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Abstract

Large-scale numerical simulations of the flow and associated transport phenomena gov-
erned by the Navier-Stokes and Energy equations are routinely calculated in engineering
practice. Nevertheless, the uncertainty due to spatial discretization limits the confidence of
practitioners in numerical solutions. An approach to provide information about the accu-
racy of the quantity of interest is proposed here-in. The novel a posteriori error estimation
technique – the bound method – is based on relaxing Lagrange multipliers that enforces
continuity between sub-domains. The method provides fast, efficient, asymptotic but re-
liable lower and upper bounds to the output of underlying partial differential equations
(PDEs). Herein, we highlight the method when applied to outputs of the steady incom-
pressible Navier-Stokes and Energy equations. The bound method in this paper follows the
directly equilibrated hybrid-flux approach for the flux calculation between sub-domains
and uses the Crouzeix-Raviart (P+

2 −P1) approximation spaces. To improve the effective-
ness of the bound method, an adaptive sub-domain refinement strategy leading to sharper
bounds is adopted. A convective heat transfer problem in a series of electronic chip de-
vices is investigated. The novelty of this paper is to present bounds using adaptive domain
decomposition for outputs associated to a complex three dimensional field solution of the
Navier-Stokes and Energy equations.
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1 Introduction

As computer simulations are used in the engineering practice, it is necessary to have tools to
evaluate the accuracy of solutions and more precisely the quantities used in design. In this paper
we focus on the novel a-posteriori error estimation, termed the bound method, which provides a
fast, efficient, asymptotic but reliable lower and upper bounds to the quantity of interest (i.e., the
output) of the steady incompressible Navier-Stokes and Energy equations. This paper illustrates
this technique for a cooling problem in an array of electronic chip devices.

Numerical solutions of Partial Differential Equations (PDEs) are hindered by computational un-
certain and expensive sequencings of meshes for predicting design output quantities. To circum-
vent this high cost and to ensure high fidelity of Computational Fluid Dynamics (CFD) for design,
implicit a-posteriori error estimation techniques have recently extended to estimate the error as-
sociated with the quantity of interest. Earlier a-posteriori error estimation techniques, reviewed
and summarized in [32,2,4,20], are based on the self-adjoint problems to provide upper bounds
of error in global energy or L2 norms, or on the concept of the error in the constitutive relation
[19], or on the error indicator of the equilibrium equations [3], or on the unevenness of the gra-
dient [34]. However, recent a-posteriori error estimation techniques deal directly with the error
with respect to a specific quantities of interest (i.e., target, goal or output): Becker and Rannacher
developed the ‘dual-weighted residual’ (DWR) method [5,6] for error control and mesh opti-
mization in computing local quantities of interest; Paraschivoiu, Peraire and Patera developed the
‘bound method’ [27,26] to calculate bounds to an output; and Prudhomme and Oden suggested
the ‘goal-oriented’ technique to compute the error to a goal of the analysis [28,24]. Since these
quantities – output or goal – refer to a linear functional of the solution obtained from an under-
lying partial differential equations (PDEs), such techniques have served as powerful numerical
tools to estimate and control the quantity of interest of the engineering design. Although these
approaches have some similarities, this paper is focused on the bound method.

For the last few years, a number of extensions and contributions have lead to improvements to
the bound method [9,10,12,14,15,22,21,25]. One of the main features of the bound method is
the domain decomposition which leads to the computational savings. Choi and Paraschivoiu [13]
have compared different approaches, i.e., the flux-free and hybrid-flux approaches. Firstly, the
flux-free approach, developed in [22] and recently extended to three space dimensions [13], uses
overlapping elements (or nodal patch). It imposes a partition of unity to remove the boundary
condition requirement for each patch but makes local calculations five times more expensive.
Secondly, the hybrid-flux approach decomposes the global domain into non-overlapping local
subdomains, i.e., subdomains used in the hybrid-flux approach are in fact the coarse H-mesh
tetrahedra. These subdomains are further refined into self-similar tetrahedra which lead to discrete
local Neumann subproblems. The inter-subdomain boundary data (i.e. hybrid-fluxes), required to
be self-equilibrated, plays a crucial role in decomposing the global computational domain into
a multitude of independently decomposed local subdomains. To evaluate the hybrid-flux, vari-
ous hybrid-flux evaluation techniques have been developed. For two-dimensional problems, the
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method by Ladevèze and Leguillon [19] and the flux-splitting method by Ainsworh and Oden [1]
can be used. For three-dimensional problems, Paraschivoiu [25] reformulated the FETI method
for the convection-diffusion equation. Most recently Choi and Paraschivoiu [14] proposed the
directly equilibrated hybrid-flux technique which provides significant computational savings for
calculating these fluxes.

The bound method for the Navier-Stokes and Energy equations was first developed by Machiels
et al. in [21]. It was based on the general ‘asymptotic’ bound procedure for the hybrid-flux ap-
proach to address a natural convection problem in two space dimensions. Nevertheless, our paper
follows the Lagrangian formulation for the hybrid-flux approach described in [10,14]. Further-
more, the hybrid-flux calculation utilizes the directly equilibrated hybrid-flux approach described
in [14]. The bound procedure is based on two-level computations associated with two different
meshes: two sets of global calculations are approximated on the coarse H-mesh and a multitude
of elemental sub-domain problems are performed on the fine h-mesh. Note that due to the non-
coerciveness of the equations, these bounds are ”asymptotically” rigorous [23,22]. To be more
precise, the bounds are rigorous only when the coarse H-mesh (the sub-domain mesh) is fine
enough. To improve the bound gap and to ensure that the method is in the asymptotic region an
adaptive sub-domain refinement strategy is used.

The outline of this paper is as follows. A motivation example for the bound method is presented
in Section 2. Section 3 gives the governing equations and their weak formulations of the model
problem. Section 4 introduces the Lagrangian formulation and the proof of bounding properties
for the Navier-Stokes and Energy equations. The numerical procedure for the bound method is
detailed in Section 5. In addition, the adaptive sub-domain procedure is briefly summarized there.
Section 6 presents the numerical results for the adaptive sub-domain bound method. Finally,
Section 7 concludes this paper.

2 Motivation

To motivate the bound method, we consider the following model problem: a series of electronic
chip devices as shown in Figure 1. In a realistic design scenario, engineers need to determine
an output such as the mass flow rate, the mean temperature or the drag/lift force in a specific
region. One then verifies that the output quantities are within an acceptable design target and
a specific design condition is accepted or rejected accordingly. In practice, a number of design
situations must be tested. For a single design point, no initial information regarding the ‘ideal’
mesh is known. Therefore, many meshes with different discretization sizes are tested to estimate
the accuracy of the desired output.

For our model problem, a forced convection due to a pressure driven flow around an array
of two electronic chips at Reynolds number Re = 100, Péclet number Pe = 100 and heat flux
q = 1

Pe
∂Θ
∂n = 1 is simulated. The output selected for this example is the mean temperature in the

region ΓO such that s = 1
ΓO

∫

ΓO ΘdA. To provide an estimation to the mean temperature in the
specific output region, we first apply a standard Galerkin finite element method to simulate the
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Fig. 1. Computational domain for a series of electronic chip devicesPSfrag replacements
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Fig. 2. Illustrations of various finite element meshes: (a) initial coarse mesh T init
H having 2400 tetrahedra;

(b) uniformly refined mesh T init
H/2 having 19,200 tetrahedra; (c) relatively fine mesh T init

H/3 having 648,000
tetrahedra; (d) adaptively refined mesh T adapt

H having 18,797 tetrahedra.

fluid flow and heat transfer, and then to approximate the output. Without prior information about
the spatial discretization needed, typically one starts by using a coarse mesh T init

H for instance the
one shown in Figure 2a. Using a finite element method on this mesh, an output of s init

H = 13.06 is
calculated within 1933 CPU sec. However, there is a lack of certainty about the value obtained.
Does this coarse mesh capture the underlying physics? To increase the fidelity of the simulation,
the engineer will use a finer mesh. A relatively fine mesh T init

H/3, for instance having 64,800 tetra-
hedra and 293,279 d.o.f as shown in Figure 2c, predicts the output of sinit

H/3 = 13.38 at the cost of
482,528 CPU sec or ≈ 5.58 CPU days. Nevertheless, is this mesh fine enough to be considered
”almost” exact? It is clear that by using a standard Galerkin finite element method, engineers face
a ”trade-off” between numerical accuracy and computational cost.

