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Abstract

Perceptron-Based Algorithms and Analysis

Hongfeng Yin, Ph.D.

Concordia University, 1996

An unsupervised Perceptron algorithm and several of its generalizations are pro-
posed in this thesis. Under some conditions, it is proved that the unsupervised Per-
ceptrons converge to the first principal component of the input data. Also, the con-
vergence speed, robustness, bias and variance of a neural network learning algorithm
are defined and analyzed. The learning performances of the unsupervised Perceptron
algorithms, the Oja learning algorithms and the Widrow-Hoff learning algorithm are
analyzed. Some simulation results and comparisons are provided. A tree classifier
based on the unsupervised Perceptrons is given and applied to Chinese character
recogniiion. In addition, an asymmetric associative memory network is proposed us-
ing the Perceptron learning algorithm. A deepening impression method is given to
enhance the performance of the associative memory. Moreover, the back-propagation
algorithm is improved for pruning the hidden neurons in a three layered neural net.-

work.
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Chapter 0

Introduction

Artificial neural networks, corimonly referred to as “neural networks”, have been
widely researched in recent years as a new information storing and processing tool
[45, 58, 29, 52, 8, 88, 5]. Already, neural network models have been applied in pattern
recognition, expert system, automatic controel, image and signal processing and many
other fileds [6, 20, 21, 27, 75, 86, 87, 92].

Research on neural networks has been motivated by the recognition that the brain
computes in an entirely different way from the conventional computer. The hu-
man brain contains billions of neurons. A typical neuron has a number of ramifying
branches called the dendrites; these comprise a major part of the input surface of
the neuron. Axons are the transmission lines of a neuron. An axon has a smoother
surface, fewer branches, and greater length. Many neurons contact thousands of other
cells at sites called synapses. A typical artificial neuron or a node usually forms a
weighted sum of some inputs and passes the result through a nonlinear function as
shown in Fig. 1. Therefore, a neural network, which is composed of a number of
connected nonlinear nodes, is a nonlinear dynamic system or a nonlinear function.

The output of an artificial neuron is of the form
N-1
y= () waz; +90),
rd

1



fh (X) . fs (X)

Hard L.imiter Sigmoid

Figure 1: The structure of an artificial neuron

where w, is a weight component, z; is an input component and 0 is a threshold. The
nonlinear functicn f is usually a hard limiter or a sigmoid function as shown in Fig. 1.
As an information processing tool, neural networks distribute information among the
weighted connections and the information can be processed in a massively parallel
way. Such structure provides a great degree of robustness because local damage
does not impair overall performance significantly. Also, neural networks can process
distorted or noise information with high performance.

From a mathematical point of view, neural networks are a new kind of nonlincar
function representation method and can approximate a large class of functions. Thus,
neural networks can be widely used in various fields.

In contrast to von Neumann sequential computers in which the operations and




knowledge are encoded by programs, the operations of a neural network usually follow
some physical or biological rules. Neural networks can improve their own performance
by sclf-organization, self-learning and self-adaptation.

ISarly rescarch on neural networks began in the 1940s by McCulloch and Pitts
[49]. They combined neurophysiology and mathematical logic using the all-or-none
property of neuron firing to model the ueuron as a binary discrete-time element.
The McCulloch-Pitts neuron was the first model to tie the study of neural nets to
the idea of computation. In the 1960s, Rosenblatt proposed a Perceptron algorithm
which attracted a great number of researchers [62]. Minsky and Papert analyzed the
Perceptron in detail and showed its limitations [51]. Research in neural networks
came to a virtual halt in the 1970s. Recently, there has been a resurgence of interest
in neural networks due to the work of Hopfield [31, 32], Rumelhart and McClelland
[65], and many others [18, 39, 73]. There are several reasons for this, including the
appearance of faster digital computers on which to simulate larger networks, interest
in building massively parallel computers, and the discovery of powerful networks and
learning algorithms.

Most ncural network models have self-learning algorithms. Like the brain, a neural
network can acquire knowledge through a learning process in which the weights are
updated once for each sample. The neural network learning is different from the
traditional statistical learning in which samples are treated as a batch.

The general neural network learning problem can be described as follows:

lLet X denote a sample vector and W be the weight vector of a neural network. The
ultimate purpose of a neural network learning algorithm is to optimize the expected

value of a criterion J(W,X). Using the hill-climbing method, the neural network



learning equation is derived as

AJ(W, Xy

Wk + 1) =Wk +nw —5r
Jdl

W:W(k)'
0.1 Perceptron and Linear Classifiers

The motivation of research on the Perceptron was to develop brainlike systems [62].
The Perceptron was the first neural network model which provided an automatic
learning algorithm. The simplest Perceptron can be considered as a training model
for a single neuron.

Assume that there are M N-dimensional sample vectors arranged as an infinite
periodic sequence with period M and each sample vector is augmented into a (N 4 1)-

dimensional vector with last component 1.
Xoy X1y oo Xpy oo

Let Y, denote the desired or the target output corresponding to Xi with binary value
+1 or —1. Then, the Perceptron learning algorithm is summarized in the following

steps:
1. Initialize the weight vector of the neuron Wy randomly.
2. Present a new sample X with its desired output Y;.

3. Modify the weight vector as:

Wie+ Xi if Werk <0and Y, >0,

Wipr =8 We =X if WIX, >0and Y, <O, (2)
Wi otherwise.

4. If the weight vector stays the same for M steps, the learning ends. Otherwise,

go to step 2.



Rosenblatt proved that the Perceptron learning algorithm is convergent {or linearly
soparable samples [63].

The Perceptron can be derived from the following criterion function:
1 T T
J(W, X) = §W X[h(W"X)-Y].

Also, a linear classifier can be constructed using traditional statistical methods.

Since the classification hyperplane of the Perceptron is linear in nature, the stan-
dard Perceptron algorithm cannot solve the nonlinear classification problems. How-
ever, the Perceptron remains one of the most important neural network models. These

are the following main reasons:

1. 'The convergence is proven for linearly separable samples. This makes the anal-

yses of the system behavior easy and explicit.

2. The Perceptron provides an important tool to explore the behavior of biological

neurons.

3. The main limitation of the Perceptron is that linearly nonseparable problems
cannot be directly solved. The problem can be solved by adding new nonlinear
terms or new features. However, these methods are empirical and depend on
the applications. The learning algorithm for growth network which can solve

this problem for binary samples and for continuous samples have been proposed

[85, 50, 48].

4. Baum showed that the Perceptron learning algorithm is fast for nonmalicious
distributions [3]. The fast learning makes real-time and dynamic development

of a system possible.

5. 'T'he samples are presented one by one and the weights are updated only accord-

ing to the current sample.



6. The outputs are binary. Therefore, it is casy to represent the symbolic knowl-

edge in the Perceptron based neural networks.

7. For binary samples, only integer operations are needed for training. As a result,
all weights are integer numbers. All connection weights are initially set to zero.

Only connections that are incremented during training becoine nonzero.

0.2 Widrow-Hoff Model

The Widrow-Hoff model is another important supervised linear neural network model
which is widely used in adaptive signal processing and pattern classification. The
Windrow-Hoff algorithm {79, 80}, based on the least-mean-square criterion, is also
called the LMS algorithm.

Fig. 2 shows the structure of a linear network. The input-output relation of the

neural network is described by
N
Y= Zw,w,- =WwTX,
i=1

where zy = 1 is an augmented component for the input vector.

Let d denote the desired response or target output. The error signal is defined by
e=d-y.
As a performance measure, we introduce the mean-squared error
1.,
EW) = —519)((8 ).
For the input sample X, the squared-error is

J(W,X) = ——%(d —WTX),

6




Figure 2: The structure of a linear network




Since i’ia%ll = (d - HWEX)Y = eX, the LMS learning equation for the constant

learning rate can be derived as following based on (1):

Wiy = Wi + Y(d — ”'{Xk)-\’k. (3)

There are two distinct aspects of the convergence problem in the LMS algorithmn:

1. The LMS algorithm is said to be convergent in the mean if the mean value of
the weight vector Wy approaches the optimum solution W as k tends to infinity;

that is

lim E(W,) =W.

&k ~+00

2. The LMS algorithm is said to be convergent in the mean square if

lirn £(ex) = constant.
k=20

Widrow and Stearns [81] proved that the LMS algorithm is convergent in the mean

if the learning-rate parameter satisfies the following condition:

&

0<y<

)
’\m.a:r

where Anq.o is the largest eigenvalue of the autocorrelation matrix C' = E(X X7).
And, the LMS algorithm is convergent in the mean square if the learning-rate param-

eter satisfies the following condition:

0 <y« 2
L tr(C)’

where tr(C') is the trace of C'.
For the non-constant learning-rate, the convergence of the LMS algorithm will be

analyzed in Chapter 3.



0.3 Hopfield Networks and Boltzmann machine

Hopfield rekindled the interest in neural nets by his extensive work on different ver-
sions of the Hopfield net [31, 32]. The Hopfield net can be used as an associative
memory model. Also, the Hopfield network has been applied to solve optimization
problems. The Hopfield net is a dynamic system with symmetric weights (wi; = wj;)

as shown in Fig. 3. The evolution equation is of the form

N-1
s(t+1) = f(O_ wijs,(t)+6;), 0<i< N —1, (4)
J
where s,(t) is the ith state of the network. f is a hard limiter or a sigmoid function.

Hopfield’s contribution was to associate with such a net a measure called energy,

1
E = -3 Z 8,8, Wi; — 23;05.
1 1
This is not the physical energy of the neural net; it is rather a mathematical
quantity. If we pick a unit and the above firing rule does not change its s;, it will not
change E. However, if s, initially equals 0 and 3~ w;;s, + 6; > 0, then s, goes from 0

to 1 with other s, constant, and the energy change in FE, is given by

AE ==Y wys, — 6; <0.
Similarly, if s, initially equals 1, and ) w,;s; + 6; < 0, then s; goes from 1 to 0 with
other s; constant, and the energy gap is given by

AE = - wis;— 6; <0.

In other word, on every updating we have AE < 0. Hence the dynamics of the
net is to move to a minimum. The updating rule of (4) may not yield a passage to
minimum energy for a network with asymmetric weights, but might instead yield a

limit cycle, which will be discussed in Chapter 5.

9



Figure 3: The structure of the Hopfield network
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'The Hopfield net can be used to approximately solve the famous traveling salesman
problem and other optimization problems. Unfortunately, there is no guarantee to
find a global minimum.

Kirkpatrick et al. [37} developed a simulated annealing method for making an
optimal algorithm capable of escaping from local optima. Hinton, Sejnowski, and
Ackley {30} applied simulated annealing to the Hopfield nets by modifying the rule

for state transition as follows:

Compute AE =5 s w;, + 0,.

Set s; to 1 with probability p,(AE) = ﬁ;],—)—,;-ﬁ-.

Annealing is a process whereby this passage to equilibrium is repeated to succes-
sively lower T'. The resulting system is called a Boltzmann machine. It is proven that
the system passes to its global minimum if the process is slow enough [24].

On the other hand, when a Hopfield net is used as an associative memory model,
it may take the advantages of local minima. For associative memory with binary

samples, the weights of the network are assigned as

w,, = { OEﬁEI T :jj (5)
The samples may happen to be the local minima of the network with the above
weights. When a corrupted input pattern is presented at iteration zero, as the net
iterates, the output becomes more and more like the correct sample pattern.
The Hopfield net has two major limitations when used as a content addressable
memory. First, the number of patterns that can be stored and accurately recalled
is severely limited. If too many patterns are stored, the net may converge to novel

spurious pattern different from all samples. Hopfield [31] showed that this occurs

infrequently when samples are generated randomly and the number of samples is

11



less than .15 times the number of input elements or nodes in the net. The second
limitation of the Hopfield net is that there is no guarantee that all samples are made
to be the attractors of the network. Some improvements and applications of the

Hopfield model were given in [85, 86, 72, 34].

0.4 Back-Propagation Network

We know that the main limitation of the standard Perceptron algorithm is that it can
only solve linear classification problems. Also, it is well known that a three-layer Per-
ceptron with hard limiting nonlinearity can form arbitrarily complex decision regions
and a three-layer network with sigmoid nonlinearity can approximate any continuous
function. The main problem in the past was that there were no effective training
algorithms. This was changed by the introduction of the Back-Propagation(BP) al-
gorithm by Rumelhart et al. The back-propagation algorithm has become the most
commonly used neural network learning algorithm and is used in many applications.

The BP model is a multi-layer network with hidden layers as shown in Iig. 4.
The BP training algorithm is an iterative gradient algorithm designed to minimize
the mean square error between the actual output of the network and desired output.

The following criterion is used:

E = —Z(tk hd Ok)2.
k

where k ranges over designated output units. i is the desired output and o is the
actual output of node k elicited by the current input pattern.

The following sigmoid function can be used for each node:

12
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The back-propagation learning algorithm is summarized by the follo ving, equa-

tions. The forward propagation algorithm is defined as

net,, = ij,()p, (6)
and
0y, = fs{nely,). (7)

The back-propagation algorithm is

Apwy = 16,,0p. (S)

The error signal is gi ven by

(9)

(tp; — 0p, ) fi(nety,) if the neuron is an output unit
rr . . .
fi(netp,) Sibpkrwy, if the neuron is not an output unit.

The BP algorithm has three main limitations. Firstly, the energy surface may have
many local minima, so the algorithm cannot always be guaranteed to converge to the
optimal solution. The second problem is that it is difficult to analyze the behavior of
hidden units in a multilayered network. It is not easy to estimate the exact number
of hidden units required for a given problem before the network is trained. The third
problem is that the back-propagation algorithm is often slow. Extensive surveys of

the literature concerning the B-P algorithm are available in [83, 28].

0.5 Oja Models and PCA

Principal Component Analysis (abbreviated PCA) is a well-know, widely used tech-
nique, because it provides optimal linear solutions to informadtion representation, fea
ture extraction and data compression. The statistical PCA is perhaps the oldest and

best-known technique in multivariate analysis.

14



T'here is a close correspondence between the behavior of self-organized neural net-
works and the statistical methods of principal coinponent analysis. Oja first showed
that a single linear neuron with a Hebbian-type adaptation rule fo: its synaptic
weights can evolve into a filter for the first principal component of the :. it data
[54]. Since then, various neural algorithms have been proposed to do principal com-
ponent learning [55, 69, 41, 57, 36, 89, 91]. Specifically, Oja's learning equation of

the stochastic gradient ascent (SGA) algorithm is of the form

Wi, = Wi + X XT Wi, (10)

Wisr = Wi /Wil (11)

where X is the input vector and W is the weight vector. Under certain conditions,
Oja proved that Wj tends almost surely to a unit eigenvector of C = E(X X})
corresponding to the largest eigenvalue.

Also, Oja and Karhunen have given the following linearized SGA algorithm to

extract principal components:
Wi = Wi + 7k[XkX{Wk - (WEXkXEWk)Wk] (12)

The local asymptotical properties of the ordinary differential equation corresponding
to (12) were discussed in [84].

Oja’s algorithms correspond to the following quadratic optimal problem: maxi-
mization of the output variance E{|W7X|?} under the constraint W¥W=1. Since
quadratic criteria weigh heavily large values that may be due to noise or outliers, the
quadratic criteria are less robust than more linear criteria, such as the absolute cri-

terion E{|WTX|} under the constraint that WTW=1. In papers [35, 82], the robust



PCA learning algorithms were discussed. In Chapter 1, an unsupervised Percep-
tron algorithm is proposed and can be used for principal component analysis. Also,
we will show that the unsupervised Perceptron algorithm is more robust than Oja’s
algorithms in the presence of outliers.

The neural network PCA methods can also be extended to extract the mth prin-
cipal component. Sanger [69, 70] gave a self-organizing network consisting of a feed-
forward structure with a single layer of neurons, which extracts all the principal
components. Another neural network model with lateral inhibitions, proposed by
Kung and Diamantartas [41], can compute the (7 + 1)th principal component in an

iterative manner if the first j principal components are given.

0.6 Kohonen Self-Organizing Model

Another kind of unsupervised neural network algorithms is represented by the self-
organizing models based on competitive learning. The idea of competitive learning
may be traced back to the works of von der Malsburg on the self-organization of
orientation sensitive nerve cells in the striate cortex [77], Fukushima's cognitron [19],
Grossberg on adaptive pattern classification [25], Kohonen's self-organizing feature
mapping algorithm (39, 40]. For these kinds of unsupervised learning algorithms, the
output neurons of the network compete among themselves to be activated or fired,
with the result that only one output neuron is on at any one time. The output
neurons that win the competition are called winner-take-all neurons.

The principal goal of the self-organizing feature-mapping (SOFM) algorithm is to
transform a high dimensional pattern into a one- or two-dimensional discrete map
as shown in Fig. 5, and to perform this transformation adaptively in a topological

ordered fashion. The algorithm that forms feature maps requires a neighborhood to
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Figure 6: The neighborhood of the winning neuron



be defined around each node as shown in Fig. 6. This neighborhood slowly decreases
in size. There are three basic steps involved in the application of the algorithm after
initialization, namely, sampling, sirilarity matching. and updating. The algorithin

is given as follows:

1. Initialization

For j = 0,1,...M, initialize weight vector W,(0), which is the connections from

inputs to output node j. Set the initial radius of the neighborhood.

2. Sampling

Draw a sample X from the input distribution with a certain probability.

3. Similarity Matching

Find the best-matching (winning) ncuron ¢(X') at time n. Compute each (Eu-

clidean) distance d, between input and each output node j
d, = ||X(n) - W,(n)|]|, Jj=12,..N.
Denote by ¢(X') the node at which d,(x) has minimum value.

1. Updating

Adjust the weight vectors of neurons, using the following formula

W,(n) + 1l X(n) = W,(n)], j € NEz(n),

W,(n) otherwise.

W,n+1)= {
5. Repeat Go to step 2.

The performance of the SOFM algorithm is critically dependent on the selection of

the main parameters, namely, the learning-rate v, and the radius of the neighborhood
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of NE,v)(n). Unfortunately, there is no theoretical basis for the selection of these
paramecters. They are usually determined by a process of trial and ervor.

The SOMF algorithm is sinple to implement. The asymptotic convergence of the
SOMF algorithm to a unique solution for the special case of a one-dimensional lattice

was proven by Lo et al. [47] using a step by step constructive approach.

0.7 Organization of the Thesis

The purpose of this thesis is to develop some new eflicient neural network models, to
provide some deep theoretical analyses and to solve real application problems using
these models. The Perceptron is still a very important and useful model because of its
simplicity, proven convergency and extensibility. Several Perceptron based algorithms
are given and analyzed in the thesis.

