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Abstract
In this paper we establish a simple asymptotic formula with respect to large initial

surplus for the finite time ruin probability of the compound Poisson model with
constant interest force and subexponential claims. The formula is consistent with
known results for the ultimate ruin probability and, in particular, it is uniform for all
time horizons when the claim size distribution is regularly varying tailed.
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1 The compound Poisson model

Consider the compound Poisson model, in which the claim sizes Xk, k = 1, 2, . . ., form

a sequence of independent, identically distributed (i.i.d.), and nonnegative random vari-

ables with common distribution B, while the arrival times σk, k = 1, 2, . . ., constitute a

homogenous Poisson process

N (t) = # {k = 1, 2, . . . : σk ≤ t} , t ≥ 0,

with intensity λ > 0. Let {C(t)}t≥0 with C(0) = 0 be a nondecreasing and right continuous

stochastic process, denoting the total amount of premiums accumulated up to time t, let

r > 0 be the constant interest force (that is, after time t one dollar becomes into ert dollars),

and let x ≥ 0 be the initial surplus. Then, the total surplus up to time t, denoted by Sr (t),

satisfies the equation

Sr (t) = xert +

∫ t

0

er(t−s)C (ds)−
N(t)∑

k=1

Xke
r(t−σk), t ≥ 0, (1.1)
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where, by convention, a summation over an empty set of index is 0.

We define, as usual, the time to ruin of this model as

τ(x) = inf {t > 0 : Sr (t) < 0 | Sr (0) = x} , (1.2)

where inf φ = ∞ by convention. Hence, the probability of ruin within a finite time T > 0

is defined by

ψr(x, T ) = Pr (τ(x) ≤ T ) , (1.3)

while the probability of ultimate ruin is defined by

ψr(x) = ψr(x,∞) = lim
T→∞

ψr(x, T ) = Pr (τ(x) < ∞) .

In this paper we investigate the asymptotic behavior of the finite time ruin probability

ψr(x, T ) under the assumption that the claim size distribution B is heavy tailed.

The remaining part of this paper consists of three sections. After briefly reviewing some

related recent works in Section 2, we present two main results in Section 3, and prove them

in Section 4 after recalling several lemmas.

2 A brief review on related results

Throughout, all limit relationships are for x →∞ unless stated otherwise; for two positive

functions a(·) and b(·), we write a(x) ∼ b(x) if lim a(x)/b(x) = 1.

We shall restrict ourselves to the case of heavy-tailed claim size distributions. The most

important class of heavy-tailed distributions is the subexponential class S. By definition,

a distribution F on [0,∞) is subexponential, denoted by F ∈ S, if F (x) = 1 − F (x) > 0

holds for all x ≥ 0 and the relation

lim
x→∞

F ∗n(x)

F (x)
= n (2.1)

holds for some (hence for all) n = 2, 3, . . ., where F ∗n denotes the n-fold convolution of F ;

see Embrechts et al. (1979). It is well known that each subexponential distribution F is

long tailed, denoted by F ∈ L, in the sense that the relation

lim
x→∞

F (x + y)

F (x)
= 1 (2.2)

holds for each y > 0. A useful subclass of subexponential distributions is R, the class of

distributions with regular variations. By definition, a distribution F on [0,∞) belongs to
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the class R if F (x) > 0 holds for all x ≥ 0 and there exists some α > 0 such that the

relation

lim
x→∞

F (xy)

F (x)
= y−α (2.3)

holds for each y > 0. We denote by F ∈ R−α the regularity property in (2.3). The

last statement of Theorem 1.5.2 of Bingham et al. (1987) tells us that the convergence of

relation (2.3) is uniform for y ∈ [1,∞). That is,

lim
x→∞

sup
1≤y<∞

∣∣∣∣
F (xy)

F (x)
− y−α

∣∣∣∣ = 0.

For more details of heavy-tailed distributions and their applications to insurance and fi-

nance, the reader is referred to Embrechts et al. (1997).

