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A Posteriori Finite Element Output Bounds
with Adaptive Mesh Refinement: Application
to a Heat Transfer Problem in a Three
Dimensional Rectangular Duct *
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Abstract

Numerical simulations based on an a posteriori finite element
bound method with adaptive mesh refinement are presented for the
three dimensional convection—diffusion equation. The bound method
provides relevant, quantitative, inexpensive, and rigorous lower and
upper bounds to the output on a very fine discretization (“truth” dis-
cretization) at a cost close to the coarse mesh calculation (“working”
discretization). To achieve a desired bound gap (i.e., difference be-
tween upper and lower bounds) at the lowest cost, an adaptive mesh
refinement technique is used to refine the mesh only where needed. An
optimal stabilization parameter is also applied to improve the sharp-
ness of the bound gap. In this paper, the output of a heat transfer
problem in a rectangular duct with a given velocity field is investi-
gated. The average temperature at one section of the duct is bounded
for a given inlet temperature and heat flux. For this problem, the
adaptive mesh refinement strategy provides the same bound gap with
only half the number of elements required by an uniform mesh refine-
ment strategy. The hybrid flux calculations on the coarse mesh in-
troduced for the domain decomposition approach are compared with
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hybrid flux calculations on the fine mesh to analyze the contribution
of the hybrid flux to the bound gap.

1 Introduction

The obvious limitations of analytical solutions for complicated problems force
engineers to use numerical or experimental tools. For a large number of
applications, numerical simulations provide a fast, inexpensive and flexible
alternative to experiments. As a consequence, numerical simulations are an
important technology for engineering applications. The main parameter of
an approximation method is the discretization size §. For a given approxi-
mation domain and function space, the accuracy of the approximation of the
solution is closely related to the discretization size ¢. In this study the finite
element method is used. As the number of finite elements is increased (i.e.,
the discretization size ¢ is decreased), the accuracy of numerical approxima-
tion is improved and the requirement of CPU time is increased (which means
the computational cost is increased). Therefore an engineer faces a trade—off
between computational cost and numerical accuracy. A coarse “working”
mesh (§ = H) approximation is relatively inexpensive but generates a solu-
tion which is not sufficiently accurate. A fine “truth” mesh (6 = h) approx-
imation is sufficiently accurate (i.e., ©,(x) ~ ©(x)) but is very expensive,
possibly unfeasible, in terms of computational resources.

Numerical methods are exploited in two different categories: analysis
and design. In analysis the entire field such as velocity, temperature, or
displacement is relevant. For design and more general optimization, only a
few parameters are important. A design problem exploits an input—output
relationship between design variables and performance requirements. The
performance can be an output or a combination of outputs which are func-
tionals of field solutions obtained from ordinary or partial differential equa-
tions. These functionals can either be linear or nonlinear. In the context of
design and optimization, the final goal of the numerical simulation is not the
field solution, but rather to minimize a quantitative design output value.

The technique adopted in this paper does not aim at finding the field so-
lution, but rather seeks to calculate bounds for an output of interest which is
derived from the solution of a PDE (Partial Differential Equation). Recently,
an a posteriort error estimation technique has been extended to address er-



ror metrics more closely relevant to engineering design. It is assumed that
the quantity of interest in engineering design is not the field variable or the
error in the energy norm, but rather the output of the system performance
which reflects specific goals and objectives of the design and optimization
problem [12, 16, 17]. The idea behind the bound method is to replace a fine
mesh output (s, “truth” output) by relevant, quantitative, inexpensive, and
rigorous bounds to s (i.e., lower and upper bounds). The bound method
offers precise and reliable information at a cost of the same order as the
coarse mesh calculation. In design problems, engineers will be interested in
bounds with a specific bound gap. By adapting the coarse mesh, sharper
bounds can be obtained. The goal is to improve the bound method by using
adaptive refinement to bound the fine mesh output (i.e., s, “truth” output)
and thereby provide the “truth” validation.

The key idea of adaptive mesh refinement techniques is the definition of
a local error associated with the error to contributions from each element.
Adaptive mesh refinement methods accomplish computational cost reduction
by varying the mesh size inside the computational domain based on the local
error indicator. In this work, adaptive techniques are exploited in a slightly
different context: the method searches the ideal coarse mesh to be used
as subdomains for bound calculations. The objective of this paper is to
develop an error estimator for three dimensional problems, to construct a
methodology for adaptive mesh refinement on tetrahedron, to calculate the
bounds to an output of interest and to analyze hybrid flux calculations.

The bound method in this paper is based upon a Lagrangian with a
modified energy objective where the constraints are the finite element error
equation and the inter-subdomain continuity requirement of the error field.
The lower and upper bounds are then derived by evoking the dual maximum—
minimum problem for appropriately chosen candidate Lagrange multipliers.
The bound calculation is composed of two main steps: first, several global
computations on the coarse “working” mesh (7p); second, local decoupled
computations on the fine “truth” mesh (7).

