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Abstract
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1 Introduction

Motivated by the work of Resnick & Willekens (1991), we investigate the tail probabilities

of the randomly weighted sums

n∑

k=1

θkXk, n = 1, 2, . . . , (1.1)

and their maxima. Here {Xn, n = 1, 2, . . .} is a sequence of independent and identically

distributed (i.i.d.) random variables with generic random variable X and common distri-

bution function F = 1−F , while {θn, n = 1, 2, . . .} is a sequence of dependent nonnegative

random variables, independent of the sequence {Xn, n = 1, 2, . . .}.
The randomly weighted sums (1.1) and their maxima are often encountered in actuarial

and economic situations. See the following examples:

Example 1.1. Just as in Nyrhinen (1999) and Tang & Tsitsiashvili (2003, 2004), consider

a discrete time risk model, in which the surplus of the insurance company is invested into a

risky asset that generates a random, possibly negative, return rate in each year. Denote by

An ∈ (−∞,∞) the net income (the total premium income minus the total claim amount)

within year n and by Rn ∈ (−1,∞) the random return rate in year n, n = 1, 2, . . .. Let the

initial surplus be x ≥ 0. Hence, if we assume that the net income An is calculated at the

end of year n, then the surplus, denoted by Un, accumulated till the end of year n satisfies

the recurrence equation

U0 = x ≥ 0, Un = (1 + Rn)Un−1 + An, n = 1, 2, . . . . (1.2)

We define the finite time ruin probability as

ψ(x; n) = Pr

(
min

0≤k≤n
Uk < 0

∣∣∣∣ U0 = x

)
(1.3)

and the infinite time ruin probability as

ψ(x) = lim
n→∞

ψ(x; n) = Pr

(
min

0≤k<∞
Uk < 0

∣∣∣∣ U0 = x

)
. (1.4)

Now write

Xn = −An, Yn =
1

1 + Rn

, n = 1, 2, . . . . (1.5)

The random variable Xn is the net payout within year n and the random variable Yn is

the discount factor from year n to year n− 1, n = 1, 2, . . .. In the terminology of Norberg

(1999) and Tang & Tsitsiashvili (2003, 2004), we call Xn, n = 1, 2, . . ., the insurance risks

and Yn, n = 1, 2, . . ., the financial risks.
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The discounted value of the surplus process Un, denoted by Ũn, is defined by

Ũ0 = x, Ũn =
n∏

i=1

Yi Un, n = 1, 2, . . . .

By repeatedly substituting (1.2) in the above expression, we find that Ũn can also be

expressed as

Ũ0 = x, Ũn = x−
n∑

k=1

Xk

k∏
i=1

Yi = x−Wn, n = 1, 2, . . . .

One sees that the Wn introduced above (with W0 = 0), which denotes the total discounted

amount of losses by the end of year n, is of the form (1.1) with θk =
∏k

i=1 Yi, which is a

product of positive random variables. We rewrite the ruin probabilities in terms of Wk,

k = 0, 1, 2, . . ., as

ψ(x; n) = Pr

(
max
0≤k≤n

Wk > x

∣∣∣∣ U0 = x

)

and

ψ(x) = Pr

(
max

0≤k<∞
Wk > x

∣∣∣∣ U0 = x

)
.

¤

Example 1.2. In Nyrhinen (1999) and Tang & Tsitsiashvili (2003, 2004), it was assumed

that the net incomes An, n = 1, 2, . . ., constitute a sequence of i.i.d. random variables,

that the return rates Rn, n = 1, 2, . . ., also constitute a sequence of i.i.d. random variables,

and that the two sequences {An, n = 1, 2, . . .} and {Rn, n = 1, 2, . . .} are independent. A

particular case is the well-known Black-Scholes-Merton model, in which the financial risks

Yn, n = 1, 2, . . ., are assumed to be i.i.d. and lognormally distributed. ¤

Example 1.3. Since the assumption of independent return rates made in Example 1.2 is

generally considered unrealistic, it is desirable to incorporate some dependence structure

in the financial risks. A natural extension is to assume that the log returns follow a

multivariate normal distribution, or, more precisely, that there are sequences {µn, n =

1, 2, . . .} and {σij, i, j = 1, 2, . . .} such that for each n, the vector

(Z1, Z2, . . . , Zn) = (− log Y1,− log Y2, . . . ,− log Yn) (1.6)

has a multivariate normal distribution with mean vector

µn = (µ1, µ2, . . . , µn)
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and covariance matrix

Σn =




σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

. . . . . . . . . . . .
σn1 σn2 . . . σnn


 .