In Chapter 1, we present an unsupervised Perceptron algorithm and several gen
eralizations. The convergence of the unsupervised Perceptron is proven. The idea
of the unsupcrvised Perceptron was elicited when we developed a Chinese charac-
ter recognition system using a binary tree classifier. The traditional statistical PCA
method was first used to construct a hyperplane to split samples into two subsets at
each node of the tree. Then, we tried to use a simple neural network algorithm to
construct the hyperplane. The algorithm is the unsupervised form of the Perceptron
algorithm. Therefore, it is called the unsupervised Perceptron. Next, the simulation
results on 50-dimensional Chinese character samples showed that the algorithm is
convergent.

Further simulations showed that the performances of the learning algorithms can

be very different for different parameters, such as the learning rate, the cigenvalues
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of input samples. However. there are few theoretical analyses on the learning perfor-
mance i the literature. We found that the stochastic approximation theory can also
be extended to analyze the learning performances. Therefore, convergence speed and
robustness of learning algorithms were defined and analyzed. Also, it was demon-
strated that convergence speed and robustness are highly related. The convergence
speed and robustness can only measure the global performances of an algorithm.
However, learning error cannot be estimated by them for a given number of learning
steps. The learning error is composed of the bias and variance. The approximation of
learning errors for a learning algorithm can be derived by bias and variance analysis.
Therefore, an optimal learning rate can be chosen by minimizing the learr .ng error.
These analyses and formulas can provide some theoretical basis in neural network
system designs and the learning parameter selections. Also, the theoretical analysis
can help nus understanding the deep mechanism of the neural network learning. These
definitions and general analysis are described in Chapter 2.

In Chapter 3, we apply the general definitions and analyses of Chapter 2 to sev-
eral single neuron based algorithms. First, convergence of the generalized and the
normalized unsupervised Perceptrons is proven. The learning performance formulas
for the uasupervised Perceptrons, the Oja’s models and the Widrow-Hoff algorithm
are explicitly derived. In the presence of outliers, both the experimental results and
the theoretical analyses are presented and compared for the unsupervised Perceptrons
and the Oja algorithms.

In Chapter 1, a binary tree classifier is constructed using PCA algorithms. The
tree is well balanced. At each node, it is shown that the hyperplane can minimize
the partitioning error. When the classifier is used for Chinese character recognition,
high recognition speed and recognition rate are achieved. Also, the tree classifier is

successfully applied to waveform recognition.
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In Chapter 5. an asymmetric associative memory model is given using, the Per
ceptron learning algorithm. Under some conditions, it is proven that the number of
samples that can be storad in such a network is the same as the number of nodes
in the network. In addition, a deepening impression method is given to enhance the
performance of the associative memory.

One of the limitations of the back-propagation model is that the number of neces-
sary hidden neurons is difficult to estimate before a network is trained. If less hidden
neurons are used, the learning algorithm cannot converge or has underfitting prob-
lem. On the other hand, if more hidden neurons are given, it wastes resources and
may have overfitting problem. In Chapter 6, by sctting different learning rates and
initial strengths of the learning weights, we obtained an improved B-P algorithm.
After training, there is a big gap between the weight values of useful hidden neurons
and unimportant hidden neurons. We proved that only a small error was introduced
after pruning the unimportant neurons. Thercfore, the algorithin can automatically
find the number of useful hidden neurons. Also, the improved B-P algorithms can

decrease the probability of the learning algorithms entering local inima.



Chapter 1

Unsupervised Perceptron

Algorithms

1.1 Introduction

Neural network learning algorithms can be classified as being supervised or unsuper-
vised according to the availability of an external teacher. The training patterns are a
set of input-output examples for supervised learning algorithms. The ieacher is able
to provide a desired or target response for a training pattern. The error signal can
be defined as the difference between the actual response and desired response. The
learning is to adjust the weight vector to minimize the error signal in a step-by-step
fashion. The criterion of the error signal usually corresponds to an absolute function
or a quadratic function.

There is no external teacher in unsupervised learning algorithms. That is, the
training samples do not have desired outputs. Unsupervised learning is usually based
on some sclf-organization rules, such as the Hebbian and competitive learning rules.
Like supervised learning algorithms, some unsupervised learning algorithms have also
the corresponding criterion functions. Unsupervised learning algorithms are usually

used to extract features and structures and to represent distributions.
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For a two-layered neural network with a single output neuron, there mayv be four
classes of learning algorithms according to the type of criterion and the availability
of a teacher as shown in Table 1. They are the supervised learning algorithms with
quadratic criterion (the Widrow-Hofl algorithm), the supervised learning algorithms
with absolute value criterion (the Perceptron), the unsupervised learning algorithms
with quadratic criterion (the Oja algorithms), and the unsupervised learning algo-
rithms with absolute value criterion. The first three classes of learning algorithms are
well known and widely used. In [89, 90, 91], we proposed and analyzed the last kind
of learning algorithms: the unsup. : ised Perceptron algorithms. These four classes

of learning algorithms are called the single neuron based learning algorithms in this

thesis.
Quadratic Criterion Absolute Value Criterion
Supervised | Widrow-Hoff Algorithm Perceptron
Unsupervised Oja Algorithms Unsupervised Perceptrons

Table 1: The learning algorithms for a single ncuron

1.2 The Unsupervised Perceptron and General-

1zations

The unsupervised Perceptron (UP) has the same structure as that of the standard
Perceptron [62, 51]. But, there are no desired outputs for the input samples. The
weight vector of the network can be initialized randomly. For an input sample Xy,
the weight vector is modified as follows:

(13)

We+ X it WX, >0,
Wl:+l = .
Wi — Xi  otherwise,




+1=W +Xp

4 Wz Xk <O
I_ Xk

Xk

Figure 7: Geometrical interpretation of the unsupervised Perceptron algorithm

where Wy is the weight vector after kth step of learning and Xy is the kth input
sample.
The geometric structure of the unsupervised Perceptron learning algorithm is

shown in Figure 7.

Let
X, if WIX, >0,
Y=g Ok BRI (14)
— X otherwise.
Fquation (13) may be written as
Wi = W+ Ys. (15)

Let 1 = :—*}'- Substituting it in (13), we can casily get the following:



. . 1.
Wiar = Wi+ £V = W), (16)

Replacing by the general learning rate vk, we have the following generalized unsu-

pervised Perceptron (GUP) learning algorithmn:

Wisr = Wi + ve(Yi — Wi). (17)

Another generalization of the UP algorithm is the following normalized unsuper-

vised Perceptron (NUP) algorithm:

Wi = Wi + 11Yx, (18)
Wi
Wigr = —F (19)
Wi ]

The norm of the weight vector is always normalized as 1 in the NUP algorithm.

1.3 The Relationships Between Unsupervised Per-

ceptrons and Competitive Learning Algorithms

The unsupervised Percepiron algorithms are closely related to competitive learning
algorithms based on th: winner-take-all rule. Competitive learning rules are widely
used in unsupervised learning algorithms, such as the self-organizing feature map
(SOFM) model developed by Kohonen [39], the competitive learning ncural network
given by Rumelhart and Zipser {67] and Grossberg’s adaptive pattern classification
model [25]. The winner-take-all rule permits neurons to compete for the right to
respond to a given input pattern, such that only one output neuron is active at a
time. Let W, denote the weights connecting input nodes to output node j. According

to the standard competitive learning rule, for an input X, the change AW, applied

to W, is defined by

206



(N - W if neuron j wins the competition,
AW, = { (N - W) J i

] if neuron j loses the competition.

(20)

We see that the learning equation of the GUP algorithm (17) is similar to the compet-

itive learning rule described by (20). Since the unsupervised Perceptron algorithms

have only hne output neuron, there is no competition for the output neuron. But,

there is some competition for the direction to optimize the criterion.

We construct a competitive learning neural network with two output neurons

using the following competitive rule: the neuron 1 wins if WIX > WZ X; otherwise,
8 g I 1 0 i

the neuron 0 wins.

The change of the weights is defined by

X il neuron j wins the competition,

AW, = {

0  if neuron j loses the competition.

The learning equation can be obtained as

W (k+1) =

if neuron j loses the competition.

{ W,(k) + X\ i neuron j wins the competition,

Thus.

Wik + 1) — Wo(k + 1) = Wi(k) — Wo(k) + Ya,

where

~X; otherwise.

. { N if (Wi (k) = Wo(k)T X, > 0,
k =
Let Wi = Wy(k) = Wo(k), then

Wig = Wi+ Y

(22)

Plicrefore, this competitive learning algorithm with two output neurons is equiv-

alent 1o the unsupervised Perceptron algorithm.  We can consider the UP learn-

ing algorithms as special competitive learning algorithms. On the other hand, the
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competitive learning algorithms can be considered as the generalized unsupervised
Perceptron algorithms. Hence. the analysis of the UP algorithms can provide some
basic understanding of competitive learning algorithms and give us some gridance

for designing a competitive learning algorithm.

1.4  Convergence Proofs for the Unsupervised
Perceptron Algorithm

In this section, we present the convergence proofs for the UP learning algorithm.

The convergence analysis for the GUP and NUP learning algorithms will be given in

Chapter 3.

For the unsupervised Perceptron learning algorithms, we have

Lemma 1.1 For normally distributed samples with a covarance (' and mean zero

vector, assume that
E(Yi|Wi. Wiy, ... Wy) = E(Y|Wy),

where Wy is the weight vector defined by (15), or (17) or (19), and Y} s the modifi-

cation vector defined by (14). Then,

(/' Wk

JWICw,

E(YelWi)=p (23)

where p = \/-%_
Proof: According to (14), it is casy tu verify
E(Y, Wi W) = E(X I W XIW, > 0).

Since Xy is a random vector with multivariate normal distribution, X,{ Wi is a nor

mally distributed random variable with variance W' CW;. So,
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g oy | >, .’1‘2
E(XTWe | XTW, > 0 =————-——/ crp(— e )dz = p/WTCW,.
(X} K| X Wi ) \/QW A p Z‘VZC'Wk) P k k
(24)

Then, it follows that

PRACA AEYIWi W) OE(XTWi XTWi > 0) , CWe
Y\ T L) = —_ — -
MW oW, WICW,

Q. E. D.

Since (' is positive definite, there exists an orthogonal transform matrix B, such

that

BTCB = D, (25)
and
At O 0
D= 0 A 0 ’
0 0 An

where Ay > X > ... > A, > 0 are the eigenvalues of C. Let B = (B, Ba, ..., B,). B;
is the 2th unit eigenvector of C. B, is the unit eigenvector of C corresponding to the
largest eigenvalue. It is easy to verify that vector E(Y;|W;) and E(W, + Yy |W;) are
closer to By than Wy. Therefore, it is expected that the weight vector converges to
the first eigenvector using the unsupervised Perceptron learning algorithm. Actually,

we have the following theorem.

Theorem 1.1 In algorithm (13), assume that the samples are normally distributed
random vectors with a covariance matrir C and mean zero vector, and Ay > A,. Then,

Jor any imtial weight vector Wy, !‘r& converges almost surely to pv/A\ By or —p\/A\1 B,.
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To prove Theorem 1.1. we use the stochastic approximation theory given by Kush-

ner and Clark that we put in Appendix. Analogous to Oja’s proofs of SGA [46], first,

three lemmas are proved.

Lemma 1.2 Let the assumptions in Theorem 1.1 hold and Z be a locally asymptoti-

cally stable (in the sense of Liapunov) solution to the ifl1ential equation

4z cz__, -
—_— = p—_— 4, 26
TNy

with domain of attraction D(Z). If there is a compact set A C D(Z) such that the
solution of (13) satisfies P(l,:‘L € A infinitely often)=1, then %—fk tends to 7 almost

surely.

Proof: Let W, = V—Z&(k = 1,2,...), the equation (13) can be writlen as:

W oo Ll o .
Wk+l = Wk-l- ’k—IT(}k - Wk) (27)

Since E(Y:|Wi) = p\/%———w—c“,.-?—, (27) can be rewritten as:
S k

— — 1 CWe  — I CW
Wipr =W + A I[P s L__ - Wil + r—l-[Yk - P k___ ]. (28)
1T weow, -+ W.CW,
Consider the assumptions in Appendix. The condition i) follows with
cz
WNZ) =p—r—re=—- 7.
W) =T
Since Ax = 0, the condition ii) is satisfied. v = plﬁ immplies condition iii).

Condition iv) in Appendix is verified as follows:

Let Dy =Y, — p%. Y is a function of Wy, X;. We have
k k

E(Di| Doy, Dic—y....) = 0.
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Also,

, " W, Tcrew
E(IDlI?) = E(DY D) < 2B V)42 E(—L——)] < 200+ Aot F AN+ A1)
WkCWk
Thus, S™, = =7 is a martingale sequence. If {Gn} is a martingale sequence,

then there is an important martingale inequality of Doob [16] which states that

P(sup |G| 2 €) < hmEIG |2/€2.

m>0

Applying this to our problem yields

i 1
su ——D,| > €) < constant —/¢?
Plaup |3 D2 4L T

whose right. side goes to zero as k — oo. Therefore, condition iv) in Appendix holds.

Lemma 1.2 follows directly from Theorem .1 of Appendix.

Then, we show that py/X\;B; and —p\/A; B; are asymptotically stable points of

(26).

Lemma 1.3 Let By be one of the lwo unit eigenvectors corresponding to the largest
cigenvector of matriz C. Then, the points p\/A\1 By and —p\/A B, are locally asymp-
totically stable to (26). The domain of attraction of the two points are respectively

D(B,) = {X eRN|XTB, >0} and D(—B;) = {X €eRN|XT B, < 0}.

Proof: According to (25), BTCB = D. Let Z = BY, the equation (26) can be

writlten as

dY DY

Ot P ATDY

Y

That is, for i =1,....n
dy, _ A,

i~ ytpy
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It follows that
% + U _ /\x.’ln
%‘l% + I M

which can be rewritten as

/\1@3‘ - {g‘g‘}l = (A, — ,\1)(“,
yt h

whose solution under y;(0) # 0 is

y(t) _ C(A.—A,)ty;\l(o)

: (29)
y(t) %" (0)-
For i # 1, it is easy to verify
. wt) :
Jim oy =0 (30)
Consider the equation
i?l_l _ Ay .
a = Wroy "
For ,(0) > 0, it follows that
W/ ’ 31
B o=y =m0, (31)
where m(t) = p ’\}‘,yT‘DtY — pv/A1. According to (30), it is not difficult to verify that
lim;_ m(¢) = 0. The solution to (31) is
t
n(t) = oM+ e ((0) - [ emm(a)da).
Since
t
lim e~ / em(z)ds = 0,
—00 0
it implies that
lim 3(1) = py/\. (32)
Similarly, for ,(0) < 0, we have
Jim g, (1) = “'/)\/:\T- (BR))
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For + £ 1, according to ((30)

lim w,(t) = 0.
— 0

Therefore, the proof is completed.
Remark: according to (29), we have

A .
n(t) = [y?'(t)e“""”‘-z’;\—,g(;.-))]“- (34)

Considering (32) and (34), we obtain
Ag —
w(t) = 0™ = Oelr D). (35)

where 3, = i\-: Therefore, the convergence speed of y;(¢) is O(e(™ 1)) which mainly

depends on 7,. According to (32) and (34), we also have

. (1) ~ 1. (0)( ”\/_)# (n=1)t _ BTZ(O)(B%-‘/E_A(‘T))?%6<U-~'>*, (36)

where Z(0) is the initial vector of Z(1).

Then, we show that Wy visits infinitely often a compact subset of the domain of

attraction of one of the asymptotically stable solutions to (26).

Lemxma 1.4 Let the assumptions in Theorem 1.1 hold. Then, there exists a, such
that in the stochastic process defined by (27), the event ||Wil| < a occurs infinitely

often almost surely.

Proof: Ior an a >0, theset A = {X : || X|| € a} is a compact subset of D(S). It is
casy to show that limg_ £(||[W])) is bounded by a number b. Let a be sufficiently

large so that @ > b. Then, {1V,} enters A infinitely often. This result can be
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verified as following: if it 1s not true, {H} enters A4 a finite number of times. Then,
limy . E(||Wk|]) > a. which is a contradiction.
Therefcre. the region A is reached by the process 18 infinitely often with proba-

bility one.

Consequently, T'heorem 1.1 is proved directly according to the above three lemmas.
Proof of Theorem 1.1: According to Lemmma 1.3, p3/A By and —p/X; B, are locally
asymptotically stable solutions to (26). According to Lemma 1.4, Wy visits almost
strely a compact subset of the domain of attraction of point p/X{ ) or —p/ X By.

Then, according to Lemma 1.2, W, converges almost surely to either py/A; B, or

— v\ By.

Theorem 1.1 shows that the trained weight vector converges to the first principal
component for normally distributed samples. According to the proof of the above
theorem, the convergence speed of the learning algorithin mainly depends on = %’;
In Chapter 3, the performance of UP algorithm will be further analyzed.

According to Theorem 1.1, the largest eigenvalue can also be learned using (13).

Let B, and A, be the estimations of B, and A, respectively. We have

W, — _
—=p/Ahy
Since By is a unit vector, By = W /||Wil|. Therefore,

_ IIWkII".
(kp)?

A
1.5 Learning Difference Equation Analysis

According to (28), the UP algorithm corresponds to the following difference equation:
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1 CVi

Vigr = Vi + [p =
k+1 /Vk7 CVi

Let i = 7 and I74 = BVi. Then. equation (37) can be rewritten as

— Wl (37)

DU,

Uisr = U + 1l p—mmmes
' JUT DU,

where D = diag(Ar, A, .y An). Uy = (u},42, ..., ul) is a N-dimensional vector. Equa-

= Ui), (38)

tion (38) can be written as

A - .
u,l = (] — Y + 7kp-———)u’, (Z = 1,2, ...N). (39)
s Jurpu,,” "

Using (39) recursively, we have

k
A
Uy = Uy (1 = Vm + Ymp——on—). (40)
s "n,I:Il Uz DU,
Applying the logarithm operator to both sides of (40), we obtain
k \;
: (41)

Inu;,, = In(1 — v + Ymp——=—=——=) + Inuy,.
o mz;l JUIDU,, °

For i > 1, let Sk = Inujy, ap = In(1 — v, +7mp\/u_;\-DU—) and ap = Inuf. We

rewrite (41) as

k
Sk+1 = z: (7%
m=0

Since U, — p/N By or U, — —p\/A By, it is obvious that UZ DU, — (ph)?. Let

us consider the limit

]u l - + ___’.\.1____. —_ _)‘1___
L Uy . ( Tm T TP \/U,,T,Dum) . T+ Ymp VUIDUn
him — = lim = lim

o0 ‘)”. Tt — 77" m-—0oQ 7111

A A
= dim (=1 4 peme—) = —1 4 2% = =1 44,
it (= ("1‘1)11,,.) A1 I



where 7, = —:1* < l. Since 3-02, v, = oo, it is not diflicult to prove

~
‘H n a m

hm ———— = lim — =1+ y,.
=X ) n=t Im m=x Y
Since v = F:ﬁ’ it is known that
Inn
lim ————— = 1.
nemee Z21:1 Tm
So, we have
In u! Sn S.
lim —= = lim = lim ——— = ~1 + . (42)
n—eo ln n o ln n n—oee Zm:l Y

Equation (42) means that the convergence speed of {Uyx} at ith eigenvector direction
is

ul = O(n" 1) (t=2,3,..N). (43)

Comparing (35) with (43), we see that the convergence speed of y, (1) and the

convergence speed of u!, are not the same, but are highly related. The more detailed

analysis about their relationship will be provided in the next chapter.