To address this ”trade-off” between numerical accuracy and computational cost for large scale
three-dimensional applications, designers can use the bound method. The bound method calcu-
lates lower and upper bounds to the output but also provides the ability to sharpen the bound gap.
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These bounds are calculated through a two-level hierarchical computation at the fraction of the
cost of a standard Galerkin finite element method evaluated on the finer mesh. Using the bound
method where each tetrahedral of the initial coarse mesh T init

H is a sub-domain, the calculated
bounds are sinit

h = 13.49± 2.492(18.47%). These values represent the upper and lower values
bounding the output associated with the mesh T init

H/3. To sharpen the bounds, the sub-domain
refinement strategy can be exploited. The bound method calculated on an uniformly refined sub-
domain mesh T init

H/2, as shown in Figure 2b, having 19,200 tetrahedra sub domains gives an output
as sunif

h = 13.32±0.807(6.06%) at the cost of 140,384 CPU sec ≈ 1.63 CPU days. However, using
adaptively refined sub-domains T adapt

H having 18,797 tetrahedra, as shown in Figure 2d, the bound
method provides bounds to the output of sadapt

h = 13.38± 0.716(5.35%) at the cost of 136,426
CPU sec ≈ 1.578 CPU days. Note that the average value of the bounds (13.38) provides an esti-
mate of the output that is the same as the output calculated on the mesh T init

H/3. Hence, the bound
method described in this paper can serve as an efficient design tool for engineering applications.
Further numerical investigations will be presented in a later section.

3 Finite Element Background

This section describes the model problem and the finite element function spaces and discretiza-
tions. To begin, the strong and weak formulations of the steady incompressible Navier-Stokes and
Energy equations are presented. Then, an output linear functional related to an engineering appli-
cation is introduced. Finally, several finite element spaces used in the bound method associated
with the governing equations are defined.

3.1 Governing equations

The governing equations for the model problem, i.e., the steady incompressible Navier-Stokes
and Energy equations, are given by their non-dimensional forms as follows:

∂ui

∂xi
= 0, (1)

u j
∂ui

∂x j
=−

∂p
∂xi

+
1

Re
∂

∂x j

(

∂ui

∂x j

)

+ fi, (2)

u j
∂Θ
∂x j

=
1
Pe

∂
∂x j

(

∂Θ
∂x j

)

in Ω i, j = 1,2,3, (3)

with boundary conditions for the velocity field

ui = 0, on ΓD
0 , (4)

ui = uD, on ΓD, (5)
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ui|Γs = ui|Γe, on ΓP, (6)

and for the temperature field

Θ = 0, on ΓD
0 , (7)

Θ = gD, on ΓD, (8)
Θ|Γs = Θ|Γe , on ΓP, (9)

1
Pe

∂Θ
∂n

= gN , on ΓN , (10)

∂Θ
∂n

= 0, on ΓN
0 , (11)

where Ω is a bounded domain in R3 with the boundary ∂Ω decomposed into a Dirichlet boundary
(ΓD), a Neumann boundary (ΓN) for the heat flux generated by the electronic chips and a Periodic
boundary (ΓP) at the left and right sides of the computational domain. Here Γs and Γe denotes the
starting and ending periodic surface, respectively. The boundary with the subscript (0) indicates
the homogeneous boundary condition (i.e., ΓD

0 represents the homogeneous Dirichlet condition
and ΓN

0 represents the homogeneous Neumann condition). ΓN
0 is representing the insulation con-

dition on the channel walls. Note that there is no boundary condition required for the pressure
field in this study. Boundary conditions for other problems involving the Navier-Stokes equations
are extensively discussed in [16]. Here (ui, p,Θ) are the non-dimensional velocity, pressure, and
temperature fields, respectively. Re represents the Reynolds number defined as Re = U∞Dh

ν where
U∞, Dh, and ν denote the reference velocity, the hydraulic diameter, and the kinematic viscosity,
respectively and fi denotes the body force vector applied in the domain. Pe denotes the Péclet
number defined as Pe = U∞Dh

α where α is the thermal diffusivity. Also the Péclet number Pe can
also be written as Pe = Re ·Pr where Pr is the Prandtl number. Note that, the temperature field
can only be calculated once the velocity field is known.

3.2 Variational weak formulation

Function spaces used in the finite element method are introduced as

H 1
0 (Ω)= {w ∈ H 1(Ω) : w|ΓD = 0}, (12)

L2
0(Ω)= {q ∈ L2(Ω) :

∫

Ω

qdΩ = 0}, (13)

where H 1 is the Hilbert space of functions v such that v ∈ L2(Ω) and ∇v ∈
(

L2(Ω)
)2, in which

L2(Ω) is the space of square-integrable functions. Then spaces of the essential boundary condi-
tions are introduced as

X = {vi ∈ H 1
0 (Ω)}, (14)
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XD = {vi ∈ H 1(Ω) : vi|ΓD = uD : vi|Γs = vi|Γe}, (15)

XΘ = {w ∈ H 1
0 (Ω)}, (16)

XΘ,D = {w ∈ H 1(Ω) : w|ΓD = gD : w|Γs = w|Γe}, (17)

Q = {q ∈ L2
0(Ω)}, (18)

where i = 1,2,3 in three space dimensions.

Under these definitions, the variational weak formulation of the continuity equation (1), incom-
pressible Navier-Stokes equations (2), and Energy equations (3) are formulated as follows:
Find (ui, p,Θ) ∈ XD ⊗Q ⊗XΘ,D such that:

−
∫

Ω

q
∂ui

∂xi
dV = 0, ∀q ∈ Q , (19)

∫

Ω

(

1
Re

∂ui

∂x j

∂vi

∂x j
+u j

∂ui

∂x j
vi − p

∂vi

∂xi

)

dV =
∫

Ω

fivi dV, ∀vi ∈ X , i = 1,2,3, (20)

∫

Ω

(

1
Pe

∂Θ
∂x j

∂w
∂x j

+u j
∂Θ
∂x j

w
)

dV =
∫

ΓN

gNwdA, ∀w ∈ XΘ, (21)

where dV and dA denote the differential volume and area elements, respectively. f i is the vol-
umetric force and gN is the heat flux, which are assumed to be smooth, i.e., fi ∈ L2(Ω) and
gN ∈ L2(Ω).

3.3 Output linear functionals

The output denoted by s considered herein is the linear functional of the field solution. The output
of interest can be of two types, depending on the field variables, namely a ‘flow’ output and/or a
‘temperature’ output.

