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ABSTRACT

Traffic modeling in a Multi-media environment

Selvakumaran N. Subramanian

The evolving Broadband Integrated Service Digital Networks (B-ISDN) pro-
vide bearer service capabilities supporting reai time traffic such as voice and video
traffic along with jitter tolerant traflic such as data traffic. These wide spectrum
of traffic sources exhibit a diverse mixture of traffic characteristics and have varied
quality of service requirements. Designing and managing these cvolving networks
requires predictions of network performance. Traffic source models capture enough
essential properties of the source, that a trace of equivalent traflic can be generated
artificially. These models could then be used to investigate many of the open issues
in the evolution of B-ISDN. Appropriate models that characterize the variability
and correlations in the aggregate (or integrated) traffic are imperative and play an
important role in the successful engineering of the future broadband networks.

In this thesis a traffic generator that can represent the hehaviour of multi-
media traffic for the purpose of evaluating some queucing systems, is developed.
The statistical issues involved in the packet arrival process in multi-media networks
are explained. These aspects are considered in the development of the traffic gen-
erator. A new traffic model called the PMPP (Pareto modulated Poisson process)
is proposed. This model can capture the self-similarity and long range dependence
characteristics. The traffic generator developed uses MMPP (Markov modulated
Poisson process) to characterize voice and video traffic. The long range dependent
data traffic is characterized by the proposed PMPP model. The developed traf-
fic generator is used to study the queueing characteristics of long range dependent
traffic and its effect on multi-media traffic.

Keywords: traffic model, long range dependence, self-similarity.
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Chapter 1

Introduction

1.1 Background

The recent years have witnessed significant technical advances in switching, trans-
mission and multiplexing technologies, which have the potential of revolutionizing
future voice, video and data communications. There has also been a growing de-
mand for an unified access to more sophisticated and powerful communication ser-
vices, encompassing a wide variety of applications. Together, these developments
have resulted in the increasing interest in the design and deployment of Broadband
In.egrated Service Digital Networks (B-ISDIN). These networks would ultimately
bring the multimedia services to the end user’s desk-top. These future networks
would provide an integrated access supporting a wide variety of services with dirfer-
ent characteristics: interactive and distributive services, broadband and narrowband
services (e.g., real time voice and video), bursty and continuous traffic (e.g., voice
and bursty data services), connection oriented and connectionless services, etc. [1].
All of these different services have different quality of service requirements (e.g., real
time traffic, such as voice and video are sensitive to delay and delay jitter, while tol-
erating some error or loss; on the other hand non real time data traffic are sensitive

to loss and have no stringent requirements on the delay).




Moreover, these wide spectrum of traffic sources (such as computer data, vari-
able bit rate (VBR) video, voice, etc.), exhibit a diverse mixture of trafhic charace
teristics. These contrasting traffic were traditionally carvied by separate dissimilar
networks. Circuit switched networks were used to carry the delay sensitive voice
traffic; a packet switched telephone network (PSTN) was used to carry the loss sen-
sitive, jitter tolerant data traffic and cables or the broadcast media have been used
to carry the delay sensitive, loss sensitive video traflic. B-ISDN proposes to integrate
all these services on the same network. These present a plethora of challenges and
numerous avenues for research.

Thanks to the untiring efforts of many researchers in the past decade, the field
of Broadbe~4 Communications is steadily progressing towards its goal of provid-
ing integrated digital services in an efficient mauner. The widespread deployment of
fiber in the network, and the standardization of these networks by the SUNET (Svn
chronous Optical NET works) standards, together with the tremendons advances in
the field of optical switching have made available huge bandwidths of the order of
several gigabits to the enduser. This was followed by extensive rescarch and study
of the multiplexing technology to select a transport mode which would efliciently
use the huge bandwidth available to provide integrated services. The ATM (Asyn-
chronous Transport Mode) has been sclected as the preferred mode of transport for
these future networks.

ATM is capable of multiplexing large number of connections efficiently. The
basic transport unit in ATM is a 53-byte ATM cell which consists of a 48 hyte
payload (information) and a 5 byte header. The transmission time of cach cell o1
packet cau be considered to be analogous to a time-slot (time division multiplexed
channel) in a synchronous network. The basic difference between the synchronous
and asynchronous transfer mode is that in a synchronous retwork, a time-slot is
dedicated to a user and the position or timing information of the time-slot is used

to de-multiplex the channel; in an ATM network, the information in the header of



the cell is used to route the packet to the appropriate destination, at the multi-
plexer. The timing information is no longer important and hence time-slots which
would have been unused in a synchronous network could be efficiently used to carry
the additional traffic ensuing from the other users. Thus in ATM the available
bandwidth is dynamically shared between the various users. ATM is akin to the
packet networks of the past (legacy networks), except that the advances in high
speed switching and the development of some fast packet switching techniques such
as the SMDS (Switched Multi-megabit Data Services) have made it possible to use
ATM to carry the integrated services.

ATM is benevolent to both continuous bit rate (CBR) and variable bit rate
(VBR) services. In CBR, there is an uninterrupted flow of digital information trans-
mitted at regular intervals i.e., video source coding producing constant bit rates, or,
voice where silence periods are transmitted. In VBR, information is generated at
variable rates as in voice with silence detection and video coding producing variable
bit rates. In the case of CBR, ATM cells are generated at constant intervals and in
the case of VBR, ATM cells are generated as and when there is information to be
transmitted. Hence, the amount of network resources required by the user changes
constantly in proportion to the number of cells generated per unit time. When the
resources are shared among different users the amounts required by the users do not
simultaneously reach their peak values, so the network can accommodate more load
with the same amount of resources. This is called statistical multiplezing and the
gain in the bandwidth obtained thereof, is called the statistical multiplexing gain.
This is one of the key features of ATM networks. Achieving a high multiplexing

gain requires a good understanding of the nature of the traffic sources involved.



1.2 Motivation

At the time of writing of this thesis there are still many more unanswered questions
connected with the evolving B-ISDN. It is currently a hot area of research. Of
particular importance are the questions related to the engineering of these future
networks.

For example, in a synchronous circuit switched network, a new call is accepted,
if there is an availability of a dedicated channel (time-slot), assuring an end to end
connectivity between the two end users, else the call is blocked. Ouce a call ix
accepted in such a network, the resources are guaranteed through out the entire
duration of the call. Grade of Service (GOS) is measured in terms of the blocking, a
user may experience in setting up a connection; lower the blocking, hetter the GOS.
However, the B-ISDN networks employing ATM, face a more complex scenario. As
mentioned earlier, the bandwidth in these networks are shared dynamically between
the users. However, each of the users should at least be guaranteed some fixed GOS
(in terms of packet loss and delay) which is negotiated upon, during the call setup
phase. Thus the network has an onerous task of deciding whether or not to accept
a new call; this decision (called call admission criterion), has to be based on the
current state (usage) of the network and on the determination of the incremental
bandwidth required to achieve the desired GOS, for the new connection. Thus, the
challenge in arriving at a suitable call acceptance rule is in gauging the current, usage
of the network (allocated bandwidth) and determining the incremental bandwidth
based on the statistical characteristics of the current users and the new connection
respectively.

Once the connection has been accepted into the network, appropriate measures
have to be taken to ensure that the user does not exceed the usage agreed upon
during setup and trespass into the bandwidth allocated for other connections. These
measures, called congestion control schemes, are required to ensure that GOS is

met for each connection. Congestion control schemes can be reactive or pro-active



(preventive). Reactive schemes, as their name suggests, help in controlling the
congestion in the network, after they occur. These are more suited to low speed
networks. On the other hand pro-active congestion: control schemes help avoid the
onslaught of congestion by utilizing bandwidth enforcement mechanisms. These are
especially suited to high speed networks. Pro-active schemes may use source policing
mechanisms such as the leaky bucket to force the traffic to conform to the values
contracted during call set up. Some pro-active schemes estimate the traffic from the
current users, based on their statistical characteristics. Currently many congestion
control schemes are being proposed for ATM networks. However, good congestion
control schemes need an accurate source characterization.

In order to meet the GOS for a call that has been accepted, the buffers at
the multiplexers should be engineered accordingly to limit the packet loss. The
required dimension of the buffers at these multiplexers depends on the profile of the
traffic it is catering to. Appropriate statistical traffic models are required to engineer
these networks suitably. Also of importance in such networks are the various switch
architectures that may be used. Numerous architectures have been proposed. To
evaluate these various switch architectures we need accurate traffic models.

If ATM traffic were carried by satellite networks, then we have an additional
level of complexity involved. The satellite networks use a shared access to the various
satellite channels. Multiple access schemes are used to have an efficient access to this
shared medium. Various multiple access schemes have been studied and proposed,
so far. However, these schemes have previously been studied with just voice or data
traffic or both. But given the integrated environment of the evolving B-ISDN, more
light can be shed on these various multiple access schemes and their effectiveness
re-evaluated, if appropriate traffic models characterizing the sources involved, were
available.

Thus as outlined above most of these issues involving B-ISDN, first require

a traffic characterization of the sources involved. Source models capture enough



essential properties of the source that a trace of equivalent traffic can be generated
artificially. These models could then be used to investigate many of the open issues
in the evolution of B-ISDN. A ppropriate models that characterize the variability and
correlations in the aggregate (or integrated) traffic are imperative and the successful
engineering of the future broadband networks depends solely on the success of these

traffic models. This is the motivation behind this thesis on traffic modeling.

1.3 Overview and scope of the thesis

Designing and managing of the evolving broadband networks require prediction of
network performance. Analytical techniques, computer simulation, projections from
existing data are methods that are used to evaluate and design networks. Actual
measurements of traffic from the broadband networks would only be available once
these networks are in place and the applications that are envisioned to use these
networks take shape. However, in order to engincer these networks successfully.
a fairly good understanding of the behaviour of the traflic sources is necessary.
Researchers have circumvented this vicious circle, by using existing measurcments
of traffic, to come up with models that could predict the traffic in these future
networks. The traffic models may then be used in traffic generators to generate
traffic for simulation studies of broadband networks. This thesis focusses on the
development of such a traffic generator, that can represent the behaviour of multi-
media traffic.

The traffic generation that we are interested in, is not concerned with cither the
simulation of an actual broadband network or with the nitty-gritties of generation of
cells in these networks. We are interested in modeling and capturing the statistical
characteristics of the packet trafficin these networks. Thus the traffic generator need
only characterize enough statistical characteristics of the traffic in such networks,

such that the synthetic traffic fed to a queue produces the same queucing hehaviour



as that produced by the actual traffic. Hence the stress all along this thesis is on
the capture of statistical characteristics of the actual traffic.

The Poisson model was used by the teletraffic engineers of the past to charac-
terize the call arrival in a circuit switched network. The simple closed form solutions
(such as the Erlang-B formula), derived for the circuit switched networks, can be
attributed to the simplicity and analytical tractability of the Poisson model. These
are considered fairly accurate for the, conventional circuit switched telephone net-
works, to date. But, ever since the advent of the packet networks and transmission
of voice digitally over the network, traffic studies proved that the Poisson assump-
tion may no longer be valid for the packet arrival process in these networks. This
1s so, because with the arrival of packet networks, the focus has been on modeling
the packet arrivals to the queue as opposed to the call arrivals to the system. In the
circuit switched systems, these meant one and the same; i.e., a call arrives to the
system and engages a circuit for a particular duration of the call called the holding
time of the call. However with packet switching a single transmission line is shared
among various calls (or connections). Hence the modeling shifts to a lower level.
Though the call arrival to such circuits may still be completely random and thus
obey a Poisson law in such systems, the packet arrival is not. The packet arrival
process is correlated and is thus no longer Poisson.

The amount of correlation in the packet arrival process depends on the type of
the traffic, i.e., voice, video or data. Voice and video traffic possesses correlation that
extend only over short durations. However data traffic, as shown by recent studies
in LAN data traffic, exhibits long-range dependence (where the correlations extend
over longer durations) and self-similar (or fractal) characteristics, i.e., the traffic
exhibits “ burstiness” across a wide range of time scales ranging from milliseconds
to hours.

Ever since the failure of Poisson assumptions in characterizing packet traffic,

a wealth of traffic models have been proposed in the literature to characterize the



various classes of traffic. These models such as the Batch Poisson process, layered
Markov process, Markov modulated Poisson process still retain some form of Marko-
vian structure either in the way the arrival processes are modulated or in the arrival
processes themselves, for reasons of mathematical tractability. Also these models
incorporate only short term correlations.

There have also been a few long-range dependent models like the fractional
Brownian traffic model [2], Chaotic maps [3] that have been added to the list of
traffic models. These models aim at characterizing long-range dependent traffic. In
this thesis, we underline the relevant issues in modeling packet traffic and provide
an overview of all the models proposed in the literature from the standpoint of
synthetic traffic generation.

Realizing the need for a simple and efficient model for the generation of long-
range traffic, we also propose a new long-range dependent model called the PMPP
(Pareto modulated Poisson process) [4]. The PMPP is a special class of doubly
stochastic Poisson processes and are thus extremely simple to generate. The PMPP
is versatile in capturing the long-range dependence and self-similarity.

Finally, a traffic generator is developed in OPNET. The traffic generator de-
veloped is capable of capturing different level of correlation and dependency and is
extremely simple and versatile from the standpoint of synthetic traffic generation.
The developed traffic generator is then used to study the queueing performance of
a queue fed by the aggregate multi-media traffic.

The thesis is organized as follows: In Chapter 2, we outline the important
issues in the statistical characterization of traffic and the reasons for the failure
of the Poisson model. We also provide the statistical definition of long-range and
short-range dependent processes and distinguish between them.

In Chapter 3, we present a study of the traffic models proposed in the liter-
ature for voice and video traffic. The strengths and weaknesses of these models are

discussed and a suitable traffic model is selected for representing voice and video



traffic respectively in the traffic generator.

Chapter 4 presents a study of data traffic models. The new model for long-
range dependent traffic proposed in this thesis, the PMPP model, is also presented
here. The statistical characteristics of this model found by simulation, which demon-
strate its ability in capturing the long-range dependent correlations are presented
here and are also backed by an analytical study of the model.

Chapter 5 presents the traffic generator developed. The rationale for the
selection of the various models in the traffic generator is also presented. Finally
the developed traffic generator is used to study the characteristics of a queueing
system fed by aggregate multi-media traffic. The simulation results of the queueing
behaviour are presented and discussed.

Chapter 6 summarizes the results of this thesis and provides directions for
future work.

The process models and program listings of the traffic generator, developed on

OPNET are provided in the Appendix.




Chapter 2

Characterization of packet traffic

In this chapter, we explain in detail the statistical terms and notions that are im-
portant frem the perspective of traffic modeling. First we take a look at the Poisson
model and discuss the limitations of the model in characterizing packet traflic. Next,
we look at the commonly used measures of “burstiness” in the packet arrival pro-
cess. The last section of this chapter introduces the notions of long-range dependent,

short range dependent and self-similar processes.

2.1 Poisson model and its limitations

Traditionally, the Poisson model has been used as the model for characterizing
telephone traffic in circuit switched networks. The Poisson model has heen very
successful because of its simplicity; it has just a singie parameter, namely the arrival
rate A. Given the arrival rate A, the probability distribution of the number of arrivals
X, in a given time interval ¢ may be given by the relation

exp((=At))(At)*

(2.1)

The Poisson model besides being simple lends itself to analysis easily. In fact the

Poisson process plays a central role in queueing theory for this reason. The analytical
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simplicity of the Poisson process may be attributed to its intimate relationship
with the exponential distribution. For Poisson arrivals the inter-arrival time (time

between arrivals) has an exponential distribution as given below:
A(t) = dexp((=At)) (2.2)

The exponential distribution is the only distribution to possess the memoryless
property; i.c., the past history of a random variable that is distributed exponentially
plays no role in predicting its future. This memoryless (Markovian) property forms
the basis of analysis of queueing systems involving Poisson arrivals and leads to
closed form solutions.

After their successful use in modeling traffic in circuit switched systems, the
Poisson models were also employed to model traffic in early packet data networks
and subsequently in packet voice networks. However, the Poisson process is used
to describe events (or arrivals) that occur completely randomly. Any correlation
in the arrival process is not captured by the Poisson process. In circuit switched
systems, where the Poisson process was used to model the call arrivals to the system.
this was not a problem, since calls arrived from various users completely randomly
and engaged the circuits for a particular duration called the holding time of the
call. However with packet networks, a single transmission line is shared between
various calls (or connections). Hence the modeling shifts to a lower level. Though
the call arrivals to such circuits may still be completely random and thus obey a
Poisson law, in such systems, the packet arrival is not. Recent studies have shown
that packet traffic is highly correlated and possesses strong dependencies among
successive packet interarrivals [5, 6, 7, 8, 9, 10]. Intuitively, given a source (voice,
video or data) has just emitted a packet, there is a higher probability of another
arrival from the same source. Hence, as deemed by the Poisson process, the packet
arrivals are not totally random but possess some degree of correlation. The amount
of correlation may vary between the type of source (voice, video, data) and the

coding method (for voice and video) used. These studies also suggest that packet
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traffic is “bursty”, i.e., it has higher variability than a Poisson process. We shall
explore the characterization of this “burstiness” in packet networks in the next

section.

2.2 Characterization of burstiness

Various measures have been used to characterize “burstiness” in packet networks.
All these measures are used to indicate the extent by which the packet arrival process
deviates from the “smooth” arrivals, as modelled by a Poisson process. Intuitively
the term “burstiness” can be interpreted as denoting the variability in the packet ar-
rival process, leading to “bunching” of packet arrivals as opposed to much smoother
arrivals in the case of Poisson processes. Capturing of this variability is very -
portant in ATM networks, as this variability in packet arrivals is connected to the
queueing delays the packets experience [5]. Some of the commonly used measures

of burstiness include
o Peak to average bit rate ratio (PAR).
o Coeflicient of variation.
e Indices of dispersion for intervals and counts (IDI and IDC’)

PAR is the ratio of the peak to the average bit-rate or bandwidth of traffic
from a source. Since in ATM networks, statistical multiplexing is used, and sources
are allocated bandwidth around their mean bit-rate, this measure gives an intuitive
notion of the factor by which the given traffic may exceed its mean bit-rate and,
therefore, can be viewed as » measure of the burstiness of the traffic. Higher the
PAR, higher the burstiness of the traffic. However, the PAR depends on the length
of the interval over which the measurements are made.

Coefficient of variation is defined as the ratio of the standard deviation to

the mean of the number of packet arrivals. This measure incorporates some second
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order characteristics and captures the variability in the arrival process. Though
the coefficient of variation is a better measure of burstiness than PAR. in terms
of capturing the second order properties in the arrival process, this measure again
depends on the duration over which the measurements are made and as such cannot
be used as an absolute measure of burstiness of a process.

The Indices of dispersion have long been known in the statistical community as
a powerful tool in the analysis of the second order-properties of point processes. Now,
they have also been used as a measure for characterizing burstiness in the packet
arrival process [11] [5]. There are two indices of dispersion depending on whether the
point process is viewed from an interval characterization or as a counting process.
They are Inder of Dispersion of Intervals (IDI) and Inder of Dispersion of Counts
(1DC).

Let {Lx,k > 1 } represent the sequence of packet interarrival times (i.e., L,
is the time elapsed between the arrival of the first and second pack * L; is the
time elapsed between the arrival of the second and third packet,.....etc.). Then the
In-ex of dispersion of intervals (IDI), also called the k interval squared coefficient
of variance sequence, is the sequence {J(k),k > 1} defined by
kVar{L,+ Ly +...+ Ly}

E{Li+ Lo+ ...+ L))
Assuming that L, k > 1 is stationary we note that the E(L,) = E(L), Var(L,)

J(k) =

= Var(L) and thesum Ly + Lo+...+ Ly = Lyy1+ Liyz +... + Liyk. Denoting this
sum by S we have

k Var(Sy)

YR = TEET

Var(Sy)
k(E(L))?

kVar(Li) + TFc1s, Cov(Li, L,)
k[E(L))?
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2 350k = J) Cou(Ly + Luy,)

= C¥4 k>
kE(L)]
k-1 J
= C3|1+42 Z(l—z)s, k>1 (2.3)
J=1
where C? = VEG%LL;;) = VE{,‘JI)‘) is the squared coefficient of variation of intervals
and ¢, = CL‘J(&(’{:—;*Q is the autocorrelation coeflicient. For k = 1,J(k) = ('} is

the squared coefficient of variation of a single interarrival time. For A > 1,J(k)
measures the cumulative covariance (normalized by the square of the mean) among &
consecutive inter-arrival times. It isthe dependency of the ID1 on the antocorrelation
coefficient as shown in Eqn. 2.3 that makes IDI useful in describing arrival processes
and burstiness.

For a Poisson process the successive interarrival periods are independent and
identically distributed with an exponential distribution and hence the e, vanishes
for j > 1 and C% = 1. Thus for a Poisson process the IDI is identically equal to one
for all lags k.

For stationary point processes with positive correlation coeflicients, the 1D}
increases monotonically with increasing lags. The limit of Eqn. 2.3 when it exists is

proportional to the sum of all correlation coefficients, that is ,

limkeroo J(k) = C2

142 ie,} (2.4)

=1

Thus when applied to packet arrivals, the behaviour of IDI with increasing lags
can be suggestive of the existence of correlation between successive interarrivals and
the scale in which they exist. The lags at which the IDI reaches the limit give an
indication of the duration over which the correlation between interarrival times are
pertinent. (The correlation coefficients of interarrival times hbeyond this lag decrease
to 0). Also the rate at which the IDI increases with lags indicates the amount of

positive correlation existing between interarrivals. The presence of a higher positive
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correlation would result in interarrival times shorter than the mean interarrival time
and interarrival time longer than the mean interarrival time to occur together in
separate buists. Hence, higher the correlation between arrivals, higher is the 1DI
and bursuer the traffic.

