
HEURISTICS FOR MESSAGE BROADCASTING IN ARBITRARY NETWORKS

WEI WANG

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE AT

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC , CANADA

JUNE 2010

c©WEI WANG, 2010

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Wei Wang

Entitled: Heuristics for Message Broadcasting in Arbitrary Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulation of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

_____________________________________ Chair

Dr. David Ford

_____________________________________ Examiner

Dr. Thomas Fevens

_____________________________________ Examiner

Dr. Dhrubajyoti Goswami

_____________________________________ Supervisor

Dr. Hovhannes Harutyunyan

Approved by ___

 Chair of Department or Graduate Program Director

________20____ ___

 Dr. Robin Drew, Dean

 Faculty of Engineering and Computer Science

Abstract

Heuristics for Message Broadcasting in Arbitrary Network

Wei Wang

With the increasing popularity of interconnection networks, efficient information dissem-

ination has become a popular research area. Broadcasting is one of the information dis-

semination primitives. Finding the optimal broadcasting scheme for any originator in an

arbitrary network has been proved to be an NP-Hard problem. In this thesis, two new

heuristics that generate broadcast schemes in arbitrary networks are presented. Both of

them have O(|E|) time complexity. Moreover, in the broadcast schemes generated by the

heuristics, each vertex in the network receives the message via a shortest path. Based on

computer simulations of these heuristics in some commonly used topologies and network

models, and comparing the results with the best existing heuristics, we conclude that the

new heuristics show comparable performances while having lower complexity.

iii

Acknowledgements

I would like to sincerely thank my supervisor, Dr. H. Harutyunyan, for his sagacious in-

structions and continuous support through my study life at Concordia. I would also thank

Mr. Edward Marashlian for his valuable comments on this thesis.

iv

Contents

1 Introduction 1

1.1 Models of Broadcasting . 2

1.2 NP-Completeness . 5

1.3 Thesis Outline . 9

2 Background 10

2.1 Commonly Used Topologies . 10

2.2 Previous Heuristics . 17

2.2.1 Round Heuristic . 18

2.2.2 Tree Based Algorithm . 22

2.3 The Minimum-Weight Cover Problem . 24

2.4 The MWC-Modified Algorithm . 26

3 New Broadcast Heuristics 30

3.1 Definitions . 30

3.2 Random Heuristic . 35

v

3.2.1 Algorithm . 35

3.2.2 Complexity . 36

3.3 Semi-Random Heuristic . 38

3.3.1 Algorithm . 38

3.3.2 Complexity . 45

4 Simulation Results and Comparisons with other Heuristics 46

4.1 Simulation Results and Comparisons in Commonly Used Topologies 47

4.1.1 Simulation in Hypercube . 47

4.1.2 Simulation in Cube Connected Cycle 49

4.1.3 Simulation in Shuffle-Exchange Graph 51

4.1.4 Simulation in DeBruijn Graph . 52

4.1.5 Simulation in Butterfly Graph . 54

4.2 Simulation Results and Comparisons in NS-2 Models 56

4.2.1 Introduction to Network Models 56

4.2.2 Simulation Results and Comparisons in GT-ITM Random Model . . 63

vi

4.2.3 Simulation Results and Comparisons in GT-ITM Transit-Stub Model 67

4.2.4 Simulation Results and Comparisons in Tiers Model 70

4.2.5 Simulation Results and Comparisons in BRITE Top-down Hierar-

chical Model . 73

4.3 Summary . 78

5 Conclusion and Future Work 80

Reference 82

vii

List of Figures

1 Broadcast scheme in a network with 6 vertices. 3

2 The graph G . 6

3 The graph H . 8

4 The example of path, n = 6. 10

5 The examples of cycle graph, n = 4 and n = 6. 11

6 The examples of complete graph, n = 4 and n = 6. 11

7 The example of hypercubes. 12

8 The example of Cube Connected Cycles, m = 3. 13

9 The example of Shuffle-Exchange graph, m = 3. 14

10 The example of DeBruijn graph, m = 3. 14

11 The example of Butterfly graph, m = 3. 15

12 The example of 2-Grid graph with 12 vertices. 16

13 The example of 2-Torus graph with 12 vertices. 16

14 The dispersion region DR(p, t) for some message p. 20

viii

15 Definitions in TBA. 22

16 (a) A bipartite graph G. (b) Its corresponding flow graph G′3. 27

17 An example of layer graph. (a) The original graph G (b) The layer graph GL 31

18 Broadcast time of Tree. 33

19 An example of Random Heuristic. (a) The original graph G with origina-

tor a. (b) The layer graph GL. (c) One possible broadcast scheme, total

broadcast time equals to 3. (d) The other possible broadcast scheme, the

broadcast time is equal to 4. 37

20 The original graph G with originator a. 40

21 The layer graph GL. 40

22 Perform SRM on layer 3 and layer 4. 41

23 Perform SRM on layer 2 and layer 3. 42

24 Perform SRM on layer 1 and layer 2. 43

25 The broadcast scheme of graph G. 44

26 Simulation results in Hypercubes. 49

27 Simulation results in Cube Connected Cycles. 50

28 Simulation results in Shuffle-Exchange graphs. 51

ix

29 Simulation results in DeBruijn graphs. 54

30 Simulation results in Butterfly graphs. 55

31 Example of Internet Domain Structure. 58

32 A Typical Tiers Internetwork. 60

33 A Large Tiers Network. 60

34 The structure of Top-down Hierarchical Models. 63

35 Simulation results in GT-ITM Random model with 200 vertices. 65

36 Simulation results in GT-ITM Random model with 500 vertices. 67

37 Simulation results in GT-ITM Transit-Stub model with 600 vertices. 68

38 Simulation results in GT-ITM Transit-Stub model with 1056 vertices. . . . 70

39 Simulation results in Tiers model with 355 vertices. 72

40 Simulation results in Tiers model with 1105 vertices. 73

41 Simulation results in BRITE Top-down Waxman model with 400 vertices. . 74

42 Simulation results in BRITE Top-down BA model with 400 vertices. 75

43 Simulation results in BRITE Top-down Waxman model with 1000 vertices. 76

44 Simulation results in BRITE Top-down BA model with 1000 vertices. . . . 77

x

List of Tables

1 Maximum Flow algorithms. 26

2 Simulation results of different heuristics in Hypercubes. 48

3 Simulation results of different heuristics in Cube Connected Cycles. 50

4 Simulation results of different heuristics in Shuffle-Exchange graphs. 52

5 Simulation results of different heuristics in DeBruijn graphs. 53

6 Simulation results of different heuristics in Butterfly graphs. 55

7 Simulation results in GT-ITM Random model with 200 vertices. 65

8 Simulation results in GT-ITM Random model with 500 vertices. 66

9 Simulation results in GT-ITM Transit-Stub model with 600 vertices. 68

10 Simulation results in GT-ITM Transit-Stub model with 1056 vertices. . . . 69

11 Parameters for Tiers model with 355 vertices. 70

12 Parameters for Tiers model with 1105 vertices. 71

13 The minimum simulation results in Tiers model with 355 vertices. 71

14 The minimum simulation results in Tiers model with 1105 vertices. 72

xi

15 Simulation results in BRITE Top-down Waxman model with 400 vertices. . 74

16 Simulation results in BRITE Top-down BA model with 400 vertices. 75

17 Simulation results in BRITE Top-down Waxman model with 1000 vertices. 76

18 Simulation results in BRITE Top-down BA model with 1000 vertices. . . . 77

xii

1 Introduction

Since the birth of computers, innumerable endeavors have been dedicated to speed up the

process of computing. With the development of materials and very-large-scale integration,

multi computer and multi processor systems have been turned into a mature technology.

Along with the improvement on the physical level, it is essential to design more efficient

algorithms for information distribution to get the most benefit out of the advances in the

hardware domain. Nowadays, this is an especially crucial problem for parallel computing

and distributed systems. Moreover, coming into 21st century, different kinds of networks,

such as internet and virtual social networks, have become a main part of people’s daily life.

One way to perform efficient information dissemination is to compress the amount of data

being transferred. The second approach is to minimize the delay of information spreading

[37], including designing topologies with optimal dissemination time and efficient algo-

rithms for message distribution.

Broadcasting is a kind of communication process, which spreads the message from the

originator to the rest of the network. Nowadays, many fields have seen the contributions of

the research of broadcasting, such as parallel computing, management of distributed sys-

tems, communication among multi processors, internet messaging and anti virus spreading,

etc. In this thesis we focus on the algorithms and heuristics for broadcasting in arbitrary

networks, and two new heuristics for broadcasting in arbitrary networks are introduced.

These heuristics have low complexity and always spread the messages through shortest

paths.

1

1.1 Models of Broadcasting

There are four communication primitives:

• Routing, one to one communication;

• Broadcasting, one to all communication;

• Multicasting, one to multiple communication;

• Gossiping, all to all communication.

In this thesis, we will be concerned only with broadcasting, which is the process of in-

formation dissemination in an interconnection network by which messages are transmitted

from the originator to the rest of the network.

Broadcasting is assumed to take place in discrete time units. Each time unit is also called

a round. During each round, a series of calls, i.e., message-exchanging between adjacent

vertices in the network, take place in parallel. The total number of rounds after which all

nodes of the network are informed is used to measure the broadcast time.

In order to simplify the analysis of a broadcast process, we assume that broadcasting is done

according to the following constraints. This broadcast model is known as the classical or

original model.

• Each call involves only one informed vertex and one of its uninformed neighbors.

• Each call costs one unit of time, i.e., one round.

2

• A vertex can participate in only one call per unit of time.

• In one unit of time, many calls can be performed in parallel.

At the beginning of broadcasting, only one vertex u, called the originator, is informed.

During each round, all informed vertices transfer the message to one of their uninformed

neighbors. A call is the action of transfering the message from an informed vertex to an

uninformed neighbor, and the broadcasting scheme is composed of a sequence of parallel

calls.

Figure 1 shows a simple broadcast scheme in three rounds, which is presented in the label-

ing of the edges. Vertex o, with the shadowed background, is the originator, which means

it has one message to broadcast. During each round, the message is passed to some un-

informed vertices. Finally, after three rounds, all six vertices in the network possess the

message.

In general, any interconnection network can be regarded as a connected graph G = (V,E),

where V is the set of vertices and E is the set of edges in the graph G. We say vertex

u ∈ V and vertex v ∈ V are neighbors, if there is an edge e ∈ E between u and v such

Figure 1: Broadcast scheme in a network with 6 vertices.

3

that e = (u, v). The degree of a vertex v, denoted by deg(v), is the number of neighbors of

v. The degree of a graph G, denoted by ∆, is the maximum degree among all vertices in

graph G, i.e., ∆ = max{deg(v), v ∈ V }. A path p in a graph is a sequence of vertices and

edges in the form p = v1, e1, v2, e2, . . . , en−1, vn, where ei = (vi, vi+1). Along the path p,

a message can travel from vertex v1 to vertex vn. The number of edges in a path is called

the length of the path. The length of the shortest path between two vertices u and v is

their distance, denoted by dist(u, v). The diameter of a graph G, denoted by D(G),is the

longest distance between any pair of vertices in the graph. A graph G is called a connected

graph, if there exists at least one path between any pair of vertices of graph G.

Given an originator u, we define the broadcast time, b(u), as the minimum number of time

units required to complete broadcasting from vertex u. It is easy to conclude that for any

vertex u in a connected network G with n vertices, dlog ne ≤ b(u) ≤ n − 1, since during

each time unit the number of informed vertices can at most double. The broadcast time

b(G) of the network G is defined as the maximum broadcast time among all the vertices,

b(G) = max{b(u)|u ∈ V }. Some results of related problems have been presented in

papers[21, 14, 24, 25].

4

1.2 NP-Completeness

The abbreviation NP refers to “nondeterministic polynomial time”. NP is the set of decision

problems solvable in polynomial time by a non-deterministic Turing machine.[42]

NP-complete is a class of problems having two properties:

• Any given solution to the problem can be verified quickly (in polynomial time); the

set of problems with this property is called NP (nondeterministic polynomial time).

• If the problem can be solved quickly (in polynomial time), then so can every problem

in NP [43], i.e., every problem in NP can be reduced to it in polynomial time.

The broadcast problem, determining b(u) for an arbitrary originator u in an arbitrary graph

G, is NP-complete, that is proved in [40]. From [18], we know that the three-dimensional

matching (3DM) problem is NP-complete, and in [40], the 3DM problem is shown to be

reducible to the broadcast problem in polynomial time. In the rest of this section we present

a sketch of the proof of the NP completeness of the broadcast problem.

The 3DM problem is defined as follows. Given setsX = {x1, x2, . . . , xm}, Y = {y1, y2, . . . ,

ym}, Z = {z1, z2, . . . , zm}, and M ⊆ X × Y × Z, does there exist a subset N ⊆ M and

|N | = m, such that every two elements in N disagree in all three coordinates? This prob-

lem has been proved to be NP-Complete in [18].

