link travel time for the first bunch no 

matter whether there are or not the drivers on the link at the moment the flow started. 

Even if there are some vehicles which are significantly far away on the link from the link 

input, they can not disturb the traffic flow and, therefore, impact actual value of link 

travel time for the first bunch. Presence of bottleneck initiator (bunch 1 in this case 

moving with speed of 20 m/s) in front of the moving bunch is the main factor in 



 97

anticipated decreasing of travel time for two bunches following it. The presence of 

bottleneck initiator is anticipated by the subsequent following bunch and by the bunch 

following after very easily. In the first case, however, it is anticipated at earlier stage of 

travel of the second bunch for which the desired speed was 30 m/s and at significantly 

later stage for the third bunch for which the desired speed was 25 m/s. For the last bunch 

another important phenomenon is observed. The length of this bunch firstly decreases 

corresponding to deceleration anticipated through the second bunch deceleration which 

resulted from the presence of the bottleneck initiator and then suddenly increases as result 

of the acceleration of the second bunch at the link output. 
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Figure 5.8 Calculated travel trajectories for leaders and last drivers in the first six 

bunches under uncongested conditions. 
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In Table 5.4, we present comparison of the expected and modeled arrival time for 

uncongested conditions. The letter L stands for the leader of the bunch, while F stands for 

the last follower in the bunch. It may be observed that the presence of bottleneck initiator 

is ‘felt’ by the subsequent bunches in the same way as congestion conditions would be. 

The drivers preferring the speed of 30 m/s as desired one are most affected as compared 

to the other classes of drivers. In particular, if a bunch with the drivers having the highest 

desired speed follows a bunch with the drivers having the lowest desired speed, a delay 

occurs by more than one third of the expected time. 

 

 

  

  

  

 

 

 

 

Table 5.4 Expected and modeled travel times for the first six bunches under uncongested 

conditions. L stands for leader, while F stands for last follower.   

 

Obviously, the absolute travel time value in this case is a function of many factors such 

as link length, dimension of the free headway between two interacting bunches and the 

Bunch Positioning Expected (s) Modeled (s) 

1 20m/s,L 300 300 
 20m/s,F 300 300 

2 30m/s behind 20m/s, L 200 267,1 
 30m/s behind 20m/s, F 200 263,3 

3 25m/s behind 30 m/s, L 240 248,6 
 25m/s behind 30m/s,F 240 243,6 

4 25m/s behind 25m/s,L 240 240 
 25m/s behind 25m/s, F 240 240 

5 30m/s behind 25 m/s, L 200 233,3 
 30m/s behind 25 m/s, F 200 233,9 

6 20 m/s behind 30 m/s, L 300 300 
 20 m/s behind 30 m/s, F 300 300 
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way how deceleration is performed – from long distance or after getting into the empty 

zone.    

 

5.4.2. Congested flow  

Figure 5.9 presents travel curves calculated for the six leaders and six last vehicles in the 

first six bunches under congested conditions. The dimension of bunches are 

approximately twice shorter than under uncongested conditions (for the same speed), 

while the headways are approximately 4-5 time shorter as compared to those under 

uncongested conditions. Therefore, the interaction between slowly moving vehicle and 

the one approaching it with the higher speed occurs faster. In particular, the interaction 

between the second and the first vehicles, which occurred under uncongested conditions 

at the distance approximately equal to one-thirds of the entire trajectory, now occurs 

almost immediately after the start. Also note that the interaction between the third and the 

second vehicles, which previously occurred at the distance equal to two-thirds of the 

entire trajectory, now occurs at the distance of 1 km from the start. Obviously, longer 

interactions are observed as  compared to the uncongested conditions and therefore 

longer delays are expected than under uncongested conditions. Note that under congested 

conditions the bunches contain twice more vehicles the under uncongested conditions: 5, 

6 or 7 vehicles in first case against 10, 11 or 12 vehicles in the second case (see Figure 

5.4). 
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Figure 5.9 Calculated travel trajectories for the first six leaders and six last drivers in 

the bunches under congested condition. 

 

The travel trajectories allow obtaining a lot of other important information. For instant, 

verification at the position of 6 km confirms that no outflow is observed during first 280 

s. If there are some vehicles on the link at the inflow moment, their trajectory will start in 

the middle of the graph.  

