
Technical Report No. 01/07, January 2007
A NEW SMOOTH DENSITY ESTIMATOR FOR NON-NEGATIVE

RANDOM VARIABLES

Yogendra P. Chaubey, Arusharka Sen and Pranab K. Sen



A New Smooth Density Estimator for

Non-negative Random Variables

Yogendra P. Chaubey

Department of Mathematics and Statistics

Concordia University, Montreal, Canada H4B 1R6

E-mail: chaubey@alcor.concordia.ca

Arusharka Sen

Department of Mathematics and Statistics

Concordia University, Montreal, Canada H4B 1R6

Pranab K. Sen

Department of Statistics and Biostatistics

University of North Carolina at Chapel Hill

Chapel Hill, NC, USA NC 27599-7400

December 13, 2006

ABSTRACT

Commonly used kernel density estimators may not provide admissible values of the den-

sity or its functionals at the boundaries for densities with restricted support. For smoothing

the empirical distribution a generalization of the Hille’s lemma, considered here, alleviates

some of the problems of kernel density estimator near the boundaries. For nonnegative ran-

dom variables which crop up in reliability and survival analysis, the proposed procedure is

thoroughly explored; its consistency and asymptotic distributional results are established

under appropriate regularity assumptions. Methods of obtaining smoothing parameters

through cross-validation are given, and graphical illustrations of the estimator for continuous

(at zero) as well as discontinuous densities are provided.
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1 Introduction

In reliability and survival analysis, typically, a non-negative random variable (r.v.) X, admit-

ting a continuous probability density function (pdf) f(x), is conceived. The related objects

of interest are: the cumulative distribution function (cdf) F, the survival function (sf) S,

defined by

S(x) = 1− F (x) =

∫ ∞

x

f(y)dy x ≥ 0, (1.1)

the hazard function r(x) := f(x)/S(x) and so on.

Based on a random sample (X1, X2, ..., Xn), the empirical distribution function (edf) Fn

is defined as

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x), x ≥ 0, (1.2)

and Sn(x) = 1 − Fn(x), the empirical survival function is n−1
∑n

i=1 I(Xi > x), x ≥ 0.

In a broad sense, they are optimal nonparametric estimators (of F and S respectively).

However,they are step functions, and hence, do not directly amend to estimation of f(.)

(and as a result, for instance, to that of r(.)), which require the estimation of the derivative

of F (or S). Kernel smoothing, histogram methods, splines, and orthogonal functions (among

others) have therefore been explored for smooth estimation of f(.) and its functionals; we

refer to Eubank (1988), Devroye(1989) and Wand and Jones (1995) where other references

have been cited.

The smooth kernel estimator [Rosenblatt (1956), Parzen (1962)] of f(.) is of the form

f̂n(x) = (nhn)−1

n∑
i=1

k((Xi − x)/hn), (1.3)

where hn(> 0), known as the band-width is so chosen that hn → 0 but nhn →∞, as n →∞;

k(.) is termed the kernel function, and it is typically assumed to be a symmetric pdf with

zero mean and unit variance. This estimator suffers from the following two kinds of boundary

bias :

B1) Positive mass outside support. Silverman (1986) noted the inadequacy of the kernel

estimator in assigning positive mass to some x ∈ (−∞, 0), while illustrating the method for

random variables taking only positive values, as in reliability and survival analysis. Even
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otherwise, as remarked in Wand, Marron and Rupert (1991), the estimator in (1.3) “works

well for densities that are not far from Gaussian in shape,” however, “it can perform very

poorly when the shape is far from Gaussian,” especially near the boundaries.

B2) Failure to estimate discontinuity at boundary. For densities on [0,∞) with f(0) > 0,

such as the Exponential density, fn(0) often does not consistently estimate f(0).

Among different approaches suggested to deal with data on [0,∞) is the transformation

method. For example by taking logarithmic transformation of data, standard arguments

lead to the estimator of the untransformed data given by f̂n(x) = (1/x)ĝ(log x), where

ĝ(.) denotes the kernel density estimator using the transformed data. The presence of the

multiplier 1/x, usually gives rise to a spike in the density graph, which may not be an

attractive feature of this estimator. General transformation methods were studied by Wand,

Marron and Rupert (1991) and Rupert and Wand (1992) amongst others. However, these

methods could not be fully satisfactory for reducing the boundary bias. Marron and Rupert

(1994) in a later paper, address this problem in detail by proposing a three step computer

intensive transformation method. Simplicity of the transformation method still makes this

an attractive choice for smoothing the histogram, but the interest still persists in finding

a method similar to kernel smoothing without the data transformation. This desire led

Bagai and Prakasa Rao (1996) to propose replacing the kernel k by a non-negative density

function k∗, such that
∫∞
0

x2k∗(x)dx < ∞. They show that the resulting estimator has similar

asymptotic properties as the usual kernel estimator under some regularity conditions. This

certainly alleviates the problem of positive probability in the negative region, however, as

noted in Bagai and Prakasa Rao (1996), for estimating f(x), only the first r order statistics

contribute to the value of the modified estimator, where X(r) < x ≤ X(r+1), X(i) denoting the

ith order statistic. This may affect the behavior of the smooth estimator at the boundary.