The Broadcast Time problem that is proved to be NP-complete is the following. Given a

graph G = {V,E} with a specified set of vertices V0 ⊆ V and a positive integer k, does

5

there exist a sequence V0, E1, V1, E2, V2, . . . , Ek, Vk, where Vi ⊆ V,Ei ⊆ E(1 ≤ i ≤ k),

Ei = {{u, v}, u ∈ Vi−1, v /∈ Vi−1}, Vi = Vi−1 ∪ {v}, and Vk = V ? Here, Vi is the set of

informed vertices at round i, Ei is the set of message-passing edges at round i, and k is the

total broadcast time. Let |V0| = 1, then it is the exact case that broadcasting starts from an

arbitrary single originator.

A 3DM problem can be reduced to a broadcast time problem with k = 4 in a certain graph

G that is constructed from the set M in polynomial time m. Figure 2 shows the graph G.

The independent sets V0 andM have the same size and the bipartite subgraph induced by V0

and M is complete. If (xi, yj, zk) ∈ M , then the corresponding vertex of M in G is joined

to the vertices xi of X , yj of Y and zk of Z. For example, vertex (x1, y2, z3) connects with

vertices x1, y2 and z3. All other edges are exactly as that shown in graph G.

Figure 2: The graph G

6

Consider a solution for broadcast time problem in G, |M | − m vertices of V0 must pass

the message in an upward direction in the first round, so that all vertices on the top line

can be informed in round 4. Similarly, in order to inform X, Y, Z and all the vertices on

the bottom line in round 4, the remaining m vertices in V0 must send the message to an

m-subset S of M in the first round. Thus, the vertices in S must be able to broadcast to

distinct elements of X, Y and Z at rounds 2, 3 and 4 respectively. This is possible if and

only if S is a solution of the 3DM problem.

Furthermore, we need 3DM to be reducible to the problem that determines broadcast time

for an arbitrary graphGwith an arbitrary originator u. Hence, a new graphH obtained from

graph G will be used. Figure 3 demonstrates the graph H , which is constructed as follows.

An independent vertex set U = {u1, u2, . . . , um}, a vertex u and edges {(u, ui), 1 ≤ i ≤

m = |V0|} are added to graph G. Every vertex ui joins m− i paths of length 6, 7, . . . ,m+

5− i. m edges are added to create a matching between U and V0.

Consider a solution for the problem which determines whether b(u) = m + 5 in graph

H . Each vertex ui will be informed at round i, then will broadcast the message to the

paths connected to it in the order of decreasing path length. Finally ui informs the vertex

in V0 that is matched to it at round m + 1. Thus, every vertex in V0 will be informed at

round m + 1. Broadcasting in graph G will be done in 4 rounds, and b(u) = m + 5. The

broadcast scheme in subgraph G is the solution for the broadcast time problem with k = 4.

Hence, we can say that a broadcast time problem with k = 4 is equivalent to determining

if b(u) = m+ 5 in graph H .

7

Figure 3: The graph H

We have seen that the broadcast time problem is NP-Complete for arbitrary graph. How-

ever, it is also NP-Complete for more restricted topologies, such as planar graphs [26, 27],

and bounded degree graphs [5, 8, 33]. In addition, other results on the inapproximability

of this problem are provided in [38].

8

1.3 Thesis Outline

This thesis is organized as follows. Chapter 1 gives an introduction of broadcasting in

computer networks. In Chapter 2, some background knowledge, including commonly used

topologies and broadcast heuristics, will be introduced. Moreover, the Minimum-Weight

Cover (MWC) problem and the algorithm solving it are introduced in this chapter as well.

In Chapter 3, two new heuristics, which pass the message via shortest paths, are formally

described. In Chapter 4, simulation results concerning the heuristics are provided. Sev-

eral commonly used topologies and four network models are involved in the simulations.

Finally, Chapter 5 concludes this thesis and discusses possible future work.

9

2 Background

In this chapter, we will present a brief review of the commonly used interconnection topolo-

gies, broadcast heuristics with good performance in practice. We also present an algorithm

solving Minimum-Weight Cover (MWC) problem and introduce a modified algorithm as

well.

2.1 Commonly Used Topologies

In this section, several commonly used topologies are introduced. For more details the

readers can refer to [14], [24], [30] and [21].

The Path Pn. A path is a graph of a sequence of vertices such that each vertex has an edge

connecting it to the next vertex in the sequence. Pn has n vertices, a diameter that is equal

to n− 1, and maximum degree of 2. The broadcast time of Pn is equal to n− 1. This value

is achieved by the end vertices which have the maximum broadcast time in the path. Figure

4 shows a path with six vertices, where b(P6) = 5.

Figure 4: The example of path, n = 6.

The Cycle Cn. A cycle is a path such that the start vertex and end vertex are also connected

by an edge. Cn has n vertices, the diameter is bn
2
c, and maximum degree equals to 2. The

broadcast time of Cn is equal to dn
2
e. At each time unit, all the informed vertices pass the

10

message to their uninformed neighbors. Figure 5 demonstrates two cycles with four and

six vertices, and the broadcast time equals to 2 and 3 respectively.

Figure 5: The examples of cycle graph, n = 4 and n = 6.

The Complete Graph Kn. A complete graph is a simple graph in which every pair of

distinct vertices are connected by an edge. Kn has n nodes, diameter 1, and degree n− 1.

It is easy to obtain that b(Kn) = dlog ne, since during each round every informed vertex can

send message to an uninformed neighbor. Figure 6 shows two complete graphs of different

dimensions, where b(K4) = 2 and b(K6) = 3.

Figure 6: The examples of complete graph, n = 4 and n = 6.

The Hypercube Hm. The hypercube of dimension m, denoted by Hm, is the graph on

2m vertices, where each vertex can be represented by a binary string of length m and is

connected to those vertices whose binary string representation differ in exactly one position.

Hm has 2m nodes, m2m−1 edges, diameter m and each vertex has exactly degree m. An

11

(m + 1)-dimensional hypercube can be constructed by two m-dimensional hypercubes by

just connecting each pair of the corresponding vertices. The broadcast time of hypercube is

exactly equal to m, because at each round the number of informed vertices doubles. Figure

7 illustrates two hypecubes of dimension 3 and 4.

Figure 7: The example of hypercubes.

The Cube-Connected Cycles CCCm. The CCCm is a modification of the hypercube

Hm by replacing each vertex of the hypercube with a cycle of m vertices. The i-th di-

mension edge incident to a node of the hypernode is then connected to the i-th node of

the corresponding cycle of the CCCm. Thus, CCCm has m2m nodes, diameter equals to

2m+ bm
2
c − 2, and the maximum degree is 3. [31] provides that b(CCCm) = d5m

2
e − 1,

first every informed vertex sends the message to the hypercube neighbor, then to the right

neighbor on the ring, and finally to the left one. Figure 8 shows a 3-dimensional cube

12

connected cycle.

Figure 8: The example of Cube Connected Cycles, m = 3.

The Shuffle-Exchange SEm. SEm is the graph whose vertices can be represented by

binary strings of length m. Each edge of SEm connects vertex αa, where α is a binary

string of lengthm−1 and a is in {0, 1}, with vertex αc and vertex aα, where c is the binary

complement of a. SEm has 2m vertices, diameter is 2m − 1, and maximum degree 3. In

[23], it is proved that b(SEm) ≤ 2m − 1. Figure 9 shows a Shuffle-Exchange graph of

dimension 3.

The DeBruijn DBm. DBm is the graph whose nodes can be represented by binary strings

of length m and whose edges connect each string aα, where α is a binary string of length

m − 1 and a is in {0,1}, with the strings αb, where b is a symbol in {0,1}. DBm has 2m

vertices, diameter m and maximum degree 4. [28] provides the lower bound b(DBm) ≥

1.3171m, and [6] proves the upper bound, b(DBm) ≤ 1.5m + 1.5. Figure 10 illustrates a

DeBruijn graph of dimension 3.

13

Figure 9: The example of Shuffle-Exchange graph, m = 3.

Figure 10: The example of DeBruijn graph, m = 3.

The Butterfly BFm. BFm has vertex-set Vm = {0, 1, . . . ,m − 1} × {0, 1}m, where

{0, 1}m denotes the set of length-m binary strings. For each vertex v = 〈i, α〉 ∈ Vm, i ∈

{0, 1, . . . ,m − 1}, α ∈ {0, 1}m, we call i the level and α the position-within-level of

v. The edges of BFm are of two types: For each i ∈ {0, 1, . . . ,m − 1} and each α =

a0a1 . . . am−1 ∈ {0, 1}m, the vertex 〈i, α〉 on level i of BFm is connected

• by a straight-edge with vertex 〈(i+ 1) mod m,α〉 and

• by a cross-edge with vertex 〈(i+ 1) mod m,α(i)〉

14

on level (i + 1) mod m. Again, α(i) = a0 . . . ai−1ciai+1 . . . a0am−1, where ci denotes the

binary complement of ai. BFm has m2m nodes, diameter b3m
2
c and maximum degree

4. From [28], we know that 1.7417m ≤ b(BFm) ≤ 2m − 1. Figure 11 illustrates a

3-dimensional Butterfly graph.

Figure 11: The example of Butterfly graph, m = 3.

The d-Grid G[a1 × a2 × . . . × ad]. The d-dimensional grid (or mesh) is the graph whose

nodes are all d-tuples of positive integers (z1, z2, . . . , zd), where 0 ≤ zi < ai for all i (1 ≤

i ≤ d), and whose edges connect d-tuples which differ in exactly one coordinate by one.

For example, in G[3, 3], vertex (1, 1) is connected to vertices (0, 1), (2, 1), (1, 0) and (1, 2).

G[a1×a2×. . .×ad] has a1×a2×. . .×ad vertices, diameter (a1−1)+(a2−1)+. . .+(ad−1),

and maximum degree 2d, if each ai is at least three. [21] provides the broadcast time of a

2-grid, b(G[a1 × a2]) = a1 + a2 − 2. Figure 12 shows a 2-Grid graph G[4× 3].

The d-Torus T [a1 × a2 × . . . × ad]. A d-Torus graph is a d-grid graph with both ends of

rows and columns connected. Similarly, we use T [a1×a2× . . .×ad] to denote the d-Torus.

15

Figure 12: The example of 2-Grid graph with 12 vertices.

The optimal broadcast time of the 2-Torus graph is da1

2
e+da2

2
e, when a1 or a2 is even; and

it is da1

2
e+ da2

2
e− 1, when both a1 and a2 are odd [12]. The bounds on the broadcast time

of the Torus areD ≤ b(T [a1×a2× . . .×ad]) ≤ D+max(0,m−1), whereD =
d∑
i=1

ai−d,

and m is the number of odd ai. Figure 13 illustrates a 2-Torus graph T [4× 3].

Figure 13: The example of 2-Torus graph with 12 vertices.

16

2.2 Previous Heuristics

The first algorithm that attempts to solve the minimum broadcast time problem is presented

in [36] in 1981, and then another exact algorithm, based on dynamic programming, is

designed by Scheuermann and Wu [37] in 1984. A backtracking algorithm for bounded

degree networks is described in [19].

Since finding the minimum broadcast time of any originator in an arbitrary graph is NP-

complete, many approximation algorithms and heuristics have been presented to determine

the broadcast scheme with minimum time cost (see [2, 10, 17, 16, 29, 11, 15, 4, 35, 37, 13,

34, 39, 7]).

Given a graph G = (V,E) and the originator u, the heuristic in [29] returns a broadcast

scheme whose performance is at most b(u,G)+Diam(u)+3
√
|V | rounds, whereDiam(u)

is the diameter of u, and b(u, G) is the optimal broadcast time. Another well-known algo-

rithm, presented in [35], is based on calculating the poise of a graph. The poise of a tree T

is defined as the sum of the maximum degree of any vertex in the tree and the diameter of

the tree. The poise of a graph G, denoted by P (G), is defined as the minimum poise of any

of its spanning trees. Computing the poise of an undirected graph is NP-hard. However,

[35] present anO(nm log n)-complexity heuristic to compute a spanning tree of a graph on

n vertices and m edges, such that the poise of the tree is within O(log n)P (G)+O(log2 n).

[35] also proves that b(G) = O(P (G)
log n

log log n
). The time complexity of the algorithm is

O(nm log2 n), and the upper bound of the broadcast time is O(
log2 n

log log n
b(G)). Theoreti-

cally, the best upper bound is obtained by the algorithm presented in [11], which generates

17

a broadcast scheme with O(
log |V |

log log |V |
b(G)) rounds

Aside from the algorithms that provide good bounds, some algorithms take advantage of

other methods to solve the minimum broadcast time problem. A genetic algorithm is pre-

sented in [22], which utilizes a global precedence vector to generate a heuristic of complex-

ity O(mn3). [2] introduced an integer programming formulation that derives a O(log n)

approximation algorithm. [3] provided a general approach for structured communications,

which can be applied to solve the minimum broadcast time problem.