The bound method is an application of the quadratic—linear duality the-
ory proposed in [1, 5] to an augmented Lagrangian. On one hand, Ladeveze
procedure used to approximate the inter-subdomain connectivity in earlier
work is only adequate for two-dimensional space [1, 5]. On the other hand,
the “flux free” method suggested in [7] may become expensive in three space
dimensions. Herein the finite element tearing and interconnecting (FETI)
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procedure is implemented to extend the method to three-dimensional prob-
lems. This domain decomposition method is ideal to approximate the inter—
subdomain connectivity (i.e., hybrid flux) for the bound method. The FETI
procedure was first introduced as an effective parallel solver for structural
problems and is well established in [3, 4]. The FETT procedure reformulated
for the bound method for outputs of a three-dimensional convection-diffusion
equation is adopted as proposed in [2, 9].

The Lagrangian chosen in this work allows general error measures, such
as non-linear functional outputs, and general equations, in particular non-
symmetric operators [8, 12, 10, 9]. For more information about lower and
upper bounds for outputs of coercive partial differential equations, the inter-
ested reader should refer to [8, 12, 10, 13, 11] for one and two-dimensional
problems and to [2, 9] for three-dimensional problems. The bound method
has been extended to address a wide range of problems including the Helmholtz
and Burgers equations [15] and Stokes equations [8, 13, 11]. Furthermore,
a general technique has been developed to address functional outputs of the
incompressible Navier-Stokes equations [6].

In this work, the a posteriori error estimation procedure [2, 14] is com-
bined with the three-dimensional bound extension to obtain an optimal local
subdomain decomposition for the bound method. The adaptive mesh re-
finement technique based on local bound—gap error indicators is applied as
suggested in [2, 14, 6]. Previous local bound—gap error indicators were only
constructed for a two-dimensional space [14, 6]. In this paper, the local
bound gap error indicator is extended to a convection-diffusion problem in a
three-dimensional domain.

The outline of the remainder of this paper is as follows. In Section 2,
an a posteriori error estimation is introduced for the convection-diffusion
equation. The FETI procedure for the new Lagrangian formulation of the
bound method is derived. In Section 3, an adaptive mesh refinement tech-
nique based on local error indicators is presented. In Section 4, numerical
results are reported for the coarse mesh hybrid flux calculations. Finally in
Section 5, the hybrid flux is analyzed by calculating more accurate hybrid
fluxes directly on the fine mesh.



2 Bound Procedure

In this section, an augmented Lagrangian that permits the calculation of
the error estimator is presented. The constraints of this Lagrangian are the
finite element error equation and the modified inter—-subdomain continuity
condition. This section contains the bound method reformulated for this
new Lagrangian using the FETI procedure for convection-diffusion equation
in three space dimensions. The formulation is constructed without any proof
of the bounding properties. For the complete description and proofs of the
bounding properties, the reader should refer to [7].

2.1 Problem Statement

The convection-diffusion equation is solved to obtain the temperature field
in a rectangular duct with a given laminar velocity field known analytically.
The adaptive mesh refinement technique is applied to reduce the bound gap
and therefore improve the validated prediction for the output.

2.1.1 Governing Equation

The convection-diffusion equation in three space dimensions are used to de-
scribe the behavior of temperature © in a rectangular duct flow. The tem-
perature, O, satisfies

0 , 00 00

- i i Qa ) = ]-7 27 ) 1
o (aaxi) + U, o f inQ, i 3 (1)

with boundary conditions
0 = @i, on Fl, (2)
© = 0, onlyandTy, (3)
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s = 4, )= 1,....,4, onTj, (4)
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where « is the thermal diffusivity and € is a bounded domain in R? in which
['; is an inhomogeneous Dirichlet boundary, I's and I'y are homogeneous
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Figure 1: Duct geometry

Dirichlet boundaries, I'3 is an inhomogeneous Neumann boundary, and I'; is
a homogeneous Neumann boundary.

For this problem x = (x1, 23, x3) has corresponding unit vectors Z1, &o, 3.
The domain €2 is the rectangular duct, |0, 1[x]0, 1[x]0, 4] with outer sides of
duct denoted by I';, j =1, ...,5, as shown in Figure 1. To avoid singularities
on each side of this geometry, a sinusoidal distribution of inlet temperature
and heat flux is given. The inlet temperature is given as ©; = sin(7wx;) X
sin(rze) and the heat flux is given as ¢; 3 = 0.5 X sin(7z2) X sin [7(z3 — 1)]
and ¢4 = 0.5 X sin(mz;) x sin [7(z3 — 1)]. The force term f = 0, which
assumes no heat source inside the volume.

The variational weak form of the governing equation is as follows: Find
O € H'(Q2) such that

L2000 00

——dV = dA (e
Q 8:cj6xj ]8xj v /FSUQ ’ VUG%O( )’ (6)

where dV is a differential volume element, dA is a differential area element,
and H'(Q) denotes the Hilbert space of functions that are square integrable
and derivatives that are square integrable over 2. The right hand side of
equation (6) is an inhomogeneous Neumann boundary term arising from the
boundary of left hand side.