The same second order properties .aptured by the IDI can be captured by
analyzing the packet arrival process from the perspective of packet counts, i.e., the
number of packets in an interval. This gives rise to the Index of dispersion of counts
(IDC) and is often preferred over I1DI since it is easier to visualize the packet arrival
process as a counting nrocess than analyzing its interarrival characteristics. The
Index of dispersion of counts (IDC) at time ¢ is given by the ratio of the variance of
the number of arrivals in an interval of length ¢ to the mean number of arrivals in
the same interval. If we let {X;,¢ > 1 } represent the sequence of packet counts in

successive intervals, then the Index of dispersion of counts (IDC) is given by

Var{X, + Xo+ ...+ X}
E{X:+ X2+ ...+ X}

I(t)

t Var(Xy) + 25 210z, Cov( X, X))

[E(Xy)]
Var(X) 2 Zi21(t = j) Cov(Xy + Xi4,) >
E(X) [E(X)] N
Ver(X) g
BN} [1 +2 g(l -3) pj} t>1 (2.5)

where Var(.XX) and E(X) are the common variance and mean of the X, and p, is
the correlation coefficient at lag j. As in the case of IDI, the IDC also depends on
the autocorrelation function (of counts, however) and this dependency makes IDC
a powerful measure in characterizing an arrival process.

tor Poisson, the counts in disjoint intervals are totally independent of each
other, hence the correlation coefficient p, is zero for all lags j. Hence the second

term in Eqn. 2.5 vanishes. Also, for a Poisson process, the variance equals its mean
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and thus from Eqn. 2.5, IDC for a Poisson process is identically equal to 1 for all
lags.

For processes having positive correlation between counts in disjoint intervals,
the IDC monotonically increases with increasing lags, as seen from Eqn. 2.5. The
limit of Eqn. 2.5 when it exists, is proportional to the sum of all correlation coefli-
cients, i.e.,

Var(X)

limyyoo 1(t) =

1 +2%) 2.6)
Further, it can also be proved that the limit of the 1DC is equal to the limit of the

IDI [12]. i.e.,

limiaee J(K) = im0 1(1) (2.7)

Thus as in the case of IDI, the behaviour of IDC with lags can be used to
gain an understanding on the burstiness of the process. A monotonically increasing
IDC suggests the existence of positive correlation between packet arrivals in dis-
joint intervals. The lag at which the IDC reaches its limit gives the duration over
which the positive correlation are existent (for lags greater than this duration, the
autocorrelation coefficient p; equals 0). The rate at which the IDC increases with
lags indicates the amount of positive correlation existing between counts in disjoint
intervals. The presence of a higher correlation would result in intervals with packet
counts higher than the mean packet count and intervals with packet count less than
the mean packet count to bunch together separately. Thus higher the correlation
between arrivals in disjoint intervals, higher the IDC and burstier the traffic.

As seen from Eqn. 2.6, the IDC has a limit only when the secund term con-
verges, i.e., the autocorrelation coefficients p, are summable. This is only true if the
autocorrelation coefficients p, approach zero faster (than an exponential). Such pro-
cesses for which the autucorrelation coefficients p, die down over a period are called
short range dependent processes. The processes like MMPP (Markov modulated

1

Poisson process), batch Poisson processes ! constructed from Poisson processes are

'These processes will be dealt with in detail in the forthcoming chapters
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Figure 2.1: Typical IDC characteristics of short range dependent and long range
dependent processes

all short-range dependent process. The IDC for these processes settles down after
increasing monotonically over a duration. The typical IDC characteristic for such
processes is plotted in a log-log plot in Figure 2.1.

There are other processes for which the autocorrelation coefficients p, are not
summable, they die down very slowly and exist over longer durations. For such
processes the IDC has uu limit and increases monotonically forever. Such processes
for which the autocorrelation coefficients p, exist over longer intervals are called long
term dependent processes.

In particular there are some processes for which there are relatively large

amount of very-long-term variation. for which the autocorrelation function p, =
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O(;~P) with 0 < B < 1, i.e., the autocorrelation function dies down as a fractional

power of the lag. For these processes the IDC in the limit will behave as
I{t)~ Kt'7# (2.8)

where K is a constant. For such long range dependent processes the fractional
component [ gives additional information about these processes. The IDC is no
longer a meaningful measure for such processes; since the IDC keeps increasing with
time. Plotting the IDC in a log-log plot, the value of the fractional component /3
can be obtained from the slope of the curve. Such processes whose autocorrelation
dies down as a fractional power of time possess self-similar characteristics. (We
shall discuss in detail about the self-similar characteristics in the next scetion).
Self-similarity is measured by the Hurst parameter H. The Hurst parameter f is

related to 3 by the relation

H=1-

R

0<f<1 (2.9)
Thus Eqn. 2.8 for self-similar processes can be rewritten as
I(t) = Kt?H-! (2.10)

Since 0 < B < 1, the Hurst parameter H is 0.5 < H < 1. Lesser the value
of 3, slower the rate of fall of the autocorrelation function, higher the burstiness.
Thus high values of Hurst parameters correspond to bursty traffic and low values
of H correspond to less bursty traffic. Hence in the vase of the self-similar traffic

burstiness is better captured by the Hurst parameter rather than the IDC.

2.3 Short range dependent, long range depen-
dent and self-similar processes

In the previous section, the short range dependent, long range dependent and self-

similar processes were introduced. In this section we give a more rigorous and
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mathematical definition for these processes. Statistically long range dependent and
short range dependent processes may be distinguished as shown below [13].

Consider a second order stationary process {X;} with autocovariance function

MY = CVOU(Xg,Xz'*‘h)
= E[(X: - E[X])(Xexn — E[X])]

variance v = 7, autocorrelation function p, = ~4/70 and power spectral density
function g(w), where for —m < w < 7,

=§1—— Z Yn exp(—1hw)

Th = /;: exp(thw)g(w)dw

Also, for each m = 1,2,-.- let {)\'t(nl)} denote the new series formed by averaging
the original series in non-overlapping blocks of m, replacing each block by its mean.

That is
X(m) - A’mf—-m+1 +-- 4 ‘Xtm
- t m

(2.11)

m
Now, the new series is second order stationary with autocovariance function 'y( )

variance v,, = 'y(() and associated variance sequence v,(c ),

For the process {X;} to be short range dependent tke following conditions

apply:

(1) 524 pn is convergent.

(i1) ¢(0) is finite.
(iii) vy, is for large m asymptotically of the form ";’ (where v’ is a constant)
(iv) the averaged process {X,('")} tends to second order pure noise as m — co.

As seen already if the autocorrelation coefficients (or equivalently the auto-

covariance coefficients) of a process vanishes bevond a certain lag it results in the
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process being short range dependent. This is denoted by the condition (1) which
requires that the autocorrelation function be summable. (With most short range
dependent processes such as the MMPP (Markov Modulated Poisson process), the
autocorrelation function decays eponentially fast, thus giving rise to summable au-
tocorrelation function). Since the power spectral density and the autocovariance
function are related, the condition (i) is a frequency domain manifestation of con-
dition (i). Condition (iii) states that the variance of the sample mean decreases
linearly proportional to the sample sizc.

On the contrary processes with long range dependence, possess the following

properties
i)’ %, pr is divergent or non-summable.
h=0 P
(i1)’ g(w) is singular near w = 0.

(ii1)’ variance of the sample mean v,, does not decrease linearly proportional to the

sample size.

(iv)’ the averaged process {X,(m)} does not tend to a sccond order pure noise as

m —» o0,

Some long range dependent processes also display another property called self-
similarity. Intuitively, self-similar phenomena display structural similarities across
all (or at least a wide range of) time scales. This self-similar property was found in
the packet arrival processes in recent measurements of Ethernet LAN data traffic
[8, 9, 10]. In the case of Ethernet LAN data traffic, self-similarity is manifested in
the absence of a natural length of a “burst”; at every time scale ranging from a few
milliseconds to minutes and hours, bursts consist of bursty subperiods separated by
less bursty subperiods. Figure 2.2 reproduced from [14] helps explain the concept of
self-similarity pictorially. Figure 2.2 (sets of figures on the left) shows a sequence of

simple plots of the packet counts for five different choices of time units. Starting with
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a time unit of 100 seconds (a), each subsequent plot is obtained from the previous
one by increasing the time resolution by a factor of 10 aud by concentrating on
a randomly chosen sub-interval (as indicated by the darker shade). The time unit
corresponding to the finest timescale is 10 milliseconds. From Figure 2.2 it is evident

that

a) plots of traffic measurements at various time scales look intuitively similar to

one another (statistical self-similarity).
b) plots are distinctively different from white noise.

c) plots show that at every time scale ranging from milliseconds to minutes and
hours, bursts consists of bursty sub-periods separated by less bursty sub-

periods.

These processes are markedly different from the traditional short range de-
pendent processes. This is pictorially illustrated in Figure 2.2 (right side) which
shows the traffic plots generated by a batch Poisson model, viewed at different time
scales. As is characteristic of a short range dependent process, the plots appear
more smooth like white noise as the time scale in which the observations are made
is increased.

Thus the most striking feature of the self-similar processes is that their aggre-
gated process {X,(m) } possesses a non-degenerate correlation structure as m — oc.
This behaviour is precisely the intuition illustrated with the sequence of plots in
Figure 2.2.

Statistically a process {X;} as defined earlicr, is said to be self-similar if it

exhibits the following properties (ay, az, a3 given helow are all constants):

(i)” as h — oo0,pr &~ a;h™P (0 < B < 1). i.e., the autocorrelation function decays

hyperbolically implying a nonsummable autocorrelation function.
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(i1)” as w = 0,g9(w) = aw=-A with (0 < A < 1). i.e., the spectral density obeys

a power law near the origin. This property is also called the 1/f noise.

(iii)” as m — oo,v, ~ azm™P (0 < B < 1). i.e., the variance of the sample mean
decreases more slowly than the reciprocal of the sample mean, a property

called slowly decaying variances.

(iv)” for exactly (second-order) self-similar processes as m — oo, pfl’") = pn and for

asymptotically (second-order) self-similar processes, as m — oo, pg’") — pp i.e.,
the process {X,} and the averaged process Xt(m) have identical correlational

structure.

The degree of self-similarity is measured by the Hurst parameter H (named
after the hydrologist, H. E. Hurst who originally found the occurrence of such pro-
cesses in river flow time series [15]). The Hurst parameter H is related to 8 by the
relation

Y

H=1-% 0<B<1 (2.12)

The Hurst parameter of the process may be estimated by obtaining the pa-
rameter G, either from the IDC plots (as explained in the previous section) or by
plotting the Variance - time curves (i.e., by plotting the variance of the aggregated
process {X,(m)} against the aggregation level m; by property (ii7)”, the slope of this
curve in a log-log plot gives ).

Since  is between 0 and 1 (0 < 8 < 1), the Hurst parameter H is between 0.5
and 1 (0.5 < H < 1). It can be seen that when 8 =1, H = 0.5 and the conditions (1)”
to (7i)” reduce to the conditions (%) to (iii) for the short range dependent processes.
Thus H = 0.5 corresponds to short range dependent models. On the other extreme
H = 1, denotes very long range dependent, self-similar processes. Lower the value
of B, (high values of H) more the long range dependence in the process and burstier
is the arrival process. Hence for self-similar process Hurst parameter may be used

to characterize the burstiness of the process, as explained before.
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Chapter 3

Traffic models for Voice and
Video

With the advent of B-ISDN, significant effort has been devoted to supporting real
time communication application such as real time voice and video along with jitter
tolerant data in a packet switched environment. In such a multiplexing environment,
the packets from many sources are statistically multiplexed on to a single high
speed link in order to exploit the bursty nature of the sources. Such a statistical
multiplexing introduces different delays to packets. Real time traffic (like voice and
video) are delay sensitive (loss insensitive) while data traffic is loss sensitive (delay
insensitive). Hence in packet networks supporting real time traffic delay is bounded
at the expense of some loss. However, in order to meet a required grade of service
the loss of packets have to be kept within a certain limit. This necessitates that
the buffer used to queue the packets in the statistical multiplexer be engineered to
keep *he delay and packet loss within specified limits. In order to do so, a thorough
understanding of the packet arrival process to the statistical multiplexer and simple
but accurate models to analyze such a system are required. Traditionally a Poisson
approximation has always been adopted to characterize the packet arrival process.

But recent studies indicate that the packet arrival process to the multiplexer is
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highly correlated and that the Poisson approximation for the arrival process results
in erroncous results since it fails to account for these correlations. This chapter
presents a study of the models that have been proposed for voice and video traffic.
A suitable traffic model for voice and video traffic is also selected to be used in

building the traffic generator.

3.1 Nature of voice traffic

Traditionally the voice source (telephone) in a circuit switched environment has
been viewed as a 2 state process. The source is either in the OFF state (on-hook) or
ON state (off-hook). The length of an off-hook period corresponds to the duration
of the call and is called the call holding time. It should however be noted that
during each call, the user (talker) is not always talking; one talker pauses while
the other speaks. Also, even when one talker is speaking, pauses occur between
utterances and there are times when the circuit is idle. Thus, active speech signals
are present on a transmission channel for only a fraction of the total conversation
time; in fact, actual measurements show that speech is pres.nt on a typical telephone
channel approximately 40 percent of the time [16]. (The fraction of the time speech
is present on the transmission line is called the activity factor). Hence during a call
there are periods of silence between successive bursts or talk-spurts.

With the digitization of speech and the introduction of packet voice networks,
Digital Speech Interpolation (DSI) techniques [17] and speech activity detectors have
been employed to remove these silent periods; voice packets are transmitted only
when there is a speech activity. Such a system can be modeled by 3 states: on-hook,
off-hook and burst. If each burst is packetized for transmission, a fourth state is
needed which represents the state of a packe* transmission during the burst state,
as shown in Figure 3.1.

The above model characterizes the single source at a higher level (i.e., at a
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(BURST)

Packetized voice with silence removal

Figure 3.1: Call level models for a single voice source

call level). Different approach has been followed to characterize the single source
at the packet level. In this model the voice source is active when there is speech
activity (i.e., the talker is actually speaking) and during these times the voice source
periodically generates fixed length packets. A voice source is inaclive when the
speaker is silent (during the course of the call) and during these times the voice
source does not generate packets, Figure 3.2. Experimental results have proved that
the duration of the active periods fits the exponential distribution very well, while
the duration of the inactive period is not as well approximated by the exponential
distribution {18, 16]. However for analytical simplicity the silence periods have

always been modeled as exponentially distributed.

Single voice source - Model 1

If T ms is the packetization time then, the packet stream from a single voice source

is characterized by arrivals at fixed intervals of T' ms during talkspurts and no
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Figure 3.2: The packet arrival process from a single voice source

arrivals during silences. The talkspurts are assumed to be exponentially distributed
with mean a~! generating a geometrically distributed number of packets of mean
a~!/T. The silent periods are assumed to be exponentially distributed with mean
B~'. Under these assumptions, the packet arrival process can either be treated
as a renewal process (since the talkspurt and silence periods are independent and
identically distributed and alternate each other) or as a 2 state (ON/OFF) discrete
time (or continuous time) Markov chain with the transition rates from ON to OFF
state equal to a and from OFF to ON state equal to 8, Figure 3.3.

For a packet of 64 bytes, coded with 32 Kbps ADPCM T = 16 ms. Typical
values of ™! = 352 ms (with a mean of 352/16 = 22 packets) and 8~! = 650 ms
[5]. The interarrival period for such a source is T ms for most of the packets and
occasionally greater than T' ms, when there is a silence period in between. Hence
the probability density function of the interarrival period, as shown in Figure 3.4

([5))is as given below,
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Figure 3.3: Two state continuous time Markov chain model

f(t) =p.6(t = T)+ (1 —p).Bexp(-p(t - T))

where p is the probability that a packet is followed by another packet after 7' me

and is given by p = exp(—aT) = 1 — aT. Therefore,
() = (1 = aT)§(t = T) + aTHexp(~B(t = T)) (1.1)
The cumulative distribution function for the interarrival time F{t) is obtained hy
integrating f(t) and is given by
P(t) = [(1 - aT) + aT(1 — exp(=B( - T))( = T) (1.2)

where U(t) is the unit step function.
The number of packets per talkspurt is geometrically distributed with mean

equal to 1/aT, and the distribution is given by
P,=(1 —aT) 'aTl i=1,2,3,...

The squared coefficient of variation (variance divided by the square of the

mean ) of an interarrival time is given by

& =(1-p)/[TB+ (1 -p)? (3.3)

¢ = 18.1 (with typical values given before). Hence the packet arrival process from
a single voice source is highly bursty as is reflected by the high value of ¢? compared

to that of a Poisson process which has a ¢? = 1.
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Figure 3 -: Probability density function for packet interarrival time from a single

voice source,

Single voice source - Model 2

Anciher approach followed in chasacterizing an individual voice source is by approx-
imating it as an Interrupted Poisson Pro.ess (IPP). Here again the talkspurt and
silence period are assumed to be exponentially distributed, but the arrivals during
the talkspurt are Poisson with a rate X, rather than deterministic [19]. This process
can be visualized as a Poisson Process which is alternately turned ON for an expo-
nential period of time and then turned OFF for another independent exponential

period of time - hence the name Interrupted Poisson Process.
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Figure 3.5: Models for voice traffic

3.2 Modeling of Statistically multiplexed voice

The superposition of arrival processes of many voice sources possesses strong corre-
lations in the number of arrivals in adjacent time intervals and, therefore, a Poisson
approximation to the aggregated arrival process will underestimate the delays expe-
rienced by the actual voice packets. Several studies ([20, 5, 6, 11, 21,22, 19, 23, 24,
25, 26, 27, 28]) have dealt with the issue of characterizin 1 the superposition of voice
sources and analyzing the behaviour of the resulting queue. All of them concur that
superposition process is not Poisson but they differ in itheir approaches in modeling
the aggregate process. The basic objective in these various models has been to ap-
proximate the superposition of many voice sources, by a suitable process and obtain
various performance measures such as the probability of loss, mean packet delay ete.
Table 3.1 gives an overview of the various models proposed in the literature to char-
acterize the superposition arrival process of voice, and the respective performance
measures, the models were used to evaluate.

The models like the MMPP (Markov Modulated Poisson Process) and 1PP
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(Interrupted Poisson Process) try to modify the Poisson process in order to capture
the correlations in the superposed packet voice traffic while maintaining the sim-
plicity of the Poisson process. These models have become quite popular both as
candidates for synthetic traffic generators and also as analytical models because of
the wealth of analytical tools added to the literature in the past couple of decades,
to analyze the queues fed by such models. Another advantage of such models is
that, once the parameters for these approximating processes (for eg. MMPP) are
obtained from the actual superposed traffic, the approximating process can be fed
to any system and the performance measures obtained either by a simulation or
analysis of the system under consideration. Yet other models like Semi Markov
models, Discrete Markov chain models, Uniform arrival and service process models
and Renewal process qualify more as analytical models only. These models attempt
at approximating the superposition process together with the underlying queueing
system under consideration and their applicability is limited to such systems only.

A brief description of each of the models used to characterize the superposition

arrival process is given in the following sections.

Markov Modulated Poisson Process

Since the superposed process consists of the aggregation of many on-off processes,
the aggregate voice packet arrival rate is a modulated process obtained by modulating
the individual voice source rate by the number of voice sources in their talkspurt.
Hence at a given time, the packet arrivals from the superposed process may be
approximated by a Poisson process whose rate is determined by the number of voice
sources in their ON state, thus giving rise to a Markov modulated characterization of
the aggregate process. Markov modulated Poisson process (MMPP) is a nonrenewal,

doubly stochastic Poisson process where the rate process is determined by the state
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Sl Model Reference Queue Solution Performance measures studied
No. characterizing Model Technique
arrival process.
1. Renewal [20} Gl/G/1 QNA mesn wating ime.
Process. [5].[6] GUGN QNA mean and standard deviation of
delay.
122} GI/DIV/K QNA packet loss probablity.
2. MMPP 121 SPP/G/1 Matrix Geometry | mean,standard deviation and survivor
function of delay.
[22] MMPP/D/1/K {technique of packet loss probabulity.
uniformization 1n|
phase type
queues
3 IPP [19] N-IPP/G/1 | Supplementary | mean waiting time.
variable method
4. Semi-Markov [23] Phase Functional queue length distnibution and packet
process(OL/ | neration and loss probabihity.
UL model) | spectral
factonization.
[24],125] | Phase Matnx Geometry | survivor function of delay
process
28} Bloclang blocking pesformance, temporal
state model behaviour of packet loss.
5. Discrete-time 127] Frame based mean packet loss probability and
Markov chain bivariate survivor function of packet loss.
Markov chain
6. Uniform amval (26] Fluid flow | differential packet loss probality.
and service equations.
del
mode [24]1,{251 | Fluid flow differential survivor funcuon of delay.
equations.
[21] Flud flow | differenuial packet loss probability.
equations.

Table 1: Models for superposition for voice sources

Table 3.1: Models
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of a continuous time Markov chain. In other words in state % of the underlying
Markov chain, arrivals occur according to a Poisson rate Ag.

In [21], [22] the superposition arrival process is modeled as a 2 state MMPP
and it has been shown that the 2 states of the MMPP are enough to capture the cor-
relations, if the parameters of the approximating MMPP are obtained by matching
several of its statistical characteristics with the original superposition . The MMPP
is a correlated non-renewal stream and hence it can account for the correlations of
the input strecam. Here, we shall derive the equation for the IDC of the 2-state
MMPP and show that it captures correlations over short durations. The equation
of IDC for the 2-state MMPP has already been derived in [21] but here we will take
a slightly different approach to arrive at the same equation.

The 2-state MMPP is a special class of the random hazard function considered
in [29] and [30]. The statistics of the MMPP like mean, variance, IDC(Index of
Dispersion for Counts) may be derived from the probability generating function of
the process. Generally state such processes alternate between two levels ); and A,,
with the sojourn times in each state forming an alternating renewal process with
interval p.d.f:s fi(z) and f,(z) respectively. If vy (v2) is the average sojourn time in
state 1 (state 2), f;(s) (f5(s)) is the Laplace transform of the p.d.f of the sojourn
timeinstate 1 (state 2) and if Rj(s) (R;(s)) is the Laplace transform of the survivor
function in state 1 (state 2), then the Laplace transform of the probability generating
function $*(z,s), of the number of arrivals N(2) in time ¢ is given by [30]

.. _ 1 14 1)
$(z8) = v + v, (s-{-/\,(l — z) + s+ A1 —z))

(i h)? ( (1 -2 )
ntra \(s+A(1-2))(s+ (1 -2))

< ( Ri(s + M(1 = 2))R3(s + A2(1 — 2)) )
(1= fi(s+M(1 = 2)f3(s + Xo(1 = 2)))
(3.4)
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Differentiating the above expression partially with respect to z and setting
z = 1, gives the Laplace transform of the average number of packets generated.