The flow output represented by su is the mass flow rate in a volume region ΩO such that

su = `O,u(u) =
1

|ΩO|

∫

ΩO

u ·nd dV, (22)

where |ΩO| is the volume of the domain ΩO and nd is the unit normal vector with respect to
xd-direction where d denotes the specific x-direction. On the other hand, the temperature output,
sΘ, is defined by the mean temperature in the area region ΓO and is written as

sΘ = `O,Θ(Θ) =
1

|ΓO|

∫

ΓO

ΘdA, (23)

7



where |ΓO| is the area of specific output region ΓO. Here the output linear functional is assumed
to be smooth such as `O ∈ L2(Ω). Note that a combined output can be expressed by s = su + sΘ.

3.4 Discrete formulation

For simplicity, the matrix representation of the variational weak form using the finite element
spaces defined in Appendix A is written as follows:

Find (uiδ , pδ,Θδ) ∈ XD
δ ⊗Qδ ⊗XΘ,D

δ such that

1
Re

Aδuiδ +Cδ(uδ)uiδ −DT
iδ pδ = fiδ , i = 1,2,3, (24)

3

∑
i=1

Diδuiδ = 0, (25)

1
Pe

AδΘδ +Cδ(uδ)Θδ = gδ, (26)

where δ represents a discretization size of the finite element. Note that Equation (24) denotes the
discrete form of the Navier-Stokes equations, Equation (25) is the discrete form of the continuity
equation which plays a role as the incompressibility constraint, and Equation (26) represents
the discrete form of Energy equation. The matrix Aδ, Cδ and Diδ denote the discrete stiffness,
convective, and divergence operators, respectively. DT

iδ
is represented by ‘transpose’ of Diδ and

fiδ represent the forcing terms and the boundary inhomogeneities. The equivalent block-matrix
form of Equations (24)-(26) is given by























Aδ
Re +Cδ(uδ) 0 0 −DT

1δ
0

0 Aδ
Re +Cδ(uδ) 0 −DT

2δ
0

0 0 Aδ
Re +Cδ(uδ)−DT

3δ
0

D1δ −D2δ −D3δ 0 0

0 0 0 0 Aδ
Pe +Cδ(uδ)













































u1δ

u2δ

u3δ

pδ

Θδ























=























f1δ

f2δ

f3δ

0

gδ























. (27)

4 Lagrangian Formulation

This section describes the Lagrangian formulation for the Navier-Stokes and Energy equations.
Bounding properties are obtained by applying the dual max-min (or inf-sup) theory to the La-
grangian constructed below.
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4.1 Augmented Lagrangian

The Lagrangian associated with the bounds is presented as two Lagrangians: one related to the
Navier-Stokes equations and one related to Energy equation. The Lagrangian is expressed in
terms of the stabilization parameter κ to permit sharper bounds.

The Lagrangian for the Navier-Stokes and Energy equations is : L± (vi,q,µi,λ, ti,w,φ,r) ∈Wh ⊗
Qh ⊗Xh ⊗Qh ⊗Fh ⊗V Θ

h ⊗XΘ
h ⊗F Θ

h

L± (vi,q,µi,λ, ti,w,φ,r) = Lu,± (vi,q,µi,λ, ti)+LΘ,± (w,φ,r) , (28)

where the Lagrangian for the Navier-Stokes equations is given by

Lu,±(vi,q,µi,λ, ti)=
Nk

∑
k=1

3

∑
i=1

[

κ
(

vk
i

T
Au,kvk

i −2qkT
Dk

i vk
i − f k

i
T
vk

i + vk
i

T
Lu,kuk

iH

−pk
H

T
Dk

i vi −qkT
Dk

i uk
iH

)

± f O,k
i

T (

uk
iH + vk

i

)

]

+
Nk

∑
k=1

3

∑
i=1

[

µk
i

T
{

Lu,k
(

uk
iH + vk

i

)

−Dk
i

T
(

pk
H +qk

)

− f k
i

}

−λkT
Dk

i

(

uk
iH + vk

i

)

]

+
Nk

∑
k=1

3

∑
i=1

tiT Bkvk
i , (29)

and the Lagrangian for the Energy equation is written as

LΘ,±(w,φ,r)=
Nk

∑
k=1

[

κ
(

wkT
AΘ,kwk −gkT

wk +wkT
LΘ,kΘk

H

)

±gO,kT
(

Θk
H +wk

)

]

+
Nk

∑
k=1

φkT
[

LΘ,k(Θk
H +wk)−gk

]

+rT
Nk

∑
k=1

Bkwk, (30)

where for Nk subdomains, vi = {v(1)
i , ...,v(Nk)

i }, q = {q(1), ...,q(Nk)}, µi = {µi
(1), ...,µi

(Nk)}, λ =

{λ(1), ...,λ(Nk)}, ti = {t(1)
i , ..., t(Nk)

i }, w = {w(1), ...,w(Nk)}, φ = {φ(1), ...,φ(Nk)} and r = {r(1), ...,r(Nk)}.
The superscript ‘k’ denotes each local subdomain, i.e., 1 ≤ k ≤ Nk. Au,k = 1

ReAk is a symmetric
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matrix associated with the diffusion term of the Navier-Stokes equations, Lu,k is the combination
of stiffness and convection matrix, i.e., Lu,k = 1

ReAk +Ck(u) where Ck(u) is the convection oper-
ator, Dk

i represents the divergence matrix, AΘ,k = 1
PeAk is the discrete diffusion term in the energy

equation LΘ,k = 1
PeAk +Ck(u), and Bk is the sign Boolean matrix which localizes the “jumps”

at the interface. (uk
iH , pk

H ,Θk
H) are the coarse mesh velocity, pressure, and temperature vectors,

respectively. There are several candidate ‘Lagrange multipliers’, which are Lagrange multipliers
for the Navier-Stokes equations, i.e., (µk

i ,λ
k, ti) and for the Energy equation, i.e., (φk,r), respec-

tively. Note that, (·)+ sign indicates the Lagrangian needed for the lower output bound and (·)−

sign denotes the one for the upper output bound. Note that the Navier-Stokes equations cannot
be introduced directly as a linear constraint in the Lagrangian. The Navier-Stokes equations are
therefore linearized about a coarse mesh solution and this form is used as the constraint. This
approach limits the bound to be rigorous only when the size of the course mesh is fine enough
to capture the main features of the flow. This is the reason why these bounds are called asymp-
totic bounds. Nevertheless, in practice it was observed that all the coarse meshes used were fine
enough and lead to rigorous bounds.

4.2 Proof of the Bounding Properties

Appealing to the dual max-min (or inf-sup) theory [31] applied to the Lagrangian (28) for candi-
date Lagrange multipliers yields the bounds to the fine mesh output for the coupled Navier-Stokes
and energy equations.

The output on the fine mesh can be obtained by solving a constrained minimization problem
represented as the saddle of the Lagrangian:

±su
h = sup

(µi,λ,ti)∈Xh⊗Qh⊗Fh

inf
(vi,q)∈Wh⊗Qh

Lu,±(vi,q,µi,λ, ti). (31)

By inserting candidate Lagrange multipliers obtained form a coarser mesh into the Lagrangian
(29) and appealing the dual max-min (or inf-sup) theory yields the lower and upper bounds such
that

(su
h)LB ≡ inf

(vi,q)∈Wh⊗Qh
Lu,+(vi,q, µ̂+

ih , λ̂
+
h , t̂+ih ) ≤ su

h ,

su
h ≤− inf

(vi,q)∈Wh⊗Qh
Lu,−(vi,q, µ̂−ih , λ̂

−
h , t̂−ih ) ≡ (su

h)UB, (32)

which holds for any function group
(

µ̂±ih , λ̂
±
h , t̂±ih

)

∈ Xh ⊗Qh ⊗Fh.

