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ABSTRACT 
Fusions of CNN and SVM Classifiers for Recognizing Handwritten Characters 

Xiaoxiao Niu 
 

Off-line handwritten character recognition plays an important role on a very large 

scale in handwriting recognition systems. The ultimate goal of this research field is to let 

the machine read generic materials written by human beings. In order to achieve this, it is 

necessary to further improve the recognition accuracy and the reliability of current off-

line handwritten character recognition systems.  

The main contribution of this thesis is to present several ways of integrating the 

synergy of two superior classifiers: Convolutional Neural Network (CNN) and Support 

Vector Machine (SVM) which have proven results in recognizing different types of 

patterns. Two models of new fusions have been investigated. In the hybrid model, CNN 

works as a trainable feature extractor and SVM performs as a recognizer. It automatically 

extracts the features from the raw images and generates predictions. In the regular 

combination model, the CNN classifier is trained with raw images but with normalized 

sizes, and the SVM classifier is trained with handcrafted features. The reliability for both 

models has been realized through the introduction of a rejection mechanism.   

The comparisons between the two proposed models were tested on handwritten digits 

and handwritten letters in the English language, respectively. For the handwritten digit 

recognition, experiments were conducted on the well-known MNIST database. 

Experimental results and comparisons with other works on the same database showed 

that the best results were achieved by the proposed hybrid model: An error rate of 0.19% 
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without rejection (compared to the most recent error rate of 0.35%), and a recognition 

rate of 94.40% under 100% reliability with rejection (compared to a recognition rate of 

91.51% under 100% reliability from other studies to our best knowledge).  

For the experiments on handwritten letters, the NIST database was applied. Three 

strategies were adopted in classifying handwritten letters into different types of classes. 

They are a 26-class problem in uppercases and a 26-class problem in lowercases, a 26-

metaclass problem, and a 52-class problem. The recognition results without rejection by 

the hybrid model for the 26-class problem in uppercases and the 26-class problem in 

lowercases were 96.2289% and 90.2410%, respectively. The recognition rates without 

rejection were 92.0744% for the 26-metaclass problem and 70.2408% for the 52-class 

problem. Results showed that the hybrid model outperformed other single classifiers 

(SVM, CNN) in our experiments. However, the combination system had slight 

recognition improvements compared to the hybrid model on the 26-metaclass and the 52-

class problems. Besides, the combination system was proven to be more reliable. 
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Chapter 1 

Introduction 

 
 

In this chapter, the research topic, handwritten character recognition, is introduced. We 

begin with a description of the motivation behind this research in Section 1.1. The 

challenges faced are presented in Section 1.2.  Some of the previous works are reviewed 

in Section 1.3. Based on these previous studies, we propose our methods in Section 1.4. 

Finally, the outline of this thesis is given in Section 1.5.  

1.1 Motivation 

Handwriting recognition is an important and challenging problem, and has been 

intensively studied for the last four decades. The ultimate goal of this field is to let the 

machine read a human’s handwriting. To realize this, many achievements have been 

made in recognizing on-line and off-line handwritten characters. Lots of research results 

have indicated that for machines, the on-line handwriting recognition tasks are much 

easier than off-line tasks; and machines can achieve higher online recognition rates 

compared to offline. Thus, a lot of research is still needed in the off-line handwriting 

recognition applications.  

Text recognition of the generic content is the long-term goal of off-line handwriting 

recognition. In the past decades, most research on the text recognition task has focused 

on specific applications with a restricted vocabulary, such as the zip-code reading in the 

postal mailing system, bank cheque processing in the financial system, etc. Some 

commercial systems have been developed and have been applied in the market [1, 2, 3]. 
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Nowadays, the generic applications require the machine to recognize large vocabularies 

consisting of thousands or tens of thousands of words. For example, some common 

application tasks that work with large vocabularies include [4]: 

• Postal applications: recognizing the postal addresses on the envelopes, such as the 

name, street, city, country, etc.; 

• Genetic text transcriptions: reading unconstrained handwritten notes; 

• Information retrieval: extracting the specified fields from handwritten forms; 

• Reading handwritten fields in forms: the forms include tax forms, census forms, 

insurance forms and other business forms. 

In these cases, handwritten character recognition plays an important role in the 

handwriting recognition system. Since current systems designed for a large vocabulary of 

off-line handwriting recognition problems are based on the character-model-based string 

recognition: the recognizer takes the character or pseudo-character as the basic 

recognition unit. Using the word as the recognition unit works very well on small 

vocabulary recognition applications, but it is no longer suitable for the large vocabulary 

tasks. Besides, a good recognition system for large vocabularies demands a large 

database for training and testing. However, the existing handwritten word datasets are 

quite limited both in the amount of words and the diversity of the words. On the other 

hand, the isolated handwritten characters (10 digits and 52 letters for English language) 

have sufficient available databases to use, such as the MNIST digit database [5], the 

CENPARMI digit database [6], the CEDAR character database [7], the NIST character 

database [8], the C-cube English letter database [9], etc.  Furthermore, to create a new 
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isolated handwritten character database, samples can be much more easily collected in 

terms of labor and time costs, compared with building a new large vocabulary database.   

Driven by the goal of text recognition of generic content and to ultimately realize the 

machine simulation of human reading, our research is on off-line handwritten character 

recognition, and more specifically, on handwritten digit recognition and handwritten 

English letter recognition. The methods to improve the recognition accuracy and to 

enhance the reliability on both recognition problems are addressed in this thesis.   

1.2 Challenge 

Although numerous achievements have been made in the handwritten character 

recognition field, there are still big gaps between research studies and the demands of 

practical applications. Two main challenges have been encountered in the real world: the 

improvement of the recognition accuracy and the enhancement of a system’s reliability. 

We will describe these two challenges, respectively, below.  

Firstly, we give the definitions of the recognition rate and the reliability rate below:  

samplestestingtotal
samplesrecognizedcorrectlycognition

#
#Re =                (1) 

 

samplestestingtotal
errorssamplestestingtotalliability

#
##Re −

=             (2) 

 Improving the recognition accuracy 

The previously reported results on handwritten digit recognition have varied from 

97.60% to 99.77% [10], depending on different databases, classification strategies and 

experimental conditions. One specific example of handwritten digit recognition research 
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is the work of Ciresan et al. on the MNIST database, where the most recent and lowest 

error rate was 0.35%, obtained by using the 6-layer Neural Network [11]. However, a 

higher recognition rate on handwritten digits is always desired in real-life applications. 

When we consider recognizing a numeral string, the recognition probability of this string 

is the multiplication of the recognition probability of each isolated digit (assuming that 

each digit is correctly separated from the numeral string by the segmentation process). 

For example, take a five digit ZIP code, if we assume that the recognition rate of each 

isolated digit is 99.65%, then the recognition probability of this string is 98.26% 

(≈ 59965.0 ). Thus, to increase the recognition accuracy for handwritten numeral strings, 

it is necessary to boost the recognition performance of each individual digit in the string.  

 As for the unconstrained handwritten letter recognition, the recognition rates have 

been much lower. The recognition rates have often varied from 69% to 93% [12, 13, 14, 

15, 16], due to the complex essence of this problem. There are 52 letters in the English 

language: 26 uppercases (A-Z) and 26 lowercases (a-z). The difficulties are caused by the 

fact that the writing style of the unconstrained letter is not known a priori to a recognition 

system. The recognizer should discover and handle different writing styles. Furthermore, 

the unconstrained handwritten letters can have ambiguous shapes within one class and 

similar shapes among different classes, when they are isolated from the cursively written 

word strings. Consequently, there are many unsolved research problems on recognizing 

unconstrained handwritten letters and these problems require further investigations.  

 Enhancing the reliability  

The demands of the industry applications require the most reliable recognition 

systems. As for the automatic bank cheque processing, a small error in reading the 
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courtesy amount or the legal amount could lead to a huge financial loss. Moreover, it is 

very unrealistic to design a handwritten character recognition system with 100% 

recognition accuracy; even human beings cannot achieve 100% correct accuracy in 

distinguishing others’ cursive handwritings. Hence, the reliability is much more 

important than the recognition accuracy in real-life systems. However, most papers 

published on handwritten character recognition have focused on the recognition 

performance, and only a few of them have discussed the reliability of the recognition 

system. In this thesis, our research directions are not only to improve the current 

recognition performance, but also to seek a way to enhance the reliability for the 

handwritten character recognition systems.   

1.3 Previous Work 

In this section, recent studies in off-line handwritten character recognition are 

described. Although many achievements have been made in the handwritten character 

recognition field, many unsolved issues still exist. For an in-depeth review of offline 

handwriting recognition approaches and methods, readers may refer to [4, 10, 17]. 

Recently, many new learning methods have appeared in the pattern recognition field. 

Most of them have been applied to handwritten digits, and handwritten characters. For 

example, one of the most popular learning algorithms, Support Vector Machines, has 

achieved the highest recognition rate on handwritten isolated digits [10] and offline 

cursive characters [13] when compared with other classical algorithms. Most recognition 

studies are still based on the following algorithms: Multi-Layer Perceptrons (MLPs), 

Hidden Markov Models (HMMs), K-Nearest Neighbours (KNNs), Radial Basis Function 

networks (RBFs), etc. Therefore, the study on improving the performance of individual 
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classifiers is one of the most popular research directions in this field. 

Many studies focus on improving recognition rates by adopting different strategies 

on designing single classifiers. Liu [16] proposed a partial discriminative training scheme 

for the classification of overlapping classes in handwritten characters. This training 

scheme was applied to the neural networks, SVM classifiers, and the classifiers trained 

by the MCE method. Experiments on the offline handwritten letter recognition and online 

handwritten symbol recognition have demonstrated that the proposed training scheme 

mostly outperforms ordinary discriminative training and merged metaclass classification 

when evaluated at the metaclass level. Ranzato et al. [18] introduced an energy-based 

model for unsupervised learning of sparse overcomplete representations. The model was 

composed of a linear encoder, and a linear decoder preceded by a sparsifying non-

linearity which turned a code vector into a quasi-binary sparse code vector. The proposed 

unsupervised method was applied to initialize the first layer of the LeNet5 Convolutional 

Neural Network. The error rate on the MNIST database was reported to be as low as 

0.39% with distortions on training samples. Fabien Lauer et al. [19] proposed a system 

such that a trainable feature extraction was trained by the LeNet5 Convolutional Neural 

Network and the classification task was performed by Support Vector Machines. Results 

on the MNIST handwritten digit database showed that the system outperformed both 

SVMs and LetNet5. Lecun et al. [20] applied several learning methods, including KNN, 

SVM and CNN, to recognize generic objects, and found that CNN was more efficient and 

robust than the other classifiers. Milgram et al. [ 21 ] compared two strategies for 

multiclass SVMs: the “one against one” and the “one against all” strategies, by applying 

several post-processing methods for estimating posterior probability. Experiments were 
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conducted on the handwritten character recognition problems. The “one-against-all” 

strategy appeared to be more accurate than the “one-against-one” strategy. However, the 

“one-against-one” strategy was substantially faster in the training process and more 

suitable for problems with a large scale in the number of classes. 

Ensemble learning methods (classifier combinations) have been proposed as a new 

study direction in order to improve the performance of individual classifiers. In the long 

run, the combined classifiers are supposedly superior to the best individual classifiers. 

There are many mathematical reasons for considering an ensemble system, but the 

intrinsic reason can be elicited from our daily lives [22]. When people make an important 

decision related to financial, medical or social consequences, they will usually ask 

different individuals’ opinions, weigh them and combine them after some thought process 

in order to make a final decision.  Ensemble systems follow the exact same process by 

asking the opinions of different classifiers and combining their outputs with more 

confidence. The design, implementation and application of ensemble systems are another 

main focus of research in this field. 

