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Abstract

Let X and Y be random variables denoting life times with S1, S2 denoting their
survival functions and M1, M2 their mean residual life (MRL) functions, respectively
. X is said to be smaller than Y in mean residual life order, if and only if M1(x) ≤
M2(x) for all x; or equivalently, if

∫∞
t S1(x)dx/

∫∞
t S2(x)dx is non-increasing over

{t :
∫∞
t S2(x) dx > 0}. In this paper we adapt the technique of Chaubey and Sen

(1996) to propose smooth estimators of MRL and survival functions based on the
estimator considered by Hu et al. (2002). In the process, we have proposed a new
estimator based on the alternative definition and shown that smoothing process carries
over large sample properties such as strong consistency. Furthermore, a simulation
study demonstrates that new estimators may have better mean square error properties
in tails.

1 Introduction

The mean residual life (MRL) function M = {M(x), x ≥ 0} corresponding to a non-negative
random variable X, which denotes life time of a subject or a component is defined as

M(x) = E(X − x|X > x) = E(X|X > x)− x (1.1)

It denotes the expected remaining life for the random variable X after survival up to time
x, and plays an important role in describing the ageing process and therefore has important
applications in many fields such as manufacturing, biomedical sciences and actuarial science
just to name a few. Guess and Proschan (1988) have given an extensive review for the MRL
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function in reliability theory, where as, more recently, Embrechts et al. (1997) have provided
a detailed discussion and statistical applications.

Denoting the survival function of X by S(x), the MRL function (MRLF) can be written
as

M(x) =

∫∞
x

S(u)du

S(x)
I(S(x) > 0). (1.2)

A distribution is characterized by its MRLF due to the following relation

S(x) =
M(0)

M(x)
e−

R x
0 (1/M(u))du (1.3)

Yang (1978) proposed estimating M(x), replacing the survival function in Eq. (1.2) by the
empirical survival function. The reader may refer to Csörgo and Zitikis (1996) and references
therein for the vast literature on the properties of this estimator. Due to the discontinuities
inherent in the above estimator, several authors have considered smooth estimators. Ruiz
and Guillamòn (1996) use kernel smoothing to estimate the integral in Eq. (1.2), while
estimating the denominator by the empirical survival function, where as, Chaubey and Sen
(1999) study the properties of the estimator obtained by substituting a smooth estimator of
the survival function in its place in Eq. (1.2) based their paper[Chaubey and Sen (1996)].
Recently, Abdous and Berred (2005) have studied the properties of local polynomial based
estimator of m(x) obtained through kernel smoothing of Yang’s estimator.

Hu et al. (2002) argue that “in some cases, particularly in health sciences and actuarial
sciences, the MRLF gives a more intuitive picture of survival or aging than the survival
function or the hazard rate function,” h(x) = f(x)/S(x), where f(x) denotes the density
corresponding to S(x). Let X and Y be two random variables with finite means, representing
life times of two populations with survival functions S1 and S2 and MRLFs m1 and m2. When
confronted with the problem of comparing two populations to see which one has longer life,
the researcher has various choices. One may compare just the two means, i.e. m1(0) and
m2(0), or rather than basing the decision on a single point, one could compare X and Y
under stochastic ordering restriction i.e. S1(x) ≤ (≥)S2(x) for all x. Since, these comparisons
do not take into account the age of the components, a more meaningful method may be to
compare the conditional distributions given survival up to age x for both the components.
The above ordering being a very strong one, Hu et al. (2002) recommend comparing X and
Y with respect to their MRLFs. Ebrahimi (1993) was the first one to consider estimating
the MRLFs under MRL order, although on a compact set (t1, t2). Hu et al. (2002) modified
Ebrahimi’s estimators to assure that the resulting estimators are indeed MRLF’s and studied
the asymptotic and finite sample properties of their estimators.
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It is to be noted that the estimators of the corresponding survival functions can be
obtained via the relation in Eq. (1.3), the discontinuities in the resulting estimators remain.
In life sciences and industrial situations, where smooth estimators of survival functions are
desired, this is not an attractive proposition when the underlying distributions are assumed to
be continuous. In such situations many applied practitioners [see Kim and Proschan (1991)]
would prefer to have smooth estimators and as such there is a lot of interest in smooth
estimation of survival functions (see Chaubey and Kochar (2000) and references therein).
One simple way to obtain smooth estimators is to smooth the estimators obtained from Eq.
(1.3), but the resulting smooth estimators may not preserve the mean residual life order.
As such our purpose in this paper is to propose smooth estimators of the survival function
under the mean residual life restriction. The set up considered here is that of uncensored
data, however, the method can be easily generalized to the case of randomly censored data
in light of the discussion in Chaubey and Sen (1998).