In the following sections, two heuristics of value in practice are introduced in details. The

Round-Heuristic [4] and the Tree Based Algorithm [20] are both outstanding heuristics,

which have almost the same performance in most of commonly used topologies, and gen-

erate better performance in three network models from ns-2 simulator [1, 2, 9, 44]. In many

variant topologies, their performances are very close to the optimal value or to the lower

bound. Thus, they will be used to scale the new heuristics in this thesis. In the next two

subsections, these two heuristics will be introduced.

2.2.1 Round Heuristic

The Round Heuristic is described in [4], which also presents the simulation results in sev-

eral commonly used graphs. From its simulation results, we can say that its performance is

quite close or equal to the optimal value. The Round Heuristic is designed for both broad-

casting and gossiping problems, and its broadcasting performance will be considered in

this thesis.

18

During each round of broadcasting, every edge in the network will be assigned a weight.

Then, a maximum weighted matching will be performed in the network, in order to activate

the matched edges. The activated edges will be selected to pass the message during that

round. This procedure will continue until the whole network is informed. This procedure

will be performed in every round, and that is why this heuristic is called Round Heuristic.

Setting the weights rationally and effectively are the most significant steps. In [4], two

different approachs are introduced to set the weight. One is called the Potential Approach,

and the other is the Breadth-First-Search(BFS) approach. The potential approach assigns

each edge(v, w) a weight equal to its poential, defined as the number of messages known

by either v or w, but not by both of them. In broadcasting, the weight could only be 0 or 1.

Obviously, the potential approach is simple and requires little storage and runs very fast.

However, as a pure local greedy algorithm, it lacks a global view. The BFS approach

works much better in this aspect, although its cost is far more expensive. Before going

to the details of BFS approach, several definitions should be presented. In a connected

graph, the dispersion region DR(p, t) of a message p is the set of vertices that know p

at the beginning of round t. For any vertex v, distv(p, t) denotes the shortest distance in

the graph from v to a vertex w ∈ DR(p, t). The set of border-crossing edges, denoted

by bce(p, t), is defined as bce(p, t) = {(v, w) ∈ E|v ∈ DR(p, t) and w /∈ DR(p, t)}.

For any vertex v /∈ DR(p, t), bcev(p, t) consists of all edges in bce(p, t) that lie on the

shortest path from DR(p, t) to v. Figure 14 illustrates the dispersion region DR(p, t) for

a message p. The border-crossing edges, bce(p, t), are drawn in bold. distv(p, t) = 3 and

bcev(p, t) = {e1, e2}.

19

Figure 14: The dispersion region DR(p, t) for some message p.

The weight of an edge is regarded as the sum of the contributions by each message p. Only

border-crossing edges can disseminate p further in that round and will be assigned weight.

Given an edge e ∈ bce(p, t), how useful is e for the rapid dissemination of p? Message p

should preferably be routed on shortest paths from DR(p, t) to all other vertices: if, for a

vertex v, an edge e ∈ bcev(p, t) is chosen to be active in round t, then distv(p, t + 1) =

distv(p, t) − 1. If e lies on many of these shortest paths, it is more useful. The larger

distv(p, t) is, the more priority should be given to forwarding p towards v. Considering

all these criteria, the weight, attributed by all vertices v /∈ DR(p, t) to every edge e ∈

bcev(p, t), is calculated as follows:

weight(v, p, t) =
distv(p, t)

Dist Exp

|bcev(p, t)|Num Exp
,

where distv(p, t) and bcev(p, t) are calculated for every vertex v, at round t, and Dist Exp

and Num Exp are two parameters. [4] applies a modified breadth first search algorithm,

such that vertices are considered in order of increasing distv(p, t). For vertex v with

20

distv(p, t) = 1, bcev(p, t) consists of all incident edges that connect v to a vertex inDR(p, t).

For larger distv(p, t) the algorithm computes the union of the sets bcewi
(p, t), for all ver-

tices wi adjacent to v with distwi
(p, t) = distv(p, t) -1. The calculation of the bcev(p, t)

can easily be incorporated into the BFS search.

For any vertex v, bcev(p, t) is the union of at most |V | sets with at most |E| elements each.

This computation takes O(|V ||E|) time. The bcev(p, t) are calculated for every vertex v.

Thus, calculating the weights takes O(|V |2|E|) in total. Without considering the matching

step, the running time of Round heuristic isO(R|V |2|E|), where R is the number of rounds

of broadcasting.

The value of the weight depends heavily on the choice of the parameters, Dist Exp and

Num Exp. Thus, the impact of the parameters play a significant role in the performance

of the Round Heuristic. Particularly, Dist Exp is of great significance, which determines

the influence of the distance between nodes and dispersion regions. Usually, values ranging

from 0.25 to 60 are used. The precise choice for two topologies are mentioned in [4]: for

the mesh graphs, Dist Exp = 4, while for the butterfly graphs, Dist Exp = 2.

In [4], simulation results of the heuristic in commonly used topologies are presented, in-

cluding the Cube Connected Cycles, the Shuffle Exchange graphs, the Butterfly graphs

as well as the deBruijn graphs. Many of these values are close or equal to the optimal

broadcast time, some of which will be presented in Chapter 4.

21

2.2.2 Tree Based Algorithm

The Tree Based Algorithm (TBA) is presented in [20], whose general idea derives from

the Round Heuristic. In round t, TBA partitions the graph into two parts, the bright region

and the dark region. The bright region is composed of all informed vertices, similar to

the Dispersion Region in Round Heuristic, while the dark region includes all uninformed

vertices. All informed vertices, that have neighbors in the dark region, are called the bright

border, denoted by bb(t). Given an uninformed vertex u and its uninformed neighbor v, we

say u is a child of v, if D(u, t) = D(v, t)+1, where D(v, t) stands for the shortest distance

from uninformed vertex v to bb(t). The children and the children’s children are all called

the descendants.

Figure 15: Definitions in TBA.

Figure 15 shows the definitions in TBA. Vertex a is the originator. After three rounds, all

22

vertices in the shadowed area are still uninformed. The informed vertices with shadowed

backgrounds belong to bb(4). Vertices o and p are children of vertex j, and vertex q is a

child of vertices o and p. We can also say that vertices o, p and q are descendants of vertex

j.

Same as the Round Heuristic, TBA applies maximum weighted matching to determine

the message-passing edges between the bright region and the dark region. In each round,

TBA performs a breadth first search(BFS) from bb(t) towards all the uninformed vertices,

and the parent-child relationship is determined by labeling each uninformed vertex v with

D(v, t). Then every uninformed vertex u will be assigned a weight, which is based on the

strategy of the optimal broadcasting in trees. Let w(u, t) stand for the weight of vertex u at

round t. If u has no children, then w(u, t) = 0. Otherwise, w(u, t) = max{w(Cu
i , t) + i},

where Cu
i is the i-th child of u, and without loss of generality, all the children of u are

in decreasing order of their weights. After all the vertices in the dark region are assigned

weights, TBA finds a maximum weighted matching between bb(t) and their uninformed

neighbors. A matching algorithm with time complexity O(|E|) is applied by the heuristic.

The matched edges are used to pass the message in that round.

The broadcast time is the round number during which all the vertices in the network are

informed. Since each round takes time O(|V | + |E|) = O(|E|), the total complexity is

O(R|E|).

[20] also provides simulation results for commonly used topologies as well as some net-

work models, which show that in most cases TBA even has better results than the Round Heuristic.

23

TBA has a refined version, which inherits the idea of choosing parameters from the Round Heuristic,

to obtain better broadcast time in some topologies. As a result, the weights are allowed to

be decimal in the refinement.

2.3 The Minimum-Weight Cover Problem

Another problem that we need to describe is called the Minimum-Weight Cover problem

(MWC), which is presented in [29].

Let G(V1, V2, A, w) be a bipartite graph with bipartition (V1, V2), edge set A, and a weight

function w : A 7→ Z+ on the edges, and no isolated vertices. Each vertex v1 ∈ V1

is called a server, and each vertex v2 ∈ V2 is called a customer. If a control function

F : V2 → V1, where F (v2) = v1 implies (v1, v2) ∈ A, and we say that v1 controls v2.

For every server v ∈ V1, the clients dominated by v is denoted by D1(v), . . . , Dk(v), and

the edges connecting v with its clients is denoted by evi = (v,Di(v)). Without loss of

generality, all the clients dominated by v are in the order such that w(evi) ≥ w(evi+1) for

1 ≤ i ≤ k.

The MWC problem. Given a bipartite graph G(V1, V2, A, w), determine a control function

F : V2 → V1 whose weight W (F) =max
v∈V1

{max
i
{i + w(evi)}} is minimal. The function F

is called the minimum control function for G.

A pseudopolynomial algorithm is given to solve the MWC problem. The basic idea is to

check whether there exists a positive integer j, where mine{w(e)}+1 ≤ j ≤ mine{w(e)}+

24

|V2|, and a control function F , such that W (F) ≤ j. The algorithm constructs a flow

graph G′j based on G and j, with the property that G has a control function F with weight

W (F) ≤ j iff it is possible to push |V2| units of flow from the source to the sink on G′j .

The details of algorithm are as follows.

MWC algorithm:

1. Set j1 = mine{w(e)}+ 1 and j2 = maxe{w(e)}+ |V2|.

2. Let j = d j1+j2
2
e.

3. Construct the flow graph G′j .

4. Calculate the maximum flow on G′j from source to sink.

5. If the maximum flow is equal to |V2|, then set j2 = j, else set j1 = j.

6. If j equals to j2 and j2 ≤ j1 + 1, then goto next step, else back to step 2.

7. Return the minimum control function F that corresponds to the maximum flow com-

puted on G′j1 .

The complexity of MWC algorithm mainly depends on which maximum flow algorithm is

employed. Table 1 shows the different maximum flow algorithms and their time complexi-

ties. The Dinic’s algorithm runs in O(|E||
√
V |) time in networks with unit capacities.

25

Methods Time Complexity

Ford-Fulkerson algorithm O(|f ||E|)
Edmonds-Karp algorithm O(|V ||E|2)
Dinic’s algorithm O(|V |2|E|)
General push-relabel algorithm O(|V |2|E|)

Table 1: Maximum Flow algorithms.

Another crucial part of this algorithm is the construction of the flow graph G′j . Create a

source vertex s and a sink vertex t. Assume that wv is the maximal weight that is less than

or equal to j−1 of an edge incident to v ∈ V1. Duplicate v into wv + 1 different copies and

arrange the copies in an arbitrary order v1, . . . , vwv+1. For v1, the first copy of v, create a

directed edge (s, v1) with capacity j−wv and a directed edge (v1, u) with capacity 1, from

v1 to every customer u ∈ V2 such that (v, u) ∈ A. For vi the i-th copy of v, i ≥ 2, create

a directed edge (s, vi) with capacity 1 and a directed edge (vi, u) with capacity 1 to all the

customers u such that (v, u) ∈ A and w(v, u) ≤ wv − i + 1. Finally for each customer

u ∈ V2 create a directed edge (u, t) with capacity 1. Figure 16 demonstrates an example of

G′3.

2.4 The MWC-Modified Algorithm

As known in previous section, for any bipartite graph G(V1, V2, A, w) with bipartition

(V1, V2), edge set A and weight function w, MWC algorithm finds the minimum value

of max
v∈V1

{max
i
{i + w(evi)}}. Based on the control function obtained from the MWC algo-

rithm, we make some modifications and try to make max
vj∈V1

{max
i
{i+ w(e

vj

i)}+ j} as small

26

Figure 16: (a) A bipartite graph G. (b) Its corresponding flow graph G′3.

as possible. We call this modified algorithm MWC-Modified.

MWC algorithm generates a control function F : V2 → V1, and every server can be labeled

with a weight max
e
vj
i ∈F
{i+w(e

vj

i)}, denoted by wS . Assuming that servers are in the descend-

ing order of their weights (i.e., wSj
≥ wSj−1

, Sj and Sj−1 belong to |V1|), we know that

wS1 is the minimum possible value. Now let MW start from wS1 + 1 to max
F
{wSj

+ j},

and try to generate a new control function F ′ such that max
F ′
{wSj

+ j} ≤ MW , and keep

MW as small as possible. The details of the algorithm are described as following.

27

MWC-Modified algorithm

Input: Bipartite graph G(V1, V2, A, w), V1 is the set of servers, V2 is the set of customers

1. After performing MWC algorithm, obtain a control function F between servers and

customers, and label every server with a weight wSj
= max

e
vj
i ∈F
{i+ w(e

vj

i)}.

2. Sort servers in the descending order of their weights, such that wS1 ≥ wS2 ≥ . . . ≥

wS|V1|
. max weight denotes max

F
{wSj

+ j}.

3. Create buckets, and put all servers with weight w into bucket Bw. Nw is the sum of

vertices whose weight is bigger than or equal to w.

4. Let MW start from w1 + 1 to max weight

For each bucket from BwS1
to BwSn

, if Nw + w > MW , then call procedure

Re-Matching for each member in the bucket Bw, until Nw + w ≤MW .

Repeat this step, until Nw + w ≤MW for every bucket.

5. Update the control function and the weight of every server.

Procedure Re-Matching

Input: Server S and its matched customers C1, C2, . . . , Cn, i.e., (S,Ci) is in the control

function, where 1 ≤ i ≤ n, and all customers are in the descending order of their weights.

