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Abstract

This paper deals with preliminary test estimation for mean of an in-
verse Gaussian population. Preliminary test estimator has been shown
to provide large gains in efficiency, especially around a neighbourhood of
the prior guessed value of the parameter, for many distributions includ-
ing exponential and normal, however, this has not been explored for the
inverse Gaussian family of distributions. Owing to diverse applications
of the inverse Gaussian model for non-negative and positively skewed
data, the investigation considered here makes an important contribu-
tion in the area of preliminary test estimation. We consider both the
cases of known and unknown dispersion parameters and demonstrate
similar conclusions as obtained in the case of Gaussian populations in
terms of the efficiency of the resulting estimator.

Key Words: Minimum mean square error, preliminary test estimator, inverse
Gaussian population, relative bias, relative mean square error.

1 Introduction

Tests of hypothesis are often used to validate a given model. Such tests are
referred to as preliminary tests of significance, where the word preliminary
alludes to the notion of confirming tentatitively, the accepted value of a pa-
rameter under the null hypothesis. Bancroft (1944) proposed to use such prior
guesses to be used in place of the usual estimator if the prior guess is ascer-
tained using a test of hypothesis, otherwise the traditional estimator is to be
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used. The resulting estimator is termed as the Preliminary Test Estimator
(PTE). To fix the basic idea behind this procedure, let us consider estimating
the mean µ of some infinite population. Suppose, µ0 is the prior guess of the
parameter µ. For a given sample, let X̄ be the sample mean, then under a va-
riety of situations/models, it is a “good” estimator of µ. However, there may
be a strong evidence in favor of µ0, in that case, the statistician should choose
µ0 as the natural estimator. If the evidence is taken from the sample based
on a test statistic T, such an estimator may be represented as

µ̂PTE = X̄I{T∈CR} + µ0I{T /∈CR}
= µ0 + (X̄ − µ0)I{T∈CR}

where CR denotes the critical region for testing H0 : µ = µ0 vs. H0 : µ 6= µ0,
based on a test statistic T, and IA denotes the indicator of A.

Bancroft (1944) considered the case of Gaussian population and showed
that such estimators may provide large gains in efficiency, especially, if the
true value of the parameter is near the hypothesized value. They further
provided guidelines for choosing the level of significance. This method has
been adapted in various other situations by Bancroft (1964), Paul (1950),
Huntsburger (1954), Arnold and Katti (1972), Bock et al. (1973), Han (1978),
Ghosh and Sinha (1988), , Yancey, Judge and Bohrer (1989), Pandey and
Malik (1990), Pandey, Malik and Dube (1995), Pandey (1997) and Pandey and
Srivastava (2001) just to name a few. The paper by Pandey and Malik (1990)
consists of some interesting work on estimation of mean from inverse Gaussian
population based on adaptive estimation. The inverse Gaussian distribution
with parameters µ and λ, denoted by IG(µ, λ) is described by the probability
density function

f(x; µ, λ) =

(
λ

2πx3

)1/2

exp

(
−λ(x− µ)2

2µ2x

)
, 0 < x < ∞. (1)

This distribution was extensively studied by Tweedie (1957a, b) but it is popu-
larised by the review article by Folks and Chhikara (1978). It is enthusiastically
recommended as an alternative to the usual Gaussian distribution in Chhikara
and Folks (1989) and Seshadri (1998) for modelling positive and/or positively
skewed data. The parameter µ is the mean and λ is known as the dispersion
parameter as the variance of this distribution is given by σ2 = µ3

λ
. For a ran-

dom sample, a minimal sufficient statistic for (µ, λ) is given by (X̄,
∑n

i=1
1

Xi
).