Chaubey and Sen (1996) proposed a density estimator as the derivative of a smooth

version of the edf by adapting the so called Hille’s (1948) smoothing lemma, albeit in a

stochastic setup which, in contrast to the proposal of Bagai and Prakasa Rao (1996), uses

the whole data.

An interesting class of estimators was proposed by Chen (1999), using Gamma kernels, as

well as Scaillet (2004), using inverse Gaussian and reciprocal inverse Gaussian kernels. These

estimators do not suffer from boundary bias. However, their variances blow up at x = 0, to

circumvent which the authors give two kinds of variance formulae, one for x/b →∞ and the

other for x/b → κ > 0, where b is the bandwidth. This appears somewhat arbitrary to us

as it does not give a clear picture of what happens at or near x = 0. Secondly, there is no

graphical illustration of the method for densities such as the Exponential, so it is not clear
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how it works regarding discontinuity at the boundary (see B2 above).

In this paper, we propose an estimator based on a generalization of Hille’s smoothing

lemma coupled with a perturbation idea to take care of the boundary bias. In Section

2, we present the generalized lemma and derive our estimator from it. The estimator is

simple, lends itself easily to estimation of functionals of density such as its derivatives and

to smoothing parameter choice by cross-validation via an explicit variance formula. In this

section we also show that the estimators mentioned above, namely the kernel, the log-

transformation, those of Chaubey and Sen (1996), Chen (2000) and Scaillet (2004), are in

fact all motivated by this general lemma. Moreover, we point out that our perturbation idea

is a general technique and can be successfully applied to, for instance, the Chen (2000) and

Scaillet (2004) estimators to prevent their variances from blowing up at x = 0.

Section 3 gives the asymptotic properties of the proposed estimator, namely uniform con-

sistency and asymptotic normality. In Section 4, we present methods of smoothing parame-

ter choice and a simulation study. To demonstrate effectiveness of our method in handling

boundary bias, we estimate both Weibull (f(0) = 0, f continuous at 0) and Exponential

(f(0) > 0, f discontinuous at 0) densities, and the results are very satisfactory. The proofs

of results in Section 3 are deferred to the Appendix.

2 A General Smooth Estimator of the Density Func-

tion

The following discussion gives a general approach to density estimation which is special-

ized to the case of non-negative data. The key to the proposal is the following generalization

of the Hille’s lemma, which is a slight variation of Lemma 1 given in Feller (1965, §VII.1).

Lemma 1: Let u be any bounded and continuous function. Let Gx,n, n = 1, 2, ... be a

family of distributions with mean µn(x) and variance h2
n(x) then we have as µn(x) → x and

hn(x) → 0

ũ(x) =

∫ ∞

−∞
u(t)dGx,n(t) → u(x). (2.1)

The convergence is uniform in every subinterval in which hn(x) → 0 and u is uniformly

continuous.
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This generalization may be adapted for smooth estimation of the distribution function

by replacing u(x) by the empirical distribution function Fn(x) as given below ;

F̃n(x) =

∫ ∞

−∞
Fn(t)dGx,n(t) (2.2)

Strong convergence of F̃n(x) parallels to that of the strong convergence of the empirical

distribution function as stated in the following theorem.

Theorem 1: If h ≡ hn(x) → 0 for every fixed x as n →∞ we have

sup
x
|F̃n(x)− F (x)| a.s.→ 0 (2.3)

as n →∞.

Technically, Gx,n can have any support but it may be prudent to choose it so that it has

the same support as the random variable under consideration; because this will get rid of

the problem of the estimator assigning positive mass to undesired region.

For F̃n(x) to be a proper distribution function, Gx,n(t) must be a decreasing function of

x, which can be shown using an alternative form of F̃n(x) :

F̃n(x) = 1− 1

n

n∑
i=1

Gx,n(Xi). (2.4)

This leads us to propose a smooth estimator of the density given by

f̃n(x) =
dF̃n(x)

dx
= − 1

n

n∑
i=1

d

dx
Gx,n(Xi). (2.5)

Densities with Non-Negative Support

Using the representation (2.4), we now propose the following estimators of the distribution

and density functions with support [0,∞), which generalizes the estimator in Chaubey and

Sen (1996). Let Qv(x) represent a distribution on [0,∞) with mean 1 and variance v2, then

an estimator of F (x) is given by

F+
n (x) = 1− 1

n

n∑
i=1

Qvn

(
Xi

x

)
, (2.6)
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where vn → 0 as n → ∞. Obviously, this choice uses G(x,n)(t) = Qvn(t/x) which is a

decreasing function of x.