The organization of the paper is as follows. Section 2 presents the formal definition of
MRL ordering and its relation to other stochastic orders. Section 3 presents the estimators
and section 4 gives some asymptotic properties. The final section presents the results of a
simulation study comparing the proposed estimators.

2 Preliminaries

In the following discussion we will consider random variables (X, Y ), with their density,
survival, hazard and MRL functions given by (f1, f2), (S1, S2), (h1, h2) and (m1, m2), respec-
tively.

Definition 2.1 Let X and Y be two random variables with finite means whose corresponding
survival functions and MRL functions are S1 and S2, M1 and M2, respectively. The random
variable X is said to be smaller than Y in the mean residual life order (denoted as X ≤mrl Y ),
if

M1(x) ≤ M2(x), for all x > 0. (2.1)

Since, the MRL function M for a random variable X can be written in terms of its hazard
rate function h as

M(x) =

∫ ∞

x

exp{−
∫ u

x

h(t) dt}du. (2.2)
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Thus
h1(x) ≥ h2(x) ⇒ M1(x) ≤ M2(x),∀x > 0.

This shows that MRL ordering is weaker than hazard rate ordering (also known as the
uniform stochastic ordering). We defer the discussion on different partial orderings and their
applications, to the book by Shaked and Shanthilumar (1994).

Noting that

M1(x) ≤ M2(x) ⇔ d

dx

W1(x)

W2(x)
≤ 0,

where Wi(x) =
∫∞

x
Si(u)du , i = 1, 2. we can obtain the following alternative definition of

MRL order;

Definition 2.2 Under the conditions of Def. 2.1, X ≤mrl Y if, and only if,∫∞
t

S1(x) dx∫∞
t

S2(x) dx
is non-increasing in t over

{
t :

∫ ∞

t

S2(x) dx > 0

}
. (2.3)

Now we discuss the estimators of the survival functions under MRL order. We consider
the order M1(x) ≤ M2(x),∀x. The complementary case can be treated by symmetry. Let Ŝ1

and Ŝ2 denote the empirical survival functions for x and Y respectively based on independent
samples of sizes n1 and n2 respectively. The empirical estimators of Mi, i = 1, 2 are obtained
using the formula (Yang, 1978),

Mi(x) =

∫∞
x

Ŝi(u)du

Ŝi(u)
I(Ŝi(x) > 0), i = 1, 2. (2.4)

Note that the above expressions can be simplified in terms of the order statistics of the
corresponding sample, as for a random sample T1, T2, ..., Tn, the empirical MRLF is given by

M̂(t) =

{
1

n−k

∑n
i=k+1(Tn:i − t) for Tn:k ≤ t < Tn:k+1, k < n

0 for t ≥ Tn:n,
(2.5)

where Ti:n denotes the ith− order statistic from the random sample. First, we give the form
of the estimators considered in Hu et al. (2002). For the single sample case, suppose that
M2 is known and M1(x) ≤ M2(x), the proposed estimator of M1(x) is given by

M∗
1 (x) = M̂1(x) ∧M2(x). (2.6)
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On the other hand, for the two sample case, when M1 and M2, both are considered unknown,
the estimators of Mi(x), i = 1, 2 are given by

M∗
1 (x) = M̂1(x) ∧ M̂(x), M∗

2 (x) = M̂1(x) ∨ M̂(x), (2.7)

where M̂(x), is given by

M̂(x) = ŵ1(x)M̂1(x) + ŵ2(x)M̂2(x), (2.8)

with ŵi(x) being given by

ŵi(x) =
niŜi(x)

n1Ŝ1(x) + n2Ŝ2(x)

For the reverse order, i.e. M1 ≥ M2, the estimators are defined as

M∗
1 (x) = M̂1(x) ∨M2(x), (2.9)

and
M∗

1 (x) = M̂1(x) ∨ M̂(x), M∗
2 (x) = M̂1(x) ∧ M̂(x). (2.10)

Before we present the smooth estimators, we present the following results about the
estimators M∗

i (x), i = 1, 2 as established in Hu et al. (2002).

Proposition 2.1 Let the support of Si be given by [0, bi), where possibly bi = ∞. Let, ‖f‖b
a

denote supa≤x≤b |f(x)|, then we have for 0 ≤ b < bi,

‖M∗
i −Mi‖b

0 → 0 a.s.

where the limit is according to as n1 →∞ or n1, n2 →∞ as the case may be.