It is also interesting to note that

X̄ ∼ IG(µ, nλ) and λ

n∑
i=1

(
1

Xi

− 1

X̄

)
∼ χ2

n−1. (2)
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As such, X̄ provides the best unbiased estimator of µ and

U =
1

n− 1

n∑
i=1

(
1

Xi

− 1

X̄

)
(3)

provides that for 1
λ
, and moreover they are independent. The reader is re-

ferred to the excellent texts by Chhikara and Folks (1989) and Seshadri (1998)
for other details concerning theory and applications of the inverse Gaussian
distribution.

Here, we investigate the performance of PTE of mean µ in a single sample
setup. Section 2 considers the case with the known λ and section 3 considers
the unknown case. Section four presents a numerical study on the relative bias
and relative MSE properties of the resulting estimator.

2 Preliminary Test Estimation of Mean with

a Prior Guess on Mean

2.1 Known λ Case

As explained above, the PTE requires testing about the prior guess. In this
case, we first test H0 : µ = µ0 against H1 : µ 6= µ0. In this case, the UMP-
unbiased test is given in the form of the critical region:

CR = {X̄ : X̄ < k1 or X̄ > k2}
where k1, k2 are determined from the conditions

∫ k2

k1

g(t)dt = 1− α and

∫ k2

k1

tg(t)dt = µ0(1− α)

and g is the pdf of x̄. Chhikara and Folks (1989) show that this is equivalent
to considering the test statistic

Z =

√
nλ(X̄ − µ0)

µ0

√
X̄

.

and corresponding critical region,

|Z| > z1−α/2

where z1−α/2, is the 100(1− α/2)% percentiles of the standard normal distri-
bution. Using the above critical region, the constants k1 and k2 can be found
as,

k1 =

[
µ0c1 +

√
µ2

0c
2
1 + 4µ0nλ

2
√

nλ

]2
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and

k2 =

[
µ0c2 +

√
µ2

0c
2
2 + 4µ0nλ

2
√

nλ

]2

where c1 = −z1−α/2 and c2 = z1−α/2. Now the computation of a preliminary
test estimator of the mean µ̂ is given by

µ̂z = X̄IX̄∈CR + µ0IX̄ /∈CR

= X̄ − (X̄ − µ0)I[k1<X̄<k2] (4)

2.2 Unknown λ Case

For unknown λ, the UMP-unbiased test for H0 : µ = µ0 against H1 : µ 6= µ0

is given in the form of the critical region:

CR = {X̄ < k3 or X̄ > k4}

where k3 and k4 are determined by

∫ k4

k3

h(u|v)du = 1− α and

∫ k4

k3

uh(u|v)du = (1− α)

∫ ∞

−∞
uh(u|t)du

and h(u|v) denotes the conditional density function of X̄ given V . Chhikara
and Folks (1989) show that it is equivalent to consider the statistic,

T =

√
n− 1(X̄ − µ0)

µ0

√
V X̄

where

v =
1

n

n∑
i=1

(
1

Xi

− 1

X̄
)

and corresponding critical region,
∣∣∣∣∣

√
(n− 1)(X̄ − µ0)

µ0

√
(X̄).V

∣∣∣∣∣ > t1−α
2
,

were t1−α
2
, is the 100(1− α

2
)% percentiles of the student’s t distribution with

(n− 1) degrees of freedom. This gives k3 and k4 in terms t1−α
2
, as

k3 =

[
µ0c1

√
V +

√
µ2

0c
2
1V + 4µ0(n− 1)

2
√

n− 1

]2

4



and

k4 =

[
µ0c2

√
V +

√
µ2

0c
2
2V + 4µ0(n− 1)

2
√

n− 1

]2

.

And hence, the PTE of µ in this case is given by

µ̂t = X̄I{X̄∈CR} + µ0I{X̄ /∈CR}
= X̄ − (X̄ − µ0)I{k3<X̄<k4} (5)

In order to judge the performance of PTE, we need compute its bias and MSE.
This is explained in the following section.

3 Bias and MSE of PTE’s

3.1 Known λ Case

The moments of PTE with known λ depend only on the distribution of X̄.
The following propositions will be used in computing the bias and MSE for
known λ case.