1.6 Summary

In this chapter, an unsupervised Perceptron learning algorithm (UP) and several
generalized UP algorithms have been proposed. For the normally distributed input
patterns, we proved that the UP algorithm converges to the first principal component.
Also, we analyzed the corresponding ordinary differential equation and difference
equation of the UP algorithm and show tha. the convergence speeds of the solutions to
these equations depend only on the eigenvalues of the input patterns. More definitions

and detailed analysis will be presented in the next two chapters.
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Chapter 2

Convergence and Learning
Performance Analysis of Neural

Network Algorithms

2.1 Introduction

The asymptotic behavior analysis for neural network based learning algorithms is
very important, and usually quite difficult to undertake, due to the fact that these
algorithms are not only stochastic but also nonlinear. The stochastic approximation
method. originally proposed by Robbins and Monro [61], provides a general tool for
analyzing a great variety of neural network learning algorithms. By associating an
ordinary differential equation to a stochastic approximation algorithm, Ljung [46] and
Kushner and Clark [12] extended the results for Robbins-Monro-like methods consid-
erably. 1t has been used to prove the convergency of several unsupervised learning
algorithms for principal component analysis [53, 69]. In Chapter 1, we analyzed the
convergence of the UP algorithm using stochastic approximation theory. However,
most of these analyses focus on the convergency of the algorithms. Little attention

is paid to the other important features of the learning performance, such as learning
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speed. robustness. learning, error. ete.

In this chapter. first. we analyzed the convergeney of single newron based learning
algorithms. Then. the convergence speed. robustness, bias and varianee of stochastic
approximation algorithms are defined and analyzed. The formulac of these perfor
mances are derived for single neuron based learning algorithms. The analysis provides

a theoretical basis for sclecting the learning parameters.

2.2 Convergence Analysis of Neural Network Learn-

ing Algorithms

In the Appendix, Theorem .1 (Theoremn 2.3.1 in [12]) is presented. It provides a
powerful and convenient tool for analyzing the convergence of stochastic learning
algorithms. Neural network learning algorithms can be considered as a special type
of stochastic approximation algorithms. Based on Theorem 1, we can analyze the
asymptotic behaviors of neural network learning algorithms.

Most of neural network learning algorithins can be derived from a eriterion J (W, X)),
where W is the weight vector and X is the input vector. If we take the partial deriva-
tive of J(W, X) with respect to W, we obtain

. aJ (W, X)

(Wi, Xi) = W (14)

W=W;

h() is a vector function. Using the hill-climbing method, the neural network learning

equation is derived as
Wk +1) = W(k) +nwh(Wy, Xp). (45)

For neural network learning algorithms. since the modification of weight vector usually

only depends on the eurrent weight vector. we can assume that,

B L



I’/'X[il( W;_, XA)I "1/;\] = I'/‘\ [il(”"A. .X,A)“’V(J. 1 ;.)((), caeny )\’k—l]-

Also, we assume that { X} is stationary.

Let h(W;) = Iz'_x[iu(Wk, Xi)|We]. Equation (45) can also be written in the form

Wk+| =W, + “jk(h(”/k) + Dk), (46)

where Dy = (Wi, X¢)—h(Wy). Without ambiguity. we may simply use E[iL(Wk, Xi)]
Lo represent, Is'x[iz(Wk,/\'k)IWk].

The equations (45) and (46) are called the learning difference equation (LDE) of
learning algorithms. The corresponding ordinary differential equation (ODE) of the

learning algorithm is

= h(Z). (47)
The convergence of Wy is described in Theorem 1.
For a criterion based algorithm, let V(72) = Ex(.J(Z,X)), thus

dNZ, X)
0z

=T h(2)= |INIP, ()

d
—V(Z =K«

which means ‘%V(Z) is a positive semidefinite function. V(Z) is a Liapunov function
of (47). Thus, the stationary points of (47), together with the point (o0), form an
invariant set S with a global domain of attraction D(s) =R".

For @ > 0, the set A= {X:|[X]|| € a} is a compact subset of D(S). Assume

that F(

Wl]) is bounded by b. Let a be sufficiently large so that a > &. Then, {W,}
enters A infinitely often. This result can be verified as following: if it is not true,
{1} enters A a finite number of times. Then, limg_y E(J|W4||]) > a. There is a
contradiction,

Also, W cannot tend to infinity if I(||W%]}) is bounded.

39



Therefore, similar to Corollary 2 it [16]. we have the following corollary 10 the

convergence Theorem .1 for criterion based neural network algorithms.

Corollary 2.1 Suppose that the attraction basimn D(S)=R~ and that l(Z) and V' (7)

have isolated stationary points. Assume that I

[Well) is bounded. Then, Wy tends

to alocal maximum of V(Z) almost surely.

For single neuron based learning algorithins, the global behaviors are similar to
the local behaviors in the neighborhood of stable states. The local properties of
(47) can be described by a lincar system ‘—ff}- = X, where Il = l(',(/ﬂ e It 1 s
negative definite, the convergence speed of the solution to the lincar system 2% = 11X
is determined by its largest eigenvalue A, such as O(c**¥). For lincar systems, the
local convergence speed is also the global convergence speed. Usually, the ordinary

differential equation (ODE) of a single neuron based learning algorithm is a kind of

nearly-linear equation.

2.3 Definitions of Learning Speed and Robust-

ness

Equation (46) also corresponds to the following difference equation:

Ukyr = Uy 4 vch(Uy), (49)
which is called the difference equation (D) of a learning algorithm. In the following
analysis, assume that Z € S is the limit of Wy. By viewing the DE as the LDE with
Dy, =0, we also have Uy — Z as k — ~c. That is, (W, - /) — 0 as k — ~c almost,

surely. The solutions of LDE (46) and DI (19) are highly related. The total variance

introduced in learning is

10



V=3 wEUID?).
h=1

If the modified conditions iii) and iv) of Theorem .1 hold, V' is bounded. For a
small V| the solutions of the two equations are very close. The solutions to LDE
and DE are the same if V = 0. Therefore, the convergence speed of a stochastic
learning algorithm is defined as the convergence speed of the solution of its DE to an
asymptotically stable state, and the robusiness is defined as

_ler_ e

R = )
Vo ZRARE(IDP)

where Z is a locally asymptotically stable state to the ODE.

If the modified conditions iii) and iv) of Theorem .1 hold, R > 0.

I 1)Z(t) = Z|| = O(f(1)), O(f(t)) is defined as the convergence speed for the ODE

(47).
| In Chapter 1, we derived the convergence speed of the solution to the DE of the

UP algorithm. We see that the convergence speed of the solution to the ODE is much
faster than the convergence speed of the solution to the DE. Besides, the learning rate
is one of the important parameters which determine the learning speed. However, the
ODE does not include this parameter. It seems that the convergence speed for the
ODE is not equivalent to the convergence speed for the DE.

By further analyzing and comparing the solutions to the DE and ODE, we found
that the convergence speeds of Uy — Z and Z(t) — Z are also highly related.

Let us assume that {4} satisfies (153). For a one dimensional ODE and DE, we

obtlain

Theorem 2.1 Suppose thal the assumptions of Theorem .1 hold. Assume that ||h(Z(t))||

is a monotomreally decreasing function, and ||dfl,/z)l| is bounded. Z(l) and U, are the

H



solutions to the ODFE (47) and the DL (49). respectiody. We have, NZ() = Z|| =

O(f(t)) is equivalent to ||l7y, =Z|| = O(f(1:)). where t,,, = AT

Proof: For aone dimensional function, using the truncated Taylor's series expansion,

we have

dZ(t brar— )2 &7
Z(ten) = Z(L) + (Bapr — tr) di ) + (—kil—‘)—‘;x %7!—’- , (50)
=t - =ty

where 0 < s, < 9. Note that 4 = &5y — £ and apply the ODE to (50), we obtain

2
Z(tes1) = Z(tk) + mh(Z (1)) + ;fh'(’k + k). (51)

Let 7y = Z(t;). Equation (51) can be rewritten as the lollowing dilference equation:

2 .
Zior = Z + Yh(Zi) + 12-‘:/;(;,A + 1) (52)
Note that h'(t) = AL — MDD p) Let bl + si) = Grh(l) = Gh(Zx), and
M; = %(ZZL — Equation (52) is rewritten as
,72
Ziar = Zie + (% + ‘})i(f'kMk)h(Zk)- (53)

If ||Z(t) —Z|| = O(f(t)), the convergence speed of Z, is O(f(tn)). Comparing
(53) with the DE (49), we have that the convergence speed of Uy, is O(f(L, — pu)),
where p, = Y i, :Y-EGkMk. Since G and M. are bounded, then p, is also bounded.
Therefore, the convergence speed of U, is also O(f(1,.)).

Similarly, it can be verified that if the convergence speed of Uy is O(f(1,,)), then
1Z(t) - Z|| = O(f(2)).

Without special claim, all the learning rates in this thesis are assumed with the

form vy, = k—:,\:, where cis a constant and K is a large constant.,



—1.5

Usually. O(f(1)) is an exponential function with the form f(1) = « Then.

L =520 o = clow 4 O(1). 'The convergence speed of U, 1s
Of(1,)) = O(fles Inn)) = 0@~ = O(n=).

Generally, the conelusions of Theorem 2.1 also hold for the learning algorithms in

N-dimensional space. The conditions and the proofs are remain to be explored.

2.4 Defitions of Bias and Variance

The convergence speed and robustness analysis can show the global performances of
a learning algorithm. Also, we need to estimate the learning error for a given number
of learning steps, so that the learning error can be minimized by choosing an optimal
learning parameter.

In [23], the definitions of bias and variance were given and discussed based on
criteria and approximating functions of learning algorithm.. Here, we give some
definitions and analyses based on the stochastic approximation learning equation and
the learning weight vectors.

First, the learning error of an algorithm is defined as the mean square error be-

tween the weight vector Wy, and its limit W, as shown by
Ex (Wi =W/ | Xo, X1, .oy Xih).

Without ambiguity, the learning error is simply written as E(||W, — W||?). We

have

E(IWy = W) = E(|W) — EW, + EW, — W||2)

= E(Wh = BV 4 2E[(W - EWO)T(EW, — W) + E(|EW, - W|12).  (54)

13



Since
E[(Wy — EWOI(EW =T = [ = EWOI] (W = W) = 0

and

E(|EW, = W) = ||[EW, = W%

Eq. (54) is written as

E(I|Wi = W) = E(IIWi — EWi?) + || EWy — T (55)

Therefore, the learning error of an algorithm are composed of two parts. The
mean square error between the learning weight vector and its expectation, the first
term of the right hand side of (55), is defined as the variance of the learning algorithm

at the kth step. That is,

Vary = E(||Wi — EW,|]). (h6)

The difference between the expectation of the weight vecto: at the Lth step and
the limit of the weight vector is defined as the bias of the learning algorithm at. the

kth step. Specifically,

Biasy = ||[EW, - W]|. (57)

The diagram interpretation of the bias and variance is shown in I'ig. 8.
It is difficult to derive an exact expression for the variance. For the learning rate
—_ _C 1 3 N PQ » ot
Yk = 545> through simulations and some analyses, we found that:
If E[||D:]}*] = d, the variance of the learning algorithm can be approzimated by

2
de
Var, ~ —

k+ K

(H%)
The detailed analysis about the variance are remains for the further exploration.

11



Figure 8: The relation of the learning error, the bias and the variance



2.4.1 Bias Analysis of Single Neuron Based Learning Al-

gorithms

According to (46), we have

EWipr = EWie + v E(h(W)). (h9)
For single neuron based algorithms, h() is a linear or a nearly lincar vector func-
tion. So, E(h(W})) = h(EW,). Therefore, EW} can be approximated by /x under
Uo = Wp, where {Ux} is a sequence defined by the DE (49).
If {Wi} converges to W. Then, {U:} is also convergent. Let U7 = limy ... Uj.
Thus, U = W.
According to the DE (49), we have

Ugsr — =Y vh(U,) (60)
1=k
and
Ukt -U = Uk + v h(Uy) - . (61)

Since h(U) =0, (61) can be rewritten as
Ueg1 = U = Up = U + 1 [h(Ur) = R(T7)). (62)
For single neuron based learning algorithms, A() is usually a linear or a nearly lincar
function. We have
hU) = h(U) =~ H(Uy - U), (63)
where H = %UQ) U_T" Substituting (63) in (62), we obtain
Uk — U= Uy — U + ’7kH(Uk - U) =1+ "/k”)(Uk - ’—j), (64)

where [ is the identity matrix. Using the approximation (64) recursively, we get

k
Upgr = U = (Uy = T) H(I + 1 1). (65)

46



For single ncuron based learning algorithms, /[ is a symmetric negative semidefinite
matrix. If /1 is negative definite, its eigenvalues are all negative. Without ioss of
generality, let H o= diag(An, A2y ooy Ann ), Wwhere Mgy < Aivo1 €. < A2 € A <0

For the jth component of Ugyy, equation (65) is written as

k
u],k+l - ﬂj ~ (uJO - ﬁ]) H(l + 'Yi)‘_gh)v (66)

=1

where 7, is the jth component of U. Let ax = [T%_,(14+7,A,) and take the logarithm

of a; to obtain

k
Inar =Y In(l + %.A,5). (67)
t=1

For small 4,A,,, we have the following approximation:
ln(] + ’71A]h) ~ 71/\311
Replacing it in (67), we have
k k
Ina; =~ Z'Yl/\Jh = AJh Z’Y: = A_7h.tk, (68)

=1 =1

where 1 = Y% 4,. Thus a; ~ e’*, Substituting a in (66), we get

Uptt — Ty =2 (1,0 — T, )e ik, (69)
Therefore,
_ N N
WUkt = Ul = [ D (upprr — T2 = | D (w0 — Ty)2ePhonts, (70)
=1 =1

Since Ay is the largest eigenvalue, the error is mainly contributed by the first com-

ponent of Uy — U. The other components can be ignored. Hence,

”Uk+1 - (_/” |Uw ~ Uy |6\”'tk (71)



If we let Ay = ;s and according to (57) and (71), we obtain the following, approxi-

mation of the bias for single neuron based learning algorithms

Mt

Bi(ISk ~ |ll10 — Uy lf" b= Ill’w - l_l—’||(‘\“‘“ = |“‘ll) - m]l('\h“. (72)

where w;y and W, are the first components of initial weights Wy and W respectively.

2.5 The Learning Rate Analysis

For single neuron based learning algorithms, the convergence speed of Z(t) in the

neighborhood of Z is determined by

_ Oh(Z)
= a7

. (73)
2=7

[|1Z(t)=Z|| = O(e*?), where )y, is the largest eigenvalue of If. The convergence speed

for the solution to the DE is

|Un = Z|| = O(c™tn). (74)

Let d = E(||D¢|]?). The robustness can be approximated by

2

R~ -—Voo——a
dezl 7/&'

We see that the convergence speed depends on t, = Y774, and the robustness

(75)

depends on r = Y32, v2. According to (153), ¢, — oo and r < oo.
Let us assume that the learning rate has the form v = (7;9@, where ¢ is a
constant and K is a large constant. The condition (153) is satisfied if § < s < 1. For

this learning rate, we obtain

o< 0 2 >
2 C 2 l ‘ 1-2s
r = Y = _——ﬁ:(: s%(ih"‘])l\, .
kz::l i (k+ K)? k:zl\:-H k?

18



Substituting this in (75). we have

251

c2d(2s — 1)

It~ (76)

Thus, for a small s, a large I should be used to have the same robustness.

For the learning rate w = 7%+ the convergence speed of single neuron based

learning algorithis is different for the following three cases:

Case I: » = |
Ve = T is the most commonly used learning rate. We obtain

n—1

c(In(K +n)—InK)+0(1) =clnn + O(1).

H
ﬁM,

1

=1

According to (71), the convergence speed is
()((,,\,,l,,) — O(e,\,,clnn) — O(nc,\,. ) (77)

Thus, single neuron based learning algorithms are polynomially convergent for the

«

learni: g rate =455

Case II: 1 5 < s <

lor % < s < 1, it s casy to verify

- n-—1
- (1 =) 1-sy _ C(1—3) 1-
[ = = s = s
,2:‘ p— I\ +2) (n+ K)! +o(n™) ns-! Fo(n™)
According to (71), the convergence speed is obtained as
()(( \,‘t,.) — ()((‘\,,c(l—s)nl—(). (78)
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We sec that single neuron based learning algorithms are exponentially convergent for

the learning rate with 0 < s < 1.

Case IIl: s = 0,9, = ¢

In this case, the learning rate is a constant. Then, the robustness of the learning
algorithm is 0. The learning algorithm is not convergent in the sense of stochastic
approximation.

The conclusion of Theorem 2.1 does not hold for this learning rate. However,
Ur may be still convergent. The convergence speed of the learning algorithm in the

neighborhood of Z can be obtained approximately by the following difference equation:
Upyr = Uy + cH U, (79)

where H is given in (73). Using (79) iteratively, we get

Uper = (I + cH)EU,.

Without loss of generality, let H = diag(Ag, A, ...., An), where A, < O is the largest

eigenvalue of H. Hence, the convergence speed of the first component of (/4 is
O((L + cAn)"),

which can be considered as the convergence speed of the learning algorithm. For a
small Ay, we have (1 + cAy)" = e Approximately, the convergence speed of the

learning algorithm is

O, (80)

Thus, in this case, the algorithm 1s exponentially convergent and is faster than

the algorithm with the learning rate of case Il.
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The convergence speed of Z(1) is independent of the learning rate. Since

~
i =
h=1
the assumption for Theorem 2.1 1s not satisfied. Suppose that we can use Theorem
2.1. then t,, = en and the convergence speed of the learning algorithm is

()({ Antn ) - ()((‘r.\hn )

Henee, for a small edy, Theorem 2.1 can provide an approximation of the convergence

speed for a single neuron based learning algorithm with a constant learning rate.