This leads to the following density estimator

d

dx
(F+

n (x)) =
1

nx2

n∑
i=1

Xi qvn

(
Xi

x

)
,

where qv(.) denotes the density corresponding to the distribution function Qv(.).

However, the above estimator may not be defined at x = 0, except in cases where

limx→0
d
dx

(F+
n (x)) exists. Moreover, this limit is typically zero, which is acceptable only

when we are estimating a density f with f(0) = 0.

Hence in view of the more general case where 0 ≤ f(0) < ∞, we considered the following

perturbed version of the above density estimator:

f+
n (x) =

1

n(x + εn)2

n∑
i=1

Xi qvn

(
Xi

x + εn

)
, x ≥ 0 (2.7)

where εn ↓ 0 at an appropriate (sufficiently slow) rate as n →∞. In the sequel, we illustrate

our method by taking Qv(.) to be the Gamma (α = 1/v2, β = v2) distribution function.

Next we present a comparison of our approach with some existing estimators.

Kernel Estimator. The usual kernel estimator is a special case of the representation

given by Eq. (2.5), by taking Gx,n(.) as

Gx,n(t) = K

(
t− x

h

)
, (2.8)

where K(.) is a distribution function with mean zero and variance 1.

Transformation Estimator of Wand et al. The well known logarithmic transforma-

tion approach of Wand, Marron and Rupert (1991) leads to the following density estimator:

f̃ (L)
n (x) =

1

nhnx

n∑
i=1

k(
1

hn

log(Xi/x)),

where k(.) is a density function (kernel) with mean zero and variance 1. This is easily seen

to be a special case of Eq. (2.5), taking Gx,n again as in Eq. (2.8) but applied to log x. This

approach, however, creates problem at the boundary which led Rupert and Marron (1994)

to propose modifications that are computationally intensive.
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Estimators of Chen and Scaillet. Chen’s (2000) estimator is of the form

f̂C(x) =
1

n

n∑
i=1

gx,n(Xi),

where gx,n(.) is the Gamma(α = a(x, b), β = b) density with b → 0 and ba(x, b) → x. This

also can be motivated from Eq. (2.1) as follows: take u(t) = f(t) and note that the integral∫
f(t)gx,n(t)dt can be estimated by n−1

∑n
i=1 gx,n(Xi). This approach controls the boundary

bias at x = 0; however, the variance blows up at x = 0, and computation of mean integrated

squared error (MISE) is not tractable. Moreover, estimators of derivatives of the density are

not easily obtainable because of the appearance of x as argument of the Gamma function.

Scaillet’s (2004) estimators replace the Gamma kernel by inverse Gaussian (IG) and

reciprocal inverse Gaussian (RIG) kernels. These estimators are more tractable than Chen’s;

however, the IG-kernel estimator assumes value zero at x = 0, which is not desirable when

f(0) > 0, and the variances of the IG as well as the RIG estimators blow up at x = 0.

Bouezmarni and Scaillet (2005), however, demonstrate good finite-sample performance of

these estimators.

It is interesting to note that one can immediately define a Chen-Scaillet version of our

estimator, namely,

f+
n,C(x) =

1

n

n∑
i=1

1

x
qvn

(
Xi

x

)
;

on the other hand, our version (i.e., perturbed version) of the Chen-Scaillet estimator would

be

f̂+
C (x) =

1

n

n∑
i=1

gx+εn,n(Xi);

we strongly believe that this version will not have the problem of variance blowing up at

x = 0.

The above comments show that the estimator of this paper is based on two very general

ideas: a) Hille’s Lemma, which is seen to be the motivation behind all density estimators;

b) the perturbation idea, which can handle the boundary problems (not just bias but variance

too) of most estimators.

Our estimator, besides being straightforward and free from boundary problems, yields

itself to bandwidth selection by cross validation. Furthermore it is uniformly consistent on

[0,∞) as well as asymptotically normal ( see Theorems 3 and 4 in the next section).
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3 Asymptotic Properties of Estimators

3.1 Asymptotic Properties of F+
n (x)

The strong consistency holds in general for the estimator F̃n(x) as is clear from Theorem

2 and hence it naturally extends to the estimator F+
n (x). The representation given by Eq.

(2.6) allows us to study further its asymptotic distribution and other properties. First, we

show that F+
n (x) is asymptotically unbiased. Note that from Eq. (2.2) we can write, by

taking the expectation inside the integral sign, as justified by Fubini’s theorem:

E[F+
n (x))] =

∫ ∞

0

F (ux)qvn(u)du.