A+ A,
(1 + vp)s?

Inverting the above equation, the mean of the counting process is obtained as

BIN(1))} = (/\11/1 + ’\2"’)t

v+,

L{EINQ} =

(3.5)

The Laplace transform of variance of N(t) can be obtained by differentiating
Eqn. 3.4 twice and settingz = 1.

v+ Ae 2(M - )P
(n1 + va)s? (n +1n)2 s?

1_ v+ 1y * (s)R5(s) 36
[ ( )( = ()5 (s ))] (46)

An explicit equation for the variance may be obtained by inverting the above

L{Var[N(1)]}

equation depending on the sojourn time densities f(t) and f,(t).

Now, for MMPP

f1(t) = riexp(—rit) f2(t) = raexp(—r,t)
Ry(t) = exp(—n1) Ry(t) = exp(~rat)
1/1=1/T'| l/2=l/7'2

The corresponding Laplace transforms are

fils) = fi(s) = 7
Ri(s) = &5 Ri(s) = 35

Substituting the above in Eqn. 3.6, we have the Laplace transform of variance
as

Mrz+ X 20 — M)?

L{Var[N(t)]} (ry + 13)s? (r1 +12)?

T2

l T+ 72
s3  $(s+(r1+12))

X
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Inverting we have

7t

Aira + /\27‘1) £+ 2(h — /\2)2

Var[N(t)] = ( 1+ 72 (r1 4 72)®

2(0 = A2)?
(ry + r2)?

From Eqn. 3.5 and Eqn. 3.7 the IDC of 2-state MMPP may be obtained as

rir2(1 — exp(—(r1 + r2)t)) (3.7)

2(/\1 - /\2)21‘11‘2
(r1 4+ r2)2(Mir2 + A2ry)

I(t) = 1+

2()\1 - /\2)27‘17‘2
- (71 + 72)3( M2 + /\27‘|)t(l = exp((=(r1 + m)t)) (3.8)

The behaviour of IDC with time is indicative of the correlations in a process. For
MMPP, as seen from Eqn. 3.8, the IDC would reach an asymptote for longer lags,
after increasing initially, over small lags. The asymptote of the IDC is

2(A1 - A2)2T17‘2
(ry + r2)2(Airz + Aory)

I(0) = 1+ (3.9)

The IDC approaches this asymptote at the rate of ry + r, as seen from Eqn. 3.8.
When plotted in a log-log scale, the IDC would initially increase linearly over cer-
tain lags and then settle down. A linear behaviour of IDC with time (in a log-log
plot) indicates the presence of serial correlations. For MMPP, these correlations are
captured only for a certain interval, after that the correlations do not exist. This is
due to the fact that the autocorrelation function of a MMPP falls off exponentially
and is summable and hence ihe covariances are negligible for longer lags. As seen in
the previous chapter, these conditions make MMPP a short-range dependent model.
However capture of these short-term correlations are enough to model voice packet
traffic, as demonstrated in [21] {22].

In [21] the approximating MMPP is chosen in such a way that several of its
characteristics identically match with those of the original superposition. There are

4 parameters for the 2 state MMPP chosen, namely, the mean sojourn times in
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states 1 and 2,r7! and 37, and the Poisson arrival rates in states | and 2 \; and A,
respectively. In order to ¢ ermine these 4 parameters of the model, the following, -1

characteristics of the model are matched with those of the superposition process:
1. the mean arrival rate,
2. the variance to mean ratio of the number of arrivals in an interval (0,¢,),
3. the long term variance to mean ratio of the number of arrivals and
4. the third moment of the number of arrivals in (0, ¢;)

First, all the above characteristics are determined for the superposition arrival
process, in [21] as follows. Consider the single voice source as a renewal process
(single voice source - model 1, described earlier), then the interarrival distribution
is as given by Eqgn. 3.1. Taking the Laplace Stieltjes transform (LST) of Equn. 3.1

we have

f(s) = /000 exp(—st)dF(t) = [1 — aT + oTf/(s + B)) exp(=sT) (3.10)

Expected interarrival time of = single source = —f'(0) = T + aT'/p.

Equivalently, the mean packet arrival rate X is given by

A=1/(T+aT/B) (3.11)

Now let A(0,t) denote the number of arrivals of a stationary renewal process

in the interval (0,¢) and let
M.(8) = E[A"(0,1)
be the rth moment of arrivals in (0,¢) and let
M.(s) = L[M. (1)

where L(.) denotes the Laplace transform. Using the results of the renewal process

we have
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My(s) = A (3.12)

A1+ f(s)
Ma(s) = ey el (3.13)
My(s) = 2 1H AT (3.14)
5 (1 -f(s))

But M,(t) = At. Using Eqn. 3.11 for A gives
Mi(t) = /(T + oT/B)

The Index of dispersion for counts, I{t), satisfies

Var[A(0,t)]  Var(X)
Myt EA(X)

llmg_;m](t) = linlt_,oo

where X is the interarrival time. Therefore

Var[A(0,t)] _ 1-(1 — oT)?
My(t) — (aT + BT)

limy_yo

The values of M,(t) and Ma(t) can be obtained by numerical transform inver-
sion of Eqn. 3.14 and Eqn. 3.14.

For the superposition process, the number of arrivals is given by

A%0,1) = fv‘_, A(0,1)

where A;(0, ¢) is the number of arrivals during the interval from source i.

Hence,

M:(t) = E[A*(0,t) = n M, (t) (3.15)

var(A*(0,1)] _ Var[A(0,1)]

E[A0,0] _ E[AD,0)] (310
The third central moment of the superposition process is given by
#3(0,t) = E{[A%(0,t) = E(A°(0,¢))]’}
= n[Ma(t) - 3M(t)Mi(t) + 2M3(2)] (3.17)
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Now for the MMPP, from [21] we have the probability generating function of

the number of arrivals in an interval
g(z,t) = mexp{[R+ (z — 1)A]t}e (3.18)

where

T = ——(r3,m) (equilibrium probability vector)

e= (l,l)T

R = -1 "
r2 -T2
A 0

A=
0 A

If A, is the number of arrivals in the stationary 2 state MMPP over the interval

(0,t), then

M+ /\27'1t

A, = El. 3.1
A, = E[A{] T (3.19)
Var(A 20 — )’y 2Ny — Ap)’ryre
_(._ ')=1+ ( 12 2) T -~ ( 13 ) i AV =exp{—(r1 + 1))
A (r4+r2) (Mirz + dorm1) (4 72) (Mirz + Aam)
3 2 . +
limy 0D 200 2_)”) Tz (3.20)
A, (r1 + 72)"(Mir2 + Aami)
3rd moment of number of arrivals in(0,t;) = g® (1, ¢,) (3.21)

Equations 3.15, 3.16, 3.17 are equated against equations 3.19, 3.20, 3.2 re-
spectively to determine \j, Az, 7; and 5. Once these are known, Matrix Geometric
Techniques [31] can be used to solve the resulting MMPP/G/1 queue as dealt in

detail in [21]. In [21] the model was used to evaluate the average delay of an infinite
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buffer, voice multiplexer with good accuracy. The method however did not work
well for the finite buffer case.

In (22] two MMPP models were used to study the performance of fixed buffer
multiplexers. The first mcdel was used to evaluate the packet loss of moderate to
large buffers while the second model was used for large buffer. Here, the arrival
process is considered to consist of an underload and overload period. An overload
state accurs when the number of sources in talkspurt exceeds the capacity of the
system.

In the first model of moderate to large buffers, the variance in the arrival
process during the overload states are considered, since the packet loss in such buffers
arc expected to occur in overload states only. The parameters that are matched are

as follows

1. Value of E[Ay(0,¢)]/t at t = 0, with that of the superposition process, where
Ay(0,t) is the number of arrivals in time ¢t for the MMPP given that the

process started in the high arrival rate (H) at ¢t = 0.
2. E[Ay(0,1)]/t at t = oo with that of the superposition process.
3. The derivativeof E{Ay(0,t)]/t at t = 0 with that of the superposition process.

4. The value of the Var{An(0,t)] at t = t,, with that of the superposition
arrival process. The value of ¢,, is chosen so that Var[Ax(0,t)] match well
over a period of one second, which is the average ON/OFF period of the voice

source.

For the second model discussed in [22}, the first 3 parameters matched are
as given above and in addition Var[AL(0,t)] at t = t,, is matched with that of
the superposition arrival process. Simulation results of [22] suggest that this model
performs better than [21] for finite buffer case.

Hence, as seen above the MMPP can successfully capture the correlations

present in the superposition arrival process from many voice sources. The biggest
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advantage of MMPP is that, once its parameters are obtained from the actual su-
perposition, the model can be fed into any system and the system can be either
analyzed or simulated. Also, the MMPP model is more suited for synthetic traffic

generation becavee of its simplicity and ease of implementation.

Interrupted Poisson process

IPP is a special case of a 2 state MMPP, where one state is an ON state with associ-
ated positive Poisson rate, and the other state is an OFF state with associated rate
zero. As discussed in an earlier section, such models have been used to characterize
the packet arrival process from a single source. In a similar fashion the aggregated
arrival process can be approximated by the superposition of IPPs, called the N-1PP.
The N-IPP is an MMPP. If we denote the state of the N-IPP at time ¢ as J(!) where
J(t) = j is the number of IPPs in their ON state, then J(¢) is an (N + 1) state
continuous time Markov chain (a birth and death process). The arrival in state
of the Markov chain is Poisson with rate jA while the birth and death rates are

! and w™! are the mean ON time and OFF

(N -- j)v and jw respectively. (where 4~
time of the model). [19] adopts this approach for modeling the superposition arrival
process.

In [19], unlike the MMPP approach, the component process (arrival from a
single voice source) is characterized rather than the superposition process. Hence,
the packet arrival process from a single source is approximated as an IPP with 3
defining parameters, namely, the mean arrival rate in the ON state A, the mean ON
time v~! and the mean OFF time w™!. To determine these 3 defining parameters

of the IPP from the statistical characteristics of the packet arrival process from a

single voice source, 3 methods are considered in [19].

1) The mean interval method: The mean ON time 47!, OFF time w™! and the
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3)

mean arrival interval during ON time 1/X of the IPP are matched with the
mean talkspurt a~!, mean silence period 8~! and the packet arrival interval

period T, during talkspurts.

3 moments method: The first 3 moments of interarrival time distributions of
the IPP are matched with those of the packet arrival process. If m, ¢, k are the
mean, the coefficient of variation and the third central moment of the packet
interarrival time of the packet arrival process respectively, then from [19] we

have

2k =3¢ +1)

A (2k — 3¢t — 1)m (3.22)
_ 3(c?-1)

v (k—=3c*+ 1)m (3.23)

7y = AP 1) (3.24)

(k=3c2+1)(2k—3c* - 1)m

2 moments and peakedness method: An important characteristics of the arrival
streamn is the peakedness. The exponential peakedness function Z..,(u) is
defined as the variance to mean ratio of the number of busy servers in a
fictitious infinite exponential server system with service rate u, to which the
arrival stream is hypothetically offered. For the packet arrival process from a
single source, z.z(p) is given by (from[19])

aT(
L+

' 4

Zep() =(1-[1 = aT + ]exp(—#T)— " ula+ B)T

Hence, in this method as the name suggests, the first 2 moments of the inter-

arrival time distributions and a peakedness are matched to yield ([19])

1 (A=1)(z-1Du
A= —
m+ +1-2z

(3.25)
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2z - Dy
(z=D(c2=Dpum +c24+1-2:

2Pm(c? —1)(z— 1)’
(e =1)z=1)+c+1 = 2:)(¢2+ 1 - 22)

After having approximated the arrival procrss from a single source with the
parameters (y,w, A) determined by one of the above methods, the superposition can
be analyzed as a N-IPP/G/1 queue as outlined in [19]. Simulation results in [19]
show that the 2 moments and peakedness method is the most accurate of the 3

methods discussed.

Semi-Markov Process

In [23], [24], [25] and [28] the superposition of on-off process (i.c., individual voice
sources) is approximated by a Semi-Markov process or a two dimensional Markov
chain.

As discussed before, each of the active sources feed packets to the maltiplexer
at the rate of V packets per second and these are removed by the multiplexer at the
rate of VC packets per second. The number of packets arriving to the multiplexer
depends on the number of sources in their active state. Hence, the number of active
sources as a function of time (Jit) can be modeled as a continuous time Markov
chain as shown in Figure 3.6 ([23]). It is called the phase process in [23]. In [23]
an approximate generating function of the probability density function of the gqueue
length is computed by focusing on instants of completion of an overload /underload
(OL/UL) cycle, which is defined as follows. Let Jy be the smallest integer greater
than C (the channel capacity) and let J, = Jo — 1. Then overload starts at the

instant the number of active voice sources changes from J, to Jy (since; in such
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Figure 3.6: Phase process

a condition more than C packets arrive in a frame of C transmission slots) and
ends at the instant when the number of active voice sources change from J, to J,.
Underload begins at this time and persists till overload starts again. The period
between the start of successive overload is called the OL/UL cycle. The number of
packets in the queue at the end of the n th OL/UL cycle is denoted by Q, and the
queune at the end of n + Ith OL/UL cycle by Q.41 (Figure 3.7 [23]). Then,

P{Qn-H ‘Qm Qn-l v } = P{Qn+l |Qn}

Therefore the sequence @, can be viewed as the states of a Semi-Markov chain
whose state transition intervals correspond to the OL/UL cycle times, which are
random variables. [23] discusses two methods - functional iteration and spectral
factorization to determine the probability generating function of the probability
density function of the queue length. However [23] does not evaluate the stochastic
equilibrium distribution of the queue length.

[24] and [25] discuss a method to determine the stochastic equilibrium distribu-
tion of the multiplexer queue by approximating the superposition arrival process by
a semi-Markov chain. The semi-Markov process approximated is as described below.
Consider the phase process as shown in Figure 3.6. The following approximations

are made
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Figure 3.7: No. of active voice sources and multiplexer queue length as a function
of time
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a) when J(t) < C (corresponding to the underload state UL), the length of the
queue (when it is non-empty) decreases at the rate of V(C — J(t)) packets per
sccond. If the queue is empty it remains so as long as J(t) < C. No queue

increment is allowed .

b) when J(t) = C (this is possible only if C is an integer), the rate of change of

the queue length is zero.

¢) when J(l) > C (corresponding to the overload state OL), the length of the
queue increases at the rate of V(J(t) — C) packets per second. No queue

decrement is allowed.

Let the states of the process be denoted by (g, v;) where v, = J(t) , the
number of sources in talkspurt at time f and ¢ is the number of packets in the
queue. Transitions from (7,7) to (i, — 1) or (4,7 + 1) are called phase transitions,
since the queue length does not change. The transitions from (i,j) to (i + 1,7) is
a queuc increment and to (7 — 1,j) is a queue decrement. The process is shown
in Figure 3.8. It can be observed that the transition probabilities for the process
shown depend on the current state of the process. Hence there exists a Markov
chain embedded at the instants of phase state changes, queue increments and queue
decrements. Also the expected sojourn time in any state depends only upon the
state. Therefore the process is a semi-Markov process. The parameters of this
semi-Markov process are the packet generation rate, the mean talkspurt and silence
periods, the communication link capacity and the total number of voice sources.

To compute the equilibrium probability p,, that ¢; =7 and v, = j the following

equation from renewal theory is used in [24] and [25]

Gi; MMy
ptv j = 00 (3'28)
Y v qrMU

where

q:, = equilibrium probability for the embedded Markov chain
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Figure 3.8: Semi-Markov process
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E. =the probability that a blocking period starts in state (1K)
[
Figure 3.9: Blocking state diagram

m,, = expected sojourn time in state (i.j)

Matrix Geometric method is used to solve Eqn. 3.28 in [24] and [25]). Com-
parison of the results obtained by this approach with the simulation shows that the
mo.'| overestimates the probability that the queue is empty. This is due to the
approximations underlying the model.

[28] also approximates the superposition as a semi-Markov chain. However,
the system considered is a finite buffer one and the emphasis is placed on the packet
loss which is incurred only when the buffer is full. If A" is the total buffer capacity in
packets and m, 5, the equilibrium probability of 7 voice calls in talkspurt when the
buffer is full, then we have m, - = 0 for i < C, since the buffer will not be full when
the service rate is greater than the arrival rate. Hence the packets would be lost only
for states greater than C. [28] considers these states alone and calls it the blocking
states (Figure 3.9 [28]). Focusing on the blocking states analytical expressions are
derived in [28] for the temporal behaviour of packet loss. Results show that the
packet loss rate changes slowly and has large fluctuations. Increasing the buffer size
merely extends the non-blocking periods and thereby reduces the overall average
packet loss rate. However, once a blocking period occurs, the length of the period

as well as the packet loss within this period becomes irrelevant to the buffer size.
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Discrete time Markov model

In [27], the aggregation of on-off processes is approximated by a a Discrete time
Markov model. Here again the state of the process is the tuple consisting of the
number of sources in talkspurt and the number of packets in the queue. But the
sampling is done after every frame and hence the process is in discrete time domain.
The state of the system at the beginning of the nth frame is given by (¢,,.5,) where
t, is the number of users in talkspurt and b, is the queue length,

Such a system is studied in [27] for a finite buffered voice multiplexer. Two
schemes for discarding the packets are considered. In the first scheme a buffer of size
I is properly selected so that all the packets within the buffer can be transmitted
within their time (delay) constraint. All the packets arriving after the butler is full
are discarded. In the second scheme. all the arriving packets are stored in the bufler
and at the end of a frame, the system randomly selects a packet to drop from the
arrivals in the frame. This process is repeated until all the remaining packets meet
their delay constraint. This scheme balances the packet loss for cach user.

For both the schemes the transition probability,
Pkt = Pritas1 = kyboyr = |1, =1,b, = j} 0<i, k<N 0<y) 1<K
and the equilibrium state probability
Tam = Pr{t =n, b=1m} 0<n<N, ;0<m<Kk

in both the schemes are determined by considering the gueuc length transitions from

b, to b, for the following four cases

o case I: b, > C and t, < K —b,+ 1; enough packets in the quene to keep the

server busy and not too many arrivals to cause overflow.

e case 2: b, < C and t,, < K — b, +1; not ensugh packets in the system to keep

the server busy and not too many arrivals to cause overflow.
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e casc 3: b, > C and ¢, > K - b, + 1; the server keeps busy a nd overflow
may occur. Due to overflow some packets will be discarded. Let the number
of packets discarded D, = d. Then D, is a random variable with probability

density function ¥p, (d).

o case 4: b, < C and t, > K — b, + 1; the server may go idle and overflow
may occur. Let D; be the number of packets discarded and R the number of
packets served in the frame (then the server is free for C' — R timeslots during
the frame). Then R and D, are random variables with a joint probability

density function Op p, (r,d).

[[27] discusses the computation of the pdfs ¥p,(d) and Ogp,(r,d) for both the
schemes. Results show that scheme 2 performs better than scheme 1 as it spreads

the packet loss across the users.

Uniform Arrival and Service model

The Uniform Arrival and Service (UAS) model, which assumes that the information
flow in and out of the buffer is uniform rather than in discrete packets was used by
[23] for modeling data traffic. In the UAS model the source generates information
to the transmitter at a rate of one unit of information per unit time and the server
removes information from the buffer at a uniform rate not to exceed C units of
information per unit of time. As in the semi-Markov process of [24], while the
system is in state J(f) = j > C, the buffer content increases at the rate of j — C
units of information per unit of time (if the queue reaches its limits it will stay
on its limit) and when the system is in state J(¢) = j < C, the buffer content
reduces at the rate of C — j units of information per unit of time as long as the

buffer is nonempty (if the buffer becomes empty it will stay empty)[26],(24] and [25]
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approximate the superposition arrival process by this model.

In [26] the UAS model is used to model a finite bufler multiplexer. The
equilibrium distribution is des~ribed by a set of differential equations, which together
with a set of boundary conditions can be solved to yield the equilibrium distribution
of delay and packet loss. The method is briefly outlined below.

If P,(t,b) be the probability that at time ¢ there are b packets in the quene
and 7 lines are in their talkspurt, where 0 <7 < Nt >0and 0 <O < K. If 8t be a

small time interval, then from Figure 3.6 we have

P(t+3dt,b) = P {t,b—(i=C)t}p(i—1,1)ét
+P{t, b= (1 = C)8t}p(i + 1,1)d¢
+P{t,b— (1 — C)§t}(1 — p*(1)8t) + O(8t) (3.29)

where
p () = plisi +1) + pliyi — 1)
p(t, e+ 1) =(N—-1)p i # N
p(i,i—1) =ta 1 #£0
Dividing Eqn. 3.29 by 6t and letting §t — 0 we get
OPRD 4 (- )?PUD i1y

+p(l + lai)PH-l(tab)
—p"(4) Ai(t, b) 0<b< A (3.30)

To find time independent equilibrium probability lim,,., P (¢, b) define I,(b) =
lim, o Pi(t,b), then Egn. 3.30 becomes

dF; : : . ) .y .
(z - C)-EB— = p(i — 1,2)Fio1 (b)) + p(i + 1,2) Fi44 (b) — p" (2) Fi(b) 5 0<b< i
(3.31)

Eqn. 3.31 can be written in matrix form as
DdF(b)/db = MF(b) 0<b< K (3.32)
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where

D = diag{=C,1 = C,2—C,-+---- N -}

[ —p(0) p(1,0)
p(orl) _p.(l) 77(2,1)
p(1,2) -p"(2) p(3,2)

pP(IN-2,N-1) —p"(N-1) p(N,N-1)
p(N-1,N) —-px*(N)

The solution to the differential Eqn. 3.32 is
N
F(b) = exp(zib)ardi 0<b<m (3.33)
k=0
zx = eigen value of D™' M
¢ = right eigen vector of D™' M
The a; are coefficients got by solving boundary conditions. For an infinite
buffer case, closed form expressions exist for zj, ¢ and ag, as given in [23]. In the

case of finite buffers [26] discusses a method of formulating the boundary equations

to solve for ¢y, zx and ay.