2.5.1 Optimal Learning Rate Selection

We can see that the learning rate is one of the important parameters that determine
the performance of learning algorithms.  For a stochastic approximation learning
algorithm, it is required that both the bias and the variance tend to 0 as & — oo.

For the learning rate 4, it is usually assumed that:

:i‘),:oo (81)

and
oC
s1=)Y_ 4% < oo. (82)
=1
If we choose the learning rate with the form v, = T the conditions (81) and
(82) are satisfied for % <s<l.

For s =1,

A ¢ k+h ] L1
ti ~Z‘):—Z =c ——(Z c(In(k + K) — In K)), (83)
1=1 1= ll\ +I 1=1
and
SR
S = Y= ~ ¢ =
¢ ,:;\, S+ R b+ K

Y



According to (72). the bias of the learning algorithm is

. — . i At A
Bias, ~ l“’lO _ l_l—lllt Mtk o |“'l() N u‘ll‘ Mee(in(A+ A ) -In k) |“'ll) s |(__I\_ - ) \;.‘ (84)
Correspondingly, according to (H8). the variance of the learning algorithm is
I gly g g alg
|
Vary &~ de? — 8H
KR (¥5)
The total learning error is
55 . ) l\‘ + I\' 9 ) l
E[”W _ WI.”2] e Bl(zsi + V(”vk ) |“’IU — Tl‘,ll‘-(_T___)‘-' AT + (1("1—77‘7. (S(i)
\ -+ A

Let J(c) = |wo — Ell(ﬁi';,"—-)c‘\" + (1('21#. If all the parameters except ¢ in (86) are

fixed, we can find a ¢, that minimizes J(¢). Then, the learning rate ﬁT is a nearly
optimal learning rate which minimizes the learning error E[||W — W |1?).

For the learning rate with the form TRy (3 <s < 1), it is not difficult to ver
ify that the bias of single neuron based learning algorithms decreases exponentially.
However, the variance usually decrcases polynomially. There are no obvious difler

ences between the learning performance with s = 1 and the learning performance

with s # 1. Therefore, we can usually choose the learning rate with the form .

2.6 Summary

In this chapter, the convergence speced, robustness, bias and variance of a neural
network learning algorithm have been defined and analyzed. It is shown that the
performances of single neuron based learning algorithins are mainly dependent on
the learning rate and the eigenvalues of the learning samples. Based on the bias and
variance analysis, an optimal learning rote can be selected. In the next chapter, we
will present some detailed analysis and comparisons about the performances of the

UP algorithms, the Oja algorithms and the Widrow-Hofl rule based algorithins.




Chapter 3

Analyses and Comparisons of

Single Neuron Based Algorithms

3.1 Introduction

Using the definitions and the general analyses of stochastic approximation algorithms
given in Chapter 2, we analyze the unsupervised Perceptron algorithms, Widrow-Hoff
rule based algorithms and Oja learning algorithms in this chapter. The performance
formulas of these learning algorithms are derived. Outliers are the noise samples or the
samples with extreme values. In the presence of outliers, the robustness of learning
algorithms can be largely reduced. We provide some theoretical and experimental
analysis of outliers and show that the absolute criterion based learning algorithms
arce more robust than the square criterion based learning algorithms. In addition,

some simulation results and comparisons are presented.

3.2 The NUP Algorithm Analysis

In Chapter 1, the normalized unsupervised Perceptron algorithm (NUP) was pro-

posed. The norm of weight vector is always normalized as 1 in the NUP algorithm.



Like the UP algorithm, the NUP algorithin can also extract the first principal com-

ponent of the input data. First, we analyze the convergence of the NUP algorithm.

3.2.1 Convergence of the NUP Algorithm

Substituting (18) in (19), we write the NUP learning equation as

Wi + Y
Wipy = ——b T Tkk .
k+1 vak + ,.ykyk” ( )
Using the expansion of 1_11»?» we have
1 ) . |
Wt aaray ~ L~ vellYill £ Ow). (59

Substituting (88) in (87), we obtain
Wit = (We + 1Y) (1 = %llYel| + O(12)) = Wi + (Y = [IYellWi) + Ak, (89)

where Ay = 71 ||Ye||Ye + O(y%) Wi + O(~2Y:) and A — 0.

For the unsupervised Perceptrons, we have ||Yi|| = || Xk||- Therefore,
P

E[(I1YIDIWe] = E[(1Xel)IWi] = E([|Xell) = E(I|Yl])

and

E(IIYdPIWe) = E(I Xl IWi] = E(|Xill*) = ECIYell®)-

We will simplify some representations of the conditional expectations in the following
analysis.

Equation (89) can be rewritten as
Wipr = Wi + % [E(YilWi) = E([IYal)We] + 71 De + 1 Ax (90)

where Dy = Y, — E(Ylek) - ”Yk”Wk + E(HYKH)W&



It is obvious. (D W) = 0 and

I(] W)+ HEYAWR)IP + Wl PEIYe]P) + Wl *(ENY )]

Di|||Ws) < A[k(]
< 16L([|Yel]?) = 16 E(|] Xk|1). (91)

If (]| Xk][?) exists and condition (153) holds, the assumptions iii) and iv) in

Theorem .1 are satisfied. Also, E(||W]|) = 1.

According to (89), the criterion of the NUP algorithm can be considered as

W 2
Jow, x) = wx| - 1x 2||

and
W1

V(W) = Ex(IWX]) = Ex(I1X])——

Using the above analysis and applying Corollary 2.1 directly, we have

Theorem 3.1 Let S be the local mazima set of V(W). Suppose that the attraction
basin D(S) =RN —Q (Q is a null set), that V(W) and its derivatives are continuous,
and that the points in S are isolated. Assume that the learning rates satisfy (153), that

Xi||?) is bounded. Then, Wy tends to a local mazimum

{ Xk} is stationary and E(

of V(W) almost surely.

For a gencral distribution, it is difficult to write Ex(|W X]) as an explicit func-
tion of W. The properties of S are not easy to be verified. However, for normally
distributed input data, we can obtain an explicit result. According to Lemma 1.1,

for normally distributed samples with covariance C snd mean zero vector, we have

CW;

JWECW,

E(Yi] W) = p (92)



where p = \/g It is easy to derive that E(||Y[]) = pv/Ar. Substituting (92) in (90),

we get the following LDE of the NUP algorithm:
C'Wy

W, = Wi + 1ep(———== MW + Y Dy + il (93)
e JWICW, - VA

According to (3.2.1)
E(IDLPIWe) < 16E(IYill) = 1BE(IXel?) = 166(C), (91)

where tr(C) = ©N ). Hence, E(]|Di]|*) is bounded. For convenience, we treat
pv: as the learning rate of the LDE (93) and obtain the following ODI of the NUP

algorithm:
dZ

Z. 95
=\ (95)
Let h(Z) = \/%ZZ? - \/KZ. The equilibrium state Z of (95) is the solution to

h(Z) = 0. That is

MZ =0. (96)
\/Z CZ \/_ )

It is easy to verify that Z = B; and — B are the solutions to (96), where 3 is the

first eigenvector corresponding to the largest eigenvalue Ay of C.

Let V(Z) = VZTCZ — VA 52 — 31 Then,

2
2) < izl - AZE 2 - 2

If Ay > Az, V(Z) is negative definite. Since %LZQ = h(Z) and Q—VT}tQ =WZ)"h(Z) >0,
V(Z) is a Liapunov function of (95) and Z = B; and — B; are the only global maxima
of V(Z).

Also, ||Wi|| = 1 is bounded and the conditions in Corollary 2.1 are satisfied. Con-

sequently, the following theorem is proved:



Theorem 3.2 For normally distrbuted stationary input samples, assume that the
learning rvale satr: fies (159) and Ay > A,. Then, the weight vector trained by the NUP

algorithm converges lo the first unil cigenvector of C almost surely.

3.2.2 Performance Analysis of the NUP Algorithm

We have proved the convergence of the NUP algorithm without solving its ODE

and DI equations in the above analysis. To get the convergence speed of the NUP

algorithm, we can solve its DE equation, or solve its ODE and apply Theorem 2.1. Tre
’z:z

simplest approach is to analyze the matrix H = %LZQ ~. For normally distributed

samples, according to (95), we have

oz 1 .
=7 =7xC VW EVIW:Y:

where [ is the identity matrix. Applying the orthogonal transform matrix B to H,

we have

. I Aa—M AN =\
B'HB = ——=B"CB — [\ —\BTB,BTB = diag(—/)\,, 22t 2N 1
\/-/W 1 \/-l 14 Wg( /\11 \/-/\—1- LT \/A—l )’

Ay = 337:\-?4 is the largest eigenvalue of H. Hence, in the neighborhood of Z, the
convergence speed for the ODE (95) of the NUP algorithm is O(e%t).

According to (77), the learning speed of the NUP algorithm is O(ncp%-*_:]-) for the
learning rate v, = ;5.
By directly solving the DE or ODE equations of the NUP algorithm, we can obtain

the same convergence speed.

Then, we calculate the robustness of the NUP algorithm. For the GUP algorithm,
Dy = Yi = B [Wie) — ||Vl W + E(|]Y4] )W

The robusiress is mainly wed for analyzing the qualitative properties of a learning

algorithm. The exact estimation of the variance of Dy is difficult to derive and is

b §
~1



also not important for robustness analysis. We only give a rough approximation here.

Since the first term of Dy contribntes most to its variance, roughly, we have,
EQIDP W) & E(YP) = o 0).

According to (76). the robustuess of the NUP algorithm for the learning rate

. _c_
Tn = n{4-K 18

|* i K

14 N .
T RE(IDPD) T 2tr(C)Y DX A T (Y

Rnup =

Substituting A;, in (84), we get the bias of the NUP learning algorithm

. A+l 4+ KN iﬂf}——*—“*)
Biasyyp =~ llUgo-—I—ﬁgl( -; )L"X" = |ur20|( _; ) M

- k _]' e =A1)
= [WT Byl “;\,‘) v (97,

where ||Wp]|| = 1.

3.3 GUP Learning Algorithm Analysis

Similar to the analysis of the NUP algorithm, the analysis of the GUP learning

algorithm is presented in this section.

3.3.1 Convergence of the GUP Algorithm

The learning equation of the GUP algorithins is

Wit1 = Wi+ vV — Wi). (98)

The criterion function of the GUP algorithm can be considered as

W[
JW, X) = |WX]| - Lz-l



and
Wi ll2

VW) = Ex(IWX]) - S5

According to Lemma 1.1, for normally distributed samples with covariance C and

mean zero vector, we have

CWy

E(YlW) = p—mie. (99)
VWICW,
Substituting (99) in (98), we can write (98) as
CW,
Wit = Wi+ el p—meee — Wi) + 1 Ds. (100)
WICwW,
Comparing (98) and (100), we obtain
W,
Dy=Yy-p C W

JwIcw,

Hence,

wWICTCW, N .
wew, ) S 7 2 e

EQIDWP W) = E(DE DJWL) < 2E(|Yal1P)+20" B(

Thus, B(||1%|1?) is bounded. The ODE of the GUP algorithm is

iz cz
TNy
— 7. It is easy to verify that Z = p\/A By or —p\/A1 B, is the

- 7. (101)

Let h(Z) = p /T(,
solution to the equation h(Z) = 0, where B is the first eigenvector corresponding to

the largest eigenvalue Ay of C.

L\ V(Z) = pVZTCZ — Z2Z — M Then,

<oz - YL Bh iz iy

M\, >\ V(Z) is negative definite. Since @é(zﬁ = h(Z) and d—v‘“LZl >0, V(Z) is
a Liapunov function of (101). It is not difficult to show that Z and —Z are the only

global maxima of 1'(Z) and that E(||W]||) is bounded.

59



According to Corollary 2.1, the following theorem is proved:

Theorem 3.3 For normally distributed stationary mput samples, assume that the
learning rate salisfies (153) and Ay > Ay, Then, the wewght vector trained by the GUP

algorithm converges to p\/A1 By or —py/A By almost surely.

3.3.2 Performance Analysis of the GUP Algorithm

For normally distributed samples, according to (101), we have

H= M :L(,‘-I-I)’lb",".
0z z=Z L

Apply the orthogonal transform matrix B to H,

AQ"’/\] /\[\' - ,}l)
/\1 3oy AI .

BTHB = diag(-1,

Thus, Ay = 32\‘,—\1 is the largest eigenvalue of H. The convergence speed for the ODE
Ao —A
(101) of the GUP algorithm is O(e vV* t).
. . o Ay .

According to (77), the learning speed of the GUP algorithm is O(n" 75 ) for the

learning rate 5 = 5. The UP algorithm is a special GUP algorithm with learning
Ay =X

rate vy, = {. The convergence speed of the UP algorithmn is O(n "% ), which is the
same as the convergence speed (35) which is directly derived from the DE of the UP

algorithm in Chapter 1.

For the GUP algorithm, since Dy = Y - pﬁﬁ-‘-’n,
L Wy

. . Wlhatow,
= F 12 =1 "2-—‘![9'4_"_‘.,..__.._*.1
N -
Ry A = pPA, = 4r(C) = phy == de(C),
m=\
Accordingto (76), the robustness of the GUP algorithm for the learning rate 4, = 5

is
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VI N PA _ Ko\
oo (D) Ar(C)Y T, v Ar(C)

Ry =

Substituting A, in (84), we get the bias of the GUP learning algorithm

k+ K
K

L+Ix ':(_*2:_".1.

Ay
) -

(102)

Biascup = (wy — Wa)( = |waol(

In (36), we have a more accurate approximation of the solution to the ODE of the

UP algorihm:

\/—/\_-)‘:—:'C(r/,—l)l
1(0)

Therefore, the bias of the GUP algorithm can be approximated by

A
= BT Z(0)( A welm—1t, (103)

BTZ(0)

(1) = y.(0)(

PV A k4 K de=a k4K PEW

A M =
770y R (% ’

Biasqup = BT 7Z(0)( (104)

LTS
)

where g = BI 7(0)(—‘3,\%1_0—) i. According to (85), the variance of the GUP learning

algorithm is

Ad _ ir(C)
k+R ™~ k+K°

V(l?'(;(lp =~

(105)

Substituting (105) and (104) in (86), we have the total learning error of the GUP

learning algorithm

k+ K 20920 ctr(C)

E[V = W] = Bias?y,p+ Vargup ~ (W] By)*( = ) TR

(106)

For principal component analysis, the projection of Wy at the second principal com-
A proj

ponent B, contributes the main error of the leaning algorithm. Tt is not difficult
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to derive that the mean squared error{MSE) of the GUP algorithm at the second

principal component 1s

bt R ey 2\,
1 -

K ) kt+ K

MSEqup = E(W! Ba|*) = wd( (107)

3.3.3 Simulation Results of the GUP Algorithm

For \; = 1,) = 0.9,10 = 1, k = 10000. K = 2000, Fig. 9 shows that /MSE
has the minimal value at ¢ = 14. Fig. 10, Fig. 1 and Fig. 12 illustrate the learning
results for ¢ = 5, ¢ = 14, and ¢ = 25, respectively. We sce that the learning algorithm
has large bias for ¢ = 5 and the variance is too large for ¢ = 25. VFor ¢ = 11, the

learning error is smallest among the three learning cases.

3.4 Widrow-Hoff Rule Based Algorithm Analy-
sis

The criterion of the least-mean-square rule (LMS)or the della rule or the Wedrow-Hoff
rule can be conveniently employed to derive the following training algorithm. The
neural network corresponding to this rule is a single lincar neuron. Let X represent

the input pattern and y is the desired output for X. Consider the criterion
] o
J(W, X) = —;Z-(y - wTx)z

Taking the partial derivative of J with respect to W yields

(')'] T vy v
m— —(y— w /\).)\

That is A(Wi, Xx) = (yx — W X,)Xe. Substituting it in the general algorithm of

(45), we obtain the following LDE of the Widrow-Hoff algorithm:
M/k+| =W, + “/;‘('I/k - H/}:I Xk).)(k. (108)
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Figure 9: The optimal learning rate of the GUP algorithm
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Figure 10: The learning results of the GUP algorithm with ¢ = 5
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Figure 12: The learning results of the GUP algorithim with ¢ = 25
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3.5 Convergence of the Widrow-Hoff Algorithm

For the constant learning rate, the convergence of the Widrow-Hoff algorithm was
introduced in Chapter 0. In this section, we focus on the convergence analysis of the
Widrow-Hoff aigorithm with a stochastic approximation learning rate.

Let VW) = Ex(J(W, X)), which is

, ; 1
V(W)= -%(/«;(y‘) —2WTE(y X) + WTE(XXT)W) = —S(e = 2W R + WICW),

(109)

where ¢ = E(y?),R = E@yX) and C = E(XX7) which is positive semidefinite.

Henee, h(W) = & = R - CW. Substitute it in (47). Thus, the ODE of the

w

Widrow-Hofl algorithm is

dz
T =R-cz (110)

which is a linear system. Assume that C is nonsingular. Then, V(W) is negative

definite. There is only one asymptotically stable state Z = C~'R to (110).
1Z(t) = Z|| = O(e™*m"),

where Ay, is the smallest eigenvalue of C.

Let Dy = h(Wy, Xi) — {W;), we have E(D;) =0 and

DW= EQIR(W, Xi) = h(WOIPIWL) = E(R(Wi, X0 PIWe) — [[R(Wo |1

< E(R(We X)W = E(|] — (yx — W X06) Xkl |2 Wi)
< 2Bl Xkl + 2WT E(Xi XTXe X)W,
X

Thus. il E(y*)|X]*) and E(XXTXXT) exist, E(]|Di]|?) is bounded. Consequently,

the following theorem is obtained:
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Theorem 3.4 Forstationary input data, assume that o) F(g*||V]7) and F(XXNTN N
erist. 11) the learning rates salisfy (153) and 1) C s nonsimgular and F(||Wi]]) s
bounded. Then, the wewght veetor tramed by the Widrow-1off rule (108) converges to

C~'R almost surely, and the convergence speed is O(n= \mm),

Remarks: Note that £(y*||.X))* < 3(E(y") + E(||X]]Y) and

(X XTYXTY) < E(IX].