Assuming the boundedness of the 2nd derivative of the density, we can write,

F (ux) = F (x) + x(u− 1)f(x) + (1/2)x2(u− 1)2f ′′(x) + o((x− 1)2).

Substituting this in the previous equation, we have

E[F+
n (x)] ≈ F (x) + (1/2)t2f ′′(x)v2

n (3.1)

Therefore, assuming that vn → 0 as n →∞, we find the smooth estimator to be asymp-

totically unbiased. Moreover, we can show that for large n, the smooth estimator can be

arbitrarily close to the edf by proper choice of vn, as given in the following theorem.

Theorem 2: Assuming that f has a bounded derivative, let nv2
n = o(n−1), then for some

δ > 0, we have, with probability one,

sup
x≥0

|F+
n (x)− Fn(x)| = O

(
n−3/4(log n)1+δ

)
. (3.2)

For the case of Poisson weights, Chaubey and Sen (1996) obtained the same rate using the

properties of tail sum of Poisson probabilities. This shows that the asymptotic distribution

of F+
n (x) can be obtained through that of Fn(t), namely,

√
n(F+

n (x)− F (x)) ∼ AN(0, F (x)(1− F (x)).

In the next section, we study the properties of the derived density estimator given in Eq.

(2.7).
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3.2 Asymptotic Properties of f+
n (x)

The formula given in Eq. (2.7) for the density estimator is useful for computational

purpose, however, the following integral representation,

f+
n (x) =

∫ ∞

0

Fn(t)
d

dx
[gx+εn,n(t)]dt, (3.3)

where gx,n(t) = d
dt

Gx,n(t), will be used for studying the asymptotic properties.

First we establish uniform strong consistency of the density estimator f+
n (x) as given in

the following theorem. As can be seen in this theorem, the convergence of vn → 0 is coupled

with an added condition on the derivatives of the densities qvn(.). Here onwards we will omit

the subscript n from vn and assume v ≡ vn.

Theorem 3: If

A. vn → 0, εn → 0 as n →∞ and

B. supx≥0

∫∞
0
| d
dx

[gx+εn,n(t)]|dt = o
(
( log log n

n1/2 )−1
)
,

C. supu>0,v>0 uqv(u) < ∞,

D. f(·) is Lipschitz continuous on [0,∞),

then we have

sup
x≥0

|f+
n (x)− f(x)| a.s.→ 0 (3.4)

as n →∞.

Remark 1: Condition B of Theorem 3 holds, for example, if we take gx,n(t) = 1
x
qv(t/x),

where qv(.) is the the gamma density given by,

qv(t) =
1

βαΓ(α)
tα−1e−

t
β , t > 0,

where

α = 1/v2 and β = 1/α. (3.5)

In this case
∫ ∞

0

| d

dx
gx+εn,n(t)|dt =

1

(x + εn)2v2

∫ ∞

0

|t− (x + εn)|gx+εn,n(t)dt

= O

(
1

(x + εn)v

)
,
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so that supx≥0

∫∞
0
| d
dx

gx+εn,n(t)|dt = O((vεn)−1).

Choosing vεn = O(n−
1
2
+δ) for some 0 < δ < 1/2, will satisfy Condition B of the theorem.

Equation (2.7) shows that the density estimator is the mean of i.i.d. random variables,

Yin = (Xi/(x + εn)2) qv(Xi/(x + εn)), i = 1, 2, ..., n. The following theorem gives conditions,

on qv and f , under which it is asymptotically normal and gives the form of its asymptotic

variance.

Theorem 4: Assume the following conditions:

(F) f(·) is Lipschitz continuous on [0,∞);

(G1)
∫∞
0

(qv(t))
mdt = O(v−(m−1)) as v → 0, for 1 ≤ m ≤ 3, and I2(q) := limv→0 v

∫∞
0

(qv(t))
2dt

exists;

(G2) with q∗m,v(t) := (qv(t))
m/

∫∞
0

(qv(w))mdw, 1 ≤ m ≤ 3, and as v → 0,

(i) µm,v :=
∫∞

0
tq∗m,v(t)dt = 1 + O(v),

(ii) σ2
m,v :=

∫∞
0

(t− µm,v)
2q∗m,v(t)dt = O(v2),

(iii) sup0<v<ε

∫∞
0

t4+δq∗m,v(t)dt < ∞, for some δ > 0, ε > 0,

(H) nv →∞, nvεn →∞, nv3 → 0, nvε2
n → 0 as n →∞;

then as n →∞,

(a)
√

nv(f+
n (x)− f(x)) → Normal

(
0, I2(q)

f(x)
x

)
, for x > 0,

(b)
√

nvεn(f+
n (0)− f(0)) → Normal (0, I2(q)f(0))

in distribution.

