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Abstract 

 

Hydrogen release from a high-pressure chamber is modeled in this paper. Two approaches are 

developed to investigate the real gas effects at high pressures. In the first method, an analytical 

model is developed to simulate time histories of stagnation properties of hydrogen inside the 

chamber as well as sonic properties of hydrogen at the orifice. Corresponding thermodynamic 

relations, which describe the specific heats, internal energy, and speed of sound, are derived 

based on the Beattie-Bridgeman state equation. In the second approach, a 3-D unstructured 

tetrahedral finite volume Euler solver is applied to numerically simulate the hydrogen release. 

The solver is modified to take into account the real gas effects. Modifications required to 

calculate the real gas Jacobian matrices and eigenvectors as well as to obtain the Roe’s averaged 

convective fluxes are described. Real gas effect is modeled by the same state equation. 

Numerical and analytical results are compared for ideal and real gas conditions. An excellent 

agreement is reported.     

 

1. INTRODUCTION 

Hydrogen, as a fuel, has some attractive features in terms of the low amount of pollution and 

high combustion efficiency, especially when it is used in a fuel cell to generate electricity. These 

features make hydrogen a candidate energy currency to replace hydrocarbon fuels in vehicles.  

The problem with using hydrogen as a fuel is the storage. Compared to natural gas, 

hydrogen has smaller energy content per mole, and less moles of hydrogen can be stored in a 

given volume at the same pressure. The compressibility factor for hydrogen increases to values 

well above unity (ideal value) at high pressures. This implies that hydrogen should be stored at 

higher pressures compared to natural gas in order to reserve a reasonable amount of fuel in the 

vehicle. 

For safety issues it is important to determine how the gas is released in case of failure. 

The worst most probable failure is the separation of a fitting in a high-pressure tube or pipe, 

which would result in a sudden release of hydrogen. The release of hydrogen into the air yields a 

detonable cloud [10]. In such conditions, real gas laws should be applied to calculate the flow 

rate of hydrogen releasing into the air. 
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In this paper, real gas effects at high pressures are investigated in the sample problem of 

the hydrogen release from a high-pressure chamber. Two different approaches are applied. The 

first one involves the development of a mathematical model to calculate time histories of the 

stagnation properties inside the chamber and sonic properties at the throat. Real gas behavior is 

modeled by the Beattie-Bridgeman equation of state. Johnson [2] applied the same method with 

a different equation of state to tabulate thermodynamic properties of nitrogen and helium at 

pressures up to 30 MPa. In the second approach, an in house 3-D finite volume code is modified 

to take into account the real gas behavior. Jacobians and eigenvector matrices are derived based 

on our reference equation of state. Roe’s averaging scheme is modified according to the method 

developed by Glaister and Abgrall’s [3, 4] for 1-D and 2-D Riemann solvers. 

The reminder of this paper is as follows.  The analytical model is developed in Section 2. 

Thermodynamic relations are derived to calculate specific heats, the speed of sound, internal 

energy, and the isentropic expansion in a real gas flow. The numerical approach is described in 

Section 3 where Jacobian matrices, eigenvectors and modified Roe’s averaging method are 

presented. Section 4 is devoted to the discussion of the analytical and numerical simulation 

results. 

2. ANALYTICAL MODEL 

This section starts by stating the assumptions of the flow studied and continues by derivation of 

the equations required to calculate the gas release flow properties. The following assumptions 

have been made to simulate the gas release from a high-pressure chamber: 

 

 Thermodynamic properties are distributed uniformly throughout the chamber; 

 The hydrogen release is simulated for adiabatic conditions where no heat transfer occurs 

between the gas inside the chamber and its surrounding container; 

 The orifice is at the critical condition (i.e., the velocity of the gas at the orifice is equal to the 

local speed of sound); 

 The expansion of the hydrogen from the stagnation state inside the chamber to the critical 

state at the orifice takes place at a small region near the orifice, and it is modeled by a quasi 

one-dimensional isentropic flow; 

 Hydrogen is assumed to exist in gaseous phase through the whole chamber; 

 The real gas behavior is modeled by the Beattie-Bridgeman state equation. All required 

constants of the equation, A , B , , b , and c , are listed in Table 1. 
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Pressure, temperature, and specific volume of the gas are denoted by P , T , and . The gas 

constant is given by R . 