We would like to remark that, in what follows, we consider bi = ∞, i = 1, 2 as the
smooth estimators are appropriate for this case. However, in case the support is finite, we
can modify the smooth estimator as follows. Suppose, S̃(x) is a smooth survival function
defined on [0,∞), a modified smooth estimator on [0, b) is given by

S̃∗(x) =

{
S̃(x)−S̃(b)

1−S̃(b)
for x < b;

0 for x ≥ b.
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3 Smooth Estimators of MRLFs and Survival Func-

tions under MRL Ordering

The key to proposing the smooth estimators is the following so called Hille’s(1948) lemma
[see Feller (1965), pp. 219]

Lemma 3.1 : For any continuous and bounded function u, defined on R+ let

u∗(x) =
∞∑
i=1

pk(λx)u(k/λ), (3.1)

where

pk(t) = e−t t
k

k!
, k = 0, 1, ...,

then, as λ →∞,
‖u(x)− u∗(x)‖b

a → 0, uniformly

for all 0 ≤ a ≤ x ≤ b < ∞. Furthermore, if u is monotone this convergence extends over the
whole of R+.

Chaubey and Sen(1996) used a modified version of the above lemma in proposing smooth
estimators of the survival function and the corresponding density, substituting the empirical
distribution function in place of u.. Further, noting that if u is monotone, then so is u∗,
Chaubey and Kochar (2000) proposed a modification of Chaubey-Sen method for estimating
survival distributions constrained by stochastic ordering. Here, we use a similar technique
for estimating the mean residual life under MRL order and then use Eq. (1.3) to get the
smooth estimator of the survival function. The resulting estimators do preserve the MRL
order as they have been derived from MRLFs having this order. Another alternative is to use
the characterization of MRL order given by Def. 2.5 where we obtain alternative estimators
of MRLFs which preserve the MRL ordering and again using these in Eq. (1.3) we get
alternative estimators of the survival functions which preserve the MRL ordering.

3.1 One Sample Case

Method 1 - Use of Definition 2.4

Let Vn(x) = M2(x)−M∗
1 (x). Let

Ṽn(x) =
∞∑
i=0

pk(λnx)Vn(k/λn).
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Then our smooth estimator of M1 is given by

M̃1,1(x) = M2(x)− Ṽn(x). (3.2)

Assuming M2(x) to be bounded, it is clear that V̂n(x) is a bounded nonnegative function,
the smooth estimator M1,1 preserves the MRL ordering, M1 ≤ M2. It also preserves some
other asymptotic properties inherent in M∗

1 , as will be seen in Sec. 4. As discussed in
Chaubey and Kochar (2000), we select

λn =
n

Xn:n

,

which almost surely converges to ∞ as n →∞, provided E(X) exists.

Method 2 - Use of Definition 2.5

This method starts with a smooth estimation of

θ(x) =
W1(x)

W2(x)
,

where Wi(x) =
∫∞

x
Si(u)du, i = 1, 2. It is simple to obtain a plug-in estimator of W1(x) based

on the empirical survival function [see Eq (2.9)],

W1n(x) =

{
1
n

∑n
i=k+1(Xn:i − x) for Xn:k ≤ x < Xn:k+1, k < n

0 for t ≥ Xn:n,
(3.3)

Similar to estimating the ratio of survival functions under USO, as considered by Rojo and
Samniego (1993), we estimate θ(x) by θ̂n(x)(θ̄n(x)) for the case M1 ≤ M2(M1 ≥ M2) as
given by

θ̂n(x) = inf
0≤t≤x

W1n(t)

W2(t)
I(W2(x) > 0)) (3.4)

(θ̄n(x) = sup
0≤t≤x

W1n1(t)

W2(t)
I(W2(x) > 0), (3.5)

and corresponding W1 estimated by,

Ŵ1n(x) = θ̂n(x)W2(x) (3.6)

(W̄1n(x) = θ̄n(x)W2(x)I(W2(x) > 0) + W1n(x)I(W2(x) = 0)). (3.7)

The contribution of the second term in the parenthesis in the above set of equations drops
out for the case of infinite support and hence will not be further considered. Also, we consider
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the case M1 ≤ M2, in detail. The reverse order can be dealt in a similar fashion. Now, we can
use the Chaubey-Sen smooth estimator S̃1n(x) of the survival function S1(x), resulting in a
smooth estimator of W1n(x) using the Hille’s theorem, thereby giving a smooth estimator of
the mean residual life M1(x). But the MRL ordering properties may be lost in this process.
However, if we obtain a smooth estimator of θ(x) by smoothing θn(x), the monotonicity is
preserved in the smooth estimator and we get a smooth estimator of W1n(x), as

W̃1n(x) = θ̃n(x)W2(x), (3.8)

where

θ̃n(x) =
∞∑
i=0

pk(λnx)θ̂n

(
k

λn

)
(3.9)

Let us define S̃1,2(x) by the differential equation

S̃1,2(x) = − d

dx
W̃1n(x),

we have

S̃1,2(x) = − d

dx
θ̃n(x)W2(x) + S2(x)θ̃n(x). (3.10)