Proposition 3.1 The power function for the test H0 : µ = µ0 against H1 :
µ 6= µ0 is

π(µ) = 1− Pr[k1 < X̄ < k2|µ]

which may be written as

π(µ) = 1− F (k2; µ, nλ) + F (k1; µ, nλ), (6)

where F (x; µ, λ) denotes the cumulative distribution function of an IG(µ, λ)
distribution.

Computation of the above power function may be easily computed using the
distribution function of a standard normal variate using the following formula,

F (x; µ, λ) = Φ

{√
λ

x

(
x

µ
− 1

)}
+ e2λ/µΦ

{
−

√
λ

x

(
x

µ
+ 1

)}
,

where Φ(.) denotes the c.d.f. of the standard normal variable. Figure 1 pro-
vides the power function for n = 16, µ0 = 1, λ = 1, using the above formula.
Computation of bias and MSE of the PTE is facilitated by the use of the above
formula as shown in the following proposition.
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Figure 3.1: Power function for the UMP Unbiased Test in IG Case, n =
16, H0 : µ = 1

Proposition 3.2 The expressions for bias and MSE of µ̂z, are respectively
given by

Bias(µ̂z) = µ0[1− π(µ)]−
∫ k2

k1

wfX̄(w)dw, (7)

and

MSE(µ̂) =
µ3

nλ
+ 2µB(µ̂z) + µ2

0(1− π(µ))−
∫ k2

k1

w2fX̄(w)dw (8)

where π(µ) is the power function of the UMP-unbiased test for testing H0 :
µ = µ0 vs. H0 : µ 6= µ0, and B(µ̂z) denotes the bias of µ̂z given in Eq. (??).
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Proof: Using the expression in Eq. (??), straight forward calculation pro-
vides,

E(µ̂z) = µ−
∫ k2

k1

(w − µ0)fX̄(w)dw,

and the expression for the bias follows, noting that

π(µ) = 1− Pr[k1 < X̄ < k2|µ] =

∫ k2

k1

fX̄(w)dw.

For simplifying the MSE expression, we note that

(µ̂z − µ)2 = (X̄ − µ)2 + [µ2
0 − X̄2 + 2µ(X̄ − µ0)]Ik1≤X̄≤k2

and hence, the result follows.

3.2 Unknown λ Case

We note in this case that the critical region depends on the values of V. Hence,
for computing the moments of µ̂t, first we compute the conditional moments
b(v) = E[(µ̂t − µ)|V = v], and m(v) = E[(µ̂t − µ)2|V = v] using the Prop.
(??) replacing k1, k2 by k3(v) ' k3, k4(v) ' k4. Hence, we obtain the following
expressions for bias and MSE in the unknown case.

Proposition 3.3 The expressions for bias and MSE of µ̂t, are respectively
given by

Bias(µ̂t) =

∫ ∞

0

b(v)fV (v)dv

and

MSE(µ̂t) =

∫ ∞

0

m(v)fV (v)dv

where fV (v) is the probability density function of the Chi-square distribution
with (n− 1) degrees of freedom.

4 A Numerical Comparison of the Estimators

The above formulae are used to compute the bias and MSE for various sample
sizes and different values of µ. The integrals involved were computed using
Splus integrate function. The value of λ was fixed at 1. Figures 4.1–4.4
summarize these computations, however, some representative values are also
given in Tables 4.1-4.6.
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Table 4.1 gives the bias of µ̂z for n = 16 and Table 4.2 presents that for n = 20
for two different values of α, namely, 1% and 5%. Similarly Table 4.3 and Table
4.4 present those for unknown λ case. Table 4.5 presents the relative MSE’s
for n = 16 and n = 20 respectively for the same values of α where as Table 4.6
present the relative efficiencies of the PTE’s µ̂z and µ̂t with respect to the a
sample mean for the n = 16 and n = 20. To visualize the effect of preliminary
test on the bias and to assess the gain in efficiency, we plot the relative bias
and relative efficiency (with respect to X̄) for different sets of parameters,
sample sizes and significance levels.