 

In Table 5.5, the expected and modeled travel times are compared for the leaders and 

followers of the first six bunches under moderately congested conditions. It important to 

mentioned that the first bunch is taken to be unaffected by the moderately congested 

conditions, i.e. it is assumed that near entry node the part of link required for loading the 

first bunch is still empty. In opposite case, the calculation of new equilibrium speed is 
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required according to some of the proposed relationships for equilibrium speed such as 

(2.6). For maximal speed of the flow, the desired speed for the bunch is used.    

Bunch Positioning Expected (s) Modeled (s) 

1 20m/s, L 300 300 
 20m/s, F 300 300 

2 30m/s behind 20m/s, L 200 297,1 
 30m/s behind 20m/s, F 200 286,3 

3 25m/s behind 30 m/s, L 240 284,5 
 25m/s behind 30m/s,F 240 287,6 

4 25m/s behind 25m/s,L 240 284,8 
 25m/s behind 25m/s, F 240 289,4 

5 30m/s behind 25 m/s, L 200 284,8 
 30m/s behind 25 m/s, F 200 287,1 

6 20 m/s behind 30 m/s, L 300 300 
 20 m/s behind 30 m/s, L 300 300 

 

Table 5.5. Expected and modeled travel times for the first six bunches under moderately 

congested conditions. The first bunch gets into empty part of the link. 

 

Because of very compact configuration between bunches, the delays are very high for all 

types of bunch configurations. It is expected that the delays will be even greater, when 

one consider the delay for the first bunch during loading procedure. Loading procedure in 

such case is very complex and has not been considered in these examples.   

 

5.5. MODEL VALIDATION 

To validate the model results against the results of some of the models presented in 

Chapter 3, it is necessary to present bunches through the parameters which figure in Eq.  

(3.1): the input flow, number of the vehicles on link and output flow. They may be 

recalculated from the trajectories of vehicles presented in Figures 5.8 and 5.9. The results 



 102

of such recalculation of data from Figure 5.8 are presented in Figure 5.10 and Figure 

5.11.The former presents the inflow in the shape of the first seven bunches and outflow 

of the first three bunches during period of the first 450 seconds, while the later presents 

variations of number of the vehicles on the link during the same period. Both inflow and 

outflow data are presented using discrete spatial presentation, so a number of the vehicles 

on the link calculated with the aid of these functions, is always integer value as it may be 

seen from Figure 5.11. The variations in the inflow presented in Figure 5.11 are result of 

variations in free and constrained headways, vehicle length and bunch speed while the 

outflow is mostly affected by deceleration of bunches following the slowest first bunch. 
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Figure 5.10 Link inflow and outflow under uncongested conditions recalculated from 

input of first seven bunches and output of first three bunches 
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It may be seen that the choice of ( )Ng  function, for example for exit flow model, Eq. 

(2.19), is not so simple, because real shape of ( )Ng  function depends on the combination 

of many factors. First of all, it will depend on which bunch, faster or slower one, will 

follow the bottleneck initiator.  
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Figure 5.11 Number of vehicles on link calculated by using inflow and outflow functions 

for present model and MN exit flow function model. 

 

Suppose that the shape of g(N) is chosen accordingly to the following rule (Nie and 

Zhang, 2010): 

                                                                 { }GNg ,min π=                                             (5.1) 

 where, π  is a slope parameter for N curve with time axis, which is smaller that 1, and G 

is maximum outflow  that can be obtained for the interval considered. The comparison of 
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of number of vehicles on the link calculated by MN model and present model is 

presented in Figure 5.11. As may be concluded from Figure 5.10, the shape of output 

function may be different depending on the randomly chosen desired speeds for the 

interacting bunches. Although the discrepancy between the numbers of the vehicles on 

the link calculated by two models is not so great, as may be seen in Figure 5.11, the 

difference in travel times will be very significant. The main reason is completely different 

shapes of the assumed output function, i.e. presented by Eq (5.1), and calculated by 

output function (Fig. 5.10). As a result,  MN model will produce travel time starting from 

the instant when g(N) function has some finite value, i.e. starting from t=0, while the 

presented model will define travel time only starting from the instant t=300 s, a moment 

when the leader of the first vehicle bunch reaches link exit node. 