Furthermore, resulting smooth estimator of M1 is given by

M̃1,2(x) =
W̃1n(x)

S̃1,2(x)
. (3.11)

This estimator also preserves the required MRL ordering and provides an alternative smooth
estimator of M1(x). A more explicit expression for M̃1,2(x) is given by

M̃1,2(x) =
M2(x)

1− d
dx

[loge θ̃n(x)]M2(x)
, (3.12)

the derivative of θ̃n(x) required in Eqs. (3.8) and (3.9) may be computed as

d

dx
θ̃n(x) = −λn

[
N−1∑
k=0

{
θ̂n(

k

λn

)− θ̂n(
k + 1

λn

)

}
pk(λnx)

]
, (3.13)

where N is the smallest integer such that θ̂n(k/λn) = 0 for k ≥ N.

Both the methods are easy to use as for as computation of the MRLF’s go. However, the
first method is more complicated for computing the smooth estimator of survival function
since it may require numerical integration.
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3.2 Two-sample Case

Method 1 - Use of Definition 2.4

For the two sample case, we start with the pair of (non-smooth) estimators (M∗
1 , M∗

2 ) as
given by Eq. (2.11). We basically obtain a smooth estimator of M(x) and estimate M1, M2

as two one-sample problems as above, with the restriction, M1 ≤ M̂, and M2 ≥ M̂ as if M̂
is known. Thus, we consider first a smooth estimator

M̃(x) =
∞∑
i=0

pk(λx)M̂(k/λ),

of M(x), where, λ ≡ λn1,n2 = min(λn1 , λn1), we have dropped the subscript for the ease of
notation. The pair of smooth estimators, thus are given by

M̃1,1(x) = M̃(x)− Ṽ1(x), M̃2,1(x) = M̃(x) + Ṽ2(x) (3.14)

where

Ṽi(x) =
∞∑

k=0

pk(λx)Vi(
k

λ
),

and
V1(x) = M̂(x)−M∗

1 (x), V2(x) = M∗
2 (x)− M̂(x).

The smooth estimators of S1 and S2 are then obtained using Eq. (1.3).

Method 2 - Use of Definition 2.5

In this approach, we follow the discussion in Mukerjee (1996) for estimation of survival
functions under uniform stochastic ordering. Let bM̂ = sup{x : M̂(x) > 0}, we define

θ̂1(x) = inf
0≤t≤x

W1n1(t)

Ŵ (t)
,

θ̂2(x) = sup
0≤t≤x

W2n2(t)

Ŵ (t)
,

where [see Eq. (2.12)]

Ŵ (x) = w1(x)W1n1(x) + w2(x)W2n2(x).

Let us denote by θ̃1(x), θ̃2(x), W̃1n1(x), W̃2n2(x) smooth versions of the corresponding quan-
tities. Let

W̃ (x) = w1(x)W̃1n1(x) + w2(x)W̃2n2(x).
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Then, following the heuristic argument of Mukerjee (1996),the pair of smooth estimators of
(W1(x), W2(x)) is given by

W̃ ∗
1n1

(x) = θ̃1(x)W̃ (x), (3.15)

W̃ ∗
2n2

(x) = θ̃2(x)W̃ (x). (3.16)

Another pair of estimators may be constructed by directly smoothing Ŵ (x) = w1(x)Ŵ1(x)+
w2(x)Ŵ2(x). However, we prefer the preceding pair as we require a smooth estimator of W2(x)
giving W̃2n2(x) which is then used in finding W̃(x). This provides the following pair of survival
functions:

S̃1,2(x) = −dθ̃1(x)

dx
W̃ (x) + θ̃1(x)S̃(x) (3.17)

S̃2,2(x) = −dθ̃2(x)

dx
W̃ (x) + θ̃2(x)S̃(x) (3.18)

The jump discontinuities at bM̂ in the above estimators may be removed by considering
may be removed because the smooth estimators beyond this point in a continuous way.
Assuming that both S1 and S2 have infinite support, this problem disappears in a natural
way. Consequently, the smooth MRLF estimators are:

M̃1,2(x) =
M̃(x)

1− d
dx

[loge θ̃1(x)]M̃(x)
(3.19)

M2,2(x) =
M̃(x)

1− d
dx

[loge θ̃2(x)]M̃(x)
(3.20)

The following section studies the consistency properties of the estimators.

4 Strong Consistency of Smooth Estimators

We prove consistency for the estimators in one-sample case. The case of two samples is
treated similarly.

4.1 Consistency for M̃1,1 and S̃1,1

First, we establish strong consistency of the smooth estimator of MRL in one sample case
as given in the following theorem.
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Theorem 4.1 If S1(x) is continuous a.e ,λn →∞, a.s. then

(i)

sup
0≤x≤b

|M̃1,1(x)−M1(x)| → 0 almost surely as n →∞. (4.1)

here, b in R+ and b < B = min(b1, b2), bi is the support of Si.