Based on these graphs and tables, we draw the following conclusions:

(1) Bias decreases as n increases.

(2) When µ ≤ 1 then bias increases, for 1 < µ ≤ 1.5 then bias decreases
but when 1.5 < µ then again bias increases. As α increases bias also
increases.

(3) For fixed µ, bias increases as µ0 increases but for fixed µ0 bias decreases
as µ increases.

(4) The maximum possible loss of efficiency increases for µ = 1 and µ ≥ 1.5
but when µ = 1.5 efficiency decreases.

(4) The effective difference of efficiency is greater when α increases.

(5) The result indicate that in the case of IG estimators is effective in reduc-
ing the maximum loss of efficiency and increasing the effective difference.

(6) By examination of the values in graphs and tables, it will be seen that
when λ is known, the preliminary test of significance controls the bias
well for larger values of µ, resulting in substantial gains in relative effi-
ciency.
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Table 4.1: Bias of µ̂z for n = 16

µ µ0 = 1 µ0 = 2 µ0 = 3 µ0 = 1 µ0 = 2 µ0 = 3

α = 1% α = 5%

0.5 0.135169 0.001663 0.000017 0.033591 0.000014 0.000000

1.0 0.000000 0.666944 0.701347 0.000000 0.33155 0.165811

1.5 -0.274586 0.459349 1.209603 -0.157975 0.361778 0.755871

2.0 -0.231339 0.000000 0.918142 -0.106140 0.000000 0.720122

2.5 -0.151435 -0.404113 0.469159 -0.061421 -0.284178 0.382874

3.0 -0.099347 -0.651850 0.000000 -0.037523 -0.409260 0.000000

3.5 -0.068564 -0.756061 -0.429436 -0.024774 -0.434245 -0.316430

4.0 -0.049948 -0.530559 -0.552975 -0.017527 -0.415125 -0.535160

4.5 -0.038148 -0.745209 -1.032303 -0.013118 -0.381317 -0.668068

5.0 -0.030303 -0.700645 -1.202236 -0.010269 -0.345466 -0.738977

Table 4.2: Bias of µ̂z for n = 20

µ µ0 = 1 µ0 = 2 µ0 = 3 µ0 = 1 µ0 = 2 µ0 = 3

α = 1% α = 5%

0.5 .073691 .000545 .000004 0.013155 0.000001 0.000000

1.0 .000000 .556286 .394361 0.000000 0.232133 0.060848

1.5 -.025092 .453104 1.010851 -0.138439 0.349072 0.618549

2.0 -.017663 .000000 .901902 -0.075309 0.000000 0.685998

2.5 -.097573 -.399575 .467579 -0.036206 -0.278504 0.379441

3.0 -.055609 -.625242 -.00000 -0.019052 -0.383887 0.000000

3.5 -.034233 -.696693 -.428009 -0.011162 -0.387064 -0.314403

4.0 -.022715 -.682034 .767887 -0.007169 -0.351793 -0.523547

4.5 -.060613 -.631524 -1.00486 -0.004956 -0.308290 -0.640477

5.0 -.011960 -.571377 -1.15-792 -0.003631 -0.267625 -0.692917
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Table 4.3: Bias of µ̂t for n = 16