Several researchers have investigated on the combination strategy of multiple 

classifiers. Fu et al. [23] proposed a classifier fusion strategy to train Modified Quadratic 

Discriminate Function (MQDF) classifiers by using a cascade structure and the maximum 

rule based fusion was applied in the testing procedure. The experimental results on the 

handwritten Chinese characters showed that an error reduction of at least 10% was 

achieved by this method. Suen et al. [24] discussed several combination methodologies 

for different levels of classifier outputs: the abstract level, a ranked list of classes, and 

measurements. They concluded that better recognition rates may be accompanied by 
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higher costs in computation requirements, in the quantity of training data, and in the 

difficulty of the theoretical analysis. A cascade ensemble classifier system, proposed by 

Zhang in [25], was applied to recognize the MNIST handwritten digits. The results 

showed that the proposed system can enhance the recognition rate and increase the 

reliability performance at the same time. Lam et al. [26 ] implemented a Bayesian 

formulation and a weighted majority vote was used as a rule to combine seven classifiers. 

The performances of these combined classifiers were evaluated on handwritten numerals. 

Nishimura et al. [27] improved the performance of an HMM-based handwritten character 

recognition system by using the bagging method. Kuncheva [ 28 ] has worked on 

classification combinations since 1990, and has focused on the important and widely 

studied issue of how to combine several classifiers in order to achieve an improved 

recognition performance. 

Based on these previous studies, we explore the handwritten character recognition 

problem from two aspects: the individual classification algorithm and the combination 

technique. Therefore, a hybrid model and a combination system which are based on both 

the CNN classifier and the SVM classifier are proposed in this thesis. They will be 

discussed in the next section.  

1.4 The Proposal  

Improving the accuracy and the reliability for the handwritten character recognition 

system can be achieved via different processing modules: preprocessing, feature 

extraction, classifier design, post-processing, etc. In our research, we mainly focus on 

these issues related to the classifier design. A hybrid CNN & SVM model and a CNN and 

SVM combination system are proposed.  
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To boost the recognition rate, feature extraction is one key factor in the success of a 

recognition system. It requires that features should have the most distinguishable 

characteristics among different classes and should retain invariant characteristics within 

one class. There are two categories in feature extraction methods: hand-designed 

approaches and automatic trainable feature extraction approaches. Since many classifiers 

cannot process the raw image, most hand-designed features for the handwritten 

characters consist of statistical features and structural features. As for the automatic 

extraction methods, features can be learned directly from raw images. One specific 

example of automatic feature extractors is the trainable feature extraction based on the 

Convolutional Neural Network described in [19], which showed a high performance for 

handwritten digit recognition. By using the trainable feature extractor plus elastic 

distortions or affine distortions, the system obtained the recognition error rates of 0.56% 

and 0.54%, respectively. Inspired by this particular work, we propose the hybrid CNN & 

SVM model. 

The combination of classifiers is another successful method that has been used to 

improve the performance of handwriting recognition. However, as far as we know, there 

is no published paper to date on the comparison between the combination system and the 

hybrid system. Therefore, this is the first time that the performances of both architectures 

are compared on the recognition of handwritten characters. 

In this thesis, a hybrid CNN & SVM model and a CNN and SVM combination system 

are proposed for handwritten character recognition. The hybrid CNN & SVM model 

automatically retrieves features based on the CNN architecture, and recognizes the 

unknown pattern by using the SVM classifier. In order to assess the performance of such 
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a hybrid model, a combination system of CNN and SVM is investigated. An SVM is 

trained with hand-designed features, and a CNN model is trained with raw images but 

with normalized sizes. Then, the two classifiers are combined by using the weighted 

multiplication combination scheme. The reliabilities of the proposed systems have been 

achieved through rejecting errors by a certain rejection rule. Finally, to verify the 

feasibility of our methodology, the MNIST digit database and the NIST character 

database are tested. 

1.5 Thesis Outline 

The rest of this thesis is organized as follows: 

Chapter 2 provides the theoretical background of the classification algorithms adopted 

in our research. Specifically, we introduce the preliminary theory of Support Vector 

Machines (SVMs), including two-class SVMs and multiclass SVMs. Then, the concept 

and the structure of Convolutional Neural Networks (CNNs) are presented. 

Chapter 3 proposes two models for solving handwritten character recognition 

problems. The first one is the hybrid CNN & SVM model.  We describe the architecture 

of this model and make the analysis of its merits. Next, the second model, the CNN and 

SVM combination system, is presented. Its structure and the combination method are 

discussed at the end of this chapter.  

Chapter 4 applies proposed models on the handwritten digit recognition problem. 

Furthermore, the reliability of both systems is considered by using the error rejection 

method. We test on the MNIST database. The experimental results show that the hybrid 

model makes the best achievements on both recognition and reliability performance, 

when compared with others in the literature.  
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Chapter 5 discusses the unconstrained English letter recognition problem by applying 

both the hybrid CNN & SVM model and the CNN and SVM combination model. To 

tackle this complex problem, we classify and recognize unconstrained handwritten letters 

into three types of classes:  the 26-class uppercase problem and the 26-class lowercase 

problem, the 26-metaclass problem and the 52-class problem. Experiments and analysis 

are conducted on a subset of the NIST database.   

Chapter 6 draws conclusions. The contributions of this thesis are given. The analysis 

of the proposed methods is discussed. Finally, further research directions are provided.  
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Chapter 2  

Theoretical Background of Classification 
Algorithms 

 
 

Our proposed systems were designed based on the SVM and the CNN classifiers. 

Researchers have demonstrated that both classifiers are superior to other classifier 

algorithms in handwritten digit recognition, with higher recognition rates when 

experiments are conducted on the same database. We will firstly introduce the SVM 

theory and structure used in our experiments in Section 2.1, and the CNN theory and 

structure in Section 2.2. Then, the hybrid CNN & SVM trainable feature extractor model 

and the combination system will be described in the next chapter.  

2.1 Support Vector Machines  

The Support Vector Machine [29] is a statistical method that has shown great success 

in many practical applications in the pattern recognition field, such as handwritten digit 

recognition [30], text classification [31], face recognition [32], speech recognition [33], 

etc. Specifically, Table 1 summarizes some of the most important contributions in the 

field of handwritten character recognition.  
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Table 1. SVM performances on handwriting recognition applications found in the literature. 

Field Reference 
# 

Class 

Recognition 

rate (%) 

Error 

rate (%) 

Rejection 

rate (%) 
Database 

Teow et al. [34] 10 99.41 0.59 0 
MNIST 

(10,000) 

Liu et al. [10] 10 99.58 0.42 0 
MNIST 

(10,000) 

DeCoste et al. [35] 10 99.58 0.42 0 
MNIST 

(10,000) 

Dong  [36] 10 99.62 0.38 0 
MNIST 

(10,000) 

Dong  [36] 10 98.70 1.30 0 
CENPARMI 

(2,000) 

Isolated 

digits 

Oliverira et al. [37] 10 99.20 0.80 0 
NIST- SD 19 

(60,089) 

Milgram et al. [21] 26 96.82 10.07 0.5 

NIST- SD 19 

Uppercase 

characters 

(12,092) 

Dong et al. [38] 26 92.34 7.66 0 

NIST- SD 19 

Lowercase 

characters 

(10,688) 

Liu [16] 26 93.35 6.65 0 
C-Cube 

(19,133) 

Camastra [14] 52 89.20 10.80 0 
C-Cube 

(19,133) 

Isolated 

handwritten 

letters 

Camastra [14] 26 89.61 10.39 0 
C-Cube 

(19,133) 

 

Support Vector Machines with different kernel functions can transform a non-linear 

separable problem into a linear separable problem by projecting data into the feature 

space and then finding the optimal separate hyperplane. This method was initially 

proposed to solve two-class problems. Later, a few strategies were suggested to extend 
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this technique to multiclass classification problems. For more details about SVMs, the 

authors in [39] provide a very good and comprehensive theory. In this section, we will 

briefly introduce two-class SVMs first, and multiclass SVMs later. 

2.1.1 Two-Class Support Vector Machines 

Here, we talk about Support Vector machines for two-class problems. First, we 

introduce the linear Support Vector Machines, which is the training data that are linearly 

separable in the input space. Second, we discuss the nonlinear Support Vector Machines, 

which is the training data that can not be linearly separated in the input space and they 

need to be mapped into the high dimensional feature space via kernel functions.   

 Linear Support Vector Machines 
 

Suppose a training set of a binary classification task is given by: 

{( , ) | ( , ) , 1, 2,..., }m
i i i iS x y x y R R i l= ∈ × =
r r

 

where { 1,1}, ( 1,2,... )iy i l∈ − = . The set S can be linearly separated by a maximum margin 

hyperplane (3): 

0=+⋅Τ bxw rr
                                                                       (3) 

where wr  is an m-dimensional vector, and b  is a scalar. For the linear separable case, wr  

and b  can be solved by the following optimization problem consisting of (4) and (5) 

below, which is a “dual” problem of a Lagrangian formulation: 

Minimize: 
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where ( 1,..., )i i lα =  is a positive Lagrange multiplier, introduced by the Lagrangian 

formulation. Vector ix
v  is one of the Support Vectors (SVs) when 0 i Cα< ≤ . The wr  and 

b  of hyperplane (3) are calculated below as (6) and (7) by Karush-Kuhn-Tucker (KKT) 

conditions: 

                                 ∑
∈

=
si SVx

iii xyw
v

vv α                                                                         (6) 

                                ∑
∈

=
sis SVx
i

SV

b
N

b
r

1
                                                                       (7) 

where 
sSV

N  is the number of Support Vectors (SVs). The decision function in the test 

phase is defined as: 

                            }{)( bxwsignxg T +⋅= vvv
                                                         (8) 

 Nonlinear Support Vector Machines 
 

Usually, the training data are not linearly separable in the input space, and the 

solution discussed above is no longer feasible. Therefore, we extend the Support Vector 

Machines to deal with nonlinear separable data in the input feature space, which is called 

the nonlinear Support Vector Machines. 

For a nonlinear separable case, kernel functions ( ( , )i jK x xr r ) are used without 

explicitly mapping the training data from a “low dimensional space” to a “high 

dimensional space.” The optimization problem denoted by (4) and (5) changes to (9) and 

(10): 
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Minimize: 
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The decision function is defined as formula (11) below: 

}),({)( ∑
∈

+=
si SVx

iii bxxKysignxg
v

vrr α                                          (11) 

The common kernels include: 

Polynomial: d
jiji xxxxK )1(),( +⋅=
rrrr                                        (12) 

Radial Basis Function:
2

),( ji xx
ji exxK

rvrr −−= σ                          (13) 

Hyperbolic tangent: )tanh(),( δκ +⋅= jiji xxxxK rvrr                   (14) 

Where κσ ,,d  and δ are kernel parameters.  

2.1.2 Multiclass Support Vector Machines  

Now, we have the basic concept of Support Vector Machines on two-class problems. 

Next, we extend the Support Vector Machines to handle multiclass problems. It is called 

the Multiclass Support Vector Machines [40]. 

The problem of the multiclass data is defined in this way. Consider a k-class problem, 

such that we have l  training samples: 1 1{ , },...,{ , }l lx y x yr r , where liRx m
i ,...,1, =∈
r are  m - 

dimensional feature vectors and {1,..., }iy k∈  are the corresponding class labels. 

Due to the fact that two-class Support Vector Machines employ direct decision 

functions, it is not straightforward to apply such functions to the multiclass problem. 

Thus, some strategies are used. In the following sections, we introduce three typical 

Multiclass Support Vector Machines which are based on the two-class Support Vector 
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Machines. They are: one-against-all Support Vector Machines, one-against-one Support 

Vector Machines, and Directed Acyclic Graph Support Vector Machines.  