 

5.6. CONCLUSIONS 

The main advantage of this model is in its simple structure and in an opportunity to 

investigate various features of the traffic heterogeneity. The link travel time is calculated 

for the ensemble of vehicles called vehicle bunch, and it is completely independent either 

of the number of vehicles on the link or link outflow. 

  

This model has been designed in order to improve link travel time calculation as applied 

to the traffic networks by taking into account some known features of heterogeneous 

traffic flow such as desired speed variation, vehicle length difference and car-following 

driver behaviour. Some of these specifics of traffic participants may be less important at 

low traffic flow volume, but become dramatically important under congestion conditions, 
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others may be important at all the time. Since both inappropriate speed and abnormal 

length of a traffic participant may constantly require application of acceleration and 

deceleration procedures from surrounding traffic participants, the question of correct 

calculating the acceleration/deceleration value becomes central for such model. In fact, 

the time added or subtracted with deceleration or acceleration, respectively, together with 

the subtraction term responsible for the driver’s adaptation to lower speed make the main 

difference in travel time calculation as compare to standard link travel time. Dey and 

Chandra (2009) recognize even five operations related to overtaking involving 

deceleration and acceleration among the others, while Barton and Morrall (1998) showed 

that the longer truck length require almost 1.6 longer overtaking time. Obviously, no 

mater whether the driver will decide to overtake the flow obstacle or will try to adapt to 

new flow conditions, the distance between two vehicles moving with the different speeds 

is a crucial parameter which needs always to be compared to the desired gap distance. A 

simple formula proposed in previous chapter, where this distance is calculated as a 

weighed value of two speeds involved in interaction, has shown its total and limited 

legitimacy at various flow conditions. Thus, the question of how to define the value of 

the weighed constant remains open because it changes drastically depending of type of 

the flow.  

 

In order to further improve this part of calculation, we tried to apply some other formulae 

for such calculation known in literature. Most of them are applicable only under specific 

flow conditions. After rigorous verification of dozen of formulae starting with the first 

car-following models, where the vehicle deceleration is proportional to the difference in 
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speeds of two interacting vehicles, vehicle own speed and inversely proportional to the 

distance between the vehicles, two formulae attracted our attention and were kept for 

subsequent application: optimal velocity model by Bando et al. (1995) and intelligent 

driver model (IDM) by Treiber et al. (2000). A comparative verification of the formulae 

was performed. Both formulae are very simple in adaptation and were treated at various 

conditions. The authors of IDM propose to use their formula in the following way: firstly 

to let a follower to get into the empty zone and then start calculating deceleration 

required to vehicle to get out of empty zone at the safe desired gap distance.  
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Figure 5.12. Results of the calculations according to IDM deceleration formula (Treiber 

et al., 2000) adapted for the conditions of this research. The designations belong to the 

following conditions: b(30;25) vehicle at speed of 30 m/s follows vehicle at speed of 25 

m/s; b(30;20) vehicle at speed of 30 m/s follows vehicle at speed of 20 m/s; and, b(25;20) 

vehicle at speed 25 m/s follows vehicle at speed of 20 m/s. 
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Under such formulation, however, the formula gives extreme deceleration over 

g⋅0.1 =9.8 m/s2, as shown in Figure 5.12.  To avoid such abnormal values, the formula 

was applied outside the empty zone at some specific appropriate distance close to the 

threshold between constrained and free headways. The value of this threshold varies in 

the range between 4 s and 6 s according to various authors. Hoogendoorn (2005) 

proposes to calculate this value by using modified non- parametric Kaplan-Meier survival 

function presenting the real headway data on logarithmic scale. The threshold may be 

obtained graphically at the point where the data start deviate from strait line. In our 

modeling we did not use real headway data, so value of 4 s was adopted for this research. 

This choice allows a tighter configuration of the vehicles on link under similar 

conditions. However, applying IDM formula from this distance, we never obtained very 

close configuration of two interacting vehicles of order of 2 s. Instead, the formula 

allowed keeping some specific distance of order of 3-3.5 s. Therefore, in our opinion, the 

question of the appropriate acceleration formula still remains open in this field of 

research. 