2.1.2 Output of Interest

The particular linear functional that is investigated herein is the average
temperature on a specific slice (denoted as I'°) of the domain Q. Figure 1
indicates the section ' which is |0, 1[x]0, 1] at x5 = 2.0.

The average temperature output linear functional, denoted by s, is simply

written as 1
=00) == | ©dA 7
§= 10) = g1 [, @14, )
where || is the area of the surface I'?. In this case, the value of |T'°| equals
one.

2.1.3 Velocity Field

The velocity distribution is prescribed as U = (U;, Uy, Us) and is obtained
analytically. It is assumed that the secondary flow in the rectangular duct is
negligible, that is velocities in x; and x5 directions are negligible if they are
compared with velocity in z3-direction. The velocity field is laminar and it
is driven by a negative pressure gradient.

The velocity in the x3-direction has a parabolic distribution and the an-
alytical solution for a rectangular duct flow is formulated by

Uy=U, = 0,
2dp |11 1\?2
Us(1,29,73) = —;d—ilz{z - <I1 - 5) }
. (—1)mcosh A, (a:Q — %) ( 1)
—2 )\n S ) 8
nzz:() A3 cosh 42 oos 1T (8)

where
Ap =2 (mr + %) )

Note that, the velocity depends on the coordinates z; and x5, p (fluid vis-
cosity), and jT’; (pressure gradient in the x3-direction). For the analytical
solution procedure, the reader should refer to [2].



2.2 Finite Element Spaces

Two tetrahedral discretizations of the computational domain €2 are consid-
ered: the coarse “working” or design H-mesh, Ty, consisting of Ky elements
Ty; and the fine “truth” h-mesh, 7,, consisting of K} elements 7j,. The
h-mesh tetrahedron 7}, is a refinement of 7.

Regular piecewise—linear continuous finite element subspaces are associ-
ated to each of these meshes,

Xy = {veH' (Q)|v|r, € Pi(Ty), YTy € T}, (9)
Xh = {U € HI(Q) | U|Th € Pl(Th)7 vT’h S ,ﬁb}: (10)

where P1(Tj) denotes the space of linear polynomials over T5 (where 6 = H
and & = h respectively). H'(Q) is the usual Hilbert space of function v such
that v € L*(Q2) and Vv € L*(2) where L*(Q) is the space of square-integrable
functions.

Additional “discontinuous subdomain” spaces Xy and X, are needed,

XH = {U € L2(Q) U|TH € HI(TH), YTy € TH}, (11)
Xh = {U € L2(Q) U|TH € HI(TH), V1 € TH} (12)

Let £(Ty) and E(Ty) denote the set of open faces in the tetrahedron Ty
and 7,. Then the spaces of functions over the element faces vy and -, are
introduced as follows

QH — {y|’YH € Pl(fYH)a \V/fYH S g(TH)7y|’YN = 0}7 (13)
Q. = Yy €Pi(ym), Vyu € E(Th) NE(TH), Yl =0} (14)

It follows that Qi C Q, C HY2(£(Tx)); the functions in these spaces can,
of course, be discontinuous.

2.3 Lagrangian Formulation

The Lagrangian formulation is presented here using the stabilization param-
eter k. The strategy is to write all variables as linear functions in x and then
derive the bounds as a function in x. This procedure does not change the
bounding theory and the bounds remain rigorous. The optimal stabilization
parameter k* can therefore be calculated. Note that, in case x = 1 the usual,
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non-optimal bounds are obtained. For the purpose of allowing straightfor-
ward implementation, the optimal bound formulation is presented in matrix
form.

The Lagrangian is expressed with the stabilization parameter x and vari-
ables v € X, e Xy, and ¢ € Q) as

Ny

L g) = Y lﬁ <U(k>TA(k>U(k> _ Ty +U<k>TL<k>@§?> n g(k)T(@gp +U(k>)]

k=1

Ny, Ny,
T
+ 3 u®T [LOOF +0®) — fB] 4 ¢S BRy®),
k=1 k=1

where, for N, subdomains, v = {v("), .., o™} and p = {u®M, ..., uNe)},
Also, A®) is the finite element discretization of the symmetric part of L(*)
and B® is the sign Boolean matrix which localizes the “jumps” at the inter-
face. @%) is the coarse mesh field solution vector. There are two candidate
Lagrangian multipliers, which are the adjoint x*) and the hybrid flux ¢®.
Note that, (+) sign indicates the lower bound and (—) sign denotes the upper
bound, respectively.

By evoking stationarity conditions of the Lagrangian (15) on the coarse
mesh, three equations are obtained for efl € XH, z/)}il € Xy and )\i € Qy,
such that

BN + 6 (24pes — fr+ Lu®p) + L' v £y = 0, (16)
LyOu + Lyey — fu = 0,  (17)
By'er = 0. (18)

2.4 Adjoint Calculation

The H-mesh adjoint calculation is considered here. From equations (17) and
(18), it can be derived that e, = 0 and LyOy = fy. For the continuous
space Xg, B};)\f] = 0. Therefore equation (16) is reformulated as

L™y + Ly =0. (19)

Note that, the adjoint can be evaluated as 1/)?3 = 4ty and equation (19) is
independent of the stabilization parameter x.