The asymptotic behavior of the ultimate ruin probability ψr(x) of the risk model intro-

duced in Section 1 with C(·) a deterministic linear function, B heavy tailed, and {Xk}∞k=1

and {N (t)}t≥0 mutually independent, has been investigated in the recent literature. Under

the condition B ∈ R−α for some α > 1, starting from an integral equation of Sundt and

Teugels (1995), Klüppelberg and Stadtmüller (1998) developed a sophisticated Lp transform

technique in proving the result

ψr(x) ∼ λ

αr
B(x); (2.4)

see their Corollary 2.4. Asmussen (1998, Corollary 4.1(ii)) and Asmussen et al. (2002)

proved a more general result that the relation

ψr(x) ∼ λ

r

∫ ∞

x

B(y)

y
dy (2.5)

holds under the condition B ∈ S∗, where the class S∗ was introduced by Klüppelberg (1988)

and is characterized by the relation∫ x

0

B(x− y)B(y)dy ∼ 2µB(x)

with µ =
∫∞

0
B(y)dy ∈ (0,∞). About the class S∗, Klüppelberg (1988, Theorem 3.2)

pointed out that if B ∈ S∗ then both B itself and its integrated tail distribution BI , which

is defined by

BI(x) =
1

µ

∫ x

0

B(y)dy, x ≥ 0,

are subexponential. Lately, also starting from the work of Sundt and Teugels (1995) but

using a simpler treatment, Kalashnikov and Konstantinides (2000) and Konstantinides et al.

(2002) rebuilt relation (2.5) under a different condition that the integrated tail distribution

BI is an element of the class A. That is, BI is subexponential and satisfies

lim sup
x→∞

BI(xy)

BI(x)
< 1 for some y > 1.
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To our knowledge, whether or not the condition BI ∈ S is sufficient for relation (2.5)

remains unknown.

It is also worth mentioning that B ∈ S∗ neither implies nor is implied by BI ∈ A. A

simple illustration for the assertion “B ∈ S∗ ; BI ∈ A” is the distribution with a tail

satisfying

B(x) ∼ x−1 ln−2 x.

To see the other assertion “BI ∈ A; B ∈ S∗”, let us look at the random variable

Z = aπ, (2.6)

where π is geometric with probability function Pr(π = k) = (1 − p)pk for 0 < p < 1,

k = 0, 1, . . ., and a is arbitrarily fixed satisfying 1 < a < 1/p. Clearly, the random variable

Z has a finite mean and its distribution B satisfies

lim
x→∞

B(ax)

B(x)
= p < ∞.

Based on this, it is easy to see that BI ∈ S (see Theorem 1 of Embrechts and Omey (1984)

or Proposition 1.4.4 of Embrechts et al. (1997)), that B /∈ L (hence B /∈ S∗), and that

lim
x→∞

BI(ax)

BI(x)
= ap < 1.

Therefore, BI ∈ A.

By the way, for an arbitrarily large number v > 0, by suitably choosing the parameters

a and p in (2.6) such that avp < 1, we have EZv < ∞. This means that the condition

BI ∈ A allows for some distributions that are not so “heavy-tailed” and are not in the class

L (hence are not in the class S∗).
Recently, Tang (2004) extended the work of Konstantinides et al. (2002) to the discrete

time model while Tang (2005) extended the work of Klüppelberg and Stadtmüller (1998)

to the ordinary renewal model.

3 Main results

In this paper we use a different method to establish a similar formula for the finite time ruin

probability with B ranging over the whole class S. Our first main result is given below:

Theorem 3.1. Consider the compound Poisson model introduced in Section 1, in which all

sources of randomness, {Xk}∞k=1, {N (t)}t≥0, and {C(t)}t≥0, are mutually independent. If

B ∈ S, then for each T > 0,

ψr(x, T ) ∼ λ

r

∫ xerT

x

B(y)

y
dy. (3.1)
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Apparently, relation (3.1) is consistent with relation (2.5). In particular, if B ∈ R−α

for some α > 0, by the uniformity of relation (2.3) we have

∫ xerT

x

B(y)

y
dy = B(x)

∫ xerT

x

B(y)

B(x)

1

y
dy

∼ B(x)

∫ xerT

x

(y

x

)−α 1

y
dy

=
1

α
B(x)

(
1− e−αrT

)
.