(ii) Let b < B be such that M1(b) > 0, then we have

sup
0≤x≤b

|S̃1,1(x)− S1(x)| → 0 almost surely as n →∞. (4.2)

Proof: Since, V (x) is bounded and continuous on [0, b], by Theorem 3.1 we can claim that

Ṽ (x) = e−λnt

∞∑
k=0

V

(
k

λn

)
(λnt)

k

k!
(4.3)

→ V (x) as λn →∞

uniformly on [0, b]. Then we have

sup
0≤x≤b

|Ṽn(x)− V (x)| = sup
0≤x≤b

|Ṽn(x)− Ṽ (x) + Ṽ (x)− V (x)|

≤ sup
0≤x≤b

|Ṽn(x)− Ṽ (x)|+ sup
0≤x≤b

|Ṽ (x)− V (x)|

≤ max
k≤N

|Vn

(
k

λn

)
− V

(
k

λn

)
|+ sup

0≤x≤b
|Ṽ (x)− V (x)|

≤ sup
0≤x≤b

|Vn(x)− V (x)|+ sup
0≤x≤b

|Ṽ (x)− V (x)|

The first term converges to zero due to the strong convergence of M∗
1 as established in Hu et

al. (2000)[see Proposition 2.1] and the second term converges to zero from Eq. (4.3). Hence,
it follows that

sup
0≤x≤b

|M̃1,1(x)−M1(x)| = sup
0≤x≤b

|M2(x)− Ṽn(x)−M1(x)|

= sup
0≤x≤b

|V (x)− Ṽn(x)|

→ 0 almost surely as n →∞.
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This establishes the strong consistency of M̃1,1. For proving the consistency of S̃1,1, note that
since M̃1,1(x) and M1(x) are bounded on [0, b] and nonzero, so

sup
0≤x≤b

∣∣∣∣∣ 1

M̃1,1(x)
− 1

M1(x)

∣∣∣∣∣ = sup
0≤x≤b

∣∣∣∣∣M1(x)− M̃1,1(x)

M̃1,1(x)M1(x)

∣∣∣∣∣ → 0

almost surely as n →∞. Then

sup
0≤x≤b

∣∣∣∣∣
∫ x

0

1

M̃1,1(t)
dt−

∫ x

0

1

M1(t)dt

∣∣∣∣∣ ≤ sup
0≤x≤b

{
∫ x

0

∣∣∣∣∣ 1

M̃1,1(x)
− 1

M1(x)

∣∣∣∣∣ dx}

→ 0 almost surely as n →∞.

Then we have

sup
0≤x≤b

∣∣∣S̃1,1(x)− S1(x)
∣∣∣

= sup
0≤x≤b

∣∣∣∣∣M̃1,1(0)

M̃1,1(x)
exp {−

∫ x

0

1

M̃1,1(x)
dt} − M(0)

M(x)
exp {−

∫ x

0

1

M(x)
dt}

∣∣∣∣∣
→ 0 almost surely as n →∞.

Hence we have proved the consistency of S̃1,1(x) and M̃1,1(x) over [0, b].

4.2 Consistency for M̃1,2 and S̃1,2

Now we will show the consistency for S̃1,2(x) and M̃1,2(x) under the condition that X ≤mrl Y .
First, we establish the following theorem.

Theorem 4.2 Let S1(x) and S2(x) be continuous with finite means. Then as λn →∞, for
any b < ∞,

sup
0≤x≤b

∣∣∣θ̃n(x)− θ(x)
∣∣∣ → 0 almost surely as n →∞. (4.4)

Proof: To prove the above theorem, we need the following lemma, introduced in Rojo and
Samaniego(1993) as Lemma 1.
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Lemma 4.1 let h and g be bounded functions on interval [0, x], then

| inf
0≤y≤x

h(y)− inf
0≤y≤x

g(y)| ≤ sup
0≤y≤x

|h(y)− g(y)| (4.5)

Now, for any x ∈ [0, b], b < B = min(b1, b2),

sup
0≤x≤b

∣∣∣∣θ̂n(x)

∫ ∞

x

S2(u) du− θ(x)