If E(y*) and E(J|X]|') exist, the condition i) in Theorem 3.1 is also satisfied. For
the pattern classification problem, y = 1 or —1, the condition i) only requires that
E(XXTXXT) exists. A similar convergence theorem for classification problems was

given in [4].

To get the robustness of the Widrow-Hoff learning algorithm, we need to estimate

E(NDlPIWe) = B(R(Wi, Xi) = (W) = E(RWe, X3)lI)

~ E(] = (5 = Wi X)Xkl ) = E(llyXe|1?) + W EXGX X)Wy
~ |RIP+Z" BXT X)X XTVZ ~ ||RIP + ZIP(C)A

Thus, according to (76), the robustness of the LMS learning algorithm can be defined

as

KIZH?
(I R]12 + 2112 (C) M)

According to (84), the bias of the Widrow-Hoff learning algorithin is

Rips =

kv K
(W(,—Z)(—jl\—,l)*"‘mm, (111

Biasiys =~ B

min

where By, is the eigenvector of € correspe i 1o the cigenvalue A,
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3.6 Oja Learning Algorithm Analysis

In 1982, Oja demonstrated that a single linear neuron with a Hebbien-type adaptation
rule for its synaptic weights can evolve into a filter for the first principal component
of the input distribution[53]. Specifically, the Oja’s SGA learning equation is of the

form

Wi = Wi + X XT Wy, (112)
W,
Wk+1 = _-k_.H‘, (113)
HWigal|

where Xy is input vector and W, is the weight vector. Under certain conditions, Oja
proved that Wy tends almost surely to the first unit eigenvector of C = E(X; XF)
corresponding to the largest eigenvalue.

It is not. difficult to derive that the ODE of the SGA algorithm is

dz
=0z~ ||cZ||Z. (114)

liquation (114) has only two asymptotically stable states Z = By or Z = —B;. The
local asymptotical behaviors of the SGA algorithm is described by

Ah(Z)
oz

CCB, BT

"= £
IC Bl

=C— “C'BIIII_ =C—/\11—/\13131T.

2=

Applying the orthogonal transform B3, we obtain
B'HB=B"CB =M= \BYBBTB =diag(=M, A2 — My ooy Av — A1)

We see that Ay = Ay — Ay is the largest eigenvector of H. Thus, for the learning rate

e the learning speed of the SGA algorithm is O(n<*2=*1)), This result can also

be derived by directly solving the ODE or DE of the SGA algorithm.
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For the SGA algorithm,
D= e XNTW e = [INENT W — (W - [JOT ).

The robustness is mainly used for analyzing the qualitative properties of a learning
algorithm. We can use some approximation to compute it. Since the first termol D),

contributes the most to the variance of D, approximately, we have
E(|| DW= WEE(X XX X)W = Hf',\"l:'(.\’[.\'k‘\';‘.\'{)lﬂ

~ WIEXIXO)EX X)W = WO (C)ywe = A iir(C)

According to (76), for the learning rate the robustness of the SGA algorithm is

k4N

K

Roye = —.
TS

Substituting Ay, in (84), the bias of the Oja’s SGA learning algorithm is

4+ K

Biaso,, = BT Wy( jr(te=dy

where ||Wpl|| = 1.
Also, Oja and Karhunen gave the following the lincarized SGA algorithm to ex

tract principal components:
Wipr = Wi + [ Xe X Wi — (WX X W)W (115)

VW' en Wy is a vector, Oja proved that W), converges to the first principal component{55).
In the matrix case, the asymptotical properties of the ordinary differential equation
corresponding to (115) were discussed in [84].
The ODE corresponding to the learning algorithm (115) is

17 ,
’17 =07 -210ny. (116)
(
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Fquation (116) has only on : asymptotically stable state 7 = By or Z = —B;. To

analyze the learning speed of the linearized SGA algorithm, we have

IVA =7

= = BICB - 2088, =C — M -2\ BB

Similar to the analysis of the SGA algorithm, it can be derived that the learning
speed of the linearized SGA algorithin is also C(n<*2=%)), and the robustness and

the bias of the iincarized SGA are the same as that of the SGA algorithm.

3.6.1 Comparison of Neural Network PCA Algorithms

The above analysis for single neuron based learning algorithms can be summarized

in the Table 2.

Algorithms Gup NUP Oja Widrow-Hoff

Learning Type Unsupervised Unsupervised Fnsupervised Supervised

Criterion Quadratic Absolute Absolute Quadratic
EYEIYY ?—jé’-

Conv. Speed On ™) O(n v* ) O(nPa=2)) C/n=Amn)
ne LMK - . S 2Pk
Robustncss eTir(C) Gl I (C)AT c2([|RIZ+1Z]12r(C)2,)

. o ke SRa=M) - B - .
Bias () S | () TV | (B O0n-a0) | (g ) eAmen

Table 2: The performance of single neuron hased learning algorithms

wy in ‘Table 2 is the initial bias of the learning algorithms. According to Table
2, theoretically, the learning speed of a learning algorithm can be designed as fast
as possible by choosing large evough learning rate parameters or scaling the training
data. However, the robustness of the learning algorithm will decrease with the -or-
responding rate. Hencee, the convergence speed and the robustness must be analyzed

together.

Assume that the learning rate for the NUP algorithm is e and let ¢ = cpv AL

With the learning rate =4 the convergence speed of the GUP algorithm is

co ir‘_*L

()(N A ):: O(n VA )



and the robustness of the GUP algorithm is

PMK pPPMNK K
("2 tr(() - cEpP\ () - cHr()

We see that the two learning algorithms have the same learning speeds and robustness
with a proper choice of learning rates. Therefore, the NUP and the GUP algorithms
are equivalent

Also, we can compare the unsupervised Perceptron algorithis with the Oja learn-
ing algorithms. Let ¢ = o the learning speed of the Oja learning algorithms is the
same as the learning speed of the GUP algorithm, and the robustness of the Oja

learning algorithms is

K K MK

(@O~ Zar(C)h, ()

which is slightly larger than the robustness of the GUP algorithm T,\j(l’;—) In other
words, if we design the two learning algorithms with the same robustness, the Qja
learning algorithms converge slightly faster than the unsupervised Perceptron algo-
rithms. Fig. 13 shows the convergence speed for the DI equations of the Oja algo-
rithm and the GUP algorithm unde. the same environment. Fig. 14 demonstrates
the learning results and the robustness of the two algorithms. We can see that there
are no obvious differences between performances of the two algorithms.

In the next section, we will show that the unsupervised Perceptron algorithms are

much more robust than the Oja learning algorithms in the presence of outliers.

3.7  Outlier Analysis of Linear Learning Algo-
rithms

An outlier is an extreme value of a variable which can be both input, and output vee

tors. Outliers can significantly deteriorate the performances of a learning algerithn,
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Iigure 13: The learning speed of the GUP and Oja algorithms

In the literature of statistics, a number of techniques have been developed to tackie
the problem(13, 14, 33]. Recently, more attention is being paid to the importance
of this problem in neural network learning. In (82, 35], the robust PCA learnine
approaches are discussed.

Based on our definitions and analyses for single neuron based learning algorithms,
in this section, we theoretically analyze how outliers deteriorate the performan-es of

a learning algorithm.

3.7.1  Outlier Analysis of Unsupervised Learning Algorithms

For unsupervised learring algorithms, on:, input vectors contain outliers. Assume
that the outliers appear with a frequency p for a learning algorithm. Let X, O and Y

represent normal input vector, outlier vector, and actual input vector, respectively.
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Figure 14: The learning results and the robustness of the GUP and OQja algorithms

Also, C, = E(XAXT) and C, = E(OOT). 'The correlation matrix of Y is obtained as
Cy=E(YY!)=(1=p)E(XXT)+pE(0O0") = (1 = p){ls 4 p.,.

Usually, the eigenvectors of C, are no longer the the cigenvectors of (. However,
if C, has the same eigenvectors as Cz, so has (. The first eigenvecter of (5 corre-
sponding to the largest eigenvalue may not be the first eigenvector of €y corresponding
to the largest eigenvalue of C,.

More specifically, if C, = A,1, the order of the cigenvectors of Cy, still remains the

same as that of C,.

Case I. C, = A\, 1

Without loss of generality, let € = deag(). Ay, ... An), whete Ay < Ay 7 07 A

The correlation matrix of Y is
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', = (b =)0 4 pALd = deagl(t — p) Ay + pA,, (1 = p)Aa+ pAs.oo, (1 = p)An + plo).

If the Oja learning algorithms are used, the learning algorithm still converges to
the first eigenvector of (/. Since (1 —p)Ay+pAs, — (1 = p)ra — pro = (1 = p)(A — Az),
the convergence speed of the learning algorithms is O(n=¢(1-PHM-22)) We see that
the convergence speed does not change very much when p is small. On the other
hand, let Dy, Dy, , Dy, be the actual noise, the sample noise, and the outlier noise

respectively for the Oja learning algorithms with outliers. We have

[Di012) = (1 = p)E D) + pE] Dioll?) = (1 = p)ta (Co) Ay + ptr(Co) A,

I

= (1 = p)tr(Co)A + pNA2.
The robustness of the Oja learning algoritlims under outliers is obtained as

K
A1 = p)r(Cr)A + pNAZ)

Koy. =

We can see that the robustness is greatly reduced for a large p or A,. For example.
let p=0.1 and A, = 10A;. Then. I—Z()Ju ~~ ﬁl?oja, where Rp,, is the roi)ustncss of
the Oja algorithms for outlier free learning.

For the unsupervised Perceptron algorithms, assume that X and O have a normal

distribution. 13y and 3, are the first two cigenvectors of C,. We have

BIO)) = (1 = p)py/As + ppy/ o,

dy = BBIY)) = (1= pE(BTX]) + pl

and

= EQBIY D = (1= o/ + poy/ Ao

For the GUP algorithm with outliers, the learning speed is approximately

7
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a3
cf-s -1 }
or ll*,.)\fﬁ”.\; \or ).

O(c )= O

which shows that the learning speed of the GUP algorithim decreases mildly, For the

GUP algorithm,

E(IDrI1*) = (1= p)EQIDA) + pED 1)

~ (1 —p)tr(CL) + pte(CL) = (0= pir(Cy) + pN A
The robustness of the GUP algorithm in the presence of outliers is

N
A= p)r(Cr) + pN)\(,).

Raop =

The robustness of the GUP algorithm also decreases, but the decreasing rate is
much smaller than that of the Oja learning algorithims.
If weset ¢ = cﬁ%ﬁg as the learning rate of the GUP algorithm with outlics,

the learning speed is the same as that of the outlier free learning algorithm with a

learning rate parameter c. Then. the robustness of the GUP learning algorithm is

K
(21 = p)tr(CL) + pNAL)

Using the same example for the Oja learning algorithm (p = 0.1 and A, = 10A;), we

Roup = (117)

obtain, Rgup ~ %R(;UP, where Baup is the robustness for the outlier free algorithim.
Similar results can be derived for the NUP algorithm. Therefore, in the presence of
outliers with correlation matrix (!, = A,/. the unsupervised Perceptrons are much
more robust than the Oja learning algorithms. This is also demonstrated by the
simulation results. Fig. 15 shows the distribution of the training data with outhers

Fig. 16 shows the learning results using the Oja and the GUP algorithims.
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Figure 15: The distribution of the training data in the presence of outliers
Case IL: BTC,B = diag(No1, Aoz, ey Aon)

lFor the OQja learning algorithms, the correlation matrix of Y is
Cy = (1 =p)Cr 4 pC, = diag({l = p)A1 + pAor, (1 = p) A2 + pAoz, o, (1 = P)AN +PA0ar).
Let i be the index that maximizes (I — p)A, + pAy,. For i > 1, if

(1 =+ pla <L =p)A 4 pha,

which can be rewritten as

l -
Aw = Ay > —;ﬁu, — ). (118)

By 1s no longer the first ecigenvector of (7, corresponding to the largest eigenvalue.
Henee, the learning algorithm with outliers no longer converges to the first principal
component for the outlier free data.

——
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For the unsupervised Perceptron algorithms, we have
dy = E(|BTY]) = (1 = p)E(BIX]) + pE(IBTO]) = (1 = p)py/ M + poy/ Aar
and

d = B(BY]) = (1 = p)py/M + ppy/d-

The criterion (W7 X|) with constraint ||W|| = | has global optima at B, if and

only if d, > d,. That is

(1 =P/ +poy/Aas > (1 —p)p\/x+pmﬂ\o—1,

or rewritten as

Am - /\ol > (119)

I-P(A_A)\/XZ+\/XZ
p AN

Usually, % >> 1. Thus, the condition (118) is much easier to be satisfied
than the condition (119). In this sense, the unsupervised Perceptron algorithms are
also more robust than the Oja learning algorithms.

If the condition (118) for the Oja learning algorithm and the condition (119) for
the unsupervised Perceptron algorithm are not satisfied, the learning algorithms still
converge to the first principal component. Similar to the Case I, it is easy to give the
learning speeds and the robustness of the learning algorithms. Also, the unsupervised

Perceptron algorithms are more robust than the Oja learning algorithms.

3.8 Outlier Analysis of supervised Learning Al-

gorithms

For the supervised learning algorithms, both iuput data and outputs may contain

outliers.
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For an outlier input vector O and response y,, let C, = E(QOY) and R, = F(y,0).

If R, = C.Z, the LMS learning algorithm still converges to the optimal solution
Z. When the training data contain outliers, the convergence speed will increase and
the robustness of the LMS algorithm is reduced. However, the overall performance
of the learning algorithm does not change very much.

If R, # C.Z, the LMS learning algorithm canuot converge to Z. It conveiges to
(pCz + (1 = p)C,) Y (pRz + (1 — p)R,), which can be quite different from Z.

For example, for the two-class classification problem, the output value can be set
as —1 or +1. Fig. 17 shows the optimal solution for the outlier free data. Under the
presence of outliers, the performance of the LMS algorithm may be very poor.

If the following absolute criterion based increment correction algorithm (1CA),

Wi Xe iTWEX, — ye <0,
WL+1={ kYA WX — i (120)

Wi — v Xe otherwise

is used, the performance of the classifier is still acceptable.
Fig. 18 shows the classifiers based on the LMS and increment correction algo-

rithms. The increment correction algorithm is less sensitive to the outliers than the

LMS algorithm.

3.9 Summary

Based on the analyses and the definitions given in Chapter 2, the convergence, con-
vergence speeds, robustness, bias and variance of several single neuron based learning
algorithms have been analyzed in this chapter.

Theoretically, the learning speed of a learning algorithm can be designed as fast

as possible by choosing large enough learning rate parameters or scaling the training
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Figure 17: The LMS classifier for normal training data

data. However, the robustness of the learning algorithm will decrease with the cor-
responding rate. Hence, the convergence speed analysis and the robustness analysis
must be used together.

A single neuron based learning algorithms can be derived or associated with a
quadratic criterion or an absolute criterion. With the same input data, it is shown
that the performances of the two classes of algorithms have no obvious differences in
the outlier free environment. However, when the training samples contain outliers, the
absolute criterion based learning algorithms are much more robust than the quadratic
criterion based learning algorithm .

Based on the theoretical analysis of the bias and the variance of single neuron
based learning algorithms, the optimal learning rate parameters can be found. How-

cver, since the eigenvalues of input data are usually unknown before learning, the
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optimal learning rate parameters are difficult to obtain for a new set of training
samples. Using the GUI algorithm as an example, we show that there is a good
agreement between the theoretical results and the simulation results for choosing an

optimal learning rate.
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Chapter 4

Optimal Binary Tree Classifiers

4.1 Introduction

Tree classifiers are widely used in pattern recognition and machine learning. Such
classifiers have the advantage of fast pattern recognition speed while preserving the
same representative capability as the multi-layer Perceptrons. ‘T'he tree classifier ma;,
also provide insight into the structure of data. Because of these advantages, tree
classifiers have received a lot of attention in the literature [1, 9, 10, 11, 38, 15, 60]. A
recent survey is found in [68].

Tree classifiers can be generated through either supervised or unsupervised learn-
ing. Most tree classifiers are generated using supervised learning techniques. In this
chapter, we consider both approaches. In particular, we are concerned with binary
classification trees only.

Unlike CARY and traditional decision trees [7, 10, 22], our tree classifier uses the
entire set of attributes in sample patterns. We adopt the unsupervised Perceptron
to train an unsupervised tree classifier and the Fisher’s linear discriminant to train
a supervised tree classifier. Fach node of the tree is divided by a hyperplane and
overlapping of patterns is allowed to within a fixed error measure so as to iriprove

classification accuracy.
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4.2 The Construction of the Binary Tree Classi-

fier

A tree classifier attempts to match a given input pattern against a set of model
patterns in order to fina the model pattern which is most similar to the input pattern.
Some similarity measure is used in pattern matching. Given an input pattein N and
a tree classifier with a set of leaf nodes { Ly, La, ..., L}, one desives to tind the loaf
node L; such that the error ||.X — L;|| is the minimum for 1 < < n. Since a path to
any leaf node in the tree may contain intermediate nodes, classification errors may
occur during the search of the leaf nodes if only limited backtracking is allowed. We
aim at minimizing such classification errors.

There are two basic approaches Lo constructing tree classifiers, namely, the ag-
glomerative and the divisive approaches [T1]. We employ the divisive approach in
our algorithm. Specifical'y, our method works in the following manner: for the set
of all sample patterns which are selected from a given distribution, a root node is
constructed to cover all sample patterns. The roor node is then divided into two
subnodes, each of which represents a subset of samples. This process contimes by
further dividing the leaf nodes until certain criteria are met. To partition a set of
sample patterns, we use a hyperpl~ne to cut the sample space into two parts with

overlap as shown in Fig.19.

4.2.1 The Tree Construction Algorithm

Let Q be a FIFO (first in first out) quene, the divisive algorithm for constructing a

binary tree classifier is formally described bhelow.



Partitioning hyperplane Decision vector

Right node set

S~ Overlap

Left node set

FFigure 19: The partitioning hyperplane at a node of tree classifier

Binary Tree Classifier Algorithm

Step 1 : Create a root node and assign all the sample patterns to the root node.

Place the root node on Q.
Step 2 : If Q is empty, go to Step 8. Otherwise, dequeue a node from Q.

Step 3 : If the number of the sample patterns covered by the node is less than M,

go to Step 2.

Step 4 : Find the maximum eigenvector of the covariance matrix of the sample
patterns covered by the current node and find the mean vector of the sample

patterns.