1. For each customer C from C1 to Ci (Ci: the first customer such that Ci+ i is equal to

wS), check every unmatched server S ′ ofC, i.e., (S ′, C) is not in the control function.

If wS′ +NwS′
< MW , and wC + 1 6= wS or wC + 1 < wS′ , then

28

a) add (S ′, C) to the control function, and remove (S,C) from the control

function,

b) go to step 2.

If wS′ +NwS′
>= MW , and wC + 1 6= wS or wC + 1 < wS′ ,

If C will not increase the weight of S ′,

or if wC + 1 > wS′ and NwC+1 + wC + 1 < MW ,

or if wC + 1 ≤ wS′ and NwS′+1 + wS′ + 1 < MW , then

a) add (S ′, C) to the control function, and remove (S,C) from the control

function,

b) go to step 2.

2. Update weights and buckets of servers, and return.

In this thesis we apply Dinic’s maximum flow algorithm, whose complexity is O(|V |2|E|),

thus the total complexity of MWC algorithm is O(|V |2|E| log |V |). The main part of

MWC-Modified algorithm is step 4, where all servers are traversed to check if their weight

can be reduced to meet max
F ′
{wSj

+j} ≤MW by modifying the control function. The com-

plexity of procedure Re-Matching is O(
∑
Ci∈V2

deg(Ci)) = O(|E|), and thus the complex-

ity of step 4 is O(|V |2|E|). The total complexity of MWC-Modified is O(|V |2|E| log |V |),

when applying Dinics maximum flow algorithm.

29

3 New Broadcast Heuristics

In this chapter, we will present two new heuristics, which broadcast messages from the

originator to the rest of network via shortest paths.

3.1 Definitions

We start with some definitions which are essential to have a better understanding of the

heuristics. All vertices and edges are supposed to be in a connected graph G = (V,E).

Definition 1 Given an originator o and any vertex v, the layer of v, denoted by L(v), is

the shortest distance from o to v. A graph GL = (VL, EL) is called a layer graph of graph

G, where VL = V and for any edge (u, v) ∈ E, (u, v) ∈ EL iff L(v) = L(u) + 1.

It’s easy to find out that every two adjacent layers construct a bipartite graph. Figure 17

shows an simple example. Vertex c is the child of a, as well as the parent of d, e and f .

Thus, all the vertices c, d, e and f are the descendants of a.

Definition 2 If vertex u and vertex v are neighbors and L(v) = L(u) + 1, then v is called

the child of u, and u is called the parent of v. Any child of vertex u is its descendant. Any

of the children of the descendants of u is also a descendant of u.

In figure 17, vertex c is the child of a as well as the parent of vertices d, e and f . Thus, all

the vertices c, d, e and f are the descendants of a.

30

Figure 17: An example of layer graph. (a) The original graph G (b) The layer graph GL

Definition 3 In order to estimate the broadcast time of any vertex v in graphG, we employ

the concept of estimated time, which is denoted by EB(v). It can be calculated by the

following recursion.

1. EB(v) is equal to 0, if vertex v has no children.

2. If v has k children, c1, c2, . . . , ck, and all these children are in the descending order

of EB(ci), i.e., EB(ci) ≥ EB(ci+1), then EB(v) = max{EB(ci) + i}, where

1 ≤ i ≤ k.

Here, we will introduce an algorithm to calculate EB(v) if EB(ci) is given, where ci is the

child of v for 0 ≤ i < k. The complexity of this algorithm is O(k).

1. Find max{EB(ci)} of v, and denote it by MAX .

2. Create k buckets, and number them from 0 to k − 1.

31

3. Consider any child c of v, if MAX − i ≥ EB(c) > MAX − i− 1, put c into the ith

bucket. Only the minimal value and the number of elements are necessary to record.

SUM(i) denotes the number of elements in the first i buckets, and MIN(i) denotes

the minimal value in the ith bucket.

4. Finally, EB(u) = max{SUM(i) +MIN(i)}, for 0 ≤ i < k.

The proof of the last step is as follows: Given a vertex v with k children, c1, c2, . . . , ck,

which are ordered such that EB(ci) ≥ EB(ci+1), then EB(v) = max{EB(ci) + i}, for

1 ≤ i ≤ k. EB(ci) + i is called the order-weight of ci. As MAX − i ≥ EB(c) >

MAX − i− 1 for any child c in the ith bucket, the maximum difference among all EBs in

this bucket is less than 1. Therefore, in the ith bucket, the child with the minimum EB has

the maximum order-weight, which is equal to SUM(i)+MIN(i). Thus, max{SUM(i)+

MIN(i)} is the maximum order-weight of all the children, which is EB(v).

Proposition 1 For any vertex v in a tree, EB(v) is exactly the time that vertex v needs to

broadcast the message to all of its descendants.

Proof : Vertex v and its descendants make up of a tree rooted at v. If vertex v has n

children, v1, v2, . . . , vn, without loss of generality we assume that EB(v1) ≥ EB(v2) ≥

. . . ≥ EB(vn). Thus the optimal broadcast scheme of vertex v is the one where it sends

the message to child vi at round i. Since each vertex has one and only one parent in a tree,

EB(v) equals to max{EB(vi) + i} which gives only one possible value. Hence, it is easy

to conclude that EB(v) is the broadcast time of root v. Figure 18 shows a simple tree, and

32

the root is also the originator. The EB(v) of each vertex v is labeled on the figure, which

is equal to the time to broadcast a message from v to all of its descendants .

Figure 18: Broadcast time of Tree.

According to the definition of the layer graph, any two adjacent layers in a layer graph

construct a bipartite graph. All the matching algorithms for bipartite graphs can be per-

formed to generate a spanning tree. Based on the spanning tree, a broadcast scheme can be

obtained. In particular, as known in Chapter 2, MWC algorithm is a matching algorithm

that can be applied to generate a spanning tree.

Proposition 2 The MWC algorithm is a 2-approximational algorithm for any layer graph

with 3 layers.

Proof : There is always one node, the originator, on the layer 0, and we assume that there

are n nodes on the layer 1, v1, v2, . . . ,vn. Based on the spanning tree generated by the

33

MWC algorithm in layer graph, without loss of generality, all the n nodes are sorted in the

descending order of their weights, i.e., WA1 ≥ WA2 ≥ . . . ≥ WAn, where WAi denotes

the weight of vi on the layer 1, 1 ≤ i ≤ n. Let b(A,G) denote the broadcast time of the

spanning tree. According to the Definition 3 and Proposition 1, b(A,G) = max{i+WAi},

1 ≤ i ≤ n, and we can conclude that b(A,G) ≤ WA1 + n.

There always exists an optimal broadcast scheme which generates the minimum broadcast

time of a layer graph G. Based on the optimal broadcast scheme, similarly, all n nodes

on the layer 1 are assumed to be in the order such that WO1 ≥ WO2 ≥ . . . ≥ WOn,

where WOi is the weight of vi on the layer 1 in optimal situation, 1 ≤ i ≤ n. We denote

the optimal broadcast time of the spanning tree of the layer graph G by b(O,G). Since

b(O,G) = max{i + WOi}, 1 ≤ i ≤ n, we have b(O,G) ≥ max{WO1 + 1,WOn + n}.

By the definition of the MWC problem, we know that WA1 is the minimum possible value

of v1, hence WO1 ≥ WA1. As WO1 ≥ WA1 and WOn ≥ 0, we can conclude that

b(O,G) ≥ max{WA1 + 1, n}.

Now we have that b(A,G) ≤ WA1 + n and b(O,G) ≥ max{WA1 + 1, n}.

• If WA1 + 1 ≥ n, then b(O,G) ≥ WA1 + 1, thus b(A,G)
b(O,G)

≤ WA1+n
WA1+1

≤ 2n−1
n
≤ 2.

• If WA1 + 1 < n, then b(O,G) ≥ n, thus b(A,G)
b(O,G)

≤ WA1+n
n
≤ 2n−1

n
≤ 2.

We can see that in any case b(A,G)
b(O,G)

is less than or equal to 2, thus the broadcast time gener-

ated by the MWC algorithm in any layer graph with 3 layer is 2-approximation.

34

3.2 Random Heuristic

In this section, a new heuristic called Random heuristic will be introduced. For every

child who has several parents, the algorithm helps them randomly determine one parent

and remove the edges with the other unmatched parents. Finally, each child is matched

with only one parent. As a result a spanning tree of graph G is generated, in which every

vertex connects with the root via the shortest path. This spanning tree can also generate the

broadcast scheme of graph G. The complexity of Random heuristic is O(|E|).

3.2.1 Algorithm

The details of the Random heuristic are as follows.

ALGORITHM Random

1. In any arbitrary graph G, start from the originator o ∈ G and run the breadth-first

search (BFS) algorithm. Remove all the edges that have not been traversed during

BFS. As a result of this, a layer graph GL is constructed.

2. For every two adjacent layers in GL, randomly match a parent with each child who

has more than one parent. Then remove all edges connecting the child with its un-

matched parents. A spanning tree is created then.

3. In the spanning tree generated in the previous step, calculate EB(v) for each vertex

v.

35

4. EB(o) is the broadcast time of o in graph G.

The main step of the Random heuristic is to randomly match each child with only one

parent between adjacent layers in the layer graph, that is the reason why we call it Random

heuristic. Figure 19 illustrates a simple example of the Random heuristic. The original

graph G and its layer graph GL are shown in Figure 19(a) and Figure 19(b). In GL, we

can see that vertex d has two parents, vertex b and vertex c. Hence there are two choices to

match the vertex d with a parent. Actually in this case, d’s choices have crucial influence

on the final result. In Figure 19(c), we can see that if we pick b as vertex d’s parent, and

remove the edge connecting to vertex c, the broadcasting process from vertex a terminates

in 3 rounds. Figure 19(d) shows the alternate choice, where vertex d chooses c as its parent

and the broadcast time increases to 4.

3.2.2 Complexity

The Random heuristic adopts a simple random matching strategy in the bipartite graph

so as to achieve a low complexity O(|E|). The main part of the first step is the BFS,

which is accomplished in O(|V | + |E|) = O(|E|) time. Step 2 traverses all vertices

and randomly matches children to parents. Thus the complexity is O(|V |). The last

step is to calculate EB(v) for every vertex v. The complexity of calculating EB(vi) is

O(deg(vi)), where deg(vi) is the degree of vi. Hence, the total complexity of step 3 is

equal to
∑n
i=1O(deg(vi)) = O(E), since

∑n
i=1 deg(vi) = 2|E|. The complexity of Ran-

dom heuristic equals to O(|E|) +O(|V |) = O(|E|).

36

Figure 19: An example of Random Heuristic. (a) The original graph G with originator a.
(b) The layer graph GL. (c) One possible broadcast scheme, total broadcast time equals to
3. (d) The other possible broadcast scheme, the broadcast time is equal to 4.

37

3.3 Semi-Random Heuristic

The Random heuristic has a low time complexity, and generates a scheme where every

member in the network receives the message via the shortest path. However, it makes

random decisions when matching children and parents. Therefore, Semi-Random heuristic

is designed to have some improvement over the random algorithm. Instead of matching

randomly between adjacent layers, it employs a strategy that tries to make max{EB(pi)}

as small as possible, for each parent pi on the same layer. The complexity of an algorithm

is always a critical factor that has to be considered when designing any algorithm. The

complexity of the Semi-Random heuristic is the same as that of the random one.

3.3.1 Algorithm

ALGORITHM Semi-Random

1. Start from the originator o ∈ G, run breadth-first search (BFS) algorithm. Remove

all edges that have not been traversed during BFS. As a result, a layer graph GL is

constructed. Here, we assume there are k layers in GL, and nl vertices on the layer l,

where 0 ≤ l ≤ k − 1.

2. Label each vertex on the layer k − 1 with weight 0.

3. In the layer graph GL, for each layer l starting from k− 2 to 1, call procedure SRM .

4. Finally, EB(o) is the broadcast time of originator o in graph G.

38

PROCEDURE SRM

Input: All vertices on layer l and layer l + 1, and all edges between them.

1. On layer l, for each parent pi starting from p1 to pnl
,

(a) pick all of pi’s neighbors with different weights on layer l + 1 as its children,

and remove all edges connecting these matched children with other parents on

layer l,

(b) label pi with EB(pi) without considering its unmatched children.

2. For each unmatched child,

(a) match it with a parent which has the smallest weight, and remove its edges

connecting to other parents,

(b) update the weight EB(p) for its matched parent p.

According to the definition of estimated time, it is easy to conclude that children of iden-

tical weight connected to the same parent will increase the parent’s estimated time. SRM

is a greedy algorithm that tries to make each parent connect with children with different

weights. An example is illustrated to help comprehend the algorithm. Figure 20 shows the

original graph G with the originator a. Figure 21 shows the layer graph GL with 5 layers,

after breadth first search on G and removing all untraversed edges. The estimated time for

each child on layer 4 is calculated and labeled on the graph.