(15)



2.5 Hybrid Flux Calculation

Knowing the adjoint and applying e = 0 in (16), the hybrid flux can be
evaluated: Find )\E € Qg such that

BIX: =k (fu — LuOn) Fly — Ly v, (20)

Alternatively,
Bhdow = —lg— Ly ¥u, (21)
BhiMuw = fu— LuOun, (22)

and then set A\5; = £\oz + kA1x. The right hand side of equations (21) and
(22) are denoted as the residual of the adjoint and the field solution, respec-
tively. Note that, in equations (21) and (22), B} is singular for redundant
constraints and therefore (21) and (22) are not solvable.

If the FETI method is applied, equations (21) and (22) become

T T
2ARS) + B Mo = —6F — L i, k=1, N,
ST
k=1
Similarly,

T
2A(Hk)€§2+3g€) A = fgﬂ)_L(Hk)@%)’ k=1, N,
0Tk
S BW el = 0. (24)
k=1

Note that, equations (23) and (24) can be reformulated into an interface
problem for the FETI procedure.

2.6 The FETI Procedure

The FETI approach is applied to calculate the hybrid flux on the coarse
“working” mesh Ty. Equations (21) and (22) can now be treated as interface
problems using the FETT procedure.
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The superscript (k) denotes each local subdomain problem (1 < k& < Ny).

Defining q((]]g and q@ as

T
a = —lp =Ly 0y, (25)
iy = fi = Lo, (26)

and denoting R;’? = Ker (A(Hk)). Then equations (23) and (24) are reformu-
lated as

T
Kgc)e(()lg—i‘Bgc) >\0H = q(()];}, kzl,...,Nk,

Ny
> Biely = 0, (27)
k=1
and
T
KR+ BY M = ¢, k=1,.., N,
Ny
> Bylely = 0, (28)
k=1
where K}}“’ = 2A(Hk). Combining all subdomain equations and enforcing

solvability lead to

Ny, Ny, i + T ]
> Bifely = 3 B | KT (a) - B daur) + Rifalfy| =0, (29)
k=1 k=1 - i

and similarly

Nk Nk' B T
+ T

5 Bty = 3% 5 [0 (o5 - B aur) + Y] 0. o0

k=1 k=1 L i
where a%) is the set of amplitudes that specifies the contribution of the
Rg) to the solution. These coefficients can be determined by requiring that
each subdomain problem be mathematically solvable — i.e., each floating
subdomain be self-equilibrated — which is

T T
Ry (qé]}}—Bg) >\0H> = 0,

T T
R (- B A = o, (31)
k=1,.. N
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Rearranging equations (29), (30) and (32) gives

K k) ()T )T Sk (k) k) (k) K k) ) ()
Z By'Ky’ By Aom — Z By Ry agy = Z By Ky qogs

T T T
_Rgrc) Bgc) o = —R(f];) Q(()];}: (32)
k= 1,...,N,
and
& (k) k) (k)
ZBH Ky ZB H alH = ZB H (I1H,
k=1
R = R
k = 1,..,Ny.

This leads to the FETT interface problem, i.e., equations (32) and (33),
in matrix form are:

e 0 L] =L ) @
and F Gu | [ e ] [ diw ]
6t 0 e | T b | (35)
where each of these terms is given by
Fy = %’“: (k) g g;)ﬁ (36)
k=
Gy = [31 . By RV, (37)
aog = [a&)[ a(%’“)],
ap = [ e ant] (38)
dw = 3 BPKE ),
k=1
hn = 3 BYER 4}, (39)
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T T
b = Rl RG]
T T
b = [FAY  RET), (0
where Kgﬁﬁ is a generalized inverse of K}f’. The constraints GH Aoy =
T
borr and GEN iy = byy ensure that <—€(Hk) — L(Hk) zl)H(k)> € range A%) and
(fl(f) — Lgﬂ)@(Hk)) € range A%) forall k=1, ..., Ng.

The FETI method iterates on Aoz and Az, given an initial A}, and A},
which satisfy the constraints GE Ao = borr and GE A\ = bi. Note that in
equations (34) and (35) only the right hand side is different.

The FETT algorithm can be regarded as a two-step preconditioned conju-

gate gradient method to solve the interface problem and can be summarized
as in [9, 3|:

1. Initialize
N = Gr(GEGy) by
2. Iterate n =10,1,..... until convergence

yn — PHﬁwﬁlwn
n—1 ynTFHpi

pn — yn - Z %pi
= v Fup'
" ynTwn
n S A —
pnTFHpn

At o= A+t

wn-i—l = "= nnPIZ;FHpn
where Py is a projection operator and Fj;' is a preconditioner.