Step 5 : Construct a hyperplane whose norm is the eigenvector and goes through

the mean point of the sample patterns.
Step 6 : Using the hyperplane constructed in Step 4, separate the sample patterns

36



into two subsets aud create two nodes for cach subset with overlap.
Step 7 : Place both new nodes on Q and 2o to Step 2.
Step 8 : End.

In step 4 above, the eigenvector of the maximum cigenvalue corresponds te one
principal axis which has the largest variation. This is similar to the principal compo-

nent analysis in numerical taxonomy [71].

4.2.2 Learning the Principal Component and the Mean

Our unsupervised learning algorithm needs the principal cigenvector for a set of sam-
ple patterns. We employ the unsupervised Perceptron algorithm for learning the
principal eigenvector and the mean. If W is a vector that is perpendicular to the
partition hyperplane H, W is chosen as the eigenvector of the maximum eigenvalue
for the covariance matrix of samples. The eigenvector can be computed from the
covariance matrix of samples. On the other hand, the eigenvector can be learned
from samples using neural network methods. Several methods have been proposed
for learning the eigenvector from sample patterns [56, 69]. We present here a slight
modification of the unsupervised Perceptron algorithm.

Assume that M is the center of the samples. M can he trained using the incre-
mental rule given below. Let M, be an initial guess of the mean value and M, be the
approximation at step i. Given a new sample pattern X, the next approximation

M, 4, is given by

Mt+l =

iM, X,
- + —.
141 1+ |

This can be shown to converge to the mean value [78]. The cigenvector can bhe

trained by the following unsupervised Perceptron algorithm:
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M/, IX, - ‘/I; if W! ,1 - ‘x 3
W, { + M) i WI(X,—M)>0 (121)

W, - (X, — M,) otherwise.

It is also known that the principal component is the first coordinate of the Karhunen-
Loeve (K-L) expansion. In the past, FFT, Harr and Walsh transforms were often used
as the feature selection and extraction for constructing decision trees. The K-L trans-
form was not widely used in the recognition of large character sets. The main reasons

against the use of K-1, transform are given below.

I. It would have to be computed at each internal node of the tree in the design
phase. Furthermore, much computation would be necessary for unknown pat-
tern to pass through each level of the tree in the recognition phase.

2. 'The information about ecach concrete K-L transform must be stored in the
internal node, which would take up much more memory than other structures

buill with other transforms.

In our approach, only the principal eigenvector is computed and we have an effi-
cient learning algorithin for the principal eigenvector. Therefore tl.e computational
inefliciency of the K-L transform is overcome in our approach. Furthermore, our ap-
proach requires only a vector inner product which can be done quickly and efficiently.
If limited backtracking is used in the search of matching patterns, there is no need to
store the transformed patterns. Hence the storage inefficiency problem is also absent

in our approach.

4.3 Analysis of the Classifier

In this section, we first analyze the classification error of our tree classifier. Then we

will study the relationship between the tree structure and various parameters.

,
~
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4.3.1 Classification Error Analysis

Let M and (" be the mean vector and the covariance matrix of samples respectively,
Let P(X.H) represent the projection of X" along the ditection W, PN, W) is also a
random variable. If X has a multi-variate normal distribution, (XN, 1) is a normal
variable. Furthermore, P(X,1) has a symmetric distribution with respect to its
mean F{P{X, W)]if X has a symmetric distribution with respect to M. Its variance
is given by

od = w (122)

e

With W as the norm, we can construct a hyperplane H such that [ passes through
the mean point M. We use this hyperplane to divide the sample set into two subsets
Ci and Cy, possibly with an overlap. So W is the norm of the hyperplane and M is

the mean point of the sample patterns. Hence we have the hyperplane

WT(X - M)=0. (123)

Since P(X,W) is the projection of X — M along direction W, we arrive al,

WX - M)

PXW) = = (124)

If we allow the two subsets to have some degree of overlap, we have, for a given

overlap length a > 0, the partition rules

If P(X,W)>a,X €,
If P(X,W)< —a, X €Cy

If —a< P(X,W)<a,X € C,NC,.
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The set. 7,0, 1s the overlap of the two subsets. For normally distributed X, the

probability of the overlap is

P(or) = _‘_/ ¢ dr =21 — o(), (125)

27{'0'”/ —C Ty
where @(.r), the probability that y is less than r is given by

1 r
)(J,') = -\'/.—2—_-; _00

Therefore, if « is a constant, P,(a) is a monotonic increasing function of o,. When

e~V dy.

q

a, is maximum, F,(«) is minimum.

According to (122), when W = By, maz(ow) = A;, where A is the largest eigen-
value of covariance matrix € and By is the eigenvector corresponding to eigenvalue
Amas- We assume that X is a normally distributed multivariate random vector with
expectation M and covariance £. W is the normalized eigenvector. The hyperplane
WT(X — M) = 0 splits the space into two parts with an overlap a. For any constant
a, when Wois the cigenvector corresponding to the maximum eigenvalue A;. The

probability of overlap is minimum, Pp,,.

«

P =2[1 — &

). (126)

A771(1..’1:

When a noise signal is added to an input pattern, a node may misclassify the
pattern. Assume that the query pattern X is produced by adding noise to one of the
model patterns Y and that X is a random multivariate distributed normally with
mean vector Y oand covariance 0,1, where I is the identity matrix. The probability

that .X and } are divided into different sides of the hyperplane is

2

1 g oz
Ply) = / < dr. 127
W= Toro o 120
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Because y = P(Y.1") is a notmally distributed vanate, the partition error for all

sample patterns is

1 w < -
Po=2— / P(u)e T dy = ——— [ / R i «Iulu (128)
o }u

2royy Jo TLOh
Therefore, the partition error is a function of gy .o, and a. If a is a constant, n
the direction that makes oy maximurn, the probability of partition error is minimum.
That is, when the largest eigenvector is selected as partition direction, the partition

error is minimized.

4.3.2 'Tree Structure Analysis

Because the classification error accumulates level by level in the decision tree, it is
important to employ backtracking in the scarch of matching patterns. However, hack
tracking implies increased computational complexity. It is thus desirable to minimize
the backtracking effort. By allowing limited overlapping of patterns, backtracking
can be efficiently managed. In the analysis below, we assume limited overlapping, is
employed.

Let the total number of the samples be M and assume that the number of patterns
in each terminal node is equal to or less than 7. L. represents the expected number
of layers of the tree and p, is the frequency of overlapping. We have the following,

relationship:

Tpoy

M T
(=)

The expected number of layers is thus

- -
L~ 10(/(/\1,) _ logM - [(;{/_I—___. (129)
log(1tL2)  log2 — log(]1 + p,)

The expected number of nodes in the tree is approximately
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togM~logl

N =2+ Qe ) Yk DiogE-togli4ra) — |, (130)

T he expectation of the number of the nodes is a function of the number of terminal
nodes, the length of overlap, and the number of model patterns. For each node, the
probability of overlap is minimum for a constant overlap length using the above
split rule. Therefore the nodes of the tree are expected to be minima. Increasing
the overlap length can quickly increase the number of nodes in the tree and largely
improve match accuracy. However, a penalty is pa.id for having to search more nodes

and slowing down the computation.

4.4 Supervised Tree Classifier

The tree classifier given above can also be extended to the supervised case. If there
are only two classes, the partition hyperplane at each node is easily obtained by
traditional statistic classification algorithms, the Perceptron, or the Windrow-Hoff
learning algorithm. For patterns of multiple classes, these algorithms cannot be di-
rectly applied to find the optimal hyperplane. A hyperplane is perpendicular to a
onc-dimensional line. From the feature selection point of view, to find a hyperplane
is to reduce the dimension of sample vectors to one or select the best feature for
samples. Then, we split the samples based on the selected line or feature. Fisher’s
multiple linear discriminant can be applied to construct a binary tree classifier for

multiple class samples.



4.4.1 Tree Classifier Based on Fisher's Multiple Linear Dis-

criminant

Fisher’s linear discriminant can reduce the dimension n to m (m < m)[17] for multiple
class trainin{;'samplcs. In order to construct a tree classifier, we merely projeet the
n-dimensional data onto a line. Thus, we choose m to be 1.

Assume that there are N training samples, X, Xa, ...X'n. The samples belong to
c classes, wy,wy, ...,we, 1, 1s the number of samples in class w,.

The within-class scatter matrix is given by

¢
SH' = Z HH
=1

where,

Si= (X —m)(X — ),

NEw,

and

m, = — Z X.
Ny e,

The between-class scatter matrix is defined as

c

Sp =S mlm, = m)(m, - m)",

=1

and

m= Tl\/_i Z X = ]Nin,m,.

1=l N€w, =1

The projection from an n-dimensional space onto a one-dimensional space is ac
complished by a discriminant function
X =w'"x,

where W is an n-dimensional vector. T'he samples Xy, X, ..., Xn project Lo a cor
responding set of samples X;, X, ..., Xy which can be described by their own mean

vectors and scatter matrices. Thus. if we define
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and

It is straightforward to show that
Sw = WTSwW,

and
Sp = WTsgW.
These equations show how the within and between-class scatter matrices are trans-
formed by the projection onto the one-dimensional space. What we seek is a transfor-

mation vector W that in some sense maximizes the ratio of the between-class scatter

to within-class scatter. Using this measure, we obtain the criterion function,

S WTSWw
TW) = &= = s

If |Sw| # 0, W is the generalized eigenvector that corresponds to the largest

cigenvalue in
SH[’V = /\SW W.
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The cigenvalue \; is the largest root of the characteristic polynonnal
|51 = ASy| = 0.

We can solve

(HH - NS =0

for the eigenvector of 1.
Therefore, the n-dimensional sample data are projected onto a line. 'To construct

a binary tree classifier, we split the samples at the center of the line as following:

If WIX —m > 0,X is assigned to the left node. Otherwise, X' is assigned to the

right node.

4.5 The Search Algorithm for Classification

The search algorithm is dependent, upon the overlapping length. When the overlap-
ping length is 0, the search algorithin explores only a single path to a leal node, and
the search time is the shortest. Otherwise, the scarch algorithm may have to explore
several leaf nodes through a number of search paths. When the overlapping length
increases, the search time also increases. On the other hand, the classification error
decreases as the overlap increases. Backtracking is used to explore several paths. Let
a be the overlapping length for constructing the tree classifier and let ff be the vig
ilance factor for searching the trec. When the error is less than the vigilance factor,
the search can be stopped. In addition, we define a search threshold «. During the
search, we accumulate the error on each level. When the accumulative error is less

than ~, that path must be explored. In the search algorithin, we use a quene (Lo



store nodes. Let Sy = 0 be the mitial accumulative error and S, be the accumula-
tive error of a node on the -th level. Given an input pattern X, the generic search

algorithm is deseribed below.

Step 1 W «-rool;
ew — H[Vig (X — Mw)]
enquene(W, Q).

Step 2 I Q is empty, exit and no matching pattern is found;

Otherwise, W« dequeue(Q).

Step 3 If W is a leal node and || X — Pw|| < [, exit and classify X as in the same

class a, W.

Step 4 Ii W is not a leal node,
locate its right child i and left child L;
e = ew + [IVE(X — Mg)ll;
L= ew + | [VIX = M.

Step 5 If VI(X — Mg) > 0, then enqueue(R, Q);

If ¢;, < v, then enqueue(L, Q).

Step 6 If V(X — Mg) <0, then enqueue(L, Q);

If ep < 4 then enqueue( R, Q).
Step 7 Go to Step 2.

In the above search algorithm, My, and Vi are the mean of the patterns in node
W and the principal cigenvector of the covariance matrix of node W, respectively.

Py is a model pattern stored in a leaf node W.
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If 4 = 0. the scarch algorithm explores a single path to a root node. Let £ be the
expected number of levels of the tree. The expected number of nodes 1o be explored
is simply L.. Hence the search time Cy is proportional to O(([, + V) where N oas

the dimension of the pattern vector.

log(%) )= O(N logAl - logl’

YIS \ L L A\' [ ' 4
log(*5™) o2 —dog(i 1 oy PN 8D

Ci=0(Le +T)+ N) =0O(N
When T decreases, (", decreases and the nodes of the tree increases. I the overlap

length is decreased, the number of nodes of the tree is decreased and the search time

is decreased. However, the classification error will increase.

4.6 Results of Experimental Study

We present results of experimental study in this section. We have applied our ap
proach to waveform recognition and Chinese character recognition. The results are

summarized in the following subsections.

4.6.1 Results for Waveform Recognition

CART (Classification and Regression Trees) has been extensively studied in the it
erature (7, 68]. The waveform recognition problem was wsed to compare varions
optimization schemes for CART. Therefore we also use this problem as a benchmark
to compare with other approaches.

The waveform recognition problem is based on three waveform functions ly(t),
ha(t), ha(t) as shown in Fig.20. The measurement vectors are 21-dimensional, that is,
X = (z1,...,21). To generate a class | vector X, we independently generate auniform
random number g and 21 other random numbers ¢, ¢4, ..., ¢4, ¢, where 1707 24,
has a normal distribution with zero mean and unit, variance. The components of a

vector are computed according to
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hi(t)

h2(t)

h3(t)

Figure 20: The waveform functions
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o=y () (=)o) F o = 1200000,

To generate a class 2 vector, repeat ihe precedine procedure and set
= phy (1) + 01— hs (D) + eyt = 1,2, ....21.

A class 3 vector is generated by

x, = pha(?) + (1 = Wha(?) + ¢, 1 = 1,2,...,21.

The CART trce was constructed using the original CAR'T algorithm. The resub-
stitution estimate of misclassification is 0.14 and the estimate ot misclassification by
using an independent test set of size 5000 is 0.28. Using the lincar variable combina-
tion method, a three node tree was constructed using CART. The error rate of the
tree is 0.20.

In our experiments, 5000 samples are used to construct the tree classifier. The
tree has 9 nodes. The misclassification rate is 0.15 for the samples that are used in
constructing the tree. The misclassification rate is 0.16 using an independent test set,

of size 10000. Our experimental result is much betier than that of CART.

4.6.2 Results for Chinese Character Recognition

Tree classifiers were constructed for recognizing three thousand printed Chinese char-
acters. Each character is represented by a 50750 pixel image. If the sum of each 5710
block of pixels is considered as a feature of the character, a total of 50 features are
selected for each character. One model pattern is selected for cach character. Fig. 21
shows the projections of the 3000 characters at the first principal component. Fig.

22 illustrates the distribution of the projection.
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If ais 5.0 and each terminal node contains 1 < 20 model patterns, the classi-
fication tree has 2173 nodes. Experimental results are summarized in the following
tables.

a =4.0,7, = 20,5, = 3000
Noise 1.0 {20 ] 30| 4.0 {50 | 60| 701807907100

Vig=0 | 100.0 [ 99.8 | 98.1 [ 93.3 | 84.5 | 77.5 | 69.0 | 62.1 [ 55.0 | 47.9
Vig=50 | 100.0 | 99.8 | 99.5 | 98.7 { 98.9 | 98.4 [ 95.9 | 93.0 | 86.2 | 79.0

Table 3: Recognition rates for different noise and search vigilance

In these tables, « is the overlapping length, T, is the maximum number of the

samples allowed in a leaf node, and S,, is the total number of the training samples.

on,=3.3,T. = 20,5, = 3000
a 0.0 1.0 2.0 3.0 1.0 5.0 6.0
No. of Nodes 447 | 525 | 779 | 1007 | 1457 | 2173 | 3461
Recognition Rate | 72.20 | 80.70 | 87.1 | 93.50 | 95.54 | 98.5 | 99.67

Table 4: The number of nodes in the tree and the recognition rates for the different
overlaps

a=4.0,0, =3.3,5, = 3000

T 20 30 40 50 | 60 70 80 90 | 100 | 500
L, 1457 | 873 | 567 | 457 | 375 | 273 | 239 | 227 | 199 | 27

Reco. Rate | 95.5 [ 95.7 1 96.2 | 96.2 | 96.4 | 96.7 | 96.9 ] 96.96 | 97.1 | 98.6

Table 5: The number of nodes in the tree and the recognition rate for the different,
numbers of maximum terminal node patterns

4.7 Summary

In this chapter, we present a new approach for constructing decision classifiers. Qur

approach combines the incremental learning of neural networks and the advantages
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a="70,=5"T, =30
S 500 | 1000 | 1500 | 2000 { 2500 | 3000
L. 147 | 429 | 841 | 1433 | 2119 | 2991
Reco. Rate | 96.8 | 944 | 94.2 | 92.9 | 92.88 | 92.83

Table 6: The number of nodes in the tree and the recognition rate for different
numbers of training samples

a=0,0, =95,T. = 3000
On 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Reco. Rate 100 {99.93 | 99.56 | 99.03 | 97.50 | 94.23 | 89.27
a =1.0vig =50 |99.96 | 99.6 | 99.30 | 97.50 | 94.46 | 89.30 | 82.00

Table 7: The recognition rate for searching all samples and the tree classifier

of principal component analysis. The decision trees constructed using our approach
show significant performance improvements.

We take advantage of the principal component analysis. However, our approach
is different from principal component analysis which simply transforms the data from
one space to another orthogonal space. We first find the principal axis and then
use it to divide the sample patterns into two groups. This continues until certain
termination criteria are satisfied.

On the other hand, each node in our tree classifier corresponds to an artificial
neuron. The unsupervised Perceptron algorithms are employed to traiu the neurons in
our trees. This is different from the traditional decision tree construction algorithms.

In addition, using the Fisher’s linear discriminant, our approach is extended to
construct a supervised tree classifier for multi-class training samples.

We have conducted many experiments to study the performance of our approach.
Simulation experiments demonstrate the superb performance of our classification

trees. Our approach presents an alternative technique to tree structured classifiers.



For Chinese character recognition. we mainly focus on the construction of a good
classifier and an efficient search algorithm in this thesis. Phere is also a lot of work

to be done to develop a real OCR system in the future.
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Chapter 5

Asymmetric Associative Memory
Model

5.1 Introduction

In recent years, artificial neural network have been shown to be a promising model of
associalive memory. From a distorted image or incomplete image, the network can
associale a clear and complete one that has been stored. The Hopfield network has
the capability of simulating associative memory [31, 32]. The Hopfield model is a
symmetric network. All nodes in the network are connected with each other. The
weight from node 7 to node j is equal to the weight from node j to 7 in the Hopfield
netwerk, that is, w,, = w,,. The weights of the network are given by the Hebbian
rule which is realized by the output product method. The behavior of the network is
described as a high-dimensional nonlinear dynamic system.