Remark 2: It is easily seen that the conditions G2, (i) – (iii), mean the following: let T ∗
m,v

be a random variable with density q∗m,v; then T ∗
m,v → 1 in Lp for 1 ≤ p ≤ 4 as v → 0, for

m = 1, 2, 3.

Remark 3: We illustrate the conditions (G1) and (G2) with qv(t) as the Gamma density

as given in Eq. (3.5). For m ≥ 1, (qv(t))
m = (

∫∞
0

(qv(w))mdw) q∗m,v(t), where q∗m,v(t) is a

Gamma density with α = m
v2 −m + 1, β = v2

m
and
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∫ ∞

0

(qv(t))
mdt =

( 1
v2 )

m
v2

( m
v2 )

m
v2−m+1

.
Γ( m

v2 −m + 1)

(Γ( 1
v2 ))m

≈ 1√
m(2π)m−1

.
1

vm−1
√

1− v2
, as v → 0,

using Stirling’s approximation for the Gamma function. Thus we verify that for any m ≥ 1,

(G1) I2(q) = limv→0 v
∫∞
0

(qv(t))
2dt = 1/

√
4π exists;

(G2)(i) µm,v =
∫∞
0

tq∗m,v(t)dt = 1− ((m− 1)/m)v2;

(G2)(ii) σ2
m,v =

∫∞
0

(t− µm,v)
2q∗m,v(t)dt = (1− ((m− 1)/m)v2)v2/m;

(G2)(iii) for any k ≥ 1, and any ε > 0,

sup
0<v<ε

∫ ∞

0

tkq∗m,v(t)dt = sup
0<v<ε

Γ(k + m
v2 −m + 1)

m
v2 Γ( m

v2 −m + 1)
= O(1 + (

k −m + 1

m
)v2) < ∞.

4 Cross-Validation and Numerical Results

The leading terms in the bias and variance of f+
n (x) may be shown to be as given in the

following equation:

Bias[f+
n (x)] = x f ′(x)v2

n + εn f ′(x)(1 + v2
n) + o(v2

n + εn)

= (x v2
n + εn)f ′(x) + o(v2

n + εn), v2
n → 0, and εn → 0. (4.1)

V ar[f+
n (x)] ≈ 1

n(x + εn)

I2(q)

vn

[f(x) + (x + εn)xf ′(x)O(vn) + (x + εn)εnf
′(x)

+o((x + εn)xf ′(x)O(vn) + (x + εn)εnf ′(x))]

=
I2(q)f(x)

nvn(x + εn)
+ o((nvn)−1), vn → 0 εn → 0, nvn →∞. (4.2)

Therefore, by combining the above formulas we obtain the mean squared error as

MSE[f+
n (x)] ≈ I2(q)f(x)

nvn(x + εn)
+ [(x v2

n + εn)f ′(x)]2

+o(v2
n + εn) + o((nvn)−1), (4.3)
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and the mean integrated squared error :

MISE(f+
n ) =

∫ ∞

0

MSE[f+
n (x)] dx

≈ I2(q)

nvn

∫ ∞

0

f(x)

x + εn

dx +

∫ ∞

0

[(x v2
n + εn)f ′(x)]2 dx

+ o(v2
n + εn) + o((nvn)−1) (4.4)

The leading term of MISE is defined as the asymptotic MISE :

AMISE[f+
n ] =

I2(q)

nvn

∫ ∞

0

f(x)

x + εn

dx +

∫ ∞

0

[(x v2
n + εn)f ′(x)]2 dx (4.5)

To derive the optimal vn and εn for estimating f(x) by minimizing AMISE[f+
n ], let us

rewrite it as

A(v, ε) := AMISE[f+
n ] =

C0

nv

∫ ∞

0

f(x)

x + ε
dx + C2

1v
4 + 2C2v

2ε + C3ε
2 (4.6)

Existence of unique minimizers. First, it is easy to see from Eq.(4.6) that A(v, ε) is

a strictly convex function in v > 0, ε > 0, as follows: hx(ε) = 1/(x + ε) is convex for

each x > 0; hence
∫∞

0
f(x)
x+ε

dx =
∫∞

0
hx(ε)f(x)dx is also obviously a convex, and decreasing,

function. Since 1/v is also a decreasing convex function, it follows that C0

nv

∫∞
0

f(x)
x+ε

dx is

convex. Further, since (C2
1v

4 + 2C2v
2ε + C3ε

2) is obviously convex, it follows that A(v, ε) is

convex.

Now note that A(v, ε) → ∞ as v → 0, ε → 0, as well as v → ∞, ε → ∞. This

fact, coupled with the convexity of A(v, ε), shows that A(v, ε) has unique global minimizers

(v∗n, ε
∗
n).