39

Figure 20: The original graph G with originator a.

Figure 21: The layer graph GL.

40

Figure 22: Perform SRM on layer 3 and layer 4.

Figure 22 shows how procedure SRM works between layer 3 and layer 4. Both vertex h

and j have only one child, thus they have no choice and to be connected to vertices m and

o respectively. Meanwhile, vertex o cuts off the edge with parent i. Hence, parent i has to

take vertex l as its child. Based on the new matchings, the estimated time, EB for every

vertex on layer 3 is calculated, and labeled on the graph. The dashed line on the figure

represents a removed edge.

41

Figure 23: Perform SRM on layer 2 and layer 3.

Figure 23 illustrates the details of the matching between layer 2 and layer 3. First, parent

d randomly chooses h as its child, since both h and j have the same weight. As a result,

the edge between child h and parent e is removed, which is shown in a dashed line. Then

parent e has to pick vertex i without any other choice. Parent f is able to adopt vertex

j and vertex k, because they have different weights. Thus, both edges (d, j) and (g, k)

are removed (shown in dashed lines). Finally, parent g has to take over child l. After the

matching step, vertices d, e, f and g are labeled with weight 2, 2, 2, 1 respectively.

42

Figure 24: Perform SRM on layer 1 and layer 2.

Figure 24 shows the last step. First, parent b randomly chooses vertex d as its child, since

all of its three children have the same weight. Here, EB(b) equals to 3. Then parent c picks

vertex f and vertex g, because they have different weights. Thus, EB(c) equals 3 as well.

Since now EB(b) = EB(c), vertex e randomly chooses parent b, and EB(b) is updated to

4. All edges removed during the matching are shown in dashed lines.

There is only one vertex on layer 0, the originator, thus it is easy to obtain that EB(a) = 5.

We can see that a spanning tree is generated after matching, and a broadcast scheme can be

obtained from this spanning tree. According to the Proposition 1, the broadcast time of the

originator a is equal to EB(a) = 5.

43

Figure 25: The broadcast scheme of graph G.

Figure 25 shows the broadcast scheme obtained from the spanning tree, by which each ver-

tex receives the message through the shortest path. The arrows in the figure represents the

broadcast scheme, while dashed lines denote all the edges not involved in the broadcasting.

44

3.3.2 Complexity

Even though there are more operations and steps compared to the Random heuristic, the

Semi-Random heuristic does not increase the asymptotic time complexity. The breadth-first

search and generation of the layer graph have a complexity ofO(|E|). The procedure SRM

does not exceed this bound either. In the first step of SRM, each child has to determine

if it has the same weight as others. Using binary tree to store the weights and applying

binary search to check the weights, the total complexity for the whole graph is O(log 1) +

O(log 2) + . . . + O(log |V |) = O(log |V |). Moreover, the calculation of EB(pi) takes

O(deg(pi)) for each parent, and the total complexity is O(|E|) (already shown in Random

heuristic). Hence, the complexity of the first step of SRM is O(log |V |+ |E|) = O(|E|). In

the second step of SRM, searching a parent with the smallest weight for each child ci runs

in O(deg(ci)), thus the total complexity is O(|E|). Then, updating EB(v) for any single

parent can be done in constant time, and the complexity of updating all parents is O(|V |).

We can conclude that the procedure SRM has a complexity of O(|V |) +O(|E|) = O(|E|),

and the total complexity of Semi-Random Heuristic is also O(|E|).

45

4 Simulation Results and Comparisons with other Heuris-

tics

In order to have a clear picture on the performance of the new heuristics in practice, we

implemented and ran the heuristics in commonly used topologies and four network mod-

els from the NS-2 simulator. In this chapter all the simulation results will be presented

and illustrated in tables and figures. In addition, all the heuristics mentioned in the pre-

vious chapters will be used for comparisons. In the first section, the simulation results in

commonly used topologies are presented, and the next section provides the results in four

network models from NS-2 simulator .

Before going into the details, the abbreviations used in this chapter are:

• RH: The result of Round Heuristic from [4];

• TBA: The simulation result of Tree Based Algorithm obtained from [20];

• P-R: The simulation results of Random algorithm;

• S-R: The simulation result of Semi-Random algorithm;

• MWC: Like the SRM procedure in the Semi-Random heuristic, MWC algorithm

(described in chapter two) can be performed between adjacent layers in the layer

graph as well. Similarly, a spanning tree will be generated, and based on that we

can obtain the broadcast scheme. Here, we inplement this algorithm and present its

simulation results;

46

• MWC-M: Perform MWC-Modified algorithm (presented in chapter two) between

adjacent layers in the layer graph, and generate a broadcast scheme.

• OPT: The optimal values;

• LOW: The lower bound;

• UP: The upper bound;

• D: The dimension number;

• 99%CI: 99% Confidence Interval;

4.1 Simulation Results and Comparisons in Commonly Used Topolo-

gies

In this section, five commonly used topologies are studied, including Hypercubes, Cube

Connected Cycles, deBruijn graphs, Shuffle-Exchange graphs, and Butterfly graphs as well.

All the results and comparisons are illustrated in tables and figures.

4.1.1 Simulation in Hypercube

We already know that the broadcast time of hypercube is exactly equal to m, where m

is the dimension. Table 2 shows the simulation results in Hypercubes of different dimen-

sions, where the OPT values come from [24]. The Random and Semi-Random algorithms

provide optimal broadcast time only when m ≤ 5, otherwise with every increase of 1 in

47

the dimension, the broadcast time increases by 2 or 3. We can also see that Semi-Random

algorithm always has better results than the Random one. Compared with the results of the

Round Heuristic and the Tree Based Algorithm, the new algorithms do not perform well in

Hypercubes. The Tree Based Algorithm has the best performance, whose broadcast time

is equal to or just 1 more than the optimal value. When the dimension is large, the results

of the new algorithms are about twice that of the Tree Based Algorithm. MWC and MWC-

Modified algorithms almost have the same results as the new heuristics, nevertheless they

have a bigger time complexity and can only work for Hypercubes of small dimension. We

can conclude that the new algorithms are not suitable for Hypercubes. Figure 26 summa-

rizes the results.

D OPT TBA MWC MWC-M P-R S-R

3 3 3 4 3 3 3
4 4 4 5 5 4 4
5 5 5 6 6 6 5
6 6 6 8 9 8 7
7 7 7 10 10 10 9
8 8 9 12 11 12 11
9 9 10 15 13 14 14

10 10 11 16 16 17 15
11 11 12 18 17 19 18
12 12 13 20 20 22 20
13 13 14 - - 24 22
14 14 15 - - 27 25
15 15 16 - - 30 27
16 16 17 - - 32 30
17 17 18 - - 35 32
18 18 19 - - 38 34
19 19 20 - - 41 37
20 20 21 - - 43 39

Table 2: Simulation results of different heuristics in Hypercubes.

48

Figure 26: Simulation results in Hypercubes.

4.1.2 Simulation in Cube Connected Cycle

Table 3 shows the simulation results of the five algorithms in Cube Connected Cycles,

where the LOW and UP values come from [24]. The Random and Semi-Random algo-

rithms have the same broadcast time except when D = 14, and the results do not exceed

the upper bounds until D = 16. When comparing the results with the other algorithms,

we can find that the results of the new algorithms are equal to or just 1 more than that

of Round Heuristic and Tree Based Algorithm, which are both known as the best heuris-

tics in practice. MWC and MWC-Modified algorithm provide similar results, and MWC-

Modified algorithm works better when dimension is equal to 3, 7 and 8. Since the new

algorithms have lower complexities, it is possible to calculate the broadcast time for Cube

Connected Cycles of dimension 17 and 18, which would be harder with other heuristics.

Figure 27 illustrates all these results, and we can see that all these heuristics almost have

49

the same performance in Cube Connected Cycles.

D LOW UP RH TBA MWC MWC-M P-R S-R

3 6 7 6 6 7 6 6 6
4 9 9 9 9 10 10 9 9
5 11 12 11 11 12 12 11 11
6 13 14 13 13 14 14 14 14
7 16 17 16 16 17 16 16 16
8 18 19 18 18 20 19 19 19
9 21 22 21 21 22 22 21 21

10 23 24 23 23 24 24 24 24
11 26 27 26 26 - - 27 27
12 28 29 28 28 - - 29 29
13 31 32 31 31 - - 32 32
14 33 34 33 33 - - 35 34
15 36 37 - 36 - - 37 37
16 38 39 - 39 - - 40 40
17 - - - - - - 43 43
18 - - - - - - 46 46

Table 3: Simulation results of different heuristics in Cube Connected Cycles.

Figure 27: Simulation results in Cube Connected Cycles.

50

4.1.3 Simulation in Shuffle-Exchange Graph

The results in Shuffle-Exchange graphs are shown in Table 4 and Figure 28. The OPT

values come from [24]. When D ≤ 15, the Random algorithm has exactly the same per-

formance as the Semi-Random one, while after that it results are always 1 more than that

of the Semi-Random’s. Both of them give the optimal value when D ≤ 8. After that, the

simulation results of the Semi-Random algorithm is always 1 more than the optimal value,

while the Random one becomes at most 2 more from the optimal value. Compared with the

Round Heuristic and Tree Based Algorithm, the Semi-Random algorithm has the same per-

formance except when the dimension is equal to 9, 10 and 11. Moreover, the Semi-Random

algorithm also generates the new upper bound for the Shuffle-Exchange graph of dimension

21. The MWC-Modified algorithm performs better than the MWC algorithm only when

the dimension is 5. Figure 28 shows that all these heuristics have similar performance in

Shuffle-Exchange graphs.

Figure 28: Simulation results in Shuffle-Exchange graphs.

51

D OPT RH TBA MWC MWC-M P-R S-R

3 5 5 5 5 5 5 5
4 7 7 7 7 7 7 7
5 9 9 9 10 9 9 9
6 11 11 11 12 12 11 11
7 13 13 13 14 14 13 13
8 15 15 15 16 16 15 15
9 17 17 17 18 18 18 18

10 19 19 19 20 20 20 20
11 21 21 21 22 22 22 22
12 23 24 24 24 24 24 24
13 25 26 26 - - 26 26
14 27 28 28 - - 28 28
15 29 - 30 - - 30 30
16 31 - 32 - - 33 32
17 33 - 34 - - 35 34
18 35 - 36 - - 37 36
19 37 - 38 - - 39 38
20 39 - 40 - - 41 40
21 - - - - - 43 42

Table 4: Simulation results of different heuristics in Shuffle-Exchange graphs.

4.1.4 Simulation in DeBruijn Graph

The lower bounds of DeBruijn graphs are calculated with the formulas in [28], thus they

just hold asymptotically. That is why we can find some simulation results which are less

than the lower bounds, such as the broadcast time of dimension 4 shown in table 5.

In table 5 we can see that the simulation results of different heuristics in DeBruijn graphs.

The LOW and UP values come from [24]. In most cases, the Random algorithm generates

the same results as the Semi-Random one, with the exception when the dimension is equal

to 9, 13 and 20. Moreover, their results do not exceed the upper bound until dimension is

52

17, and after that each result is just one or two rounds over the upper bound of the broadcast

time. Again, the Round Heuristic and Tree Based Algorithm have almost the same results,

which are equal or close to the lower bounds. When D ≤ 14, the results of the new heuris-

tics are at most 2 more than that of the Round Heuristic and Tree Based Algorithm, and

after that the difference increases to 3 and 4. The MWC and MWC-Modified algorithms

have exactly the same simulation results, which are also similar to the new heuristics. In

Figure 29, we can see that the Round Heuristic and the Tree Based Algorithms have better

results.

D LOW UP RH TBA MWC MWC-M P-R S-R

3 4 6 4 4 4 4 4 4
4 6 8 5 5 5 5 5 5
5 7 9 7 6 7 7 7 7
6 8 11 8 8 8 8 8 8
7 10 12 9 9 10 10 10 10
8 11 14 11 11 12 12 12 12
9 12 15 12 12 14 14 14 13

10 14 17 14 14 15 15 15 15
11 15 18 15 15 17 17 17 17
12 16 20 17 17 19 19 19 19
13 18 21 18 18 - - 21 20
14 19 23 20 20 - - 22 22
15 20 24 - 21 - - 24 24
16 22 26 - 23 - - 26 26
17 23 27 - 25 - - 28 28
18 24 29 - 26 - - 30 30
19 26 30 - 28 - - 32 32
20 27 32 - 29 - - 34 33

Table 5: Simulation results of different heuristics in DeBruijn graphs.

53

Figure 29: Simulation results in DeBruijn graphs.

4.1.5 Simulation in Butterfly Graph

Observing table 6, we can find that the new heuristics have the same results when D ≤ 13,

and after that the Semi-Random algorithm performs better than the Random one. How-

ever, most results of the new heuristics are one or two rounds over the upper bounds of

Butterfly graphs. Because of the low complexity of the heuristics, we are able to calculate

the broadcast time for Butterfly graphs of dimension 17 and 18. On the other side, the

Round Heuristic works the best in the comparison, and the Tree Based Algorithm has the

same performance except when dimension is 10 or 14. When increasing the dimension, the

difference between the results of the new heuristics and of the previous heuristics also rises

from 1 to 4. Again, the MWC and MWC-Modified algorithm have similar results to that of

the Random and Semi-Random algorithms, however they only work in small graphs . We

can conclude that the new heuristics are not the best candidates for the Butterfly graphs.