Although the first and fourth assumptions seem contrary to each other, they will give 

reasonable results for a large high-pressure chamber with a small orifice, [1]. The third 

assumption is acceptable if the total time of the gas release is not a concern. After the flow 

reaches subsonic speeds at the orifice, pressure, density, and temperature-changes become very 

small and negligible compared to corresponding values that exist when the flow is sonic at the 

orifice. 
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Table 1: Constants of the Beattie-Bridgeman equation of state for Hydrogen 

A  310  B210  b210  c210  

4.924 -2.510 1.034 -2.162 2.500 

2.1 Conservation Equations 

A mathematical model developed herein to calculate the release of hydrogen is constructed by 

applying conservations of mass and energy to the control volume containing the gas inside the 

chamber. The model describes the physical process that the bulk of the inside gas undergoes. The 

conservation of mass is given by: 
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In an adiabatic release, the conservation of energy can be written as: 
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Chamber volume and surface area of the throat are shown by  and nA . Internal energy and 

enthalpy of the flow are denoted by i  and h . The physical time is given by t . Subscripts t and n 

show that the corresponding property is evaluated at the stagnation state inside the chamber and 

the sonic state at the throat, respectively.  

After expanding derivatives on the left hand sides, equations (2) and (3) can be written 

into the following forms: 
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Thermodynamic properties of the flow crossing the orifice appear on the right hand sides 

of conservation equations (4) and (5). The method to calculate these properties is described in the 

following subsections. First, relations between dependent and independent thermodynamic 

properties are defined then an expression that governs the isentropic expansion or compression is 

developed.  

2.2 Some Real Gas Thermodynamic Relations 

In order to keep consistency with the state equation (1), temperature and specific volume are 

selected as independent thermodynamic properties. Speed of sound, specific heats, internal 

energy and enthalpy are calculated in terms of temperature and specific volume. Mathematically, 

different relations between dependent and independent properties can be obtained if another form 

of the state equation is utilized, [2]. 

For a pure substance, the following relations exist between changes in entropy, temperature, 

pressure, and specific volume [6]: 
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Entropy of the gas is expressed by s . C  and PC  are constant-volume and constant- pressure 

specific heats, respectively. The subscripts of the partial derivatives,  and , show that the 

specific volume and pressure are kept constant, respectively, during the partial differentiation. In 

an isentropic process, where there is no change in entropy, equation (6) yields: 
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2.2.1 Specific Heats 

Constant-pressure specific heat of hydrogen at a reference pressure of 0.1 MPa, which is denoted 

by PC
~

, is assumed to remain constant during the gas release for a range of temperature between 

300  K and 60  K. There is a maximum relative error of 4% between the assumed averaged 

value and actual values of specific heat tabulated in [5]. Since hydrogen behaves as an ideal gas 

at the reference pressure, the averaged specific heat must be corrected to obtain the 

corresponding value at high pressures. 

Given constant-pressure specific heat of hydrogen, PC
~

, at temperature T  and the 

reference pressure of 0.1 MPa, we calculate constant-volume specific heat, C , at a final high-

pressure state, which is specified by temperature T  and specific volume . Constant-volume 

specific heat and specific volume of hydrogen at the reference pressure of 0.1 MPa and 

temperature T  can be calculated using ideal gas equation of state, 
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Considering a constant-temperature process from the reference state to the final high-pressure 

state, we modify the constant-volume specific heat as: 
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According to [6], the following relation exists between specific heat and partial derivatives of 

pressure in a pure substance: 
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Substituting equation (12) into equation (11), we have: 
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In a pure substance, the relation between constant-volume and constant-pressure specific heats is 

given by, [6]: 
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Equation (14) is applied to calculate constant-pressure specific heat as: 
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Subscripts  and T represent partial derivatives of the function ,Tf  with respect to specific 

volume and temperature, respectively. 

2.2.2 Speed of Sound 

By definition, sound velocity, a , is given by: 
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Substituting isentropic derivatives (7) and (8) into equation (16) gives: 
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2.2.3 Internal Energy 

In [6], the variation of the internal energy of a pure substance is given by: 

.dP
T

P
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Internal energy and enthalpy of hydrogen as a real gas can be written as: 
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Thermodynamic relations developed in this section are in terms of derivatives and 

integrals of state equation (1). Table 2 contains analytical expressions of these derivatives and 

integrals. 

2.2.4 Isentropic Expansion 

Hydrogen goes through an isentropic expansion from the stagnation state in the chamber to the 

sonic state at the orifice. Properties of the isentropically expanded flow can be determined by 

integrating equation (7) with respect to the specific volume. 
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Starting from the initial condition that corresponds to the stagnation state inside the 

chamber, we integrate equation (21) to find thermodynamic states the gas goes through during an 

isentropic expansion. The sonic state of the flow at the throat is the state at which the following 

balance of energy is satisfied: 
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The last two equations are used to uniquely determine sonic properties of hydrogen at the orifice. 