Optimal order of AMISE. By the preceding arguments, the minimizers (v∗n, ε∗n) may be

found by solving (∂/∂v)A = 0, (∂/∂ε)A = 0. This leads to

C1(nv3) + C2(nvε) =
C0

4v2

∫ ∞

0

f(x)

x + ε
dx,

C2(nv3) + C3(nvε) =
C0

2

∫ ∞

0

f(x)

(x + ε)2
dx, (4.7)

and

(
C1

ε
+

C3

v2
)

∫ ∞

0

f(x)

x + ε
dx = 2(C1v

2 + C2)

∫ ∞

0

f(x)

(x + ε)2
dx.

It follows that in the optimal solution (v∗n, ε
∗
n), ε∗n = O((v∗n)2). To determine the order of

AMISE(v∗n, ε
∗
n) consider the following two cases:
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(i)
∫∞

0
f(x)

x
dx exists. For instance, consider f(x) = 2xe−x2

. In this case
∫∞
0

f(x)
x+ε

dx = O(1)

as ε → 0, hence from the top part of Eq.(4.7) and using ε∗n = O((v∗n)2), we have

n(v∗n)5 = O(1), A(v∗n, ε∗n) = O((nv∗n)−1),

which leads to the usual optimal rate in density estimation.

(ii)
∫∞

0
f(x)

x
dx does not exist, i.e.,

∫∞
0

f(x)
x

dx = ∞. Consider, for instance, the standard

Exponential density f(x) = e−x. In this case, we need to make assumptions about the order

of
∫∞
0

f(x)
x+ε

dx as ε → 0. In the case of standard Exponential it is (− ln ε), i.e.,

lim
ε→0

1

− ln ε

∫ ∞

0

e−x

x + ε
dx = 1

Thus in the case of standard Exponential we have

n(v∗n)5 = O(−2 log v∗n), A(v∗n, ε
∗
n) = O(−2(nv∗n)−1 log v∗n).

This slightly suboptimal order is needed to take care of the jump at the boundary x = 0.

For a data-driven optimal choice of (vn, εn) there is no problem in using the ‘plug-in’ (i.e.,

empirical) version of Eq.(4.5), as we shall see below.

Below we describe optimal choice of (vn, εn) by minimizing unbiased and biased cross-

validation functions, and present numerical results as well as graphs of estimated densities

based on simulated data. The cross-validation methods are adapted from Scott (1992) and

Wand and Jones (1995).

Unbiased cross-validation. Consider the integrated squared error

ISE(vn, εn) =

∫ ∞

0

[f+
n (x)− f(x)]2 dx

=

∫ ∞

0

f+2
n (x)dx− 2

∫ ∞

0

f+
n (x)f(x)dx +

∫ ∞

0

f 2(x)dx

Subtracting the constant term, and replacing the second term by its estimate we obtain

the unbiased cross-validation function

UCV (vn, εn) =

∫ ∞

0

f+2
n (x)dx− 2

n

n∑
i=1

f+
n,i(Xi), (4.8)

where the second term is the leave-one-out estimate given by

f+
n,i(Xi) =

1

(n− 1)
· 1

(Xi + εn)2

∑

j 6=i

Xj qv

(
Xj

Xi + εn

)
(4.9)
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Our numerical results show that this method performs poorly compared to biased cross-

validation and introduces a lot of noise in the resulting density estimate.

Biased cross-validation. This technique is based on the idea of direct estimation of each

term involving f(·) in the AMISE. Recalling the AMISE from Eq.(4.5) and replacing f(x)

and f ′(x) by f+
n (x) and f+′

n (x), respectively, we have the biased cross-validation function

given by

BCV (vn, εn) =
I2(q)

nvn

∫ ∞

0

f+
n (x)

x + εn

dx +

∫ ∞

0

[(x v2
n + εn)f+′

n (x)]2 dx (4.10)

which is then minimized with respect to (vn, εn). For our study, we take qv(·) to be the

Gamma (α = 1/v2, β = v2) density, so that I2(q) = 1/
√

4π (see Remark 3).

First, we take the underlying density to be Weibull with pdf:

f(x) = 2 x e−x2

, x ≥ 0. (4.11)

Our computations showed that the optimal ε is very close to 0 (note that
∫∞
0

f(x)
x

dx exists).

Hence we let ε = 0 and find only the optimal v2.

For each sample-size , optimal v2 was obtained by minimizing, respectively, the UCV,

BCV and the exact ISE — the latter for comparison. The minimization was done over a

grid of v values using the software Mathematica. The following tables give the results:

Table 1: Unbiased Cross-Validation for Weibull distribution

Size Minimum UCV v2 ISE (v2)

100 -0.672500 0.09 0.010382

200 -0.636767 0.04 0.004924

500 -0.658883 0.04 0.005404

Table 2: Biased Cross-Validation for Weibull distribution

Size Minimum BCV v2 ISE (v2)

100 0.0628264 0.15 0.016479

200 0.0333457 0.10 0.006290

500 0.0175793 0.06 0.005138

Table 3: Integrated Squared Error for Weibull distribution
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Size Minimum ISE v2

100 0.009732 0.07

200 0.003964 0.06

500 0.005091 0.05

Second, we assume that the underlying density is Exponential with pdf

f(x) = e−x, x ≥ 0. (4.12)

Since f(0) = 1 and
∫∞
0

f(x)
x

dx is ∞, we need to calculate the optimal vn and εn.