 One-against-all 
 

The one-against-all method constructs k  two-class SVMs where k  is the number of 

classes. The i th SVM is trained with the i th class training data with positive labels, and 

all the other training data are trained with negative labels. The i th SVM solves the 

following optimization problem: 

Minimize: 

         
2

1

1( , )
2

l
i T i

i j i j
j

L w w Cξ ξ
=

= + ∑r r
                                                                 (15) 

                 subject to:     

( ) ( ) 1 ,

( ) ( ) 1 ,

0, 1,...,

T i
i j i j i

T i
i j i j i

i
j

w x b y i

w x b y i
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φ ξ

φ ξ

ξ

⎧ + ≥ − =
⎪⎪ + ≤ − + ≠⎨
⎪

≥ =⎪⎩

r r

r r
                                  (16) 

where training data ix
r are mapped to a higher-dimensional space by the function ( )φ • , 

and , 1,...,i
j i lξ =  are the slack variables, while C  is the penalty parameter. 

In the classification phase, a new data xr  is classified as belonging to the class which 

has the largest value of the decision function: 

                           
1,...,

arg max( ( ) )T
i i

i k
w x bφ

=
+

r r
                                                                     (17) 

 One-against-one 
 

The one-against-one method constructs ( 1) / 2k k −  classifiers, where each classifier 

uses the training data from two classes chosen out of k classes. For training data from the 

i th and the j th classes, we need to solve the following optimization problem: 

Minimize: 
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       subject to:        
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The most popular method for the class identification in the one-against-one method 

is the “max wins” algorithm. Each classifier gives one vote to its determined class, and 

the final result is determined by the class which wins the most votes, e.g.: 

, 1

arg max (( ) ( ) )
k

ij T ij

i j i j

sign w g x b
≠ =

+∑ r r
                                                   (20) 

 

 Directed Acyclic Graph Support Vector Machines 
 

The training phase for this method is the same as that for the one-against-one method, 

but its testing takes less time than that of the one-against-one method. In the testing phase, 

it uses a rooted binary directed acyclic graph which has ( 1) / 2k k −  internal nodes and k  

leaves. Each node is a binary SVM of i th and j th classes. To define the class of one new 

data xr , we start at the root node. The binary decision function ( )(xgij
r ) at this node is 

evaluated. If 0)( >xgij
r , we say that xr  does not belong to class j . If 0)( <xgij

r , we 

consider that xr  does not belong to class i . Then, we move to either the left or the right of 

the root node depending on the output value of the decision function. This procedure is 

repeated at each level of the graph. When reaching a leaf, a class is determined for xr .  

Figure 1 illustrates an example of a four-class problem. At the top level, class 1 and 

class 4 are chosen. If 0)(14 >xg r , xr  does not belong to class 4. Then we move to its right 

child where the classification pair is class 1 and class 3. If 0)(13 <xg r , xr  does not belong 
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to class 1. Then we go to its left child where the classification pair is class 2 and class 3. 

If 0)(23 >xg r , xr  does not belong to class 3. Finally, we classify xr  into class 2. 

 
              Figure 1. A DAG-SVM for four classes [39]. 

 

2.1.3 SVM Library Adopted in the Experiments  

LIBSVM [41] has been used to build the SVM models in our experiments. LIBSVM 

is a simple, easy-to-use, and efficient software for SVM classification and regression. In 

our experiments, the SVM classifiers were trained to make the predictions with 

probabilities. Judging on the probability values, post-processing could easily be applied 

in deciding whether to accept or to reject the candidate. The Radial Basis Function (RBF) 

was used as the kernel function. The one-against-one approach was applied on the 

multiclass SVMs.  

2.2 Convolutional Neural Networks  

In this section, we discuss the Convolutional Neural Networks. In Section 2.2.1, the 

principle of the CNN and the structure of the classical model – LeNet5 are described. 
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Then, the structure of the CNN model adopted in our experiments is presented in Section 

2.2.2. 

2.2.1 Theory of CNN 

A Convolutional Neural Network [42] is a multi-layer neural network with a deep 

supervised learning architecture that can be viewed as the composition of two parts: an 

automatic feature extractor and a trainable classifier. The feature extractor is composed of 

alternate convolutional layers and subsampling layers. It retrieves discriminating features 

from the raw images via two operations: convolutional filtering and down sampling. The 

convolutional layer has many feature planes. Each unit on one feature plane receives 25 

inputs from a 5 by 5 square area in its previous layer. Each square area is called the 

receptive field. Then, the value of this unit is calculated by multiplying 25 coefficients 

plus a trainable bias. All the units in one feature plane share the same set of coefficients 

and the bias. The subsampling layer that follows the convolutional layer comprises the 

same number of feature planes as the previous convolutional layer, but with half the 

number of rows and columns. Each unit is connected with a 2 by 2 receptive field of the 

previous layers. The trainable classifier is composed of one fully connected layer and one 

output layer.  The system is trained by a back-propagation algorithm. 

Figure 2 illustrates the typical CNN known as LeNet5 [42]. The input handwritten 

image, with 32 by 32 pixels, is sent to the first convolutional layer, which has 6 feature 

planes of 28 by 28 pixels. These planes are reduced into half their sizes with 14 by 14 

pixels for one feature plane in the subsampling layer. The next convolutional layer, 3C , 

extends the number of feature planes to sixteen. Each unit in each feature plane is 

connected to several receptive fields at an identical location in a subset of 2S ’s feature 
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planes. Later, in the subsampling layer 4S , 16 feature planes are reduced to half their 

sizes, with 5 by 5 pixels. The last convolutional layer has 120 feature planes. Each unit is 

connected to a 5 by 5 neighborhood on all feature planes of 4S . The fully connected 

layer 6F  contains 84 units connected to the 120 units of 5C . Like the classical neural 

networks, units in 6F  are computed as a dot product between their input vector and 

trainable coefficients, are added with a bias, and are passed on to a sigmoidal activation 

function. Finally, the output layer is a Euclidean RBF layer with 10 units. This output 

layer is used to predict the class label of the input pattern, which is the one with the 

minimum output value. 

Convolutional Neural Networks were designed particularly for recognizing 

characters. One interesting aspect of Convolutional Neural Networks is that this 

technique considers the feature extractor as a black box model. The Convolutional Neural 

Network is fed with almost raw inputs (e.g. size normalized images) and it automatically 

extracts features. Therefore, this learning algorithm is unlike other classical learning 

algorithms which need independent hand-designed feature extractors. Furthermore, 

images have a strong 2D local structure and pixels that are spatially or temporally near 

each other have high correlations. Convolutional Neural Networks can extract local 

features through the receptive fields of hidden units. As a result, these features are 

sensitive to the topology of the input image. 
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Figure 2. Architecture of LeNet5 [42]. 

 

2.2.2 Structure of CNN Model in the Experiments 

Instead of using LeNet5, we adopted the same simplified CNN structure that was 

presented in [43].  In this section, we introduce the simplified structure of the CNN 

model used in our research.   

The architecture of the CNN model is shown in Figure 3. There are five layers. The 

input layer is a matrix of the normalized and centralized pattern.  Two feature map layers 

(N1 and N2) are used to compute the features, and each layer completes both 

convolutional filtering and down sampling operations. Each neuron on one feature map 

connects 25 inputs with its previous layers, and they are defined by the 5 by 5 

convolutional filtering kernel (known as the “receptive field”). All the neurons in one 

feature map share the same kernel and connecting weights (known as the “sharing 

weights”). The trainable classifier is the fully connected Multi-Layer Perceptron (MLP), 

with one hidden layer (N3) and one output layer (N4).  
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Figure 3. The structure of the adopted CNN model. 

 
Based on the SVM and CNN classifiers, we propose the hybrid CNN & SVM model 

for recognizing handwritten characters. The proposed model replaces the trainable 

classifier of a CNN model with an SVM classifier. The details will be described in 

Chapter 3. 
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Chapter 3 

Hybrid CNN & SVM Model and Combination 
System 

 
 

In this chapter, a hybrid CNN & SVM model and a CNN and SVM combination 

system are proposed for handwritten character recognition. In the hybrid CNN & SVM 

model, CNN works as a trainable feature extractor and SVM performs as a classifier. 

This model automatically extracts the features from the raw images and generates 

predictions. In the CNN and SVM combination system, the CNN classifier is trained with 

raw images but with normalized sizes, while the SVM classifier is trained with hand-

designed features. In the following paragraphs, we describe the hybrid CNN & SVM 

model in Section 3.1, and discuss the combination CNN and SVM system in Section 3.2.  

3.1 Hybrid CNN & SVM Model 

There is one specific example of using CNN as a trainable feature extractor which 

resulted in a high performance on recognizing handwritten digits [19]. Inspired by this 

method, we propose the hybrid CNN & SVM model. In Section 3.1.1, the structure of the 

hybrid CNN & SVM model is presented, followed by the analysis of its merits described 

in Section 3.1.2.  

3.1.1 Architecture of Hybrid CNN & SVM Model 

The architecture of the hybrid CNN & SVM model was designed by replacing the last 

layer (N4) of the CNN model (as shown in Chapter 2, Figure 3) with an SVM classifier 
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in the testing phase. For output units of the N4 layer in the CNN network, they are the 

estimated probabilities for the input sample. Each output probability is calculated by an 

activation function. The input of the activation function is the linear combination of the 

outputs from the previous N3 layer with trainable weights, plus a bias term. Looking at 

the output values of N3 is meaningless, but only makes sense to the CNN network itself; 

however, these values can be treated as features for any other classifiers.  

Figure 4 shows the structure of the hybrid CNN & SVM model. The prediction of the 

unknown sample is made by an SVM classifier instead of the N4 layer. After the original 

CNN has been trained by the back-propagation algorithm, the outputs produced from 

Layer N3 are extracted as the new features. They are sent to the SVM classifier for 

training. Once the SVM classifier has been well trained, it conducts the recognition task 

with corresponding features from the testing data. Firstly, the normalized and centred 

input image is sent to the input layer, and the original CNN with the output unit (N4) is 

trained with several epochs until the training process converges. Then, the SVM with an 

RBF kernel replaces the output layer N4. The SVM takes the outputs from the N3 layer 

as a new feature vector. Finally, the trained SVM makes new decisions on testing images 

with such automatically extracted features. In our experiments, we set the number for 

each layer as: N1 = 25, N2 = 50 and N3 = 100. 
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Figure 4.  Structure of the hybrid CNN & SVM model. 

 

3.1.2 Merits of Hybrid CNN & SVM Model 

In this section, we analyze the advantages of the proposed hybrid CNN & SVM model, 

through a discussion on the relative merits of the CNN and SVM classifiers.  

Our expectation that the hybrid CNN & SVM model will outperform each individual 

classifier is based on the fact that the hybrid system compensates the limits of the CNN 

and SVM classifiers by incorporating the merits of both classifiers. Since the theoretical 

learning method of CNN is the same as that for the Multi-Layer Perceptron (MLP), it is 

an extension model of the MLP. The learning algorithm of MLP is based on the 

Empirical Risk Minimization, which attempts to minimize the errors in the training set. 

When the first separating hyperplane is found by the back-propagation algorithm, no 

matter whether it is the local or the global minima, the training process stops and the 

algorithm does not improve the separating hyperplane solution. Therefore, the 

generalization ability of MLP is lower than that of SVM. On the other hand, the SVM 
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classifier aims to minimize the generalization errors on the unseen data with a fixed 

distribution of the training set, by using the Structural Risk Minimization principle. The 

separating hyperplane is a global optimum solution. It is calculated by solving a quadratic 

programming problem, and the margin area between two classes of training samples 

reaches its maximum. As a result, the generalization ability of SVM is maximized. Due 

to the good generalization ability of the SVM, it should enhance the classification 

accuracy after its replacement of the N4 output units from the CNN. 