Figure 30 shows the difference of theses heuristics. The LOW and UP values come from

54

[24].

D LOW UP RH TBA MWC MWC-M P-R S-R

3 5 5 5 5 6 6 5 5
4 7 7 7 7 9 8 8 8
5 8 9 9 9 11 10 10 10
6 10 11 10 10 12 12 12 12
7 11 13 12 12 14 14 14 14
8 13 15 14 14 16 16 16 16
9 15 17 16 16 18 18 18 18

10 16 19 17 18 20 20 20 20
11 18 21 19 19 - - 22 22
12 19 23 22 21 - - 24 24
13 21 25 23 23 - - 26 26
14 23 27 24 25 - - 29 28
15 24 29 - 27 - - 31 30
16 26 31 - 29 - - 33 32
17 - - - - - - 35 34
18 - - - - - - 37 36

Table 6: Simulation results of different heuristics in Butterfly graphs.

Figure 30: Simulation results in Butterfly graphs.

55

4.2 Simulation Results and Comparisons in NS-2 Models

In this section, all the simulation results collected in different network models are listed in

tables. Four models are involved in the simulation, which will be introduced next. Since

there is no optimal value for these network models, we just compare the results of our

heuristics to those of previously known heuristics. Six heuristics will be compared to each

other, which are the Round Heuristic, the Tree Based Heuristic, the Random heuristic,

the Semi-Random heuristic, and the heuristics applying MWC and MWC-Modified algo-

rithms.

4.2.1 Introduction to Network Models

First, it is necessary to introduce the NS-2 simulator and the different network models.

NS (Network Simulator) is developed for research in interconnection networks technology,

which began as a variant of the REAL network simulator in 1989. NS-2 is the second

generation of the simulator, and it can generate topologies automatically by using several

models. In this section, four different network models are introduced, which are GT-ITM

Random [44], GT-ITM Transit-Stub [44], Tiers [9], and BRITE Top-down Hierarchical

models [32].

GT-ITM Random and Transit-Stub are both parts of Georgia Tech Internetwork Topology

Models. The Pure-Random model is a standard random graph model, which is the proto-

type of many other models. This model places vertices in a plane randomly, and adds an

edge between each pair of vertices with a probability p. This model is often considered in

56

network researches, even though it does not correspond to any real network. When apply-

ing GT-ITM graph generator to generate pure random model, the probability p of an edge

is the most crucial parameter to configure.

Transit-Stub is a well-known model for the Internet. The Internet can be regarded as a set

of routing domains, a group of hosts on the Internet, can be considered to be an independent

network. All vertices in a domain share the same routing information. There are two kinds

of routing domains, one of which is the stub domain while the other is called the transit

domain. A stub domain carries only traffic that originates or terminates in the domain.

Meanwhile, a transit domain never has this restriction. The function of transit domains is

to interconnect stub domains efficiently. For instance, stub domains generally correspond to

some interconnected LANs (Local Area Networks) such as campus networks, while transit

domains are usually regarded as MANs (Wide Area Networks) or WANs (Metropolitan

Area Networks).

A transit domain is made up of a set of backbone nodes. In a transit domain, each backbone

node may either connect to other transit domains, or connect to a number of stub domains,

via gateway nodes in the stubs. Stub domains can be classified as single-homed or multi-

homed stub: single-homed stubs connect to only one transit domain, while multi-homed

ones connect to more than one transit domain. Moreover, some stub domains may have

connections to other stubs, and transit domains can also be organized in hierarchies. Figure

31 shows an example of internet domain structure.

Similar to the real Internet, GT-ITM Transit-Stub generates graphs containing intercon-

57

Figure 31: Example of Internet Domain Structure.

nected transit and stub domains. Furthermore, it can produce graphs having realistic aver-

age node degrees. The following parameters are available when applying GT-ITM Transit-

Stub model.

• The number of transit domains, and the number of stub domains connected to each

transit node.

• The number of transit-stub and stub-stub edges.

• The number of nodes in the transit domains and the stub domains.

• The probability of an edge between each pair of nodes in the transit domains and stub

domains.

The third model, the Tiers model, is one of the best network design models for networks

research, and could accurately model the real network. This model generates topologies

corresponding to the data communication networks such as IP network and ATM network.

58

Like the real networks, the Tiers model has a hierarchical structure, that is why it is called

Tiers. The three levels of hierarchy are referred to as WAN, MAN and LAN levels, corre-

sponding to the transit domains, stub domains and LANs respectively. The model does not

currently support multiple WANs, thus the total number of WAN, is equal to 1. LANs such

as Ethernet and Token Rings are basically modeled as star topologies. However, LANs

should be modeled as being interconnected with small degree. Meanwhile, each stub do-

main (MAN) has a small number of connections to a transit domain (WAN). Figure 32 and

33 provide two Tiers networks of different scales.

The graph generator TIERS, created by Matthew B. Doar, is used to generate random

networks. The major parameters chosen for this model are:

• NW , the number of WANs; and SW , the number of nodes in a WAN. As mentioned

in last paragraph, NW is always set to 1.

• NM , the number of MANs; and SM , the number of nodes per MAN.

• NL, the number of LANs per MAN; and SL, the number of nodes in each LAN.

The total number of nodes in the graph is SW +NMSM +NMNLSL. The other parameters

of the model are:

• RW ,RM and RL; the degree of intra-networking redundancy in the WAN, MAN and

LAN, respectively. This is expressed simply as the degree from a node to other nodes

of the same type.

59

• RMW and RLM ; the degree of internetwork redundancy between networks. This is

the number of connections between a MAN and a WAN(RMW), or a LAN and a

MAN(RLM).

Figure 32: A Typical Tiers Internetwork.

Figure 33: A Large Tiers Network.

60

Last, we introduce models from BRITE topology generator. BRITE (Boston university

Representative Internet Topology gEnerator) is a universal topology generator, which gen-

erates synthetic topologies that accurately reflect many aspects of the actual Internet topol-

ogy (e.g. hierarchical structure, degree distribution, etc.); combines the strengths of as

many generation models as possible in a single generation tool; provides interfaces to

widely-used simulation applications such as ns, SSF and OmNet++ as well as visualiza-

tion applications.

Besides imported models, BRITE can generate different kinds of models, e.g. Flat Router-

level Models, Flat AS-level Models, and Top-down Hierarchical Models.

Flat Router-level Models: This model represents router-level topologies. First, BRITE

places the nodes on the plane randomly or in heavy-tailed way. Then, nodes are intercon-

nected in one of two ways:

• Waxman’s probability model: the probability of interconnecting two nodes u and v

is given by P (u, v) = αed/(βL), where 0 < α, β ≤ 1, d is the Euclidean distance

from node u to node v, and L is t he maximum distance between any two nodes;

• Barabasi-Albert(BA) model: when a node i joins the network, the probability that it

connects a node j already belonging to the network is given by P (i, j) = dj∑
k∈V

dk
,

where dj is the degree of target node j, V is the set of nodes that have joined the

network and
∑
k∈V dk is the sum of outdegrees of all nodes that previously joined the

network.

61

Flat AS-level Models: AS models represents AS-level topologies. This kind of models

is very similar to Flat Router-level Models, except that AS nodes in the plane have the

capability of containing associated topologies. Similarly, AS Waxman and AS BA models

are provided in BRITE.

Top-down Hierarchical Models: Top-down models generate two-level hierarchical topolo-

gies. First, BRITE generates an AS-level topology according to one of the available flat

AS-level models (e.g. Waxman or BA, etc.). Next, for each node in the AS-level topology,

BRITE generates a router-level topology using a different generation model from the avail-

able flat models that can be used at the router-level. Then, BRITE uses one of four edge

connection mechanisms (Random, Smallest degree, Smallest degree non-leaf, and Smallest

k-degree) to interconnect router-level topologies as dictated by the connectivity of the AS-

level topology. The final topology is obtained by flattening the hierarchical topology into

a router-level topology composed of the individual topologies associated with each node at

the AS-level. Figure 34 shows the three steps, labeled (1)-(3).

The basic edge connection methods provided with BRITE operate as follows. If (i, j) is a

link in the AS-level topology, then pick a node u from the router-level topology associated

with AS node i, RT (i), and a node v from the router-level topology associated with the AS

node j, RT (j), such that:

• Random: u is picked randomly from RT (i) and v randomly from RT (j);

• Smallest degree: u and v are nodes with the smallest degrees in RT (i) and RT (j),

respectively;

62

• Smallest degree non-leaf: u and v are nodes of smallest degree in RT (i) and RT (j)

respectively but are not leaves;

• Smallest k-degree: u and v are nodes of degree greater that or equal to k in RT (i)

and RT (j) respectively.

Figure 34: The structure of Top-down Hierarchical Models.

4.2.2 Simulation Results and Comparisons in GT-ITM Random Model

In this section, a statistical concept, called confidence interval, is employed in order to ob-

tain reliable intervals of the simulation results for the Random and Semi-Random heuris-

tics.

In statistics, a confidence interval (CI) is a particular kind of interval estimate of a popu-

lation parameter. Instead of estimating the parameter by a single value, an interval likely

63

to include the parameter is given. Thus, confidence intervals are used to indicate the re-

liability of an estimate. How likely the interval is to contain the parameter is determined

by the confidence level or confidence coefficient. Increasing the desired confidence level

will widen the confidence interval. A confidence interval is always qualified by a particular

confidence level, usually expressed as a percentage; thus one speaks of a ”95% confidence

interval”. The end points of the confidence interval are referred to as confidence limits.[41]

For each graph in the simulation, we perform both of the new heuristics 100 times. As a

result, 100 samples for each heuristic are collected, then 99% confidence interval of the

population is computed based on the sample mean and sample standard deviation. In the

following tables, 99%CI denotes the 99% confidence interval. As confidence interval is

based on the sample mean, it is always shown in the form of an interval around the mean.

If all samples are of the same value, there is no need to compute confidence interval, then

just leave that entry blank.

At beginning, we simulate heuristics in GT-ITM Random model. Table 7 and Figure 35

show the data collected in the graph with 200 vertices. Here, P stands for the probability of

having an edge between each pair of vertices. Obviously, higher probability leads to more

edges in the graph. Six heuristics are abbreviated by RH , TBA, MWC, MWC −M ,

P -R, and S-R.

We can see that the Random and Semi-Random algorithms have identical simulation re-

sults, even though the number of edges rises from 316 to 507. However, referring to their

confidence interval, the Semi-Random heuristic always works a bit better than the Random

64

one. Compared with the Round Heuristic and the Tree Based Algorithm, the new heuris-

tics only generate better results in the graph of 391 edges. In Figure 35, we can see that the

MWC and MWC-Modified heuristics have the worst results.

P Edge RH TBA MWC MWC-M P-R 99%CI S-R 99%CI

0.015 316 10 10 11 11 10 10.5-10.75 10 10.1-10.31
0.016 346 10 10 11 11 10 10.78-10.97 10 10.33-10.58
0.017 373 10 10 11 11 10 10.52-10.77 10 10.26-10.51
0.018 388 9 9 11 11 10 10.66-10.89 10 10.33-10.58
0.019 391 11 11 10 10 10 10.6-10.83 10 10.4-10.65
0.02 411 9 9 10 10 10 10.28-10.53 10 10.09-10.3
0.022 423 9 9 10 10 10 10.41-10.66 10 9.99-10.1
0.024 475 8 8 10 11 10 10.87-11.06 10 10.86-10.99
0.025 494 9 8 11 11 10 10.88-11.11 10 10.48-10.73
0.026 507 8 8 11 10 10 10.94-11.07 10 10.96-11.01

Table 7: Simulation results in GT-ITM Random model with 200 vertices.

Figure 35: Simulation results in GT-ITM Random model with 200 vertices.

65

Table 8 and Figure 36 concern the GT-ITM Random model with 500 vertices. In this case,

the Random and Semi-Random heuristics still have the same simulation results. However,

with the number of edges increasing, their simulation results climb up slowly. Meanwhile,

the results of the Round Heuristic and Tree Based Algorithm fluctuate around 10. At last,

when the number of edges is equal to 2074, the results of the new heuristics are almost

twice that of the Round Heuristic and the Tree Based Algorithm. Actually, the bigger

probability p increases the number of edges, which leads to the increasement of degree of

most vertices in the graphs. After performing breadth-first search, more vertices will be on

the same layer, which increases the total broadcast time. Figure 36 shows clearly that the

Round Heuristic and the Tree Based Algorithm have better simulation results.