Hence in this case, it follows from (3.1) that for each T > 0,

ψr(x, T ) ∼ λ

αr
B(x)

(
1− e−αrT

)
, (3.2)

which is consistent with relation (2.4).

For each T ∈ (0,∞], denote by C̃(T ) the total discounted amount of premiums accu-

mulated up to time T . That is,

C̃(T ) =

∫ T

0

e−rtC(dt) for T ∈ (0,∞]. (3.3)

The following result makes the statement of relation (3.2) somewhat stronger:

Theorem 3.2. Consider the compound Poisson model introduced in Section 1 with B ∈
R−α for some α > 0 and C̃(∞) in (3.3) finite almost surely. Then, relation (3.2) holds

uniformly for T ∈ (0,∞], that is,

lim
x→∞

sup
0<T≤∞

∣∣∣∣∣
ψr(x, T )

λ
αr

B(x) (1− e−αrT )
− 1

∣∣∣∣∣ = 0, (3.4)

if one of the following two assumptions is valid:

1. {Xk}∞k=1, {N (t)}t≥0, and {C(t)}t≥0 are mutually independent;

2. {Xk}∞k=1 and {N (t)}t≥0 are mutually independent and C̃(∞) satisfies

Pr
(
C̃(∞) > x

)
= o

(
B(x)

)
. (3.5)

As pointed out by Tang (2005), allowing dependence between the premium process and

the claim process is not only of purely academic interest since very often the premium rate

depends on the history of the surplus process.

Admittedly, there are a lot of advantages in knowing the uniformity of an asymptotic

relation. Below are some direct applications of the uniformity described by Theorem 3.2:
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1. The relation

ψr(x, T (x)) ∼ λ

αr
B(x)

(
1− e−αrT (x)

)

holds for every function T (·) ∈ (0,∞]. Moreover, if T (x) → ∞ then the relation above is

reduced to

ψr(x, T (x)) ∼ λ

αr
B(x) ∼ ψr(x).

2. For a random variable T , which is independent of the risk system and has a distri-

bution H with H(0) > 0, denote by ψr(x, T ) the probability of “ruin within the random

horizon T ”. We have

ψr(x, T ) =

∫ ∞

0

ψr(x, T )H(dT )

∼
∫ ∞

0

λ

αr
B(x)

(
1− e−αrT

)
H(dT )

=
λ

αr
B(x)E

(
1− e−αrT )

1(T >0), (3.6)

where 1A denotes the indicator function of an event A.

3. Relation (3.6) further enables us to derive an asymptotic estimate for the Laplace-

Stieltjes transform of the ruin time τ(x). For this purpose, we identify the T in (3.6) as

an exponentially distributed random variable with mean 1/κ. On the one hand, recalling

relation (1.3) and using Fubini’s theorem we have

ψr(x, T ) =

∫ ∞

0

E1(τ(x)≤T )H(dT ) = E exp{−κτ(x)}1(τ(x)<∞) = E exp{−κτ(x)};

on the other hand, relation (3.6) gives that

ψr(x, T ) ∼ λ

αr
B(x)E

(
1− e−αrT )

=
λ

αr + κ
B(x).

It follows that

E exp{−κτ(x)} ∼ λ

αr + κ
B(x).

4 Proofs of Theorems 3.1 and 3.2

4.1 Lemmas

Before giving the proofs we need recall some preliminaries.

Lemma 4.1. If F is subexponential, then for each ε > 0, there exists some constant Cε > 0

such that the inequality

F ∗n(x) ≤ Cε(1 + ε)nF (x)

holds for all n = 1, 2, . . . and x ≥ 0.
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Proof. This inequality is classical and it was established by Chistyakov (1964) and Athreya

and Ney (1972); see also Embrechts et al. (1997, Lemma 1.3.5).

Lemma 4.2. Let X and Y be two independent and nonnegative random variables. If X is

subexponentially distributed while Y is bounded and nondegenerate at 0, then the product

XY is subexponentially distributed.