Renewal Process

As observed earlier, the packet arrival process from a single source can be modeled
as a renewal process with exponentially distributed talkspurts alternating with ex-
ponentially distributed silence periods. In [20, 5, 6] the superposition arrival process

is approximated as a renewal process with inflated coefficient of variation for the
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interarrival time. In [5] it has been noted that the main cause for deviation of the
superposed packet arrival process from a Poisson process is due to the high vari-
ability of the interarrival times between the arrivals. This variability is captured
in the approximating renewal process by a high coeflecient of variation. Then, a
2 parameter approximation technique as in [32, 33] called the Queucing Network
Analyzer (QNA) approach is adopted. In this method the superposition arrival
process is characterized by 2 parameters; one is the average arrival rate (A) and
the other is the squared coefficient of variation of the interarrival time (¢?). The
squared coefficient of variation of the interarrival time of the renewal process may

be approximated from the original superposition process by one of 2 methods:[32]

e Stationary interval method:Here the moments of the renewal interval is ap
proximated with the moments of the stationary interval in the superposition

arrival process.

o Asymptotic method: In this method the momeuts of the renewal interval is
determined by matching the asymptotic behaviour of the moments of the sum

of successive intervals.

The formula for the squared coeflicient of variation of the interarrival time distri-
bution (c?) in the approximating rencwal process for the aggregate packet arrival

process is as given below ([5])
ci:wc?-{-(l — w) (13.34)

where

¢} = squared coefficient of variation of a single voice source

w=1/[1 +4(1 = p)*(N - 1)]
= traffic intensity

N = number of sources multiplexed

52




'The QNA approximation as given above selects an increasingly higher squared
coefficient of variation c2 as N increases (when p is kept constant), to directly capture
the effect of covariance. (See Figure 5 of [5]).

The other parameter A of the approximating renewal process can be found as
A = N ) where ), is the mean arrival rate of a single source.

Let 7 and ¢? be the mean and squared coefficient of variation associated with
the packet service time. (¢2 = 0 if the service time is constant)

Now, given the mean and squared coefficient of variation of the interarrival
and service times (A, c2,7,c2), the congestion measures for the queue such as the
mean and standard deviation of delay can be obtained by regarding it as a GI/G/1
queue (with renewal arrival process). See [34] for specific formulas. The mean delay
calculated by this model in [5] seems to agree well with simulation results especially
at high traffic intensities, where the Poisson approximation fails.

[22] also uses this renewal process model with QNA approximations but intro-
duces an additional heuristic needed to handle finite buffers. Given the distribution
P(Q. = i) (probability that the queue length is equal to i) for an infinite buffer
case, P(Q; = K) for a multiplexer with K buffers is approximated in [22] by

P(Qw = K)
P(Qw S K)

where P(Q. = K’) is obtained as outlined before. An approximate method for

P(Qx = K) = (3.35)

solving Eqn. 3.35 is given in [22].

3.3 Selection of a voice traffic model

In the previous section, the various modeling approaches used to model the super-
position of voice sources was presented. As seen there, three main approaches have
been adopted for the representation of the superposition of (on-off) voice sources.
One approach explicitly takes into account the individual components of each of

the sources (this is the approach adopted in modeling the aggregate arrival process
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as IPP, Semi-Markov process and Discrete state Markov process). The second ap-
proach is that of matching few of the statistical parameters of the aggregate arrival
process with that of a suitably chosen arrival process such as that of MMPP. The
last approach resorts to a fluid flow approximation (UAS models). The first ap-
proach has the limitation that the computational complexity dramatically increases
in practical cases. The fluid flow approach cannot account for the packet level. The
second approach is more elegant and versatile. This approach approximates the
superposition arrival process by a simpler model. However, the correlations present
in the aggregate arrival process are well captured by this model (MMPP). As was
illustrated in the previous section, the MMPP is a short-range dependent model and
captures correlations in the arrival process over short intervals. Since correlations in
the voice traffic also exist only over short intervals [21], the MMPP is ideally suited
to capture these correlations. Once the parameters of the 2-state MMPP are derived
from the actual superposition, the MMPP model may be used to study the queueing
behaviour of the aggregated arrival process. Also, being a very simple model, the
MMPP is an excellent candidate for synthetic generation of voice traflic. Hence in
building the traffic generator we select the 2-state MMPP model for characterizing,

the arrival from the superposition of many voice sources.

3.4 Nature of Video traffic

The introduction of BISDN/ATM technclogies to broadhand networks ard the ad-
vancements in source coding algorithms tor video, have made feasible the use of
variable bit rate coding for video transmission. This would engender a flexible
communication network with a high efficiency, as network resources can be shared
dynamically by numerous users.

A VBR video codec produces a variable bit rate output by adapting the gen-

erated bit rate to the the local and temporal image complexity, while maintaining a
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Figure 3.10: Rate Distortion Curves

constant image quality. This can be observed from the rate distortion curves shown
in Figure 3.10. These curves depict the variation in the output bit rate as a function
of distortion in the output. From the figure it is evident that in order to maintain
a low distortion (or high quality) in the output, a higher bit rate codec is required,
however a lower bit rate codec produces high distortion in the output. While a con-
stant bit rate coder, produces a constant bit rate output at the expense of quality,
a VBR codec maintains a constant quality by varying the bit rate.

The advantages of employing VBR video codecs are many. First of all at low
bit rates, use of constant bit rate video codecs, produces a highly varying picture
quality which is particularly annoying to the viewer. Use of VBR video codecs helps
maintain a constant quality. Secondly, at high bit rates use of VBR video yields
high bandwidth gains by using channel sharing among multiple users. In certain
cases VBR coding also alleviates the need of sophisticated coding algorithms, as the

same effects in picture quality could be achieved by using higher bit rates.
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VBR video sources are highly bursty. The burstiness of VBR video sources is a
subjective measure [35] that depends on the content of the video (e.g., picturephone,
teleconference, broadcast television etc.,) and the encoding scheme used (DCT, Mo-
tion compensated DCT, DPCM, MPEG etc.). As the video signals are expected to
occupy most of the bandwidth in the future broadband networks, accurate modeling
of a VBR video source based on its statistical characteristics is required.

The characteristics of VBR video depend on the information content of the
picture and the encoding algorithm used. The bit rate of the coded video is depen-
dent on the motion activity in the scene, namely low, medium and high motion. Due
to the continuity of motion within a scene only small portion of the picture changes
from frame to frame. Hence variations in bit rate are smaller within a scene. The bit
rate of the coder also depends on the changes in the content of the video (like cuts,
scene changes, etc.). Highest bit rates arise during scene changes and last only one
or two frames depending on the coding algorithm. However, the data rate output
of a VBR video encoder does not actually reflect the changes in the information
content of original video signal, since the compression of the bit rate achicved hy
various algorithms are different.

The data buffering scheme used by the encoder also influences the bit rate
variations of the encoder. For example in an encoder that uses frame buffering, all
the variations arising from the locality of an image within a frame are smoothed,
whereas in a multi-frame buffered codec variations in bit rate between frames are
also smoothed.

There is a strong correlation among the bit rates of successive frames due to
the nature of actual video scenes and interframe coding. Correlations that occur
because data on part of an image is highly correlated with data on the same part on
the next line are called spatial correlations. Correlations that occur because data
on one part of an image is highly correlated with data on the same part of the next

image are called temporal correlations. Spatial and temporal correlations together
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Type Time scale Causes Characteristics

Longterm  vanabihity] Several seconds Scene chang:s Discontinuous variation,diffenng

(muliple scenes) statistical charactenstics before

and after the change
Short term vanability | Between 1 frame Subject motion, | Smooth variations with temporal
(intrascene ) period and several camera motion, | correlations,with occasional large
seconds, patiern varation. | vanations due to subject and

camera motion.

Intraframe vanabilty | Less than | frame Spatial vanation | Vanations that have a peniodicity
period of the due 1o image scanning or block
characteristics processing.

within an image.

Table 3.2: Classification of bit rate variations

with the encoding scheme greatly influence the bit rate output of VBR video codec.

Table 3.2 adapted from {35] summarizes the bit rate variations that occur in
a VBR video codec and the correspondiig time scale they occur. Hence modeling a
VBR video source is a difficult and complex task as the bit rate process possesses a
high degree of variability at different levels. Thus, modeling of a VBR video source
may be done at one of 3 levels, namely at a scene level, frame level or intraframe

level, a< depicted in Figure 3.11.

3.5 Mode:ling of video traffic

Various models have been proposed in the literature to characterize VBR sources
with scene changes and without scene changes (at a frame level), Figure 3.12. How-
ever the characteristics of VBR video at the intraframe level have not been well

understood. The following sections give a brief overview on the various models
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Figure 3.11: Modeling of VBR video
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Video Traffic Models

|

Models of Intrascenc Variation Models of Interscene Variation

l
T T

Continuous timeMMPP Autoregress ARMA TES
discrete state Process
Markov Model

Continuous time MMPP Markov modulated Model Switched Fractal

discrete state AR process 9 Source
MarkovProcess Indices

Figure 3.12: Models for video traffic

proposed to characterize interscene and intrascene variations.

3.5.1 Models of Intrascene variations (i.e. without scene

changes)

These models are applicable to video scenes with relatively uniform activity levels,
with few scenc changes like video conference scenes showing a person talking. Un-
der these circumstances the variations in bit rate is small and the bit rate proce-s
possesses short term correlations only. In fact the study of such bit rate processes
have shown that they possess bell shaped nearly normal distributions [s5], [36], [7],
[37]. [38],[39]. The autocorrelation function of the bit rate process closely resembles
a negative exponential (for a frame buflered codec). Based on these a few models

have been suggested to characterize intrascene variations.
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Figure 3.13: Poisson sampling and quantization of the source rate

Continuous time discrete state Markov model

The bit rate process A(t) from a video source is modeled as a continnons Lime,
discrete state, Markov model in [7].710]. The spectrum of possible values of bit rates
from the video source is quantized into M discrete levels (where state M corresponds
to peak bit rate level) of step-size A and these M 41 levels (including 0) correspond to
the state space of the Markov process. Now, the continuous process A(t),! deseribing
the bit rate of the video source at titne ¢ is sampled at random points in the time
domain, and is quantized into the nearest level A'(¢) (Figure 3.13). Hence the process
can be seen as switching between different states ( as determined by the value of
M(t)), spending exponentially distributed time periods in each state (due to the
Poisson sampling). Since the process being modeled is of uniform activity, only

state transitions to nearest neighbour states are allowed. The approximation of

Isince the bit rate is of the order of several Mbps and the packet length is small, this model

assumes the data as a continuous bit stream, ignaring the effects of packetization
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Figure 3.14: State transition rate diagram of Continuous time, discrete space,
Markov process

A(t) by X(t) can be improved by decreasing the quantization step size A (and thus
increasing M) and increasing the sample rate.

This model can be used to model both a single video source or a multiplexof N
video sources. In the latter case the state space is formed by quantizing the aggregate
rate of the multiplex An(2) into M discrete levels. As before state changes between
nearest neighbours are only allowed. Hence it results in a birth death process whose
state transition rate diagram is shown in Figure 3.14. The exponential transition

rates between states 7 4 =nd ;A are given by

ol = (M—i)a  i<M (3.36)
Yoot = B i>0 (3.37)
Yo = 0 (3.38)
y =0 li—j|>1 (3.39)

The birth death process of Figure 3.14 can be considered to represent a popu-
lation of ‘mini-sources’, where each mini-source is as given in Figure 3.15, i.e., each
mini-source is in one of the states ON or OFF. When ON it generates information
at the rate of A bits/sec. Then the probability the system is in state k.4 is same

as the probability that there are & mini-sources out of M mini-sources in their ON
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Figure 3.15: Mini-source model

state. It can be shown that A\ (2) has a binomial distribution

M
P{Xy(t) = kA} = 1= p)Mt (:3.40)
k
where
) = (4]
P= o+
E(Ay) = MAp (3.11)
Ch(0) = MA*p(1 -p) (3.412)
Cy(t) = CM(0)exp(—(a+ B)T) (:3.43%)

Here, the parameters of the continuous time, discrete state Markov maodel
namely o, 3 and A can be determined by matching the mean [2(Xy), variance
Cp(0) and exponential autocovariance Cp(7) as given by Equations 3.41 to 3.43
with the corresponding measured values. The number of mini-sources required for
a good approximation of a multiplex of N video sources was found experimentally
to be 20N [7], [40].

As already mentioned Markov models lead to tractable analytical treatment.,

In [7], [40] a fluid flow analysis has been carried through to arrive at the survivor
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function of buffer occupancy.

MMPP model

Markov modulated Poisson process is a doubly stochastic Poisson process, whose
Poisson rate depends on the state of the underlying Markov chain. As seen in
the section on Voice traffic a MMPP (2-state one in this case) may be used to
approximate the superposition of many on-off sources. The same approach may be
used to model video traffic, since according to the Continuous time, discrete state
Markov model (Maglaris model) discussed above, video traffic may be modelled as
emanating from many mini ON - OFF, constant rate sources. Thus video traffic
may also be characterized by a MMPP model. MMPP is a correlated non-renewal
stream and thus can capture the correlations over certain durations.The parameters
of the MMPP may be obtained by matching some of the statistical characteristics
of the MMPP with that of the arrival process. Several matching techniques [41] [42]
[43] [1] have been proposed to obtain the parameters of the resultant MMPP, when

the constituent ON-OFF processes are bursty.

Autoregressive process model

An autoregressive process model of order M (denoted AR(M)) is one which pre-
dicts the future values of a time series by regressing on the past M sets of values.
Such process models have exponentially decaying autocorrelation and a Gaussian
distribution. Based on this, AR process was suggested as a model for VBR video in

(7). {40}, (38}, [37].
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An autoregressive process model for VBR video is defined as
M
A(n) = }: anA(n —m) + be(n) (3.1:1)
m=1
where A(n) represents the source bit rate during the nth frame, A is the order of the
model, e(n) is a Gaussian random process (v;ith mean 5 and variance 1). a,,(m =
1,2,... M) and b are constants. For M = 1 we have the first orde AR process given
by
A(n) = aA(n — 1) + be(n)

(Since the value of the sequence depends only on its previous instant it is called a
continuous state Auto Regressive Markov model). The parameters of this model are
a,b and the mean value 7 of e(n).

The mean and autocovariance of the AR process are given by

E()) = _bn (3.15)

1l —a

2
Cn) = l ﬁ(ﬁa" n>0 (3.46)

Hence the parameters a,b and 7 are obtained by matching the Equations 3.45
and 3.46 with empirical data.

Due to its simplicity and accuracy the AR(1) process is an excellent candidate
for modeling VBR video sources. But it does not lend itself to a queucing analysis
easily. Hence, this model has its utility limited to simulations.

Another important utility of the AR process is the fact that it can be used to
statis‘ically characterize a multiplex of video sources [35]. If A(n) denotes the signal
which results from multiplexing N, AR processes, Aj(n), Adz(n), Az(n), ... An(n), we

have
N

Aln) =) A(n)

1=1
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If A,(n) arc mutually independent then the mean and variance of the resulting

multiplex are given by

N
E[A(n)] = Z: E[M(n)]
E[A(n)A(n+ S)] = i E[X,(n)X\,(n + S)]

Hence, if A,(n) are identical AR processes, the resulting multiplex A(n) is also
an AR process with parameters a and b same as the original AR processes and whose
mean and variance are N times those of A,(n).

Though first order AR processes AR(1) were found to be reasonably accurate
in modeling VBR video sources, a better matching may be achieved if the order of
regression is increased. In this case the autocovariance of the resultant process is
a sum of several exponentials. [37] proposes an alternative solution to achieve the
same effect. Here the bit rate per frame A(n) is modeled as a sum of N, AR(1)
processes (3,(n). i.e.,

N
An) = z B.(n)
1=1

where

Bi(n) = a,x,{n—1) + bie,(n)

e,(n) are Gaussian random processes with mean g, and unit variance. It is shown
that a choice of N=2 provides a fair accuracy/complexity tradeoff. The method of

determining the parameters of the process is discussed in [37)

Autoregressive moving average models
In [44] an Autoregressive moving average (ARMA) model has been proposed for

characterizing the output of a non-frame buffered video codec. The ARMA models

have autocovariances that exhibit recorrelation. Since the output bit rate from a
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non-frame buffered video codec also exhibits recorrelation (temporal and spatial),
ARMA models serve as a better choice to model the output bit rate process from
a non-frame buffered video codec. The ARMA model was used to represent the
cell arrival in intervals of typically 100us. The number of cells in the ith interval is

modeled by a discrete state, autoregressive moving average process, X, given by
Xi=g(aZi-m + Y+ v) witha < 1 (3.17)

where Y; and Z, are a sequence of correlated Gaussian random variables with zero
mean (since a white noise sequence ¢,, with zero mean is applied at the filter's
input). The moving average part, i,e., the sequence Y, models frame correlations and
the autoregressive part, Z,, models scene and frame correlations. The sequence of
uncorrelated Gaussian random variables v,, with zero mean, models the white noise
stochastic component. g(.) is a Zero memory Non linear (ZMNL) cperator which
converts the output of the ARMA filter into strictly positive random variables. The

method of parameter estimation of the ARMA process is described in detail in [44].

TES models

I'ES (Transform expand sample) [45, 46, 47] is a non-parametric method which
can accurately capture the histogram and approximate autocorrelation function of
any data set. TES methodology assumes that some stationary empirical time series
(such as traffic measurements over time) is available and then it tries to construct
a model such that the marginal distribution (or histogram), leading autocorrelation
and sample path realizations (histories) matches with the empirical values quite
well.

TES processes come in 2 flavours: TES* and T ES~ process (i.e with positive

and negative lag - 1 autocorrelations respectively). T ES* gives rise to the sequence
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{U}} given by

" <Ur,> if n>0

while T ES~ gives rise to the sequence {U,; },

Ur = ur n even (3.49)
1-U}r n odd

Here, U is distributed uniformly on [0,1); {U,} is a sequence of 1ID random

variables, independent of Uy, called the innovation sequence and angular brackets

denote modulo - 1 (fractional part) operator < ¢ > = ¢ —max { integer n: n < r}.

The sequences {UF} and {U;} of the form Eqn. 3.48 and Eqn. 3.49 are called

background sequences and give rise to a sequence of stationary random variables with

uniform marginals on [0,1) and different autocorrelation structures. For practical

purposes, transformed TES processes {X} and {X}, obtained from Eqn. 3.48

and Eqn. 3.49 by some transformation D (called a distortion) are of importance.
i.e.,

Xa =Dy Xy =D(Uy) (3.50)

The sequences {X;}'} and {X } are called foreground sequences . The idea is to
create suitable foreground sequences with marginal distributions matching the given
(empirical) distribution, by using the inversion method [48]. For a given distribution
function F, the inversion method uses distortion D = F~! to generate stationary
sequences {X'} and {X,,—} with marginal distribution F. In the empirical TES
methodology, the distortion is effected in two stages. First, in order to “smooth”
TES sample paths, a family of transformations called stitching transformations S,
0 <€ <1 isemployed.

¥, if0<y<¢

Se(y) = (3.51)

o5 ifé<y<l
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Processes of the form {S¢(U})} and {S¢(U;)} are called stitched TES pro-
cesses. For 0 < £ < 1 the effect of S¢ is to render the sample paths of back-
ground TES sequences more “continuous-looking”. In th: second stage the inver-
sion method is applied to the stitched processes to generate the foreground sequences
with matched distributions as the given distribution F. Thus the distortion is given
by

D=F(S(U7) or  FU(S(U})

However TES methodology models empirical densities as histograms, as it explained
in [46].

TES methodology also fits the autocorrelation of the empirical data with that
of the model. This is carried out by a heuristic search for a pair (£, f,). (where €
is a stitching parameter and f, is an innovation density) such that the autocorrela-
tion function approximates its empirical counterpart. The search can efliciently be
carried out using the visual, interactive software environment called TEStool [19].

GOB (group of block) level source model, for compressed H.261 standard VBR
video over a local area network was constructed in [46, 45]. The GOB is a suitable
unit of packet transport. (Each DCT coded frame is divided into 12 group-of-block
coded subscreens). At the GOB level the bit rate process is characterized by an
autocorrelation that is periodic both at the spatial GOB scan rate and at temporal
frame rate. In order to fit a TES model to this data, the raw data is first transformed
into a new sequence called the residual sequence { R, } which has a faster decaying
autocorrelation function. This transformed sequence could effectively and casily be
fitted with a TES model as explained in [46, 45].

TES models can be used to generate synthetic streams of realistic traffic to
drive simulations of communication networks. However they suffer from the handi-

cap of not leading to tractable mathematical analysis.
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3.5.2 Modeling scene changes

These models are useful in describing video sources with high motion and scene
changes as in broadcast applications. Models that are proposed for video sources
with scene changes must capture both short term and long term correlations. In
this section we examine a few models that have been proposed to characterize video

sources with scene changes.

Continuous time, discrete state, Markov process model

This model proposed in [50] is an extension of the model by [7] (discussed in section
3.2). Here, as in [7] the source changes between various fixed rate levels, with
exponentially distributed times in each level. However, here, the possible data rate
levels are built from a linear combination of two basic rates, a higher rate A, and a
lower rate A;. This model can represent the bit rate from a single video source or an
aggregate of N video sources. The state transition rate diagram for an aggregate of
N video sources using this model is shown in Figure 3.16. (The labels in each state
indicate the data rate in that state). The basic rate 4, corresponds to parameter A
in the model {7]. Transitions based on A; model the short term correlations, while
transitions based on A, model the long term correlations. Hence with no transitions
based on A, this model reduces to the model of intrascene variations as in [7]. For
an aggregate of N video sources, there are NM + 1 low rate levels and N + 1
high rate levels, where M is chosen arbitrarily. The parameters of the model are
determined by matching the theoretical values with measurea values. For N = 1,
the parameters ¢ and d are determined by matching the fraction of time spent in
high activity level g(= ¢/(c+ d)) and the average time spent in high activity level 3

with the actual measured data. For determining a,b, A; and A, the autocovariance,
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variance, mean ratio (v)(ratio of average bit rate in high level to that of Ic  level)
and the overall mean Lit rate X as given by Equations 3.52 to 3.55 are matcned with

the actual measured values.