∫ ∞

x

S2(u) du

∣∣∣∣
= sup

0≤x≤b

∣∣∣∣∣ inf
0≤t≤x

∫∞
t

Ŝ1(u) du∫∞
t

S2(u) du

∫ ∞

x

S2(u) du− inf
0≤t≤x

∫∞
t

S1(u) du∫∞
t

S2(u) du

∫ ∞

x

S2(u) du

∣∣∣∣∣
≤ sup

0≤x≤b
sup

0≤t≤x

∣∣∣∣∣
∫∞

t
Ŝ1(u) du∫∞

t
S2(u) du

∫ ∞

x

S2(u) du−
∫∞

t
S1(u) du∫∞

t
S2(u) du

∫ ∞

x

S2(u) du

∣∣∣∣∣
= sup

0≤x≤b
sup

0≤t≤x

∣∣∣∣
∫∞

x
S2(u) du∫∞

t
S2(u) du

∣∣∣∣ ∣∣∣∣∫ ∞

t

Ŝ1(u) du−
∫ ∞

t

S1(u) du

∣∣∣∣
≤ sup

0≤t≤x

∣∣∣∣∫ ∞

t

Ŝ1(u) du−
∫ ∞

t

S1(u) du

∣∣∣∣
→ 0 as n →∞.

The last step follows from a Lemma A in Barlow et al. (1972), (p. 237) which implies
that ∫ ∞

x

S1n(t)dt →
∫ ∞

x

S1(t)dt, ∀t > 0.

Hence, we get

sup
0≤x≤b

∣∣∣θ̂n(x)− θ(x)
∣∣∣ → 0 as n →∞. (4.6)

By the definition, θ̂n(x) is bounded, hence by using the Lemma 3.1(Hille’s Lemma), for
θ̃n(x), we can complete the proof along the similar lines as those of Theorem 4.4.

For the estimator under the reverse ordering we can establish the similar result as above
by the Lemma 3.1 and Lemma 2 in Rojo and Samaniego (1993).

Now we present the analysis of d
dx

θ̃n(x), defined in Eq. (??).
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Theorem 4.3 Let S1(x) and S2(x) be continuous with finite means. Let θ(x) be twice finitely
differentiable, then as λn →∞, for any b < ∞, we will have

sup
0≤x≤b

∣∣∣∣ d

dx
θ̃n(x)− d

dx
θ(x)

∣∣∣∣ → 0 almost surely as n →∞. (4.7)

Proof: From Eq. (3.13) we could write d
dx

θ̃n(x) as

d

dx
θ̃n(x) = −λn

{
∞∑

k=0

[
θ

(
k

λn

)
− θ

(
k + 1

λn

)]
e−λnx (λnx)k

k!

+
∞∑

k=0

[(
θ̂n

(
k

λn

)
− θ̂n

(
k + 1

λn

))
−

(
θ

(
k

λn

)
− θ

(
k + 1

λn

))]
e−λnx (λnx)k

k!

}
= Tn1(x) + Tn2(x). (4.8)

For establishing the convergence of Tn1(x), we expand θ(x) as a Taylor Series at k
λn

.

θ(x) = θ(
k

λn

) + θ′(
k

λn

)(x− k

λn

) +
1

2
θ′′(

k

λn

)(x− k

λn

)2 + o

(
x− k

λn

)−2

(4.9)

If we replace x by k+1
λn

, we could write

−λn[θ(
k

λn

)− θ(
k + 1

λn

)] = θ′(
k

λn

) +
1

2λn

θ′′(
k

λn

) + o(
1

λn

) (4.10)

so that under the assumed boundedness of the first two derivatives of θ(x), we may virtually
repeat the proof of Theorem 3.1 and conclude that

sup
0≤x≤b

∣∣∣∣Tn1(x)− d

dx
θ(x)

∣∣∣∣ → 0, almost surely as λn →∞. (4.11)

Next, we will show sup0≤x≤b |Tn2(x)| → 0 as n → ∞. Note that for large λn, by Hille’s
theorem

Tn2(x) ≈ −λn

{[
θ̂n(x +

1

λn

)− θ̂n(x)

]
−

[
θn(x +

1

λn

)− θ(x)

]}
. (4.12)

Since the right hand of the above expression converges almost surely to the

lim
hn→0

[(
θ(x + h)− θ(x)

h

)
−

(
θ(x + h)− θ(x)

h

)]
.

14



This completes the proof.

Writing S1(x) as

S1(x) = θ(x)S2(x)− d

dx
θ(x)

∫ ∞

x

S2(u) (4.13)

we can show that

sup
0≤x≤b

∣∣∣S̃12(x)− S1(x)
∣∣∣

= sup
0≤x≤b

∣∣∣∣−[
d

dx
θ̃n(x)− d

dx
θ(x)]

∫ ∞

x

S2(u) du + S2(x)[θ̃n(x)− θ(x)]

∣∣∣∣
≤ sup

0≤x≤b

∣∣∣∣ d

dx
θ̃n(x)− d

dx
θ(x)

∣∣∣∣ ∫ ∞

x

S2(u) du + sup
0≤x≤b

∣∣∣θ̃n(x)− θ(x)
∣∣∣ S2(x)

→ 0 almost surely as n →∞,

by using Theorems 4.2 and 4.3.