Clearly, this assumption is very convenient in calculation because of the attractive prop-

erties of the multivariate normal distribution.

However, this assumption has also been questioned recently by Bingham et al. (2003),

because “the empirical evidence shows that most financial data exhibit both pronounced

asymmetry and much heavier tail behaviour than is consistent with normality.” Following

the work of Bingham et al. (2003), we shall circumvent the limitations of the Black-Scholes-

Merton framework by assuming that vector (1.6) either has a multivariate normal variance-

mean mixture with some mixing law, or follows a multivariate elliptical distribution. ¤

Keeping these examples in mind, we shall investigate the tail probability of the ran-

domly weighted sums (1.1) and their maxima, under the assumptions that the distribution

function F is Pareto-like and that the random weights {θn, n = 1, 2, . . .} satisfy some

conditions.

The remaining part of the paper is organized as follows: Section 2 gives the main results

and some remarks; Section 3 considers two special cases when the quantities involved in the

asymptotic results can be handled; and Section 4 proves the main results, after recalling

several known results.

2 Main results

Throughout this paper, all limit relationships are for x →∞ unless stated otherwise. For

two positive functions a(x) and b(x), we write a(x) . b(x) if lim sup a(x)/b(x) ≤ 1, write

a(x) & b(x) if lim inf a(x)/b(x) ≥ 1, and write a(x) ∼ b(x) if both.

Recall the randomly weighted sums (1.1). We assume that the right tail of F is regularly

varying in the sense that there exist a constant α ≥ 0 and a slowly varying function L(·)
such that

F (x) = x−αL(x), x > 0. (2.1)

We designate the fact (2.1) by F ∈ R−α. This class contains the famous Pareto distribu-

tions. By the well-known representation theorem for slowly varying functions (see Theorem

1.3.1 of Bingham et al. (1987)), we have that for a distribution function F ∈ R−α and any

β > α,

x−β = o
(
F (x)

)
. (2.2)
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More generally, the class R is the union of all R−α over the range 0 ≤ α < ∞. For more

details on the class R, we refer the reader to Bingham et al. (1987).

Now we state the main contributions of this paper. The first result deals with the case

of randomly weighted sums of finite summands.

Theorem 2.1. Consider the randomly weighted sums (1.1) and let F ∈ R−α for some

α > 0. We have

Pr

(
max

1≤m≤n

m∑

k=1

θkXk > x

)
∼ Pr

(
n∑

k=1

θkXk > x

)
∼ F (x)

n∑

k=1

Eθα
k (2.3)

if there exists some δ > 0 such that

(1) Eθα+δ
k < ∞ for each 1 ≤ k ≤ n. ¤

By the result of Theorem 2.1, we have under the same assumptions that for all n =

1, 2, . . .

lim inf
x→∞

1

F (x)
Pr

(
max

1≤m<∞

m∑

k=1

θkXk > x

)
≥

n∑

k=1

Eθα
k . (2.4)

Hence, by the arbitrariness of n it follows that

lim inf
x→∞

1

F (x)
Pr

(
max

1≤m<∞

m∑

k=1

θkXk > x

)
≥

∞∑

k=1

Eθα
k (2.5)

regardless of whether
∑∞

k=1 Eθα
k converges.

For any real number x, we write its positive part by x+ = x+ = max{x, 0}. The

following result extends Theorem 2.1 to the case of infinite sums.

Theorem 2.2. For the randomly weighted sums (1.1) with F ∈ R−α for some α > 0, we

have

Pr

(
max

1≤n<∞

n∑

k=1

θkXk > x

)
∼ Pr

( ∞∑

k=1

θkX
+
k > x

)
∼ F (x)

∞∑

k=1

Eθα
k (2.6)

if one of the following assumptions holds:

(2) 0 < α < 1 and

∞∑

k=1

Eθα+δ
k < ∞ and

∞∑

k=1

Eθα−δ
k < ∞ for some δ > 0; (2.7)

(3) 1 ≤ α < ∞ and

∞∑

k=1

(
Eθα+δ

k

) 1
α+δ < ∞ and

∞∑

k=1

(
Eθα−δ

k

) 1
α+δ < ∞ for some δ > 0. (2.8)
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Some remarks:

Remark 2.1. Both Theorems 2.1 and 2.2 do not require any information about the

dependence structure of the sequence {θn, n = 1, 2, . . .}. ¤

Remark 2.2. Recall Example 1.1, where the random variables θk in (1.1) are interpreted

as discount factors from time k to time 0 and are expressed as

θk =
k∏

j=1

Yj, k = 1, 2, . . . , (2.9)

with i.i.d. nonnegative random variables {Yn, n = 1, 2, . . .}. Clearly, in this standard case,

assumption (1) of Theorem 2.1 is equivalent to

(4) EY α+δ
1 < ∞ for some δ > 0,

and assumptions (2) and (3) of Theorem 2.2 are equivalent to

(5) EY α±δ
1 < 1 for some δ > 0.

Under these assumptions, it follows from Theorems 2.1 and 2.2 that

ψ(x; n) ∼ F (x)
EY α

1 (1− (EY α
1 )n)

1− EY α
1

and that

ψ(x) ∼ F (x)
EY α

1

1− EY α
1

.

The latter result extends Theorem 5.2(3) of Tang & Tsitsiashvili (2003) to the case of

ultimate ruin. ¤

Remark 2.3. Since the asymptotic relations given by Theorems 2.1 and 2.2 are completely

explicit, the evaluation of some actuarial quantities becomes quite easy. As an example, we

consider the evaluation of stop-loss premiums of the randomly weighted sums (1.1). Under

the conditions of Theorem 2.1 with the additional restriction that α > 1, we have for each

n = 1, 2, . . . that, as d →∞,

E

[
n∑

k=1

θkXk − d

]

+

=

∫ ∞

d

Pr

(
n∑

k=1

θkXk > x

)
dx

∼
n∑

k=1

Eθα
k

∫ ∞

d

F (x) dx

= E [X1 − d]+

n∑

k=1

Eθα
k .
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In particular, if the random variables θk are given by (2.9) with i.i.d. random variables

{Yn, n = 1, 2, . . .}, then for each n = 1, 2, . . ., as d →∞,

E

[
n∑

k=1

θkXk − d

]

+

∼ E [X1 − d]+
EY α

1 (1− (EY α
1 )n)

1− EY α
1

.

Furthermore, if assumption (5) holds, then by Theorem 2.2, it also holds that, as d →∞,

E

[ ∞∑

k=1

θkX
+
k − d

]

+

∼ E [X1 − d]+
EY α

1

1− EY α
1

.

¤

3 Some specific cases

In order to apply Theorems 2.1 and 2.2, we need to calculate the expectations Eθα
k for

k = 1, 2, . . .. In this section, we give some concrete examples in which such calculation can

be performed.

3.1 Logelliptically discounted process

It has been pointed out in a large number of papers that the normality assumption re-

garding log returns of a risky investment is often not realistic. This rejection of normality

has led researchers to investigate alternative models for the investment returns, including

the family of elliptical distributions. In this direction, we refer the reader to Owen &

Rabinovitch (1983) and Vorkink (2003), among others.

In multivariate statistical analysis, elliptical distributions have provided an alternative

to the normal model. Being an extension of the multivariate normal distribution, the class

of elliptical distributions shares many of its nice statistical properties, though it contains

many other non-normal multivariate distributions such as the multivariate Student’s t,

Cauchy, logistic, and so on. For details of the class of elliptical distributions, we refer the

reader to Fang et al. (1990) and Gupta et al. (1993).

There are several equivalent ways to define elliptical distributions. We shall use the

definition based on the characteristic function.

Definition 3.1. A random vector Z = (Z1, . . . , Zn) is said to have an elliptical distribution

with parameter vector µn and parameter matrix Σn if its characteristic function is of the

form

E [exp (it′Z)] = exp (it′µn) φ (t′Σnt) ,

7



for some function φ(·) : R→ R, and where Σn is of the form

Σn = BBT ,

for some n ×m-matrix B. We write Z =d En (µn,Σn, φ). The function φ(·) is called the

characteristic generator. The matrix Σn is symmetric, positive definite and has positive

elements on its diagonal.

The characteristic generator may explicitly depend on n, the dimension of Z. Hence,

we denote by Φn the family of all possible characteristic generators for a given n = 1, 2, . . .,

that is,

Φn =
{
φ (·) : φ

(
t21 + . . . + t2n

)
is an n-dimensional characteristic function

}
.

Clearly,

Φ1 ⊃ Φ2 ⊃ Φ3 ⊃ · · · .

