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Abstract

The Lévy-Khintchine formula or, more generally, Courrege’s theorem characterizes the infinitesimal
generator of a Lévy process or a Feller process on R%. For more general Markov processes, the formula
that comes closest to such a characterization is the Beurling-Deny formula for symmetric Dirichlet
forms. In this paper, we extend these celebrated structure results to include a general right process
on a metrizable Lusin space, which is supposed to be associated with a semi-Dirichlet form. We start
with decomposing a regular semi-Dirichlet form into the diffusion, jumping and killing parts. Then, we
develop a local compactification and an integral representation for quasi-regular semi-Dirichlet forms.
Finally, we extend the formulae of Lévy-Khintchine and Beurling-Deny in semi-Dirichlet forms setting
through introducing a quasi-compatible metric.
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1. Introduction and setting

We consider a Lévy process (X;);>o on some probability space (£, F, P) taking values in the
d-dimensional Euclidean space R¢ with the characteristic exponent 7, i.e. E{exp(i()\, X;))} =
exp(—tn(N)) for A € R? and ¢t > 0, where E denotes the expectation w.r.t. (with respect to) P.
Hereafter, R? is equipped with the standard product (-, -) and Euclidean norm |-|. The celebrated
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Lévy-Khintchine formula (cf. e.g. [Be, p.3] or [Sa, p.37]) tells us that
: 1 i) |
9) = i)+ 5000 + [ (1= e 4 i )1 i) n(da),
R

where b = (by,...,b;) € R% Q is a symmetric, nonnegative definite quadratic form on R?, and u
is a Lévy measure satisfying u({0}) = 0 and [, |=|*/(1 + |z]|*)u(dz) < co. Or equivalently, the
infinitesimal generator A of (X;):>o is characterized by (cf. [Sa, Theorem 31.5])

d
Auly) = Z<_bi)aiu<y) + % Z Qij0;05u(y)

i=1 ij=1

+/Rd< (y + ) —uly Zxau M qlzi<1y (2 )) p(dx) (1.1)

for u € Cg°(R?). Hereafter, we use C(R?) to denote the set of all continuous functions on R?
and use C5°(RY) to denote the set of all infinitely differentiable functions on R? with compact
supports. If in addition p satisfies f\w|<1 |z|u(dx) < oo, then (1.1) can be written as

Au(y) = 3 (B, Z@maau / (uly + 2) — uly))u(de)

=1 'le
with b; = b; —i—f‘q zip(dr), 1 <i<d.

In fact, decomposition (1.1) holds for more general Feller processes on R%. In [Co], Courrege
proved that if A is a linear operator from Cg°(RY) to C(R?) satisfying the positive maximum
principle, i.e. sup,cga u(z) = u(xy) > 0 implies Au(xg) <0, then A is decomposed as

Auly) = —(yuly) + () qu )0:0uly

231

(2, Vu(y))
+/Rd (u(y+x) —uly) - w) N(y,dz), (1.2)

where v(y) > 0, I(y) € R%, Q = (qi;)1<ij<d is a symmetric, nonnegative definite quadratic form
on R, and N(y,dx) is a kernel satisfying [g. |2[>/(1+ |2]*)N(y, dz) < oo. We refer the readers
to [J, §5.5] for more detailed discussion about the generators of Feller semigroups.

Set E(u,v) = [ga —( Jo(y)dy, J(dz,dy) = (1/2)N(y,dz — y)dy and K(dx) = ~(z)dx.
Then we may rewrite (1. 2) for u,v € C(RY) and € > 0 as

Euv) = £ (u,0)+ /| | 2uly) )T dy) + | w13

If (u(y) — u(z))v(y) is symmetric principle value (abbreviated by S.P.V.) integrable w.r.t. the
measure J, which means that lim. o || 2(u(y) —u(x))v(y)J (dx, dy) exists, then (1.3) becomes

|lx—y|>e

E(u,v) = E%u,v) + S.P.V./ 2(u(y) — u(x))v(y)J (dz, dy) + /Rd uw(x)v(z)K(dz), (1.4)

RIxR4\d
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where R? x RA\d := {(z,y) € R* x R*|z # y} and &%(u,v) := lim. o £°(u,v), which satisfies
the left strong local property, in the sense that if u is constant on a neighborhood of the support
of v then £¢(u,v) = 0. If A is symmetric, then (u(y) —u(x))v(y) is always S.P.V. integrable w.r.t.
J and we can rewrite (1.4) in the following form

Sl =@+ [ (uly) ~ ule))(ely) - @) Ildody) + [ ulepu()K(d). (1)
RIxRA4\d Rd

Note that (1.5) is nothing else but the classical Beurling-Deny formula in the theory of symmetric
Dirichlet forms.

Suppose now that (X;);>o is a general right (continuous strong Markov) process taking values
in a metrizable Lusin space, i.e. a space topologically isomorphic to a Borel subset of a complete
separable metric space. A structure result for the generator of (X;);>¢ similar to (1.1) or (1.2) is
not known (cf. [Sc]). The formula that comes closest to such a characterization is the Beurling-
Deny formula for symmetric Dirichlet forms as in (1.5). Apart from other things, this formula
provides us an analytic description of the sample path properties of (X;);>¢. For this connection,
the interested readers may refer to [FOT, Ch.5], [CFTYZ|, [Mo], etc. In this paper, under
the assumption that (X;);>o is associated with a semi-Dirichlet form, we will establish some
structure results for (X¢);>o. In particular, we will extend the Beurling-Deny formula to semi-
Dirichlet forms. For a nice representation of the Beurling-Deny formula for regular symmetric
Dirichlet forms, we refer to [FOT]. For the extensions of the Beurling-Deny formula to quasi-
regular symmetric Dirichlet forms see [AMR], [DMS] and [Ku]. Also, there have been some
attempts of extending the Beurling-Deny formula to the non-symmetric case, see [Bl], [Ki], [CZ]
and [Mat] (cf. Remarks 2.7 and 5.3). In [HMS], both the Beurling-Deny formula and LeJan’s
formula are extended to regular non-symmetric Dirichlet forms.

Now we establish our setting and notations. We refer the readers to [MOR] and [Fi] for more
details. Let (X¢):>0 be a right process taking values in a metrizable Lusin space E, B(E) the
Borel o-field of E, and m a o-finite measure on (E,B(E)). Suppose that (X;):>o is associated
with a semi-Dirichlet form (£, D(€)) on L?*(E;m). We use (-,-) to denote the inner product of
L*(E;m). By [Fi], (£, D(€)) must be quasi-regular. Then, every element u € D(E) admits an
E-quasi-continuous m-version, which we denote by . We use D(S ) to denote the set of all &-
quasi-continuous versions of elements in D(E). Without loss of generality, we assume that every
element u € D(E) is Borel measurable. Following [FOT], we say that a subset A C E is quasi-
open (respectively, quasi-closed) if there exists an E-nest {F} }ren such that Fy N A is relatively
open (respectively, relatively closed) in Fy for each & € N. Let u be an m-a.e. defined function
on F, then there exists a smallest (up to an £-exceptional set) quasi-closed set F', which is called
the quasi-support of u and is denoted by supp,[u], such that fE\F |u(z)|m(dx) = 0. We use the
same notation for a function f (m-a.e. defined) on E and for the m-equivalence class of functions
represented by f, if there is no risk of confusion.

The remainder of this paper is organized as follows. In Section 2, we present the decompo-
sition of regular semi-Dirichlet forms. In Section 3, we develop a local compactification and an
integral representation for quasi-regular semi-Dirichlet forms. In Sections 4 and 5, we give the
decompositions of quasi-regular semi-Dirichlet forms and (non-symmetric) Dirichlet forms.

Part of the results of this paper have been announced in C. R. Math. Acad. Sci. Paris, see
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THM].
2. Decomposition of regular semi-Dirichlet form

Similar to a regular symmetric Dirichlet form (cf. [FOT, p.6]), we call a semi-Dirichlet form
(&,D(E)) on L*(E;m) regular if the following conditions hold:
(i) £ is a locally compact separable metric space and m is a positive Radon measure on E with
supp|m| = E.
(ii) Co(E) N D(E) is dense in D(E) w.r.t. the 511/2—n0rm.
(iii) Co(E) N D(E) is dense in Cy(E) w.r.t. the uniform norm || - ||eo.

Hereafter, we use supp|-| to denote the support of a measure or a function on F, use € to denote
the symmetric part of £, and use Cy(F) to denote the set of all continuous functions on E with
compact supports.

A subset D C Co(E) N D(E) is called a core if the following conditions hold:
(C.1) D is dense in D(E) w.r.t. the 5~11/2—norm.
(C.2) D is dense in Cy(E) w.r.t. the uniform norm || - || .
(C.3) D is a linear lattice.
D is called a special core if in addition to (C.1)-(C.3), it holds that
(C.4) For any compact set K and relatively compact open set G with K C @G, there exists a
u € D such that 0 <u < 1,u|lg = 1 and u|p\g = 0.

Throughout this section, we assume (€, D(£)) is a regular semi-Dirichlet form on L*(E;m).
Denote the resolvent of (£, D(E)) by (Ga)aso and define

EP (u,v) = B(u — BGau,v). (2.1)
It is known that (cf., e.g. [MR, Theorem 1.2.13(iii)])

[}im EP(u,v) = E(u,v) for all u,v € D(E). (2.2)
Lemma 2.1. If S is a positive linear bounded operator on L*(E;m), then there is a unique
positive Radon measure o on the product space Ex E satisfying that for u,v € L*(E;m), (Su,v) =
S pw(@)v(y)o(de, dy). If in addition S is sub-Markovian, then o(E x A) < m(A) for all A €
B(E).
Proof. The proof is similar to [FOT, Lemma 1.4.1] and the only difference is that the measure
o given here is non-symmetric in general. 0O

Corollary 2.2. There exists a unique positive Radon measure o on E x E satisfying

(BGgu,v) = / u(z)v(y)os(de,dy)  for u,v € L*(E;m). (2.3)
ExE
Moreover,
os(E x A) <m(A) forall Ae B(E). (2.4)
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Lemma 2.3. Let U be a relatively compact open subset of E. Then, for u,v € Cyo(E) N D(E)
with supports contained in U,

ED(u,v) = 3 (u(y) — u(z))v(y)og(de, dy) + 5 /U u(@)v(z)(1 = BGsly(x))m(dz).  (2.5)

UxU

Proof. Direct consequence of (2.1), (2.3) and (2.4). 0O

Lemma 2.4. The following assertions hold:

(i) For u € Cyo(E), there exists a sequence {u,}nen C Co(E) N D(E) such that supplu,) C {x €
Elu(x) # 0}, n € N, and u,, converges to u uniformly as n — 0o.

(ii) For any compact set F and relatively compact open set G with F C G, there exists u €
Co(E)ND(E) such that 0 <u < 1, u|lp =1 and u|p\g = 0.