Proof. See Corollary 2.5 of Cline and Samorodnitsky (1994).

Lemma 4.3. Let {N (t)}t≥0 be a Poisson process with arrival times σk, k = 1, 2, . . .. Given

N (T ) = n for arbitrarily fixed T > 0 and n = 1, 2, . . ., the random vector (σ1, · · · , σn) is

equal in distribution to the random vector (TU(1,n), · · · , TU(n,n)) with U(1,n), . . ., U(n,n) being

the order statistics of n i.i.d. (0, 1) uniformly distributed random variables U1, . . ., Un.

Proof. This result is well known; see, for example, Theorem 2.3.1 of Ross (1983).

Lemma 4.4. If a sequence of distributions {Ft}t≥0 converges to a continuous distribution

F as t →∞, then the convergence is uniform in the sense that

lim
t→∞

sup
−∞≤x≤∞

|Ft(x)− F (x)| = 0.

Proof. See Theorem 1.11 of Petrov (1995), though the sequence under his discussion is

{Fn}∞n=1 instead of {Ft}t≥0.

4.2 Proof of Theorem 3.1

It follows from (1.3) and (1.2) that

ψr(x, T ) = Pr
(
e−rtSr (t) < 0 for some t ∈ (0, T ] | Sr (0) = x

)
. (4.1)

Furthermore, for each t ∈ (0, T ] it follows from (1.1) that

x−
N(T )∑

k=1

Xke
−rσk ≤ e−rtSr (t) ≤ x + C̃(T )−

N(t)∑

k=1

Xke
−rσk , (4.2)

where C̃(T ) is defined in (3.3). For notational convenience, we write

X̃(t) =

N(t)∑

k=1

Xke
−rσk

as the total discounted amount of claims accumulated up to time t > 0. Clearly, equality

(4.1) and the first inequality in (4.2) imply that

ψr(x, T ) ≤ Pr
(
X̃(T ) > x

)
, (4.3)
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while equality (4.1) and the second inequality in (4.2) imply that

ψr(x, T ) ≥ Pr
(
X̃(t) > x + C̃(T ) for some t ∈ (0, T ]

)
= Pr

(
X̃(T ) > x + C̃(T )

)
. (4.4)

Hence, if we prove that

Pr
(
X̃(T ) > x + C̃(T )

)
∼ Pr

(
X̃(T ) > x

)
∼ λ

∫ T

0

Pr
(
X1e

−ru > x
)
du, (4.5)

then it follows that

ψr(x, T ) ∼ λ

∫ T

0

Pr
(
X1e

−ru > x
)
du,

which, upon a trivial substitution, implies the announced result (3.1).

Let us successively prove the two asymptotic relations in (4.5). By Lemma 4.3 we have

Pr
(
X̃(T ) > x

)
=

∞∑
n=1

Pr

(
n∑

k=1

Xke
−rσk > x

∣∣∣∣∣ N (T ) = n

)
Pr (N (T ) = n)

=
∞∑

n=1

Pr

(
n∑

k=1

Xke
−rTU(k,n) > x

)
Pr (N (T ) = n) ,

where U(k,n) for k = 1, 2, . . . , n and n = 1, 2, . . . come from Lemma 4.3 and are independent

of {Xk}∞k=1. Therefore,

Pr
(
X̃(T ) > x

)
=

∞∑
n=1

Pr

(
n∑

k=1

Xke
−rTUk > x

)
Pr (N (T ) = n) . (4.6)

By Lemma 4.2 we know that the i.i.d. products Xke
−rTUk , k = 1, 2, . . ., are subexponentially

distributed; by Lemma 4.1 we also know that for an arbitrarily fixed ε > 0, there exists a

constant Cε > 0 such that the inequality

Pr

(
n∑

k=1

Xke
−rTUk > x

)
≤ Cε(1 + ε)n Pr

(
X1e

−rTU1 > x
)

holds for all n = 1, 2, . . . and x ≥ 0. Since E(1 + ε)N(T ) < ∞, applying the definition

in (2.1) of the subexponentiality and the dominated convergence theorem, we obtain from