 

Specifically to this research, a good formula for deceleration must account for the way of 

calculation of deceleration for the last vehicle in the bunch. Since the IDM formula as all 

other car-following model formulae involves the inter-vehicular distance, applying this 

formula directly to our model means to consider the distance to the free driver, i.e. the 

first driver in the bunch, which will give wrong values of deceleration corresponding to 

such long distances. In this research we do not follow the positions of the vehicles inside 
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the bunch but only two points of the bunch: a forward bumper of the first vehicle in the 

bunch and a rear bumper or the last vehicle. If we try to calculate the positions of all 

vehicles inside the bunch, all advantages of this model disappear and it will require 

significantly greater amount of CPU time which is not our intention.      

 

Considering now the results obtained by presence of the bottleneck initiator on the link of 

network, the following conclusion may be drawn. More information is required in order 

to make an informed decision concerning the choice of the specific link at the diverging 

node. In particular, for the closest followers of the bottleneck initiator very important 

information would be concern the bottleneck initiator’s anticipated destination and his 

current distance to this destination.   
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Chapter 6:  

Conclusions and Future Works 

 

6.1. BACKGROUND 

Since the first dawn of the transportation age, it is well known that the driving styles of 

various groups of driver population differ substantially. The origin of this lies in distinct 

human anticipation of various life events and their categorization on the extreme and 

standard ones on the one hand and in the different technical characteristics of the vehicles 

they drive, on the other hand. For instance, the drivers of the trucks and buses have better 

observation of the driveway and surroundings from the height of their cabins which, in 

fact, allows them to make more informed decisions than the small-passenger-car drivers’ 

decisions. It is also well known that the acceleration/deceleration characteristics of the 

heavy vehicles are significantly different when compared to the light small passenger 

cars. Assuming certain general driver’s behaviour, the various car-following microscopic 

models have been developed in transportation sciences since the early sixties of the last 

century. Such models have been designed firstly for simple calculations of the fastest 

path and their simplified features were due partly to limited computer possibilities and 

partly to the under development of the optimization sciences at that time. Later on, as the 

optimization control spread in every single region of the social and engineering sciences 

and computer technology penetrated in every parts of our life, the appetites for 

predictability of the logistics and transportation sciences augmented enormously. Such 

ideas were heated up by new achievements in the transportation instrumentation as well 
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by the foundation and development of the dynamic traffic assignment (DTA) and its 

large-scale and real-time application. The enlargement of the scale of application 

considering greater traffic networks has been competing nowadays against the 

introduction of microscopic specifics of the singular traffic flow participant. Extensions 

of both macro- and microscopic limits mainly are limited by the computer possibilities 

and our knowledge in the field. Under such conditions, a number of new transportation 

models have appeared, considering, one by one, the various traffic micro-features 

discovered in the meantime. Despite the large influence of specifics in the driver 

behaviour or traffic heterogeneity on traffic flow dynamics, no attempts have been done 

up to now to classify them and unite them together. Only recently the first attempt has 

been performed in this field (Ossen and Hoogendoorn, 2011) proposing how to shape this 

part of transportation sciences. The two types of traffic heterogeneity were defined: 

between and inside the classes. The present model brings, for the first time, few traffic 

heterogeneity factors between the classes discovered before uniting them by known 

mathematico-statistical apparatus and empirical relationships in the field. The present 

model is not a DTA link model in classical sense, because it does not consider any type 

of optimization control inequality, nor it is a direct application of car-following 

methodology to bunch representation of traffic flow including the stability analysis for 

the scheme mentioned. For such deep research objectives, this study requires more time 

and resources. But, it is a strong intention of this research study to point out the 

unresolved problem of traffic heterogeneity in traffic network modeling and to show how 

few heterogeneity factors may be united together to explain an arbitrary traffic query. 
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The next step will be to apply such an approach to traffic heterogeneity in a real DTA 

problem. 

  

 It should be noted here that the traffic science to the great extent still remains empirical 

knowledge where the great part of the discovered relationships still remains confined 

within specific intervals of the traffic parameters. Therefore, the importance of 

investigating the interplay of the various factors in the field by using mathematical 

apparatus uniting them together is beyond question. In the next part, we will evaluate 

advantageous and disadvantageous sides of the presented model. Then we will enumerate 

the sequence of the processes to be taken into account for improving the quantitative 

predictability and diagnosis of the traffic state under given conditions. Finally, 

recommendations will be presented for further investigations in this field.      