2.3 Computer Code 

A computer program is developed to calculate stagnation and sonic properties of hydrogen 

during the release from a high-pressure chamber. It is based on relations developed in Section 2. 

The program comprises two major steps: isentropic expansion and adiabatic release. Fig. 1 

shows the flowchart of the program’s algorithm. Pback is the atmospheric backpressure to which 

hydrogen discharges. 

 

 

 

 

 

 

 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart of the adiabatic gas release algorithm 

 

2.3.1 Isentropic Expansion 

This step involves the numerical integration of ordinary differential equation (21). The domain of 

integration consists of all expanded states hydrogen goes through, from the stagnation state 

inside the chamber to the sonic state at the orifice. The initial condition is determined from the 

current stagnation state inside the chamber, and the final condition is reached once equality (22) 

is satisfied. After each integration step, equation (22) is checked. Its right hand side is evaluated 

at the most recent computed values of specific volume and temperature. 

A first order Euler method is applied to integrate the ordinary differential equation (21).  

Integrate equation 

(21) one step. 
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(22) is 
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Start from the 
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inside the chamber 
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Integrate Eqs. (4) & 
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Pn>Pback 

No 

Terminate the 
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2.3.2 Adiabatic Release 

In an adiabatic gas release, the system of ordinary differential equations (4) and (5) are 

numerically solved using the first order Euler method. The initial condition is the initial 

stagnation state inside the chamber. Numerical integration stops when the pressure at the orifice 

reaches to the backpressure. The velocity of the flow at the orifice always remains sonic. Each 

integration step results in new values of specific volume and internal energy. The corresponding 

new value of temperature is obtained through an iterative solution of equation (19). Iterations are 

performed based on the secant method. 

3. NUMERICAL APPROACH 

A 3-D finite volume Euler solver, [7], is used to simulate the gas release from a 60-degree wedge 

of a high-pressure chamber. The unstructured tetrahedral mesh is generated using GAMBIT 

2.0.4, fig 2. It contains 2452 mesh points and 9712 tetrahedral elements. The viscosity is 

neglected and Euler equations are applied through an implicit first-order in time and second-

order in space scheme. Convective fluxes are calculated based on Roe’s averaging method, [8]. 

As all Jacobian matrices and Roe’s averaging method that were already applied to the code are in 

terms of ideal gas relations, modifications described in the following subsections have been done 

to model the real gas effects. Two types of boundary conditions are implemented. A free-slip 

boundary condition is applied to the walls and the cutting surfaces of the 60-degree wedge. The 

exit surface is described by a supersonic outlet boundary condition. 

 

Figure 2: The 60-degree Wedge of the cylindrical chamber with unstructured tetrahedral mesh 

 

The state equation is assumed to be implicitly a function of density, , and internal 

energy, i , 

.),( iPP                           (23) 

This assumption let us directly apply the method developed in [3, 4] to find Roe’s averaging 

values. The partial derivative of pressure with respect to internal energy for constant density and 

the partial derivative of pressure with respect to density for constant internal energy are 
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respectively represented by iP  and P . These values can be equivalently expressed in terms of 

the derivatives and integrals of the Beattie-Bridgeman equation of state, [9]: 
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where Ti  and i  are partial derivatives of equation (19) with respect to temperature and specific 

volume, respectively. Analytical expressions are given in Table 2. 

3.1 Conservation Equations 

The system of Euler equations is discretized using an implicit finite-volume discretization 

scheme, 
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where j  goes from 1 to the number of control volumes (nodes) that exist in the domain of 

computation. U


 is the vector of conservative variables. Conservative fluxes crossing the 

boundary surfaces are represented by F


. n


 is the unit vector normal to the boundary surface 

with an area of S . The calculation time step is denoted by t . 

Using the first order approximation for implicit fluxes, we can rewrite equation (26) in 

the following forms: 
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 is the flux Jacobian matrix in the direction of the normal vector n


. This matrix is 

represented by J  in the rest of this paper. 

 An iterative algorithm, GMRES method described in [11], is applied to solve equation 

(27) for 
1n

jU


. The iteration stops when the residual is less than 10
-6

. After stopping the 

iterations, the values of the conservative variables at the new time step are calculated from 

equation (28). 