Proof. By the regularity of (£, D(£)) and [Ku, Lemma 2.1(ii)], this lemma can be proved similarly
to the case of Dirichlet forms. 0

Definition 2.5. Denote by d the diagonal of £ x FE.

(i) A subset A C E x E\d is said to be symmetric if its indicator function I, is symmetric, i.e.
Ia(z,y) = La(y, x) for all (z,y) € E x E\d.

(ii) Let J be a Radon measure on E x E\d. A measurable function f on E x E\d is said to be
integrable w.r.t. J in the sense of symmetric principle value (abbreviated by S.P. V. integrable), if
f is integrable on each relatively compact symmetric subset A C E x E\d and for any increasing
sequence of relatively compact symmetric sets {4, },>1 with U | A, = F x E\d, the limit

S.P.V./ flz,y)J(dz,dy) := lim f(z,y)J(dx, dy)
ExE\d "

n—oo A

exists and is independent of the specific choice of the sequence {A,,},>1.

Theorem 2.6. (i) There exist a unique positive Radon measure J on E x E\d and a unique
positive Radon measure K on E such that for v € Co(E)N D(E) and u € I(v),

E(u,v) :/E E\d2(u(y) —u(x))v(y)J (dx, dy) —i—/Eu(:L')v(x)K(dx), (2.6)

where I(v) :={u € Co(E) N D(E)|u is constant on a neighbourhood of supp[v]}.
(ii) Denote A(v) := {u € Co(E) N D(E)|(uly) — u(zx))v(y) is S.P.V. integrable w.r.t. J}. Then

we have the following unique decomposition

E(u,v) = E%9u,v)+ S.P.V./E E\dQ(u(y) —u(x))v(y)J (dz, dy)
+/ uw(x)v(x)K(dz) for ve Co(E)ND(E) and u € A(v), (2.7)

where £¢(u, v) satisfies the left strong local property in the sense that I(v) C A(v) and E(u,v) =0
whenever v € Co(E) N D(E), u € I(v).



Proof. (i) The uniqueness of J and K satisfying (2.6) can be proved in the same way as in [FOT,
Theorem 3.2.1] by virtue of Lemma 2.4(i). The existence of J can be proved similarly to [FOT,
Theorem 3.2.1]. Moreover, (3/2)cs — J vaguely on E x E\d as f — oo.

To show the existence of K, we fix a relatively compact open set U. For any compact subset
F of U, by Lemma 2.4(ii), there exist u,v € Cyo(E) N D(E) satistying supp|u] Usupp[v] C U, such
that v|p = 1,0 > 0, ulsuppp] = 1 and 0 < u < 1. Then, we get by (2.5) that

/F B(1 - BGsly(x))m(dr) < / 2)(1 — BGsly(z))m(dz)
< / 2)(1 — BG3ly ())ml(de)

g U(U(y) — u(x))o(y)os(de, dy)

= S(B)(u,v). (2.8)

Now it follows from (2.8) that the family of measures {3(1 — 8Ggly(z) )m(dx)} =0 are uniformly
bounded on any compact subset of U. Let p be a metric compatible with the topology of F,
{U;}1>1 an increasing sequence of relatively compact open sets satisfying Up®,U; = E, and {6, }1>1
(0; | 0) a decreasing sequence of positive numbers such that U, x U\{(x,y)|p(z,y) < &} is a
continuous set of J for each [. Note that such {U;} and {0;} always exist. Then, there exist an
increasing sequence {3, }n,en satisfying (3, — oo as n — oo and a positive Radon measure K; on
U, such that for each [ > 1,

Bn(l — 5,Gp, Iy,) - m — K; vaguely on U; as n — oo. (2.9)

Extend K; to E by setting K;(A) := K;(ANU,) for any Borel subset A of E. By (2.9), for each
compact subset F' of E, there exists Iy such that {K;(F)};>;, is non-increasing. Consequently,
there exists a Radon measure K on E such that

K; — K vaguely on E as | — oo. (2.10)

Denote I'; := Uy x U\{(z,y)|p(z,y) < §}. Let v € Co(E) N D(E) and u € I(v). Suppose that
u(z) = a on a neighborhood of supp[v] for some constant a. Then, we get by (2.2) and (2.5) that

Swo) = Hm %[ () ule)el)os, dndy
Ui xUp,p(x,y)<d
" / 2(uly) — u(x))o(y)J (dr, dy) + / u(z)o(z) Ky(dz)
provided [ > [ for some large enough /. Letting [ — oo, we get
() = /E o 20) =) e(y) e ) + /E u(a)o(a) K (dx),

where the integrability of (u(y) — u(x))v(y) follows from the fact that for any y € supp[v],

(u(y) = u(@))v(y) = (@ = u(@))v(y) = (a - u(@))"v(y) - (@ - ul@)) v(y),



and either supp[(a—u(z))tv(y)] or supp[(a—u(x)) v(y)] must be contained in T';, for some large
l1, since u has a compact support. Thus, the measure K constructed in (2.10) satisfies (2.6),
which in turn implies that K is independent of the specific choice of {U,};>1 and {d;};>1 by the
uniqueness of K.

(i) For v € Co(E) N D(E) and u € A(v), define
E(u,v) := lim —/ ) 2(u(y) — u(x))v(y)og, (dz, dy). (2.11)
UrxUy, p(z,y) <6y

Then, we obtain decomposition (2.7) by the proof of (i) above. The uniqueness is obvious by (i)
and the left strong local property of £¢(u,v) follows from (2.11). The proof is complete. O

Remark 2.7. (i) As in the setting of Dirichlet forms, J and K respectively represent the
gumping and killing measures of the process (X;);>o. For any E-exceptional set N, J(E x N\d) =
J(N x E\d) =0 and K(N) =0 (cf. [Hul]).

(ii) Let D be a special core of (£, D(E)). If (2.6) holds for any v € D and w € D N I(v), then the
measures J and K are unique.

(iii) Note that if v € Co(E) N D(E) and u € I(v) then £%(u,v) = 0, since I(v) C A(v). In
this case, decomposition (2.7) has been obtained in [Ki, Lemma 2.14] in Dirichlet forms setting.
Further, Chen and Zhao [CZ, (A.15)] extended the result to non-symmetric Dirichlet forms in the
extended sense that only the sub-Markovian property of the dual semigroup of the a-subprocess
is assumed for some o > 0, rather than that for the original process (that is o = 0).

(iv) Mataloni [Mat, Theorems 2.7 and 2.8] has obtained the decomposition like (2.7) in Dirichlet
forms setting but without introducing the notion of S.P.V. integral and the constraint that u €
A(v). These conditions are essential and cannot be dropped. The interested readers may refer to
[HMS] for a counterexample. We thank Kazuhiro Kuwae for drawing our attention to the paper
[Mat].

We now extend Theorem 2.6 for later use. Let v € D(£). We define

I'(v) := {u € D(E)|u is constant E-q.e. on a quasi-open set containing supplv]}.

Lemma 2.8. Let v be a bounded function in D(E) such that supp[v] is compact. If u € I(v),
then

E(u,v) = /E E\d2(u(y) —u(x))v(y)J(dx, dy) + / u(z)v(z) K (dz).

E

Proof. We assume 0 < v < M for some constant M > 0, and u|g = « for some constant a and
some open set G D supp[v]. Since E is a locally compact separable metric space, there exists a
relatively compact open set G such that supp[v] C G; € G; C G. By Lemma 2.4(ii), there exists
aw € Co(E)N D(E) satisfying 0 < w < M, wlsuppp) = M and w|g\g, = 0. By the regularity of
(E,D(E)), there exists a sequence {v/, },en C Co(E) N D(E) such that v/, is £ -convergent to v as
n — o00. Set v, := (v, V0) Aw. Then by [MR, Lemma 1.2.12], there exists a subsequence {v,, }ren
of {v, }nen such that the Cesaro sum w,, := (1/n)Y,_, v, is &-convergent to (vV0) Aw = v as



n — 0o. Obviously, supp[w,] C G1 C G. By Theorem 2.6(i),

Swwn) = [ 2uly) ~ ue)un(p) I dy) + [ wleyun@)Kdo). (212)
ExE\d E

There exists an £-exceptional set N such that w,(z) — v(x) for all x € E\N by [MOR, Propo-
sition 2.18(i)]. Note that 0 < w,, < M, n € N, supp[uw,] C supp[w,] C G; and G is compact,
limy, oo [ u(@)wy(2) K (dx) = [, u(z)v(x)K(dx) by the dominated convergence theorem and Re-
mark 2.7(i). Since u = u A o — (u A a — u), we assume without loss of generality that v < a. By
Theorem 2.6(i), 2(u(y) — u(x))w(y) is integrable w.r.t. J on F x E\d. Noting that 0 < w, < w,
we obtain by the dominated convergence theorem, Remark 2.7(i) and (2.12) that

/EXE\d2(u(y) —u(x))v(y)J(de,dy) = lim 2(u(y) — u(x))w,(y)J (dz, dy)

=0 JEXE\d

n—oo

= 5(u,v)—/Eu(x)v(x)K(dx).

~ lim [S(u,wn)— /E w(@)wn(z) K (dz)

The proof is complete. 0O

Theorem 2.9. Let v be a bounded function in D(E) such that supp[v] is compact. If u € I'(v),
then

E(u,v) = /E E\d2(u(y) —u(x))v(y)J(dx, dy) + / u(z)v(z) K (dz).

E

Proof. We assume without loss of generality that v > 0. Since u € I'(v), there exist a quasi-
open set G; D supp[v] and a constant « such that u|g, = o £-q.e. Since X is a locally compact
separable metric space, there exists a relatively compact open set Gy such that supp[v] C Gb.
By Lemma 2.4(ii), there exists an s € Co(E) N D(E) such that s|g, = a. Then, G; N Gy is also
a quasi-open set containing supplv] and (u — $)|g,ng, = 0 £-q.e. Consequently, we may assume
without loss of generality that & = 0 by Lemma 2.8. Moreover, since u = u A0 — (u A0 —u), we
may only consider the case that u < 0.

