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ABSTRACT

' 1
CORRELATED WALKS 1N>IR mp R®

]
. Stanley R. Chassagne ’ t

‘ e
This thesis {s'céncerned with certain Markovian correlated walks. @f
The ear]fest‘references to such processes‘which we have been able to ?'
find in the 11terature were the app11cat1ons by Furth (1920) in his
" study of the movement of Infusor1a, i.e. 'some m1croscop1c 1iving
organisms, and then (]950) in his study of polymer configurations:
N\

The binomial random walk and certain discrete correlated walks

in R*" and n%

formulation of the correlated walk in ﬂi

* are represented by Markov cha1ns A more general

is considered. This
formulation al1dws the discussion of the discréte random walks and -
correlated walks as épécial cases and a& the same time provides a
basis model for the.des;riétion of the movement of biological ce]l;
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CHAPTER I

4

RANDOM wALKS In R? a0 R®

*

5 1 ‘ The Binomial Random Walk

T Let {X‘-_i L=4,2, be a sequence of Sndependent and identically .
A

distributed random variables each ha(ving the Bernoulli distribution: at
#

evér'y trial, i.e., at every step in the terminology of random walks,‘the
random .variables X;_ assumes the values +1 and —1  with

cc;nstant probabilities F and c‘ respectively. For such a
‘f N
process,

< -

e

S

We define >\‘=— P"O\ g . ‘ -

/ . .
(1.2) E(X:) = 4-. At ~ g
- s .
13 ver (XY= 1A

.

The partial sums {Sn},n‘ém,--- where

. ,
A ]

o




A

S )
(1.4) So = Z X,
: . = '

3
BN

describe a binomial random walk on the integers and

!

a5 o FESA) = E(X) % ECXe) +7 + E(Xn)

— n(p-9) o '
- ﬂ?\

-

(1.6) Now: van(Sn) = won X, + wor Xz + + yon Xn

- anJt.'X|‘ r .ﬁ
e , : ¢ -
= nO-X) g | ‘ )
., E(SR) = w5oaB3a) + B(SW)

. '\. o T‘
\ % . ) %

(].8) - N — n}\ + nzA2)4{< | 'r.

I , : .

the expr/egé‘i'on for the mean square dfspTacement in terms o:)y;r and >\
"’* - . . l) B R
. g ) . . ' - ' \ ) . i

%

§ 2 . ' "Pe_arson Walk l : 4

Consider in the plane a walk where the steps &, T, form a

‘sequence of independent 2-vectors ‘whose 'l:engths are fixed (though not

necessarily equal) and whose directions @L (w.r.t. the x-axis)

-
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are independent, uniformly distributed random variables.&ﬁ} i,:o_,?z---

is a Pearson walk, after Karl Pearson ('1905a,b) who first formtni ed the

_ problem in the plane (the drunkard walk) in this' fashion. The case of )

- l}’ -~
. 3 .
equal step lengths (Rayleig&, 1880; Rayleigh, 1905) leads to the result ;

-~

. 7
that the mean square displacement is proportional to the number of steps, -

n . Fig. 1 illustrates four steps of a Pearson walk. \

TN

s £
o|. . . N\ ax T Z,
. '/Y )
Fig. 11 ‘ : A
' ‘ !
\ ' N ' ' . L.
Theorenm: Let {)(i_} L=, ,q\stand for a sequence of mutually \ \
. Y ooe

independenit two dimensisenal random variables with a comof distribution

F. Suppose ‘that the expectations are zero and that the covariance

i
1
(x 14 e K . .. i
matrix for the components (XL s Xi, ‘) ‘of )(L is givenh by . %
. X | . ‘ P
T, cb‘, 0, t . . ‘
(1.10) C = 5
2 . .
. om0 . : o
. x) . ®) { .
. o) (W i N — : :
where ¢ :._._e()(‘._ LX) o= vaar )y 6= vea (X)) . ?
As N —» o0 the distribution of XX +-- Kn tends to i
) m { 1
the bivariate normal distribution with zero expectation and covariance ~ }
- ~
(n%atrix C » (Feller 2, 1971, p. 260)".\

\
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“ In the above theorem, let the XL have directions CP(:

prescribed by the random variable <§= U.(-ﬂ,ll) , i.e. {QLS iz 0,4,

is a seguence of independent and uniformly distributed random variables.