Furthermore, by continuous mapping theorem, we see that

sup
0≤x≤b

∣∣∣M̃1,2(x)−M1(x)
∣∣∣ → 0 almost surely as n → 0 (4.14)

for every b less than the support of S̃1,2(x), where M̃1,2(x) is defined as (??). Hence, we
obtain the following theorem proving strong consistency of S̃1,2 and that of M̃1,2.

Theorem 4.4 Let S1(x), S2(x) be continuous a.e with support on [0,∞), λn →∞, a.s. then,

(i) for any b < ∞,

sup
0≤x≤b

|M̃1,2(x)−M1(x)| → 0 almost surely as n →∞, (4.15)

(ii) and

sup
0≤x≤b

|S̃1,2(x)− S1(x)| → 0 almost surely as n →∞. (4.16)

Proof of the strong convergence of the estimators in the two sample case parallels to that
in the one sample case and is therefore omitted. In the next section we present a simulation
study comparing the two estimators.
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Table 1: Comparison of Bias and MSE of M?
1 , M̃1,1 and M̃1,2 at various q-quantiles

n = 10 n = 20

Bias Bias

q M∗
1 M̃1,1 M̃1,2 RE1,1 RE1,2 M∗

1 M̃1,1 M̃1,2 RE1,1 RE1,2

M1(x) = 1
3
(1− x), M2(x) = 1

2
(1− x)

0.1 -0.0395 -0.0368 -0.03980 1.2178 1.0787 -0.0271 -0.0260 -0.0260 1.0997 1.0053
0.2 -0.0367 -0.0340 -0.0355 1.3019 1.1395 -0.0279 -0.0261 -0.0252 1.1845 0.9160
0.5 -0.0266 -0.0272 -0.0477 1.2578 0.7249 -0.0206 -0.0209 -0.0258 1.2919 1.0157
0.8 -0.0311 -0.0025 -0.0211 4.0131 4.8582 -0.0112 -0.0036 -0.0032 2.8544 1.0551
0.9 -0.0268 -0.0181 -0.0070 1.7160 23.3061 -0.0137 0.0122 -0.0077 2.1733 8.1841

M1(x) = 1, M2(x) = 1.1

0.1 -0.0958 -0.1142 -0.1005 0.9265 0.9779 -0.0637 -0.0718 -0.0680 0.9552 0.9476
0.2 -0.1028 -0.1253 -0.1117 1.0145 1.0556 -0.0703 -0.0806 -0.0761 1.0120 0.9930
0.5 -0.1440 -0.1686 -0.1601 1.1112 1.1107 -0.1211 -0.1303 -0.1254 1.0824 1.0635
0.8 -0.3076 -0.3095 -0.2805 1.5642 1.9126 -0.1917 -0.2207 -0.2101 1.1993 1.2830
0.9 -0.5337 -0.4811 -0.3905 1.5824 2.4140 -0.3738 -0.3414 -0.3031 1.6022 2.0353

M1(x) = 1
2
x + 1, M2(x) = x + 1

0.1 -0.2131 -0.2278 -0.2262 0.9743 0.9959 -0.1265 -0.1377 -0.1390 0.9482 0.9004
0.2 -0.2097 -0.2423 -0.2308 0.9167 0.9506 -0.1427 -0.1456 -0.1340 0.9882 0.9338
0.5 -0.2602 -0.2949 -0.2493 0.9238 0.8701 -0.1701 -0.1912 -0.1530 0.9197 0.8342
0.8 -0.5984 -0.6266 -0.4877 1.1967 1.1432 -0.3333 -0.4471 -0.3727 1.0685 1.0292
0.9 -1.1794 -1.1569 -0.9377 1.2524 1.4528 -0.7107 -0.7718 -0.6625 1.2238 1.2153

Note: RE1,1 = MSE(M?
1 )/MSE(M̃1,1), RE1,2 = MSE(M?

1 )/MSE(M̃1,2.
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Table 2: Comparison of bias and MSE of S̃1,1(x) and S̃1,2(x) at various q-quantiles

n = 10 n = 20

Bias MSE Bias MSE

q S̃1,1 S̃1,2 S̃1,1 S̃1,2 S̃1,1 S̃1,2 S̃1,1 S̃1,2

M1(x) = 1
2
(1− x), M2(x) = M2(x) = (1− x)

0.1 -0.0126 -0.0091 0.0026 0.0037 0.0003 0.0008 0.0008 0.0011
0.2 -0.0264 -0.0235 0.0058 0.0062 -0.0068 -0.0078 0.0017 0.0019
0.5 -0.0507 -0.0285 0.0096 0.0093 -0.0336 -0.0235 0.0044 0.0044
0.8 -0.0652 -0.0820 0.0067 0.0085 -0.0474 -0.0519 0.0036 0.0042
0.9 -0.0403 -0.0582 0.0025 0.0037 -0.0345 -0.0477 0.0017 0.0026