Another limit of MLP is that it tends to assign a high confidence value to the 

misclassified samples which are located near the separating boundary. This causes 

difficulties in rejecting such errors in practical applications. But the SVM classifier 

calculates a more reliable estimated probability for the classification decision, which 

helps in the design of a simple and efficient rejection mechanism. Its design will be 

described in Chapter 4.  

The advantage of the CNN classifier is that it automatically extracts the salient features 

of the input image. The features are invariant in a certain degree to the shift and shape 

distortions of the input characters. This invariance occurs because CNN adopts the 

weight sharing technique on one feature map. On the contrary, the hand-designed feature 

extractor needs elaborately designed features or even applies different types of features to 

achieve the distortion invariance. Furthermore, the topology of handwritten characters is 

very important because pixels located near each other in the space have strong 

connections. The elementary features like the corners, endpoints, etc. are composed of 

these nearby pixels. CNN uses the receptive field concept successfully to obtain such 

local visual features. However, the hand-designed feature extraction methods ignore and 
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lose such topology of the inputs in most cases. Therefore, the trainable features of CNN 

can be used instead of the hand-designed features to collect more representative and 

relevant information, especially for the handwritten digits.   

3.2 Combination of CNN and SVM Classifiers 

The combination of classifiers is another successful method that has been used to 

improve the performance of handwriting recognition. However, as far as we know, there 

is no published paper to date on the comparison between the combination system and the 

hybrid system based on the SVM and CNN classifiers. Therefore, this is the first time 

that the performances of both architectures are compared on the applications of 

handwritten characters. In Section 3.2.1, we present the architecture of the CNN and 

SVM combination system. Then, the combination rule is described in Section 3.2.2. 

3.2.1 Architecture of Combination System  

We implemented a combination system of CNN and SVM to see how well it performs 

compared with the hybrid CNN & SVM model. The architecture of the combination 

system is illustrated in Figure 5. In this system, the CNN is trained with normalized 

images, while the SVM classifier is trained with hand-designed features which will be 

described in Chapter 4. Then, the two classification results are processed by a 

combination scheme described below, and this scheme generates a ranked list of 

predictions for the input image.  
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Figure 5. Architecture of CNN and SVM combination system. 

 

3.2.2 Combination Rule 

The combination scheme adopted in our experiments is the weighted multiplication 

method [ 44 ], because it generates better results compared with other combination 

methods, such as majority vote, sum, product, etc. The weighted multiplication method 

combines the SVM and CNN classifiers by multiplying the probabilities of each model 

with their corresponding weighting factors. The formula is defined as follows: 

...1,)|()|(),|( niCcPScPCScP CS w
i

w
ii =×=                              (21) 

where )|( CcP i  is a conditional probability for one class ( i ), computed from the CNN 

model; )|( ScP i  represents a posterior probability for the same class ( i ) given by the 

SVM model; and ),|( CScP i  is the combination probability for the class ( i ). The 

weighting factors cw  and Sw  are derived from the performances of CNN and SVM, 

respectively. Finally, a ranked list of candidates is obtained with a decreasing order of 
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probabilities after the combination process. The top candidate is then chosen as the 

predicted class for the input pattern.  

To see the feasibility of the hybrid CNN & SVM model and the combination system, 

they are applied on the handwritten character recognition applications. The handwritten 

characters include handwritten digits and handwritten alphabetical letters in this thesis. 

Thus, the experiments on handwritten digit recognition are described in Chapter 4, and 

the experiments for recognizing unconstrained handwritten letters in the English 

language are presented in Chapter 5. 
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Chapter 4 

Hybrid and Combination of CNN and SVM 
Classifiers for Recognizing Handwritten Digits 

 
 

In this chapter, the proposed hybrid CNN & SVM model and the combination CNN 

and SVM system are applied on the recognition of handwritten digits. To verify the 

feasibility of our methodology, we tested it on the MNIST digit database. Here, our goals 

are not only to improve the current recognition performance but also to seek the highest 

reliability on the applications of handwritten digits.   

The rest of this chapter is organized as follows: the hand-designed features for training 

the SVM classifier are described in Section 4.1. Experimental results and the analysis on 

the hybrid CNN & SVM model and on the combination system are illustrated in Section 

4.2. Section 4.3 compares the differences between machine recognition and human 

classification on the MNIST database. Conclusions are drawn in Section 4.4. 

4.1 Feature Extraction for the SVM Model 

To achieve a good performance from an SVM classifier, we extracted different types 

of hand-designed features, and concatenated them together. The extracted features 

included the gradient feature, the distance feature, and the chain feature [45], which have 

been proven by researchers to be efficient in recognizing handwritten characters [10]. 

These features are described below.  
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 Gradient feature  

Gradient features are among the most effective features in character recognition [46, 

47]. First, we applied the Sobel operator to calculate the gradient vector for each pixel in 

the input image. Then, the input pattern was partitioned into 6 × 4 zones. We calculated 

the local orientation histograms by decomposing those gradient vectors into four equally 

spaced standard directions, starting from 0 degrees. If a gradient vector was lying 

between two standard directions, it was decomposed into two components in the two 

standard directions, as shown in Figure 6. The gradient feature vector was built by 

concatenating these local orientation histograms and normalizing all the values to [0, 1].  

In total, we had 96 attributes in a gradient feature vector. 

 

Figure 6.  Decomposition of a gradient vector into two standard directions. 

 Distance feature 

The distance feature records the distance from each of the four boundaries of the 

binary image to the first black pixel of the character, as shown by the arrows in Figure 

7(a). The number of samplings on each boundary in our experiments was 17, so the 

dimension of the distance feature vector was 68.  

0 

1 

2 

3 

g 
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 Chain feature 

The chain feature counts the number of same directional pixels in each of the 

subdivided local regions on the contour image. The divided contour image is shown in 

Figure 7(b). Eight directions and 16 divisions were considered in our experiments; as a 

result, the dimension of the chain feature vector was 128. 

 

 

                                              
(a) Distance feature for a binary image          (b) Subdivision of contour image for chain feature 

Figure 7. Different feature extraction methods. 

 
 

In total, there were 292 variables (96 + 68 + 128) in one feature vector, computed 

from each of the three above-mentioned features, respectively. 

4.2 Experiments  

  To evaluate which method would be more effective, the hybrid versus the 

combination system, we conducted experiments on a public handwritten numeral dataset 

known as MNIST. MNIST is a handwritten digit dataset that researchers use as a 

benchmark. It contains 60,000 training samples and 10,000 testing samples. It is a subset 

originally belonging to the NIST dataset. The images in the MNIST dataset are grayscale 

numeral bitmaps that have been centred and size normalized to 28 ×28 pixels. These 
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images were downloaded from [5]. Some samples in this database are illustrated in 

Figure 8. 

The experiments are discussed in this way: Section 4.2.1 presents the results by using 

the hybrid CNN & SVM model without rejection; and the experiments applied by the 

combination system without rejection are discussed in Section 4.2.2. To find the 

reliability performance of our proposed models, we analyze each system’s reliability by 

introducing a rejection mechanism. The details are presented in Section 4.2.3. In Section 

4.2.4, the complexity of the proposed hybrid model is compared with the SVM classifier 

and the CNN classifier on the MNIST testing dataset. 

 

Figure 8. Sample images in MNIST database. 

 

4.2.1 Experiments on Hybrid CNN & SVM Model  

When training the CNN network, we used the MNIST dataset directly without any 

preprocessing. However, previous researchers [18, 19, 48 ] have proven that better 
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generalization can be achieved with an expanded training dataset by using distortion 

techniques. In our experiments, Simard’s elastic distortions [48] with scaling and rotation 

transforms were applied in the CNN training phase. The training procedure was stopped 

after 500 epochs as it converged to a fixed value (around 0.28), as shown in Figure 9. The 

recognition error on the testing dataset was 0.59% by this CNN learning classifier.   

 
Figure 9. The trend of training error rates of CNN on the MNIST dataset. 

 
Next, the hybrid CNN & SVM model was built and trained. It adopted an SVM 

classifier to make decisions instead of using the last fully connected layer of CNN to 

predict labels. One hundred values from the layer N3 of the trained CNN network were 

used as a new feature vector to represent the input pattern, and were fed to the SVM for 

learning and testing. When training the SVM, we used the RBF kernel and chose the 

optimal parameters ( 128=C  and 112−=σ ) by using the 5-fold cross validation method 

on the training dataset. In the testing phase, we achieved an error rate of 0.19% on the 

10,000 testing data, which corresponds to the highest recognition rate to date as far as we 
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know. Comparisons with other results published on the MNIST dataset are listed in Table 

2.    

 

Table 2. Comparison of testing results on MNIST dataset. 

Reference Method Distortion Error rate (%) 

F. Lauer et al. [19] TFE-SVM Affine 0.54 
P.Y. Simard et al. [48] Convolutional NN Elastic 0.40 
M. Ranzato et al. [18] Convolutional NN Elastic 0.39 

D.C. Ciresan et al. [11] 6-layer NN Elastic 0.35 
Y. Mizukami et al. [49] KNN Displacement computation 0.57 
J. X. Dong et al. [30] VSVMa - 0.44 

X. Chen et al. [50] Gaussian Mixture Model - 0.53 
This thesis Hybrid CNN & SVM Elastic Scaling Rotation 0.19 

 
Figure 10 shows all of the 19 misclassified samples, and Table 3 indicates the 

confusion matrix.  From these error cases, we found that they can be categorized into two 

types: (1) the most frequent confusing pairs, in this case “4-9” and “5-3”, which have 

similar shapes and structures due to people’s cursive writing habits. For example, when 

we closely examine the image “2131.tif” in Figure 10, even human eyes cannot 

distinguish whether it is a “4” or a “9” without its true label; (2) the degraded quality of 

digit images, such as missing strokes (“2655.tiff”, “3423.tif”, “3559.tif”), broken 

numerals (“6572.tif”), intruder noises (“3226.tif”, “5655.tif”) and stroke connections 

(“948.tif”, “9730.tif”). These cases could be caused by people’s poor handwritings, or 

introduced by the scanning procedure, the size normalization, and improper 

segmentations. For the second error category, it is extremely difficult for a machine to 

make a correct prediction with such ambiguous and degraded inputs.   
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Figure 10. Nineteen digit images were misclassified by the hybrid CNN & SVM model. The upper 

title is the name of the image in the MNIST testing dataset, and the lower subtitle 

indicates the corresponding labels (truth -> prediction). 

 
Table 3. Confusion matrix of the hybrid model on the MNIST testing dataset. 

    Prediction
 
Truth  

0 1 2 3 4 5 6 7 8 9 

0           
1           
2           
3      1     
4          5 
5 1   3   1    
6 1 1         
7   1       1 
8          1 
9     2   1   

 

4.2.2 Experiments on the Combination of CNN and SVM 

We built the CNN network as mentioned earlier, in order to combine it with another 

expert; we trained an SVM classifier. First, the grey-level digit images were transformed 
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into binary images for the convenience of the feature extraction step. Then, three types of 

features, including gradient, distance and chain features, were retrieved and concatenated 

as described in Section 4.1. Next, these hand-designed features extracted from the 

training dataset were sent to train the SVM classifier. The optimal parameters of SVM 

were also generated by 5-fold cross validation ( 32=C  and 52−=σ ). Finally, we got the 

error rate of 1.69% on the testing dataset, which was not the best result obtained by using 

SVM when compared with other researchers’ results [5]. However, our aim in this 

section is to investigate the performance of the combination of classifiers, and the most 

important emphasis is on the diversity of each individual classifier while not requiring 

each classifier to be the best one.   