2.7 Local Neumann Problems

Both Lagrangian candidate multipliers, i.e., ¥y and )\§ (more precisely, Aoy
or Aiy), and the field variable © are linearly interpolated onto the fine
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mesh Ty, i.e., g — ¥, A5 — A (precisely, Ao — Ao or Mg — A1), and
O — éh.

The minimizers of £*(v, f, AF), which is éF € X, will satisfy the fol-
lowing equations:

~

T T
9% A;lk)(éf)(k) -« (ffgk) . L;lk)@gk)) $€§Lk) . Lg“) T/Jf(k) . B]sk) )\f,

k=1,.. Ny (41)
Alternatively, in terms of éy, and é;,
T T
2410 = 67 = L 0™ = B A, (42)
. T
QAP — 0 LOP_ ", (9
k=1, .., N,

where é}:i: = i%égh + élh-

2.8 Bound Calculation

The lower and upper bounds can be derived from the Lagrangian in (15) or
its equivalent simplified form

Ny,

a~ T o
(sn)us = su+rd ()" AP ()P, (44)
k=1
Ny, T
(snip = su—nrY(&)® AP (E&H®. (45)
k=1

Alternatively, the bounds are

Nk k) A(k
(sh)up = su—2 Z(é(()h))TAgz )égh)

N,
Z T AR glk) —|—/€Z PN A (46)
k=1 k=1

(sn)ep = sm—2 Z(égﬁ))TA%k)égﬁ)

1 )T )T
k= k= 1
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The half bound gap becomes:

LK (T (k) 5(8) K SONT 4 (F) 5(8)
A(THa"ﬁ) = EZ(%};) Ay e, +“Z(e1h) Ayrery, (48)
k=1 k=1

The output predictor is rewritten in matrix form as
S (A (0\T 4 () A(b)
($n)pre(Th) = sm — 2 Z(éOh )TAh €ip - (49)
k=1

Note that, equation (49) is independent of the stabilization parameter .
The actual calculation of this parameter is presented next.

2.9 Optimal Bounds

The optimal stabilization parameter «* is formulated in matrix form as

~ T ~
* e (o) A en

W= o (T 40 (50)
2 k=1 (€1h) Ay ey

Note that, the contribution to the optimal stabilization parameter £* is eval-
uated for each subdomain. Then, the optimal bounds are rewritten as

Ny
(Sh)UB = sg—2 Z(é(()i))TAgzk)égll?

1 N’“ (k) K LN 4 (F) 5(K)
H_Z o, + K Z(em) Ayreyy, (51)
k=1 k=1

(sn)rB = sg—2 Z(ééi))TAgzk)égﬁ)

1 N’“ ) o) K (T 4 (k) A(R)
_K_ Z €on, — K* Z(em ) Ayrery), (52)

and the associated bound gap becomes

Ny, Ny,
~(k k) ~(k
AT, k) = z Bl 4kt 3 (@ ARl (53)
k=1 k=1
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3 Adaptive Mesh Refinement

In practice, an engineer will be interested in bounds with a specific bound
gap. Improving the sharpness of the bound gap is essential to the bound
method. The bounds can be improved by uniformly refining the coarse mesh.
Nevertheless, this approach is far from optimal. It was shown in the previous
section that the bound gap is related to the sum of local quantities. In this
section, the procedure of adaptive mesh refinement based on decreasing the
value of the local contribution to the bound gap is presented. This technique
is validated on a heat transfer problem in a rectangular duct.

3.1 Local Indicators

The adaptive mesh refinement procedure can be implemented on any pair of
meshes, 7 and 7y, which satisfy the requirement that 7, is a refinement of
Tu. Since the cost of computing the bounds is essentially a function of the
number of elements Ky in Ty, it is desirable to construct a mesh with the
minimum number of tetrahedra that maximize the bound accuracy (minimize
the bound gaps). In this section an adaptive algorithm for generating such
optimized grids proposed in [14, 6] is extended to three dimensional spaces.

Recall that the half bound gap can be expressed as a sum of elemental
contributions, i.e.,

ANTu)= > Ory(Tw), (54)
TacTa
where
1| & A=\ (k) A(K) (53— (k) all A\ (k) 4 (B) 5+ (K)
Aqy (Th) = B Z(eh) Ay () +Z(6h) Ay (er) . (55)
k=1 k=1

Note that Aq, (Ty) is non-negative and can thus be directly interpreted as
the contribution to the bound gap from element 7T%.

If the optimal stabilization parameter £* is used in the bound calculation,
the local indicators should be formulated as

ATg)= Y, Ary(Ta, k"), (56)

TueTu
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where

* 1 S (k) (k) sk K (k) (k) Gk
(T ) = 2 e Aien + v 3 el 40 ey,
= k=1

N A k) ~(k

_ \J Dk € 1h Ez)egh) gkj é(];)A;zk)é(]Z)

- (k) 4 (k) ~(k 0 0
L eé,}Aé =

N k) ~(k
Zl]chl Oh ( 6Oh all
+J N Z

Zkl 1h 1hk

(57)

An adaptive mesh refinement strategy inspired by [14, 6] is described.
Starting from an initial grid 72, local bound gaps {A(T#), n = 1,2,3,...}
are calculated. Here n denotes the n'® refinement such that each tetrahedron

7 is a refinement of the preceding tetrahedron 7;7~'. This approach does
not guarantee that A(T%) < A(TF™') for any partlcular n, but it does
ensure that, for a sufficiently large n, A(T7) < Aler9et where Al79¢ > () is
a specified positive gap target.