P Edge RH TBA MWC MWC-M P-R 99%CI S-R 99%CI

0.008 1003 10 10 13 13 12 12.18-12.41 12 12.1-12.31
0.009 1198 11 10 13 13 12 12.78-12.97 12 12.76-12.97
0.01 1238 10 10 13 13 12 12.82-12.97 12 12.86-12.99
0.011 1413 11 10 13 13 13 13.02-13.19 13 12.96-13.03
0.012 1481 10 10 13 13 13 13.72-13.99 13 13.24-13.49
0.014 1725 10 10 13 14 13 13.81-13.98 13 13.76-13.95
0.015 1830 10 9 14 14 14 14.09-14.3 14 14.05-14.24
0.016 2074 9 9 15 16 15 15.08-15.31 15 15.31-15.56

Table 8: Simulation results in GT-ITM Random model with 500 vertices.

66

Figure 36: Simulation results in GT-ITM Random model with 500 vertices.

4.2.3 Simulation Results and Comparisons in GT-ITM Transit-Stub Model

The first kind of GT-ITM Transit-Stub models that we studied are generated by following

parameters. The initial seed is 47. Each graph has 3 stub domains per transit node, with

no extra transit-stub or stub-stub edges. There are 3 transit domains, each of which has 8

nodes, and an edge between each pair of nodes with probability 0.5. Meanwhile, each stub

domain has (on average) 8 nodes, and edge probability is also 0.5. Thus, the graphs have

3× 8× (1 + 3× 8) = 600 vertices.

Table 9 and Figure 37 show the results in ten such graphs of different edges. The blank

in the table means that all samples are of the same value, and there is no need to compute

confidence interval. For example, when edge number is 1280, the results of Semi-Random

algorithm are consistent, and do not have interval. With the number of edges increasing,

the simulation results of all six heuristics fluctuate between 13 and 16. The Random and

67

Semi-Random heuristics almost have the same results except in the last case. However, if

considering the confidence interval, the Semi-Random one works better than the Random

one. Unlike the situations in GT-ITM Random model, the two new heuristics work best in

this model, and the other heuristics are more or less on the same level, that can be observed

in Figure 37.

Edge RH TBA MWC MWC-M P-R 99%CI S-R 99%CI

1169 14 13 14 13 13 13.34-13.59 13 13.2-13.45
1190 14 14 14 14 13 14.08-14.39 13 14.27-14.78
1200 16 15 14 14 13 13.89-14 13 13.13-13.68
1206 14 14 14 14 14 13.98-14.09 14 14-14.13
1219 15 14 14 14 13 13.46-13.71 13 13.21-13.46
1222 15 14 15 15 14 14.85-15.12 14 14.75-14.94
1231 14 13 14 14 13 13.78-13.97 13 13.51-13.76
1232 14 13 14 14 13 14-14.21 13 13.55-13.8
1247 13 14 14 14 14 - 14 -
1280 14 13 14 14 13 14-14.17 14 -

Table 9: Simulation results in GT-ITM Transit-Stub model with 600 vertices.

Figure 37: Simulation results in GT-ITM Transit-Stub model with 600 vertices.

68

Table 10 and Figure 38 show the simulation results in another kind of GT-ITM Transit-Stub

model, starting with initial seed 47. Each graph has 4 stub domains per transit node, with

no extra transit-stub or stub-stub edges. There are 4 transit domains, each of which has 8

nodes, and an edge between each pair of nodes with probability 0.5. Meanwhile, each stub

domain has (on average) 8 nodes, and edge probability is also 0.5. Thus, the graphs have

4× 8× (1 + 4× 8) = 1056 vertices.

This time, the Random and Semi-Random heuristic have the same simulation results, and

both of them generate better results than the other heuristics. Among the other four heuris-

tics, it is hard to tell which one performs the best or the worst. (See Figure 38).

Edge RH TBA MWC MWC-M P-R 99%CI S-R 99%CI

2115 17 16 16 17 16 16.23-16.48 16 16.25-16.5
2121 17 17 16 15 15 15.57-15.81 15 15.08-15.27
2142 16 15 16 15 15 15.84-16.13 15 15.42-15.67
2151 15 15 16 15 15 15.19-15.42 15 -
2169 17 17 16 16 15 15.86-16.01 15 15.6-15.83
2177 18 17 16 16 16 16.39-16.64 16 16.23-16.48
2185 16 16 15 15 15 - 15 -
2219 17 16 15 16 15 15.29-15.54 15 15.33-15.58
2220 15 15 15 15 14 15.03-15.24 14 15.03-15.26
2230 16 15 16 16 15 15.72-15.91 15 15.4-15.65

Table 10: Simulation results in GT-ITM Transit-Stub model with 1056 vertices.

69

Figure 38: Simulation results in GT-ITM Transit-Stub model with 1056 vertices.

4.2.4 Simulation Results and Comparisons in Tiers Model

All the heuristics are simulated in two Tiers models, one of which has 355 vetices, while

the other has 1105 vertices. The graphs of 355 vertices consist of one WAN, ten MANs

and five LANs, while graphs of 1105 vertices are constituted by one WAN, ten MANs and

ten LANs. All parameters used to generate these two kinds of graphs are listed in Table 11

and Table 12.

Edge NW NM NL SW SM SL RW RM RL RMW RLM

354 1 10 5 5 10 5 1 1 1 1 1
414 1 10 5 5 10 5 1 1 1 2 2
474 1 10 5 5 10 5 1 1 1 3 3
357 1 10 5 5 10 5 2 1 1 1 1
477 1 10 5 5 10 5 2 1 1 3 3
535 1 10 5 5 10 5 2 1 1 4 4
422 1 10 5 5 10 5 3 2 1 2 2
482 1 10 5 5 10 5 3 2 1 3 3
541 1 10 5 5 10 5 3 2 1 4 4

Table 11: Parameters for Tiers model with 355 vertices.

70

Edge NW NM NL SW SM SL RW RM RL RMW RLM

1214 1 10 10 5 10 10 1 1 1 2 2
1324 1 10 10 5 10 10 1 1 1 3 3
1447 1 10 10 5 10 10 1 1 1 4 4
1106 1 10 10 5 10 10 2 2 1 1 1
1216 1 10 10 5 10 10 2 2 1 2 2
1326 1 10 10 5 10 10 2 2 1 3 3
1110 1 10 10 5 10 10 3 2 1 1 1
1220 1 10 10 5 10 10 3 2 1 2 2
1331 1 10 10 5 10 10 3 2 1 3 3
1449 1 10 10 5 10 10 2 2 1 4 4

Table 12: Parameters for Tiers model with 1105 vertices.

Table 13 and Figure 39 show the simulation results in Tiers graphs of 355 vertices. Al-

though both Random and Semi-Random heuristics have the same minimal results, the

Semi-Random one works better than the Random one when considering confidence in-

tervals. In Figure 39, we can see clearly that all these heuristics fluctuate a lot, and it is

hard to point out which one works the best. However, the new heuristics have the advantage

of having lower time complexity.

Edge RH TBA MWC MWC-M P-R 99%CI S-R 99%CI

354 17 17 16 16 16 - 16 -
414 15 14 14 14 14 - 14 -
474 14 13 14 14 14 14.21-14.4 14 -
357 17 17 16 16 16 - 16 -
477 15 14 14 14 14 14.2-14.37 14 -
535 16 15 13 13 13 13.68-13.93 13 13.52-13.77
422 15 14 14 14 14 14.62-14.89 14 -
482 14 13 14 14 14 14.37-14.6 14 -
541 14 14 14 13 13 13.72-13.89 13 13.43-13.68

Table 13: The minimum simulation results in Tiers model with 355 vertices.

71

Figure 39: Simulation results in Tiers model with 355 vertices.

Table 14 and Figure 40 provide the simulation results in Tiers graphs with 1105 vertices.

The Semi-Random heuristic has lower confidence intervals than the Random one, although

they have identical results. The MWC and MWC-Modified heuristics also have similar

simulation results. Comparing all the heuristics, the Round Heuristic and Tree Based Al-

gorithm only work better in the graph with 1449 edges. Figure 40 shows clearly that the

new heuristics performs better except for the last two points.

Edge RH TBA MWC MWC-M P-R 99%CI S-R 99%CI

1214 22 21 21 21 21 - 21 -
1324 23 21 21 20 20 20.5-20.81 20 -
1447 22 21 22 22 22 - 22 -
1106 24 24 21 21 21 - 21 -
1216 22 21 21 21 21 - 21 -
1326 23 21 20 21 20 20.66-20.95 20 20.14-20.37
1110 24 23 21 21 21 - 21 -
1220 22 21 21 21 21 - 21 -
1331 20 20 20 20 20 20.13-20.38 20 -
1449 21 20 22 22 22 21.99-22.12 22 -

Table 14: The minimum simulation results in Tiers model with 1105 vertices.

72

Figure 40: Simulation results in Tiers model with 1105 vertices.

4.2.5 Simulation Results and Comparisons in BRITE Top-down Hierarchical Model

In this section, simulation results of four heuristics (P-R, S-R, MWC and MWC-Modified)

will be presented, since there is not any result for the other two. We simulate the heuristics

in graphs with 400 and 1000 vertices, and each has Waxman and Barabasi-Albert models.

The configurations of the graphs are as follows. For the graphs with 400 vertices, vertex

numbers of AS-level and Route-level are both 20, the number of links added per new node

ranges from 1 to 9, and the edge connection model is set to Smallest Degree. In the Waxman

model, α = 0.15, and β = 0.2. For the graphs with 1000 vertices, the vertex number of

AS-level is 20, the vertex number of Route-level is 50, the number of links added per new

node ranges from 1 to 9, and the edge connection model is set to Smallest Degree. In the

Waxman model, α = 0.15, and β = 0.2.

Table 15 and Table 16 show the simulation results in the graphs with 400 vertices. Table

15 is for the Waxman model, and Table 16 is for the Barabasi-Albert model. Results in

73

these two models are similar. With the number of edges increasing, the results of the four

heuristics decline first, and then ascend slowly. From Figures 41 and 42, we can see that

the Semi-Random algorithm performs the best among all the four heuristics.

Edge MWC MWC-M P-R 99%CI S-R 99%CI

420 22 22 22 - 22 -
840 15 15 15 15.12-15.53 14 14.97-15.1

1260 13 13 13 13.64-13.93 12 12.94-13.15
1680 14 14 13 13.21-13.52 13 13.08-13.31
2092 15 14 13 13.52-13.81 13 13.79-13.96
2440 16 16 14 14.96-15.25 14 14.19-14.44
2671 17 17 16 16.38-16.65 16 16.35-16.6
2733 18 18 16 16.03-16.34 15 15.76-15.97
2755 19 18 18 19.17-19.52 18 -

Table 15: Simulation results in BRITE Top-down Waxman model with 400 vertices.

Figure 41: Simulation results in BRITE Top-down Waxman model with 400 vertices.

74

Edge MWC MWC-M P-R 99%CI S-R 99%CI

399 22 22 22 - 22 -
777 17 17 17 17-17.21 16 -

1134 15 14 14 15.05-15.4 13 13.95-14.08
1470 14 13 13 14.16-14.49 13 13.03-13.2
1785 14 14 13 13.8-14.13 13 -
2079 14 14 13 13.25-13.5 13 13.19-13.44
2352 14 14 14 14.09-14.3 14 14.26-14.6
2604 16 16 14 14.63-14.88 14 14.31-14.56
2835 16 16 16 16.15-16.46 15 14.98-15.09

Table 16: Simulation results in BRITE Top-down BA model with 400 vertices.

Figure 42: Simulation results in BRITE Top-down BA model with 400 vertices.

Table 17 shows the simulation results in the Top-down Waxman model with 1000 vertices.

Except for the graphs with 1020 edges, all the four heuristics fluctuate around 17 and 18.

Figure 43 shows clearly that the new heuristics have better results than the MWC and

MWC-Modified heuristics.

75

Edge MWC MWC-M P-R 99%CI S-R 99%CI

1020 29 29 29 - 29 -
2040 19 19 18 18.92-19.09 18 18.74-18.93
3060 19 19 18 18.52-18.77 17 17.9-18.03
4080 17 18 17 17.47-17.76 16 16.6-16.85
5100 18 18 16 17-17.33 16 16.26-16.55
6108 18 18 17 17.89-18.36 16 17.06-17.29
7116 19 18 17 17.92-18.39 17 17.64-17.87
8117 19 19 17 18.14-18.43 18 18.56-18.81
9122 19 19 17 17.83-18.08 19 -

Table 17: Simulation results in BRITE Top-down Waxman model with 1000 vertices.

Figure 43: Simulation results in BRITE Top-down Waxman model with 1000 vertices.

76

Table 17 and Figure 44 show the simulation results in the Top-down Barabasi-Albert model

with 1000 vertices. The Random heuristic only generates better results than the Semi-

Random one in the graph with 8235 edges. The MWC and MWC-Modified heuristics have

similar results, and both perform worse than the new heuristics.