Similarly the bounds for the Energy equations follows that:

±sΘ
h = sup

(φ,r)∈XΘ
h ⊗F Θ

h

inf
w∈UΘ

h

LΘ,±(w,φ,r) ≤ inf
w∈UΘ

h

LΘ,±(w, φ̂±h , r̂±h ). (33)
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Hence lower and upper bounds to the fine mesh output are constructed as follows:

(sΘ
h )LB ≡ inf

w∈UΘ
h

LΘ,+(w, φ̂+
h , r̂+

h ) ≤ sΘ
h ≤− inf

w∈UΘ
h

LΘ,−(w, φ̂−h , r̂−h ) ≡ (sΘ
h )UB, (34)

which holds for any function pair
(

φ̂±h , r̂±h
)

∈ XΘ
h ⊗F Θ

h .

5 Adaptive Bound Method

This section describes the numerical procedure of the bound method applied to the steady incom-
pressible Navier-Stokes and Energy equations. The bounds for the coupled Navier-Stokes and
Energy equations are only asymptotically rigorous due to the non-coercivity arisen from Navier-
Stokes equations as described in [21,23]. However, in practice all coarse meshes constructed lead
to rigorous bounds as found in [14]. For the purpose of allowing straightforward implementation,
the bound formulation is presented in a matrix form.

The bound procedure is composed of two-level computations performed on two different meshes
namely the coarse H-mesh and the fine h-mesh calculations. First the coarse H-mesh calculation
is composed of two sets of global computations and the hybrid-flux evaluation. On the other hand,
the fine h-mesh calculation consists of local Neumann problems on each sub-domain followed
by the bounds calculations.

5.1 Global Computations

There are two types of calculations that need to be solved on the entire computational domain:
‘primal’ and ‘dual’. The ‘primal’ problem is solved to obtain the field variables and the ‘dual’
problem is solved to obtain the adjoint variables. These problems are solved on a coarse H-mesh.
To solve the non-linear system of field variables, the Newton’s method is utilized. More informa-
tion regarding the Newton’s method for the steady incompressible Navier-Stokes equations can
be found in [8,17,18,29,33].

5.1.1 The field variable calculation:

For the primal problem, field variables, i.e., velocity, pressure, and temperature fields, are cal-
culated on the coarse H-mesh. The block-matrix form of the primal problem is summarized as
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follows: Find (uiH , pH ,ΘH) ∈ XD
H ⊗QH ⊗XΘ,D

H such that






















Au
H +CH(uH) 0 0 −DT

1H
0

0 Au
H +CH(uH) 0 −DT

2H
0

0 0 Au
H +CH(uH)−DT

3H
0

−D1H −D2H −D3H 0 0

0 0 0 0 AΘ
H +CH(uH)













































u1H

u2H

u3H

pH

ΘH























=























f1H

f2H

f3H

0

gH























, (35)

where Au
H = 1

ReAH and AΘ
H = 1

PeAH are the global diffusive matrix for the Navier-Stokes and
Energy equations, respectively, CH(uH) is the global convection matrix, fiH denotes the global
velocity force vector, and gH is the global temperature force vector. Then the ‘velocity residual’
and the ‘temperature residual’ of the primal equation (35) are defined by

R u,pr

ih = ∑
TH∈TH

Ri
u,pr

TH
, (36)

R Θ,pr

h = ∑
TH∈TH

R Θ,pr

TH
, (37)

where

Ri
u,pr

TH
= fiTH

−
(

Au
TH

+CTH (uTH )
)

uiTH +Di
T
TH

pTH , (38)

R Θ,pr

TH
= gTH −

(

AΘ
TH

+CTH (uTH )
)

ΘTH , (39)

of which fiTH
and gTH are the combination of the force term and the inhomogeneous Neumann

boundary terms for velocity and temperature fields, respectively.

The solution strategy for the Navier-Stokes system, the mixed penalty method is utilized for a
slightly modified system such as: Find (uiH , pH) ∈ XD

H ⊗QH such that
















Au
H +CH(uH) 0 0 −DT

1H

0 Au
H +CH(uH) 0 −DT

2H

0 0 Au
H +CH(uH) −DT

3H

−D1H −D2H −D3H −εI

































u1H

u2H

u3H

pH

















=

















f1H

f2H

f3H

0

















, (40)

where ε is the penalty parameter which can be any small value of ε > 0 and I is the identity matrix.
The non-linear nature of the system (40) requires an iterative scheme such as Picard method or
Newton’s method. At each iteration, the resulting system raised from Equation (40) is linear, non-
symmetric, and positive-definite so that the general iterative method such as Generalized Minimal
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Residual (GMRES) or Bi-Conjugate Gradient (BiCG) method can be used. Once the velocity field
is known from Equation (40), the temperature field can be easily evaluated by solving

(

AΘ
H +CH(uH)

)

ΘH = gH , (41)

of which system is non-symmetric and linear so that a BiCG solver can be used.

5.1.2 The adjoint calculation:

For the dual problem, adjoints, i.e., adjoint velocity, pressure, and temperature fields, are also
evaluated on the coarse H-mesh. The block-matrix form of the dual problem is given as follows:
Find (ψiH ,λH ,ΦH) ∈ XH ⊗QH ⊗XΘ

H such that























Au
H +CT

H(uH) 0 0 −DT
1H

0

0 Au
H +CT

H(uH) 0 −DT
2H

0

0 0 Au
H +CT

H(uH)−DT
3H

0

−D1H −D2H −D3H 0 0

0 0 0 0 AΘ
H +CT

H(uH)













































ψ1H

ψ2H

ψ3H

λH

ΦH























=























− f O
1H

− f O
2H

− f O
3H

− f O
pH

−gO
H























, (42)

where CT
H(uH) is the transpose of global convection matrix and f O

iH , f O
pH

, and gO
H denote the global

velocity, pressure, and temperature output functionals, respectively. Then the ‘adjoint velocity
residual’ and ‘adjoint temperature residual’ of the dual equation (42) are defined as

R ψ,du

ih = ∑
TH∈TH

Ri
ψ,du

TH
, (43)

R Φ,du

h = ∑
TH∈TH

R Φ,du

TH
, (44)

where

Ri
ψ,du

TH
=− fi

O
TH

−
(

Au
TH

+CT
TH

(uTH )
)

ψiTH
+Di

T
TH

λTH , (45)

R Φ,du

TH
=−gO

TH
−

(

AΘ
TH

+CT
TH

(uTH )
)

ΦTH , (46)

of which fi
O
TH

and gO
TH

are combination of the output functional and the inhomogeneous Neumann
boundary terms for adjoint velocity and temperature fields, respectively.
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The mixed penalty method is also used for solving Equation (42) as follows: Find (ψiH ,λH) ∈
XH ⊗QH such that

















AH +CT
H(uH) 0 0 −DT

1H

0 AH +CT
H(uH) 0 −DT

2H

0 0 AH +CT
H(uH) −DT

3H

−D1H −D2H −D3H −εI

































ψ1H

ψ2H

ψ3H

λH

















=

















− f O
1H

− f O
2H

− f O
3H

− f O
pH

















, (47)

where the system is linear, non-symmetric, and positive definite so that a GMRES or a BiCG
solver can be used. Note that the adjoint calculation is much less expensive than the field variable
calculation since it is linear. Once the adjoint velocity field is solved from Equation (47), the
adjoint temperature field can be easily evaluated by solving

(

AΘ
H +CT

H(uH)
)

ΦH = −gO
H , (48)

This system is linear and non-symmetric so that a BiCG solver can be used.