 

6.2. SPECIFICS OF THE PROPOSED MODEL 

Because of the high empiricism of the great part of relationships used in the field, a 

typical model based on the observational data may explain only one singular traffic 

phenomenon. On the other hand, a mathematical model based on the theoretical 

relationships used in the field usually deals with only one singular phenomenon. The 

reason of this lies in the fact that the transportation science uses the physical laws 

obtained in other physical fields and adapts them for use in the present field. Suffice it to 

mention kinetic gas theory or Navier-Stokes equations applications in transportation.  

Therefore, it is very difficult to define the system of equations that may explain all traffic 

phenomena together, because some of the parameters used in outsourced scientific fields 
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may loose their sense when applied in the transportation. Combining the various 

empirical and physical laws may allow explaining greater number of phenomena. One of 

the advantages of this model is its capability to explain several completely different 

traffic phenomena. In particular, already at this stage it is noticeable that the model may 

be an excellent tool for modeling moving bottlenecks and platoons which were reviewed 

in Chapter 2. Both these traffic phenomena require a speed difference between traffic 

participants which this model affords and multi-lane motorway presentation which was 

not considered in this model due to the limited time frame of this research study. In fact, 

overtaking which was not allowed in this model and any type of two-pipe flow with or 

without mixing and important for ramp merging processes are very difficult to model. 

Therefore, their presentation in the present model was avoided. However, the proposed 

model deals with the dynamics of acceleration/deceleration of singular bunches moving 

with various speeds which is already good step ahead in modeling of the phenomena 

mentioned. Another very important point in such modeling is that a bottleneck may be 

formed at any point on the link and not only at the link input and/or link output as in 

models seen in Section 2.3. 

 

The next advantage of this model is the possibility for the modeller to carefully chose 

O/D pairs in traffic network modeling because of discretization of flow on the bunches 

with specific value. This means that particular O/D pairs may be designed for every 

bunch. This will allow to properly distribute them in the network and to have a simple 

evidence of their real-time positions. Finally, a great advantage is that travel time is 
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calculated directly for each bunch and not for the entire flow as it was in most of DTA 

link travel models. 

 

The greatest disadvantage of this model is that because of the varying speed on the 

various parts of the link, loading procedure is more difficult to perform at once, 

particularly at congested state. Some additional information is required concerning the 

global link speed distribution during loading (Lin et al., 2008) in order to know if the 

desired speed of loading bunch will match or not global link speed at the loading point. 

Moreover, the link capacity problem should be mentioned as jam density, input and 

output capacities become time dependable in the case when heterogeneity of traffic flow 

is considered because of: (i) vehicle length; (ii) varying vehicle-type-specified headways; 

and, (iii) varying desired speeds. In such a case, all time dependable parameters will be 

re-calculated every time when a new bunch has been uploaded or downloaded from a 

singular link. 

 

6.3 FUTURE WORKS 

The model as it is already showed has a lot of advancements as compared to certain link 

travel models. However, the real world application of this model requires the introduction 

of overtaking and multi-lane flow. Without such improvement, the applicability of the 

model is very limited.  

 

Some next improvements capable to drastically improve applicability of this model are 

related to traffic attributes calculated in the model. In fact, presently, the constrained 



 114

headways are calculated only at the first loading on the link, while the free headways are 

recalculated during the interactions between bunches. In order to improve the stochastic 

level of the model, the constrained headways might be calculated at each time step. This 

procedure will make headway more dynamically changeable at each time step, and the 

bunch length will not be constant even at the constant bunch speed. Present variant of the 

model accounts for bunch compression and extension only at the time of the interaction 

between fast and slow bunch and sudden acceleration, when the highway becomes clear 

at the diverging point. The most unexplored consequence of this consists of speed 

variations inside a bunch and subsequent local bunch compressions and extensions.  

 

Choice of the specific speed value should be more carefully designed. Firstly, the 

nominal value of the desired speed should be chosen according to the traffic flow volume 

conditions. Secondly, the second and third value of delta function may be chosen at lower 

and upper 95 % confidence interval of the chosen value of desired speed. 2.5% from both 

sides of the chosen speed value may be assumed to perturb the normal traffic flow 

because of significantly lower or greater value then the desired one. 
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