C(r) = C(0)exp(—(a+b)7) (3.52)

C(0) = Np(l--p)A? where p = 235 (3.53)
NpAi+. A

= 3.54

7 N})Al ( )

A = NpA/+qA, where g = = (3.55)

For the sake of analysis this model can be viewed as a superposition of siinpler
ON-OFF mini-processes, NM of the type shown in Figure 3.17a, and .V of the type
shuw.: in Figure 3.17b, then the state of the aggregate process model 1s the couplet
(,7) where 7, j denote the number of each type of mini-processes which are in the
ON state. A fluid flow analysis (as in [7]) has been carried out in [50] tc determine

the survivor function of buffer occupancy.

Markov modulated AR process

As seen before, an AR process captures short teim correlations quite accurately . In
[51], [52], [53] an AR process with tir -e varying parameters is proposed as a model to
characterize the bit rate process from a motion adaptive video codec (one that adapts
the enroding scheme to the motion in the scene picturized). The time dep 2andence of
the parameters of the AR process captures long term correlations. According to this
model the no. of bits in a frame is given by a first order Gaussian AR process whose

parameters are determined by the state of a Maikov chain(Figure 3.18). Thus each
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state of the Markov chain, with its own set of parameters, represents the various
classes of motion. A Gaussian density was used because it was found from the study
(51, 52, 53] that the bit rate distribution of the VBR coded full motion video can
be represented by a composite Gaussian PDF.

In this model, the range of bit rates are separated into N adjacent intervals
demarked by thresholds 4, 2 = 1,2,...N — 1 and 0 < 4 < 92 < yn-1. These bit
rate intervals form the state space of the Markov chain. i.e., state 1 coiresponds to
the range 0 < ), < 7 and state ¢ corresponds to range v,—1 < Ay < 7y, where A,
represents the number of bits in frame n. If S,, denotes the state of the process at

frame n, then the model can be represented mathematically as

y o 4 WAt + Gli). %) I Sy = Sy = (3.56)

Gn(i), v(i)) if S, # Suct; Su=i
where G(.) denotes a Gaussian random variable with specified mean and variance.
n(i) and v(z) denote the mean and variznce of A, conditioned on state :. i.e.,
(1) = E[M]S. = 1) v(i) = var(A, S, = 7). a(i) is the correlation coefficient
between the bit rates of two successive frames when the Markov chain is in state :.

Increasing the number of states N, results in an accurate model at the expense
of increasing its complexity. The number of parameters of the model depends on the
number of states, as a set of parameters characterize the AR process in each state.
The parameters of the AR process in various states are obtained by matching the

following statistics with the measured values, for each state:

p(3)

(a) mean bit rate in state 7,7(i) = i——_——(—l(—i)- (3.57)
: : _ o(i)
(b) variance of br’ .te in state {,v(i) = ———= (3.58)
1 —a?(7)
20%(2)

(c) measure of correlation of bit rates, D?(i)
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where D?(7) is the measure of correlation of bit rates between two successive frames.
ie.,

D*(i) = E[(A = An = 1)%|S, = Suy =]

Hence the parameters of the AR process in each state, namely, y(i), o(i), and a(i)
are obtained from Equations 3.57 to 3.59.
The duration of a state is geometrically distributed with mean F.as given by

the following p.d.f.,

0, :
Fk)= =5 (1-0)"  (k=12..)

where k is in terms of the number of frames. The quantity  and 7, , ( probability the
next state is j given that the present state is 7) can be obtained from measurements

directly. Then the transition probability matrix P can be obtained as

-0, bimz Oima
Omar 1 —0; 0ymp3

Osmsy  O3may 103

p= (3.60)

If the vector p = [p1,p2, - . . px] denotes the steady state probability (obtained
by solving p = p P and ¥_p, = 1) then the number of bits generated according to
this model has the following PDF

N
f(z) =3 pi G(n(i), v(3)) (3.61)
=1

This model can also be used to characterize an .ggregate of N sources. As
before, though this model is a good candidate for simulation, it does not provide a

suitable framework for a queueing analysis.
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Model of Indices

A novel method of video traffic characterization, that does not depend on the vari-
able bit rate coding algorithm employed is discussed in [54]. Here, a set of simple
parameters called the indices that sufficiently characterize the video sequence are
identified by working on the uncoded video sequence. The bit rate process from any
coder is then predicted from a linear combination of the corresponding indices.

The parameters developed arc grouped into 3 classes. One is derived from
the histogram of the pixel information. The second is derived from the spatial
correlation of the pixel values in a frame and the third set of indices are derived
from the temporal correlations of the pixel values along the time axis.

The first class of parameters are derived from histogram of the pixel values of
a single frame. Three indices are considered under this category, namely the average
index (which gives a measure of the brightness in a frame), variance index(which
gives a measure of the variability of the pixel values in a frame) and the entropy
index (which represents the best possible compression performance for the codes
that use first order statistics of the pixel values).

For the second class of parameters based on spatial correlation, the indices
chosen were vertical entropy (which is entropy of difference in intensity between
adjacent rows in a pixel array of a frame) and the horizontal entropy index (entropy
of the difference in intensity between adjacent columns in a pixel array of a frame)

For the third class of parameters, based on temporal correlation, the indices
chosen were diflerence index (reveals the difference in the amplitude of pixels be-
tween consecutive frames), motion index(the magnitude of the displacement vector
correspondiug to the pixels within the frame) temporal entropy index (entropy of
the temporal difference in the vertical consecutive frames).

Study of the several coding schemes in [54] revealed that the output bit rate

process was strongly correiated with some of the indices. Hence the output bit rate
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Pa

Figure 3.19: active/inactive process model

was predicted using a linear predictor model, a model fitting algorithm was then
used to reduce the number of parameters according to linear regression measures of
fit.

Though the model averts the necessity of modeling the bit rate process from

different encoders separately, it cannot be used for an analytical evaluation.

Switched fractal source

In [55] and [56] a switched fractal source has been proposed as a model to characterize
video source of less than 5 Mbps, using a highly compressed encoding scheme. Here
the cell generation process is modeled directly in order to rcproduce the bursty
characteristics of the VBR traffic. In the encoding characterized, the original image
is dividea into smaller sub-blocks, each block is transferred into another domain
and the blocks of transform coefficients are scauned, coded and packaged into ATM
cells. Due to the highly compressed nature of the coding scheme, the number of ATM
cells produced after processing each block is small, either zero or one. Hence the cell
generation process at the sub-block level can be modeled by a simple active/inactive
process as shown in Figure 3.19. It was found that the transition probabilitics p,
(inactive to active) and p, (active to inactive) were dependent on the time spent. in

their present state. In particular the relationship is of the form p(t) o (P where
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is known as the fractal dimension and the model is called a fractal model. Therefore

pa(t) = /gtPe (3.62)

pll) = AitP (3.63)

where A,, A, are proportionality constants and D,, D, are fraciai dimensions. The
parameters are obtained from a logarithmic plot of experimentally measured active
and inactive time periods. Such a fractal model accurately represents the cell traffic
characi.ristics of uniformly active images.

In order to represent the traffic statistics of varying activity levels, a model
that switches between multiple fractal sources is proposed. [56] discusses a five-mode
fractal source model. The five cell generation modes correspond to average bit rates
of 1,2, 3, 4 and 5 Mbps. These five fractal sources were obtained by monitoring the
traffic produced by five artificially constructed images, in which each of the image
sub-blocks (when coded) produced average bit rates of 1-5 Mbit/sec, respectively.
Logarithmic plots of the experimentally measured, active and inactive time periods
were plotted. Parameters A and D of Equations 3.62 and 3.63 are given by the
y-axis intercept and straight line gradient of these plots, respectively.

To simplify the switching process, each row of sub-blocks in an image (thirty
two 16 x 16 sub-blocks per row for 512 x 512 images) can be divided into image
‘sections’, each containing N (N = 8) sub-blocks. Switching between fractal sources
is permitted only at the beginning of one of these sections. The switching scheme

used is given by

L n=0 1<Ly<5
L, =] =l =N (3.44)
Ln_l + |($nl, n>0

where L, is the activity level for image section n, Lo is the ‘starting’ or ‘average’
activity level for the image (directly proportional to the average complexity of the
image), ¢ is a normally distributed random variable with zero mean and standard

deviation o. The results of mean delay obtained by a queueing simulation using
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this model indicates that this model belaves similar to the ‘real’ traffic for network

utilization levels up to 90%.

3.6 Selection of a video traffic model

The various models of the video traffic were presented in the previous section. How-
ever, from the standpoint of developing our traffic generator we are only interested
in a model that ~an capture enough correlations, so that when packet arrivals ftom
such a model fed into a queue produce the same queueing behaviour as the original
arrival process. From this point of view the MMPP i~ perhaps the simplest model
that can model the correlations in the arrival process accurately. Also with the
MMPP we model the aggregate video traffic arrival process as against arrivals from
the individual sources as in the case of Autoregressive or ARMA processes. Also
the MMPP successfully captures correlations over short durations as scen carlier.
A recent study [57] of VBR video have revealed that they exhibit the phe-
nomenon of statistical self similarity. In [57], the results of detailed statistical anal-
ysis of a 2-hour long empirical sample of VBR video are discussed. The samples were
obtained by applying a simple intraframe compression code to an action movie. The
study showed that the autocorrelation function of the VBR video sequence decays
hyperbolically, (a manifestation of long range dependence). However another recent
study (58] of the same traffic traces has confirmed that from the point of view of
queueing results, long-range dependence does not affect buffer occupancy when the
busy periods are not large. In [58] the video trace is modeled by a Markov chain
(a short range dependent model) and various operating characteristics are obtained.
It was found that these characteristics closely matched those obtained from the ac-

tual trace. Hence, long-range dependence is not a crucial property in determining

78



the buffer behaviour of VBR sources. Thus a short-range dependent model such as
the MMPP would suffice to charcterize the correlations in the video traffic arrival
process. We choose the 2-state MMPP to characterize aggregate video traffic in our

traffic generator.
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Chapter 4

Data Traffic Models

Data traffic is highly bursty. Unlike real time traffic (voice or video), data traflic is
delay or jitter tolerant, while being sensitive to losses. The statistical characteristics
of data traffic are complex and application dependent. In this chapter we discuss Jhe
characteristics of data traffic and present the various modeling methodologics that
are used to model data traffic. We also present the new long-range dependent traffic
model called the PMPP and discuss its suitability in characterizing data ‘raflic.
The statistical characteristics of this model are studied by means of simulation and

analysis.

4.1 Nature of data traffic

Modeling of data traffic is of fundamental importance in the performance evaluation
and traffic engineering of packet (or BISDN) networks. Data traffic is highly bursty.
The characteristics of data traffic are complex and application dependent like F'I'P,
Telnet, TCP, etc.

Recent studies of packet data traffic [8, 9, 10] in local area networks have
thrown more light on the characteristics of data traffic. The studies revealed that

data traffic exhibits long range dependence and statistical self-similarity, i.c, the
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traffic exhibits “burstiness” across a wide range of time scales, ranging from mil-
liseconds to minutes to hours (as shown by Figure 2.2 in Chapter 2.) In [8] high
quality high time resolution LAN traflic was collected from the Bellcore’s Ether-
net and analyzed statistically. It was found that the data traffic exhibited the
following features: slowly decaying variances, long term dependency (i.e., hyperbol-
ically decaying autccorrelation function), 1/f noise. Also, the analysis revealed that
the generally accepted argument for the “Poisson like” nature of aggregate traflic,
namely that aggregate traffic becomes smoother (less bursty) as the number of traffic
sources increases had very little to do with reality. In fact, the burstiness (degree of
sell-similarity) of LAN traffic was found to intensify as the number of active sources
increased. As seen in Chapter 2 all these features of data traffic clearly suggest that
the data traffic possesses self-similarity and long-range dependence. Following this
study the subsequent studies of Common Channel Signaling Network data in [59]
and Wide Area network traffic in [60] also showed that the dat > traffic is self-similar.

These findings change the traditional view of modeling data traffic and has
serious implications on issues related to the design, control and performance analysis

of high speed networks. Some of the implication of self-similarity in data traffic are:

e The degree of self similarity measured in terms of the H..rst parameter H,
provides a satisfactory measure of burstiness (burstier the traffic, higher the
value of H). Other commonly used measures of burstiness such as index of
dispersion (for counts), peak to mean ratio or coefficient of variation are mean-
ingless, since for fractal traffic these measures can assume any value depending

on the length of the interval over which these measurements are made.

o The presence of low frequencies in the spectral density (or equivalent’: the
slowly decaying autocorrelation and variances) causes heavy losses and long
delays during long time frame bursts. Hence nature of network congestion pro-

duced by fractal traffic differs drastically from thai predicted by conventional
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trafic models.

e For fractal traffic the overall packet loss decreases very slowly with increasing

buffer size.

e Source models for individual sources are expected to show extreme variability
in terms of the inter arrival times of packets; the inter-arrival times between

packets have a “heavy-tailed” distribution.

o Aggregation of bursty traffic streams does not produce smooth “Poisson-like,”
superposition process as previously assumed. Hence new traffic models that

capture long range dependence and fractal propertics are required.

Thus modeling the self-similarity is of fundamental importance in modeling
data traffic. Traditional models for data traffic such as the MMPP, batch Poisson,
etc., are short range dependent models and do not capture these characteristics.
This stresses the nced for more accuratc models to capture these aspects in data
traffic.

Another important characteristic of data traffic is that the data traffic is bi-
modally distributed; i.e., it has two predominant rates at which the packets arrive.
Earlier measurements of data traffic [61] indicate that the message iength distri-
bution of data traffic is bimodal. Since a burst of packets are produced for cach
message, this also suggests that the burst of data packets may be bimodally dis-
tributed. As noted in [62], if a source generates a long burst of data like file transfer
among short bursts which may correspond to commands, the source traffic essen-
tially consists of short and long bursts. Hence the net data traffic from many such
data sources is also likely to be bi-modal. This bi-modal nature of data traflic may
also be verified from the recent measurements of data traffic at the Bellcore’s Eth-
ernet LAN. Figure 4.1 shows the distribution of packet lengths from the bellcore
Ethernet traffic data from October 1989. (The traffic file is available via anonymous
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FTP from flash.bellcore.com.) Ethernet is a physical layer protocol and has variable
packet size ranging from 64 bytes to 1518 pytes. Figure 4.1 shows two peaks; one at
packet size of 64 bytes and one at 1082 bytes, illustrating the fact that data traflic
is bi-modal.

Thus we see that there are two pre-dominant burst rates prevalent in the data

traffic and the bursts extend for large periods of time.

4.2 Modeling aggregate data traffic

There have been many models proposed in the literature for characterizing individual
data traffic sources or a superposition of multiple sources. The conventional models
like fluid flow, batch Poisson, MMPP and HAP incorporate some form of Markovian
structure, either in the way the way the arrival processes are modulated or in the
arrival process themselves, for reasons of mathematical tractability. Thus these
models are good candidates for the analytical performance evaluation of pachet
data networks. However all these modecls are short rauge dependent models and do
not capture the long-term dependence and self-similarity in the dat traflic.

Hence, new models that can represent self-similar (or fractal) chaiacteristics
have been proposed [3, 2, 4]. Thus the modeling approaches for data traflic may
broadly be classified as shown in Figure 4.2.

The fractal models that have been proposed in the literature account for the
self-similar phenomena exhibited in data traffic. However all the fractal or self-
similar models proposed do not lead to tractable analytic solutions. On the other
hand, the conventional traffic models that are blessed with a wealth of analytical
tools, fail to capture the long term correlations and fractal properties of packet
traffic. The models currently considered ia literature (like Markov model, MMPP,
ARIMA, etc.), may be used to capture fractal properties. However the process of

modeling long range dependence with the help of short-range dependent processes is
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Figure 1.2: Models for data traffic

equivaient to approximating a hyperbolically decayving autocorrelation fundction by a

sum of exponentials and hence requires a large number of parametess. Parsimonions

modeling of fractal properties by ronventional models can be achieved by resorting
h A £

to some approximations.

4.2.1 Conventional models

This section gives a brief overview of each of the conventional modeis. As already

mentioned, th=se models do not capture the long term correlations and self-similar

properties of data traffic.
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Fluid flow model

The fluid flow model [63] (also referred to as Umform Arrival and Service model
(UAS)) assumes that the information flow in and out of the buffer (at the multi-
plexer) is uniform and continnous rather than in discrete packet<. In this model the
source generates information to the transmitter at the rate of one unit of information
per umit time and the server removes information from the buffer at a uniform rate
not to exceed  units of informatior per unit time. With these ascamptions the
equilibrium gueue distribution is deseribed by a set of differential equations. which
together with a set of boundary conditions can be solved to vield the equililiium
quene distribution. The method is ontlined in the section on voice traflic morels.
Though this modeling methodology leads to a tractable analyvas. its largest
drawback is that it cannot model the short-term queue inereases that occur when

two o1 mote packets arrive almost simultaneously.

Batch Poisson model

The batch Poisson model [64] is an extension of the Poisson model. Here the arrivals
occur in batches. The batch arrival is Poisson. The batch size b, can be random.
The b,’s are independent and identically distributed and the total number of arrivals
in an interval of duration ¢ is -

it

Alt) = z b,

1=1

where N(t) is the number of original Poisson arrivals. The IDC of a batch Poisson

process may be given by [11]

_ Var(b)

I(t) = £ + E(b) (4.1)
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When the distribution of bateh anivals b, is geometric, i e.,
Prib, =M= (1 — p)pk'l

with (1 < p < 1. the IDC of the bateh Poisson process hecomes

1) =1+ L
I —p

As seen above the 1DC of the bateh Poisson process i constant. Fhis is <o
becanse. a batch Poisson process is a regenerative process with independent imcre
ments. Thus a batch Poisson process. though simple is not suited for captuing the
correlations present in the packet arrival process

Some level of correlations can be modeled by the bateh Poisson process af the
batch size distribution of successive bateh arrivals were chosen according to a Marhon
chain. The batch Poisson model is a special case of the general Batch NMarkovian
Arrival Process (BMAP) for which extensive analytical (transient and steady state)

results exist [65). Hence this model provides an efficient means for analysis.

Packet trains model

In [66) a new model called the packet trains model is proposed to characterize the
data traffic in a token passing ring LAN. The model is based on the observation
that data traffic exhibits source locality (i.e.. given a packet going from node A to B,
there is a high probability that the next packet will be going from node A to B o
from B to A. The traffic on the network (here a token passing ring) is divided into
a number of packet streams between various pairs of nodes of the network. Each
node-pair stream consists of a number of trains. Each train consists of a number of
packets (or cars) going in either direction (from node A to B or node B to A). as

shown in Figure 4.3. The intercar time is smaller than a (user) specified maxinm
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Figure 1.3: Packet train model

called maximum allowed intercar gap (MAIG). The inter-train time is larger than
MAIG. Henee the inter-train time is a user parameter, while the inter-car interval
is a system parameter. Partitioning of the network into streams based on node-pair
processes as explained above helps increase the predictability of data traffic. since
they make use of the property of source locality inherent in data traffic. Heuce this

model is good for simulation purposes.

MMPP models

Markov modulated Poisson Process (MMPP) is a nonrenewal. doubly stochastic
Poisson process where the rate process is determined by the state of a continuous
time Markov chain. In other words underlying is a continuous state Markov chain,
where the sojourn time for state j is exponentially distributed with mean r;]. When
in state j, cells are generated according to a Poisson process with rate A,. [21] uses
a two state MMPP and approximates the traffic of multiple data and voice sources.
However, as seen in an earlier chapter, the 2-state MMPP for example, captures

the correlation only over certain durations. Increasing the number of states of the
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MMPP will help capture correlations over longer intervals, but this would increase

the complexity of the model.

HAP models

The HAP (Hierarchical Arrival Process) moddl is based on the fact that there are
many processes modulating a single packet arrival stream. For example the long
term correlation depends on the user and application behaviour, while the short-
term correlation depends primarily on the network hardware and software. HAD
[67] models both the short-term and long-term correlations by modeling the arrival
process at 3 levels - user, application and message (Figure 4.4). A set of parameters
describe the arrival and departure processes at each level. As shown, users arrive in
the system according to an interarrival time distribution (with mean A) and stay in
the system according to a service distribution (with mean u). The user may invoke
applications according to an interarrival time distribution (with mean X)) which
may remain active according to a specified distribution (with mean ). During the

active interval, the application gencrates several types of messages with different
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rates and with different message size distributions. The HAP can be mapped into
a MMPP [67] and analysis can be carried out with the resultant MMPP.

The HAP model captures the correlation at different levels. It also lends itself
to analysis casily. However, the HAP. models the arrival process only at a message

level and not at a packet level.

4.2.2 Fractal models

This section briefly discusses the models that can capture the fractal (or self-similar)

properties of packet traffic.

ON - OFF model with “heavy tailed” ON and OFF times.

Mandelbrot originally suggested [68] that the superposition of many sources which
exhibit the “Noah effect” (or infinite variance syndrome) results in a self-similar
stream. In [69] [11] Leland ef. al. employ this method to provide an explanation
for the observed self-similarity of the traffic in terms of the nature of the traffic
generated by an individual source. They suggest that each of the individual sources
contributing to the self-similar traffic stream can be represented by the familiar
on-ofl abstraction. However, these on-off sources exhibit the “Noah effect” in that
they have a highly variable on and off periods (sojourn times). i.e., the sojourn
times of the on-off sources are characterized by “heavy-tailed” distributions. Similar
conclusions were also made in [10] based on studies on individual ISDN data traffic
sources. Hence the sojourn times of individual sources can aptly be characterized

by a heavy tailed distribution like the stable Pareto distribution. This distribution
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has a survivor function of the form:
P{N>u}=1r"" a>or >~ (td

The density function is given by

(8}

px(r) = —0 a>0.r > | (1.3)

The parameter a denotes the thickness of the tail of the distribution. If 1 < o < 2,
then the Pareto distribution possesses an infinite variance but a finite mean as given

by

(8]

E(X) = (1.1

a-—|
Thus for 1 < a < 2. the Pareto distribution exhibits the infinite vatiance syndrome.
“he tail of the stable Pareto distribution decays far more slowly (by a power law)
than an exponential distribution. A Pareto distributed random variable takes o
larger value with a higher probability than an exponentially distributed random
variable. Higher the value of a. thicher the tail of the distribution.