Let

Φ∞ =
∞⋂

n=1

Φn.

From Theorem 2.21 of Fang et al. (1990), we know that a function φ belongs to the class

Φ∞ if and only if

φ (x) =

∫ ∞

0

e−xr2

F∞ (dr) (3.1)

with F∞ a distribution function over (0,∞).

Definition 3.2. Let Y be a random vector with positive components. We say that Y has

a logelliptical distribution with parameters µn,Σn and φ, written as Y =d LEn (µn,Σn, φ),

if

log Y = (log Y1, . . . , log Yn) =d En (µn,Σn, φ) .

Let us go back to the examples given in Section 1. Recall relation (1.6). We assume

that for each n = 1, 2, . . .,

Z = (Z1, . . . , Zn) =d En (µn,Σn, φ) ,

hence that Y = (Y1, . . . , Yn) =d LEn (−µn,Σn, φ). Let σij, i, j = 1, . . . , n, denote the entry

in row i and column j of the matrix Σn. From Theorem 2.16 of Fang et al. (1990), we know

that the marginal distributions and any linear combination of an elliptically distributed

random vector are also elliptically distributed with the same generator φ. Therefore, with

µ(k) =
∑k

i=1 µi and σ(k) =
∑

1≤i,j≤k σij, we have that

Z1 + · · ·+ Zk =d E1

(
µ(k), σ(k), φ

)
,
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hence that

eZ1+···+Zk =d LE1

(
µ(k), σ(k), φ

)
.

Theorem 2.26 of Fang et al. (1990) gives an explicit expression for the moments Eθα
k for

α > 0 and k = 1, 2, . . ., namely

Eθα
k = Ee−α(Z1+···+Zk) = exp

(−αµ(k)

)
φ

(−α2σ(k)

)
.

To consider the infinite dimensional case, we must assume that φ is of the form (3.1). In

that case, we have that

Eθα
k = exp

(−αµ(k)

) ∫ ∞

0

eα2σ(k)r
2

F∞ (dr) . (3.2)

The lognormally discounted process results when φ (x) = e−x/2, that is, when the

distribution function F∞ is degenerated at 1/
√

2. Because the lognormal case possesses

many attractive properties and is easy to calculate, we restrict ourselves to this case in the

remainder of this section. For this case, from (3.2), we have that

Eθα
k = exp

(
−αµ(k) +

1

2
α2σ(k)

)
. (3.3)

Therefore, under the conditions of Theorems 2.1 and 2.2, we have that for n = 1, 2, . . .

Pr

(
n∑

k=1

θkXk > x

)
∼ F (x)

n∑

k=1

exp

(
−αµ(k) +

1

2
α2σ(k)

)
. (3.4)

Now we give some numerical results for relation (3.4). We assume that the random

variables {Xn, n = 1, 2, . . .} are i.i.d. with common Pareto(α, β) distribution for some

α > 0 and β > 0, with density function

fX (x) =
αβα

xα+1
, x > β,

and that for each n = 1, 2, . . ., the vector (Y1, ..., Yn) follows an n-dimensional lognormal

distribution with parameters −µn,Σn. We take the dimension n = 10, the mean vector

µ10 = (0.1, 0.1, ..., 0.1) and the covariance matrix

Σ10 =




0.05 0.01 0.01 0 0 0 0 0 0 0
0.01 0.1 0.01 0.02 0 0 0 0 0 0
0.01 0.01 0.1 0.01 0.02 0 0 0 0 0
0 0.02 0.01 0.05 0.05 0.01 0 0 0 0
0 0 0.02 0.05 0.1 0.01 0.01 0 0 0
0 0 0 0.01 0.01 0.1 0.02 0.01 0 0
0 0 0 0 0.01 0.02 0.05 0.01 0.01 0
0 0 0 0 0 0.01 0.01 0.02 0.01 0.01
0 0 0 0 0 0 0.01 0.01 0.1 0.05
0 0 0 0 0 0 0 0.01 0.05 0.05




.
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Some numerical results are given in Table 1. The number of simulations is 5,000,000. The

considered values of α are 1.2 and 1.5 as is reasonable, for example, in fire insurance; see

Beirlant et al. (1996). Apart from the values of x and the simulated and asymptotic tail

probabilities in (3.4), we also display the values of 1− asymptotic
simulated

. Theoretically, these values

must tend to 0 when x →∞. This seems to be the case from the table.