In order to identify the elements in 77" that need to be refined, first
the largest elemental contribution A™-1 to the bound gap A(77™") can be
calculated as

AL = max  Ap, (TF ), (58)

mazx THET;}_I
and then all elements Ty € T,7~" for which
Ary (T 1) 2 BAL, (59)

can be selected for refinement. The parameter [ controls the cutoff, i.e.,
identifying elements to be refined at each adaptive cycle (0 < f < 1). At
present, this parameter is specified a priori, and is independent of n.

The adaptive mesh refinement process is terminated when the accuracy
goal is achieved. In the applications that follow, the accuracy measure is the
relative (half) bound gap 0", given by

ATH)
(sn)pre(TH)
The adaptive process is thus halted when 6* < #° where 6°7 is the pre-

scribed accuracy. The adaptive process is also stopped when reaching a
maximum number of iterations.

max’

o = (60)
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T Tii Ty T Tigo
# of elements 3,000 5,613 12,082 21,445 24,000
# of nodes 756 1,308 2,671 4,501 4,961
(sn)uB 1.2365 1.2812 1.3220 1.3203 1.2559
sm 0.7055 0.8996 1.0171 1.0622 0.9570
(sn)rB 0.6062 0.8166 0.9423 0.9969 0.9087
(k) pre 0.9213 1.0489 1.1321 1.1586 1.0823
+A\(Tw) +0.3151 | £0.2323 | +0.1898 | £ 0.1617 | £ 0.1736
0 (%) 34.2 22.1 16.8 13.9 16.0
max Ap, | 4x1073 [86x107*[24x107* | 1.1x 107" | 9x 107*

Table 1: Optimal bounds for uniform and adaptive refinement of a structured

initial mesh.

3.2 Adaptivity Procedure

The adaptive mesh refinement procedure is presented in this section. The
four steps required for the entire procedure are:

1. Calculate on an initial “coarse” mesh T the corresponding bound gap

4

A(TR). Calculate the half bound gap Arp, for each element and find
the largest elemental contribution AY  to the bound gap A(Tg). Tag
elements which have a large contribution to the bound gap based on

equation (59).

. Refine the tagged elements from Step 1.

. Calculate bounds, bound gap, and local indicators using the new coarse

mesh.

. Repeat Step 2 to Step 3 until the desired bound gap is achieved.

Numerical Results

In this section, the convection-diffusion equation is investigated for a rect-
angular duct flow where the thermal diffusivity is 0.1 (i.e., @ = 0.1). The
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average temperature over '’ is the desired output quantity. A comparison
between the uniform and adaptive refinement of a structured initial mesh is
reported.

All computations are performed on a single processor with a Pentinum
IIT 933 MHz CPU having 1536 M memory. For this problem, all the bound
calculations are carried out with a refinement of 4 (R = 4). Obviously in
practice the refinement should be larger. When R = 4, each local subdomain
has 35 nodes and 64 tetrahedral elements. In the adaptive process, elements
are selected for refinement based on equation (59) for § = 0.4 for all cycles.
The global FETT tolerance is set to 1073 for this case.

Recall that the goal of the adaptive technique is to decrease the bound
gap and distribute the local bound gap error more uniformly over the entire
domain. Results of the optimal bound method using uniform and adaptive
refinement of a structured initial mesh are summarized in Table 1. Table 1
shows that a relative (half) bound gap of 16.8% is achieved with 12,082 ele-
ments (7;), while the optimal uniform refinement provides 16.0% with twice
the number of elements (75, has 24,000 elements). The output s, = 1.1692
on a fine “truth” mesh consisting of 270, 641 degrees-of-freedom (nodes) and
1,536,000 tetrahedral elements. Note that, the output predictor (sp),r. for
the final adapted mesh 77 equals 1.1586 which is very close to the fine “truth”
output (s, = 1.1692). The uniformly refined mesh 75, leads to an output
predictor (sp)pre equal to 1.0823 which is significantly less accurate.

Table 2 reports the number of elements (%) by half bound gap A(Tx)
intervals for an uniform and an adaptive refinement of a structured initial
mesh with optimal stabilization parameter x*. As more adaptive refinement
cycles are performed, the maximum value of the half bound gap A(Ty) is
decreased and the range of the bound gap is more uniformly distributed over
the entire domain. It is observed that the final adapted mesh T3 (21,445
elements) has 12 elements (0.1%) that have values of bound gap greater
than 10~* while the uniformly refined mesh g/, (24,000 elements) has 317
elements (1.3%). Note that, these 1.3% elements of the uniformly refined
mesh Ty, cause the increase of bound gap (bound error).