3.2 Jacobian Matrix 

The flux Jacobian of primitive variables and its eigenvectors do not depend on a specific state 

equation, [9]. They are used as a reference to calculate flux Jacobian and eigenvectors of 

conservative variables where the implicit state equation (23) describes the real gas behavior.  
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3.2.1 Conservative to primitive Jacobian 

Conservative and primitive variable vectors are given by: 
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                       (29) 
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where u , v , and w  are x, y, and z-components of the velocity. E  is the total energy of the flow, 

which is the sum of the internal energy and the kinetic energy. The superscript 
T 

stands for the 

transpose of the corresponding vector or matrix. Conservative to primitive transformation matrix 

is denoted by matrix M , and given by, [9]: 
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V  is the magnitude of the velocity vector. The inverse of the above matrix denoted by 1M  is 

the primitive to conservative transformation matrix, 
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where H  is the total enthalpy of the flow. 

3.2.2 Eigenvectors 

Left eigenvectors of primitive flux Jacobian matrix are given in [8]. They are represented here by 

symbols jl


 where j  goes from 1 to 5. The left eigenvectors of conservative flux Jacobian are 

represented by jl


 and can be calculated as: 

.1Mll jj


                 (33) 

The left eigenvector matrix L  is constructed so that its rows are the left eigenvectors 

given by jl


, 
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where xn , yn , and zn  are x, y, and z-components of the unit vector normal to the boundary 

surface between two nodes. The relation between conservative and primitive right eigenvectors, 

jr


 and jr


, are given by: 

.jj rMr


                                                                                                                      (35) 

The corresponding matrix R  is a matrix whose columns are right eigenvectors of conservative 

flux Jacobian matrix, 
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The flux Jacobian of conservative variables, J , is calculated as: 

,LRJ                  (37) 

where  is the diagonal eigenvalue matrix as defined in [8].  
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3.3 Roe’s Averaging 

Roe’s average values are calculated according to the method developed in [3, 4], which 

introduces definitions of average pressure derivatives 
iP

~
 and P

~
. All average values are 

specified by a tilde mark. Roe’s conservative flux vector can be written as:  
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The vector F


 is the conservative flux vector as defined in [8]. Subscripts L or R show that the 

corresponding value is evaluated at the left or right hand side node, respectively. 

 

Table 2: Analytical expressions of integrals and derivatives of state equation 
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3.4 Boundary Conditions 

The free slip boundary condition is applied to solid walls and cutting surfaces. Fluxes and 

Jacobians are evaluated directly at the boundary nodes without using Roe’s averaging method. 

The flux vector and Jacobian at the free slip boundary are given in [9].  

The exit surface is modeled by the supersonic-outlet boundary condition. If the 

conservative variables at the supersonic boundary are obtained from the extrapolation of interior 

nodes, CFL number should be kept less than 80 in order to avoid numerical instabilities. 

Whereas, no numerical instability is observed at CFL numbers up to 4000 when boundary points 

are solved together with the interior points using the system of equations (27) and (28). Roe’s 

averaging method is dismissed at the boundary nodes, and fluxes and Jacobians are evaluated 

based on the boundary values.    

4. RESULTS 

Some selected results of the analytical and numerical simulations are discussed in this section. 

Hydrogen releases from a high-pressure chamber with a volume of 2.73 10
-2

 m
3
 and at initial 

pressure and temperature of 34.5 MPa and 300 K. The gas adiabatically exits the chamber 

through a throat and an exit surface with surface areas of 3.17 10
-5

 m
2
 and 3.73 10

-5
 m

2
, 
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respectively. The initial five seconds of the release are compared for ideal and real gas conditions 

In this laps of time, the total pressure drops from 34.5 MPa to less than 0.4 MPa while the throat 

always remains at the sonic condition with a back pressure of 0.1 MPa and 98.5% of the initial 

mass inside the chamber is released. For the analytical model, equations (4) and (5) are 

integrated with a time-step of 10
-6

 sec. Numerical simulation starts with a CFL number of 1 that 

remains constant for the first 200 time steps.  Then, it is incremented at a constant rate of ten 

units per time step to a final CFL value of 1000. The final value is kept unchanged until the end 

of the simulation. 

The velocity, pressure, and temperature of the gas at the throat are depicted in figs 3 -5. 

The numerical and analytical results for the real and ideal gas conditions are compared together. 

For both the real and the ideal gas simulation, a maximum relative error of 2% exists between the 

analytical and the numerical simulations. 
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Figure 3: Analytical and numerical simulations of the flow velocity at the throat as a function of 

time for real and ideal gas conditions; hydrogen is released from a reservoir at initial pressure 

and temperature of 34.5 MPa and 300 K. 