Now. superposition of many on-off sources whose sojourn whose ON and OFF
sojourn times are described by a Pareto distribution will resnlt ina self-simitar traffic
stream. It has also beeu proved in [70] that if 1 <« < 2 for the sojomn times of the
constituent on-off processes then the Hurst parameter H oof the tesultant self-simila
streamn is given by

H:Q:—“) (1<a<?) (1.5)

Thus self-similar streams with any Hurst parameter (0.5 < I < 1) can be

generated by varying the parameter a of the sojourn times of the constituent ON -

OFF processes.
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Chaotic Maps

[3] vses deterministic chaotic maps to model fractal properties in packet traffic
Chaotic maps are low dimensional non linear systems whose time evolution is de-
sctibed by a knowledge of an initial state and a set of dynamical laws. The trajectory
of chiaotic system are very often fractal in nature. Henee by adjusting the parameters
of the chaotic maps it is possible to capture the fractal nature of packet traffic.
Consider a one-dimensional map in which the state variable r,, evolves over

time according to the non linear map:
Iopr = Nilen) oy =0 (0 <ur, <d)
Iupr = () yo=1 (d<ur,<1)
The packet generation process is modeled as follows:
o The source alternates between a passive and active state.

e When y, = 0 (0 < ., < d) the source is in passive state and when y, = 1

(d <, < 1) the source is in active state (Figure 4.5).

e Lvery iteration of the map in the active state is taken to generate a packet (or

batch of packets).

o suitable fi(.) and fa(.) should be chosen so that properties of y(un) match those

of actual packet traffic.
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Figure -1.5: Basic source maodel (Chaotic Map)

The Intermattency Map with f(0) and fy(.) as given below captures fractal

properties of data traffic well {3]

(+a,+er O< o, <d

T ;
e d <, <1
where ¢ = l‘d’,,,“d (Figure 1.6)

While chaotic maps is effective in characterizing much of the fractal properties
of data traffic like 1/f noise, “thick-tail” behaviowr of interartival time densities,
etc., using very few parameters, there are considerable analytical difliculties in then

application.

Fractional Brownian Motion model

The fractional brownian motion is a self-similar process. i.e., if Z(1) is & brownian
motion process then Z(at) is identical in distribution to o Z(1), where (1/2 < 1l <

1) is the self-similarity parameter. In [2] a model based on Fractional Brownian
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Figure 4.6: Intermittency map
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Motion 1s proposed to characterize the self-similar properties of packet trathe The

following model is studied
A = mt + ainZ(t) (1)

where A(#) is the number of cell antivals to the multipleser in the time interval
(0.1]. m is the arrival rate of a Pelsson process and Z(1H) is a fractional hrownan
motion with self-similarity parameter . The above model 15 based on o diflusion
approximation of the number of arrivals from a Poisson process. The parameters
of the model are /. m and a. The above model could also be used to charactenize

the superposition of N independent and identically distributed cumudative trathe

AY

processes. Hence now A(t) = 3 1,

At). Now. the parameters Hoand a charactenze
the type of the traflic mix while 1 gives its amount. In [2] an analysis s done Iy

using a storapge model based on (1) as the input process

PMPP model

From the point of view of svnthetic traflic generation, the ON-OFF model with heavy
tailed sojourn times. Chaotic maps and the FBM moedels are comples. For instance
the chaotic map [3] and the ON-OFF model approach model the characteristics of
an individual data traflic source. This approach may give an intuitive explauation
and understanding of the source characteristics that contribute to the long-range de

pendence and self-similarity of the aggregate data traflic: the chaotic map produces
individual on-off sources whose sojourn times are chatacterized by “heavy-tailed”
distributions. However this approach is not suited to synthetic generation of the
aggregate data traffic; the output from several of these chaotic map/on-off process
have to be combined to produce a data traffic stream with a given Hurst paraimeter,

This adds to the simulation complexity. The fractal brownian motion on the othes



hand produces the aggregate data trathe with the given Hurst parameter. The ap-
proach is however not suited to synthetic traffic generation. because the approach
requites that the fractal brownian stieam Z(() be produced before the self-similar
streain of A1) may be produced (see Eqn. 1.6).

Onr emphasis in this thesis is to develop a traflic penerator that is eflicient in
characterizing the correlations and variability present in the multi-media traflic so
that a synthetic traflie stream may be generated using the same. However, for long-
tange dependent data traflic we are faced with a sitnation where none of the existing
approaches may he used to produce this stream. We do not intend to characterize the
individual sonrees that contribute to the aggregate traflic stream. We are interested
in characterizing the aggregate traflic stream itself. We are looking for some simple
process that could be easily simulated. The Doubly Stochastic Poisson Process
(DSPP) model was examined as a candidate.

DSPP is a class of Poisson process. whose rate of events varies according to
a stochastic process itself. The class of DSPP models is a wide one covering both
stationary and non-stationary point processes and processes which are generated by
continuous rate processes or non-continuous rate processes (such as when the rate
chianges its value only at particular instants). Thus a doubly stochastic Poisson
process is called so because it inherits its stochastic properties both due to the
random variation of the Poisson rate and the usual Poisson process variability. The
DSPP was first introduced by D.R. Cox [71]. As given in {72], the Index of dispersion
of counts (IDC') of a DSPP whose intensity follows a stationary stochastic process

A(#) in continnous time is given by
I(ty=14+— [ (t —u)p(u)du (4.7)

where
‘)

oy = variance of the function A(¢).

p(u) = autocorrelation function of A(t).

96



As seen from Eqn 170 the connt s overdispersed than o Poisson process
(As discussed in Chapter 2, the IDC of a Porsson process s T Now, constder
the asymptotic behaviour of Eqn 17 as £ tends to infimty [72]. Two cases anie

depending on the autocortelation function pru) of A1),

o «) If p(u) dies down exponentially fast (which s the case with most stochasti
. ¢ .
processes) and if Jy up(u)du = o(r) and [;" plu)du s convergent to a non zeto
value, A, then

~f

/ (t — w)pluydu ~t / pluydu =t 1,
J0 t

Hence as f tends to infinity the IDC converges to

24,0
1y = 1 4 =20

\ (I~

o b) If p(u) does not die down exponentially fast but dies down as a power faw,

e, plu) = o(u™") where 0 <3 < 1. then
Iity= ht'=" (1.9)

Such processes exhibit long range dependence and sel-similatity, as was s

cussed in Chapter 2,

Hence doubly stochastic Poisson processes are very versatile in characterizing both
short term dependent and long range dependent (self-similar) processes [73]. By
choosing suitable stochastic processes for A(1) one may maodel various seenanos.
As a special case of DSPP, cousider a Poisson process whose rate alternates
between two levels Ay and A, The two levels endure for times forming an alter
nating renewal process with interval probability density functions (p.d.f) fifr) and
J2(x), respectively. Since it is supposed that the change over instants of the levels
are not observable, the resulting process becomes an interesting point process. De
pending upon the distributions of fi(r) and fy(«r). the process may yield interesting,

results. If for instance, fi(r) and f,(r) are exponentially distributed, then we have
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Figure 4.7: PMPP model

« Markov Modulated Poisson process (MMPP). The MMPP (Markov modulated
Poisson process), has previously been successfully used to model the arrival process
from a <ot of voice sources [21]. [22] and a set of video sources [11]. [42]. [43], [1].
The MMPP s itself a correlated non-renewal stream. In these methods the MMPP
models can accurately characterize the aggregate arrival process (either from a set
of voice sources or from a set of video sources as the case may be) because a large
number of statistics can be matched and the correlations among the arrival process
accurately captured.

I this thesis we propose a new class of DSPP. The model consists of a Poisson
process switching between 2 rates Ay and Ay, The sojourn time in these 2 states are
independent and identically distributed with a Pareto distribution with parameter
a. ‘T'nis model exhibits long term dependence and self-similarity. This model is also
very simple and ideally suited for synthetic traffic generation. Hence this model
may bhe used to model the self-similar data traffic. The two states of this switched
Poisson process would correspond to the long and short burst rates of the data
traflic. The sojourn time distribution is chosen to be a thick tailed one in order
to capture the long term dependencies in the net arrival process.Since the Poisson
process is switched between two rates by the underlying Pareto distribution, we call
this model a Pareto modulated Poisson process (PMPP) [4].

In the next section we shall explore in detail the statistical characteristics
of this model and prove that the model exhibits long-range dependence and self-

similarity.
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4.3 Statistical characteristics of the PMPP model

In order to determine if the model captures the long term correlations, we look at
the IDC (Index of dispersion of Counts) and the Va-iance time plots of the model.
For a given time interval of length ¢, the Index of dispersion of counts is given by
the ratio of the variance of the no. of arrivals during the interval to the mean of
the number of arrivals in the same interval. If we divide the time axis into equal
intervals called frames and if (X, X,. Xs....) are the number of packets generated

hy the process in successive frames, then IDC is defined as follows.
IDC({H)=Var(Xy+ Xo+ Xs 4+ . N )/ nXane (1.10)

where X,,4 is the average number of packets generated in a frame. IDC ot a process
is indicative of the burstiness of the process. Pure Poisson process has a 1IDC of
1. A process having IDC greater than one is overdispersed while that having IDC
below one is underdispersed. For a self-similar stream of Hurst parameter [ 1DC
increases monotonically and is proportional to 2=, Hence such an IDC when
plotted in a log-log plot produces a straight line appearance. The value of the Hurst
parameter, H, of the stream may then be calculated from the slope m of the IDC
curve, ‘n log-log plot. i.e.,

H=(m+1)/2 (4.11)

The PMPP model considered is akin to the random hazard doubly stochastic
Poisson prucess considered in [29] and [30]. Generally stated such processes alternate
between two levels A; and A,, with the sojourn times in cach state forming an
alternating renewal process with interval p.d.f.s fi(x) and f(x) respectively. If v
(v,) is the average sojourn time in state 1 (state 2), f7(s) (f3(s))is the Laplace
transform of the p.d.f of the sojourn time in state 1 (state 2) and if [tj(s) ([5(s)) is
the Laplace transform of the survivor function in state 1 (state 2), then the Laplace

transform of the probability generating function ¢*{z, s), of the number of arrivals
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N(t)in time tis given by [30]

1 [ 41 Uy

¥'(z,8) = vy + 1 (.S' +M(1 = 2) ¥ s + A1 -Z)>

_(/\1—/\2)2( (1 -2 )
mtrvz \(s+ M(1—=2))(s+ Az(l - 2))

N ( Ri(s +M(1 — 2))R5(s + A2(1 — 2)) )
(1= fr(s+M(1 =2)f5(s+ A2(1 ~2)))
(4.12)

The mean of the counting process can be chtained from the probability gen-

erating function, as in Chapter 2, Eqn. 3.5 as
A Aav;
E{(N(1)]} = (M)t

4.13
ot e (4.13)
The Laplace transform of variance of N() can be obtained by differentiating

Eqn. 3.4 twice and setting z = 1.

M+ davs | 2(A = X))y
(h+r)s? (11 +wn) s

I (v 4+ Ry % (s) R;(s)
<[ () (Brmm)] e

An explicit equation for the variance may be obtained by inverting the above

L{Var[N(1)]} =

equation depending on the sojourn time densities f1(¢) and f,(t).

Now, for PMPP

L) = f2(1) = at—let) l<a<?2 t>1
Ri(t)= Ry(l) = t—° l<a<?2 t>1
Fit)y= F(t)=1—t" l<a<?2 t>1
vVi=in= a;‘_’l

Since here, ¢ > 1 the Laplace transforms of these functions have tc be com-

puted from definition as follows. Let
Ri(s) = Ry(s) = /lmexp(—st)t—adt = g(s, q) (4.15)
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Integrating by parts, we have the following recursion,

1
g(s,a) = ; [exp(—s) — ag(s,a + 1)] (1.16)

Extending the recursion,

exp(—s il lia :
g(s.0) = xp(=s) 1+Z(_1)‘rlk_=0(_"__tﬂ
1=1 .

Now,
fils)y= fi(s)=g(s.a+1)

Substituting the above functions in Equ. 3.6 and making use of recursion 1.16
we have

Lvaivo)) = M2

(A=) | 2a = 1) [exp(=s) = ag(s, @ + D]
23 as [l — a?g%(s,a + 1))

Now, for small s, i.e., as s - 0, exp(—s) = 1, then

L{Var[N@®)]} = A‘;;\"Jr

(A1 — Ag)? [l + 2(a — {1 - ag(s,a + l)]]
253 as {1+ ag(s,a+1)]

Now from recursion 4.16, 1 + ag(s,a + 1) = 2 — sg(s, a) and

1 —ag(s,a +1) = sg(s,a + 1), hence

LvarN@)y = 222y

252

(A = Xg)? - 2(a—1) g(s,a+1)
2s3 a 2-sg(s,a)

Now, for small s, sg(s,a) = 1, (from Eqn. 4.17). Also for small s, the first term

inside the braces may be neglected. Inverting, the final equation we have

Varv() = Qr2ayy iz hal(am 1y e

1.18
2 2 ( )

(04
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Also, mean is given by,

EIN (1) = 215

t (4.19)

Hence the IDC may be obtained by dividing the variance by the mean and is

given by

— (/\1—A2)2 <a_1) 2-a 9
IDC(t) =1+ 3= (—— ) (4.20)

As seen from the above expression, IDC increases as a fractional power of the
interval under consideration. Such is the characteristics of a long range dependent
self-similar process. When ploited in a log-log scale the IDC has a slope m equal to
2 — a. From (6) the Hurst parameter, H may be derived from the slope m as follows

J—a

2

H= (4.21)

We arrive at the same relation as in [70]. Hence as we vary the parameter a of
the Parcto distribution, the Hurst parameter of the packet stream generated varies.
The PMPP model was simulated on OPNET and the IDC was computed.
Figures 4.8 and 4.9 compare the IDC curves obtained from Eqn. 4.20 against
simulation for values of Ay = 100, A, = 120 and a = 1.3 and 1.5 respectively. As
seen from these curves, the results obtained from simulation agree fairly with the
theoretical results. The IDC plot for A; =100 and A2 = 120 and for various values of
a of the Pareto distributed sojourn timesis shown in Figure 4.10. As seen, the linear
characteristics of IDC in a log-log plot suggest that the model exhibits self-similar
characteristics. Also, given in the figure are the Hurst parameter H estimated from
the slope of the IDC. It is seen that the Hurst parameter so obtained satisfies the
relation 4.21, quite fairly.
The Variance time curves for the PMPP were also obtained from simulation.
The variance time curve is obtained by computing the variance of the arithmetic
meanof the count process. i.e.,if as before X = (X, X3, X3,...) denote the number

of packets generated by the process in successive frames, let X(™ = (X;(:m) sk o=
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I'igure 4.8: Simulated and theoretical curves of IDC, for PMPP, with A; = 100, A,
=120anda = 1.3
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Figure 4.10: IDC curves for various values of a, with A, = 100 , Ay = 120
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1.2,3,...) denote a new (aggregated) time series obtained by averaging the original
series X over non-overlapping blocks of size m.i.e. for each m =1,2.3..... RS RT
given by X{.’"’ = 1/m(Xmk-1y + ... + Xim). Then plotting Variance( X ™ against
various values of m gives the variance time plots. While for conventional models
the variance of the sample mean is inversely proportional to the sample size |, for
long-range dependent processes, it decreases as a fractional power of sample size
(i.e., it decreases more slowly than the reciprocal of the sample size). Hence in the

case of long-range dependent processes
Var(X") = a;m™  with 0 < J< 1

where @) is a constant, When the variance time curve is plotted in a log-log scale.

the slope 3 is related to the Hurst parameter, H, by the relation
H=1-|3|/2 (4.22)

Figure 4.11 shows the variance time plot for various values of a with A} = 100 and
Az = 120) obtained from simulation. The linear behaviour of Variance time curve in
a log-log plot shows the presence of slowly decaying variances. The Hurst parameter
estimated from these graphs alse indicate that the relation 4.21 holds well.

Hence the PMPP is efficient in characterizing the fractal nature of the data
traflic. Also the proposed model captures the presence of the long and short burst:
inherent in data traffic. This model is easy to simulate when compared to other
methods for generation of self-similar traffic. Hence this method may be used to
generate a self-similar traffic stream with H = (3 - a)/2. The other 2 parameters
of the model namely A; and ), are to be matched with that of the aggregate traffic
stream by a suitable matching technique (an illustration of which is given below).

The PMPP model was used to match an actual traffic trace from Bellcore
Ethernet traffic data from October 1989. The traffic file is available via anonymous
FTP from flash.bellcore.com. The Hurst parameter was estimated from a log-log

plot of the IDC of the trace, to be 0.8202. From the Hurst parameter H of the
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of the traffic trace obtained from Bellcore traffic data com-

pared against the plots obtained from the simulation of PMPP model.

trace the parameter a was determined to be a = 1.3596 using relation 4.21. The
parameters A; and A; were obtained by matching the average number of packets
generated from the traffic data and IDC(1) (i.e. IDC at lag 1) of the data with
equations 4.19 and 4.20 respectively. The estimated wvalues of A, and A, are A,
= 2.8365 packets/ 10ms and A, = 6.8235 packets/10ms. The PMPP model was
simulated using these values for the parameters A;. A2 and a and the IDC was
plotted. The IDC plot obtained from simulations (circled plot) is compared against
the original plot (starred plot) in Figure 4.12. Also shown in the figure is the plot
of IDC (bold line) obtained by using the Eqn. 4.20. As can be observed from the
figure the plots obtained from simulation closely follow the IDC plot obtained from

the experimental data.



Next we compare the characteristics of the PMPP model with that of the
Fractional Brownian traffic [2]. As outlined before the fiactional Brownian tiatlic
model [2] characterizes the aggregate traflic stream, with a given Hurst pavametet.
The FBM model characterizes the number of packet arrivals A(¢) in the time interval
(0,t] by

A(t) = mt + /maZ(t)

Z(t) is a normalized fractional Brownian motion. The process has 3 parameters
m, a and H. m > 0 is the mean input rate, @ > 0 is the variance coeflicient.
and % < H < 1 is the Hurst parameter of Z(t). Thus with this model for a
given Hurst parameter If, traflic can be generated using the relation given above.
These parameters of the fractional Brownian traflic model can be matched with the
parameters Aj, Az, and a of the PMPP by matching the variance and mean of both
the processes.

The mean input rate 1. of the fractional Brownian traflic model can be equated

with that of the PMPP model
A+ A

= —— 1.23
m 5 ( )

From [74] the variance of the fractional Brownian traflic is

Vartaned{A(1)} = mat*! (1.21)

Equating the above variance with that of PMPP, Eqn. 4.18 and using the relation

4.21 between Hurst parameter If and a,

A ; — Ay} — )

mat>™® = (M +)‘2)t+ (A — ) (u l)t*""

2 2 «x

A+ A 5 (M + A2) (M — Ag)? ((i - |> 5

a —_ t‘ tr

2 at 2 L+ 2 ox

_ a—2 (/\] —/\2)2 ((lf—l)
@ =t * A+ A a

Ast s 00,2 a0forl<a<?

_ ()\1—/\2)2 (()— l)
*= AL+ Ay «

(4.25)
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Thus equations 4.23, 4.25 give the relation between the parameters of fractional
Brownian traffic and that of PMPP.

In [74], the parameters m, @ and H of tae fractional Browuian traffic model
were estimated by linear regression for the Bellcore Ethernet traffic data from Oc-
tober 1989 (available with anonymous FTP from flash.bellcore.com). The estimated

parameters of the fractional Brownian traffic for this traffic trace are

m = 2279kbit/sec
a = 262.8kbit.sec
I = 0.78
We matceh this fractional Brownian traffic model with the PMPP model. Using

a packet size of 53 bytes, and converting the values of fractional Brownian traffic

model from Kbit to packets, we have

m = 3379packet/sec
a = 619.81packet.sec
H = 0.78

The parameters of the equivalent PMPP model, were obtained from relations

1.23 and 1.25 as
Ay = 3040packet/sec
Ay = T709packet/sec

a = 1.44

Figur~ 4.13 shows the IDC obtained from the fractional Brownian traffic model
and PMPP model for the Bellcore Ethernet traffic data. As seen from the figure.

both the curves have the same slope and they follow each other closely.
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Figure 4.13: IDC curves of FBM model and PMPP model for the Bellcore Ethernet
traffic data
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Chapter 5

Traffic generator for multi-media

services

Earlier chapters outlined in detail the characteristics of the var.ous constituents
of the aggregate multi-inedia traffic.  As seen there, multi-media traffic exhibits
a diverse mixture of traffic characteristics. In this chapter we present the traffic
generator developed in this study. The traffic generator has a selection of traffic
modecls that may be used to characterize the constituents of multi-media traffic.
The constituent models of the traffic generator are presented. Finally we use the

traffic generator developed to study a G/D/I queueing system.

5.1 Requisites of the traffic generator

Our goal in this thesis has been to build a traffic generator that aptly characterizes
the variability and statistical correlations in the packet arrival process. As seen in
the cailier chapters, multi-media traffic exhibits a wide spectrum of traffic charac-
teristics. Thus the traffic generator should be versatile in capturing these statistical
characteristics. The developed traffic generator is to be used for network perfor-

mance evaluation or evaluation of multiple access schemes or for evaluating/devising
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connection admission control and source policing algorithms. In other words, our
main intent here is not to model the actual arrival process at the source level, but to
develop a model that can capture enough statistical characteristics of the aggregated
(multiplexed) arrival process, so that the arrival process when fed to a queue pro
duces the same queueing characteristics as that produced by the actual multiple :ed
traffic.

Recent studies of LAN data traffic indicate that such traffic exhibits long
range dependence and self-similar (or fractal) characteristics, i.c., the traflic exhibits
“burstiness” across a wide range of time scales ranging from milliseconds to hours.
Hence, in a multi-media environment fractal traffic co-exists with non-fractal tioflic.
Characterizing such a mix of traffic by an unique model poses a great challenge tothe
modeler. The model proposed should be versatile in the sense that it should be able
to capture the long term and short term correlations of the multiplex. Hence in o
aggregate traffic generator we model the individual components of the multi-media
traffic, namely voice, video and data traffic and then superpose them to produce the
aggregate traffic stream.