Table 2 presents some numerical results for the case of n = 50, i.e., when more time

periods are considered. The values of the elements of µ50 and Σ50 are similar to the ones

for n = 10. The number of simulations is again 5,000,000.

In the notes of the tables, we display the simulated values of several quantiles of the

discounted sums under consideration.

Table 1. Simulated versus asymptotic values of the tail probability for

Pareto claims with lognormal discount factors (n = 10)
α = 1.2, β = 2 α = 1.5, β = 2

x Simulated Asymptotic 1-asymptotic
simulated

x Simulated Asymptotic 1-asymptotic
simulated

300 0.03091 0.02051 0.337 100 0.08002 0.02631 0.671
400 0.02010 0.01452 0.278 200 0.01976 0.00930 0.529
500 0.01451 0.01111 0.234 300 0.00869 0.00506 0.417
600 0.01117 0.00893 0.201 400 0.00500 0.00329 0.342
700 0.00901 0.00742 0.177 500 0.00326 0.00235 0.278
800 0.00747 0.00632 0.154 600 0.00237 0.00179 0.244
900 0.00638 0.00549 0.140 700 0.00179 0.00142 0.207
1000 0.00551 0.00484 0.122 800 0.00141 0.00116 0.178
1500 0.00326 0.00297 0.088 900 0.00116 0.00097 0.159
2000 0.00222 0.00210 0.052 1000 0.00096 0.00083 0.136
2500 0.00164 0.00161 0.018 1500 0.00050 0.00045 0.093
3000 0.00135 0.00129 0.040 2000 0.00032 0.00029 0.079
3500 0.00111 0.00108 0.034 2500 0.00023 0.00021 0.078
4000 0.00094 0.00092 0.028 3000 0.00017 0.00016 0.058
4500 0.00082 0.00080 0.026 3500 0.00013 0.00013 0.023
5000 0.00072 0.00070 0.021 4000 0.00011 0.00010 0.010

Notes: Simulated quantiles at level p for α = 1.2 are as follows: 219.65 (p = 0.950),

345.18 (p = 0.975), 649.21 (p = 0.990), 1083.0 (p = 0.995), 3818.6 (p = 0.999). Simulated

quantiles at level p for α = 1.5 are as follows: 126.90 (p = 0.950), 178.28 (p = 0.975),

279.87 (p = 0.990), 400.05 (p = 0.995), 981.18 (p = 0.999).
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Table 2. Simulated versus asymptotic values of the tail probability for

Pareto claims with lognormal discount factors (n = 50)
α = 1.2, β = 2 α = 1.5, β = 2

x Simulated Asymptotic 1-asymptotic
simulated

x Simulated Asymptotic 1-asymptotic
simulated

500 0.0791840 0.0343533 0.566 500 0.0377720 0.0104716 0.723
1000 0.0316480 0.0149532 0.528 1000 0.0127510 0.0037023 0.710
2500 0.0088520 0.0049797 0.437 2500 0.0027794 0.0009366 0.663
5000 0.0033138 0.0021675 0.346 5000 0.0008460 0.0003311 0.609
7500 0.0018802 0.0013325 0.291 7500 0.0004206 0.0001803 0.571
10000 0.0012676 0.0009435 0.256 10000 0.0002510 0.0001171 0.534
15000 0.0007298 0.0005800 0.205 15000 0.0001228 0.0000637 0.481
20000 0.0005034 0.0004107 0.184 20000 0.0000692 0.0000414 0.402
25000 0.0003746 0.0003142 0.161 25000 0.0000466 0.0000296 0.364
30000 0.0002964 0.0002525 0.148 30000 0.0000348 0.0000225 0.353
40000 0.0002032 0.0001788 0.120 35000 0.0000294 0.0000179 0.392
50000 0.0001528 0.0001368 0.105 40000 0.0000218 0.0000146 0.329
60000 0.0001222 0.0001099 0.101 45000 0.0000184 0.0000123 0.333
70000 0.0000980 0.0000913 0.068 50000 0.0000148 0.0000105 0.292
80000 0.0000818 0.0000778 0.049 60000 0.0000094 0.0000080 0.153
90000 0.0000702 0.0000676 0.038 70000 0.0000074 0.0000063 0.146
100000 0.0000616 0.0000595 0.034 80000 0.0000056 0.0000052 0.076

Notes: Simulated quantiles at level p for α = 1.2 are as follows: 711.18 (p = 0.950),

1187.3 (p = 0.975), 2292.9 (p = 0.990), 3733.6 (p = 0.995), 11931 (p = 0.999). Simulated

quantiles at level p for α = 1.5 are as follows: 414.11 (p = 0.950), 654.68 (p = 0.975),

1164.5 (p = 0.990), 1773.6 (p = 0.995), 4546.1 (p = 0.999).