Set G := E\supp[v]. Then G is an open set and u € D(Eg), where D(Eg) := {u € D(E)|u =
0 m-a.e. on F\G}. For u,v € D(&g), define Eg(u,v) := E(u,v). Then, (g, D(E)) is a regular
semi-Dirichlet form on L?(G;m) (cf. [Hu2]). Hence there exists a sequence {f,}nen C Co(G) N
D(&g) such that f, is Egi-convergent to u as n — oo. Since u < 0, we may assume that
fn <0, Vn € N. Otherwise, we may replace {f,},>1 with the Cesaro sums of a subsequence of

{fn A O}neN-
For n € N, we define



Then u, € Co(E) N D(E),u, < 0, supplu,] C supp|f.] C G, n € N, and u, is & -convergent to

u as n — 00. Since supp|f,] is compact, for each n € N, there exists an open set V,, D supp|v]
such that u,|y, = 0. By Lemma 2.8,

Eun,v) = /E 1 20 0) ~ @) 0(0) ) + / ()02 K (d)

E

= —/E E\d2un(x)v(y)J(dx,dy). (2.13)

By [MOR, Proposition 2.18(i)], there exists an £-exceptional set N such that u,(z) — u(z) as
n — oo for all x € E\N. Then by Remark 2.7(i), Fatou’s lemma and (2.13),

[E E\d—2u(x)v(y)J(dx,dy) < liminf —2un(w)v(y)J(dz, dy)

= JExE\d
= liminf &(u,,v)

n—oo

= E(u,v). (2.14)

Noting that v > 0,u < 0,u, < 0,Vn € N, we obtain by Remark 2.7(i) and the dominated
convergence theorem that

/EXE\d—Qu(:c)v(y)J(da:,dy) > /E lim ((—2u,(2)) A (=2u(z)))v(y)J (dz, dy)

xE\d "

= Jhmog E\d—Q(UnVU)(w)v(y)J(dx,dy)- (2.15)

We claim that

Eun V 1, v) = / 2, v u)(@)o(y) T (dz, dy). (2.16)

ExE\d

Since u, Vu € D(Eg), by the regularity of (€4, D(Eg)), there exists a sequence { g} }ren € Co(G)N
D(&g) such that g, is E¢ 1-convergent to u, Vu as k — oo. Since u,, € Co(E)ND(E), there exists a
constant M > 0 such that —M < u,, Vu < 0. Obviously, supp|u, V u] C supp|u,] is compact. By
Lemma 2.4(ii), there exists a w € Cy(£) N D(E) such that —M < w <0, w|suppfu,ve) = —M and
supplw] C G. For k € N, define g := (g, A 0) V w. Then by [MR, Lemma 1.2.12], there exists a
subsequence {gy, }ien of {gx }ren such that the Cesaro sum wy, := (1/m) >"" | gx, is &;-convergent
to ((u, Vu) A0)Vw =wu, Vuas m— oco. Similar to (2.13), we get

Ewv) = / 1 200 (0) 0 @)e(0) T, )+ /E Wi ()0 () K (d)
- [E 2T ). (2.17)

Note that —w,,(z) < —w(z) and —w(x)v(y) = (w(y) —w(z))v(y) is integrable w.r.t. J on E x E\d
by Lemma 2.8. By [MOR, Proposition 2.18(i)], there exists an £-exceptional set N’ such that



Wi () — (up V u)(z) as m — oo for all x € E\N’. By the dominated convergence theorem,
Remark 2.7(i) and (2.17), we get

/E o —2(uy, V u)(x)v(y)J(de,dy) = /E lim —2w,,(z)v(y)J(dz, dy)

xE\d ">

= lim —2w, (z)v(y)J (dz, dy)
m—00 | py E\d
= lim &(wm,v)

m—00

= E(up Vu,v).
Thus (2.16) holds.

By (2.16) and the fact that u, is &-convergent to u as n — oo,

lim —2(up, Vu)(z)v(y)J (de, dy) = lim E(u, V u,v) = E(u,v). (2.18)

n— JpyE\d n—o0

Finally, by (2.14), (2.15), (2.18) and the fact that u = 0 £-q.e. on supp[v], we get

E(u,v) = /EE\d—Qu(x)v(y)J(dx,dy)

E

= [ 2ty - u@)ely) e dy) + [ a@)o(@)K (d),
ExE\d
which completes the proof. 0

3. Local compactification and integral representation of quasi-regular
semi-Dirichlet form

First, we recall some basic results about quasi-regular semi-Dirichlet forms. We refer the read-
ers to [MOR, Definition 3.5] for the definition of quasi-regular semi-Dirichlet form. Throughout
this section, we let £ be a metrizable Lusin space and m a o-finite measure on (E, B(E)).

Proposition 3.1. Let (£, D(E)) be a quasi-reqular semi-Dirichlet form on L?*(E;m). Then

(i) D(E) is separable w.r.t. the 511/2—n0rm.

(ii) Each element w € D(E) has an £-quasi-continuous m-version, which we denote by .

(11i) Let {Fy}ren be an E-nest and suppose that supp(lp, - m|] exists for each k € N. Set F} :=
supp[lg, - m|. Then {F} }ren is also an E-nest.

() If f is E-quasi-continuous and f > 0 m-a.e. on an open subset U of E, then f > 0 E-q.e.
on U. In particular, @ is £-q.e. unique for any u € D(E).

(v) If D is a dense subset of D(E), then there exist an E-exceptional set N C E and E-quasi-
continuous m-versions 4 such that {tlu € D} separates the points of E\N.

(vi) Fiz a ¢ € L*(E;m) satisfying 0 < ¢ < 1 m-a.e. Set g := Gyp. Let h be a fized E-quasi-
continuous m-version of g, and h a fized &-quasi-continuous m-version of the 1-reduced function
of h w.r.t. the dual form (€ D(E)). Hereafter we define &(u,v) = E(v,u), Yu,v € D(E).
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Then, there exists an E-nest {F}"Yren such that h € C({F!Y),h € C({F'}), h(z) > h(z) for all
x € Up>1Fy, and

inf{h(z)|x € F!'} >0 for all k € N.

Proof. We refer to [MOR, Proposition 3.6] for the proofs of (i), (ii), (iv) and (v).
(iii) It can be proved similarly to [MR, Proposition III.3.8].

(vi) Following the proof of [MR, Proposition I11.3.6], we know that there exists an E-nest {Fk(l)}keN
such that inf{h(z)|x € F,El)} >0 for all k € N. Since h is a reduced function of h, h > h m-a.c.
and thus h > h E-q.e. Hence, there exists an E-nest {F,EQ)}keN such that h(z) > h(z) for each
x € Ukle,sz). Let {F,Eg)}keN be an E-nest such that h € C({F}) and h € C({F}'}). We set
Fl=FYnFP 0 F® for k € N. Then {F}'}zen is a desired E-nest. -

Lemma 3.2. Let (£,D(E)) be a quasi-reqular semi-Dirichlet form on L*(E;m). Then, there
exists a countable subset D§ of D(E) consisting of bounded 1-excessive functions such that Dj —
Dy is dense in D(E).

Proof. By the quasi-regularity of (£, D(€)) and [Ku, Lemma 2.1], one can prove this lemma
similarly to [MR, Proposition IV.3.4(ii)]. 0

Lemma 3.3. Denote F := {u € D(€)|u = u; — uy for two I-excessive functions uy,us €
D(E) and |u| < ch for some constant ¢ > 0}, where h is specified by Proposition 3.1(vi). Then
for any u,v € F and any ¢1,c2 € Q, u Av,u AN1,u (v+1),cqu+ cov € F. Hereafter, QQ denotes
the set of all rational numbers.

Proof. Let u = u; — us,v = v1 — v be as in the definition of F. Then
uAv=(u —uz) A (v —v2) = (ug + v2) A (v1 + uz) — (ug + v2),

and (uy +ug) A (v1+usg), ug+ve are 1-excessive functions in D(E). Obviously, |uAwv| is dominated
by ch for some constant ¢ > 0 and is £-quasi-continuous. Hence u A v € F. Similarly, one can
check that u A 1,u A (v+1),cru+ cv € F. 0

Proposition 3.4. Let (€, D(E)) be a quasi-reqular semi-Dirichlet form on L*(E;m). Then, there
exists a countable set D of &-quasi-continuous functions such that the corresponding m-classes
form a dense subset of D(E) satisfying the following properties:

(i) u Nv,u AN1Lu N (v+1),cru+ cov € D for all u,v € D and ¢1,co € Q.

(ii) h € D, where h is specified by Proposition 3.1(vi).

(11i) Each u in D is bounded and |u| < ch for some constant ¢ > 0.

(iv) There exists an E-nest {Fy}ren consisting of compact metrizable sets such that D U {lAl} C
C({Fy}), D separates the points of Y := Up>1 Fy,, and F}, C F" with F}* being specified by Propo-
sition 8.1(vi). Moreover, F}, = supp[lp, - m| for each k.

Proof. Let D§, F and {F]'};en be specified by Lemma 3.2, Lemma 3.3 and Proposition 3.1(vi),
respectively. For u € Df and k € N, set u, = u — U(phye N U. We fix an &-quasi-continuous

m-version @y, of uy, such that @, = 0 on E\F}. Then, {u|u € DJ, k € N}U{h} C F. By Lemma
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3.3 and [FOT, Lemma 7.1.1], there exists a countable subset D of F' such that
a) {uxlu € DJ, ke N}uU{h} C D.

b) u Av,u ANl,uA (v+1) € D for all u,v € D.

¢) cqu+ cov € D for all w,v € D and ¢1,¢5 € Q.

Now assertions (i), (ii) and (iii) are obvious. One can check that for u € Dy, there exists a
subsequence {ug, }ien of {uy fren such that the Cesaro sum w,, := (1/n) > uy, — uin D(E) as
n — oo. Hence, by a), ¢) and Lemma 3.2, we know that D is dense in D(£). By Proposition 3.1(v),
there exists an E-exceptional set N such that D separates the points of F\N. Let {Fi; }ren be an
E-nest such that N C Mys1(E\Fiy,) and {Fy been an E-nest such that D U {h} € C({Fy}). By
the quasi-regularity of (£, D(£)), there exists an E-nest { Fi1, } xenw consisting of compact metrizable
sets. Set F} := FiyNFor N F3 NE! and Fy, = supp[IF}g -m|. Then, {F}ren is an E-nest satisfying
(iv). O

Let (£, D(€)) be a semi-Dirichlet form on L?*(E;m) and E* another Hausdorff topological
space with Borel o-field B(E*). Suppose that N is an £-exceptional set. Set Y = E\N. Suppose
that j is a B(Y)/B(E*)-measurable map from Y into E*. Let m o j~! be the image measure of
m on (E* B(E¥)). If u* is m o j~!-a.e. defined on E* then u* o j is m-a.e. defined on E since
m(N) = 0. Define j*u* = u* o j m-a.e. for u* € L*(E*;m o j'). Then, j* is an isometric map
from L?(E* mo j7') into L?(E;m).

We define

D(&7) = {u* € L*(E*;moj ") | j*u* € D(E)},
El(uf vf) = E(5*uf, j*vF), Vub ot € D(EY).

Then (€7, D(€7)) is called the image of (£, D(£)) under j. If j* is onto then one can check that
(&7, D(&7)) is a semi-Dirichlet form by [Ku, Proposition 2.2].

Theorem 3.5. (local compactification) Let (£, D(E)) be a quasi-regular semi-Dirichlet form
on L*(E;m). Then, there exist an E-nest {Fy}ren consisting of compact metrizable subsets of E
and a locally compact separable metric space Y* such that

(i) Y* is a local compactification of Y := Up>1F}, in the sense that Y* is a locally compact space
containing Y as a dense subset and B(Y) = {A € B(Y*)|AC Y}.

(ii) The trace topologies on Fy induced by E and Y* coincide for each k € N.