Then, the SVM was combined with CNN by using the weighted multiplication rule. 

During the experiments, we noticed that the optimal combination result could not be 

achieved by directly using the recognition performance of each classifier. Therefore, 

weighting factors were determined by an exhaustive search in the range of (0, 1), in steps 

of 0.1 increments. As a result, when 1=cw  and 2.0=sw , the testing error was 0.54%, 

which was the optimal combination recognition rate. In fact, we also tried other 

combination methods, such as the majority vote, the sum, the max, etc., but their 

performances were inferior to the weighted multiplication method. Hence, we chose the 

weighted multiplication combination rule and present its result here.  

Furthermore, we combined the hybrid and the combination systems. To distinguish 

such a new combination, we denoted it as the ensemble system. The ensemble 

architecture also adopted the weighted multiplication combination scheme. After 

exhaustive searching of optimal weights, the best classification result achieved a 0.20% 
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error rate, when 1=Hybridw  and 1.0=Combw . Here, Hybridw  represents the weight of the 

hybrid CNN & SVM system and Combw represents the weight of the combination CNN 

and SVM system, respectively. Table 4 shows the confusion matrix of the ensemble 

system. When comparing Table 3 and Table 4, we noticed that the only difference 

appears in the pair “4->9”, where one more testing digit “4” is misrecognized as digit “9” 

in the ensemble system.  

Table 4. Confusion matrix of the ensemble system on the MNIST testing dataset. 

    Prediction
 
Truth  

0 1 2 3 4 5 6 7 8 9 

0           
1           
2           
3      1     
4          6 
5 1   3   1    
6 1 1         
7   1       1 
8          1 
9     2   1   

 
For comparative purposes, we summarized the recognition error rates on the MNIST 

testing dataset in Table 5 by using different classification strategies. The table obviously 

shows that the combination can enhance the classification ability due to the diversity of 

each individual recognizer. However, such an improvement has its limitations, and a 

significant achievement was made by the hybrid method and the ensemble system. The 

highest classification performance was achieved by the hybrid CNN & SVM with an 

error rate of 0.19%. In this case, we conclude that the hybrid architecture has a superior 

recognition performance to the combination technique on the MNIST digit database.   
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Table 5. Test error rates (%) of classifiers on MNIST dataset without rejection. 

SVM CNN (distortion) Combination CNN and SVM Hybrid CNN & SVM Ensemble system 

1.69 0.59 0.54 0.19 0.20 

 

4.2.3 Reliability Performances 

Industrial applications require the most reliable system. Small errors can cause large 

mistakes and introduce tedious human labour to correct them. Hence, it is necessary to 

investigate reliabilities of the proposed systems. In this subsection, we worked on the 

rejection mechanism, and showed that the proposed systems can achieve a 100% 

reliability rate while maintaining a reasonably high recognition rate at the same time.   

In our experiments, the test sample is rejected by measuring the difference between the 

top two confidence values in the ranked predictions. If the difference is less than a 

predefined threshold, then the test pattern is rejected; otherwise it is accepted. To 

determine the threshold, we applied two methods: one uses the exhaustive search in the 

range of (0, 1) with certain steps; the other calculates the mean distance between the top 

two confidence values of all the training data [51]. We applied both methods on the 

hybrid system and the ensemble system. 

In the following subsections, the details for the hybrid model with rejection are 

described in Section 4.2.3.1, followed by the discussion of the ensemble system with 

rejection in Section 4.2.3.2.  

4.2.3.1 The Hybrid Model with Rejection 
 

Table 6 lists the recognition and reliability rates of the hybrid CNN & SVM system, 

with different threshold values. In the first part, the threshold increases its value within 

(0, 0.9) with an incremental step 0.1, and within (0.9, 1) with an incremental step 0.01. 
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We noticed that when the value of the threshold increases, the recognition rate decreases 

while the reliability rate increases. The reliability rate reaches 100% with a high 

recognition rate of 94.40% when the threshold is equal to 0.99. In the last row of Table 6, 

the result is generated by the mean distance method. The threshold is 0.996105. The 

reliability rate is 100%, but the recognition rate is 85.52% which is lower than the one 

obtained by the threshold equal to 0.99. 

 
Table 6. Recognition rates of the hybrid system with rejection. 

Threshold  Recognition(%)  Rejection(#)  Error(#)  Reliability(%) 
0.0          99.81            0             19        99.81 
0.1          99.77            5             18        99.82 
0.2          99.76            9             15        99.85 
0.3          99.76            12            12        99.88 
0.4          99.76            13            11        99.89 
0.5          99.72            17            11        99.89 
0.6          99.70            21            9         99.91 
0.7          99.66            26            8         99.92 
0.8          99.61            32            7         99.93 
0.9          99.22            75            3         99.97 
0.91         99.10            87            3         99.97 
0.92         98.95            103           2         99.98 
0.93         98.79            120           1         99.99 
0.94         98.61            138           1         99.99 
0.95         98.37            162           1         99.99 
0.96         98.08            191           1         99.99 
0.97         97.58            241           1         99.99 
0.98         96.73            326           1         99.99 

0.99         94.40            560           0         100.00 

Threshold (mean distance) 
0.996105     85.52            1448          0         100.00 

 
 

4.2.3.2 The Ensemble System with Rejection 
 

The results of the ensemble system with rejection are shown in Table 7. The structure 

of Table 7 is the same as that of Table 6. From the table, we found that when the 

threshold equals 0.97, the reliability rate is 100% and the recognition rate reaches as high 
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as 92.84%. When the threshold is calculated by the mean distance, the value is 0.973471. 

The reliability also achieves a rate of 100%, but the recognition rate drops to 89.61%. 

After carefully examining Table 6 and Table 7, we observed that the hybrid model 

outperforms the ensemble system under the same reliability rates in general. When both 

systems firstly reached zero-level errors, the rejection rate was 5.60% for the hybrid 

system and 7.16% for the ensemble system.  Figure 11 shows the error and rejection rates 

of the hybrid system and the ensemble system. It is obvious that the hybrid system 

provides lower rejection rates than the ensemble system under the same amount of errors. 

Therefore, the hybrid system is really a robust learning model for recognizing 

handwritten digits.  

As for the two decision methods of the threshold, the second one (mean distance) can 

automatically calculate the value and make both systems achieve 100% reliability, but 

the recognition rate is not quite as satisfying. While the first method can generate a better 

recognition rate, it is time consuming in searching the best threshold value. Hence, how 

to compute an optimal threshold to achieve the most satisfactory performance really 

depends on the requirements of practical applications.   
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Table 7. Recognition rates of the ensemble system with rejection. 

Threshold  Recognition(%)  Rejection(#)  Error(#)  Reliability(%) 
0.0          99.80            0             20        99.80 
0.1          99.76            6             18        99.82 
0.2          99.76            8             16        99.84 
0.3          99.76            11            13        99.87 
0.4          99.73            16            11        99.89 
0.5          99.71            19            10        99.90 
0.6          99.66            26            8         99.92 
0.7          99.59            33            8         99.92 
0.8          99.33            61            6         99.94 
0.9          98.49            150           1         99.99 
0.91         98.28            171           1         99.99 
0.92         98.03            196           1         99.99 
0.93         97.77            222           1         99.99 
0.94         97.29            270           1         99.99 
0.95         96.52            347           1         99.99 
0.96         95.47            452           1         99.99 

0.97         92.84            716           0         100.00 
0.98         47.97            5203          0         100.00 
0.99         0.04             9996          0         100.00 

Threshold (mean distance) 
0.973471     89.61            1039          0         100.00      
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Figure 11. Error-reject analysis of hybrid model and ensemble system for the MNIST testing 

dataset. 

4.2.4 Comparing the Complexity of Individual Classifiers 

The complexity analysis was conducted on the Red hat operating system, which is an 

open source software based on Linux. It was installed on a PC with Intel Pentium D CPU 

3.40GHZ, and 4.00GB of RAM. 

To discuss the complexity of the proposed hybrid model, we compared it with SVM 

and CNN classifiers on the testing process. Three factors were considered: testing speed, 

memory usage, and the number of Support Vectors (SVs). We ignored the analysis of 

classifiers on the training speed, because it is obvious that the training speed of the 

hybrid model roughly equals the summation of that on training a CNN classifier and an 

SVM classifier separately.  
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Table 8 shows the complexity comparison among the hybrid model, the SVM classifier 

and the CNN classifier on the 10,000 MNIST testing samples. The number of SVs plays 

an important role in analyzing the complexity of an SVM classifier. It reflects the size of 

the weight model of an SVM, and directly influences the speed of the decision procedure. 

From Table 8, we observed that the hybrid model had nearly one sixth the number of SVs 

when compared with the SVM classifier; while the testing speed of the hybrid model on 

10,000 samples was more than 10 times faster than SVM, and the memory usage was less 

than 10 times that of SVM in space. The complexity of the CNN was in the middle of the 

three classifiers. Therefore, in conclusion, even the hybrid model needs more time in the 

training process, it runs faster, requires little memory space, and has higher 

generalization ability than other single classifiers in our experiments. 

Table 8. Comparison of three classifiers in terms of complexity on the 10,000 digits in the MNIST 

testing dataset. 

 SVM CNN Hybrid CNN & SVM model 

Total testing speed (Seconds) 90 50 8 

Memory usage (MB) 13.2 1.6 1.3 

# SVs 5,991 _ 1,034 

 

4.3 Human Classification versus Machine Recognition 

In this section, we will compare and discuss the differences between humans and 

machines in the recognition of handwritten digits. Figure 12 summarizes the percentage 

of human participants with the correct classifications on the 45 digit images when using 

the labels provided by MNIST. This survey was conducted at CENPARMI with 30 

people participating in 2004 [ 52 ]. After investigating the errors made by the five 
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classifiers: GPR, VSVMb, VSV2, LeNet5, and POE [53], 45 digits were selected as the 

most difficult numerals for machines to recognize. 

 

 
Figure 12. The percentage of correct classification by humans on 45 testing images, using the MNIST 

provided labels [52]. 

  
From Figure 12, we noticed that 16/45 digit images were correctly classified by all the 

participants; and the rest (29 / 45 digit images) could be recognized by only a portion of 

people. There were seven common errors in total, made by both humans and our 

proposed hybrid model without rejections. The ID numbers of those common errors are: 

#5938, #2131, #2655, #948, #1902, #9730, and #3423. All of them could be correctly 

recognized by less than 72% of participants. For the first five digits in Figure 12 (from 

left to right) that could be correctly classified by less than half of participants, four of 

them were misrecognized by the hybrid model. In this case, the handwritten digits that 
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cause difficulty in being recognized by the majority of people can also cause difficulty in 

being correctly classified by the machine.  

There is one special case such that image #939 is correctly recognized by 100% of 

participants while the hybrid model misclassifies this digit. When examining this image 

(in Section 4.2.1, Figure 10), we see that a stroke is connected in the upper part of the 

image and makes a loop. Even for humans with no difficulties in identifying it, this stroke 

causes a big problem for the machine. The reason for the misrecognition by the hybrid 

model might be due to the lack of training samples with similar stroke structures. To 

solve this problem, one way is to import more unseen training samples into the database, 

and the other way is to use the rejection mechanism to reject it.  

4.4 Conclusion 

We presented a hybrid system and a combination system by using CNN and SVM for 

the recognition of handwritten digits. The hybrid CNN & SVM system took the CNN as 

an automatic feature extractor and it allowed SVM to be the output predictor. The 

combination system combined CNN and SVM classifiers by using a weighted 

multiplication rule. The experiments were conducted on the MNIST digit database. 