Edge MWC MWC-M P-R 99%CI S-R 99%CI

999 35 35 35 - 35 -
1977 23 23 22 22.9-23 22 22.92-23.01
2934 24 25 23 23.95-24.3 21 21.75-21.98
3870 22 22 21 21.65-22.18 18 19.02-19.27
4785 20 20 19 20.73-21.22 17 18.18-18.47
5679 19 19 18 19.05-19.34 17 17.56-17.83
6552 19 18 18 18.39-18.8 17 17.53-17.82
7404 20 19 17 18.36-18.85 17 18.23-18.52
8235 19 19 17 18.23-18.62 18 18.922-19.31

Table 18: Simulation results in BRITE Top-down BA model with 1000 vertices.

Figure 44: Simulation results in BRITE Top-down BA model with 1000 vertices.

77

4.3 Summary

Based on our extensive simulations in different topologies and network models, we can

conclude that in most cases the Random heuristic almost has the same performance as

the Semi-Random one. In commonly used topologies, they do not work as well as the

Round Heuristic(RH) and the Tree Based Algorithm(TBA), especially in the Hypercube

graphs. That is because of the high degree of each vertex in the graph and the property that

each vertex is informed via shortest path. However, in Cube Connected Cycles and Shuffle-

Exchange graphs, the performance of our heuristics are comparable to RH and TBA. The

situation is quite different in network models. In particular, the new heuristics generate

better results in graphs of GT-ITM Transit-Stub model and Tiers model.

Moreover, the time complexities of the new heuristics are always O(|E|), which is obvi-

ously much lower than that of the other heuristics. The Round Heuristic is of complexity

O(R|V |2|E|), while the Tree Based Algorithm has time complexity O(R|E|), where R is

the total broadcast time. Thus, in the worst case, their time complexities are O(|V |3|E|)

and O(|V ||E|) respectively. The time complexity of MWC algorithm mostly depends on

the different maximal flow algorithms, and from Table 1 we know that all their complexi-

ties are much higher than O(|E|). The lower complexity makes the new heuristics be able

to work for large graphs, and increase the possibility to obtain a better broadcast time in

the same period of time.

Another advantage is that both of the new heuristics are simple to implement. There is

no need to apply any complicated matching algorithm, which is the guarantee of their low

78

complexities. As described in Chapter 2, the maximum weighted matching is a crucial

procedure for the Round Heuristic, and the MWC algorithm depends on the maximal flow

algorithms. Both matching and maximal flow algorithms are not easy to implement, and

lead to higher complexities.

Finally, the performance of the Round Heuristic and Tree Based Algorithm heavily de-

pends on the choice of some parameters. However, there is not any rule that guides how

to determine the best parameters, and to obtain a better result one should simulate great

amount of different values. This is not the case with our heuristics.

In conclusion, both of the new heuristics are easy to implement, have lower time complex-

ities, and generate comparable results as the best existing heuristics in practice. Also, they

generate the broadcast scheme where every vertex receives the message via a shortest path.

79

5 Conclusion and Future Work

Parallel and distributed computer systems are being used more and more. It is often the

case that the communication latency is the bottleneck of these systems. Broadcasting is

one of the elementary communication primitives, which implies that having an efficient

broadcast protocol is necessary to having high performance parallel systems.

This thesis focuses on the problem to design algorithms that can generate efficient broadcast

time for given graphs. This thesis focuses on this problem. Since the above problem

has been proved to be NP-Complete for arbitrary graphs, we studied approximation and

heuristic algorithms for the broadcast time problem in arbitrary graphs.

In this thesis, two new heuristics are presented for broadcasting in arbitrary networks.

Based on the layer graph, the heuristics generate a spanning tree by random or semi-random

matching strategies between each pair of adjacent layers. The final broadcast scheme comes

from the spanning tree, through which every vertex in the network receives the message via

shortest path. This property of the new heuristics can be applied in hop-limited systems,

load balancing systems, or some systems demanding a small total number of message du-

plications.

By observing their performance in the commonly used topologies and network models,

we see that the new heuristics are not suitable for graphs where most of the vertices have

high degree. However, in the real networks few vertices have high degree, while most have

low (even constant) degree. Based on our extensive simulations, we conclude that the new

80

heuristics perform quite well in those models representing real networks. Especially, in

GT-ITM Transit-Stub and Tiers models, the new heuristics provide better broadcast time.

We can conclude that the new heuristics perform well in practice.

Time complexity is another essential benchmark to evaluate the performance of an algo-

rithm. Both of the new heuristics have a time complexity of O(|E|), which is lower than

that of all the other heuristics mentioned in this thesis. The low time complexity helps

to generate broadcast schemes for large graphs, and to obtain new upper bounds on the

broadcast time.

The research in this thesis can be continued in several directions. For the heuristics, the

matching strategy could be improved so that better results might be achieved. Furthermore,

the implementation of the heuristics could be optimized, and ultimately construct a Breadth

First Search tree that generates the minimum broadcast time. On the other hand, another

direction is mainly based on the layer graph. First, instead of a heuristic, an approximation

algorithm could be designed for the broadcast time problem with constant number of layers,

or even in the graph of variable layers. Second, the lower and upper bounds on the broadcast

time obtained from the layer graph could be another interesting research direction.

81

References

[1] W. Aiello, F. Chung and L. Lu. Random evolution in massive graphs, Proceedings

of the 42nd Annual IEEE Symposium on Foundations of Compute Science, FOCS’01,

pp. 510-519, 2001.

[2] A. Bar-Noy, S. Guha, J. Naor and B. Schieber. Multicasting in heterogeneous net-

works, Proceedings of ACM symposium on Theory of Computing, STOC’98, 1998.

[3] D. Barth and P. Fraigniaud. Approximation algorithms for structured communication

problems, ACM Symposium on Parallel Algorithms and Architectures, SPAA’97, pp.

180-188, 1997.

[4] R. Beier and J. F. Sibeyn. A powerful heuristic for telephone gossiping, Proceedings

of Seventh International Colloquium on Structural Information and Communication

Complexity ,SIROCCO 2000, pp. 17-36, 2000.

[5] J.-C. Bermond, P. Hell, A. L. Liestman and J. G. Peters. Broadcasting in bounded

degree graphs, SIAM Journal on Discrete Mathematics, 5:10-24, 1992.

[6] J.-C. Bermond and C. Peyrat. Broadcasting in de Bruijn networks, Proceedings of the

19th S-E conference on Combinatorics, Graph Theory and Computing, Congressus

Numerantium, 66:283-292, 1988.

[7] G. T. Chen. An algorithm for gossiping and broadcasting, Master Thesis, Computer

Science Department, Concordia University, 2006.

[8] M. J. Dinneen. The complexity of broadcasting in bounded-degree networks, Com-

puter Research and Appications, Los Alamos National Laboratory, New Maxico

87545, U.S.A., 1994.

82

[9] M. B. Doar. A better model for generating test networks, Proceedings of Global

Telecommunications Conference, GLOBECOM’96, pp. 86-93, 1996.

[10] M. Elkin and G. Kortsarz, A combinatorial logarithmic approximation algorithm for

the directed telephone broadcast problem, Proceedings of ACM symposium on Theory

of Computing, STOC’02, pp. 438-447, 2002.

[11] M. Elkin and G. Kortsarz. Sublogarithmic approximation for telephone multicast:

path out of jungle, Proceedings of the fourteenth annual ACM-SIAM symposium on

Discrete algorithms, Baltimore, MA, pp. 76-85, 2003.

[12] A. M. Farley and S. T. Hedetniemi. Broadcasting in grid graphs, Proceedings of Ninth

S-E Conference on Combinatorics, Graph Theory and Computing. Utilitas Mathemat-

ica,Winnipeg, pp. 275-288, 1978.

[13] U. Feige, D. Peleg, P. Raghavan and E. Upfal. Randomize broadcast in networks, Pro-

ceedings of International Symposium on Algorithms, SIGAL’90, 450:128-137, 1990.

[14] P. Fraigniaud and E. Lazard. Methods and problems of communication in usual net-

works, Discrete Applied Mathematics, 53:79-133, 1994.

[15] P. Fraigniaud and S. Vial. Approximation algorithms for broadcasting and gossiping,

Parallel Distributed Comput, 43(1):47-55, 1997.

[16] P. Fraigniaud and S. Vial. Heuristic algorithms for personalized communication prob-

lems in point-to-point networks, Proceedings of the 4th Colloquium on Structural

Information and Communication Complexity, SIROCCO’97, pp. 240-252, 1997.

[17] P. Fraigniaud and S. Vial. Comparison of heuristics for one-to-all and all-to-all com-

munication in partial meshes, Parallel Processing Letters, 9(1):9-20, 1999.

83

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness, W. H. Freeman & Co. New York, NY, USA, 1990.

[19] F. Guo, Finding the minimum broadcast time of bounded degree networks by back-

tracking, Master thesis, University of Auckland, 2001.

[20] H. A. Harutyunyan and B. Shao. An efficient heuristic for broadcasting in networks,

Journal of Parallel and Distributed Computing, 66:68-76, 2006.

[21] S. M. Hedetniemi, S. T. Hedetniemi and A. L. Liestman. A survey of gossiping and

broadcasting in communication networks, Networks, 18(4):319-349, 1988.

[22] C. J. Hoelting, D. A. Schoenefeld and R. L. Wainwright. A genetic algorithm for the

minimum broadcast time problem using a global precedence vector, Proceedings of

the 1996 ACM symposium on Applied Computing, Philadelphia, Pennsylvania, USA,

pp. 258-262, 1996.

[23] J. Hromkovic, C.-D Jeschke. and B. Monien. Optimal algorithms for dissemination

of information in some interconnection networks, Algorithmatica, 10(1):24-40, 1993.

[24] J. Hromkovic, R. Klasing, B. Monien and R. Peine. Dissemination of information in

interconnection networks, Combinatorial Network Theory, D-Z. Du, D.F. Hsu(eds.),

Kluwer Academic Publishers, pp. 125-212, 1996.

[25] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka and W. Unger. Dissemination of Infor-

mation in Communication Networks: Broadcasting, Gossiping, Leader Election, and

Fault-Tolerance, Springer-Verlag New York, Inc., 2005.

[26] A. Jakoby, R. Reischuk and C. Schindelhauer. The complexity of broadcasting in

planar and decomposable graphs, Discrete Applied Mathematics, 83:179-206, 1998.

84

[27] Klaus Jansen and Haiko Muller. The minimum broadcast time problem for several

processor networks, Theoretical Computer Science, 147(1,2):69-85, 1995.

[28] R. Klasing, B. Monien, R. Peine and E. A. Stohr. Broadcasting in butterfly and de-

Bruijn networks. Discrete Applied Mathematics, 53:183-197, 1994.

[29] G. Kortsarz and D. Peleg. Approximation algorithms for minimum time broadcast,

SIAM Journal on Discrete Mathematics, pp. 401-427, 1995.

[30] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes, Morgan-Kaufmann Publishers, San Mateo, California, 1992.

[31] A. Liestman and J. Peters. Broadcast networks of bounded degree, SIAM Journal on

Discrete Mathematics, 1:531-540, 1988.

[32] A. Medina, A. Lakhina, I. Matta and J. Byers. BRITE:Universal Topology Generation

from a User’s Perspective, Technical Report BUCS-TR-2001-003, 2001.

[33] M. Middendorf. Minimum broadcast time is NP-complete for 3-regular planar graphs

and deadline 2, Information Processing Letters, 46(6):281-287, 1993.

[34] C. D. Morosan. Studies of interconnection networks with applications in broadcast-

ing, PHD. Thesis, Computer Science Department, Concordia University, 27-35, 2007.

[35] R. Ravi. Rapid rumor ramification: approximating the minimum broadcast time, Pro-

ceedings of 35th Annual Symposium on Foundation of Computer Science, pp. 202-

213, 1994.

[36] P. Scheuermann and M. Edelberg. Optimal broadcasting in point-to-point computer

networks, Technical Report, Northwestern University, 1981.

[37] P. Scheuermann and G. Wu. Heuristic algorithms for broadcasting in point-topoint

computer network, IEEE Transactions on Computers, c-33(9):804-811, 1984.

85

[38] C. Schindelhauer. Broadcasting time cannot be approximated within a factor of

57/56− ε, ICSI Technical Report TR-00-002, 2002.

[39] B. Shao. A heuristic for broadcasting in arbitrary networks, Master Thesis, Computer

Science Department, Concordia University, pp. 55-57, 2003.

[40] P. J. Slater, E. J. Cockayne and S. T. Heditniemi. Information dissemination in trees,

SIAM Journal on Computing, 10(4):692-701, 1981.

[41] Wikipedia: the free encyclopedia. Confidence Interval,

available at http://en.wikipedia.org/wiki/Confidence interval, last visited in July,

2010.

[42] Wikipedia: the free encyclopedia. NP(complexity),

available at http://en.wikipedia.org/wiki/NP (complexity), last visited in July, 2010.

[43] Wikipedia: the free encyclopedia, NP-Complete,

available at http://en.wikipedia.org/wiki/NP-complete, last visited in July, 2010.

[44] E. W. Zegura, K. Calvert and S. Bhattacharjee. How to model an internetwork, Pro-

ceedings of Fifteenth Annual Joint Conference of the IEEE Computer Societies, IN-

FOCOM’96, 2:594-602, 1996.

86