(iii) The image (%, D(EY)) of (€, D(E)) under the inclusion map: i :' Y C Y* is a reqular semi-
Dirichlet form on L*>(Y*;m*), where m* := moi~! is the image measure of m on (Y*, B(Y?)).

Proof. Let D be a countable dense subset of D(&) specified by Proposition 3.4, say D := {un|n €
N} with uy = h, where h is specified by Proposition 3.1(vi). Let {F}}ren be an E-nest specified
by Proposition 3.4(iv) and Y := Ug>1F. Then, by Proposition 3.1(vi) and Proposition 3.4,
(D.1) uy >0onY.

(D.2) For any u € D, there exists ¢ > 0 such that |u] < cu; on Y.

(D.3) D C C({Fy}) and D separates the points of Y.

(DA4) uANv,u ANLu A (v+1),cqu+ cov € D for all u,v € D and ¢y, ¢ € Q.
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Set g, := (2/m) arctan u,,,n € N, and define a metric p on Y by
p(x,y) =Y 27" |gn(z) — gu(v)], w,y €Y.
n=1

Since D separates the points of Y, (Y, p) is isometric to a subset of [—1, 1]N and thus the completion
(Y, p) is a compact metric space. All g,,u, have unique continuous extensions gy, @i, to ¥ and,
clearly, {g.|n € N} separates the points of Y and so does {i,|n € N}. Set Y# := {x € Y|u(z) >
0}. Then (Y*, p) is a locally compact separable metric space. By (D.1), Y C Y*. For each n € N,
we denote by uf the restriction of i, to Y*. Set D* := {uf|n € N}. We claim that

D* is dense in Cy(Y*) w.r.t. the uniform norm || - ||, (3.1)

where Coo (Y?) := {f € C(Y®)|{f > €} is compact for any ¢ > 0}.

For u,v € D and ¢, c; € @, by the uniqueness of continuous extensions, u* Avf = (uAv)F, uf A
L= (wAD ubA @ +1) = (uA (v+1))% and ciuf + cov? = (cyu + cpv)f. Hence D* is a Q-linear
lattice satisfying

uf AP P AL P A (0 + 1) € DF YaF ot € DR (3.2)

Set D! := {u! + rjuf € D!, r € Q}. Then, one can check that D! is a Q-linear lattice by (3.2).
Since v} € D! is strictly positive on Y* and D! separates the points of Y*, (3.1) holds by the

Stone-Weierstrass theorem. Now assertions (i), (ii) and (iii) can be proved in the same way as in
MR, Theorem VI.1.2]. 0

Let ¢ € L*(E;m) be such that 0 < ¢ < 1 m-a.e. and ¢ the corresponding element of ¢
in L?(Y* m#). Following [MOR, Definition 2.11], we introduce the capacity Cap,, (respectively,

Capiu) w.r.t. (€, D(E)) (respectively, (€% D(EY))).

Corollary 3.6. (i) If {E}}ren is an E*-nest, then {Fy N Ey}ren is an E-nest and vice versa.
(ii) N* C Y* is E-exceptional if and only if N*NY is E-exceptional. In particular, capz)ﬁ(Yﬁ\Y) =
0.

(iii) A function uf : Y* — R is £*-quasi-continuous if and only if uf oi is £-quasi-continuous.
(iv) capi,(A%) = capy(A* NY), VA* C Y.

Proof. The proof is similar to the case of Dirichlet forms (cf. [MR, Corollary VI.1.4]). 0O

Now let mf be a o-finite Borel measure on E*, (£, D(£)) and (&f, D(E*)) two semi-Dirichlet
forms on L?(E;m) and L%(E*;m*), respectively. All the notations w.r.t. (€% D(E%)) will be
marked by “f”.

Definition 3.7. (£, D(£)) is said to be quasi-homeomorphic to (E%, D(EY)), if there exists a map
J U1 Fy — Ukle,g, where {F} }ren is an E-nest in E and {F,S}keN an Ef-nest in E*, such that
(i) 7 is a topological homeomorphism from Fj, onto F) ,f for each k € N.

(ii) m* =moj~L
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(iii) (&%, D(EY)) = (&7, D(&7)), where (€7, D(£7)) is the image of (£, D(E)) under j.
The map j is called a quasi-homeomorphism from (£, D(E)) to (€%, D(E%)).

Theorem 3.8. A semi-Dirichlet form (€, D(E)) on L*(E;m) is quasi-reqular if and only if it is
quasi-homeomorphic to a reqular semi-Dirichlet form (E%, D(E*)) on L*(E*;m*).

Proof. (i) “if”-part: Similar to the setting of Dirichlet forms (cf. [CMR, Theorem 3.7]).
(ii) “only if’-part: Direct consequence of Theorem 3.5. 0

Theorem 3.9. Let (£, D(E)) be a quasi-regular semi-Dirichlet form on L*(E;m). Suppose that
u € D(E) and u is constant E-q.e. on a quasi-open set U of E. Set Ly := {v € D(E)|supp,[v] C
U}. Then, there exists a unique o-finite signed Borel measure J,, on U such that

E(u,v) = / v(y)Ju(dy) for all v e Ly (3.3)
U
and J, charges no £-exceptional sets.

Proof. Suppose that u|y = a £-q.e. for some constant a. We first prove the theorem under the
additional assumption that v < o £-q.e. The basic idea of the proof is from [DM, Theorem 1].
For v € Ly, define Lv = E(u,v). Then L is a linear functional on Ly satisfying

(i) If v € Ly and v > 0 E-q.e., then Lv > 0.

(ii) If {vp}nen C Ly and & (vp, v,) — 0 as n — oo, then Lv, — 0 as n — oc.

Assertion (ii) is obvious. Assertion (i) is true since Lv = limg_.o, B(u — fGpu, v) = limg_.o fa —
BGzu,v) > 0.

Suppose that {v,}nen C Ly is a decreasing sequence such that v,(x) | 0 for all x € E. We
will show that Luv, | 0. To this end, set £ := {f € D(E)|f > v, m-a.e.}. By [MOR, Proposition
2.8] (replacing U with E), there exists a unique v € L such that & (v,v) < & (v, f), Vf € L;
Ei(v,w) > 0, Vw € D(E) satistying w > 0Om-a.e. Hence v is l-excessive (cf. [MOR, Theorem
2.4]). By the quasi-regularity of (£, D(£)), there exists an E-nest { F }ren consisting of compact
sets such that v, € C({F;}) for each n € N. Let F := E\F}, and vge be the 1-reduced function
of v on Ff (cf. [MOR, Proposition 2.8]). By [MOR, Proposition 2.8] and [MR, Lemma 1.2.12],
one can check that vpe converges weakly to 0 in (D(£), &) as k — oo. Since v is decreasing
(cf. [MOR, Proposition 2.8 (iv)]) and 1-excessive,

Er(vpe, vre) < Ei(vpe, vEp) — 0.

Set uy, := v1 AUpe. It is easy to see that supyen E(up, up) < 0o and limy o [|ur || L2(E;m) = 0. Then,
by [MR, Lemma 1.2.12], there exists a subsequence {ug, }ien of {uy }ren such that the Cesaro sum
wg = (1/k) Zle uy, converges to 0 in D(E), i.e. & (wg, wy) — 0, as k — oo. By the definition of
Ly, we know that wy, vy A0 € L. By [Ku, Lemma 2.1(ii)], & (11 AD)A(1/7), (v AD)A(1/5)) — 0
as j — 00. By assertion (ii), for arbitrary 6 > 0, there exist ko, jo such that L(wy) < 6, Yk > ko,
and L((v1AD)A(1/7)) < 6, Vj > jo. Since v, | 0 and v, is continuous on the compact set Fy,, there
exists ng € N such that v, < (1/jo) on Fj, for any n > ng and thus v, < (v1 AD)A(1/jo) +wg, E-
q.e. Hence Lv, < L((vy AD) A (1/jo) + wy,) < 26, ¥n > ng, i.e. Lv, | 0 as n — oo.
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Since Ly is a linear lattice, L is a Daniell integral on L£;. Then, there exists a Borel measure J,
on o{v: v € Ly} satisfying (3.3) by Daniell’s theorem. Let N be an arbitrary £-exceptional set.
Since Iy =0 E-q.e., Iy € Ly and [, In(x)Jy(dz) = LIy = 0 by assertion (i). Thus J,(N) = 0.

Through the “local-compactification” of quasi-regular semi-Dirichlet forms (cf. Theorem 3.5),
we can find two E-nests {Fk(l)}keN and {FIEQ)}%N satisfying that for any k,m € N and any
compact set F' C F, ,51) N F,Sf 'nu , there exists a sequence {s, },en of E-quasi-continuous elements
in D(E) such that s,|r = 1,s, | Ir, and supp,[s,] C U (cf. the existence part of Theorem 4.1
below for a detailed proof). Hence F' € o(v: v € Ly) and

J(F)=lim [ s,(y)Ju(dy) = lim &(u,s,). (3.4)

n—oo U n—oo
Since k, m and F are arbitrary, B(U;>1 Ug>1 F,El) NnEY N U) C o(v:v e Ly). Note that

Ny = U\(Ug>1 Um>1 F,gl) N F,Sf)) is an E-exceptional set. We define the Borel measure J, on U
by setting J,(Ny) = 0. By (3.4), J, is o-finite and unique.

Now we consider the general case. Note that
Euv)=Eu—una,v)+EuNa,v)=—-EUNa—uv)+EuUAa,v). (3.5)

We respectively apply the above proof to (u A @ — u) and u A «, and obtain the corresponding
Borel measures Jyna—w and Jyaa. Set J, = Jura — Jura—w- Then, J, is the desired signed Borel
measure. The proof is complete. 0

In the next section, we will employ the signed Borel measure J, given in Theorem 3.9 and
the local compactification method developed in Theorem 3.5 to obtain the jumping measure J
and the killing measure K of a quasi-regular semi-Dirichlet form, see Theorem 4.1 below and its
proof.

4. Decomposition of quasi-regular semi-Dirichlet form

Throughout this section, we let E be a metrizable Lusin space, m a o-finite measure on
(E,B(E)) and (£, D(£)) a quasi-regular semi-Dirichlet form on L*(E;m). A metric p on E is
called a quasi-compatible metric if the Borel o-field induced by p coincides with B(E) and there
exists an E-nest { F, }ren such that p is compatible with the trace topology on F}, for each k € N.

Let J be a o-finite positive Borel measure on £ x E\d. A measurable function f on E X
FE\d is said to be integrable w.r.t. J in the sense of symmetric principle value (abbreviated by
S.P.V. integrable), if there exists an increasing sequence { A, },>1 of subsets of E x E\d satisfying
J((E x E\d)\ (U,A4,)) =0, I, (x,y) = 1a,(y,x) for all x,y € E, n > 1, and [ is integrable on
each A,, and for any sequence {4, },>1 with the above properties, the limit

S.P.V./ f(x,y)J(dz,dy) := lim fx,y)J(dz, dy)
ExE\d n

n—oo A

exists and is independent of the specific choice of the sequence {4, },>1.
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Theorem 4.1. (i) There exist a unique o-finite positive Borel measure J on E x E\d and a
unique o-finite positive Borel measure K on E satisfying the following properties:

(a) J(N x E\d) = J(E x N\d) =0 and K(N) =0 for any £-exceptional set N.