Figure 2 illustrates the surface of coarse meshes generated using uniform
and adaptive refinement of a structured initial mesh. Note that, as more
adaptive refinement cycles are performed, the finer grids are concentrated on
r9 (i.e., ]0,1[x]0,1[ at z = 2) of the output s (see the adaptively refined
meshes in Figure 2). Figure 3 shows the isocontours of a slice of the mesh at
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Figure 2: Uniformly and adaptively refined meshes with optimal bound
method: (a) 72 has 3,000 elements, (b) 77 has 5,613 elements, (c) 77 has

8,402 elements, (d) 75 has 12,082 elements, (e) 75 has 21,445 elements, and
(f) Tg/, has 24,000 elements.
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Figure 3: Meshes and Isocontours (0 to 0.6 at intervals of 0.1) of temperature
for uniformly and adaptively refined meshes with optimal bound method
(slice at z=2.0): (a) T3 has 3,000 elements, (b) 77 has 5,613 elements,
(c) T3 has 8,402 elements, (d) 7;; has 12,082 elements, (e) T, has 21,445
elements, and (f) 75, has 24,000 elements.
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Figure 4: Relative bound gap # as a function of the number of elements in
log-log scale for uniform and adaptive refinement (using the coarse H-mesh
hybrid flux calculations).
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Tir i Tiso

# of elements 3,000 21,445 24,000

A(Tyg) > 1073 72 (2.4) 0 (0) 0 (0)
5x 10 < A(Ty) <103 78 (2.6) 0 (0) 34 (0.1)
101 <A(Ty) <5x 10 1| 338 (11.3) 12 (0.1) 283 (1.2)
5x 105 < A(Ty) <10°% | 276 (9.2) 307 (1.4) 358 (1.5)
1075 < A(Ty) <5x107° | 859 (28.6) | 4,268 (19.9) | 1,627 (6.8)
5x 1078 < A(Ty) < 107> | 117 (5.9) | 3,861 (18.0) | 1,273 (5.3)
107 < A(Ty) <5x107% | 164 (5.5) | 9,705 (45,2) | 6,887 (28.7)

N(Ty) <107° 1,036 (34.5) | 3,292 (15.4) | 13,538 (56.4)

Table 2: Number of elements (%) by half bound gap A(Ty) intervals for
uniform and adaptive refinement of a structured initial mesh.

z = 2 for uniform and adaptive refinements of a structured initial mesh. The
value of isocontours ranges from 0 to 0.6 at intervals of 0.1. The isocontours of
temperature Oy are plotted just for analysis. Recall that the mesh showed in
this figure is used to define subdomains where decoupled problems are solved.
The temperature solution on this mesh as well as the adjoint field solution are
interpolated onto the fine mesh, therefore a more accurate solution on this
mesh leads to shaper bounds. As the refinement is performed, the isocontours
become smoother. Final isocontours on mesh 7;7 (21,445 elements) catch the
boundary layer near the wall more precisely than that of uniformly refined
mesh 7'[3/2 (24,000 elements). After four refinements, the method identifies
the mesh in the middle region where there is not much refinement required
and thereby the sharpness of bounds or relative bound gap is not improved
significantly. At this point, the gap is mainly due to the interpolation error
of the hybrid flux. This effect is analyzed in the Section 5.

Figure 4 shows the relative bound gap # with and without the stabilization
parameter £* as a function of the number of elements over I'? using uniform
and adaptive refinements of a structured initial mesh. It can be observed
from Figure 4 that the adaptive refinement of a structured initial mesh using
optimal bound method performs best in terms of relative bound gap than
any other method. Because of the interpolation error of hybrid flux on the
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fine h-mesh, the relative (half) bound gap 6 is still large. In the next section
the influence of the hybrid flux on the sharpness of bounds and relative (half)
bound gap is investigated by calculating the hybrid flux directly on the fine
h-mesh.

5 Analysis of the Hybrid Flux Calculations

In this section, the hybrid flux contribution to the bound gap is investigated
by calculating the hybrid flux with a good accuracy directly on the fine mesh
without interpolation. Previously the hybrid flux was calculated on a coarse
H-mesh and then interpolated onto the fine h-mesh, i.e. Ay — A,. The
H-mesh hybrid flux calculations have a computational cost advantage—which
means it is inexpensive to approximate the hybrid flux on the fine h-mesh.

The influence of the fine “truth” h-mesh hybrid flux calculations on sev-
eral results of bound method is explored. The adaptively refined meshes
starting from a structured initial mesh are employed for this investigation.