M1(x) = 1, M2(x) = 1.1

0.1 0.0114 -0.0040 0.0047 0.0057 0.0103 0.0063 0.0019 0.0019
0.2 0.0234 0.0090 0.0081 0.0068 0.0231 0.0192 0.0038 0.0038
0.5 0.0347 0.0296 0.0102 0.0097 0.0043 0.0029 0.0042 0.0043
0.8 0.0481 0.0414 0.0069 0.0067 0.0193 0.0182 0.0029 0.0030
0.9 0.0383 0.0310 0.0050 0.0045 0.0202 0.0183 0.0018 0.0018

M1(x) = 1
2
x + 1, M2(x) = x + 1

0.1 0.0094 0.0052 0.0043 0.0075 -0.0003 0.0009 0.0038 0.0050
0.2 0.0094 -0.0043 0.0075 0.0081 -0.0111 -0.0187 0.0060 0.0074
0.5 0.0074 -0.0081 0.0106 0.0101 -0.0059 -0.0153 0.0063 0.0073
0.8 0.0388 0.0314 0.0064 0.0058 0.0117 0.0100 0.0022 0.0022
0.9 0.0377 0.0341 0.0039 0.0035 0.0180 0.0184 0.0012 0.0012
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5 A Simulation Study to Compare the Two Estimators

This section presents some simulation results comparing the estimator of Hu et al. (2002)
and the estimators proposed here for various quantiles. Since, Hu et al. (2002) do not present
any results for estimating the survival function we compare the two estimators of survival
functions also. The following decreasing, constant and increasing MRL functions are used
to carry out the simulation:

Mi(x) = ai(1−
x

bi

)I[x ≤ bi], bi > ai, with Si(x) = (1− x

bi

)
bi
ai
−1

which corresponds to the U(0, 1) distribution when ai = 0.5, bi = 1;

Mi(x) = θi corresponding to the exp(θi) distribution ; and

Mi(x) = aix + bi, aix + bi ≥ 0, bi > 0 with Si(x) = (
aix + b

bi

)
−(1+ 1

ai
)
.

Our interest is in contrasting the simulated bias and MSE. The results are for comparison
purpose only and we have used only 1000 replication for samples of size 10 and 20.

Table 1 compares the bias and MSE of the smooth estimators proposed here for the MRLF
where as Table 2 explores the same for the corresponding smooth estimators of the survival
functions. Three sets of MRLF’s are considered, i M1(x) = 1

3
(1−x), M2(x) = 1

2
(1−x), with

corresponding survival functions S1(x) = (1− x)2 and S2(x) = (1− x) depicting decreasing
MRL, (ii) M1(x) = 1,M2(x) = 1.1, with corresponding survival functions S1(x) = e−x and
S2(x) = e−

x
1.1 depicting constant MRL and (iii) M1(x) = 1

2
x + 1, M2(x) = x + 1, with

responding survival functions S1(x) = ( 2
x+2

)3 and S2(x) = (x+1)−2, depicting the increasing
MRL.

From these tables, it may be seen, generally that the smooth estimators have a little bit
more bias than the un-smooth estimator of Hu et al. (2002), but almost always they have
smaller MSE , particularly in the tail of the distribution. We note from Table 1 that for the
decreasing MRL function model, M̃1,1(x) and M̃1,2(x) even have smaller estimated bias than
M?

1 (x) as well as smaller MSE. For the increasing MRL case, our estimators do not seem to
work as well as under the decreasing model, their MSE increases as q increases from 0 to
0.5, but after that, it decreases. That is, in the tails our estimators do perform better.

We would also like to contrast M̃1,1, S̃1,1(x) and M̃1,2(x), S̃1,2(x). Unfortunately, we can
not find any general rules for comparing the two estimators proposed here. It seems though,
that the first method generally gives larger bias, especially in the last two models. However,
the difference is very very small. And in general, the M̃1,2 produces much smaller MSE in
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the tails of the survival function. But the S̃1,2 is not always equal to 1 at 0; it approaches 1
as n becomes large. We also see the pattern that estimated bias decreases with the increase
in sample size, which is expected due to strong consistency result.

Overall, smoothing proposed here does not produce much higher bias in the estimators
of MRLFs and survival functions and may produce smaller MSE’s in some cases. Out of
the two smoothing methods proposed here for preserving the MRL ordering, Method 1 is
simpler to use. It may give larger bias than the second method, but the difference may not
be significant, hence Method 1 may be preferred in practical applications.
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