The following aspects have been considered in selecting an appropriate traflic

model] for the traffic generator.

e accuracy: The models chosen to represent the individual components of multi-
media traffic in the traffic generator must capture the statistical characteristies

of the traffic they characterize.

e parsimonious models: The models should be parsiimonious in the number of pa-
rameters, lest the parameters lose their physical significance. The requirement
of parsimonious models (i.e., models with a few parameters) is very important

from the point of view of synthetic traffic generation.

o flezibility: The models should be flexible in the sense that they should be able

to represent varied statistical characteristics by tuning the parameters of the
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model.

o simplicity: The models must be extremely simple from the point of view of syn-
thetic traffic generation. This is a very important requirement because some
models may be very accurate but it may be extremely complex to synthetically

generate traffic using these models.

The traffic generator built for the generation of multi-media traffic consists
of suitable models chosen to characterize aggregate voice, video and data traffic

respectively.

5.2 The traffic generator

The block diagram of the traffic generator is given in Figure 5.1. The traffic generator
offers a wide choice of models that could be used to capture the varied statistical
characteristics in the aggregate traffic. As shown in the figure voice traffic can
be characterized by employing many individual on-off sources (one for every voice
source), characterized by their output rate A*9, transition rate from ON state a{*")
and transition rate from OFF state 3(*). The ON-OFF sources have exponentially
distributed ON and OFF times. Instead the aggregate traffic from the voice sources
may be characterized by a MMFP with parameters A", A" | alpha{*) and ol
The matching technique by which the 4 parameters of the MMPP are determined
from the original superposition of thc voice processes may be found in [21] and [22].

For video traffic, the parameter Nyni—sources, sSpecifies the number of mini
ON-OFF sources (with exponentially distributed On and OFF times) to be used
to simulate the output from one video source. Accumulating many sets (one set
for every video source) of such sources characterizes the aggregate traffic from video
sources. If the characterization of aggregate video traffic is directly sought, a MMPP
with suitable parameters AL, A of*? and o{"? may be used instead of the ON-

OFF source characterization. The matching techniques by which the 4 parameters
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Figure 5.1: Block diagram of the traffic generator
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of the MMPP are determined, may be found in [41] [42] [43] [1].

The data traffic in the traffic generator may either be characterized by em-
ploying many ON-OFF sources, with the ON and OFF periods characterized by
a Pareto distribution with parameter agN and agF F respectively. Alternatively
the aggregate traffic may directly characterized by employing a PMPP model with
parameters A, A% and ald).

In the traffic generator e'nploying individual sources to generate the aggregate
traflic increases the computing coinplexity. It is ideal to obtain an aggregate model
for voice, video and data directly and use it to generate the traffic. The aggregate
traffic model for multi-media traffic employing the appropriate traffic model for
aggregate voice, video and data traffic that has been proposed here is as shown in
Figure 5.2. This method is simple and is also versatile in capturing the statistical
characteristics of the multiplex. The resulting model is the superposition of three
2-state switched Poisson processes, giving rise to an eight state switched Poisson
process as shown in Figure 5.3. The model is simple and easy to simulate.

If the data traffic were approximated by a 2 state MMPP, then by the property
that the superposition of MMPP is again an MMPP, we obtain an eight state MMPP.
This may simplify the mathematical analysis of the model. However, this model is
not accurate in the sense that it does not capture the long term correlations of data.
On the other hand, if the PMPP is selected for data traffic, we obtain an eight state
switched Poisson process, which may not simplify into a simple form as in the case
of MMPP.

In the next section we use the developed traffic generator to study the perfor-

mance of a G/D/1 queue by simulation.
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Figure 5.2: Aggregate traffic model
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5.3 Performance evaluation of a G/D/1 queue

This section presents the simulation results for queueing performance of a GG/1/1
queue fed by the arrivals from the traffic generator. The main contribution of
this section is to add to the current efforts in gaining a better understanding of
queueing performance when the input to the queue is not given by a traditional
trafic model but instead by a long range dependent model. We also compare the
queueing performance obtained from more conventional models such as the MMPP
with that of the long range dependent model such as the PMPP. Next, we investigate
the queueing performance of the aggregate multi-media traflic. Herein, we try to
find out the effect of long range dependent traffic such as the data traflic on the
aggregation. We present the simulation results for the queueing performance of
aggregate traffic for various composition of the constituent long range dependent
and short range dependent traffic.

The general queueing system that we consider for our study is as shown in
Figure 5.4. The server serves a fixed number of packets per second, as is the case
in an ATM multiplexer. The arrival process that we consider to the queue is a
PMPP/MMPP or the aggregate traffic model proposed. The figure of merit. chosen
for the queueing system is the survivor function of the queue length (which is the

complementary function of the probability distribution of queue length).

5.3.1 Performance of a PMPP/D/1 queue

Now, we consider the case when the queue of constant service time is fed by a
PMPP model. The OPNET model of the PMPP/D/1 is simulated to obtain the

complementary distribution of queue length. The parameters of the PMPP maodel

considered are A; = 200 pkts/unit time and A, = 250 pkts/unit time. The loading
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Figure 5.4: Block diagram of the G/D/1 queue

of the queue considered is 0.9. The parameter a of the PMPP is varied to obtain
various Hurst param~ters of the input stream. The logarithm of the complementary
distribution log[ P(X > z)] is plotted against x. It can be observed from Figure 5.5
that the tails of queue length distributions are not linear and are more heavy tailed.
Such behaviour was found in the queueing simulations done with the actual data
traces of long range dependent traffic in Bellcore [75]. In [75] queueing simulation

experiments were performed with actual traces of Ethernet LAN traffic. In order
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Figure 5.5: Survivor function of Queue length of PMPP arrival in a semi-log scale

to study the effect of long range dependence on the queueing behaviour, simula-
tions were also conducted with “shuffled” versions of the traffic traces. Two kinds
of shuffling were done with traces; one that preserves short term correlations only
and one that preserves long term correlations only. It was observed that the simu-
lations conducted with the shuffled traces that preserved the long term correlations
only, produced the same thick tailed queueing behaviour produced by the original
trace. The trace that preserves only short term correlations resulted in a queucing

behaviour as would have been produced by more conventional models like MMPP
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or QNA approximations . Hence, the heavy tailed behaviour is attributable to the
long range dependent correlations and the PMPP model captures this behaviour.
In [74], the G/D/1 queue fed by FBM (Fractional Brownian Motion) traffic

was also shown to result in a Weibull distribution of the form
P(X > 1) = exp(—yz(®7H) (5.1)

Also, similar results were obtained in [76] by aggregating many ON/OFF sources
with heavy tailed sojourn times. Hence, the queue length decreases at a slower rate
with increase in buffer space, than would be expected from the results obtained from
a Poisson or MMPP model. Figure 5.5 also illustrates the fact that higher the Hurst
parameter of the traffic stream more heavy tailed the queue length distribution is.
This again .ndicates that a long range dependent stream with a high Hurst parameter
may suffer more loss. This is also demonstrated by our simulation results. Figure 5.6
plots the probability of loss against the Hurst parameter, for a finite buffer size of K
= 150, and with the same parameters of the PMPP model as before. As can be seen
from the figure, higher the Hurst parameter of the input strec m, higher the loss.

In order to compare the performance of a MMPP in the same scenario, we
also obtain the performance characteristic of the equivalent MMPP for the PMPP
model under consideration; i.e., we choose \; and A; to be the same as before (),
= 200 pkts/unit time and A, = 250 pkts/unit time). Also, as in the case of PMPP,
the sojourn times in both the states of the MMPP are identical but exponentially
distributed. The average sojourn time in each state of the MMPP is equated to the
average sojourn time in the corresponding state of the PMPP. This gives us a fair
basis of comparison of the two models. Figure 5.7 shows the queueing behaviour of a
PMPP with H = 0.95 and its equivalent MMPP plotted together. As seen from the
figure, for the equivalent MMPP model, the logarithmic plot is asymptotically linear,
indicating that the complementary distribution is exponential. This is markedly
different from the queueing behaviour obtained from a PMPP.

The PMPP model captures long range dependence by modeling consecutive
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Figure 5.6: Probability of loss as a function of Hurst parameter in a semi-log scale

long and short burst periods that persist for a long time. These two rates A, and
A; may correspond to the long and short burst rates inherent in data traffic. The
difference between these two rates A, and A;. )\ may intuitively be thought as
representing the burstiness of the traffic stream. The previous set of results with A,
= 200 and A2 = 250 had a 8 of 50. Figure 5.8 plots the queue length for the case
when 6) = 100. The load is 0.9 as before, however now the A; = 175 and A, = 275.
As seen from the figure the residual function of queue length is more heavy tailed

than in the case of A = 50. Hence with an increase in d). we see a more burstier
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Figure 5.7: Survivor function of Queue length of PMPP and MMPP arrival in a

semi-log scale

~N

traffic stream.

5.3.2 Performance of aggregate traffic model

Now we investigate the G/D/1 queue by feeding it with the aggregate traffic consist-
ing of voice, video and data. As discussed in the previous section, voice and video

traffic are modeled by a MMPP, while data is modeled by a PMPP. To illustrate
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Survivor function of queue length

(2)
O P(X > Xx) PMPP\H = 0 95 1tho = ¢ 9)
OPIX >x) - PMPPIH = 0 "5, tho - 0 9)
O P(X »x) -~ PMPP(H = 0 %5 rhe - 0 9
oS
-1
15
-2
25
4
15 L
4 05s 1 15 2 24 1
Queue Jength tx o x1000.

Figure 5.8: Survivor function of Queue length of PMPP with dA = 100 and p = 0.9,
in a semi-log scale

the effect of long range dependent data on the aggregate traffic, we also consider
additionally an aggregat= model where data is modeled by a MMPP. T'he difference
in the queueing performance of both the aggregate models illustrates the impact of

long range dependent correlations. The parameter values used are as follows:

o for voice (MMPP): A, = 28 pkts/ms ; Ay = 41 pkts/ms; oy = 0.000956 ms~
ag = 0.0250 ms™!
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» for video (MMPP): A3 = 24 pkts/ms ; Ay = 39 pkts/ms; az = 0.0087 ms~};
as = 0.0483 ms™!

e for data (PMPP): A5 = 10 pkts/ms; A¢ = 38 pkts/ms; as = 1.4; ag = 1.4.

where for the MMPPs the « stand for the transition rate from one state to
another and for the PMPP the o is the parameter of the Pareto distribution. The
above traffic composition has a ratio of 1:1:1. i.e., together voice and video are twice
that of the data traflic. The server serves at the rate of 100 pkts/ms, thus giving a
pof 0.8.

Figure 5.9 also show . the survivor function of queue length, when the PMPP
model is replaced by a MMPP model in the aggregate model. The parameters of
the MMPP niodels for voice and video are chosen as before. The parameters of the
MMPP model chosen for data areds = 10 pkts/ms; A\¢ = 38 pkts/ms; as = ag =
0.2857. As seen from figure 5.9 both the curves follow each other closely. This is due
to the fact that the volume of long range dependent traffic is less when compared
with the others. Hence the queueing behaviour of the aggregate traffic is dictated
by the dominant short range dependent trzific.

Neat, we obtain the queueing performance of an aggregate traffic consisting of
iwice as much long range dependent data as voice and video. The parameters for the
MM PP models of voice and video are chosen as before; the PMPP model parameters
for data traffic are as given below: As = 60 pkts/ms; A¢ = 150 pkts/ms and a; =
ag = 1.4. The service rate is increased to 200 pkts/ms to yield a p of 0.8. Again, in
order to study the effect of long range dependence, an aggregate model using MMPP
model for data traffic was used, for this traffic mix. The following parameters were
used for the MMPP model used for data traffic, while the parameters for voice and
video are chosen as before: A\s = 60 pkts/ms; A\¢ = 150 pkts/ms; a5 = ag = 0.2857.

This gives a combination of 2:1 for data vs voice and video.
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Survivor function of queue length -- aggregate traffic
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Figure 5.9: Survivor function of Queue length for aggregate traflic with 1:1:1 comn-
position
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Survivor function of queue length -- aggregate traffic
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Figure 5.10: Survivor function of Queue length for aggregate traffic with 2:1 (data
vs. voice + video) composition

Figure 5.10 shows the queue length distributions for the above traffic mix. It
can be clearly observed that the model using PMPP model for data has a heavy
tailed distribution than the other model for aggregate traffic, that uses MMPP for

data traffic. Hence the traffic composition plays a role in the behaviour of net traffic.
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Chapter 6

Conclusion

The wide spectrum of traffic sources in a multi-media network exhibit a diverse
mixture of traffic characteristics. This thesis has addressed the salient issues in
modeling the traffic in such an environment.

Following aspects have been addressed by this thesis

o The salient issues in the characterization of packet traffic have been empha-

sized.

e A new model for the long-range dependent traflic was proposed. This model

was simulated on OPNET and studied.

e A traffic generator for generating synthetic traffic for multi-media networks

was built.

e The queueing performance of aggregate multi-media traffic was studied hy

using the developed traffic generator.

The thesis outlined the salient issues in the modeling of packet traffic. It also
provided a study of traffic models proposed in the literature and classified them.
The new long-range dependent model PMPP proposed in this research is very

simpleand yet versatile in characterizing the long-range dependence and self-similar
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characteristics. This model is ideally suited to synthetic traffic generation due to
its simplicity. The traffic generator developed in this research is offers a range of
models to characterize the varied correlations and dependence in multi-media packet
traffic. This generator can be used to generate traffic with any given statistical
characteristics, by fine tuning the input parameters of the generator.

The queueing performance of the PMPP and the aggregate traffic model were
obtained using the developed traffic generator. The results of the performance study
indicates that the PMPP bhas a2 queueing behaviour similar to that of the long-
range dependent models proposed in the literature, i.e., the survivor function of
queuc length has a “stretched exponential” behaviour and is very different from the
queueing performance of MMPP. The performance study of the aggregate traffic
model indicates that the queueing behaviour is affected by the ratio of the long-range
dependent traffic in the aggregate traffic mix. Thus implying that the composition
of aggregate traffic is also important in engineering the buffers at the statistical
multiplexers of multi-media traffic.

The findings of this project opens up new avenues of research. As a topic for
future research, a queueing analysis of the aggregate model may be attempted at.
This in itself is a complex task, given the non-Markovian nature of the processes

involved.
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Appendix A

Program Listing

The traffic generator was developed on a simulation package called OPNET (OPti-
mized Network Engineering Tools). OPNET provides a easy to use graphical user
interface. The simulation is built with independent building blocks called process
models. The operation of these process models are specified by finite state machines,
translated into C code. The process models for the folowing models of the traffic

generator are given here.
(1) trf-generator - Traflic generator process model.

(ii) trfovceon_off - ON - OFF process model.

(iii) trf-vd_on_off - Mini-sources process model.

(iv) trf-di.on_off - “Heavy tailed” ON - OFF process model.
(v) trfoveemmpp - MMPP process model.

(vi) trf-dt_pmpp - PMPP process model.

(vii) fifo_pk_q_pdf- FIFO queue process mod 1.
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Figure A.1: Traffic generator process model

141




Process Model Report: trf_generator

[ Sat Aug 24 15:57:44 1996 [ Page 1 of 3

Traffic Generator

Process Model Attributes

attribute value type default value
ve_model promoted string tri_vc_on_oft
dt_model promoted string trf_dt_on_off
vd_model promoted string trf_vd_on_off
N_voice promoted integer 1 (src)
N data promoted integer 1 (src)
N viden promoted integer 1 (src)
der Block
1* This process model creates child processes of the models selected for voice, video
and data traffic The number of child processes created for each traffic type is
determined by the input numbers "N_voice”, "N_video", and "N_data" *I
5
Hdcfine CREATE_INTRPT_CODE 1
Hdefine CREATE_INTRPT op_intrpt_type() == OPC_INTRPT_SELF &&\
op_intrpt_code() == CREATE_INTRPT_CODE
#define END_SIMULATION op_intrpt_type() == OPC_INTRPT_ENDSIM
1 atlal lock
char \vc_model{40];
char \dt_model{40};
char \vd_model[40];
S |t \N_video:
nt \N_data;
int \N_voice;
nt \pre_id;
int \a_gen;
10
Temporary Variable Block

forced state Init

attribute value lype default value
name init string st

enter execs (See below.) textiist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enfer execs  IDit

pre_td = op_id_sell(:

i® get parameters for number of voice,video and data sources
s and also the models to be used for voice, video and data. */

op_ima_obj_attr_get(prc_id,*vc_modal "vc_model);

op ima obj attr get(prc_id,*vd_model *,vd_model);
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Process Model Report: trf_generator

| Sat Aug 24 15:57:44 1996 | Page 20t 3

ses

Traffic Generator

op_ima_obj_attr_get(prc_id, *dt _model * ,di_model);
op_ima_obj_attr_get(prc_1d,*N_video" & N_video);
op_ima_obj_attr_get(prc_1d,"N_voice" &N_voice);
op_ima_obj_attr_get(prc_1d.*N_data*, &N_data );

/* schedule to interrupi o create the above child processes */
op_iotrpt_schedule_sclf(op_sim_time(Q,CREATE_INTRPT_CODE);

A unforced state _idle

attribute value type default value
name idle string st
enter execs (See below.) textlist (See below )
exit execs (empty) textlist (empty)
status unforced toggle unforced
er execs |dle
orced state create
attribute value type default value
name create string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced
enter execs create
1* generate N video sources */
for(1_gen=0; 1_gen<N_video; 1_gen++)
{
5 op_pro_invoke(op_pro_create(vd_model OPC_NIL),OPC_NIL);
/* generate N data sources */
for(1_gen=0; i_gen<N_data; 1_gen++)
10 | (
op_pro_invoke(op_pro_create(dt_model OPC_NIL),OPC_NIL);
/* generate N voices sources */
15 | for(i_gen=0; 1_gen<N_voice: 1_gen++)
{
op_pro_invoke(op_pro_create(vc_model, OPC_NIL),OPC_NIL):
}:
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Process Modal Report: trf_generator

| Sat Aug 24 15:57:44 1996

i Page 3 of 3

Traffic Generator

unforced state _end

E’rLLribufe value type default value
name end string st
enter execs (empty} textlist (empty)
exit execs (empty) texthst (empty)
status unforced toggle unforced
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Figure A.2: ON-OFF process model
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Process Model Report: trf ve_on_off

|_Sat Aug 24 16:09:05 1996

| Page 10f3

ON-OFF modal for volce

[ Process Model Attributes

attribute value type default value
alpha promoted double 2.84 (1/sec)
beta promoted double 1.64 (1/sec)
lamda promoted double 62 S (pkts/sec)
ader Block
1* This process model generates the traffic from one from one vaice source
tn accordance with the on-off process model %1
S | #indude <math.h>
#include <stdio.h>
#incude <sysftime.h>
#define PKT_ARRVL_CODE 0
10 | #define ON_OFF_CODE 1
#define PKT_ARRVL op_intrpt_type() == OPC_INTRPT_SELF &&\
op_intrpt_code() == PKT_ARRVIL._CODE
15 | #define ON_OFF_INTRPT op_intrpt_type() == OPC_INTRPT_SELF &&\
op_intrpt_cude() = ON_OFF_CODE
State Varlable Biock
Distnbution® \alpha_dist;
Distnbution* \beta_dist:
nt \id:
5 |imt \ON;
double \alpha;
double \beta;
double \lambda;
ble Block
Packet* pkptr:

forced state _Inlt

|_attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
oxit execs (empty) textlist (empty)
status forced toggle unforced

[enter execs Inlt

ul = op_id_self();
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o

ON-OFF model fur voice

10

/% Get parameter */
op_ima_obj_attr_get(1d,* alphe=&alpha):
op_ima_obj_attr_get(id," ber a* &beta):
op_ima_obj_attr_get(id.* 1 amda *.&lambda),

1* Initialize variable */
ON=0;

I* Get exponential distribution */
alpha_dist = op_dist_load(*exponent 1a1*,1/aipha,0.0);
beta_cist = op_dist_load(*exponent1al*.l/beta,00);

unforced state  OFF

| attribute value type default value
name OFF string st
enter execs (See below ) textlist (S ve below.)
exit execs (smpty) texthst (empty)
status unforced toggle unforced

enter exccs OFE

1* schedule for ON state *!

if (ON==0)

{
op_intrpt_schedule_self(op_sim_time(+op_dist_outcome(beta_dist), ON_OFF_CODE);

ON=1:

):

!
op_intrpt_schedule_self(op_sim_time(+op_dist_outcome(alpha_dist),ON_OFF-_CODE);

op_intrpt_schedule_self(op_sim_time(+1/ambda, PKT_ARRVL._CODE),
ON=0;
)

|_unforced state ON
| atiribute value lype default value
name ON string st
enter execs (See below.) textlist (See below )
exit execs (See below.) textlist (See below )
status unforced toggle unforced
enter execs ON
* schedule for OFF staie and send siate */
f(ON=1)
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ON-OFF model for voice

exit execs ON

forced state _send

attribute value type default value
name send string st

enter exacs (See below.) textlist (See below.)
oxit execs (empty) toxtlist (empty)
status forced toggle unforced

enter execs  send

1* Send unformat packet */

pkptr = op_pk_create(0).
op_pk_send(pkptr,0):

1% Schedule for next packet *1

op_intrpt_schedule_self(op_sim_timeO+1/1ambda,PKT_ARRVL_CODE);
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Mini-source modal for video

Process Model Attributes

attnbute value

type

default value

n_mini_src promoted

integer

20 (src)

k

The "on_off” source is similar to the one used for voice */

1* This process takes "n_mins_sources" as us input and invokes as many
child "on_off" processes 1o generate the traffic from one video source.