From an arbitrary initial state, when the elapsed time is long enough, the state
that a system can attain is called an attractor of the dynamic system. If an attractor
is a sample, we call it a sample attractor, otherwise, a non-sample attractor. Assume
the initial state of a nonlinear dynamic system is set to a pattern X. The system finally

attains an attractor If the attractor is one of the samples that has been memorized,
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it is considered that the sample is associated by X. The Hoplield network has two
major limitations as an associative memory model. First, the samples that can be
stored and accurately recalled are very limited. 1f a large number of samples are
stored, many nonsample attractors will be produced. while some samples may not be
the attractors of the network. Hopfield showed that the number of samples (M) that
can be stored in a network is less than 0.15 times the number of nodes (N) in the
network for randomly generated samples.

Another limitation is that the network cannot: distinguish very simil ir samples.
When the initial state of the network is set to a sample, the associated result may
not be itself, but another similar sample.

In [59, 34], a nonlocal learning method was given to improve the memory ca-
pacity of the Hopfield model. However, the nonlocal learning rule makes the model
unattractive from a biological viewpoint.

In this chapter, we propose an asymmetric associative memory neural network
which is trained by the Perceptron algorithm. This associative memory network heas
a larger capacity when compared with the Hopfield network. In addition, a deepening

impression method is given to enhance the performance of the associative memory.

5.2 Asymmetric Associative Memory Model

Although the Hopfield networks have some similar characteristics when compared
with human associative memory, there are also some differences. For example, the
Hopfield network learns only once for a sample while a human being often learns
many times to memorize a sample. The connections between two nodes are sym-
metric in the Hopfield network. The symmetric connections cannot represent the

internal structure of some information. Most real neural networks in a brain have
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asyminetric connections. ‘The relation between two components of a sample is often
not symmetric.

In this section, an associative memory model is given whose performance is supe-
rior to the Hopfield network. The model is also a network with nodes connected with
cach other, but the connections are asymmetric. That is, there are two weights be-
tween node ¢ and node j, W, is the weight which sends information from ¢ to j . W),
is the weight through which node i receives information from j. The two weights are
usually different. The behavior of such a network is described by a nonlinear dynam:,
system. lor a given pattern X (0), considered as an initial state of the system, after
k steps of operation, let the state of the system be X (k). The evolution equation is

IJ(’*"*‘I):fh(ZwiJ-Tr(k))a (132)

1#7

where fi(r) is the hard limiter nonlinearity

fh(x) =

1 ifz >0,
{ —1 otherwise.

Finally, the network moves to an attractor state. If the attractor is a sample
attractor, we consider the sample to be associated by the pattern X (0) . We see that
the evolution equation of this network is the same as that of the Hopfield network.

Such a network can be trained using the Ho-Kashyap [74] algorithm which is
convergent if a solution exists and can yield the least mean square error solution.
However, it is required to compute the pseudo-inverse of a matrix before learning.
That is a very unnatural procedure when compared with human memory. Here we
use the Perceptron learning algorithm to train the network. A component of a sample

vector may be either 41 or —1. Assume that there are M sample vectors arranged

as a periodic sequence with a period of M.



where vector X(Afn + k) is the same as the kth sample vector, For sample N (4), the
weights are adapted using the following equation:

we, (E+1) = w,y(t) +9le,(1) — L) wr, (Dex (D)D) (133)

k£,

where 1 is a constant. When no weight is changed after presentation of an entire
period of M samples, the learning process is considered convergent and the learning
ends. The following theorem shows that if a set of samples is well distributed in the
pattern space and the number of samples is less than the number of the network

nodes, the network can memorize all of them.

Theorem 5.1 Given M binary samples, each sample is composed of N components.
If the vectors composed of any N — 1 components of the A samples are Linearly
independent in the corresponding N — 1 dimensional Luchidean space, and M < N,
then the above learning process s guaranteed lo converge. All samples can be made

stable attractors of the network.
Proof: Assume the M samples are
Xl: (xiO)mila"'azl,n—l) (7= 1,2,---, A/I)'

For any node of the network, for instance node 0, a group of learning equations are

constructed as follows :

( wiozy+ W20T 12+ ... + WN-10T 1 ,N-1 = Ty,

W10T 21 + WaoT2y + ... + WN_10L2 N1 = Lp, (134)

)
l W1oTAry + WL pmr+ - + WNJ0EMN-1 = LMy
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where w,q is the weight from node 7 to node 0 which is considered as a variable. The

determinant matrix of (134) is

I Iy ... ITIN-1
I2) I22 ... TN
IM1 IM2 --- IMN-1

Because the vectors composed of any of N — 1 components of the samples are

lincarly independent, the rank of matrix C is

r(C) = min(m, N-1) = M.

That is equation group (134) has solutions. Therefore, the following equation group

f;l(zwjoll,_,) = Ti0 (l= 1,2,...M), (135)
270

also has solutions. This is because a component of a sample can only be either + 1
or -1, therefore, f(z,0) = x,0. Equation (135) is obtained by applying the function to
both sides of (134).

Consider those samples whose Oth component is +1 as one class and all other
samples as another class. The above proof indicates that the two classes are linearly
separable. According to the Perceptron convergence theorem [51, 62], at node 0,
learning all the weights to node 0 using (133) is convergent. The same results can be
obtained at other nodes. That is, all learning procedures for the weights of the whole

network are convergent. We have

oy = fu() we,za) (i=1,2,..M,5=1,2 . ,N—1) (136)
k#)
loquation (136) shows that all samples are stable attractors of the network.
Q. E. D



If a pattern X' is an attractor of the network, it is obyious that -\ is also an

attractor of the network, because
fa(=WTX) = = fr,(W'N) = -X,

where W is the weight matrix. Pattern —.X is called the complementary pattern of
X . Therefore, the complementary of an attractor is also a stable attractor of the
network. This can be avoided by adding a threshold for cach node of the network.

Theorern 5.1 indicates that the number of the samples that can be stored in a
network is almost the same as the number of nodes in the network. If the samples
are well distributed in the space, the conditions in Theorem 5.1 can be satistied casily
and samples can be memorized by the network.

Although a Perceptron-based asymmetric network has twice as many independent
coeflicients as the Hopfield network, the number of the samples that can be stored in
such anetwork with N nodes is approximately N. This algorithim can also distingnish
very similar patterns. Certain problems that exist in the Hopfield model can be
overcome in such 2 network. The learning procedure is very similar to human behavior
in the sense that information is memorized through reciting over and over again.
Fig. 23 shows ten binary 10 x 10 images to be stored. For the 10 sample images
shown in F'ig. 23, the learning algorithm converges quickly. Allimages can be stored

by the network. The same network can also store the 36 images shown in Fig. 24.

5.3 Learning Pattern Sequence

The dynamic behaviors of a symmetric network are relatively simple: the system
relaxes to states which are (local) minima of a global energy function. Once such a
local minimumhas becn reached it remains absolutely stable for sequential evolution,

or may move hetween two states for parallel evolution. Syrnmetric networks cannot,
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Pigure 23: Ten 10 x 10 binary images to be memorized by an associative memory
network
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Figure 24: 36 10 x 10 binary images stored in an associative mernory network
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provide temporal association. T'hey lack the ability to retrieve a sequence of patterns
using a single recalling input. In paper [72], an asymmetric network is given for
embedding a sequence of patterns. However, the weight of the network are also
decided by the Hebbian rule as in the Hopfield model. Therefore, it has the same
learning limitations as the Hopfield network.

The model proposed above is extended to embed one or niore seq. ences of pat-
terns, or cycles of patterns in the network. If the patterns to be learned are arranged
as

X(0) = X(1),X(1) = X(2),..., X(@) = X(i+1),...., X(M) = X(M + 1).
Then, for pattern X (1), X(f + 1), the learning algorithm (133) is rewritten as
w,(t+ 1) =w,(1) + nlz,(t+1) - fh(z wa(t)a:k(t))]:c,(t). (137)
k#;
If pattern X(M + 1) = X(0), a pattern cycle X(0) — X (1) = ... = X(M) — X(0)
is formed. Several cycles can be embedded in a network by arranging corresponding

learning sequence. The memory capacity for a number of patterns in the pattern

sequences is the same as that for stable pattern attractors.

5.4 A Method for Enhancement of Associative

Memory

Experimental results explicate that although the samples can be made as the stable
atiractors of the network, when a large number of samples are stored in a network,
many non sample attractors are also produced. Because the network is asymmetric,
there is not a general energy function. Asymmetric nonlinear dynamic networks pro-

duce more complex phenomena than symmetric ones. Some behaviors of a dynamic



system may be useful. The others may be unwanted results. It is important to have
some methods to control the dynamics of the system.

When an input pattern is not a sample, the associative result may be a non-sample
attractor, which makes the recall fail. We can make the sample attractors somewhat
different from non-sample attractors. lHere an improved learning algorithi is given
to achieve this.

The method is consistent with the psychological phenomenon of impression deep-
ening. After some samples have been remembered, people often repeat them more
times so that the impression of the samples is deepened. The impression deepening
method enables a network to escape from non-sample attractors and to attain sample
attractors. It is achieved by modifying the Perceptron learning algorithin as follows.

Let
5,(t) = Y wiy () ae(t).
k#3

Wy, if 2, = fu(s, (1)) and |s,(O)] > T,

_ (138)
wi,(t) + nz,(t)zi(t) otherwise

wy,(t+1)= {

where T > 0 is called an impression threshold, and fi(s,) is the hard limiter non-
linearity. The above lcarning algorithm requires not only that a sample be made an
attractor of the network, but also the weighted sum of incoming signals to each node
in the network must be larger than a given threshold 7. However, for a non-sample
attractor, such conditions are not guaranteed. According to this, when operating,
the system can escape from non-sample attractors to sample attractors. The stale
evolution equation is given as follows.

Let the initial input pattern be X(0) and the state of the system after £ steps of

learning be X(k). Let

S, = Zu),J:z,(k),
1
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when s, > T

a,(k+1)=1,

when s, < =T

z,(k+1)= -1,
When =T <5, < T,

1 with probability (T + s,)/27T,

(k+ 1) =
7 ) { —1 with probability (T — s,)/2T.

Therefore, when the network attains a sample attractor, its state no longer moves.
If a nonsample attractor is reached, its state may continue moving. A nonsample
attractor that is a stable state when T = 0 now becomes a non-stable state when
T > 0. The randomness in setting z;(k + 1) when =T < s, < T forces the network
to escape from such a non-sample attractor.

This method is similar to the Simulated Annealing Method (SAM) [37, 30] in
that some random disturbance is introduced to enable the network to escape from
undesired attractors. The method also differs from the SAM in the following aspects.
First, the aimed state for convergence for the SAM is only one, that is, the global
minimum of an energy function. There may be many aimed convergence states for
the impression deepening method. Furthermore, the impression deepening method
does not require a cooling procedure that costs a lot of computation in the SAM.
When an aimed state is reached, the state of the network no longer evolves with the
impression deepening method, but it continues moving with the SAM. Finally, the
SAM cannot decide whether or not a state is the aimed state. Use of other methods is
needed to decide whether or not the associative results are the samples in a Hopfield
network. For the impression deepening method, a final state of the network can be

considered as one of the sample attractors with high confidence.
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The samples to be stored are the patterns shown i Fig. 23 for the following
experiments. For input samples with 109 noise, Fig. 25 shows the associative results
using the the asymmetric network trained by (133). We can see that most of the
output patterns a.e not the sample attractors. Using the network trained by the
impression deepening equation (138), Fig. 26 depicts that all outputs of the network

are the original samples for the inputs with 20% noise.

5.5 The Analysis of the Impression Threshold

The impression deepening method can improve the capability of an associative mem-
ory system. The learning algorithm is based on the Perceptron algorithm with a
threshold 7. A node in such a network can be considered as a sample Perceptron.
Here it can be shown that the learning algorithm with a threshold 7' is a suboptimal
linear classification. For a group of samples belonging to two classes A and B, cach
sample of class B is multiplied by —1. Let M be the maximum norm of the vectors

If the samples are linearly separable, then there is a weight vector W such that
wix, >0 (z=1,2,....,n).

The learning algorithm is given as follows. The initial vector Wy, is set to a zero

vector. After k steps of training, the weight vector is Wy. Then if
WIX.>T
the weights do not change. Otherwise,
Wiy = Wi 4+ X
Let
wT X,

a = ll{f}x 'x'é',f' W}[
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Figure 25: The associative recall results for inputs with 5% noise The first and the
third colummn images are input patterns. The second and forth column images are the
associated patterns.
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‘There exists a weight, vector W, with norm 1 such that W! X, > a. The equation
WX = 0 represents a hyperplane which is an optimal classification hyperplane in the
sense that all samples are at least a distance away from the classification hyperplane

WIX =0 in the extended pattern space. We proved the following theorem.

Theorem 5.2 Assume that a group of samples are linearly separable in the sample
spuce. When an umpression threshold T is given, the learning algorithm is convergent.

After convergenee, for any sample X, we have

wTx T
s -
W = 2T+ M© (139)
where M = max ||Yil|.
Proof :
Let
WIWw,
G=—. 140
A (140)

It is obvious that ¢ < 1. Let Wi be the sum of & samples. Wy =Y, +Yo+...+ Y,

where Y, 1s one of the samples. We have
WIWe = WI(Y, + Vs + ...+ Y3) > ke,

and

IWell? = |[Wiey + Yall? = [[Weea | + V32 +2W], Vi
< IWil P 4+ M 42T < (M 4 2T)k. (141)

According to (110)
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ka

e < ] (1142)
VM 42Tk

That is, k& < M‘;ﬂz—[ Therefore the learning algorithm is convergent. Substituting,

k into (141), we obtain

(M 4271

Will* <
Wil < ——

Therefore, for any sample X

wrx
Wi =2r+m"

Q. E. D.

Theorem 5.2 shows that each sample point has a distance larger than E’T‘lﬂﬁ“ from
the classification hyperplane in the sample space with an impression threshold. The
minimum distance is related with the impression threshold 7' and « which is deter-
mined by the samples and does not change during learning. Therefore, increasing the
threshold is the only way to enlarge the distance between the samples and classifica-
tion hyperplane. For such a learning algorithm, if 7" is as large as the maximum norm
of samples, the minimum classification distance is larger than Lo, The distance will
approach fa when 7' — oc. When the algorithm is used for associative memory, the
learning algorithm is suboptimal for the connections of cach node. Therefore, each

sample is constructed as a stable attractor by a group of suboptimal solutions. As a

result, the associative capability of the system can be largely improved.

5.6 Learning algorithm for uncertain samples

In many real problems, some components of the samples are not important or un

known for classification. In some cases. a valid classification needs only a part of
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the components of the samples, This implies that when only part of the features are
present, a correct classification can be given no matter what the values of the other
features are. Such a sample should not be represented by a point in space. Instead.
it. should be represented as a subspace. The features that are not in a sample are
called uncertain components of the sample, the others are certain. The certain com-
ponents of a sample are represented by 1 or -1. The uncertain components of sample
can be represented by 7, which may be either 1 or - 1. Therefore, a sample vector
component can be 1, - 1 or 5. To learn such samples, one approach is to map each
sample to several samples with certain components before applying the Perceptron
algorithm. However, the number of samples and learning time will increase quickly.
Another method is direct learning for all samples through the following generalized
learning algorithm.

lor a set of samples, let op be the target output value of the kth sample that
may be 1 or - 1. Let Wy be an initial weight vector including threshold. Wy can be
arbitrarily chosen. After k training steps, assume that the weight vector is Wy. For
sample Xy, let Wy be the index set in which corresponding components of Xy are
certain, and let @ be the index set in which components of X are uncertain. Then,

if

(D" wirs = Y Jwii|)ox > 0, (143)

el t€P

the weights are not changed and
Wigr = W

Otherwise, the weights are corrected as follows:

Wiy + 40 1€ Yy,
Wiy, = e (144)
Wey — fh(“'kx) 1€ (I)k.
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When the weights no longer change for all samples. the learning ends. In this
learning algorithm. if (113) is satisfied, the target output of ry is same as the actual
output no matter what values the uncertain components may assume.  Note that
different samples may have different components that are uncertain, i. e, ¢4 and ¢,
may be different for m # k. The union of uncertain components of all the samples
may include every component of the whole sample vector. Therefore, we cannot
simply set to zero all the connections to uncertain components.

The above algorithm may be interpreted as generating a training sample from the
given sample. The actual t:~ining sample used is obtained by setting oy, = — fi,(wy,)
for uncertain components. If (1.413) holds for this generated sample, the Perceptron will
correctly classify the sample vector no matter what values the uncertain components
may take.

From (144), it can be seen that the correcting algorithm is the same as the Per
ceptron algorithm for weights corresponding to certain components.  lFor weights
corresponding to the uncertain components, the absolute value of each weight is de
creased by 1. It is easy to prove that the algorithm is convergent for linearly separable
samples. Therefore, the Perceptron algorithm is casily generalized to include samples

with uncertain components.

5.7 Summary

In this chapter a Perceptron-based asymmetric associative memory model has been
proposed. The network is shown to have superior performance to the Hopfield sym
metric connection model. The network is also able to store sequences and cyeles of
patterns that can be recalled by an input pattern. Under some conditions, the nun

ber of sample patterns that can be stored in the network is approximately the same
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as the number of nodes in the network. It is shown that the impression deepening
method is suceessful in enabling the network to escape from non-sample attractors

and improve the associative performance greatly.



Chapter 6

Improved Back-Propagation
Algorithm

6.1 Introduction

The Back-propagation (B-P) algorithm is the most commonly used neural network
model [65, 66]. Back-propagation allows us to train the weights in a feedforward
network of an arbitrary structure by following the gradient of steepest decent path in
weight space, where the energy surface is usually defined by the mean squared error
between desired and actual outputs of the network. There have been many examples
of successful use ¢f back-propagation for performing different tasks.

Unfortunately, back-propagation has some problems. First, the en-rgy surface
may have many local minima, so the algorithm can not always be guaranteed to
converge to the optimal solution. The second problem is that it is difficnlt to analyze
the behavior of hidden units in a multilayered network. Consequently it is not. casy
to estimate the exact number of the hidden units required for a given problem before
the network is trained. The third problem is that the back-propagation algorithm is
often slow.