Experimental results showed the benefit of the proposed hybrid model. It had a 0.19% 

testing error rate without rejection, and reached a high recognition rate of 94.40% 

pertaining to a 100% reliability rate with rejection. This was the first time that the hybrid 

system and the combination system of CNN and SVM classifiers were compared on the 

handwritten digit database. 
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Chapter 5 

Applying Hybrid and Combination of CNN and 
SVM Classifiers to Recognize Cursive English 
Letters  

 
 

The goal of this chapter is to show that the proposed hybrid models can be easily 

applied to the unconstrained handwritten letter recognition. First, we briefly introduce the 

background of this problem. Then, we present possible solutions. Next, we describe the 

experimental results. Finally, the discussion and conclusions are drawn. 

5.1 Introduction 

Recognition of unconstrained cursive characters is an important and challenging 

problem and has been intensively studied in the field of handwriting recognition. 

Nowadays, many researchers work on document analysis by manipulating very large 

vocabularies, which are mostly based on the recognition of handwritten cursive 

characters. However, the unconstrained handwritten character recognition problem is 

much more complicated compared to the constrained recognition of letters for specific 

writing styles, such as uppercases or lowercases. For the recognition of unconstrained 

handwritten characters, 52 English characters (uppercases (A-Z) and lowercases (a-z)) 

have numerous ambiguous shapes both within and among the classes. For example, in 

Figure 13, some letters, like lowercases “o”, “x”, and “w”, are written cursively in 

identical shapes of their corresponding uppercases. Some other cursive characters, such 
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as “e” and “l”, “i” and “l”, “u” and “n”, have similar shapes when they are isolated from 

the handwritten words.  

To find a better solution on recognizing unconstrained handwritten letters, this chapter 

investigates three strategies of categorizing the handwritten letters into different classes. 

Experiments were conducted on the NIST-SD19 database. The results show that 

satisfying performance can be achieved by our proposed models.  

The rest of this chapter is organized as follows: the details of our system design are 

presented in Section 5.2. In Section 5.3, the preprocessing of size normalization on the 

cursive letters is described. Experimental results and comparisons are illustrated in 

Section 5.4. The discussion and analysis are presented in Section 5.5. Finally, we draw 

the conclusion in Section 5.6. 

 
Figure 13. Cursive letter examples with similar shapes (true labels are under the images). 
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5.2 The Design of Classifiers 

The aim of this chapter is to explain our method of recognizing unconstrained 

handwritten letters, so we designed three classification strategies to handle this problem. 

The handwritten letters are classified into three categories of classes. They are: a 26-class 

problem in uppercases and a 26-class problem in lowercases, a 26-metaclass problem, 

and a 52-class problem. These categories are defined as follows: 

 a 26-class problem in uppercases and a 26-class problem in lowercases: 

two classifiers are trained respectively, one with 26 uppercase outputs and the 

other with 26 lowercase outputs.  

 a 26-metaclass problem: the uppercase and the lowercase are merged into 

one class which is called a “metaclass”. For example, {A, a} belongs to one 

class. The 26-metaclass recognizer generates 26 outputs. 

 a 52-class problem: the uppercase and the lowercase represent distinct 

classes. For example, {a} denotes class one and {A} denotes class two. There are 

52 outputs for the 52-class recognizer.   

5.3 Preprocessing  

In this section, the size normalization method is described in details. 

The isolated cursive English letters in the NIST-SD19 database are available in 

different sizes, so they need to be size normalized before the next processing steps. One 

reason lies in the training requirement of the CNN classifier: each input image should be 

in a standard size. The other reason is for the fair and facilitative comparisons between 
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two feature extraction methods: the hand-designed features and the automatically 

trainable features.   

In the size normalization technique adopted in this research, geometric moments play 

an important role. The geometric moments are defined as follows: Let ),( yxf   be a real 

function of two variables for the image. Its thqp ),(  order geometric moment qpm ,  is 

defined as: 

∫∫= dxdyyxfyxm qp
qp ),(,                                  (22) 

With geometric moments: 0,0m , 1,0m , and 0,1m , we can calculate the centroid (centre of 

gravity) as: 

0,00,1 /mmcx =                                                                (23) 

0,01,0 /mmcy =                                                                (24) 

Furthermore, we can calculate the centred geometric moments qpu ,  as: 

∫∫ −−= dxdyyxfcycxu q
y

p
xqp ),()()(,                                      (25) 

The basic idea of the moment-based size normalization technique [46] is to first shift 

the given pattern so that its centroid ( yx cc , ) coincides with its geometric centre. Then, 

the pattern is reframed with a rectangular R region having a dimension of 

]2,2[]2,2[ 2,02,00,20,2 μμμμ +−×+− yyxx cccc . Finally, the rectangular R is 

mapped linearly to the target pattern plane with a fixed size. During this mapping, we 

explicitly maintain the aspect ratio of the input pattern. Figure 14 illustrates this size 

normalization procedure. 
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Figure 14.  Demonstration of moment-based normalization procedure. 

 
The moment-based size normalization method provides a good performance in 

handwritten character recognition. By shifting the pattern’s centroid, the variations of 

stroke positions among samples are largely decreased. At the same time, this technique 

cuts the tails of some elongated strokes and retains most of the classification-related 

information in the pattern.  

The size of each handwritten letter image was normalized to 48 × 48 pixels by using 

the moment-based normalization method. Figure 15 shows some examples of the isolated 

characters, e.g. before preprocessing in Figure 15(a) and after size normalization in 

Figure 15(b). 
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(a)                                                               (b) 

Figure 15. Examples of isolated characters: (a) before and (b) after preprocessing. 
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After image preprocessing, features were retrieved for training the SVM classifier. The 

concatenation of features, extracted from normalized cursive letter images, was the same 

process as that applied on the handwritten digits, including the same features: the 

gradient feature, the distance feature, and the chain feature that were described in Chapter 

4, Section 4.1. As for training the CNN classifier, the normalized images were used 

directly.  

5.4 Experiments  

We conducted the experiments on the NIST-SD19 database [8], which is a public 

database of isolated cursive letters and handwritten digits. English cursive characters 

were segmented from binary images of Handwriting Sample Forms, including uppercases 

and lowercases.  

There are three sets in the NIST-SD19 database: ‘hsf_0123”, “hsf_4” and “hsf_7”. For 

making the comparison easier with other research results, we followed Cavalin’s [54] 

way of taking “hsf_0123” as the training set and “hsf_7” as the testing set. The total 

number of letters in the “hsf_0123” set is 339,248, composed of 184,033 uppercases and 

155,215 lowercases. The testing set “hsf_7” has 23,670 alphabetic letters, with 12,092 

uppercases and 11,578 lowercases. All the letters in the “hsf_7” set were used for the 

testing samples. However, due to the huge number of samples in the set “hsf_0123”, we 

just selected parts of data from the “hsf_0123” set in order to speed up the learning 

process, and to provide a reasonable proportion of the training set samples to the testing 

set. The number of training and testing samples for building recognizers according to the 

three classification strategies mentioned in Section 5.2 are as follows: 

 The 26-class uppercase recognizer and the 26-class lowercase recognizer:  
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 The 26-class uppercase recognizer: 1,660 uppercase letters are 

selected from each class in “hsf_0123”, which creates a total of 43,160 

training data. The number of testing data in uppercases is 12,092 in 

“hsf_7”. 

 The 26-class lowercase recognizer: 1,440 lowercase letters are 

taken from each class in “hsf_0123”, which creates a total of 37,440 

training samples. The number of lowercase letters for the testing data is 

11,578 in “hsf_7”. 

  The 26-metaclass recognizer and the 52-class recognizer: both 

recognizers are trained and tested on the same data set. One fourth of the data is 

randomly extracted from the “hsf_0123” set, that creates 84,834 samples in total, 

including uppercases and lowercases. All of the 23,670 samples from the set 

“hsf_7” are used as testing data.   

Our experiments are discussed below. In Section 5.4.1, the experimental results for the 

26-class uppercase recognizer and the 26-class lowercase recognizer are presented; and 

the experiments on the 26-metaclass recognizer and the 52-class recognizer are followed 

in Section 5.4.2. 

5.4.1 Experiments on the 26-Class Uppercases and the 26-Class 
Lowercases 

The 26-class uppercase problem and the 26-class lowercase problem were considered 

by applying three individual classifiers, consisting of the SVM, CNN and hybrid CNN & 

SVM model. The parameters for training each classifier were configured and 

experimentally set. These parameters are shown in Table 9, where c and σ represent the 
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training parameters of the SVM classifier with the RBF kernel; #layers means the number 

of feature maps in layer 2, layer 3, and layer 4 of the CNN model; and the #epoch 

indicates the number of running epochs when the CNN model converges and the learning 

process stops.  

Table 9. Classifier parameters on the 26-class uppercase problem and the 26-class lowercase 

problem. 

SVM CNN Hybrid CNN & SVM  
c σ #layers #epoch c σ 

26 uppercases 32 0.03125 25-50-100 370 8 0.001953125 

26 lowercases 8 0.0078125 25-50-100 420 8 0.001953125 

 

Table 10 lists the testing results on uppercase characters and lowercase characters by 

using different individual classifiers. The proposed hybrid CNN & SVM classifier 

produced the highest recognition rates on both 26-class uppercases and 26-class 

lowercases, with rates of 96.2289% and 90.2410%, respectively. The second highest 

recognition rates were generated by the SVM classifier, and the testing results given by 

the CNN classifier were followed. The aim of these experiments was to verify the 

generalization ability of the hybrid CNN & SVM model on both uppercase and lowercase 

problems. Although the recognition performances among these three classifiers exhibited 

slight differences, the performance of the proposed hybrid CNN & SVM model was 

satisfactory and better than other classifiers.   
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Table 10. Recognition rates for the 26-class uppercases and 26-class lowercases by three different 

classifiers. 

 SVM (%) CNN (%) Hybrid CNN & SVM (%) 

26 uppercases 95.6583 95.5200 96.2289 

26 lowercases 89.8946 89.5500 90.2410 

  

Table 11 lists the comparison of the complexity among three classifiers on the 26-class 

problem in uppercases and the 26-class problem in lowercases, respectively. The symbol 

#SVs indicates the number of Support Vectors. When comparing these three classifiers, 

we noticed that the hybrid CNN & SVM model runs the fastest in the decision process on 

both upper and lower cases. Besides, this model occupies almost the least amount of 

memory space. The complexity of the CNN classifier was in the middle, and the SVM 

classifier had the highest complexity. Thus, when considering the complexity, the hybrid 

model is more effective than other single classifiers in our experiments.  

Table 11. Comparison of three classifiers in terms of complexity on the 26-class uppercase letters 

and the 26-class lowercase letters in the NIST database. 

26 uppercases 26 lowercases 
 

SVM CNN Hybrid CNN & 
SVM SVM CNN Hybrid CNN & 

SVM 
Total testing speed 

(Second) 240 208 26 252 201 39 

Memory  usage (MB) 31.5 5.4 3.5 34.2 5.4 5.7 

#SVs 12,537 _ 2,776 14,187 _ 4,637 

 

In order to find the reliability of the hybrid model, we applied the same rejection 

approach as that adopted on the handwritten digit recognition experiments in Chapter 4, 

Section 4.2.3. For space saving purposes and easy comparisons with other researchers, 
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the results with nearly 1% error rates are presented in Table 12, each on the 26-class 

uppercase recognizer and the 26-class lowercase recognizer. The reliability rate was 

98.99% and the rejection rate was 8.72% with a 1.01% error rate on the 26 uppercase 

characters. As for the 26-class lowercase recognizer, the rejection rate increased to 

29.07% when we ensured that the error rate remained around 1%. 

Table 12. Testing results on the 26 uppercase characters and 26 lowercase characters with around 

1% error rate, using the hybrid CNN & SVM model. 