 

Real gas model predicts higher values of the sound velocity at the start of the release 

compared to the ideal gas model, fig. 3. The internal energy of a real gas includes not only the 

ideal part, which is related to the translational kinetic energies of molecules, but also 

contributions of vibrational and rotational energies. As the gas isentropically expands from 

stagnation state inside the chamber to the sonic state at the orifice the pressure decreases and 

hydrogen approaches ideal gas behavior. The vibrational and rotational internal energies are 

transformed into the kinetic energy of the flow. At the start of the release, when the ideal and real 

gases expand from more and less the same stagnation state, the throat velocity for real gas 

condition is higher than the corresponding value for ideal gas condition. The sonic pressure 

decreases to lower values at the throat for the real gas condition, fig. 4, because the gas flow at 

the throat accelerates to higher velocities.    
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Figure 4: Analytical and numerical simulations of the flow pressure at the throat as a function of 

time for real and ideal gas conditions; hydrogen is released from a reservoir at initial pressure 

and temperature of 34.5 MPa and 300 K. 

 

A lower critical pressure at the throat for the real gas condition accompanies a lower critical 

temperature when compared to the ideal gas simulations for the throat temperature, fig. 5. 
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Figure 5: Analytical and numerical simulations of the flow temperature at the throat as a 

function of time for real and ideal gas conditions; hydrogen is released from a reservoir at initial 

pressure and temperature of 34.5 MPa and 300 K. 

 

The stagnation pressure and temperature of the gas inside the chamber are shown in figs. 

6-7. Similar to the sonic properties, comparisons have been done between analytical and 

numerical predictions for real and ideal gas conditions. A maximum error of 1% exists between 

the analytical and the numerical simulations for both the real and the ideal gas models. 
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Figure 6: Analytical and numerical simulations of stagnation pressure inside the chamber as a 

function of time for real and ideal gas conditions; hydrogen is released from a reservoir at initial 

pressure and temperature of 34.5 MPa and 300 K. 

 

For real gas model, pressure, temperature and density decay more rapidly than those for 

ideal gas model. The initial higher flow velocity at the throat, results in higher amounts of mass 

and energy out-fluxes for the real gas model, which in turn lead to rapid decays of the stagnation 

pressure and temperature. 
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Figure 7: Analytical and numerical simulations of stagnation temperature inside the chamber as 

a function of time for real and ideal gas conditions; hydrogen is released from a reservoir at 

initial pressure and temperature of 34.5 MPa and 300 K. 

 

A colder and less pressurized stagnant gas isentropically expands to lower sonic 

velocities at the throat. As shown in fig. 3, the flow velocity at the throat for real gas model is 
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higher than the corresponding values for ideal gas model during the initial moments of the 

release when both ideal and real gases are expanding from approximately the same stagnation 

pressures and temperatures, figs. 6-7. After these initial moments, when the real gas is expanding 

from significantly lower stagnation pressures and temperatures, the throat velocity predicted by 

the real gas model decreases and becomes less than the values predicted by the ideal gas model. 

The foregoing trend of the sonic velocity affects the relative behavior of real and ideal gas 

simulations for time histories of stagnation pressure or temperature, figs. 6-7. The curves of the 

real and ideal gas models are diverging from each other at the beginning of the release. The 

divergence rate decreases and curves start converging when the sonic velocity for real gas 

condition becomes less than the corresponding value for ideal gas condition. 

The time history of the mass flow rate exiting the chamber is shown in fig. 8. The density 

predicted by the ideal gas law is larger than the density the real gas law predicts. Therefore, for 

the ideal gas condition, the chamber initially contains more mass of hydrogen than that for real 

gas condition. Although the sonic velocity for real gas condition is higher than the corresponding 

value for the ideal gas condition, the high-density hydrogen flow predicted by the ideal gas 

model results in a greater mass flow rate throughout the release process. 
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Figure 8: Analytical and numerical simulations of the mass flow rate exiting the chamber for 

real and ideal gas models as a function of time; hydrogen is released from a reservoir at initial 

pressure and temperature of 34.5 MPa and 300 K. 

 

5. CONCLUSIONS 

Real gas effects are investigated in the adiabatic release of hydrogen from a high-pressure 

chamber. The analytical and numerical simulations are in a good agreement with each other. The 

maximum relative error is less than 2%. The real gas behavior at high pressures results in a 14% 

increase in the velocity of the flow crossing the orifice at the start of the release. Stagnation and 

sonic pressure and temperature remain less than the corresponding ideal values throughout the 

release. The reduced stagnation pressure and temperature slow down the initially higher sonic 

velocity to lower values compared to the ideal gas. 
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