]

let the lengths JAy=|X;] be givenby a random variable L., and
let E(B) = 1 {LL} L=0,4,-" is é sequence of independent and

. - N A . . ; - - K3
identically distributed random variables with a common density 3(()

et L. " and § be independent. The covariance matrix for the

: e T L o X
components (XL )XC ) .of Xi. , is gien by (= 26 _|_> sirce
the ®ns (Xto“)(:“)z o and o’&-_-_‘a-b’\—j._._j_‘v , by independence of & and | _

2 J
and by symmetry. The distribution of the normalized sum Sn where

N 1 . n

Sp= ZXL tends to the normal bivariate distribution Z with
L=8 -

covariq}ﬂ%e ma_trix. C . The distribution of the squared length of the

vector _5__’_‘.. therefore tehds to the distribution of the sum of the
= - ,

T
)
squares of two ind’ependent normal random variables, say [_ZO')J and [Z _}

4
ie to a 'IL distribution (Feller 2, 1971, p. 261).

- -

2 ,

-
§3 General Description of the Class of Walks We Study

7
_Let {thz 0,1, be a sequence of 2-vectors ’in the plane. Let
the vectors F,-_ and f':;_“ make an angle Qiﬂ » the relative angle
w.r.t. each other. Let each vector T":_ make an angle t{k wﬁh" ttie

reference X-axis . Fig.2 illustrates 3 steps of such a walk,

% - 5/0‘

Fig. 2
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Let @Ln be a random variable which assigns a\relativs.»S angle ecﬂ
to the step ﬂ-ﬂ , for each i= &,1,2,-- . Let Ri bea

random variable which assigns a length T = |ﬁ_|@ to the step f“(
for each £=9,\,2,... . Llet @o be the random variable which
assigns an angle ‘f° w.r.t. the reference 2 -axis to the initial

step. We require that:

{R.‘_} L=9),2--- be a sequence of independent an‘d identically

sdistributed random variables with a common density 3("), 7

-

\

{G]i.ﬂ} i=0,5,2,..- be a sequence of jndependent and identically

.distributed random variables Mth a common, even density 5(9) .

-

{‘R} and @ be independent,

» Qo have an arbitrary density anc( be independent of @.‘.ﬂ
ond (R ’ 9
A
In chapter II we focus on the representation of discrete correlated
, . 2 . . |
walks in IR and R by Markov chains where ‘the states are

the directions rather than the positions. In chapter' III the four
’ )

- ¢

assumptions mentioned above are taken up again for our general

formu]atidﬁ,of the correlated walk in the plane; we con§1aer %e ;

‘'discrete correlated walks in [Rv,i and .(Rl as special cases.

-

In chapter IV the works of Gail and Boone (1970), Nossal and Weiss

»

(1974a,b) and Hall (1977) are discussed in connection with the

application of correlated walks in the plane to theories of biological™

. cell motion.

-
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CHAPTER 11

© L)

" MARKOV REPRESENTATION OF DIRECTION DEPENDENT WALKS ‘ 0

1

.

8 -

\A—

s, : The Binomial Random Walk . .

The binomial random walk g1ven by eq.(1-1.4) can be modeled by a

two tate stationary Markov chain in which the states are the pos1t1ve

’L

and negative directions, whmh we denote by state 1 and state 23

\

respectively. The random var1ab1es X‘-‘) L=12,"+ defined on these

" two states have identical Bernoulli distributions and assume as before
[ :

the values +4  and -1 with constant probabilities P and

q resgtively. ‘Hence, we have
J

hd .

oy ‘P(Xt*\\‘=kLXc=h)='“P(xm"“)=r: ket

o N N ‘ ‘{‘

- .
.

which is independent of h . . . / | e

[
Y

The %our brobabi]’ities given by eq.(1.1) can be written in matrix form

P 9 L0+ N ?‘u’-m

where A= Pq. ¢

.

Eq-(1.1) and the identical rows in eq.(1.2) indicdte that tfie random

o .
variables are independent and the constant matrix ,P é;chat the

s Markov chain is stationary.

M s
,—w/— .
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. When A=o0 , we get from.eq.(1.2) ot
E : . \ v 2 .
3 > Y

(1.3) P = (i'_ i) -__-_En \3 for al} positive %nteger;s n
z - : o
. . ‘ & ' ‘ b

1

e a Markov chain which describes ‘a symmetric random walk :

A= +1 or A=-4 » we get from eq.l(l.z) .- 7

| 0 L S
; . = l = for all positive jntegers n

<

o | n b S
or P-‘—:( ) = f - . for all positive integers n,
. . , o .l .

where P" is theTy n™ power of the matrix « ?

In either case, + A=+1 Loor, A=-1 , the ‘system does not

¢ 4 .

. change state and, looking at it from the point of view of a random walk,

O ks b AN e A i

the particle executing the walk goes steadily to +e_ or —oo

y .52 Markov Dependent Bernoulli Trials ' .

fe consider now a sequence {XCX L=1,20.-  of identically
distributed random vdriables, each having the Bernoulli distributior as |
N ( . * ,}
j

N in.81, with, in addition, the following four cShditiona\] transition
\
\ robabilities ? L
\ P - . -

(2.1) ‘£ngk‘néh)=hk/ hk €{-1,2)

. 4
; ® 3

which are independent of L . We thus have a sequen%} of Markov |
: .

debendént repeated Bernowﬁi“trﬁals, (Parzen, 1960, p. 129). The

conditional probabilities in eq.(2.1) together with the initial ] .