 Threshold Recognition (%) Rejection (%) Error (%) Reliability (%) 

26 uppercases 
 

0.910 
 

90.27 8.72 1.01 98.99 

26 lowercases 0.968 70.01 29.07 0.92 99.08 

 

Table 13 compares our results with other research results. Even though there have 

been many achievements on these problems, it is hard to compare the results in a fair way. 

This difficulty occurs because most of authors have reported their results based on 

different databases, or on the same database with different training sample sets and 

testing sample sets. The only research results published on the 26 uppercase characters by 

using the same dataset with the same amount of training and testing samples can be found 

in [21, 54, 55, 56]. These results are included in Table 13. However, as found in [12, 57], 

all the experiments conducted on the 26 class lowercases used our lowercase testing set 

as their validation set. But, we also included their validation results in Table 13 in order 

to provide the most comprehensive information for the reader and for future researchers.   

From Table 13, we noticed that our proposed method has a good generalization ability 

and a better reliability than most other methods, and it is favourably comparable to the 

best result achieved by the SVM on the 26 uppercase characters [21]. Moreover, the 
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hybrid model has two good characteristics. One is that this model can automatically 

extract the discriminating features from input images, while a successful SVM recognizer 

depends heavily on the representative features to be extracted by hand. The other is that 

the recognition performance of the hybrid CNN & SVM model can be further improved 

through the fine tuning of the model’s structure and its parameters, such as the number of 

feature planes in each layer, the number of running epochs, the size of input samples, etc. 

Therefore, our proposed method is quite promising in the handwriting recognition 

research field.  

Table 13. Experimental results for comparisons on the NIST handwritten letter database. 

 Method Recognition (%)  
( zero rejection) 

 
Rejection 

(%)  
 

Error 
(%) 

Ensemble HMMs [54] 93.24±0.07 39.36 1.00 

SVM [21] 96.82 10.07 0.50 
Ensemble MLPs [55] 95.98 0 4.02 

Ensemble KNNs [56] 94.16 0 5.84 

26 
uppercases 

Proposed hybrid model 96.23 8.72 1.01 

MLP [12] 90.06 0 9.94 

MLP [57] 88.88 0 11.12 
26 

lowercases 
 

Proposed hybrid model 90.24 

 

29.07 0.92 

 

Our goal was to recognize the unconstrained characters, without knowing which type 

of case that a character belongs to in a priori. So we continue our work on investigating 

the 26-metaclass problem and the 52-class problem in the following section.  
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5.4.2 Experiments on the 26-Metaclass and 52-Class Problems   

To solve the 26-metaclass problem and the 52-class problem, we applied the five 

classification models that were applied on the digit recognition problem. That is: SVM, 

CNN, hybrid CNN & SVM, combination CNN and SVM, and the ensemble system. In 

this way, we could provide a more comprehensive analysis on the efficiency of our 

proposed systems. 

In this section, we describe the experiments on the 26-metaclass recognition problem 

and the 52-class recognition problem without rejection in Section 5.4.2.1. Then, the 

reliability performances are analyzed on both recognition systems in Section 5.4.2.2. 

5.4.2.1 Experiments on the 26-Metaclass and 52-Class Problems without Rejection   
 

When training each single classifier, there are some crucial parameters that need be set 

and optimized firstly. To build the SVM classifier, the 5-fold cross validation technique 

is conducted on the training dataset and it generates the optimal parameters 8C =  and 

0.03125σ = . As for the hybrid CNN & SVM, the values of the optimal parameters are 

produced with 8C =  and 0.0078125σ = . For the CNN model, the number of each 

feature map layer of CNN is set to be 25-50-100, which is the same as the structure 

applied on the handwritten digits. However, the training process converges and stops at 

1,000 epochs, because the cursive letter recognition problem is more difficult and 

complicated compared with the handwritten digit recognition problem. 

Table 14 lists the testing results on the 26-metaclass problem and the 52-class problem 

by using SVM, CNN and hybrid CNN & SVM classifiers. Comparing the recognition 

rates, the best testing results were achieved by the hybrid CNN & SVM model on both 

problems: a rate of 92.0744% for the 26-metaclass problem and 70.2408% for the 52-
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class problem. These results prove that our proposed hybrid CNN & SVM model is 

superior to the SVM and the CNN classifier in the performance when dealing with the 

handwritten character (both digits and letters) recognition. 

It is clear to see that the recognition rate on the 26-metaclass problem is significantly 

higher than that on the 52-class problem. That is to say, it is much easier to recognize 

letters in the insensitive cases (A recognizer does not need to know the uppercase or the 

lowercase of the sample) compared to the sensitive cases (A recognizer need to know the 

uppercase or the lowercase of the sample) for the English cursive letters. We need to look 

at why there is such a large recognition gap between these two problems. One instinctive 

reason is that by adding more number of classes, the complexity of the training process is 

increased for the classifier under the same amount of training samples. It is quite 

probable that the recognition ability would be enhanced by expanding the training set for 

the 52-class problem. Another reason is that the differences among the classes are 

decreased after the corresponding uppercases and lowercases are merged. For example, 

some uppercase and lowercase letters, such as “C” and “c”, “O” and “o”, “V” and “v”, 

“X” and “x”, etc., have very similar shapes in human handwritings. Treating them as 

separate classes may cause many confusions to the classifier’s training. But after merging 

them, the variances among different classes can be largely eliminated. As a result, a 

better recognizer with a higher generalization ability is achieved.   

 
Table 14. Recognition rates on NIST database by using different classifiers without rejection. 

#Class SVM (%) CNN (%) Hybrid CNN & SVM (%) 

26 91.5040 91.6800 92.0744 

52 69.7169 69.7700 70.2408 
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For comparative purposes, we built up the combination/ensemble systems for 

recognizing the unconstrained handwritten letters as similar to those systems applied to 

the handwritten digits. The experiments are described in the following paragraphs. 

When the individual classifier models are well trained, they are combined through the 

weighted multiplication rule. It has been demonstrated as better than other rules (e.g. 

majority vote, sum, and product) in the performance of recognizing handwritten digits. 

The weighting factors for the combination CNN and SVM system and the ensemble 

system were optimized for each recognition problem. Table 15 shows their values,  where 

cw  denotes the weighting factor of the CNN classifier, sw  denotes the weighting factor 

of the SVM classifier, Hw  represents the weighting factor of the hybrid CNN & SVM 

model, and Cw  represents the weighting factor of the combination CNN and SVM system. 

 The experimental results on the testing set by using the combination system and the 

ensemble system are shown in Table 16. The slightly higher recognition rates were 

produced by the ensemble system on both 26-metaclass and 52-class problems, with rates 

of 92.6785% and 70.9844%, respectively. Comparing the results with those in Table 14, 

the performances of the hybrid CNN & SVM model are favourably comparable with the 

combination/ensemble system. That means, the strategy of combining different classifiers 

does not improve the recognition ability too much for this unconstrained English letter 

problem. 
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Table 15. The values of weighting factors for the combination system and the ensemble system. 

                              # Class 
Parameter 26 52 

cw  1.0 1.0 
Combination system 

sw  0.3 0.3 

Hw  0.9 0.9 
Ensemble system 

Cw  1.0 1.0 

 
Table 16. Recognition results by applying different combination methods without rejection. 

#Class Method Recognition rate (%) 

Combination SVM and CNN 92.5306 
26 

Ensemble system (Combination + Hybrid) 92.6785 
   

Combination SVM and CNN 70.5619 
52 

Ensemble System (Combination + Hybrid) 70.9844 
 

 
5.4.2.2 Reliability Experiments on the 26-Metaclass and 52-Class Problems 
 

Furthermore, we extended our experiments in order to get reliable recognizers on the 

26-metaclass and the 52-class problems. The reliability is much more important than the 

recognition accuracy in practical applications. Hence, we will discuss the reliability 

performances of the hybrid CNN & SVM model and the ensemble system on the 26-

metaclass and 52-class problems respectively, by using the same rejection mechanism 

that was described in Chapter 4, Section 4.2.3. 

Table 17 lists the testing results with two types of rejection thresholds on the 26-

metaclass problem by using the hybrid model, and Table 18 shows the experimental 

results by applying the ensemble system. The classification results for the 52-class 

problem are presented in the same way: the results generated by the hybrid model are 
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given in Table 19, and those produced by the ensemble system are displayed in Table 20.  

For an easier comparison, we also illustrate the error-reject evaluation for the 26-

metaclass in Figure 16, and Figure 17 shows the analysis for the 52-class problem. We 

only illustrate the results that have error rates of less than 8%. From Figure 16 and Figure 

17, it is evident that the ensemble system makes fewer rejections than the hybrid model 

under the same error rates. This means that the ensemble system performs more reliably 

on the 26-metaclass and the 52-class problems. From these observations, we conclude 

that combining distinct classifiers can enhance the reliability of the performance, 

compared with the usage of a single recognizer on the unconstrained handwritten letter 

recognition problem. However, for the 1% error rate, the rejections on the 26-metaclass 

problem were much smaller than those on the 52-class problem, which proves again that 

recognizing letters in the insensitive case is an easier task compared to that on the 

sensitive case.     
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Table 17. Testing results of 26-metaclass problem with rejection by using the hybrid model. 

Threshold   Recognition(%)  #Rejection  #Error    Reliability(%)
0.0         92.07           0            1876     92.07 
0.1         91.58           294          1699     92.82 
0.2         91.06           557          1558     93.41 
0.3         90.61           791          1431     93.95 
0.4         90.09           1021         1324     94.40 
0.5         89.40           1290         1217     94.85 
0.6         88.67           1599         1082     95.42 
0.7         87.07           2172         887      96.25 
0.8         84.89           2956         620      97.38 
0.9         81.90           3823         460      98.05 
0.91        81.29           3986         441      98.13 
0.92        80.64           4159         422      98.21 
0.93        79.89           4358         402      98.30 
0.94        79.06           4581         375      98.41 
0.95        78.14           4826         346      98.53 
0.96        76.95           5147         308      98.69 
0.97        75.05           5633         271      98.85 
0.98        71.58           6502         224      99.05 
0.99        60.36           9229         152      99.35 
 
Threshold (mean distance) 
0.958246    77.19           5085         315      98.67 

 
 
 

Table 18. Testing results of 26-metaclass problem with rejection by using the ensemble system. 

Threshold   Recognition(%)  #Rejection  #Error   Reliability(%)
0.0         92.67           0           1733     92.67 
0.1         91.30           702         1356     94.27 
0.2         89.90           1258        1132     95.21 
0.3         88.79           1687        966      95.91 
0.4         87.37           2163        825      96.51 
0.5         85.89           2632        707      97.01 
0.6         84.12           3185        573      97.57 
0.7         81.39           4014        389      98.35 
0.8         77.27           5199        179      99.24 
0.9         69.53           7121        89       99.62 
0.91        68.16           7458        78       99.67 
0.92        66.52           7855        68       99.71 
0.93        64.59           8322        58       99.75 
0.94        61.88           8974        49       99.79 
0.95        58.42           9802        38       99.83 
0.96        52.80           11135       37       99.84 
0.97        39.87           14216       15       99.93 
0.98        0.97            23439       0        100.00 
0.99        0.10            23646       0        100.00 
 
Threshold (mean distance) 
0.904632    68.96           7260        87       99.63 
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Figure 16. Error-reject analysis of hybrid model and ensemble system for the 26-metaclass problem. 

 
Table 19. Testing results of 52-class problem with rejection by using the hybrid model. 