The following tables present the results:

Table 4: Unbiased Cross-Validation for Exponential distribution

Size Minimum UCV v2 ε ISE (v2, ε)

100 -0.499494 0.275 0.035 0.007969

200 -0.486211 0.05 0.13 0.008351

500 -0.502629 0.11 0.03 0.002884

Table 5: Biased Cross-Validation for Exponential distribution

Size Minimum BCV v2 ε ISE (v2, ε)

100 0.0660912 0.20 0.13 0.006063

200 0.0365576 0.13 0.12 0.008308

500 0.0241541 0.13 0.09 0.002782

Table 6: Integrated Squared Error for Exponential distribution

Size Minimum ISE v2 ε

100 0.003136 0.12 0.10

200 0.005413 0.11 0.06

500 0.002530 0.14 0.02
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Thus we observe that for the Weibull density unbiased or biased cross-validation do not

make much of a difference, whereas for the Exponential, the former creates a noisy estimate

near the boundary but the latter is very accurate. Also, as the sample size increases, the

cross-validation-based choice of (vn, εn) get closer to the ones that minimize the integrated

squared error.
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Figure 1: Weibull density (dashed line) and its estimate (solid line), n = 500, with unbiased

cross-validation
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Figure 2: Weibull density (dashed line) and its estimate (solid line), n = 500, with biased

cross-validation

17



1 2 3 4 5

0.2

0.4

0.6

0.8

1

Figure 3: Exponential density (dashed line) and its estimate (solid line), n = 500, with

unbiased cross-validation
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Figure 4: Exponential density (dashed line) and its estimate (solid line), n = 500, with

biased cross-validation
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APPENDIX: PROOFS

The proofs of Theorems 1 and 2 follow along the same lines as those of Theorems 3.1

and 3.2 respectively of Chaubey and Sen (1996) and therefore are omitted.

Proof of Theorem 3. Using the representation in Eq.(3.3), we have

f+
n (x)− f(x) =

∫ ∞

0

(Fn(t)− F (t))

[
d

dx
gx+εn,n(t)

]
dt

+

∫ ∞

0

F (t)

[
d

dx
gx+εn,n(t)

]
dt− f(x).

Now look at the second term in the above expression. We can write
∫ ∞

0

F (t)

(
d

dx
gx+εn,n(t)

)
dt = E(f+

n (x)).

Hence

|f+
n (x)− f(x)| ≤ sup

t
|Fn(t)− F (t)|

∫ ∞

0

|
[

d

dx
gx+εn,n(t)

]
|dt

+

∫ ∞

0

|f(t(x + εn))− f(x)|tqv(t)dt.

The first term in the above inequality converges to zero a.s. under the condition given

in the theorem. The second term also converges to zero as can be seen as follows. For any

M > 0,

sup
x≥0

∫ ∞

0

|f(t(x+εn))−f(x)|tqv(t)dt = max{ sup
0≤x≤M

∫ ∞

0

| · · · |, sup
x>M

∫ ∞

0

| · · · |} = max{aM , bM}, say.

Now take any ε > 0. Then we can get M > 0 such that

bM ≤ sup
x>M

∫ ∞

0

f(t)
(t/(x + εn))qv(t/(x + εn))

x + εn

dt + sup
x>M

f(x)

∫ ∞

0

tqv(t)dt

≤ ε/2 + ε/2,

using a dominated convergence argument in the first term (by Assumption C) and the fact

that f(t) → 0 as t → ∞ in the second. Further, for this M we have by Assumption D and

Cauchy-Schwartz inequality,

aM ≤ M

∫ ∞

0

|t− 1|tqv(t)dt + εn

∫ ∞

0

t2qv(t)dt

≤ M

√∫ ∞

0

(t− 1)2qv(t)dt

√∫ ∞

0

t2qv(t)dt + O(εn)

= M.O(v) + O(εn) → 0 as v → 0, εn → 0.
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Thus

sup
x≥0

∫ ∞

0

|f(t(x + εn))− f(x)|tqv(t)dt → 0 as v → 0.

Proof of Theorem 4.