—~ -
N N v




PPN g

distribution : - : - J

1 .

(2.2) n= (P.m ,‘ rm) = (R“ﬂ,% ~ : , ‘

1 §
. . ~
. @ -

determine this Markov chain. As an example we cqgsider ‘the following

1 i

four, one step, conditional transition probabﬂigies given by eq.(2.15 e

which we write in matrix form, B .o . /\

(2.3) f__;(ﬁ., 3 )ﬂ___ (mm *u—m):(p q)' -
©o M $0-A) . e/ \q p :

where h"fu'ﬁ_..\ki and A= p-9 ‘ - ‘ .‘

The N -step conditional transition probabilities are given by

¢

o >
(n) Q) :
1) 2 %,(I-l-)\n) {(l-)\h\) .
. ' En_: . —_— - . .
3,

It follows from eq's.(2.1}, (2.2), (2.3),°(2.4) that the upconditiona] -

probabilities of finding the system in state 1 and 2 at any

-~

step N are given by
o S 1Y

o .

1d

3

) . n .7 \
(2.5a) T'(P = r(f}) ‘

. . =
where the components of r are given by a

1 m (m‘ m : . .
(ngg) P\ = e + 1"3 B . .
e : \ .

i S

1
i
i
:
-

3
"N
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-
|

. .

(238) “‘"" = .4'.[(;-;5.)(|+7\") + (1-g)(1 =Xy )

A
~N

A

L AL
A

= L(1+ 57\“)

A simi]a‘\]_y for P:n) ' » we obtain

(25_7} - Fz‘f" = L(1= A, -
\ e

y w;
Hehce we can write

" (2:8) E (X.Q = (1) ﬂ‘?’ + Eu) ﬂ“)

(2.9) E (x0) =K(-rf7’“&(()_+ ('N)lﬁm
1

= 1 (,a+g’+)(+e)\'f t |—g’-a’(+a>\")~

) m n
(2.5¢) b= Mf, Ln,p, S
let- M=4(148)  and Mgm4(j-g) . Then from eq’s.(2.4) and
" (2.5b,c) we get - , '
b ¥4

/L(




- The partial sums. {Sn} Nz,

From eq.(2.8) we get

- Now from ecj's.(g.3) and (2.4) we get

\ o
. [

-, where Sn = Z. x do not in

cal
general form a random. wa]k on the integers since the X may not
be independent. But the relation )
(2.10) Re = S =Sy
i
exists; so that {S"} is a process with stationary increments,

(Feller~2, 1971 p. 97). But in eq.(2.3) we have a constant matrix P.

Therefore the Markov chain is stationary. )
. | A\

/) ’%

(2.11) E (Sh) = LZ;. £ (X) -
sé_ X Y .

L=

. Nl 4 )
’ = £ >\ -1 \
A g 1 =N ) ”
) ' '

o= ('.';Q'f)

_i E (X¢) +‘27_7_ E(X{ X;

(2.12) Now: E ( Se) =
N ‘-"‘ Lzo J=in'’

@ B = 2 A P X=X = ) *ﬁeé'»ﬂ

\
4 i

il
M

bl B(Xo= R P(X; =k |Xc=4)
Ty

&

)k

—
—

W) (=€) (¢) -0 (DI U] () G0y
O 1) + 0 P -f P - f2 fi




P

S I e
TS N H+N (=N
(2.14) P = N =
hk P"“") (J".) -"“:- . . .
4] rl.l. : . '.%('..,\ {(‘4’)1'(.)
h,k e(1,2) e
Hence from eq's.(2.6), (2.7), (2.]3) and (2.14) we get -t

(2.15) E(X:X) = —{(HE)\ )(I+)\ ) +(\—£>?L|+>\ )

(142)\‘)(1 N 7(‘*5% )(1- N )]“
\ = %_(14-)\H+£)\£~+ X +1+>i-c—t>\i—€>\s’
| \ -1 4 WEteN 4 X —1 + N e)\i—ehj)
— )@'t " (see also Feller 2, 1977, p. 97) .

: . |
For 21, Lo A = A+X 4+ & AN
) -

} lay
"
™

.n e _ .
For L= 2 Z_ XH'—_-_ At)ﬁz'i’:--'\' nl*xnz

J=3 ) ’_‘
. N LY N
For L=n-| we get >\ ,
Hence, summing up, we ggt K
3

. Yi’ - : L‘\ | )
(206) 2 Z_ XN o n-0X +-2) R4 4 Do-ta-n] AT L

B e

A, PR s st e b i




L3

o S —

-

. 12 ) L. R '(\/
- n)\ +n)t' + o n)\""-(A+2>\z+-~-+(n-|))\ﬂq)
. "= nl-M) _n NG (1"‘*‘)
1 =N AA\ 1 N
. )
- (n 1 )\“) .
= 0= A (e /!

and from eq's. (2.9), (2.12),' (2.16) we get

€ .
! - .