3.2 Lognormal variance-mean mixed discounted process

As announced in Example 1.3, we now concentrate on the situation when the vector (1.6)

is a normal variance-mean mixture with some mixing law. Some distributions from this

class have already been studied in the financial literature; see Eberlein & Keller (1995),

Barndorff-Nielsen (1997) and Bingham et al. (2003).

Definition 3.3. A random vector Z = (Z1, ..., Zn) is said to be a normal variance-mean

mixture with position µn, drift βn, structure matrix Σn and mixing distribution G on [0,∞)

if for some random variable U sampled from G, the conditional distribution of Z given

(U = u) is Nn (µn+uβn,uΣn). Here the structure matrix Σn is symmetric and positive

definite with |Σn| = 1. We write Z =d NV MMn (µn, βn,Σn, G).

11



The characteristic function of Z is then given by

ϕZ (t) = exp (it′µn) Φ

(
1

2
t′Σnt− it′βn

)
,

where Φ is the Laplace-Stieltjes transform of G, that is,

Φ (s) =

∫ ∞

0

e−srG (dr) , s > 0.

Definition 3.4. If βn = 0 in the above definition, then we obtain the class of normal

variance mixtures, denoted NV Mn (µn,Σn, G) .

In fact, in this case we have Z =d En (µn,Σn, φ) with φ (s) = Φ (s/2), so that NV Mn ⊂
En; see Bingham et al. (2003).

Definition 3.5. Let Y be a random vector with positive components. We say that Y has

a lognormal variance-mean mixed distribution with parameters µn, βn,Σn and G, denoted

LNV MMn, if

log Y = (log Y1, . . . , log Yn) =d NV MMn (µn, βn,Σn, G) .

Let us go back again to the examples given in Section 1. We assume that Z =

(Z1, ..., Zn) =d NV MMn (µn, βn,Σn, G). From Definition 3.3, for k = 1, 2, . . . and u > 0,

we have

(Z1 + ... + Zk) |(U = u) =d N1

(
k∑

i=1

(µi+uβi) ,uσ(k)

)
,

where σ(k) =
∑

1≤i,j≤k σij as before. It follows that for α > 0,

Eθα
k = E

[
E

(
e−α(Z1+...+Zk) | U

)]

= E

[
exp

(
−α

k∑
i=1

(µi+βiU) +
α2σ(k)

2
U

)]

= exp

(
−α

k∑
i=1

µi

)
Φ

(
α

k∑
i=1

βi −
α2σ(k)

2

)
.

This gives an explicit expression for the moments Eθα
k for α > 0 and k = 1, 2, . . .. Therefore,

under the conditions of Theorems 2.1 and 2.2, we have in this case that for n = 1, 2, . . . ,∞,

Pr

(
n∑

k=1

θkXk > x

)
∼ F (x)

n∑

k=1

exp

(
−α

k∑
i=1

µi

)
Φ

(
α

k∑
i=1

βi −
α2σ(k)

2

)
. (3.5)

In particular, when βn = 0 and Φ (s) = e−s, we are again in the lognormal setting and

relation (3.5) coincides with relation (3.4).
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In the following, we consider the particular case when Y is a lognormal variance-

mean mixture with the inverse Gaussian distribution as the mixing distribution. This

mixing distribution was also considered e.g., by Barndorff-Nielsen (1997) and Bingham et

al. (2003). The inverse Gaussian density is

g (x) =

√
λ

2πx3
exp

(
− λ

2ν2x
(x− ν)2

)
, x > 0,

with λ, ν > 0, and its Laplace-Stieltjes transform is

Φ (s) = exp

(
λ

ν

(
1−

√
1 +

2sν2

λ

))
, s > 0.

Hence, from (3.5), in this case

Pr

(
n∑

k=1

θkXk > x

)
∼ F (x)

n∑

k=1

exp


−αµ(k) +

λ

ν


1−

√√√√1 +
2αν2

λ

(
k∑

i=1

βi −
ασ(k)

2

)



 .