(b) Forv € D(&) and u € I,(v),

(u,v) = /E 1, 200) ) )+ /E uly)o(y) K (dy), (4.1)

where I,[v] := {u € D(E)|u is constant E-q.e. on a quasi-open set containing supp, [v]}.

(ii) Define

AWw) :=={u € D(E)| (u(y) —u(z))v(y) is S.P.V. integrable w.r.t. J and
u(z)v(x) is integrable w.r.t. K}.  (4.2)

Then we have the following unique decomposition

E(u,v) = E%Yu,v)+ S.P.V./ 2(u(y) — u(z))v(y)J(dz, dy)

ExE\d

+/Eu(x)v(x)K(dm) forv e f)(é’) and u Gfl(v), (4.3)

where E° satisfies the left strong local property in the sense that I,[v] C Av) and E(u, v) =0
whenever v € D(E) and u € 1,(v).

Proof. (i) Ezistence: For v € D(E) and u € I,(v), there exist a quasi-open set U D supp,[v] and
a constant « such that u = a £-q.e. on U. To prove (4.1), we assume without loss of generality
that a > 0. Further, by (3.5), we can assume that u < « £-q.e. By Theorem 3.9, there exists a
unique o-finite signed Borel measure J, on U such that

£ (u,w) = / w(y) Juldy) (4.4)

for any w € Ly = {f € D(E) | supp,[f] C U}.
Let {F}}ien, Y := Ups1 Fy and (€%, D(EF)) be specified by Theorem 3.5, where (€%, D(EF)) is

a regular semi-Dirichlet form on L?(Y*;m*). Then, by Theorem 2.6, there exist a unique positive
Radon measure J* on Y# x Y¥\d and a unique positive Radon measure K* on Y* such that for

vf € Co(YH) N D(EF) and uf € T#(vf),
E(Wh ) = / 2 (ut(y) — ut(x) ) oA (y) JH(de, dy) + / () () K (dy),
YixYi\d vt

where I*(v*) is defined similarly to I(v) as in Theorem 2.6.

Extend Jﬁ]yXy\d to a measure J on E x E\d by setting J(A) :=
B(E x E\d), and extend K*|y to a measure K on F by setting K (B) :
We will show that on the quasi-open set U,

Jt (A (Y x Y\d)),VA €
— K*(BNY),VB € B(E)

Ju(dy) = / (2(uly) — u(@)) T (dz, dy) + u(y) K (dy)} (4.5)
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Note that the measures [, 2(u(y) — u(x))J(dz, dy) and u(y)K (dy) are nonnegative on U by the
assumptions that u|y = a, u < «, E-q.e., and a > 0. Then, (4.1) follows from (4.4) and (4.5). In
the following, we show that (4.5) holds.

Since U is quasi—open there exists an £-nest {F Ul ren such that Y ﬂ U is open relative to £}V
for each k € N. Set Fk( = FYVNF},. Then {F }keN is an E-nest and F NU is open relative to
kal)_ Let h be specified by Proposition 3.1(vi). Set g, := h — h/(Fl(l))C A h, where (Fl(l))c = E\Fl(l)
We fix an £-quasi-continuous version g; of g; such that §l|( Fye = 0. Since g, is & -convergent to
h as | — oo (cf. [MOR, Proposition 2.18(i)]), there exist a subsequence of {§; };en, which we still
denote by {g;}ien, and an E-nest {Fk@)}keN such that F,Ez) C Fj and §; converges to h uniformly

(2)

on each F,”" as | — oo.

Since the trace topologies on Fj, induced by £ and Y* are the same, Y* is a locally compact
separable metric space and J, charges no £-exceptional sets, it is sufficient to show that for any
k,m € N and any compact set F' C Fy(nZ) N F,Sl) NnU,

= [ ([ fotuts) — uteeto) (s, ) + ) Ky ) (1.6

Since inf{h(z)|z € F,,} > 0 (cf. Proposition 3.1(vi)), F\Y) C F,,, and § converges to h uniformly

on each Fg), there exist [ > k and a constant §; > 0 such that g > §; on FT%Q).

((1/81)@) A 1. Then, gp|. =1 and gr| .m\. = 0.
F )

Set gp =

(| there exists an open set Gl (relative to F(l))

(1)

Y _
such that FF C G; C GlFl C Fl(l) N U, where GlFl is the closure of Gj in F . Since F is also
compact in Y* and G; U (Yﬁ\Fl(l)) is open in Y*¥ by the regularity of (€%, D (Eﬁ)), there exists a
sequence {f%}nen C Co(Y?) N D(EY) such that fi >0, f2 | I, and supp[f}] C G, U (Yﬁ\Fl(l)).
Define f, to be f# on Y and zero on E\Y (Y = Up>1F;). Then f, € D(E) (cf. Corollary

_ g
3. 6(iii)) Set s, := fu A gp. Then s,|p = 1,s, | Ir, and {x € Els,(z) #0} C G, C GZF’ C

F )NU c U. Since F, W - F, and F; is compact, Gl is a compact set. Consequently,

Since F'is compact and FZ(I) NU is open in F;

1
suppy[sn] C q.e. suppls,] C G ocu , where “C q.e.” means “C” except for an £-exceptional
set. Thus s,, € Ly and

J(F)=lim [ s,(y)Ju(dy) = lim E(u,s,). (4.7)

n—oo E n—oo

Define u* to be u on Y and zero on Y*#\Y. Similarly, define s? to be s, on Y and zero on
YA\Y. Then, v, s¥ € D(E). Since for each k € N, the trace topologies on Fy induced by E and

_ g
Y* are the same, supp|sf] C GlFl Cc UNY. It is easy to see that U NY is a quasi-open set w.r.t.
(¥, D(EY)). Since vf|yny = u|lyny, by Corollary 3.6, u* = a £*-q.e. on U NY. By the definition

_p®
of s!, we know that s is bounded and {z € Y*|s® # 0} C supp[s,] C GlFl C Fl(l) C F;. Now by
Theorem 2.9 and Remark 2.7(i) we get

(b sh) = / 2 (y) — () () T (e, dy) + / W (y)sh (o) K (dy)
Yixyi\d vt
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— /Y Y\d2(uﬂ(y)_U“(w))si(y)ﬂ(d%dy)ﬂL/uﬁ(y)sfl(y)Kﬂ(dy), (48)

Y

By the definitions of J and K and Theorem 3.5, we obtain from (4.8) that
E(u,s,) = EFub,sh)

- /EE\d2(u(y)—u(x))sn(y)J(dx,dyH/u(y)sn(y)K(dy), (4.9)

E

By (4.7), (4.9) and the dominated convergence theorem, we obtain (4.6).

Since J,, charges no £-exceptional sets, it is easy to show that property (a) holds (this can also
be deduced by the definitions of J and K and Remark 2.7(i)), which completes the proof of the
existence.

Uniqueness: Let J* and K* be as in the existence part. Suppose that there exists another pair
of measures J and K satisfying properties (a) and (b). Extend J'|yxy\4 to a measure J* on
Y x Y8\d by setting J*(A) := J (AN (Y x Y\d)) for any A € B(Y* x Y¥\d). Similarly, extend
K' to a measure K* on Y. For vf € Co(Y*®) N D(EF),ut € I*(v*), define v to be v* on Y and zero
on E\Y. Similarly, we define u. By Corollary 3.6, one can easily check that u,v € D(E) and
u € I,(v). By Theorem 2.6, Theorem 3.5 and Remark 2.7(i),

/yﬁ Yﬂ\d2(uﬁ(y) — uﬁ(x))vﬁ<y)Jﬁ(dx’ dy) + / uﬁ(y)vﬁ<y>Kﬁ(dy)

= gﬁ(uﬁ’vﬁ> Yt
= &(u,v)
_ [E o, 2000 — @) () + [E w0 K (@)

= / 2w (y) — ui(2))v(y) J*(dz, dy) + / uf (y) o (y) K (dy).
Yixy#\d v
It follows that J¥ = J* on Y¥ x Y¥\d and K* = K* on Y*. Then J =J on Y x Y\d and K = K’
on Y. Since E\Y is an E-exceptional set, J = J and K = K by property (a), which completes
the proof.

(ii) Let J and K be the measures specified by (i). For v € D(E), we define A(v) by (4.2). Then,
for v € D(€) and u € A(v), we obtain decomposition (4.3) by simply setting

Q(U(y)—U(w))v(y)J(d%dy)—/U(w)v(I)K(dw)-

E

E(u,v) = E(u,v) — S.P.V./

ExE\d

By the proof of (i), one finds that for any v € D(£) and u € I,[v], (u(y) — u(z))v(y) is integrable
w.r.t. J (and thus S.P.V. integrable w.r.t. J) and u(z)v(z) is integrable w.r.t. K. Then
I,[v] € A(v). Further, by (4.1) and (4.3), we know that £°(u,v) = 0 whenever v € D(E) and
u € I;[v]. Hence £° satisfies the left strong local property.

Now we show the uniqueness of decomposition (4.3). For v € D(£) and u € I,[v], we have

E(u,v) = S.PV. / 2uly) — ul))o(y)J(dz, dy) + / w(@)o(x) K (dz). (4.10)

ExE\d E
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By the definition of [,[v], there exist a quasi-open set U D supp,[v] and a constant a such that
uly = a £-q.e. As in the existence part of (i), without loss of generality, we can assume that
v>0,a>0and u < a. Let {4,},>1 be an increasing sequence of subsets of E x E\d as in the
definition of “S.P.V. integrable” such that

S.P.V./E E\d2(u(y) —u(x))v(y)J(de,dy) = lim 2(u(y) — u(x))v(y)J(dz,dy).  (4.11)

n—o0 A
n

Noting that (u(y) —u(z))v(y) > 0 £-q.e., we obtain from property (a) of (i), Fatou’s Lemma and
(4.11) that

_ /E lim 2(u(y) — u(z))o(y) L, (,y)J (dz, dy)

xE\d "
< lim [ 2(uly) = u(@)o(y)J (dz, dy)

< Q.

Then 2(u(y) — u(z))v(y) is integrable w.r.t. J on E x E\d. Thus the uniqueness of J and K
follows from (4.10) and (i) and therefore decomposition (4.3) is unique. 0

Theorem 4.1 is an extension of the classical Beurling-Deny formula (cf. (1.5)), noting that if
(€,D(E)) is a regular symmetric Dirichlet form then A(v) = D(E) for any v € D(E) and

SPV /E 1 200) () l) )
= /E E\d(u(y) —u(@))(v(y) — v(x))J(dz, dy).