2.172)  E(S) = n +M- 1_)\“5

BTN A=A
(2.17b) - (1+>\ Y N |
- SSRGS

a result which will be derived in chapter III by another method.

asymptotic expression for the mean square displacement in eq.(Z‘?ﬁb)

when N~ % is giveh by
(2.18)  E(SA) 2(14-)\)” 22 . |
-~ 1"7\ ("')\)2 <L

v

where the r.h.s. of eq.(2.18),the asymptote to E(S,‘\‘) in eq.(2.17b), -

has slope & and n -intercept /8 _given By
& RN ‘
(219) = JEA g= 22
1-A : AR
. *’>\m\ A
(Eq's.(2.17b) and (2.18) differ by the factor - T— ‘e and




P

. L3 T AR T > A

T U

." \’\ %' ]311

RS - o

(2.20) Lo, o when  [Al< 4
N~y N Ce
From eq.(2.4) and the fact that - P is aperiodic and irreducible,

1

2 .

1 § '
2 ' R
. ’ "('\3
'i.e: .JQUVW - P. —

Nn-»e0 '} =

And we also get from éq.(2.]7b)

(2.225 L E(Sr's') - y E(S:)

n-»c0 E(gf‘-‘) n-—»xR n
. A=0
- (l +h )
K
N [ 3
Sufficient conditions for the convergence of .ELSA). according
n A4
to Montroll (1950) is that the correlation function between the steps
be d.ecreasing as fast as -Ail-;‘—.- where' A is a constant
S .
of proportionality, $§ =={i~{| . and ] _.an arbftrarily smatll

positive copstant. We see that from eq.(2.15), X‘:: E(XCXJ') has-
that property.

kS

As.an example, Tet in eq.(2.3) f . be given by 4
_l_ /
i3 ,
(2.23) P - N 3 P
T A
o f




t

an irreducible aperiodic matrix of transition probabilities!” 4 ~ is

an eigenvalue of g . and >\ =pP-9q= -z!-_ is the‘other.

10+ 2) 10-4)

B0 -4 20+ k)

\ s ’ .

(2.24) % -
3 ’

“

} (sge eq's.(2.4) and (2.14). For the Markov chain with transition /

k ~ makrix T given by eq.(2.23), we obtain the asymptotic ;’orm
t- L \ from eq.(2.18), i.e. -
E \ . \'/ i ) "y -
| ' (2.25) E(SA) :‘g(H)\)n _'z;\\
5 - 1 _A (‘_ }‘ ! o
\ A, :
L = e
| ‘ {
i . : 'Fig\a illustrates how E( 3:1) approaches the asymptdte given by z
! ' i
3 the rih.s. of eq.(2.25), as n gets larger: . ‘ |

E(Sh)
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-

-
-

= g~

-
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-

§ 3 \ The Two Dimensional Case

In extending these results to R? , we will consider special
cases. The 16 conditional probabilities corresponding to eq.(2.1)

are given by

£

(3.7) P (xbﬂ =k \XL- H) = Pnk h)( ({('Jo))(")°)'(°u');(@")}
where - the XA'.'A t‘ékg value ¥n {(1,03, (—L,o))(o,:), (o,—ﬂ%, _—
corresponding to the states i.e. the 4 .directions on the » x SO
. ) 2 .
and the Ny axes. For example, in matrix form, we consider.eq.(3.1) .
to be given by
.
. ' ﬂ\ Pn. P|3 fN P q LT i
E . Fas » hs By — 9 p- T L
(3.2) = =1 bR N
: é :
- fo P P Py - P9 ;
*t
for P PR Py 1 °f o

From eq.(3.2) we read, for ekamp]e, the probability that the next step

will be in the negative '” -direction given that it 1'_s now in the

& - .

positive % -direction, is I

As in eq.(2.5a) we have . ’ -~ ;

L -

o (n)
'(3.3a) nP = T

i ' n) .
‘where the components of T ) are given by {j.( ))J: 1,,%, 4.

4
.

o ) m 9 “ ™ . w
(1.30)  -f = MOt Mafu + Bl + Ty,




— P -

[P
1

n)

(n) n (n) (
‘~\ P = ntﬂz + nzfzz. + n3f32 + n"P.;

r 2
g .