To assess the quality of this asymptotic relation by simulation, we assume, as in the previous

section, that the random variables {Xn, n = 1, 2, . . .} are i.i.d. with common Pareto(α, β)

distribution, for some α > 0 and β > 0. We take again n = 10, and consider the parameters

−µ10,Σ10 of the lognormal variance-mean inverse Gaussian mixture to be as given before,

while

β1 = ... = β10 = 1, λ = 1 and ν = 1.

The number of simulations is 5,000,000. Some numerical results are given in Table 3.

Table 3. Simulated versus asymptotic values of the tail probability for

Pareto claims with lognormal variance-mean inverse Gaussian mixed discount factors
α = 1.2, β = 2 α = 1.5, β = 2

x Simulated Asymptotic 1-asymptotic
simulated

x Simulated Asymptotic 1-asymptotic
simulated

100 0.0097178 0.0082910 0.146 100 0.0022460 0.0019209 0.144
200 0.0039028 0.0036089 0.075 200 0.0007368 0.0006791 0.078
300 0.0023458 0.0022185 0.054 300 0.0003892 0.0003696 0.050
400 0.0016464 0.0015708 0.045 400 0.0002484 0.0002401 0.033
500 0.0012508 0.0012018 0.039 500 0.0001772 0.0001718 0.030
600 0.0010012 0.0009656 0.035 600 0.0001358 0.0001307 0.037
700 0.0008350 0.0008025 0.038 700 0.0001070 0.0001037 0.030
800 0.0007038 0.0006837 0.028 800 0.0000848 0.0000848 -0.001
900 0.0006108 0.0005936 0.028 900 0.0000718 0.0000711 0.009
1000 0.0005410 0.0005231 0.033 1000 0.0000616 0.0000607 0.013
2000 0.0002338 0.0002277 0.026 1200 0.0000450 0.0000462 -0.026
3000 0.0001428 0.0001399 0.019 1400 0.0000356 0.0000366 -0.030
4000 0.0000992 0.0000991 0.001 1800 0.0000244 0.0000251 -0.030
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4 Proof of the theorems

4.1 Some lemmas

The following lemma is from Breiman (1965); see also Cline & Samorodnitsky (1994) for

more general discussions.

Lemma 4.1. Let X and Y be two independent random variables with cdf ’s F and G, where

Y is nonnegative. If F ∈ R−α for some α > 0 and EY α+δ < ∞ for some δ > 0, then

lim
x→∞

Pr(XY > x)

Pr(X > x)
= EY α.

The following is a restatement of Lemma 2.1 of Davis & Resnick (1996).

Lemma 4.2. For a sequence of nonnegative random variables {X1, . . . , Xn} and a distri-

bution function F ∈ R−α for some α > 0, if

lim
x→∞

Pr(Xi > x)

F (x)
= ci for i = 1, . . . , n

and

lim
x→∞

Pr(Xi > x, Xj > x)

F (x)
= 0 for 1 ≤ i 6= j ≤ n,

then

lim
x→∞

Pr (
∑n

i=1 Xi > x)

F (x)
=

n∑
i=1

ci.

The following result is the one-dimensional version of Theorem 2.1 of Resnick & Willekens

(1991).

Lemma 4.3. Consider the randomly weighted series
∑∞

n=1 θnX
+
n with {Xn, n = 1, 2, . . .}

and {θn, n = 1, 2, . . .} the same as in (1.1). Then under the conditions of Theorem 2.2, we

have

Pr

( ∞∑
n=1

θnX
+
n > x

)
∼ F (x)

∞∑
n=1

Eθα
n .

4.2 Proof of Theorem 2.1

By Lemma 4.1, we have

Pr
(
θkX

+
k > x

) ∼ F (x) Eθα
k , 1 ≤ k ≤ n.
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Now choose some 0 < ε < 1 such that (1− ε)(α + δ) > α. Then for all 1 ≤ k 6= l ≤ n,

Pr
(
θkX

+
k > x, θlX

+
l > x

) ≤ Pr
(
θk > x1−ε

)
+ Pr

(
θkX

+
k > x, θlX

+
l > x, θk ≤ x1−ε

)

≤ x−(1−ε)(α+δ)Eθα+δ
k + Pr

(
X+

k > xε
)
Pr

(
θlX

+
l > x

)

= o
(
F (x)

)
,

where we have used the Markov inequality and the property in (2.2). Thus, applying

Lemma 4.2 we obtain that

Pr

(
n∑

k=1

θkX
+
k > x

)
∼ F (x)

n∑

k=1

Eθα
k . (4.1)

Since
n∑

k=1

θkXk ≤ max
1≤m≤n

m∑

k=1

θkXk ≤
n∑

k=1

θkX
+
k ,

it suffices to prove the relation

Pr

(
n∑

k=1

θkXk > x

)
& F (x)

n∑

k=1

Eθα
k . (4.2)

For an arbitrary set I ⊂ {1, 2, · · · , n}, we denote by ‖I‖ the cardinal number of the set I
and introduce two events

Ω1(I) = (Xk > 0 for all k ∈ I) , Ω2(I) = (Xk ≤ 0 for all k /∈ I) .