(4.6) that

Pr
(
X̃(T ) > x

)
∼ Pr

(
X1e

−rTU1 > x
) ∞∑

n=1

n Pr (N (T ) = n)

= λ

∫ T

0

Pr
(
X1e

−ru > x
)
du. (4.7)

This proves the second relation in (4.5).
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Using (4.7), it is not difficult to prove the first asymptotic relation in (4.5). Actually,

since the product X1e
−rTU1 is subexponentially distributed, by (4.7) it is easy to see that

the sum X̃(T ) is long tailed. Using the dominated convergence theorem and the property

in (2.2) of long-tailed distributions, we obtain that

lim
x→∞

Pr
(
X̃(T ) > x + C̃(T )

)

Pr
(
X̃(T ) > x

) =

∫ ∞

0

lim
x→∞

Pr
(
X̃(T ) > x + y

)

Pr
(
X̃(T ) > x

) Pr
(
C̃(T ) ∈ dy

)
= 1.

This ends the proof of Theorem 3.1.

4.3 Proof of Theorem 3.2

First, we prove that relation (3.2) holds for each T ∈ (0,∞]. In view that for both cases

the relation

ψr(x) ∼ λ

αr
B(x) (4.8)

is a direct consequence of Theorem 1 of Tang (2005) and that under assumption 1 relation

(3.2) with T ∈ (0,∞) has been proved by Theorem 3.1, we only prove relation (3.2) for

each T ∈ (0,∞) under assumption 2. In this case, following the proof of Theorem 3.1,

inequalities (4.3) and (4.4) remain valid and, moreover,

Pr
(
X̃(T ) > x

)
∼ λ

∫ T

0

Pr
(
X1e

−ru > x
)
du ∼ λ

αr
B(x)

(
1− e−αrT

)
. (4.9)

Hence, it suffices to prove that

lim inf
x→∞

Pr
(
X̃(T ) > x + C̃(T )

)

Pr
(
X̃(T ) > x

) ≥ 1. (4.10)

To this end, note that relation (4.9) indicates that the distribution of X̃(T ) belongs to the

class R−α. For an arbitrarily fixed number l > 0, applying (4.9) and (3.5) we obtain that

lim inf
x→∞

Pr
(
X̃(T ) > x + C̃(T )

)

Pr
(
X̃(T ) > x

)

≥ lim inf
x→∞

Pr
(
X̃(T ) > (1 + l)x

)
− Pr

(
C̃(∞) > lx

)

Pr
(
X̃(T ) > x

)

≥ lim inf
x→∞

Pr
(
X̃(T ) > (1 + l)x

)

Pr
(
X̃(T ) > x

) − lim sup
x→∞

Pr
(
C̃(∞) > lx

)

B(lx)

B(lx)

B(x)

B(x)
λ
αr

B(x) (1− e−αrT )

= (1 + l)−α.
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Hence, relation (4.10) follows since the number l above can be arbitrarily close to 0.

Then, we prove the uniformity of relation (3.2) with respect to T ∈ (0,∞]. Write

Pr(x) (·) = Pr ( · | τ(x) < ∞) for x ≥ 0. Recall the definition in (1.3). From relations (3.2)

and (4.8) we obtain that for each T ∈ (0,∞],

lim
x→∞

Pr(x) (τ(x) ≤ T ) = lim
x→∞

ψr(x, T )

ψr(x)
= 1− e−αrT . (4.11)

This means that in Pr(x), the limit distribution of the ruin time τ(x) is exponential with

mean 1/(αr). Applying Lemma 4.4 we know that the convergence in (4.11) is uniform with

respect to T ∈ (0,∞]. That is,

lim
x→∞

sup
0<T≤∞

∣∣∣∣
ψr(x, T )

ψr(x)
− (

1− e−αrT
)∣∣∣∣ = 0. (4.12)

By (4.8), it is easy to see that relation (4.12) is equivalent to relation (3.4). This ends the

proof of Theorem 3.2.
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