() ;) ™ ()

R = MRy + MRy * Tafy "‘iﬁag

(n) n)

- m ’ ¢
oy o ‘ (:;t f\u| E}:‘ + nlﬂ*‘ -+ ns ra* +"n" Fﬂ}‘f

’ 3

3

« .

and where T={N,,Wy.N\AZ), the initial probability vector.
H s,

P in eq.(3.2) is doubly stochagtic. And from eq's.(3.3a) and '(3.3b)'
we can compute E (X0) - and 75-/(.2(1' K)) , bi=byy

éj‘?d . ~
BB = Z hP(Xe=h) |
. r de
© )y -
L= GO +EaR DR+ @0E -

l. - .
(3.5) E(XeX)).= % ka(X6=")XJ'=‘<) \

-~

s = E Rk

- ‘ hk € {_UJO),(—IBOB, (q,»),(oJ-n)} "
, - ‘ . ‘
As special cases of this example we,‘ce::nsider the following matrices

a)

»

4

. .
(3.6) !

lt




- 17

% ' consists of two submairices (P cl) . Hence the resuylt’
L ’ q P
of eq.(2.17b) for the mean square displacement holds.

b) Let P be given by

- The _entries of ) En are given by .
" s 4' ) ~ h-k-n
) n. )
J 3. = Lyt + ( - ) L v+
38« Rk T3 5{ A {
~ b .

< (Feller 1, 1968, p.434)

Let the initial probabi]ity>vector be given by

L, » - M W W / ?

) '
j (3.9) n= (P. y Py P Pu.) = (,"u Tz, ﬁm"\e) .
' (3.10) where = 0y ’;'-" o - : o .
) ’ " .
R and fy—-1, = & .8
¢ * and ng = $(1+8) § M =4(-¢). ;
~ Now, as in eq.(2.5b), we get ' ‘
; A
: , ) Q) Q) '

i (3.1 R = R, + Ra - | '
E - , () Q (n)\ \1
| n : - RN C) R . - '
g o= Taf, + W, -
;:.[

B Y S

R

v



F ' i
: / .0
P , ‘
N n) ) w,

E , : R = 15 st + T, ?-»

B Tt m | " ) '

P-& = n’-Pz.# + n‘ffw

,

By usimg eq's.(3.4), (3.5), (3.8) and (3.11) and taking into account

A

r

| .

;L ‘ the periodicity of P , we could fmd the m ap square d1sp1acement
E ' i}

for this walk, in terms of >\ =q-p

Consider the following restricted walk on a square lattice where steps
in the reverse direction are prohibited. The probability of each step

depends on the préceding step. We are dealing here with a sfationary

o 4-state Markov chain whose transition matrix is given by ' ‘
1 — *“
] s P.
: ] 1-2
4 T30 P = LA S S ,
. ¢ P ¢ ‘_ZP o ’ "'
P P (o] |\—2 a ¥
© / ” - F ¢
" again-a doubly stochastic ﬁatrix y ’

.

_ Let the steps in the allowed directions have a consi‘m{: length ,l.

Then the mean square d1sp1acement for such a walk Volk\stem, 1963,

4
» o

P 2]9) is given by

3 £ -
A n-
‘ (3.13) (,S.DJ{\JZ- [E (xt —}E(‘f:)]-;- 2 [E(XLXJ +E (%, TJ)]
(<
7 N\ ‘ | L=e |
(4 ',‘ where X(, and YL -are the components of the vectar step 1 .
7 : : P N i

1 . »




"

L i
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(3.14a) ECX) = %" [l + (‘-LP)LH]

-

'(3.14;:> B = LTi--2 A7)

<Y

(3.14c) E(XL)(J = (I-ZP) [I-(I-Zp)]

s.4)  B(RY) = & (l—Z.P)‘J*[l -_t"zf’)c]

¢ (

Hence we get < ’ ’\K

/
(3.15) E(SA) = n® + 2312—_ ('-ZP)J-L

(.’O

=L[n.‘.__f+(l z).('_‘:_z_?_).:_";
P ‘ P

/
{

We note that the eigenvalues of the matrix P are

A‘:.i‘, Az= )\3=1~ZP

Land )My = \-4p , )

(

PP

. ..‘ b,
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 CHAPTER III
- * 3 ‘ !
. | &
THE CORRELATED WALK IN R?* " S
’ - > - I !
. % N 4
§ 1 : . Statement of Assumptions . \
P . . ”
{r‘:s bL=0,1,2; is a sequence of 2-dimensional random vectors.

{[RL\ L = 0,1,2,-- 1s a sequencer of independent and identically
distrjbuted random 'variables with common density q(r) ‘R

takes value l’i, =-\FC.\
hY

s .
{@‘:ﬂ} L=0,1,2,: is a sequence of independent and identically

distributed‘random vam’ableé with confnon, even density -_F(O)

@o is th\é random variable which assigns the angle (f,, to the

3

inftial step f 3 o is arbitrary and independent of E\)W anﬂ%\.

(R- and

T L ek it Wy s s et

are independent.