5.2 Hybrid-Flux Calculation

The next step for the bounds calculation is the construction of the sub-domains. Each tetrahedron
of the coarse mesh is transformed into a sub-domain. These sub-domains will be refined subse-
quently and will serve as the domain for the local Neumann problems. Therefore, the Lagrange
multipliers that enforce continuity between sub-domains first need to be calculated. In this work
this Lagrange multiplier is called the hybrid-flux.

The hybrid-flux is calculated by a novel hybrid-flux technique termed the directly equilibrated
hybrid-flux approach [14]. The hybrid flux only connects faces, that is, each sub-domain tetrahe-
dral has three hybrid-flux unknowns on each face. This approach is essential for interpolating the
hybrid flux on the face of the finer sub-domain discretization.

The coarse H-mesh hybrid-flux calculation is written as follows:

• The hybrid-flux for the primal problem (35):
Find

(

tpr

iH , tΘ,pr

H

)

∈ FH ⊗F Θ
H such that

BT
Htpr

iH = R u,pr

iH , i = 1,2,3, (49)

BT
HtΘ,pr

H = R Θ,pr

H . (50)

• The hybrid-flux for the dual problem (42):
Find

(

tdu
iH , tΘ,du

H

)

∈ FH ⊗F Θ
H such that
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BT
Htdu

iH = R ψ,du

iH , i = 1,2,3, (51)

BT
HtΘ,du

H = R Φ,du

H . (52)

To solve these systems we multiply the equations with the boolean matrix BH on both sides. A
standard conjugate gradient solver then solves the system. It is proven in [14] that the hybrid-flux
obtained with this approach is equilibrated. Note that in this paper the hybrid-flux calculation is
only required for the velocity and the adjoint velocity contributions due to the divergence-free
property of Crouzeix-Raviart finite element. The pressure and the adjoint pressure contributions
are not needed to be considered due to the discontinuous pressure approximation.

5.3 Local Neumann Problems

The local Neumann subproblems for the bound method is evaluated independently for each sub-
domain ‘k’ as summarized in following subsections.

5.3.1 Interpolation:

Variables approximated in the coarse H-mesh are required to be interpolated onto the fine h-mesh.
The field variables (uiH , pH ,ΘH) and the adjoint variables (ψiH ,λH ,ΦH) are interpolated by using
a ‘volume’ interpolation where as the hybrid-fluxes (t pr/du

iH , tΘ,pr/du

H ) are interpolated by exploiting a
‘face’ interpolation.

(

Î u
h uiH

)

|TH → uih |TH , (53)
(

Î u
h ψiH

)

|TH →ψih |TH , (54)
(

Î p
h pH

)

|TH → ph|TH , (55)
(

Î p
h λH

)

|TH → λh|TH , (56)
(

Î Θ
h ΘH

)

|TH →Θh|TH , (57)
(

Î Θ
h ΦH

)

|TH →Φh|TH , (58)
(

Î f u

h ti
pr/du

H

)

|γH → ti
pr/du

h |γH , (59)
(

Î f Θ

h tpr/du

H

)

|γH → tΘ,pr/du

h |γH . (60)

5.3.2 Incompressible local projections:

Then the fine h-mesh local Neumann subproblems require that the local projections of (uk
ih , pk

H)

and (ψk
ih ,λ

k
H) on the fine h-mesh respect the incompressibility constraints for each sub-domain.

A set of incompressible local projections are evaluated as follows:
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• The incompressible local projection for the primal problem is:
Find (δi

u,k
h ,δp,k

h ) ∈Vh ⊗Yh such that

















Ak
h 0 0 −Dk

1h

T

0 Ak
h 0 −Dk

2h

T

0 0 Ak
h −Dk

3h

T

−Dk
1h

−Dk
2h

−Dk
3h

0

































δu,k
1h

δu,k
2h

δu,k
3h

δp,k
h

















=

















0

0

0

∑3
i=1 Dk

ihuk
ih

















. (61)

• The incompressible local projection for dual problem is:
Find (δi

ψ,k
h ,δλ,k

h ) ∈Vh ⊗Yh such that

















Ak
h 0 0 −Dk

1h

T

0 Ak
h 0 −Dk

2h

T

0 0 Ak
h −Dk

3h

T

−Dk
1h

−Dk
2h

−Dk
3h

0

































δψ,k
1h

δψ,k
2h

δψ,k
3h

δλ,k
h

















=

















0

0

0

∑3
i=1 Dk

ihψk
ih

















. (62)

The interpolated field and adjoint variables, i.e., (uk
ih , pk

h) and (ψk
ih ,λ

k
h), respectively, are modified

as follows:

• For the primal subproblem:

ũk
ih = uk

ih +δu,k
ih , i = 1,2,3, (63)

p̃k
h = pk

h +δp,k
h . (64)

• For the dual subproblem:

ψ̃k
ih = ψk

ih +δψ,k
ih , i = 1,2,3, (65)

λ̃k
h = λk

h +δλ,k
h . (66)

5.3.3 Reconstructed error calculations:

The modified field variables
(

ũk
ih , p̃k

h,Θh

)

, the modified adjoint variables
(

ψ̃k
ih , λ̃

k
h,Φh

)

, and in-

terpolated hybrid-flux (t pr/du

ih , tΘ,pr/du

h ) are now used in the local Neumann subproblems. Introducing

the local discontinuous fine mesh errors for field variables as (êpr,k
ih , ε̂pr,k

h , êΘ,pr,k
h ) and similarly for

adjoints as (êdu,k
ih , ε̂du,k

h , êΘ,du,k
h ), the solution of these problems lead to obtaining local error for each

sub-domain ‘k’ as follows:
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• The local primal Neumann subproblem:
Find (êpr,k

ih , ε̂pr,k
h , êΘ,pr,k

h ) ∈Wh ⊗Yh ⊗V Θ
h such that

2























Au,k
h 0 0 −Dk

1h

T 0

0 Ak
h 0 −Dk

2h

T 0

0 0 Ak
h −Dk

3h

T 0

−Dk
1h
−Dk

2h
−Dk

3h
0 0

0 0 0 0 AΘ,k
h













































êpr,k
1h

êpr,k
2h

êpr,k
3h

ε̂pr,k
h

êΘ,pr,k
h























=























R u,pr,k
1h

R u,pr,k
2h

R u,pr,k
3h

∑3
i=1 Dk

ih ũk
ih

R Θ,pr,k
h























−























Bk
h

T tpr,k
1h

Bk
h

T tpr,k
2h

Bk
h

T tpr,k
3h

0

Bk
h

T tΘ,pr,k
h























. (67)

where

R pr,k
ih = f k

ih −
(

Au,k
h +Ck

h(ũh)
)

ũk
ih +Dk

ih
T

p̃k
h, i = 1,2,3, (68)

R Θ,pr,k
h = gk

h −
(

AΘ,k
h +Ck

h(ũh)
)

Θk
h. (69)

• The local dual Neumann subproblem:
Find (êdu,k

ih , ε̂du,k
h , êΘ,du,k

h ) ∈Wh ⊗Yh ⊗V Θ
h such that

2























Au,k
h 0 0 −Dk

1h

T 0

0 Ak
h 0 −Dk

2h

T 0

0 0 Ak
h −Dk

3h

T 0

−Dk
1h
−Dk

2h
−Dk

3h
0 0

0 0 0 0 AΘ,k
h













































êdu,k
1h

êdu,k
2h

êdu,k
3h

ε̂du,k
h

êΘ,du,k
h























=























R ψ,du,k
1h

R ψ,du,k
2h

R ψ,du,k
3h

∑3
i=1 Dk

ihψ̃k
ih

R Θ,du,k
h























−























Bk
h

T tdu,k
1h

Bk
h

T tdu,k
2h

Bk
h

T tdu,k
3h

0

Bk
h

T tΦ,du,k
h























. (70)

where

R du,k
ih =− f O,k

ih −
(

Au,k
h +Ck

h
T
(ũh)