Threshold   Recognition(%)  #Rejection  #Error   Reliability(%)
0.0         70.24           0           7044     70.24 
0.1         69.22           722         6562     72.27 
0.2         68.33           1262        6232     73.67 
0.3         67.47           1766        5932     74.93 
0.4         66.65           2288        5605     76.32 
0.5         65.56           2865        5285     77.67 
0.6         64.18           3532        4945     79.10 
0.7         60.95           4942        4301     81.82 
0.8         57.19           6484        3647     84.59 
0.9         43.94           11424       1844     92.20 
0.91        41.47           12250       1604     93.22 
0.92        38.97           13075       1369     94.21 
0.93        35.78           14039       1161     95.09 
0.94        32.20           15090       957      95.95 
0.95        28.78           16076       781      96.70 
0.96        24.25           17364       566      97.60 
0.97        19.91           18551       405      98.28 
0.98        15.43           19752       265      98.88 
0.99        8.55            21509       137      99.42 
 
Threshold (mean distance) 
0.892577    45.72           10845       2002     91.54 
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Table 20. Testing results of 52-class problem with rejection by using the ensemble system. 

Threshold   Recognition(%)  #Rejection  #Error   Reliability(%)
0.0         70.98           0           6868     70.98 
0.1         67.59           1873        5797     75.50 
0.2         65.31           2943        5267     77.74 
0.3         63.23           3906        4797     79.73 
0.4         60.86           4949        4315     81.77 
0.5         57.88           6170        3798     83.95 
0.6         53.28           7973        3085     86.96 
0.7         47.29           10215       2260     90.45 
0.8         37.27           13774       1072     95.47 
0.9         20.00           18913       21       99.91 
0.91        17.26           19568       15       99.93 
0.92        14.15           20308       11       99.95 
0.93        11.22           21004       9        99.96 
0.94        7.76            21827       4        99.98 
0.95        1.89            23222       0        100.00 
0.96        0.25            23610       0        100.00 
0.97        0.13            23637       0        100.00 
0.98        0.08            23650       0        100.00 
0.99        0.03            23662       0        100.00 
 
Threshold (mean distance) 
0.766184    41.46           12318       1539     93.50 

 
Figure 17. Error-reject analysis of hybrid model and ensemble system for the 52-class problem.
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5.5 Discussion 

In this section, we discuss two questions pertaining to the motivation and the main 

concerns of our research in this chapter.  

1. Which classification algorithm is better for recognizing unconstrained English 

letters? 

When only considering an individual classifier, including the SVM, CNN, and the 

hybrid CNN & SVM model, there is no doubt that the proposed hybrid model 

outperforms the other classifiers on all recognition problems pertaining to 26-class 

uppercases, 26-class lowercases, 26-metaclass, and 52-class on the NIST database. 

Although the recognition performances on these problems by using the hybrid model are 

not the best ones when compared with the result reported in literature [21], the proposed 

hybrid model has a superiority over the other existing classifier models in two ways: one 

is that the salient features can be automatically extracted by the hybrid model, while the 

success of most other traditional classifiers relies largely on the retrieval of good hand-

designed features. The other lies in that the hybrid model combines the advantages of 

SVM and CNN, as both are the most popular and successful classifiers in the handwritten 

character recognition field.  

If we compare the recognition accuracy between the hybrid model and the 

combination/ensemble systems, the combination/ensemble approaches make 

improvements on the unconstrained handwritten letter recognition problem more than the 

former, but to a limited extent. However, the reliability of the combination/ensemble 

systems is much better than the hybrid model. For example, it is interesting to note that 
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the reliability is boosted as the recognition performance is increased under the zero 

rejection condition. In conclusion, to obtain higher recognition and reliability 

achievements on such complicated unconstrained letter recognition problems, the design 

of a more sophisticated classification system is required, such as the 

combination/ensemble approaches that adopted different classifiers in our experiments.   

2.  Which classification strategy is more efficient in solving the unconstrained letter 

recognition problem? 

In practical applications, sometimes, it is not important for the recognizer to know 

about the writing styles (uppercases or lowercases) but only to know which letter pertains 

to the sample. The writing style can be known according to the context information or 

can be further processed by the post-processing technique. This is called a case 

insensitive situation. To cope with this situation, the 26-metaclass classification problem 

is obviously the easiest one to be solved with the highest recognition accuracy in our 

experiments.  

However, if considering the case sensitive situation, which requires the recognizer to 

know the uppercases and lowercases in the classification procedure, then the recognition 

performance is not satisfactory when the 52-class classification strategy is directly 

applied.  Thus, some other approaches are worthy of further exploration. As we have 

already built up the 26-class uppercase recognizer and 26-class lowercase recognizer, 

both recognition rates exceed 90% without rejection. It was very encouraging for us to 

discover a good method to combine them, as suggested by the literature [12].  

Additionally, the metaclass strategy can be improved by merging not all uppercases and 
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corresponding lowercases, but only the ones which have similar shapes between the 

uppercase letters and the lowercase letters. 

 

5.6 Conclusion 

This chapter has investigated the unconstrained English handwritten letter recognition 

problem by applying different classification algorithms, including SVM, CNN, the 

proposed hybrid CNN & SVM model, and their combinations. To deal with such a 

complex problem, three classification strategies to determine the number of classes were 

taken into account: the 26-class problem in uppercases and 26-class problem in 

lowercases, the 26-metaclass problem, and the 52-class problem.  

The experiments were conducted on the NIST handwritten alphabet database. Results 

showed that the hybrid system outperforms other individual classifiers on all three 

classification strategies, under the zero rejection condition. However, the 

combination/ensemble systems have proved more reliable than individual recognizers on 

this problem. Furthermore, from experimental observations, we found that the task of 

recognizing letters in the insensitive case is much easier compared to the sensitive case.  

Therefore, future studies should be related to the question of how to improve the 

recognition performance on the sensitive case.  
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Chapter 6 

Conclusion 

 
 

In this thesis, I worked on recognizing off-line handwritten characters. This research 

topic was driven by the goal of generic context recognition for off-line handwriting 

recognition. Two types of recognition models were proposed. One was the hybrid CNN 

& SVM model. The other was the CNN and SVM combination system. The efficiency 

and feasibility of the proposed models were evaluated from two aspects: the recognition 

accuracy and the reliability performance. Experiments were conducted on handwritten 

digits and handwritten letters in the English language, respectively. Two public 

benchmark databases were used for our testing: the MNIST digit database and the NIST 

letter dataset. The proposed hybrid model achieved the best results on recognizing 

handwritten digits. It produced high and satisfactory performances on the handwritten 

English letter recognition. Moreover, this model has the potential to be improved further. 

In this section, the thesis contributions are summarized and the future work is proposed. 

6.1 Contributions 

In this thesis, my research focuses on the classifier design, with the aim of increasing 

the recognition accuracy and the reliability performance of the current handwritten 

character recognition system. The main contributions of this thesis are summarized in the 

following paragraphs. 

Firstly, the proposed hybrid model has demonstrated its robustness and success on the 

recognition of handwritten characters. For the handwritten digits, the lowest error rate 
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with no rejections was achieved at a rate of 0.19% on the MNIST database. It is the best 

result up to date, compared with the latest one of 0.35% reported in [11]. Moreover, 

100% reliability with a 0.56% rejection rate has been obtained by applying the hybrid 

model. Its reliability performance exceeds Dong’s results in [36], which is 100% 

reliability with an 8.49% rejection rate by using the HeroSVM library under the same 

rejection mechanism. For the handwritten letter recognition, satisfactory achievements 

have also been achieved by the hybrid model.  The recognition rates without rejections 

on the NIST database for the 26-class uppercase letters and the 26-class lowercase letters 

were 96.2289% and 90.2410%, respectively. These rates dropped to 92.0744% for the 

26-metaclass problem and 70.2408% for the 52-class problem. For all the cases, the 

hybrid model outperformed other single classifiers that were trained in our experiments, 

like the SVM model and the CNN model. Even though it is difficult to make a fair 

comparison with other researchers, due to the different databases, the number of training 

and testing sets, and the experimental conditions, etc., we believe that our recognition 

performances are among the top rankings in general in the handwritten character 

recognition field. However, there is one special case that we can compare with other 

researchers, due to the same training set and testing set on the adopted NIST database. It 

is the 26-class uppercase problem (see Chapter 5, Table 13). Even though the recognition 

rate of the hybrid model is not the highest one; it is comparable to the best result. 

Moreover, the proposed model is very promising and the recognition accuracy has the 

potential of being further improved.  

Secondly, this is the first time that a comparison has been made between the hybrid 

CNN & SVM model and the combination of CNN and SVM system on handwritten 
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character recognition problems. According to common sense, the combination of 

different classifiers may outperform the single recognizer. However, our experimental 

results showed that it depends on the applications. For handwritten digit recognition, the 

hybrid CNN & SVM model is superior to the combination/ensemble systems. As for 

recognizing unconstrained handwritten letters in the English language, the conclusion is 

reversed and the combination/ensemble systems perform slightly better than the hybrid 

model. Therefore, in conclusion, we can not find a universal approach to solve all the 

problems. Specific issues should be analyzed in a case by case manner. 

Thirdly, the comprehensive analysis of the generalization ability and the reliability of 

the handwritten character recognition systems were provided in this thesis. Most 

researchers have focused on improving the recognition accuracy, but only a few of them 

have mentioned the reliability performance. In order to meet the requirements of real-life 

applications and apply the proposed methods into practical fields in the future, I 

considered both of them for the handwritten digits and the handwritten letters. The 

reliability performance has been realized through the rejection rule: the pattern was 

rejected when the difference between the top two confidence values in the output rank list 

was smaller than a predefined threshold. But, as for the question about how to choose a 

suitable threshold for the trade-off between the recognition and the reliability 

performances, it is really a problem which depends on different application demands. 

Last but not least, this thesis has proven that automatically extracted features in the 

hybrid model are superior to hand-designed features. The experimental results on the 

handwritten characters showed that the recognition accuracy of the hybrid model using 

automatic features was higher than that of the SVM model using hand-designed features. 
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However, it is undeniable that there are many other hand-designed features that may be 

more suitable to the handwritten character recognition problems. But the features (the 

gradient feature, the distance feature and the chain feature) extracted for building the 

SVM classifiers in this thesis are quite representative and have been shown to be very 

efficient in the literature [10]. Besides, the design of good features by human beings is 

really an elaborate and time-consuming task. Thus, the automatic features extracted by 

the hybrid model are easier to implement and they outperform the hand-designed features 

on handwritten character recognition applications.  

6.2 Future Work 

The research process on this topic never ends. Future work can be conducted on this 

thesis topic with the following aspects: 

Research on the hybrid CNN & SVM learning model is still at an early stage. The 

performance of the hybrid model can be further improved through the fine tuning of its 

structure and its parameters. For example, improvements might be made based on the 

size of the input layer, the number of feature layer maps in layer 2, layer 3, and layer 4, 

the stopping criterion of the learning process, the kernel functions used in the model, etc.   

It is desired to improve the recognition accuracy on unconstrained handwritten letters, 

especially for the case sensitive recognition problem. There are some strategies that can 

be considered as solutions. One is to improve the recognition rate on the 52-class 

problem directly. I believe that this improvement can be achieved by enlarging the 

amount of training samples. The second strategy is to find a good way to combine the 26-

class uppercase recognizer and the 26-class lowercase recognizer that were discussed in 

Chapter 5, Section 5.4.1. The third approach is to further improve the metaclass strategy 
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by only merging the uppercases and the corresponding lowercases that have similar 

shapes into one class.  

Extending the proposed hybrid model to other applications is a task worth 

investigating. It is very easy to apply our work on the isolated special symbols, such as 

“,”, “.”, “?”, “!” etc. Without being limited to the English handwritten character 

recognition, characters in other languages, such as Arabic, French, etc., can also be 

studied.   
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