§ 2 Des‘cript'ion of the Walk

o . . .
Let o, Ty, be a sequence of 2-dimensional random vectors in

the plane; where \ﬁ\ ,sl = 0,1, represent the step lengths of +the

correlated walk. The sosition of the walker at the end of the nth

step is given by the partial sums

e

e

) - Nn-| -
(2']) 4 Rn —4 r("' t . a
‘ t=0 \

7

where l$n| is the distance from the origin and ﬁn the 3

[y

Q 20 C Kt
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e
i
-3

. " 4 °
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! ' S resu]tant.'i o o
3 . . Each vector r makes an angle ¢ (Awith the reference x-axis.
The ang]é 0c between two adjacent step; F:' and f':;“ (=0, X
is the angle betwt;en the. two adj’aéent vectors F’,: and F,;.,. .. ‘

(see fig.4). 9,; ’ denotes the relative angle and its value is
!’ given by thevp.d\.f. §(9) of the random variable @ =E‘)¢;1 » Where
<X

: | A {@(_.“} i=0,1,2," is the sequence of independent and identically

k) X .
distributed random variables defined above. The representatmnoo{ a

path of such a walk is i]]ustrated“in fig. 4

“ 0

. " / ,y
1

,

?

;

} .

° L 2 1
i $
| A
t& A pofnt ‘on the path is given by i
(2.2) (K¢ ,Y.;) = (e eos P, Te Sinnf(-) |
For every L , the angle (f¢ can be written as ' ' n B
= ) ’ ‘ \ 5
| %= %+ (§- f) + - + (9 = 90 g
i .
; S = @+ B+ 8+ + 0 o |
i | . - / —_— ({o‘ + \él ek - . ‘ \ ‘




The relation . .
w

(é.4) , 96_',"-:: ‘PC-H _-(ﬂ' with 0“-’ ‘f; & E-f‘LJn]

indicates that the process {‘PJ L =0o,,2,; has independent increments
' . «

n-i n-~|

and therefore is a random walk. ‘Z__OQL}H and Z re are
a L= C:o &
random walks. Now iRnk and { F,}'y are not random walks.
But {1":\‘5 *is a Markov chain. [
s {\ ) < o
M . ‘/‘
§ 3 ‘ The Mean and the Variance of

From eq.(2.2) we can write

- (3. (Xc,‘ﬂ.: [_ricos(%-‘-di:‘aj) ) r,;s\}m'(*{’ﬂ?:?a‘)] «,. '

(3.2) E(R) =[E (X;\) EL‘&)}

?

I

{EU‘L\ £ [wS(Po-\j ?.‘94)] > E (r) E.‘_Siml U{’,,.«' ?L.%ﬂ)

_ E(r&{ﬁ[mwujzi,%)] ) E[S"‘i‘%*f:?“ﬂ}

4

, o < r : L
We take the exPectation E[ws(t{’,+ 7_,93)] with respect to the
. o gz . ’

joint density of 4, 8/, 6, -+, 9‘:, Mo, Ny «-, F{ y namely,

-~

/

(3.3) n P(‘Po)éu"')ec;ro) "y ) = -&( 0) ;(D')"“;(.Bj:) ,("o UC’)
| i FORE
.\ , . FE

(3.42) Let Mo = E (o5 @)

\

o




—— s

I T
A
’

. * S 2 | ﬂ
‘ . ) )
C(3.40) Ao = Elmmq) . .
. , T .
(3.4c) A . :}QRQAQJ\ j= 1yl
(3.40). A = E(amB)=0 = b
B ’ v,

-~

k]

v

C(3.5) E[w(ydé%ﬂ =

“
o !

€ ‘_w«fo ms'(?;e\j) — sm apos\i.(:‘i”@\;)-}

- I

E (tos ¢,) EL 00, wo(/ 3.104') e, B, om L?_Pﬂ]

A~
)

| | o L s
v — (s g, E[500, e0(Z0Y + 8, s 36))]
* N | .
= A {AelwoZ8)] - XElsw(280]]
- s )\‘o {XWE[M(.?:PJ)l*’ XE‘;SVKT ELBJ)]}
L = )\o}}-‘E(wel} ) - A ’\cn‘E(g;'“s"")’ ’
e 7\0?\‘: /(
Stmilarly, ‘

o . " . T, . ‘ 4 ¢ .
. ‘(3.60) E[sm(cpo-q-d‘zuo;)"] = , o 47




i o B BRI W i

’ ) i - ¢ -
= E[sin o 00 (28) + eorg, ame (260 ]

-

= E (stng,) E[me‘ws(?;gﬂ - MB‘M(?;?J)]