Table 3 reports optimal bounds for adaptive refinement of a structured
initial mesh. Table 3 shows a reduction of the relative (half) bound gap from
28.7% to 7.2% by using optimal bound method with adaptive refinement.
The final adapted mesh T;; (17,189 elements) gives 7.2% relative bound gap
6. Recall that the relative bound gap 6 with the coarse H-mesh hybrid
flux calculations achieved only 13.9% on the final adapted mesh T; (21,445
elements). Note that, the direct calculations of hybrid flux on the fine h-
mesh provide almost 7% (6.7 %) reduction in terms of relative (half) bound
gap. Nevertheless it is important to point out that (sp)yre is not necessarily
improved. Note that (sp)pe = 1.1096 on a mesh with 17,189 elements and
that previously, for the H-mesh hybrid flux calculations, (s)yre = 1.1321 on
a mesh with 12,082 elements.

Table 4 reports the number of elements (%) by bound gap A(7T%) intervals
with optimal stabilization parameter x* using uniformly refined meshes. The
final adapted mesh T3 (17,189 elements) has only 9 elements (0.1%) which
have values of local bound gap error greater than 5 x 10~® Recall that for
the previous coarse mesh hybrid flux calculations the final adapted mesh
T (21,445 elements) has 319 elements (1.5%) which have values of local
bound gap error greater than 5 x 107°. As the adaptive refinement sequence
proceeds, the maximum value of half bound gap A(Ty) is decreased and
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T T Ti Ti Ty
# of elements | 3,000 4,499 8,371 12,607 | 17,189
# of node 756 1,072 1,898 2,803 3,755
(sn)vB 1.1805 1.1823 1.1950 1.1844 | 1,1892
sg 0.7055 0.8856 0.9993 1.0280 | 1.0547
(sn)LB 0.6532 0.8423 0.9611 0.9995 | 1.0301
(1) pre 0.9168 1.0123 1.0781 1.0920 | 1.1096
+A\(Tx) 4+ 0.2637 | £ 0.1700 | + 0.1170 | £ 0.0924 | & 0.0795
0 (%) 28.7 16.8 10.8 8.5 7.2
max Ap, [29x107°[62x10*[23x107*|1x10* | 7x107°

Table 3: Optimal bounds for adaptive refinement of a structured initial mesh.

local bound gap error is more uniformly distributed over the entire domain.

Figure 5 shows adaptively refined meshes. The domain I'? (i.e., ]0, 1[x]0, 1]
at x3 = 2) is identified and refined as the adaptive refinement cycle pro-
ceeds. Isocontours of temperature (from 0 to 0.6 at intervals) in domain
'Y are shown in Figure 6 to illustrate how the solution on the coarse mesh
is improved. Recall that this solution in interpolated on the fine mesh to
calculate the bounds. As the refinement cycle progresses, the isocontours
become smoother especially near the wall. Final isocontours for the adapted
mesh 77 (17,189 elements) catch the boundary layer near the wall more pre-
cisely. As it shown in Figure 5(d) and Figure 5(e), the refined mesh pattern
is much more symmetric than the pattern of refined meshes in Figure 3. This
indicates the method with fine mesh hybrid flux calculations is much more
accurate than with coarse mesh hybrid flux calculations.

The relative bound gap 6 as a function of the number of elements for
adaptive refinement is reported in Figure 7. Figure 7 shows the difference
between the coarse mesh and the fine mesh hybrid flux calculations. It is
obvious that a large contribution to the bound gap is associated with the
hybrid flux calculation. This indicates that more work in this area may lead
to sharper bound gap. Since the computation of the hybrid flux is directly
performed on the fine h-mesh, the sharpness of bound gap is improved and
the relative (half) bound gap under 10% (7.2%) is achieved in less than 4 cy-
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Ti i Tit Ti

# of elements 3,000 8,371 12,697 17,189

A(Ty) > 1073 74 (2.5) 0 (0) 0 (0) 0 (0)
5x 107 < A(Ty) <1073 60 (2.0) 0 (0) 0 (0) 0 (0)
107" < A(Ty) <5 x 107 | 259 (8.6) 146 (1.7) 1 (0) 0 (0)
5x 1075 < A(Ty) <1075 | 243 (8.1) 398 (4.7) 148 (1.2) 9 (0.1)
10°<A(Ty) <5x 101 | 872 (29.1) | 2,452 (29.3) | 2,637 (20.8) | 2,359 (13.7)
5x 107 < A(Ty) <1075 | 288 (9.6) 1,740 (20.8) | 2,199 (17.3) | 2,242 (13.0)
10 <A(Ty) <b5x107°] 187 (6.2) | 2,405 (28.7) | 5,192 (40.9) | 7,724 (44.9)

N (Ty) < 107° 1,017 (33.9) | 1,230 (14.7) | 2,520 (19.8) | 4,855 (28.2)

Table 4: Number of elements (%) by half bound gap A(Ty) for adaptively
refined meshes.

cles. Nevertheless there is a higher computational cost associated with these
calculations. It is investigated here only for analysis. Obviously the sharp-
ness of the bounds can also be improved by performing additional refinement

cycles.
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Figure 5: Adaptively refined meshes: (a) 72 has 3,000 elements, (b) 74 has
4,499 elements, (c) 72 has 8,371 elements, (d) 7, has 12,697 elements, and
(e) T; has 17,189 elements.
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and fine A-mesh hybrid flux calculations.
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