)

ψ̃k
ih +Dk

ih
T λ̃k

h, i = 1,2,3, (71)

R Θ,du,k
h =−gO,k

h −
(

AΘ,k
h +Ck

h
T
(ũh)

)

Φk
h. (72)

5.4 Bounds Construction

The bounds values are obtained by summing the local contribution of each sub-domain. The lower
and upper output bounds, i.e., (sh)LB and (sh)UB, are expressed in terms of the output predictor
(sh)pre and the half bound-gap ∆H such as:

(sh)LB =(sh)pre −∆H , (73)
(sh)UB =(sh)pre +∆H , (74)
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where

(sh)pre =(su
h)pre +(sΘ

h )pre, (75)

∆H = ∆u
H +∆Θ

H , (76)

of which for the ‘flow’ field

(su
h)pre = s̄H −2

Nk

∑
k=1

3

∑
i=1

[

êdu,kT

ih Au,k
h êpr,k

ih

]

, (77)

s̄H = s̃H +
Nk

∑
k=1

3

∑
i=1

[

ψ̃kT

ih

(

(Au,k
h +Ck

h)ũ
k
ih −Dk

ih
T

p̃k
h − f k

h

)

− λ̃kT

h Dk
ih ũk

ih

]

, (78)

s̃H =
Nk

∑
k=1

3

∑
i=1

f O,k
h

(

ũk
ih , p̃k

h

)

, (79)

∆uk
H = κ

3

∑
i=1

[

êpr,kT

ih Au,k
h êpr,k

ih

]

+
1
κ

3

∑
i=1

[

êdu,kT

ih Au,k
h êdu,k

ih

]

, (80)

∆u
H =

Nk

∑
k=1

∆uk
H , (81)

and of which for the ‘temperature’ field

(sΘ
h )pre = sΘ

H −2
Nk

∑
k=1

[

êΘ,du,kT

h AΘ,k
h êΘ,pr,k

h

]

, (82)

sΘ
H =

Nk

∑
k=1

gO,k
h

(

Θk
h

)

, (83)

∆Θk
H = κ

Nk

∑
k=1

[

êΘ,pr,kT

h AΘ,k
h êΘ,pr,k

h

]

+
1
κ

[

êΘ,du,kT

h AΘ,k
h êΘ,du,k

h

]

, (84)

∆Θ
H =

Nk

∑
k=1

∆Θk
H . (85)

Both (sh)pre and ∆H can also be expressed alternatively as follows:

(sh)pre =
1
2

[(sh)UB +(sh)LB] , (86)

∆H =
1
2

[(sh)UB − (sh)LB] , (87)

where the output predictor (86) is the average value for the lower and upper output bounds and
the half bound-gap (87) defines the half-gap between the lower and upper output bounds. Note
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that the output predictor is independent of the stabilization parameter κ and the elemental de-
composition ∆H can serve as local indicators in adaptive strategies [11–13]. The accuracy for the
output bound method can be measured by the relative half bound-gap θ defined by

θ =
∆H

(sh)pre

(88)

which is the combination of the half bound-gap and the output predictor.

5.5 Optimal Bounds

The stabilization parameter κ may be chosen to minimize ∆H . The parameter arises by writ-
ing all variables as linear functions in κ and then by deriving output bounds as a function of κ.
This procedure does not change the bounding properties and output bounds remain rigorous in
an asymptotic region. An optimal stabilization parameter κ∗ can be evaluated by utilizing mini-
mization property of the half bound-gap. Note that, in the case of κ = 1, the usual non-optimal
output bounds are obtained. Then the optimal stabilization parameters, i.e., κu,∗ and κΘ,∗, can be
formulated as follows:

κu,∗ =

√

√

√

√

√

∑3
i=1 êdu,kT

ih Au,k
h êdu,k

ih

∑3
i=1 êpr,kT

ih Au,k
h êpr,k

ih

, (89)

κΘ,∗ =

√

√

√

√

êΘ,du,kT

h AΘ,k
h êΘ,du,k

h

êΘ,pr,kT

h AΘ,k
h êΘ,pr,k

h

, k = 1, ...,Nk, (90)

which are derived from minimization property of the half bound-gap such that

∂∆H

∂κ

∣

∣

∣

κ=κ∗
= 0, (91)

where ∆H and κ∗ can be applied for (·)u and (·)Θ, respectively.

5.6 Adaptivity

The adaptive procedure summarized in this section follows directly from [11–13] but is novel in
the sense that in this work it is applied to the Navier-Stokes and Energy equations in three space
dimensions. To minimize the half bound-gap (or improve the sharpness) of the bound method,
the adaptive sub-domain refinement strategy can be applied. Starting from an initial mesh T 0

H , the
half bound-gap ∆H and local indicators ∆k

TH
= ∆uk

TH
+ ∆Θk

TH
are calculated. At each refinement
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cycle, each tetrahedron T n
H is a refinement based on the local indicator. Note that if the output is

only a functional of the temperature, then only the contribution of the temperature error to the
local indicators considered. Similarly, for the velocity output, only the velocity local contribution
is considered. Here n denotes the nth refinement. To identify the sub-domains T n−1

H that need to be

refined, first the largest elemental contribution ∆n−1
max to the bound-gap ∆H

(

T n−1
H

)

can be found
such that

∆n−1
max = max

TH∈T n−1
H

∆TH (T n−1
H ), (92)

and then all tetrahedra TH ∈ T n−1
H for which

∆TH (T n−1
H ) ≥ β∆n−1

max , (93)

can be selected for refinements. The parameter β controls the cutoff, i.e., identifying elements to
be refined at each adaptive cycle (0 < β < 1). The adaptive process can be stopped when θn ≤ θobj

where θobj is the prescribed accuracy.

The adaptive sub-domain refinement strategy is summarized as follows:

(1) Calculate the corresponding bound-gap ∆H for each tetrahedron sub-domainT n
H ; evaluate

the local indicators ∆k
TH

; find the maximum sub-domain contribution ∆n
max among the local

indicators; tag sub-domains that satisfied Equation (93);
(2) Refine the tagged sub-domains identified in Step 1;
(3) Repeat Step 1 and Step 2 until the desired accuracy is achieved or the maximum number of

cycles is reached.

6 Results

To validate the proposed technique in terms of bound sharpness and computational cost, the
motivation example in Section 2 is revisited. The output of interest considered herein is the mean
temperature in the specific area region ΓO and hence s = sΘ and su = 0. All bound calculations
are performed with a refinement parameter R = 4. Furthermore, all solvers used in this paper are
based on LASPack sparse solver [30]. All computations are carried on a dual processor AMD
Athlon 1900+ 1.6 GHz CPU computer having 1.5 Gb RAM memory, running Linux.