µ µ0 = 1 µ0 = 2 µ0 = 3 µ0 = 1 µ0 = 2 µ0 = 3

α = 1% α = 5%

0.5 0.220419 0.056914 0.0194914 0.063415 0.001149 0.000075

1.0 0.000000 0.754592 1.051109 0.000000 0.412151 0.321653

1.5 -0.320748 0.465899 1.277217 -0.185189 0.375385 0.848951

2.0 -0.322579 0.000000 0.931265 -0.139115 0.000000 0.747992

2.5 -0.238804 -0.425646 0.473027 -0.086274 -0.306782 0.393048

3.0 -0.169686 -0.726898 0.000000 -0.055011 -0.462131 0.000000

3.5 -0.123476 -0.893645 -0.444393 -0.037340 -0.509779 -0.335851

4.0 -0.093282 -0.960589 -0.827869 -0.026917 -0.502651 -0.582566

4.5 -0.073113 -0.966792 -1.134207 -0.020412 -0.472982 -0.745113

5.0 -0.059190 -0.940561 -1.363285 -0.016134 -0.436640 -0.842185

Table 4.4: Bias of µ̂t for n = 20

µ µ0 = 1 µ0 = 2 µ0 = 3 µ0 = 1 µ0 = 2 µ0 = 3

α = 1% α = 5%

0.5 0.154391 0.009589 0.001245 0.027164 0.000031 0.000002

1.0 0.000000 0.686583 0.776284 0.000000 0.298308 0.138373

1.5 -0.303374 0.465515 1.225797 -0.159564 0.361638 0.706735

2.0 -0.261062 0.000000 0.928041 -0.096314 0.000000 0.712842

2.5 -0.16503 -0.426797 0.475417 -0.049367 -0.296960 0.388071

3.0 -0.102495 -0.712976 0.000001 -0.027020 -0.426232 0.000000

3.5 -0.066754 -0.848150 -0.447743 -0.016238 -0.445135 -0.330139

4.0 -0.046032 -0.878382 -0.829270 -0.010609 -0.416043 -0.562023

4.5 -0.033447 -0.851539 -1.124489 -0.007423 -0.372609 -0.702414

5.0 -0.025408 -0.799343 -1.333576 -0.005486 -0.328976 -0.774574

10



Table 4.5: Relative MSE of µ̂z and µ̂t for n = 16, α = 5%

µ µ0 = 1 µ0 = 2 µ0 = 3 µ0 = 1 µ0 = 2 µ0 = 3

α = 1% α = 5%

0.5 0.120303 0.031362 0.031250 0.186201 0.039450 0.032097

1.0 0.017443 0.454858 0.471961 0.015725 0.523701 0.800750

1.5 0.131528 0.119756 0.647558 0.133363 0.118039 0.689564

2.0 0.165866 0.034885 0.242931 .175505 0.031451 0.241816

2.5 0.181158 0.116823 0.065896 0.189792 0.109330 0.063769

3.0 0.202221 0.209199 0.052328 0.208383 0.204601 0.047176

3.5 0.227908 0.273657 0.114466 0.232186 0.275439 0.104433

4.0 0.256054 0.316686 0.197398 0.259088 0.323892 0.185390

4.5 0.285477 0.348612 0.275665 0.287699 0.359163 0.265356

5.0 0.315591 0.375782 0.341917 0.317272 0.387956 0.335461

Table 4.6: Relative Efficiency of µ̂z and µ̂t for n = 16, α = 5%

µ µ0 = 1 µ0 = 2 µ0 = 3 µ0 = 1 µ0 = 2 µ0 = 3

α = 1% α = 5%

0.5 0.259759 0.996401 0.999997 0.167829 0.792141 0.973609

1.0 3.583147 0.137405 0.132426 3.974425 0.119343 0.078052

1.5 0.712775 0.782836 0.144774 0.702970 0.794223 0.135955

2.0 0.753619 3.583147 0.514549 0.712229 3.974425 0.516921

2.5 0.862507 1.337489 2.371157 0.823269 1.429157 2.450233

3.0 0.927205 0.896272 3.583147 0.899786 0.916418 3.974425

3.5 0.959816 0.799356 1.911042 0.942130 0.794186 2.094635

4.0 0.976356 0.789425 1.266476 0.964922 0.771862 1.348508

4.5 0.985193 0.806770 1.020260 0.977581 0.783069 1.059895

5.0 0.990206 0.831599 0.913964 0.984956 0.805503 0.931552
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Figure 4.1: Relative Bias of µ̂z for n = 16
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