As in the case of Lévy processes (cf. [HMS, Example 4.1]), we can find some sufficient conditions
to ensure that decomposition (4.3) holds for all u,v in a special quasi-core (cf. Theorem 4.8
below), which is defined as follows.

Definition 4.2. A subset D of D(E) is called a quasi-core of (£, D(E)) if the following conditions
hold:

(QC.1) D is dense in D(£) w.r.t. the éll/z—norm;

(QC.2) D is a linear lattice and u,v € D implies u A L,u A (v + 1) € D;

(QC.3) There exist a countable family {u,}.en C D and an E-exceptional set N such that
{un }nen separates the points of £\ N.

D is said to be a special quasi-core if in addition to (QC.1)-(QC.3), it holds that

(QC.4) For any v € D, there exists u € D such that u = 1 £-q.e. on a quasi-open set containing

suppy[v).

Note that by (QC.2), if D is a quasi-core, then it satisfies
(QC.2") w € D implies u™ A1 € D, hereafter u™ :=u V 0.

19



Let h, h and {F}'}ren be specified by Proposition 3.1(vi). By the quasi-regularity of (£, D(E)),
we can assume that F}* is compact for each k € N. For k € N, set hy := h — h(F]?)c Ah. We fix an

£-quasi-continuous m-version iLk of h; such that fzk\( Fhye = 0. Since Bk converges to h in D(E) as

k — oo, by [MOR, Proposition 2.18(i)], there exist a subsequence of {hy,}, which we denote again

M as k — oo.

by {hi}, and an E-nest {Fl(l)}leN such that hy, converges to h uniformly on each F,
Without loss of generality we may assume that F; ,51) C F} for each k. Then for each F ,51) we can
find an h;, for some large enough j, such that inf{h;(z)|z € Fk(l)} > 0. Let Dy be specified by

Lemma 3.2. For u € D and k € N, set uj, := u — Uy A u. We fix an £-quasi-continuous
k

m-version U of u; such that ﬁk\(Fu))c = 0. Define
k
D} = {ig|lu € DF, k € N} U {hi|k € N} U {0} (4.12)
and
Dy:={u—uAlNe|u€ DyeeQy}, (4.13)

where 0 is the constant function 0, ), is the set of all positive rational numbers. Note that
(Dy — Do) is a countable set and is dense in D(E). Hence there exists an E-nest {F ,52)}keN such
that (Dy — Dy) separates the points of Ugs>1 £, ,52). We now slightly modify the proof of Theorem
3.5 by adding D}, U (Dy — Dy) U {h} to D and modifying {F} }ren so that Fj, C F,gl) N F,C(Q) for
each k and D} U (Dy — Dy)U{h} € C({Fy}). We can check that with the above modification the
proof of Theorem 3.5 is still valid provided that we set u; = h.

Let J be specified by Theorem 4.1. Let Y = U2 Fy, Y* m* and (€%, D(E%)) be as in Theorem
3.5 with the above enlarged D and modified {F}}ren. Define

Dy == {u € Dy(&)|u=uf on Y for some uf € D(EF)
such that supp[u®] is compact in Y*}, (4.14)

DY = {u € Up>1D(E) pp |u = us — uy for two bounded
1-excessive functions uy,u; € D(E)} (4.15)

and

Dlll = {UED[,(E)

/ (00— )i <oo}, (4.16)

where Dy (€) denotes all the bounded elements in D(E).
Lemma 4.3. (Dy — D) C D; N Dy N DY.

Proof. By the construction of Dy above and the definitions of Dy and D}, we have that (Dy —
Dy) € Dy N Dj. In the following, we will show that (Dy — Dy) C DY. Let u be an arbitrary
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function of Dy — Dy. Then there exist two bounded 1-excessive functions uj, uy € D(E) and some
k € N such that u = u; — uz and u € D(E) pr. We claim that

/E Y (uly) — U(l'>>2il(y)J(dx’ dy)

. 1
< |hdprllo {Sl(ul + g, wr + uz) + ([[unl| 2 gzm) + [[uz]| 2 (mm))? + Slullzzzm | - (417)

The notations w.r.t. (€%, D(EF)) are marked by “4”. Since u € D(&)pn, by Theorem 3.5 and
Corollary 3.6,

Blu— BGgu,uh) = Buf,uthf) — B(BGHU?, u*h?)

= B[ (@)W (z)m(de) — B o (x)u () (y) oy (d, dy)
Yyt Yixyt
= 8 @) R@midr) - 8 b ()b () (), dy)
Fhy (FhNY)x (FPnY)
I6] ~
=5 (uf(2) — u(y))*h¥(y) o (de, dy)
(FPNY)x(FPNY)
. h(x
[ ) [hﬁ(@ ) 6 Ly )
FPny
1
~§ICH - Ty | i), (119
where a% is the positive Radon measure on Y* such that for u*,v# € L2(Y* m*) (cf. Corollary
2.2),

3Gk, %) = [ (a)o?y) (o, ).

Yt

Since h is 1-coexcessive w.r.t. (€,D(€)) (cf. Proposition 3.1(vi)), ht is 1-coexcessive w.r.t.
(&%, D(E%)). Hence, for 8 > 0, BG%HM < h* mf-a.e. Then, one obtains from (4.18) that

jim 5 [ (6 (2) = (0) P 1) )
(FPNY)x(FnY)
< ﬂlingo B(u — BGgu, uh) + % /Fﬁmy(uﬁ(:c))%ﬁ(x)mu(dx)
< 511—>Igo B(u — BGau, uh) + % /EUQ(x)lAl(x)m(dx) (4.19)

Note that
Bu—BGgu,uh) = B((ur — BGaur) — (us — BGaus), (ur — uz) i)
= [(u; — BGguy, UlilIF,g) — Bug — ﬁGgul,uJL]Fg)
—B(ug — BGﬁUg,UliL[FI?) + B(ug — ﬁGgug,quLIFkh)
= L -1, — I3+ 1.
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One finds that

lim [y = Jim Bl — (0 - DG g1y p1t1, urhlgn) = (8Gaur, urhip)

p—o0

< I g lloo €1 (ur, ur) + lJallZa gm) -

Similarly,
ﬁli_{{)lo I < ||B]F£”<>O[gl<ulvu2> + Nl 2(my l[u2l L2 (2m)),
Jim Iy < 12T oo [E1 (12, 1r) + [fuual] 2 (im0 | 212y,
ﬂli_{rolo I < (| lloo €1 (un, u2) + U272 mm))-

Hence, we get

Jim B(u — BGpu, uh) < (|l gy [loo €1 (ur + ua, ur + 2) + ([uall2(zm) + 2]l L2(zm))?]. (4.20)

Let p* be a metric compatible with the topology of Y*, {Glﬁ}leN an increasing sequence of
relatively compact open sets satisfying UlZlGlﬁ = Y* and {(5?}1@1 ((51ti 1 0) a decreasing sequence
of numbers such that {(z,y) € G* x G¥pt(z,y) > &'} is a continuous set w.r.t. J# for each [.

Note that u and h are in the enlarged D. Hence u* and h* are continuous on Y¥. Following the
proof of Theorem 2.6, there exists a subsequence {f3, }nen such that

/w i (uf(x) = uF(y))* 1 (y) J*(dx, dy)

~ i Jim 2 [ (6 (2) — b () (y) o, (dz, dy)
[—00 Bn—00 2 G?XG?,pﬁ(m,y)de "

< lim lim &/ (uﬁ(x)—uﬁ(y))ZlAzﬁ(y)ag (dz, dy). (4.21)
l—o0 Bp—0o0 2 G?XG? n

Since for any u € (Dy — Ds), the support supp[uf] of uf is compact, we have that supp[uf] C G?
for some I. Then, without loss of generality, we can replace F}* N'Y with G¥ in (4.18) and (4.19).
Consequently, we obtain (4.17) from (4.19)-(4.21). Thus v € D} and (Dy — Dy) C DY since
u € (Dy — Ds) is arbitrary. Therefore (Dy — Do) C Dy N D} N DY and the proof is complete.

Proposition 4.4. Let J and K be specified by Theorem 4.1. Denote by D* all the elements
u € D(E) such that

/ (u(y) — w(z))?J(dz, dy) + / u?(2) K (dz) < oo.
Ex{u#0}\d E

Then, D* is dense in D(E). Moreover, D* contains a special quasi-core D.

Proof. With the same notations as in Lemma 4.3, for any u € Dy, let u* be as in the definition
of Dy (cf. (4.14)) and let Y* K* be as in the proof of Theorem 4.1. Then by Theorem 3.5 and
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Theorem 4.1, we have that [, u?(2)K (dz) = [, (u*(2))?K*(dz) < |Ju||% K*(supp[u¥]) < co. Now
by (4.15), (4.16) and the fact inf{h(z)|z € F'} > 0 for all k € N (cf. Proposition 3.1(vi) and
Proposition 3.4(iv)), we find that [; o 4(u(y) — u(z))*J(dz,dy) < oo for any u € D} N Dy.
Consequently (D; N D} N DY) C D*. Since D — D{ is dense in D(E) (cf. Lemma 3.2), hence
Dy — Dy is dense in D(E). Thus, by Lemma 4.3, (D N D} N DY) is dense in D(E) and therefore
D* is dense in D(E).

To show that D* contains a special quasi-core, we let D be the smallest linear lattice containing

Dy — Dy and being closed under the operations u A 1,u A (v 4 1) for u,v € D. Noticing that

Dy — D5 is dense in D(E) and Dy — Dy separates the points of Ug>1 F) ,52), by the above construction
D satisfies (QC.1)- (QC.3) of Definition 4.2. Moreover, by Lemma 4.3 we can check that D C
(D, N Dy N DY) and hence D C D*. Thus to prove that D* contains a special quasi-core, we need
only to check that D satisfies (QC.4) of Definition 4.2. To this end, we write D} := {u,|n € N}.
Set g, := (2/m) arctanu,,n € N, and define a new metric py on Y := Ug>1 Fy, by

22 "lgn(z) — g (W)|, z,y €Y.

Let Y be the completion of Y w.r.t. the metric py and set

?:U{xey‘hﬁ >0} (4.22)

k>1

where Blﬁ is the continuous extension of ﬁk|y to Y. Then Y C Y since F, C Fk(l). Each u € p is
continuous W.r.tNthe metric po. Let D! be the collection of all the continuous extensions to Y of
the elements of D. For u € D, there exist a constant ¢ > 0 and m € N such that [u| <¢c377 A

which together with (4.22) and the fact that D separates the points of Y imply that D! ¢ C. ( )
and D! is dense in Cyo(Y) w.r.t. the uniform norm |- ||o. Furthermore, by virtue of (4.13) we can
check that D! is indeed contained in Cy(Y") and hence is uniformly dense in L Co(Y). In particular,
for any vt € D! there exists u! € D! such that u* = 1 on a open set of Y containing supp[v?].
Thus D fulfills (QC.4) since the trace topologies on Fj, induced by E and Y are the same, which
completes the proof. O

In the sequel, we denote by Dj; all the bounded elements in D*.