For this test case, the flow is assumed to be driven by a constant pressure gradient which acts as its
driving force. For this problem, x = (x1,x2,x3) and has corresponding unit vectors x̂1, x̂2, x̂3. The
computational domain shown in Figure 1 is denoted as Ω and is bounded by ]0,3[×]0,1[×]0, 2

3 [

with two electronic chips located in ] 2
3 ,1[×]1

3 , 2
3 [×]0, 2

3 [ and ]2, 7
3 [×]1

3 , 2
3 [×]0, 2

3 [, respectively.
The outer boundaries consist of six surfaces, i.e., Γ1 = 0×]0,1[×]0, 2

3 [, Γ2 = 3×]0,1[×]0, 2
3 [, Γ3 =

]0,3[×0×]0, 2
3 [, Γ4 =]0,3[×1×]0, 2

3 [, Γ5 =]0,3[×]0,1[×0−] 2
3 ,1[×]1

3 , 2
3 [×0−]2, 7

3 [×]1
3 , 2

3 [×0, and
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Fig. 3. Sequence of the adaptively refined sub-domain meshes: (a) initial mesh TH having 2400 tetrahedra;
(b) uniformly refined mesh TH/2 having 19,200 tetrahedra; (c) adaptively refined mesh T 3

H having 5537
tetrahedra; (d) adaptively refined mesh T 5

H having 8721 tetrahedra; (e) adaptively refined mesh T 7
H having

14,195 tetrahedra; (f) adaptively refined mesh T 8
H having 18,797 tetrahedra.

Γ6 =]0,3[×]0,1[×2
3−]2

3 ,1[×]1
3 , 2

3 [×2
3−]2, 7

3 [×]1
3 , 2

3 [×2
3 , where Γ1 and Γ2 are the periodic bound-

aries and Γ3 to Γ6 are the homogeneous Dirichlet boundaries. Note that boundary surfaces of
the electronic chips have non-slip velocity and a given heat-flux (inhomogenous Neumann). The
velocity and pressure fluctuation fields are periodic in the x̂1 direction. The flow is driven by a
pressure gradient which induces the forcing terms f1 = 100

Re and f2 = f3 = 0 in Equation (20). The
pressure solution refers to the fluctuations with respect to this pressure gradient. The heat flux
boundary condition, gN = 1, contributes to the temperature force vector in the right hand side
of Equation (21). Reynolds number and Péclet number considered in this case are Re = 100 and
Pe = 100, respectively. The mesh adaptation cut-off parameter β = 0.4 is selected.

Figure 3 displays uniformly and adaptively refined sub-domains used in the bound method. Re-
call that these sub-domains are also the coarse mesh used for global calculations. Typically our
method starts calculations from an initial coarse mesh TH as shown in Figure 3a. To sharpen
the bound gap one can simply use an uniformly refined mesh TH/2 as shown in Figure 3b. The
bound method is also appropriate for an adaptive refinement strategies since the method naturally
provides local error information (i.e., local half bound-gaps) which can be used for local error
indicators for mesh refinements. Figures 3c to 3f show the sequence of adaptively refined sub-
domains generated. Earlier analysis and comparison with the fine mesh output [14,10], showed
that at low Reynolds number the bound values are always rigorous even on the coarsest possible
sub-domain mesh. In this work, the number of sub-domains is increased at each adaptive cycle,
therefore, the bounds of the fine mesh output should be strict bounds. The proposed adaptive
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technique not only captures the error of physical solutions, but also identifies the error of out-
put quantities in engineering design context, which can be observed from adaptively generated
sub-domain mesh in Figure 3. As more adaptive refinement cycles are performed, more tetrahe-
dra sub-domains concentrate near the output surface ΓO as well as around the electronic chips
where heat-fluxes are non zero and at corner singularities. Note that the separated flow behind the
second chip is not contributing to the output of interest and is therefore that region is less refined.

Fig. 4. Illustrations of the surface mesh, temperature contours, and uniform velocity vector for the adapted
mesh T 8

H : (a) mesh slice at x3 = 1
3 , i.e., center horizontal plane (top); (b) temperature contours, ranged

from 0 to 18 at unit intervals, of the surface mesh (middle); (c) uniform velocity vector of the surface mesh
(bottom).

Furthermore, the adaptively refined mesh properly captures features of multi-physics as well as
the interested output for the array of electronic chips. The solution on this subdomain mesh, as
shown at the center horizontal plane in Figure 4, can also be used to analyze the results in addition
to the bounds to the output.

Table 1 summarizes the optimal bounding values of the output s for the adaptive bound method.
As the number of tetrahedra increases adaptively, the half bound-gap ∆H and the relative bound-
gap θ become sharper. Clearly, the adaptive refinement strategy gives sharper bound-gaps than the
uniform refinement strategy with much less tetrahedral sub-domains, i.e., the adaptively refined
mesh T 7

H has 14,195 tetrahedra and gives a bound-gap that is slightly sharper than the uniformly
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T 0
H T 3

H T 5
H T 7

H T 8
H T 0

H/2

# of Elements 2400 5337 8721 14,195 18,797 19,200

# of Nodes 11,823 25,225 40,679 65,541 86,547 88,783

(sh)UB 15.98 14.49 14.36 14.19 14.09 14.13

(sh)LB 11.00 12.28 12.43 12.59 12.66 12.52

(sh)pre 13.49 13.39 13.39 13.38 13.38 13.32

±∆H ±2.492 ±1.106 ±0.963 ±0.799 ±0.716 ±0.807

θ(%) 18.47 8.26 7.19 5.97 5.35 6.06
Table 1
Bounding values for the adaptive bound method.

refined mesh TH/2 having 19,200 tetrahedra.

T 0
H T 3

H T 5
H T 7

H T 8
H T 0

H/2

# of Elements 2400 5337 8721 14,195 18,797 19,200

# of Nodes 11,823 25,225 40,679 65,541 86,547 88,783

Navier-Stokes problem 1892 7460 17,175 42,165 66,436 75,709

Energy problem 24 110 257 639 1073 1093

Hybrid-flux calculation 17 49 97 196 301 296

Coarse H-mesh CPU 1933 7619 17,529 43,000 67,810 77,098

Interpolation 17 72 177 422 721 753

Neumann subproblems 7957 19,055 31,957 51,173 67,895 62,533

Fine h-mesh CPU 7974 19,127 32,134 51,595 68,616 63,286

Total CPU 9907 26,746 48,663 94,595 136,426 140,384
Table 2
CPU time (s) breakdown for the adaptive bound method.

Table 2 reports the CPU (s) cost. The total CPU cost is divided into two subcategories; namely
the coarse H-mesh calculation and the fine h-mesh calculation where both computational costs
increases as the number of sub-domains increases. Among the coarse H-mesh CPU, the cost for
Navier-Stokes calculation is the most expensive and it becomes significantly dominant for larger
number of tetrahedra sud-domains. The CPU cost of the fine h-mesh calculation takes 3.4 times
more than the coarse H-mesh calculation for the initial tetrahedron TH . Nevertheless, the former
becomes less expensive than the latter for the larger number of tetrahedra. This is due to high
cost arising for the Navier-Stokes calculation. The cost involved in the hybrid-flux calculations
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is negligible compared to others thanks to the directly equilibrated approach [14]. In addition the
cost of the interpolation does not account for a significant part in the fine h-mesh calculation.

7 Conclusion

The adaptive sub-domain procedure applied to the bound method based on the directly equili-
brated hybrid-flux approach is developed for the steady incompressible Navier-Stokes and En-
ergy equations in complex three space dimensions domains to address a convective heat transfer
problem in a series of electronic chip devices. The proposed technique provides asymptotic sharp
bounds to the mean temperature in a specific region. For our model problem, this technique also
provides the same estimate of the fine mesh output at 28% of the cost of calculating it with a
standard finite element method. The meshes obtained from the adaptively refined sub-domains
show that both the multi-physics of the problem as well as the output of interest are captured.
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A Finite element spaces

Two-level tetrahedral discretizations of the computational domain Ω are required: the coarse
mesh H-mesh, TH , consisting of sub-domains TH and the fine h-mesh, Th, consisting of elements
Th such that

Ω =
⋃

Tδ∈Tδ

T δ, (A.1)

where δ = H and δ = h denote the coarse mesh and fine mesh discretizations, respectively. The
h-mesh tetrahedron Th is a refinement of TH which can be considered as tetrahedral sub-domains,
i.e.,

T H =
⋃

Th∈KTH

T h, (A.2)
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where KTH is the set of h-mesh tetrahedral elements that include all TH . Then, the h-mesh face
Eh is a refinement of EH which is considered as triangular sub-domains, i.e.,

γH =
⋃

γh∈KγH

γh, (A.3)

where KγH is the set of h-mesh triangular elements that include all γH . A uniform R-refinement
indicates that the h-mesh consists of R3 tetrahedra Th sub-refinements of each TH . The reference
finite element discretizations are based on the P+

2 −P1 basis and are known as the three dimen-
sional Crouzeix-Raviart finite element spaces [7]. Recall that the pressure field has 4−P1 nodes
where as the velocity and temperature fields contain 15−P+

2 nodes.