Clearly,

Pr

(
n∑

k=1

θkXk > x

)
=

∑

I:I⊂{1,2,··· ,n}&I6=φ

Pr

(
n∑

k=1

θkXk > x, Ω1(I) ∩ Ω2(I)

)
. (4.3)

For any large L > 0 and M > 0, we further write

Ω3(I; L) = (−L < Xk ≤ 0 for k /∈ I) , Ω4(I; M) = (θk ≤ M for k /∈ I) .

Then, the probability on the right-hand side of (4.3) is not smaller than

Pr

(
n∑

k=1

θkXk > x, Ω1(I) ∩ Ω2(I) ∩ Ω3(I; L) ∩ Ω4(I; M)

)

≥ Pr

(∑

k∈I
θkXk > x + (n− ‖I‖) LM, Ω1(I) ∩ Ω3(I; L) ∩ Ω4(I; M)

)

= Pr

(∑

k∈I
θkXk > x + (n− ‖I‖) LM

∣∣∣∣∣ Ω1(I) ∩ Ω3(I; L) ∩ Ω4(I; M)

)

×Pr (Ω1(I)) Pr (Ω3(I; L)) Pr (Ω4(I; M)) . (4.4)
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Similarly to (4.1), applying Lemma 4.2, the conditional probability on the right-hand side

of (4.4) is asymptotically equal to

∑

k∈I
E (θα

k | Ω4(I; M)) Pr (Xk > x + (n− ‖I‖) LM | Xk > 0) .

Since F ∈ R implies

Pr (Xk > x + (n− ‖I‖) LM | Xk > 0) ∼ Pr (Xk > x | Xk > 0) ,

we have

Pr

(
n∑

k=1

θkXk > x, Ω1(I) ∩ Ω2(I) ∩ Ω3(I; L) ∩ Ω4(I; M)

)

& F (x)

F (0)

∑

k∈I
E (θα

k | Ω4(I; M)) Pr (Ω1(I)) Pr (Ω3(I; L)) Pr (Ω4(I; M))

=
F (x)

F (0)

∑

k∈I
Eθα

k 1Ω4(I;M) Pr (Ω1(I)) Pr (Ω3(I; L)) .

Substituting this into (4.3) yields that

Pr

(
n∑

k=1

θkXk > x

)
& F (x)

F (0)

∑

I:I⊂{1,2,··· ,n}&I6=φ

∑

k∈I
Eθα

k 1Ω4(I;M) Pr (Ω1(I)) Pr (Ω3(I; L)) .

Since L and M can be arbitrarily large, this proves that

Pr

(
n∑

k=1

θkXk > x

)
& F (x)

F (0)

∑

I:I⊂{1,2,··· ,n}&I6=φ

∑

k∈I
Eθα

k

(
F (0)

)‖I‖
(F (0))n−‖I‖ .

By interchanging the order of the two sums, we calculate the right-hand side of the above

as

F (x)

F (0)

n∑

k=1

Eθα
k

∑

I:I⊂{1,2,··· ,n}&k∈I

(
F (0)

)‖I‖
(F (0))n−‖I‖

=
F (x)

F (0)

n∑

k=1

Eθα
k

(
F (0) + F (0)

)n−1
F (0).

This proves the announced result (4.2).

4.3 Proof of Theorem 2.2

It is trivial that

Pr

(
max

1≤n<∞

n∑

k=1

θkXk > x

)
≤ Pr

( ∞∑

k=1

θkX
+
k > x

)
.
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In view of this, relation (2.5), and the convergence of the series
∑∞

k=1 Eθα
k , it suffices to

prove that

Pr

( ∞∑

k=1

θkX
+
k > x

)
∼ F (x)

∞∑

k=1

Eθα
k . (4.5)

However, relation (4.5) is given by Lemma 4.3.
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