5
#define VD_INTRPT_CODE 10
fidefine VD_INTRPT op_intrpt_type() == OPC_INTRPT_SELF &&\
op_intrpt_code() == VD_INTRPT_CODE
[ State Varlable Block
nt \n_muni_src;
nt \pre_vd_id;
nt N_vd;

“Temporary Varlable Block

forced state _Init

|_aftnbute value type default value
name init string st
enter execs (See below.) textlist (See below )
exit execs (empty) textlist {empty)
status forced toggle unforced
enter execs DIt
I* Get parameters */
pre_vd_id = op_id_self(:
op_ima_obj_attr_get(prc_vd_1d,"n_min1_src®.&n_mim_src);
5 | op_intrpt_schedule_self(op_sim_time(.VD_INTRPT_CODE)
unforced state ldle
attrnbute value type default value
name idle string st
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enter execs (Sese below.) textlist (See below.)

exit execs (empty) textlist (empty)

status unforced toggle unforced

[enter execs_Idle

| forced state _create H
_aftribute value type default value

name create string st

enter execs {See balow.) textlist {See below )

eXit execs (empty) textlist (empty)
|_status forced toggle unforced

| enter execs create

{
5k

for(1_vd=0; i_vd<n_mun_src; 1_vd++)

op_pro_invoke(op_pro_create(*trt_on_ot t *,OPC_NIL),OPC_NIL);
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ON-OFF model for data

Process Model Attributes

attribute value type default value

alpha promoted double 1.4 (1/sec)

beta promoted double 0.2 (1/sec)

lamda promoted double 170 (pkis/sec)
eade

/* This process model generates the traffic from a single data sources by using
the on-off model (with heavy-tasled sojourn time) absiraction %/

5 | #include <math.h>
#include <stdio.h>
#include <sysfime h>
#define PKT_ARRVL_CODE 0
10 | #define ON_OFF_CODE 1
#define PKT_ARRVL op_ntrpt_type() = OPC_INTRIM _SEL| & &\
op_intrpt_code() == PKT_ARRVL_CODL
fidefine ON_OFF_INTRPT op_intrpt_type() = OPC_INTRPT_SELF &&\
15 op_intrpt_code() == ON_OFF_CODE
double pareto():
[State Varlable Block
Distnbution® \alpha_dist;
Distnibution® \beta_dist;
nt \ud;
S |t \ON;
double \alpha,
double \beta;
double Nambda;

Packet*

emporary Variable Block

pkptr;

double

5t

U [o] [+

double y;

y = op_dist_outcome(dist_ptr):
retum(exp(y));

1* Function 1o disiribute a Pareio distributed random variate */

pareto(dist_ptr)
Distnbution® dist_ptr,
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ON-OFF model for data

10 1* If y has an exponential distribution,
with parameter alpha, then exponential(y)
is pareto generated with alpha. */

)
15

forced state Jnit

attribute value type default value
name init string st
enter execs (See below ) textlist (See below )
exil execs (empty) textlist (empty)
status forced toggle unforced
enter execs NI
1 = op_id_self(),
1% Get parameter */
5 | op_ima_obj_uttr_get(14,"alpha* &alpha);
op_ima_obj_attr_get(id,” bet a* &beta);
op_ima_obj_attr_get(id,* 1 amda <, &lambda);
1* Ininalize varia‘*ile %/
10 JON=0:
1* Get exponential distribution %/
alpha_dsst = op_dist_loud("exponent tal *,1/alpha,0.0);
beta_dist = op_dist_load(*«xponent 1al * ! fbeta,0 0);
15
unforced state  OFF
| attribute value type default value
name OFF string st
enter execs (Sese below ) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced toggle unforced

L enter execs OFF

1* schedule for ON siate */
if (ON==0)
{

S ON=1;
)

op_intrpt_schedule_self(op_sim_timeQ+op_dist_outcome(beta_dist),ON_OFF_CODE);
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ON-OFF model for data

| _unforced state  ON

_attribute value typs default value |
name ON string st
enter execs (See below.) texthst {See below )
oxit execs (See below.) texthst (See below )
status unforced toagle unforced
enter execs ON ]

1* schedule for OFF siate and new: packet send */

f (ON=1)

{

op_intrpt_schedule_self(op_sim_timeQ+pareto(alpha_dist), ON_OFF-_CODE),

5 { op_intrpt_schedule_self(op_sim_timeQ+1/1amhda PKT_ARRVL_CODE):
ON =0;
)
exit execs ON o
orced state _send

attribute value fype default vaiue
name send string st
enter execs {See below.) textlist (See below)
exit execs {(empty) texilist {empry)
status forced toggle unforced

enler execs _send

I* send packet *!

pkptr = op_pk_create(0);
op_pk_send(pkpir,0);

1% schedule for new packet */

op_intrpt_schedule_s~'f(op_sim_time(Q+1/2ambda PKT_ARRVL_CODF):
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[ Page 1014

MMPP modael

Process Model Attributes

attribute value type default value
lambda_ 1 promoted double 1.0 (pkts/ms)
lambda_2 promotad double 1 O (pkis/ms)
alpha_1 promoted double 1 0 (t/ms)
alpha 2 promoted double 1 0 (1/ms)

eader Block

#include <math.h>
5 | #include <stdio.h>
#include <syshime.h>
#define ST1_CODE
#define ST2_CODE
10 | #define ARRV_CODF
H#define STI1_END
15
#define ST2_END
#define ARRVL
20
#idefine

END_SIMULATION

1* This process model generaies packet according to the MMPP model, for voie */

op_intrpt_type() == OPC_INTRPT_SFI I & &\
op_intrpt_code() == STI_CODE

op_intrpt_type(t = OPC_INTRPT_SELF & &\
op_intrpt_code() == ST2_CODE

op_intrpt_type() == OPC_INTRPT_SFLF & &\
op_intrpt_code() == ARRV_CODE

op_intrpt_typeO==OPC_INTRPT_ENDSIM

State Varlable Block

Distnbution™ \alphal _ptr,
Distribution®* \alpha2_ptr;
Dastnbution® Nambdal_ptr,
5 | Distnbution* Nambda2_ptr,
int \state_ 1 \state_2;
double \st_time;
nt \ud;
e Block -
Packet* pkptr:
double pkt_arv_time.
double alpha_1;
5 | double alpha_2;
double lambda_1;
double lambda_2;

157




Process Model Report: trf_ve_mmpp

| Sat Aug 24 16:22:49 1996 | Page20t 4

MMPP model

»

uncilon Block

forced state Inlt

attnbute value type default value
name Init string st
enter execs (See below ) texthst (Seebelow )
exit execs (empty) textlist (empty)
status forced toggle unforced
enter execs Init
1d=0p_id_self();
* Obtain parameter values */
5 | op_ima_obj_attr_getGd,= 1 ambda_1 *, &lambda_1);
op_ima_obj_attr_getGd,* 1 ambda_2*, &lambda_2);
op_imn_obj_attr_get(d.* aipha_1*, &alpha_l);
op_imu_ohj_attr_getGd,“alpha_2*, &alpha_2):
10 | /* Load distrebution ®1
alphal_ptr=op_dist_load(~exponent 1 ai*,ljalpha_1.0.0);
alpha2_pr=op_dist_load( - exponent1al *,l/alpha_2.0.0);
lambdal_ptr=op_dist_load(*erponent 1 al*,1lambda_1,0.0).
tambda2_ptr=op_dist_load(*+.,. ~=»+ 1. ," |/lambda_200);
15
1* Initiahze variables */
state_l=1;
state_2=0:
20 ] 1% Schedule transition interrupt from state 1%
st_time = op_sim_time() + op_dist_outcame(alphal _ptr);
op_intrpt_schedule_self(st_time,ST1_CODE);
1* Schedule a packet if the arrival time does
25 not exceed stale | sojourn sune */
pkt_arv_time = op_sim_time() + op_dist_outcome(lambdal_ptr);
of (pki_arrv_time < st_time)
op_intrpt_schedule_self(pkt_arrv_time, ARRV_CODE),
30
unforced siate 8t 1
attribute value type default value
name st_1 string st
enter execs (See below.) taxtlist (See balow.)
exit execs (empty) taxtlist (empty)
status unforced toggle unforced
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MMPP modet

enter execs st 1

unforced state st 2

attribute value type defauflt value
name st 2 string st
enter execs {empty) textlist (smpty)
exit execs (empty) textlist (empty)
status unforced toggle unforced
orcedstate_st1 st2
| _attribute value tyne default value
name st1_st2 string st
enter execs (See below.) textlist {See below )
exit execs (empty) textlist (empty)
status forced toggle unforced
enterexecs stl_st2
state__2=1;
state__1=0;
5 |i* Schedule transition snterrupt from state 2 %/
st_time =op_sim_time() + op_dist_outcome(alpha2_ptr),
op_intrpt_schedule_self(st_time,ST2_CODE);
1% Schedule a packet 1f the arrival time does
10| not exceed state 1 sojourn time */
pkt_arrv_time = op_sim_time() + op_dist_outcome(lambda2_pur);
if (pkt_arrv_time < st_time)
op_intrpt_schedule_self(pk' ~rrv_time, ARRV_CODI:):
_forced state_ 82 st
atfribute value type default value
name st2_st1 string st
enter execs (See below.) textlist (See below )
exit exacs (empty) textlist (empty)
Lstatus forced toggle unforced

state_ 1=1;
state_2=0,

* Schedule iransiion snterrupt from siate 1 */
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MNIPP model

10

st_time = op_sim_time() + op_dist_outcome(alphal_ptr);
op_lotrpt_schedule_self(st_time,ST1_CODE),

1* Schedule a packet if the arrival ime does
not exceed state 1 sojourn tume®!
pkt_arrv_time = op_sim_time( + op_dist_outcome(lambdal_ptr);
of (pkt_arrv_time < st_time)
op_intrpt_schedule_self(pkt_arrv_time, ARRV_CODE);

forced state _send

attribure value type default value

name send string st

enter exscs (See below.) textlist (See below.)

exit execs (empty) textlist (empty}

status forced toggle unforced
rexecs send

1% send packet */
pkptr = op_pk_create(0):
op_pk_scnd(pkptr.0),

f (state_1)

pkt_arrv_time = op_sim_time() + op_dist_outcome(lambdal_ptr);
else

pht_arrv_time = op_sim_time¢) + op_dist_outcome(lambdal_ptr);

1* Scnedule a packet if the arrival time does
not exceed state | sojourn time */

if (pki_amv_time < st_time)
op_intrpt_schedule_self(pkt_arrv_tim-, ARRV_CODE),

tate _end
value type default value
end string st
enter execs (empty) textlist {empty)
exit execs (empty) textlist {empty)
status unforced togale unfoiced
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Figure A.6: PMPP process model
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PMPP model

Process Model Attributes

aftribute value type default value
lambda__1 promoted double 1.0 (pkts/ms)
lambda_2 promoted double 1.0 (pkts/ms)
alpha_1 promoted double 1.0 (1/ms)
alpha 2 promoted double 1.0 (1/ms)
r Block
1* This process model generates packets according to the PMPP model, for data */
#include <math.h>
5 | #include <stdio.h>
#include <sys/time.h>
#define ST1_CODE 1
#deline ST2_CODE 2
10 | #define ARRV_CODE 3
#define STI_END op_intrpt_type() = OPC_INTRPT_SELF &&\
op_intrpt_code() = STI1_CODE
15
#define ST2_END op_intrpt_type() = OPC_INTRPT_SELF &&\
op_intrpt_code() = ST2_CODE
#dcfine ARRVL op_intrpt_type() == OPC_INTRPT_SELF &&\
20 op_intrpt_code() == ARRV_CODE
Hdcefine END_SiMULATION op_intrpt_typeQ=OPC_INTRPT_ENDSIM
25 | double pareto():
[State Verlable Block
Dastribution* \alphal_ptr:
Distribution® \alpha2_ptr;
Distnbution® Nambdal_ptr;
S | Distnbution® Nambda2_ptr;
int \state_1\state_2:
double \st_tume;
nt Nd;
porary Varlable Block
Packet* pkptr;
double lambda_lI, lambda_2;
double alpha_l, alphz._2;
5 | double pkt_anrv_time;
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PMPP model

Fun

ction Block

10

15

/*Function to generate a pareto distributed random variate®/

double pareto(dist_ptr)
Distnbution* dist_ptr;
{

double y;

y = op_dist_outcome(dist_ptr);

returexp(y));
* If yis exponentially distributed with
alpha then exponential(y) 1s pareto
distributed with alpha*!

orced state _Init

|_atinbute valug type default value
name init string st
enter execs (See below.) textlist (See below)
exit execs (empty) texthst (empty)
status forced toggle unforced
enter execs _Init
id=op_id_selfQ;
/* Outain parameter values */
5 | op_ima_obj_attr_get(id,” lambda_1 -, &lambda_l);
op_ima_obj_attr_get(id," 1ambda_2*, &lambda_2);
op_ima_obj_attr_get(td,"alpha_1 -, &alpha_l),
op_ima_obj_attr_get(1d,"alpha_2-, &alpha_2);
10 | /* Load distribution. */
alphal_ptr=op_dist_load(*exponenti&l*,l/alpha_1,0.0);
alpha2_ptr=op_dist_load(*exponential*,l/alpha_2,0.0);
lambdal_ptr=op_dist_load(*exponent . al *,1/lambda_1,0.0);
lambda2_ptr=op_dist_load(* exponent 1al *,1/lambda_2,0.0);
15
state_l=1;
state_2=0;
* Schedule transition interrupt from state | */
20 | st_time = op_sim_time() + parcto(alphal_ptr):
op_intrpt_schedule_self(st_tume,ST1_CODE);
1* Schedule a packet if the arrival time does
not exceed state ! sojourn time*/
25 | pkt_arrv_time = op_sim_time() + op_dist_outcome(lambdal_ptr).
if (pkt_anv_time < st_time)
op_iotrpt_schedule_self(pkt_arrv_time, ARRV_CODE);
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PMPP model

|_unforced state st 1

10

1* Schedule transition interrupt from state 2 %/
st_time = op_sim_time() + pareto(alpha2_ptr);
op_intrpt_schedule_self(st_time,ST2_CODE);

1% Schedule a packet if the arrival ime does
not exceed stale 1 sojourn time. %/
pkt_arrv_tune = op_sim_time( + op_dist_outcome(lambda2_ptr);
if (pkt_arrv_time < st_time)
op_intrpt_schedule_self(pkt_arrv_time, ARRV_CODE);

| _attribute value type default value
name st_1 string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced toggle unforced

enter execs st 1

| unforced state 8t 2

_afttnbute value typs default value
name st 2 string st
enter axecs {empty) textiist (empty)
eXxit execs {empty) textlist (empty)
status unforced toggle unforced
forced state__ 811 8t2

| _attribute value type default value
name sti_st2 string st
enter execs (See below ) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs sti_st2
state_2=};
state_ 1=},
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PMPP modei

orced state St2 sti

attribute value type default vaiue
name st2_st1 string st
enter execs (See below ) textlist (Seo below )
eXit execs (empty) textlist (empty)
status forced fogale unforced
enter execs 8Y2_sti
state_1=1;
state_2=0;
5 | /* Schedule transition interrupt from state 1 */
st_time = op_sim_time() + pareto(alphal _ptn),
0p_inlrpl_scheduIe__self(sl_llmc.STl_COl)E):
1= Schedule a packet if the arrival ime does
10 not exceed state | sojourn time *1
phi_arrv_time = op_sim_time() + op_dist_outcome(lambdal _pr):
if (pkt_arrv_time < st_time)
op_intrpt_schedule_self(pkt_arrv_time, ARRV_CODE).
15
orced state _send
attribute value type default value
name send string st
enter execs (Ses below ) textlist (See below )
exit execs {(empty) textlist (empty)
status forced toggle unforced
enfer execs _send . MW
/% send packet *i
pkptr = op_pk_create(0):
op_pk_send (pkpir,0):
5
if (state_1)
pkt_arrv_time = op_sim_time() + op_dist_outcome(lambdal_ptr):
else
pkt_arrv_time = op_sim_time() + op_dist_ouvtcome(lambda2_ptr),
10
/* Schedule a packet if the arrwval time does
not exceed state | sojourn time */
if (pkt_arrv_time < st_time)
15 op_intrpt_schedule_self(pki_arv_time, ARRV_CODE);
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PMPP model

unforced state_end

attribute value type default value
name end string st

enter execs {(empty) toxtlist (empty)

exit execs (empty) textltst (empty)
status unforced toggle unforced
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Deterministic queue

[ Process Model Attribute s

attribu’o velue type default value
service rate promc*ad double 1.0 (pkts/sec)

ock
Hdefine QUEUE_EMPTY wop_q_cmpty 0)
#define SVC_COMPLETION op_intrpt_type O == OPC_INTRPT_SELF
#define ..RRIVAL op_intrpt_type 0 == OPC_INTRPT_STRM
S | #define END_SIM op_intrpt_type) = OPC_IN (RPT_ENDSIM
double* ary_pir:
extem FILE * fpu.
char opt_file(40];
10
ESEIock
nt \server_busy;
double \service_ ate;
Objid Nown_id;
5 | \ary_end_index;

able Block
Pack~t* pkptr;
nt nsert_ok:
nt n
S | double total;
double q_length:
double pk_svc_time;

forced state _Init

atinibute value type default value

name init string st

enter execs (Sea balow.) textlist {See below.)

exit execs (smy 4) textlist (empty)

status forced togale unforced
[enter execs Init

1* initially the server is wdle */
server_busy = 0;

S | /* get queue module’s own object 1d ¥/
own_id = op_id_self (;

/* get assigned value of server pro~essing rate */
op_ima_obj_attr_pet (own_id, "serv: -2_rate*, &service_rate);
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Deterministic queue

10

15

20

*Allocate memory for the ar: 1y that stores the frequency
of queue lengths. Start with a single element, this will be
expanded dynamicclly %/

ary_ptr = (double *)malloc(sizeof(double));

ary_ptr{0] = 0;

1* Indicates the max array index of the dynami-ally
allocated array, currently 0 %/
ary_end_index = 0;

orced state _arrival

attribute

value typo

doefauit value

name

arrival string

enter execs (See below.) textlist
exit execs (emp*y) textlist

tatus

forceo toggle

st

(See below )
(empty)
unforced

20

25

30

enter execs _arrival

% acquire the arriving packet %/
1* muluple arriving streams are supported. */
pkptr = op_pk_get (op_intrpt_strm Q).

1* attempt to enque ue the packet at tail of subqueue 0 %'
if (op_subq_pk_insert (0, pkptr, OPC_QPOS_TAIL) = OPC_QINS_OK)
{

1* the insertion juiled (due to a full queue) *!
/* deallocate the packet ®/
op_pk_destroy (pkpte);

1* set flag indicating insertion fail */
1% this flag is used 1o determine transition */
1* out of this state */

insert_ok = 0;

}

else(

1% insertion was successful */

insert_ok = 1;

}

/* Samnple the queue length after this arrival */
q_length = op_q_stat(OPC_QSTAT_PKSIZE);

if(ary_end_index >= q_length)
1* If current array index 1s greater than or equal
10 the quvue length, iicrement the correspending
element in the array */

{
ary_ptr{(int)q_length]++;
}
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{* Else reallocate memory and dynamically increase
array size */
else(
ary_ptr =(double *) realloc(ary_ptr, ((nt)g_length + 1)* sizeof(doubled);
1* If reallocation fails, quit */
if (ary_ptr == NULL)

printf(*Can‘t reallincate memory\n®):

1* Initialize the newly allocated memory locations *1
for O=ary_end_index+1; 1<=(int)q_length. 14 +)
{
1* Code for testing
printf(“Initializing %o time\n", 1-ary_end_index), */

ary_ptui}=0;
)

1* Increment the element corresponding to the queue
length in the array */
ary_puj(nt)q_length]++;

1% Update the Max. array index */
ary_end_index = (int) q_length;
}

—:nforced state _Idle

| attribute value type default value
name idle string st
enter execs {empty) toxtiist (empty)
exit execs {(empty) taxthst (empty)
stat.is unforced toggle unforced
forced state _svc_stort
attribute value type default value
name svc_starnt string st
enter execs (See blow.) textlist (See below )
exit execs {empty) taxtlist (empty)

| _status forced togale unforced

lenterexecs 8Ve gtant

1* determune the ime required to complete */
1* service of the packet */
pk_sve_time = 1.0/ service_rate;

1* schedule an interrupt for this process */
* at the time where service ends. */
op_intrpt_schedule_self (op_sim_time O + pk_svc_time, O);

10

/% the server is now busy. */
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server_busy = 1;

forced state svc_compl

| _attribute value type default value
name svc_comp! string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced ]
[enter execs 8ve_compl
I* extract packet at head of queue */
I* this is the packet jusi fimishing service */
phptr = up_subq_pk_remove (0, OPC_QPOS_HEAD);
5
/* forward the packet on strean: 0, */
/* causing an immediate interrupt at dest */
op_pk_send_forced (pkptr, 0);
10 | /* server 1s idle again. */
server_busy = 0;
/* Sample the queue length after this arrival */
q_length = op_q_stat(OPC_QSTAT_PKSIZE);
15
f (ary_end_index >= q_length)
1* If current array index is greater than or equal
to the queue length, increment the corresponding
elemrni in the arrav */
20 {
ary_ptr{(int)q_length]++;
}
* Else reallocate memory and dynamicalty increase
array size */
25 | elsef
ary_ptr =(double *) realloc(ary_ptr, ((nt)q_len;th + 1)* sizeof(double)),
1* If reallocation fails, quit */
if (ary_ptr == NULL)
pnntf(*Can‘t reallocate memory\r*)
30
/* Initialize the newly allocated memory locations */
for i=ary_end_index+1; i<=(int)q_length; 1++)
{
35 ary_ptri] = 0;
)
i* Increment the elemeni corresponding to the queur
length in the array */
40 ary_ptr[(int)g_length}++;
1* Update the Max array index */
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ary_end_index = (int) q_length;
)

value ype default value
END SiM string st
enter execs (See below.) texthst (See below.)
oxil execs (empty) textlist {empty)
status unforced toqale unforced
enier execs END SIM
1* Calculate the total number of observations */
total = 0;
for (1=0; 1 <= ary_end_index; 1++)
total = total + ary_pufi):
5
I* Calculate the probability mass (or} frequency
corresponding 1o each queue length */
for 1=0; 1 <= ary_end_index; 1++)
ary_ptr[i] = ary_ptri1)Aotal ;
10
1% Prepare the output ASCII file in the OPNET
required format */
fprintf(fptr,"t race_count = 1\n*);
fpeintf(fptr, *abscissa. Queue lengthin‘):
1S | fprintf (fptr, *ordinate- Frequency of gueue lengthi\n®);
fpnotf (fptr, *length = %d\n*,ary_end_index + 1),
fprintf (fptr, *number of values = %d\n \n*, ary_end_index +2);
for (i=0; i<=ary_end_index; 14++)
20 fprintf(fptr. “%3d -> Sg\n* s ary_pirla]):
fpeintf(fptr, *¥3d -> end\n*, ary_end_index + 1);
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