+ E_(coocfo\\?{m e,up(:l;fj) + we,m&ég\}%

= Ao NELon(T00) — X el (2]}
I NELon (200« NELsm (1801}
i=2 =2
_ RN EEwtd + N AT E@n00)
_ xo }\b . ' ’\ . lo
R M N
a {
Nog.we let. l / ;\h
(3.7) }J,. = 5 r 8(r)olr' v ’ '




' Then we can write ’ s

Ga) . B = E(r) (MK, XN)
AU PR S

.* . (3.9) E2(7) _ /1}’()\5?\6)/\'0)\‘)2 O
| = '/x?[(m‘!’,u()\;»)’]

‘ i N |
= . 2
(3.10) Now: R* = [rz- eos(cp,-&-?__',&j) ’ qscn(¢,+jz_;_'oj] (

* L= rc'z ‘ ~ & .
. \E - _
. 2 _ 2 :
| (3.11) E(f?)) = E(r l = S° r _3(:):1:» |
. | » |
(3.12) But: o‘r" ~ JOn T ' : . N
’ = pornfe - o, o
- = E@® -Ety v o
\ ] EU?\ "P‘tr
. A 2, = : : ‘
- (3.13) von E(F2) — ER (R .
¥

&

= G+ pr = uEX (N X))

" 13
Y

. \3

e et SR
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5 4 . The Mean Square.Displacement

(4.1'a)’ R - L E‘Fc]z

. (4.10) L;O?;{{_F (,os(tfo-ti.Q ) y Am(‘fo-!-ZOk\]

’

(4.1c) -

-

1 MS

‘[rc-cm(‘{a,-f-éﬁk) y T bm (o +:z;9k\ 1‘\%

;é R [m(‘fo'fzok)m(‘%'*zgﬂ“‘

+ o (s 42 Oc) b (%ﬁ:ouﬂ

n-l N~

t=0 J=o0

O

(4.1d) | o [(‘fo + 7—%) (‘Po +Z gk\’]

(4.1¢) = Z. rcz + 2 <<l e e M(QCﬂ"””-‘”GJ’)

AL=O

-=0
~ 1 ¥

As in eq.(3.19), we have

~ w2  Rn =R:

Hence,
n-i*

A

which’ 1nd1cates the dependence of the walk.on Z Qk

L

o

Llo

k=

@ E(RD) = Z E(rf‘)+z Z‘E(mecmE[mw

L+

\-J

O
[

i.e. on (fj-— ﬂ.

-

%




m i .
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not depend-on the distribution of Po

4 27

Also, eq.(4.1d) wshows, as expected, that the mean square distance does

r

\ ' \
: N
(4.8) [ cm( ot + 0= E [_coa (8;, + ?Iu?"ﬂ

¥

= £l b (B - w300

-—

L [m(‘i_m]

I

=|.,ﬂ. i
L L ‘. . \
_ Nt ;
.where we have used eq.(3.4d).
it o |
Now the summation . z >\ was.obtained in eq.(II1-2.16).
L<)
(so

Hence from eq's.(4.3), (3.11) and (3.7) we have
' *

. (4.5) E(R -—nE(r‘)+z.pr}'___ -

L=°
» O
(4.6) = nE(r) + Z.)ui A (n _a=N
s 1 =A V- A
N 4
(@.7) )n _2ui A o
# '(\-/\)’ / (-N)
{
(4.8) ~ y l+ zs_Z\__ n — zs_};_ .+ 2$
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(4.9) where s = Jr_ )
‘ E(r?) - ,

We can write eq.{(4.7) the following way

410) - E(R) = An + 8‘+'C_"‘ L

-

where L, c,“._._ 0 ° since l>\|< 4. The asymptote to
w» N—yod <, .

s

E(RVZ\) is given by A .
(4.11a% §(n§ — An + B

We also have -

(4:1’1);)” /- Lo L E(R’«‘\\ﬂ— f(f\\] =0 ?

Nn —» 0

)o how fast - E(R3) approaches the asymptoté depends on how fast
cn goes to zero, i.e. in eq.(4.7), on the rate of convergence
of X‘“ to zero, as V) —» ©0 Fig. 5a illustrates this .

relationship for an asymptote with A Y4 an{d % <1

)
B | . t

Fig. 5a

Let - )\-:.0 . Then from eq.(4.6) we get

412a) E(R))= ﬁ(i(ﬁl’gl :




which we represent in fig. 5b for E(ryyA. ' y '
: |

o

) !

E(R}) r
. ;
- n L)
) | Fig. 5b
» . )

%
When . E(r2)= 1 eq.(4.12a), becomes

waz) E(R) =n

r . .