The weights of the network after training depend on several factors. Among them
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one may mention the randomly chosen initial weights and the sequence of training
examples. The hidden units have approximately equal variance [2, 12]. For some
problems, such as image coding and compression, these factors may reduce the use-
fulness of the B-P. This is due to the fact that the bits must be allocated evenly
amor g the weights of the network and noise cannot be eliminated by removing the
nnits with lowest variance. If the network is designed with too many hidden units
then the additional error introduced is spread evenly throughout the units and cannot
be casily detected or removed by looking at the signal to noise ratio of the individual
units. Also, the generalization is usually poor for a network with a lot of redundant
hidden units. On the other hand, if the network does not have enough hidden units,
then the learning procedure may never converge. There are algorithms in the litera-
ture (43, 44] that can add or delete hidden units from the network. However, it is not
casy to decide when and where the structure of the network should be changed. Since
the variance of the hidden units is at the same level, a large error could be introduced
by removing any hidden unit from the network.

In this chapter, we give an improved back-propagation (IB-P) algorithm. For a
three layer network with one hidden layer, the initial variance of the weights and the
learning rates are set differently for different layer units. The algorithm results in the
hidden units having different variances. The learning algorithm can also reduce the
possibility of getting trapped in local minima. In the conventional back-propagation
algorithm all hidden laver units have almost the same degree of importance. The
hidden layer units in the network trained by our method have different degrees of
importance. A procedure for dynamically adjusting the network architecture is also

proposed.
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6.2 The Improved B-P algorithm

The back-propagation learning algorithm is summarized by the following equations,
t A g eq

The forward propagation algorithm is delined as
nety,, = Z 0w, o, (145)
t

op, = [i(nely,). (116)

The back-propagation algorithm is

Apery, =y 0. (147)

The error signal is given by

(1p, = op])f]'(nc'lm) if the nenron is an output unit, (118)

P f]’(nclm)zk bpivg,  otherwise,

The B-P algorithm is improved as follows: first, we set the initial weights randomly
with different variances. IFor the weights that connect to the hidden unit &, the
variance is set 1o Vi = oV where 0 < o < 1. The weights can be initialized by any
random distribution. In (147), the learning rate 5 is constant. We also choose the

learning rate to be different for different hidden layer units. For a three layer network

with one hidden layer, equation (147) for hidden neuron b is changed 1o

Apw, = b, 0. (149)

The learning rate ny is now given by

" i -
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Figure 27: The initial neural network

where g 1s a positive constant. and 0 < g <[,

In this algorithm the weights that connect to the first hidden units are adjusted
most, 1.c. the first hidden neuron is the most important one. After the utility of the
first hidden neuron is exhausted. the second neuron becomes more significant, etc. If
for instance the network needs m hidden units for training, the hidden neurons after
the mth one are adjusted with a very small variance. Therefore, these hidden neurons
can be removed from the network without affecting the performance significantly. The
last hidden nearon is the least important one.

Figures 27 and 28 show the change of a network before and after training. The
thickness of the lines indicates the strengths of the connections. The hidden nodes
with thin lines can be removed from the network in Figure 28 with little effect on the

performance of the network.
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Figure 28: The trained neural network

6.2.1 IB-P aigorithm analysis

The activation function for all the neurons is selected as

‘)

Jr) = s

Since f'(z) = (1 4+ f(z))(1 = [(r))/2 < 1/2, it is casy to prove that

|fC)] < /2|

and
(4 D) - ()] < A2,

For the ith hidden neuron, we have

lop:| = |f(net,)| < |nct,|f2 = |ij,um|/2 < W,1/2, (150)
]

where W, = ¥, |w,,|, I = mar,o,,. The input from neuaron ¢ to output neuron ks

w0y If the hidden neuron 7 is removed. the change of the output in nenron b oas
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[Aowl = 1f(netyr) — f(nelpr — wikop )| < |wikop /2

and

Ao < lwalW,1/4 < (Jwe| + W,)21/16 = SE1/16, (151)

where Sy = (W, 4 |wyl) is the sum of the absolute value of the weights from the input
nenrois to the hidden neurons and from the hidden neurons to the output neurons.
If I = 1,]Aoux| < S4/16. Therefore, if a hidden neuron is deleted from a trained
network, the change of the output in neuron k depends on S,;. If the network has
only one output neuron, Sy 1s written as S;.

IFor patiern classification, a training set is correctly classified if the largest output
error over Lhe entire set is less than one. Let £ designate the maximum error between
the output and target output for the trained network over the entire sample space.
The hidden neuron 7 is deleted from the network if S, < 4,/1 — fB. If the hidden
neuron ¢ s one of the neurons that can not be removed from the network, regardless

of the learning rate and the initial weights, then we have S, > 44/1— 0.

6.3 An Adaptive Structure Neural Network

An adaptive structure neural network can be achieved through adjusting the number
of neurons in the hidden layers dynamically. By using the IB-P learning algorithm,
the hidden neurons have different variances. If a hidden neuron has small S;; relative
to the other neurons, it can be removed from the network dynamically. For pattern
classification problems, if e,, defined as the maximum error between the desired out-
put and the output of the network over the entire training set is less than 1, then
the result is considered as correct classification. The maximum error introduced by

removing neuron ¢ from the network is



tr <SG,

After node 7 is removed. e,. the maximum difference between the desired output and

network output. becomes
cr, S [T + ¢ ri S (1Y) + le/l(\

IS <4/l —e,thene, <ep +(1—cp)=1.

Therefore, if S, < 4y/T = ¢,,. node i can be removed and the network can still
provide a correct classification.

For a function approximation problem, a positive number v which is larger than

the expected error is sclected. If the actual error ¢, of the network is less than ¢ and

S < W —c,,,/\/7.

we can remove the hidden neuron 7 from th» network. The maximumerror introduced

by removing the hidden neuron 7 from the network is
e SSEHJI6=v — .
After neuron i is removed, the maximum output. error is
<ttt +v—oc,=wn

So even if the hidden neuron ¢ is removed the actual outpnt error remains less than

V.

6.4 Experimental Results

6.4.1 XOR and the Partition problem

As a benchmark example we solve the XOR problem to test onr algorithm. It is well

known that a network with two hidden nodes can correctly solve the problem. “lo
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train our network we start with 1 hidden units using the improved B-P algorithm
with 7 = 0.5 and o = 5.0. The following results were obtainedand are in Iigure
29 which shows the changes of S, After the network is trained 5200 steps, we have
So = 14.1,5, = 13.1,5, = 1.47, and S5 = 0.038. According to (151), if we remove
hidden unit 2 we get |Aoy] < 1.47%/16 = 0.14. Similarly if we remove hidden unit 3 we
get | Aoyl < 0.00006. Therefore, hidden unit 3 contributes very little to the outputs
of the network. Consequently the network gives a correct classification with hidden
neuron 2 deleted.

T'he algorithm also reduces the probability of entering local minima. For the XOR
problem, the probability of entering local minimais 10% and 3% for @ = 2 and a = 5,
respectively, whereas the probability of entering local minima is 33% for the original
B-I algorithm.

Ior the parity problem with 3 inputs. if the network has 3 hidden neurons, we
found that 4 out of 300 cases got trapped in local minima by using the original B-P
algorithm with random initial weights. All 300 learning cases are convergent using
improved B-P learning algorithm with o = 5. If the network has 2 hidden neurons,
the probability of entering local minima is 0.2 and 0.5 for the IB-P and the B-P
methods, respectively. For the parity problem with 4 inputs and 5 hidden units after
the network has been trained with @ = 5.0 and 7 = 0.5, the sum of the absolute values
of the weights is given in Table 8 for eight learning procedures with different initial
random weights. We can see that there is a large difference between the variance of
the unremovable hidden units and the variance of the removable hidden units, while
there is little difference among the variances of unremovable hidden units.

Fig. 30 shows the sum of absolute weights for a network with four hidden units
using the IB-P learning algorithm.,

IMig. 30 shows the change of the weights if we train a network with four hidden
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case number So S N, Sy Sy

B 1 10.220725 | 7.223650 | 5008019 | 0201625 | 0.05 1301
2 9.609260 | 8121382 [ 5.210192 10011271 [0.011 109

i 3 0338733 | 7.360351 | L.720688 [ 0.0027 11 | 0.032782
1 0.338738 | 7.360351 | 1720688 | 0.002741 | 0.032782
5 9819912 | R 174868 | 5.250357 | 0.132330 | 0.025526
6 12271561 | 11.087083 | 7.780679 | 6.153939 | 0.1.10350
7 8238710 | T.181356 | 5.073183 | 0.080974 | 0.025367
8 10.716545 | 8312208 | 5.125797 | 0.178817 | 0.0-16587

Table 8: The training results using the improved back-propagation algorithm for the
parity problem

neurons and a = 5 for a four input parity problem using the dynamice structure
method. We can see that hidden neurons 3 and 1 are removed antomatically within

100 steps.

For an unremovable hidden unit ¢, .S, must satisly

S, > 41 — 4.

where 3 is the desired error. TFor example, with ,3 .= 0.1 {or the learning results in
Table 8. S, > 41/0.9 = 3.79 and we see that all the unremovable hidden units satisfy
this condition.

Therefore, the sum of the absolute values of the weights of hidden units is in the
same level. However, the sum of the absolute value of the weights of removable hidden

units is much smaller.

6.4.2 Function Approximation

A neural network can also be used to approximate a function. As an example consider
the function

(o) = sm(2rr)cos(bmr)[3 4 271 [9.

131



16, . S —

001000 2000™""3000—"4000"~"3000 6000
S I;----8_2;.... S 3 _....S 4

Figure 29: The sum of the absolute values of weights using the 1B-P algorithm

When we use a network with 9 hidden neurons to approximate this function, after
15000 training steps with the B-P algorithm the output function of the network is
shown in Figure 31, The sumn of the absolute values of weights S, after the network

is trained is given by

So = 3147.5; = 3.56, 5, =5.15,.55 = 18.11,5; = 4.98,

Ss = H.84, 55 = 6.00,57 = 5.30,58 = 5.21

Figures 32(a) and (b) show the outputls of network with hidden node 3 and 5
removed, respectively. When the IB-P method is used to train the network with 9
hidden neurons, with 5 = 0.5 and @ = 2.0, the sum of the absolute values of the

weights S, after the network .s trained is given by
."'() = 3.1 l. -“‘1 = 1\\‘7(). .'5"_3 = 2754. Sg = 579, .q‘g - 1()7.
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Figure 30: The sum of the absolute values of weights using the adaptive structure

scheme
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S, - 0.083..5, = 0.093..57 = 0.0092. 54 = 0.0035.

We can see that the last 4 hidden units have contribute very little to the output
and therefore can be deleted from the network. Figure 33(a) shows the response of
the trained network and the desired output. Figure 33(h) shows the output of the
network with the last four hidden units removed. If we use the adaptive structure
algorithm that removes the hidden units dynamically we get the following results in
Figure 34, The network selected has 8 hidden units at the beginning of training with
v sel 1o 0.1, Figure 34 shows the change of the sum of absolute values of weights.

Figure 35(a) shows the network output before the structure is changed at about
44000 steps. Figure 35(b) is the result of the final network with 5 hidden neurons at

the end of the training cvele.

6.5 Summary

The algorithm proposed in this chapter improves some problems of the back-propagation
algorithm. After a network is trained, we clearly sce which and how many hidden
units are needed to solve the given problem. The network can also reduce the possibil-
ity of entering local minima. According to the analysis given in this chapter, we can
remove the hidden neurons from the network both statically and dynamically. The
algorithms proposed in the chapter are applicable to solve problems such as pattern

recognition, function approximation, image compression, etc.
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(a) The network output after hidden unit 3 is removed

ool 2

0.8
0.6
0.4
0.2|
(]
-0.2}
-0.4!
-0.6} ,,
08
-1

output

0 0.1 0.2 0.3 0.4 0.5 0.6
----- the network function; the target function

0.6 (b) The network output after hidden unit 5 is removed

0.4

output
o

0.1 0.2 0.3 0.4 0.3 0.6

----- the network function; the target function

FFigure 32: The output of the network using the B-P training algorithm after hidden
neurons are removed

136



0.6 (a) The network output trained by 1B-P method
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0.6 (a) The network response with all hidden neurons
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Chapter 7

Conclusion

In this thesis, first, the unsupervised Perceptrons are proposed and the convergence
of the algorithms is proven under some conditions. The algorithms have very simple
forms and are casy to he implemented. Since the unsupervised Perceptrons correspond
to a group of absolute error criteria, it is theoretically and experimentally shown
that they are more robust than the Oja learning algorithms for principal component
analysis when outliers exist in the learning samples.

The stochastic approximation theory is a very useful tool to analyze the con-
vergence of neural network learning algorithms. The theory is extended to analyze
the other important characteristics of learning algorithms in this thesis. The learn-
ing speed and robustness are formally defined and analyzed based on the stochastic
approximation theory. It is shown that the learning speed and the robustness of a
learning algonthm are highly related and mainly depend on the learning rate and the
cigenvalues of the training samples. By selecting a large learning rate parameter, we
can increase the learning speed of a learning algorithm. However, the robustness of the
algorithm will be decreased correspondingly. The lecarning speed and the robustness
provide a sort of global performance measure of a learning algorithm. The explicit

learning speed and robustness formulas are derived for the unsupervised Perceptrons,
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the Oja learning algorithms and the Widrow-Hofl learning algorithms.

The learning error, as another important measure of the local performance of a
learning algorithm, is composed of the bias and the variance. An optimal learning
rate is derived by minimizing the learning error. The bias and variance analysis make
it possible to compare the estimation error of the traditional statistical algoriths
and the learning error of neural network algorithms.

The binary tree classifier proposed in this thesis can be constructed very fast. The
tree is also well balanced. At cach node, it is shown that the hyperplane can minimize
the partition error. When the classifier is used for Chinese character recognition, for
3000 characters, the recognition speed is up to 200 Chinese characters per second.
Also. the tree classifier is successfully applied to waveform recognition. If the number
of classes is not. very large, the tree classifier can be troined by the Fisher’s multiple
linear discriminant method.

Another model proposed in the thesis is an asymmetric associative memory net.
work which is trained by the Perceptron learning algorithm. Under some conditions,
it is proven that the number of the samples that can be stored in such a network is
the same as the number of nodes in the network. The impression deepening method is
successful in enabling the network to escape from non-sample attractors and improve
the associative performance greatly.

Finally, the B-P algorithm is improved by setting different learning rates and initial
weight strengths for a network. After training, it is shown that there is a big gap
between the weight values of useful hidden neurons and unimportant hidden neurons.
It is proven that only a small error is introduced after pruning the unimportant
neurons. Therefore, the algorithm can find the number of useful hidden neurons
automatically. Also, the improved B-P algorithins can deciease the probability of the

learning entering a local minimum.
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7.1 Future work

The work presented in this thesis mainly focus on the theoretical analysis and algo-
rithms. We will continue to give some detailed analysis. More attention will be paid
to the applications of these algorithms in the future.

First, we will try to extend the unsupervised Perceptrons to find the first & eigen-
veetors. Also, the corresponding analysis should be given. The relationship between
the unsupervised Perceptrons and other unsupervised algorithms will be explored, so
that the theoretical analysis results on the unsupervised Perceptrons can be extended
to other related algorithms and provide some guide for learning parameter selection.

Also, it is possible to compare the statistical learning algorithm and the corre-
sponding neural network learning algorithm using the bias and variance analysis. For
principal component analysis, some preliminary results suggest that neural network
PCA approach requires less computation and less memory in comparison with the
statistical PCA approach for high dimensional training data if an optimal learning
rate is nsed.  We still need more theoretical analysis and experimental results to
compare these two kinds of learning algorithms.

The global analysis of the learning performances of the back-propagation algo-
rithm is very difficult. But, the analysis given in this thesis may be applied to some
local behaviors of the B-P algorithm.

For Chinese character recognition, we mainly focus on the construction of a good
classifier and an eflicient search algorithm in this thesis. There is also a lot of work to
be done to develop a real OCR system. First, some efficient preprocessing algorithm
should be given, such as document processing, line and character segmentation, etc.
Then, different features will be selected and tested. We will pay more attention to

the structure features of the characters. Since the training algorithm of the classifier



is very fast. it is possible to construct an adaptive dynamic OCR system which can
be improved according to the recognition environment. Also, we need to treat the
multiple fonts and sizes in the real application. The tree classifier given in this thesis
can also be applied to hand written (both on line and off line) character recognition.,

More simulations and analyses for the improved B-P algorithm are required for
large scale problems. We will explore why the improved B-P algorithm does not casily
enter local minima. For training a network with the same inputs and outputs using
the improved B-P algorithm, we need to analyze the relationship between the kth

hidden neuron and the kth principal component.
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Appendix

Stochastic Approximation Algorithims

The asymptotic behaviors of stochastic differential and difference equations can
be analyzed using the theory of stochastic approximation. Kushner and Clark [12]
proposed a typical iterative algorithm with the learning difference equation (LDIY) in

the following form:

Wigr = Wi+ v (h(W0) + Ag + Dy), (152)
where {Wi} is a sequence of vectors in R™; & is a continuous veetor valued funetion
on R™ {A} and { D} are random vector seruences te Le defined presently and 4 is
a scalar parameter. Assume that

i) his a continvous R™ valued function on R™.

ii) {Ax} 15 a bounded (almost surely) sequence of R" valued ranaom vari

ables such that Ay — 0 alinost surely.
iii) {7y} is a sequence of positive real numbers such that
Y — 0, Lp v = 00,

iv) {Di} is a sequence of R™ valued random variables sucl that for cach

« >0,



m
lim P(sup || > 7.Di] 2 ¢) =0.
h—vox, m2h
Under these assumptions, Kushner and Clark proved the following theorem for

algorithm (152) (‘Theorem 2.3.1. in [42]):

Theorem .1 Assume i) lo iv) above for algorithm (152). Moreover, assume that Wj
is almosl surely bounded for all k. Let S be a locally asymptlotically stable (in the
sense of Liapunov) set lo the ordinary differential equation (ODE)

dZ
dt

= h(7),

with domain of allraction D(S). Then the following holds almost surely: if there is
a compacl subscl A C D(S) such that Wi € A infinitely often, we have Wi — S as

k = oo almost surely.

Remarks: 1f the assumptions iii) and iv) in Theorem .1 are modified as

i) v > 0, % — 0 and

[s.¢] o
Yow=o0, D 7i< oo, (153)
k=1 k=1

iv) IY(Dy) = 0 and E{

Di[|?) is bounded.
Then, {Y™,4.D.} is a martingale sequence. There is an important martingale
inequality of Doob [16] which states that
P(sup |G| > ¢) < lim E|G. /€.
m>0 m
Ar plying this to our problem yiclds
m o0
P(sup | D7D, = ¢) < constanty_4?/€,
man 1=k

whose right side goes to zero as kb — co. Therefore, the assumption iv) of Theorem .1

holds. Therefore, we can also use the modified assumptions iii) and iv) in our proofs.
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