Theorem 4.5. Let J and K be specified by Theorem 4.1. )
(i) There exist a quasi-compatible metric p on E and a special quasi-core D C D} satisfying the
following properties:

(p.1) fEX{uio}\d:f(x,y)J(daz,dy) < oo forallue D.
(p.2) Any u € D is E-q.e. p-Lipschitz in the sense that

u(y) —u(z)| < Cp(z,y), Vo,y € EAN
for some constant C' > 0 and some E-exceptional set N.

(ii) Let p and D be specified by (i). Then for any e > 0 and any u,v € D, we have the following
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decomposition
Swo) = o)+ [ 2Auly) — ulw))oly)I(da.dy)
p(z,y)>e
+ / w(@)o(2) K (dz), (4.23)
E
where 7 is a bilinear form with domain D and satisfies
EPE(u,v) = / 2(u(y) — u(z))v(y)J(dx,dy) forve D andu € D NI, (v). (4.24)
p(zy)<e

Moreover, if (u(y) —u(x))v(y) is S.P. V. integrable w.r.t. J then lim. o E”°(u,v) = E°(u,v), where
E(u,v) is specified by (4.3).

Proof. (i) A metric p and a special quasi-core D satisfying the theorem are not unique. Below
we provide an existence result using Proposition 4.4. Let (Dy — Ds) and Y = Ug>1Fy be as in
the proof of Proposition 4.4. Then (Dy — Ds) is a countable subset of D(E) separating the points
of Y. Write (Dy — Ds) = {u,|n € N}. Since (Dy — Dy) C (D; N Dy N DY) (cf. Lemma 4.3), by
(4.16), for each u,, € (Dy — D) there exists a constant M, such that

éwm@ﬂwwmmm@sm. (4.25)

Let d be a metric on E compatible with its topology. We define a metric p on E by

d(%?J); ZE,yGE\Y,
p(;p7y) = o, . . " reY,ye E\Y oryeY,xe E\YV, (426)
<Zn=1 2’"H’mw—mﬁ%) , By €Y.

Since (Dy — Do) separates the points of Y, p is a metric on E. Since Fj is compact and u, €

(Dy — Dy) is continuous on Fj, for each k, it is easy to check that p is a quasi-compatible metric
on I.

Let D be the special quasi-core constructed in the proof of Proposition 4.4. By the construc-
tion, one finds that D C Dj. By (4.12) and (4.13), for v € D, there exists k& € N such that
u € D(E)pn. Since inf{h(z)[z € El'} > 0, there exists a constant § > 0 such that hlpn = 6.

Since { Fy }ren is an E-nest, hence E\Y is an E-exceptional set. Consequently, by property (a) of
Theorem 4.1(i), (4.25) and (4.26), it holds that

2 - —n (un(y) - Un(ZE))2
p(x,y)J(dx,dy) = 2 / J(dz,dy
/Ex{u;éo}\d (@ 9)J( ) Z Ex{uzopd L+ [[tnllo + My ( )

n=1
1N~y / (un(y) — un(2))*;

< <) 2 h(y)J(dx, dy
1

< -

)
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Thus (p.1) holds. Further, by our construction, (p.2) holds for any u € (Dy — Ds) and hence for

any u € D.

(ii) If u,v € D (C D), then u(z)v(x) is integrable w.r.t. K on E by the definition of D*. We
claim that (u(y) — u(z))v(y) is integrable w.r.t. J on {(z,y) € £ x E\d|p(z,y) > €}. In fact, for
u,v € D, we find that

/ (uly) — ulz))o(y)] I (de, dy)
{p(z,y)>e,v(y)#0}

2
[[ul[o][0]loo / Pz, y)J (dz, dy). (4.27)
Ex {v£0\d

c2

By (4.27) and (p.1), we have
/( > |(u(y) — u(z))v(y)|J(dz, dy) < oo.

Then, we obtain (4.23) by simply setting

EPe(u,v) = E(u,v) — {/p(w)>€ 2(u(y) — u(x)v(y)J (dz, dy) +/

E

u(:r;)v(x)K(dx)} . (4.28)

(4.24) follows from (4.1) and (4.28). The last assertion follows from the definition of S.P.V.
integral. 0O

Employing the concept of special quasi-core, we can show that the decomposition stated in
Theorem 4.5 (ii) is unique in the sense of Theorem 4.7 below. We prepare first a lemma.

Lemma 4.6. Suppose that J is a o-finite positive Borel measure on E x E\d satisfying J(N x
E\d) = J(E x N\d) = 0 for any E-exceptional set N, K is a o-finite positive Borel measure on
E charging no &-exceptional sets, and D C D(E) is a special quasi-core of (€,D(E)) consisting
of bounded elements. If for any v € D and w € D N 1,[v], it holds that

E(u,v) = 2(u(y) — u(@))v(y)J(dz,dy) + [ u(x)v(z)K(dz), (4.29)
ExE\d B

then J = J and K = K, where J and K are specified by Theorem 4.1.

Proof. Since D is a special quasi-core, by (QC.1), (QC.3) and Proposition 3.1(i), there exist a
countable family {v, }neny € D and an E-exceptional set N such that {v,}n,en is dense in D(E)
and {v, }nen separates the points of E\N;. By (QC.4) and (QC.2"), for any vy, € {v,|n € N}
there exists an element hy, € D such that hy, =1 £-q.e. on a quasi-open set containing supp,|v]
and 0 < hy, < 1. Then there exists an E-exceptional set Ny such that for any z € E\N, and
any k € N, vp(z) < ||vg|leohr(x) and supysq hx(z) > 0. Let {Fix}ren be an E-nest such that
(N1 U Ny) C M1 (E\F1). Let D be the smallest Q-linear lattice containing {vk, hg| & € N}
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and being closed under the operations u A 1,u A (v + 1) for u,v € D. Then by [FOT, Lemma
7.1.1], D is a countable set. Let {Fy}ren be an E-nest such that D C C({Fy.}). By the quasi-
regularity of (€, D(E)), there exists an E-nest {F3;}ren consisting of compact metrizable sets.
Set E} := Fi;; N Fy, N F3, and By, = supp[IE;C -m] for each k. Let Y := U2, E. Similar to the
proof of Theorem 3.5 we can define a metric on Y with the functions of D and make a completion
Y of Y. Set

v* = J{z € Y| hi(z) > 0},

k>1

where hj is the continuous extension of hg|y to Y. Then Y* is a locally compact separable metric
space and as in Theorem 3.5 we obtain a regular semi-Dirichlet form (£*, D(€*)). For u € D, we
denote by u* the continuous extension of uly to Y*. Set D* := {u*| u € D} and

Di = {u* — (u*V (—¢)) Ae| u* € D*,e € R, },

where R, is the set of all positive real numbers. Let D* be the smallest linear lattice containing
D¢ and being closed under the operation u* — (u*)™ A 1. Further set

D:={ae D) @&=u*onY for some u* € D*}.
Since D C D and D is a special quasi-core, we have that D C D.

In addition, we claim that D* is a special core (cf. Section 2) of the regular semi-Dirichlet
form (£*, D(E*)). By the definition, D* is a linear lattice, i.e. (C.3) holds. Since {vy}r>1 C D is
dense in D(E), one finds that D* is dense in D(E*), i.e. (C.1) holds. By the constructions of D
and Y*, following the proof of Theorem 3.5, we get that D* C C,o(Y*) and is dense in Cy (V™)
w.r.t. the uniform norm. Then Dj C Cy(Y*) and is dense in Co(Y*) w.r.t. the uniform norm.
Hence D* is dense in Cp(Y*) w.r.t. the uniform norm, i.e. (C.2) holds. Since D* is closed under
the operation u* — (u*)* A1, by (C.2) and the fact that Y* is a locally compact separable metric
space, one finds that (C.4) holds. Therefore D* is a special core.

Extend Jlyxy\q to a measure J* on Y* x Y*\d by setting J*(A) = J(AN (Y x Y\d)) for
any A € B(Y* x Y*\d). Extend K|y to a measure K* on Y* similarly. For any v* € D* and
u* € D* N I*(v*), where I*(v*) is defined similarly to I(v) as in Theorem 2.6. Define v to be v*
on Y and zero on E\Y. Similarly, we define u from u*. Then v € D and u € D N 1,[v]. By (4.29)
we have

E(wrv*) = E(u,v)
= Q(U(y)—U(I))U(y)J(d$7dy)+/EU(1’)U($)K(d9€)

ExE\d

= / 2(u(y) — u(x))v(y)J(dz, dy) —i—/ u(z)v(r) K (dr)
Y xY\d

Y

= /Y* Y*\dQ(u*(y) — u*(x))v*(y) " (dz, dy) + /Y* uF () (@) K (dr).  (4.30)

By (4.30) and Remark 2.7(ii), we get that J* = J* and K* = K*, here J* and K* are respectively
the jumping and killing measures of (£*, D(£*)). Following the proof of Theorem 4.1(i), one
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finds that Jlyxy\a = J*|yxyv\a: K|y = K*|y. Therefore J =Jand K = K since E\Y is an
E-exceptional set. O

Theorem 4.7. Suppose that J is a o-finite positive Borel measure on E x E\d satisfying J(N x
E\d) = J(E x N\d) = 0 for any E-exceptional set N, K is a o-finite positive Borel measure on
E charging no E-exceptional sets, py is a quasi-compatible metric on E, D, C f)(f,')b 1S a special
quasi-core, and for any € > 0 and any u,v € Dy, (4.23) and (4.24) hold with J, K,p and D
replaced by J, K, p; and Dy respectively. Then we have that J = J and K = K.

Proof. By the assumption, for any v € D; and u € Dy N I,[v] it holds that
E(u,v) = / 2(u(y) — u(z))v(y)J (dz, dy) +/ u(z)v(r) K (dr). (4.31)
ExE\d E

By (4.31) and Lemma 4.6, we get that J = J and K = K. O

In what follows, we fix a quasi-compatible metric p satisfying Theorem 4.5(i). Write .J(dz, dy)
= J(dy,dr). We say that J is symmetric if J = J. In general, J is not symmetric and J — J
is a generalized signed measure, which is well defined and finite on each A, for some countable
partition {A,}n,en of £ x E\d. Denote by J; := (J — j)+ the positive part of the Jordan
decomposition of (J — J). Set Jy := J — J;. One can check that Jy is the largest symmetric
o-finite positive measure dominated by J. In particular, if J itself is symmetric then J = Jj.

Theorem 4.8. Let J and D* be as in Theorem 4.1. Write J = Jy+ J1 as above.

(i) If Ji1(E x E\d) < oo, then (u(y) —u(x))v(y) is S.P.V. integrable w.r.t. J and thus (4.3) holds
for all w,v € Dj, where Dy is all the bounded elements of D*. In particular, if J is symmetric,
then (4.3) holds for all u,v € Dj.