(a) Fix x > 0. Write
√

nv(f+
n (x) − f(x)) =

√
nv(f+

n (x) − E(f+
n (x))) +

√
nv(E(f+

n (x)) −
f(x)). Note that

√
nv(f+

n (x)− E(f+
n (x))) =

∑n
i=1 Zin, where

Zin =

√
v

n

[
Xi

(x + εn)2
qv(

Xi

x + εn

)− E

(
X1

(x + εn)2
qv(

X1

x + εn

)

)]

=

√
v

n
(Yin − E(Yin)), 1 ≤ i ≤ n, n ≥ 1,

Yin being defined as

Yin =
Xi

(x + εn)2
qv(

Xi

x + εn

).

We may verify the Lyapounov condition (see, for instance, Chung (1974), Theorem

7.1.2): ∑n
i=1 E|Zin|3

(
∑n

i=1 EZ2
in)3/2

→ 0, as n →∞,

which will imply that
∑n

i=1 Zin

(
∑n

i=1 EZ2
in)1/2

=

√
nv(f+

n (x)− E(f+
n (x)))

(v.var(Y1n))1/2
→ Normal (0, 1)

in distribution, as n →∞.

Since Yin, 1 ≤ i ≤ n, are non-negative, we have,

Pn
i=1 E|Zin|3

(
Pn

i=1 EZ2
in)3/2 ≤ E[Y1n+E(Y1n)]3√

n[var(Y1n)]3/2

=
E(Y 3

1n)+3E(Y 2
1n).E(Y1n)+4(E(Y1n))3√

n[E(Y 2
1n)−(E(Y1n))2]3/2

(A.1)

Next, one can show that

E(Y 3
1n) = O(v−2), as v → 0, εn → 0, (A.2)

vE(Y 2
1n) → I2(q)

f(x)

x
, (A.3)

so that

E(Y 2
1n) = O(v−1) (A.4)
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and

E(Y1n) = O(1) (A.5)

which together with the last expression in Eq.(A.1), imply that
∑n

i=1 E|Zin|3
(
∑n

i=1 EZ2
in)3/2

= O(
1√
nv

),

so that the Lyapounov condition holds by Condition (H).

Now from Eq. (A.3) and using (F),

√
nv|E(f+

n (x))− f(x)| =
√

nv|E(Y1n)− f(x))|
≤ √

nv
∫∞
0

[(const.)(x + εn)t|t− 1|+ |t− 1|f(x + εn)]qv(t)dt

+
√

nv|f(x + εn)− f(x)|
≤ √

nv(const.)(x + εn)
√(∫∞

0
t2qv(t)dt

)√(∫∞
0

(t− 1)2qv(t)dt
)

+
√

nvf(x + εn)
√∫∞

0
(t− 1)2qv(t)dt + const.

√
nvεn,

by Cauchy-Schwartz inequality,

=
√

nv(O(v) + O(εn)) = O(
√

nv3) + O(
√

nvε2
n)

This together with Eq. (A.3) and (A.4) (using Condition (H)) completes the proof of

Theorem 4, part (a).

(b) For x = 0, we have

√
nvεn(f+

n (0)− E(f+
n (0))) =

n∑
i=1

√
vεn

n

[
Xi

ε2
n

qv(
Xi

εn

)− E

(
X1

ε2
n

qv(
X1

εn

)

)]

=
n∑

i=1

√
vεn

n
(Y ′

in − E(Y ′
1n)) (say) =

n∑
i=1

Z ′
in (say),

and

√
nvεn(E(f+

n (0))− f(0)) =
√

nvεn

∫ ∞

0

[t(f(εnt)− f(εn)) + (t− 1)f(εn)]qv(t)dt

+
√

nvεn(f(εn)− f(0))

= O(
√

nv3ε3
n +

√
nv3εn +

√
nvε3

n) → 0, as n →∞,

by Condition H. Now exactly as in Part (a) (details omitted), we establish that as

n →∞,
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(i)
∑n

i=1 E|Z ′
in|3/(

∑n
i=1 E(Z ′

in)2)3/2 = O((nvεn)−1/2) → 0, so that

∑n
i=1 Z ′

in

(
∑n

i=1 E(Z ′
in)2)1/2

=

√
nvεn(f+

n (x)− E(f+
n (x)))

(vεnvar(Y ′
1n))1/2

→ Normal (0, 1)

in distribution,

(ii) vεnvar(Y ′
1n) → I2(q)f(0).

The proof of Theorem 4, Part (b) follows.
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65. Daniel Dufresne, José Garrido and Manuel Morales, Fourier inversion
formulas in option pricing and insurance, December, 2006.

66. Xiaowen Zhou, A superprocess involving both branching and coalescing
, December, 2006.

67. Yogendra P. Chaubey, Arusharka Sen and Pranab K. Sen, A new
smooth density estimator for non-negative random variables, January
2007.

Copies of technical reports can be requested from:

Prof. Xiaowen Zhou
Department of Mathematics and Statistics
Concordia University
1455 de Maisonneuve Blvd West
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