Regular piecewise continuous finite element subspaces for the velocity field of the coarse and
fine meshes are given by

XH = {vi ∈ X : vi|TH ∈ P+
2 (TH), ∀TH ∈ TH}, (A.4)

Xh = {vi ∈ X : vi|Th ∈ P+
2 (Th), ∀Th ∈ Th}, (A.5)

and for the temperature field

XΘ
H = {w ∈ Y : w|TH ∈ P+

2 (TH), ∀TH ∈ TH}, (A.6)

XΘ
h = {w ∈ Y : w|Th ∈ P+

2 (Th), ∀Th ∈ Th}, (A.7)

where

P+
2 (Tδ) = {P2(Tδ)⊕B3 ⊕B4, ∀Tδ ∈ Tδ}, (A.8)

which denotes the space of quadratic polynomials enhanced by the cubic facial ‘bubble’ function
(i.e., B3 = {ξ1ξ2ξ3,ξ1ξ2ξ4,ξ1ξ3ξ4,ξ2ξ3ξ4}) over γδ which represents the element face space and
the fourth-order volumetric ‘bubble’ function (i.e., B4 = ξ1ξ2ξ3ξ4) over Tδ. Furthermore, the
finite element subspaces for the pressure field of the coarse and fine meshes are as follows:

QH = {q ∈ Q : q|TH ∈ P1(TH), ∀TH ∈ TH}, (A.9)
Qh = {q ∈ Q : q|Th ∈ P1(Th), ∀Th ∈ Th}. (A.10)

The sub-domain ‘local velocity’ spaces which are UH(TH) and Uh(TH) are introduced as follows:

UH(TH)= {vi|TH ∈ P+
2 (TH), ∀TH ∈ TH}, (A.11)

Uh(TH)= {vi|Th ∈ P+
2 (Th), ∀Th ∈ KTH}∩H 1(TH), ∀TH ∈ TH , (A.12)

and the sub-domain ‘local temperature’ spaces are given by

27



UΘ
H (TH)= {w|TH ∈ P+

2 (TH), ∀TH ∈ TH}, (A.13)

UΘ
h (TH)= {w|Th ∈ P+

2 (Th), ∀Th ∈ KTH}∩H 1(TH), ∀TH ∈ TH , (A.14)

where KTH denotes the set of h-mesh elements contained in TH . Similarly the sub-domain ‘local
pressure’ spaces denoted as YH(TH) and Yh(TH) are defined as follows:

YH(TH)= {q|TH ∈ P1(TH), ∀TH ∈ TH}, (A.15)

Yh(TH)= {q|Th ∈ P1(Th), ∀Th ∈ KTH}∩L2(TH), ∀TH ∈ TH . (A.16)

The local function spaces including the ‘incompressibility constraint’ is defined by

ZH(TH)= {vi ∈UH(TH) : (∇vi,∇q)|TH = 0, ∀q ∈ YH(TH)}, (A.17)
Zh(TH)= {vi ∈Uh(TH) : (∇vi,∇q)|TH = 0, ∀q ∈ Yh(TH)}. (A.18)

Then the associated global representations of ‘discontinuous velocity’ spaces are as follows:

for the case without the ‘incompressibility’ constraint:

VH = {vi ∈ L2(Ω) : vi|TH ∈UH(TH), ∀TH ∈ TH}, (A.19)

Vh = {vi ∈ L2(Ω) : vi|TH ∈Uh(TH), ∀TH ∈ TH}. (A.20)

for the case with the ‘incompressibility’ constraint:

WH = {vi ∈ L2(Ω) : vi|TH ∈ ZH(TH), ∀TH ∈ TH}, (A.21)

Wh = {vi ∈ L2(Ω) : vi|TH ∈ Zh(TH), ∀TH ∈ TH}. (A.22)

In fact, Uδ(TH) and Zδ(TH) are Neumann spaces over each TH , for which Vδ and Wδ are the
corresponding global representations. Note that, Zδ(TH) imposes the necessary global incom-
pressibility constraint on the velocity on behalf of the discontinuous pressure approximation. The
associated global representations of ‘discontinuous temperature’ spaces are given as:

V Θ
H = {w ∈ L2(Ω) : w|TH ∈UΘ

H (TH), ∀TH ∈ TH}, (A.23)

V Θ
h = {w ∈ L2(Ω) : w|TH ∈UΘ

h (TH), ∀TH ∈ TH}. (A.24)

Let E(TH) and E(Th) denote the set of ‘open faces’ in the tetrahedron TH and Th. Then the
spaces of velocity functions over the element faces γH and γh are introduced as follows:

FH = {vi|γH ∈ P2(γH)⊕B3, ∀γH ∈ E(TH),vi|ΓN = 0}, (A.25)
Fh = {vi|γH ∈ P2(γH)⊕B3, ∀γH ∈ E(Th)∩E(TH),vi|ΓN = 0}. (A.26)
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The spaces of temperature functions over the element faces γH and γh are given by:

F Θ
H = {w|γH ∈ P2(γH)⊕B3, ∀γH ∈ E(TH),w|ΓN = 0}, (A.27)

F Θ
h = {w|γH ∈ P2(γH)⊕B3, ∀γH ∈ E(Th)∩E(TH),w|ΓN = 0}. (A.28)

It follows that FH ⊂ Fh and F Θ
H ⊂ F Θ

h ; the functions in these spaces can be discontinuous.

Finally, the interpolation operators for the velocity, temperature, and pressure fields are defined
as Î u

h , Î Θ
h , and Î p

h , respectively. These operators interpolate the functions from the coarse mesh
to the discontinuous sub-domain fine mesh tetrahedron such that

(

Î u
h v

)

|TH (νu)= v|TH (νu), (A.29)
(

Î Θ
h w

)

|TH (νΘ)= w|TH (νΘ), (A.30)
(

Î p
h q

)

|TH (νp)= q|TH (νp), (A.31)

where νu is any of the tetrahedral nodes for the velocity reference element, νΘ is any of the
tetrahedral nodes for the temperature reference element, and νp is any of the tetrahedral nodes
for the pressure reference element.

The hybrid-flux interpolation operators on faces of tetrahedral elements are denoted as Î f u

h and

Î f Θ

h . They interpolate the functions from the coarse mesh to the discontinuous sub-domain fine
mesh face triangulation such that

(

Î f u

h v
)

|TH (ν f u
)= v|TH (ν f u

), (A.32)
(

Î f Θ

h w
)

|TH (ν f Θ
)= w|TH (ν f Θ

), (A.33)

where ν f u
and ν f Θ

are any of the triangular nodes for the velocity and temperature, respectively
on a face γh. Note that the hybrid fluxes are only calculated between two shared faces, and are
therefore only interpolated between the faces.
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