(i) If we can find a quasi-compatible metric p satisfying (p.1) and (p.2) of Theorem 4.5(i) and
satisfying further )

(p.3) fEx{#O}\d(p(a:,y) A1) Ji(dz,dy) < oo for allv € D,

then (u(y) — u(x))v(y) is S.P.V. integrable w.r.t. J and thus (4.3) holds for all u,v € D, where
D s specified by Theorem 4.5(i).

Proof. (i) By the assumption (u(y) — u(x))v(y) is integrable w.r.t. .J; for any bounded v and v.
Since J = Jy + Ji, it is sufficient to show that (u(y) — u(z))v(y) is S.P.V. integrable w.r.t. .Jy for
any u,v € Di. Let A C E x E\d be a symmetric set such that (u(y) —u(z))v(y) is integrable on
A, since Jy is symmetric, we have

2 / (uly) — u(x))o(y)Jo(de, dy) = / (u(y) — u(@)) (0(y) — v(z))Joldz, dy),

therefore we need only to show that (u(y) — u(z))?

deed, for u € D*, we have

is integrable w.r.t. Jy for any v € Dy. In

/ (u(y) — u(@)*To(de, dy) = / (uly) — u(a))*Jo(de, dy)
ExE\d Ex{uz0}\d

27



" /Ex{uo}\ July) = u(x))* Jo(dz, dy)

= [1+127
L < / (uly) — u(z))2J (dz, dy) < oo,
Ex{u£01\d
L - / (uly) — u(x))2Jo(dz, dy)
{u#0} x{u=0}\d

(u(z) — u(y))*Jo(dz, dy)

IA
o

Ex{u#0}\d

A
8

(ii) We know from the proof of (i) above that for u,v € D*, (u(y) — u(z))v(y) is S.P.V. integrable
w.r.t. Jo. Hence to prove (ii), it is sufficient to show that for u,v € D, (u(y) —u(z))v(y) is S.P.V.

integrable w.r.t. J;. For u,v € D, let C' be an £-q.e. Lipschitz constant of u. Then, by property
(a) of Theorem 4.1(i),

/E B\ | (U(y) - U(:L‘))U(y)|Jl (dl‘, dy)
= /ExE\d Cp(z,y) [v(y)| Ji(dz, dy)

— C/p(x,y)glp(x’w lv(y)| Ji(dz, dy) +C/p p(z,y) |v(y)| Ji(dz, dy)

(z,y)>1

< c / (pl,y) A1) o) Ji(d, dy) + C / A,y) lo(y)] J(de, dy)
ExE\d ExE\d

< 00,

where the last inequality holds by (p.3) and (p.1). Thus (u(y) — u(z))v(y) is integrable and
therefore S.P.V. integrable w.r.t. J;, which completes the proof. 0O

Remark 4.9. Theorem 4.8(i) can be slightly strengthened as follows.

Let Dy C Dj be a special quasi-core. If J;(E x {v # 0}\d) < oo for any v € Dy, then (u(y) —
u(z))v(y) is S.P.V. integrable w.r.t. J and thus (4.3) holds for all u € D} and v € D.

5. Decomposition of quasi-regular (non-symmetric) Dirichlet form

Let (£, D(E)) be as in Section 4. In this section, we assume further that the dual form (£, D(E))
(E(u,v) = E(v,u)) satisfies the semi-Dirichlet property, i.e. (£, D(£)) is a quasi-regular (non-
symmetric) Dirichlet form. Let J, K (respectively, J, K ) be the o-finite Borel measures obtained
in Theorem 4.1 w.r.t. (£, D(E)) (respectively, (£, D(E))) and (£, D(E)) be the symmetric part of

(€, D(E)).
Proposition 5.1. (i) Let D* be specified by Proposition 4.4, then D* = D(E). Moreover, for
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any u € D*,
/E E\d(u(y) —u(z))*J(dz, dy) + /Eu2(x)K(dx) < 2E(u,u). (5.1)

1) The metric p in Theorem 4.5(i) can be constructed to satis 1) below.
(1) p y(p

1)/ fEXE\d P2($,y)<](dl‘,dy) < 0.

Proof. (i) Note that (£, D(E)) is a quasi-regular symmetric Dirichlet form on L?*(E;m). By
[DMS, Theorem 1.2], for u,v € D(E)., the extended Dirichlet space of (£, D(E)),

E(u,v) = E°(u,v) + / . (70) 7)) 3(0) — () ) + / a()i(@)K(dz),  (5.2)

where £°, J and K satisfy the following conditions:

(a) (£¢, D(E°)) is a symmetric, nonnegative definite bilinear form with domain D(£°) = D().,
such that £¢ has the strong local property, i.e. u € I,[v] = £°(u,v) = 0.

(b) J is a o-finite positive measure on £ x E\d and J(N x E\d) = J(E x N\d) = 0 for any
E-exceptional set V.

(c) K is a o-finite positive measure on E, which charges no E-exceptional sets.

Following the proof of [DMS, Theorem 2.1], we find that J=(J+J)/2, K = (K +K)/2.
Thus, for v € D(E), by (5.2),

/EXE\d( —u(@))*J(dz, dy) + /E u’(z)K (dz)

e sy + [ <dx>]

< 2

E>< E\d

I
N

2
= 2&(u, )
Therefore, D* = D(E) and (5.1) holds.

(ii) Let Dy — Dy := {u,|n € N}, Y and the metric d be as in the proof of Theorem 4.5(i). We
define a metric p on E by

CZ(",I;7 y)7 I?y E E\Y7
p(x,y)z o0, JJG}/,yEE\Y oryEY,xGE\Y, (53)

o gon_ (un@—un(@)? \'?
<Zn:12 1+Hun||oc+2€(un,un)) , Ty ey

{ EXE\d — u(z))?J (dzx, dy) + /E u2(x)f((dx)]
E(u, u

By (5.1), (5.3) and property (a) of Theorem 4.1(i), one can easily check that p satisfies (p.1)". o
For v € D(E), we define

Iéo)(v) = {u € D(&)|u =0 &-q.e. on a quasi open set containing supp,[v]}.
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Combining the decompositions of £ and & , we have the following theorem.
Theorem 5.2. (i) Let p be a quasi-compatible metric satisfying (p.1)'. Then, for any u,v € Dj

and any € > 0, we have the following unique decomposition

E

E(uw) = E(uv)+ / ., 110) () (010) () ) + / u(a)o(x) K (dz)

10 () + / (uly)o(z) — ulz)o(y))J(dz, dy). (5.4)

plz,y)>e

where £ and K are the same as in (5.2), EP¢ is an anti-symmetric form satisfying
EPE(u,v) = / (u(y)v(z) — u(x)v(y))J (dz, dy) for u € Iéo)(v) and v € Iéo)(u).
p(z,y)<e

(ii) Let u,v € D* be such that

(u(y)v(z) —u(x)v(y)) is S.P. V. integrable w.r.t. J. (5.5)
Then
Swo) = &)+ [ (uly) -~ u@)) ~ o) dn,dy) + [ u(eyu(o)K ()
ExE\d B
+E(u,v) + S.P.V./E E\d(u(y)v(:v) —u(z)v(y))J (dx, dy), (5.6)

where £°,J and K are the same as in (5.4), £° is an anti-symmetric form satisfying the local
property, i.e. ifu e I (v) and v € 1 (u) then £°(u,v) = 0.

Proof. (i) Note that J(dz,dy) = J(dy,dz) and J = (J + J)/2, one finds that
/ 1) = @) 0) ) )
_ /E ) = w@) ) = @) Tz dy). (5.7)
For u,v € Df, we have

/( N |(u(y) — u(z))v(y)|J(dz, dy)

- (/p(w,y)>s(u(y) B u(x))Qﬂdx’dy))l/z' </p(x,y)>5v(y)2<](d$,dy)>1/2

ot = st tasan) - ( (1) o, y)2] (dz, dy) "
ExE\d € ExE\d
- (5.8)

IN

30



where (5.1) and (p.1)" are used to obtain the last inequality. Since u(y)v(z) —u(x)v(y) = (u(y) —
u(z))v(y) — (v(y) —v(z))u(y), we obtain from (5.8) that for any u,v € D} and € > 0, (u(y)v(x) —
u(z)v(y)) is integrable w.r.t. J on {(z,y) € E x E\d|p(x,y) > }. For u,v € D}, set

c‘f”’s(u,v) =E&(u,v) — c‘:'(u,v) — / (u(y)v(z) — u(x)v(y))J(dz, dy). (5.9)

plz,y)>e

By (5.2), (5.7) and (5.9), we obtain (5.4). The anti-symmetry of £ follows from (5.9). The
uniqueness of decomposition (5.4) can be proved by virtue of the uniqueness of the classical
Beurling-Deny formula for symmetric Dirichlet forms using the local-compactification (cf. the
uniqueness part of Theorem 4.1(i)).

(i) If (u(y)v(z) —u(z)v(y)) is S.P.V. integrable w.r.t. J, then one obtains (5.6) by simply setting

Eu,v) == E(u,v) — E(u,v) — S.P.V. (u(y)v(z) — u(x)v(y))J (dz, dy). (5.10)

ExE\d
The anti-symmetry of £¢ follows from (5.10).

Ifue Iéo)(v) and v € 1" (u), then by Theorem 4.1(i),

£ (u,0) =LéEw%mm—wwwwwua@wg/mwmwwa

B
= —2/ u(z)v(y)J(dz, dy) (5.11)
ExE\d
and
E(v,u) = —2/ v(x)u(y)J(dz, dy).
ExE\d
It follows that
Ewo) == [ (ula)oly) + va)u(w) (s, dy). (512)
ExE\d
By (5.10)-(5.12), we obtain £°(u,v) = 0, which completes the proof. 0

Remark 5.3. (i) If both (u(y) — u(z))v(y) and (v(y) — v(z))u(y) are S.P.V. integrable w.r.t. J,
then (5.5) is fulfilled.

(ii) In [BL, (9.2)], the author gave a representation which is essentially the same as (5.6) for
regular (non-symmetric) Dirichlet forms but without introducing the notion of S.P.V. integral
and the crucial condition (5.5). We point out that condition (5.5) cannot be dropped and refer
the interested readers to [HMS] for a counterexample.

Theorem 5.4. Let J = Jy+ Ji be as in Theorem 4.8.

(1) If J1(Ex E\d) < oo, then (5.5) is fulfilled and thus decomposition (5.6) holds for allu,v € Dj.
In particular, if J is symmetric then (5.6) holds for all u,v € Dj.
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(i4) If we can find a quasi-compatible metric p satisfying (p.1)', (p.2) and (p.3), then decomposition
(5.6) holds for all u,v € D, where D is specified by Theorem 4.5(i).

Proof. (i) is clear. By Remark 5.3(i), assertion (ii) follows directly from Theorem 4.8(ii) and
Theorem 5.2(ii). O
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