\.,4

the expression for the mean square displacement for a symmetric,

drift free, ran&om walk . . ’

»

Let ‘A[(i and )\qﬁo . Then, from eq.(4.7), we obtain an asymptotic

expression for the mean square displacement, ( sé'e eq.4.4),
" (4.13) E_(R:\ ~ [E(r*) + 2 ,.‘_Z\..]n 2D ®
RIS N e

and we alsp have

v

4.4y © E(RA) ~ (1% as-)‘—-) _ 25
o . ECr2) ( -~ /" G-\
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" ’ ‘ $
The r.h.s. of eq.(4.14) is a linear equation in j\ s the*symptotg
‘ . ( to which E(RR}) in eq.(4.7) approches as n-»o0 , with slope
! i /r\..\ A and n -i'ntercept, t . - v
!
i ) s
) (4.15) o = (|+ 252\__)
& » »
{ “
: - (4.16) £ = 2SA 4N 25N .
: ’ SO ont2h (N[ (1-280)]
E’ ) where & and ¥ are functions of the individual steps and
| of A
| . {
§ 5 Special: Cases
- In the cases we consider next, we let 9&) "and f(D) have
the densities of the following type '
| .
| _
i
(5.1) g(r) Z m; S(r-t)
E ¢
¢ 1 ,
| (5.2) ) = 2> m; $(8-ap)
f - PC_ < «”
:
4 . )
1 where o€ m_g 1 and f(_ m =1 ™M y L= 1,2,
is a probability weight attached to, S (r~-&) or S(O-a) where °
"\\ X.{’?O and -l € o< M
» Fig. 6 indicates the probability mass distribution of the m’s for 7
: : ‘ :
t‘- a function of the type given in eq.(5.2) for example, where M =m;=m,
) N .
3
——-\3 and °(‘=.E.", dl"—"'%': dy =0, m: 8 —10,].
i ~ .
\
% I .
-, )
"j_:l s ~ - = T e e o T T mmm—————— W b o A
3 ﬂ':j,”' " gy i***n ;&-f* ik ‘“'«"w,'r RIS by "‘:”‘i‘.}?‘qgmn{‘vkaa‘ o n men o s ‘ e
P T § SO B 2 S v“*’%ﬂw‘ﬁ‘” T v AR S ’">\"

%

ot
L s e

oo Al S
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A) Cases where A=0

10) Let %(r)

(5.3) q,(r) 7= 3( r»;l) ‘ _ | ‘

[}
[ 4

\

be given by

Fig. 7 indicates the p. m. distri

’

7N

bution of the unique Yﬁ,.J mE)=1,

.

EY
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-

3({') generates a walk by a'sequence of fixed step lengths, L

Let £(8) be given t;y = -
(5.4a) (0 = 2.-m $(6-a) .
- . " , .

: /
(5.4b) i.e. £(0) = {é(o-nn §(0+m} +-13(9).

.

L
4

We represent the p. m. distribution of the m 3¢ in fig. 8a.

~ <\
. A section of the path of such a walk is illustrated in fig. 8b:

\ &
m(9)
Ye Ry ® x
-n o u 4
Fig. 8a Fig. 8b
-'A
Looking at the steps f{ and fi-*‘ we see that Bm =Q and
Pir =T . An angle @  assumes the values o, It, or —TW.
. ? .

Because of the relation gé-u =th“ -‘Pe s the ‘ﬂ; A will

5

also take values o, myor - . o

I)

T, AP Rt £ A

e 5 137w e Wik St s g A




E (os®) -

=

.S" me.{ # [ S (9\:Y+ E(Oﬂtj + éx'(g)} dé
n

i o

I

1 d

I

1l enn ‘*ﬁ“"’f-‘“) +.£eaeo

E Y

(o]

m——
a—
.

4 v

e ! ~”
K_ Now E(P‘:’) = C!'rz 4.)1:' _ where, because of eq.(5.3), 6';,2= o}
and }4,‘: = A" . Hence by eq's.(3.11) and (4.6)

E(RS) = 4%

/"‘"“5" B -

™~

whi the éxpnession for the mean square displacement in a one-
s .

dimensional symmetric random walk on the .integer lattice, a.Bernoulli

walk where the walker takes steps in the positive X ~direction with

. Tength (e =€  With probability (L+ )= 4 . since -T

and T represent the same direction on the x -axis.

This forgfulation enhances the directional aspect of the walk rather

®

than the positional one; it also shows the dependence of %ﬁ on ‘ﬁ: .
~ 20) Llet %(r) be given by eq.(5.3) and -F(&} by -

A mony R ST RO KO A T REOp o £ o3 0«

(5.5a) £(6) -_‘—.’%{8(941) J,&(a‘m)} +] {am + S(e-r_:\)+a(9+g_)§

</

N where we represent the probability distribution of the m s in




A R
{ ) Vd 4 .
¥y - . ‘ .
| i / L R 34 ' to
4 ~
fig. 9a. A section of the path of such a walk is illustrated in-
fig. 9b, wh?re, fromvthe relation 0‘5'_, — cﬂ.ﬂ—ﬁ, . We see that
‘ 9&,: g for the steps r: and T, L |
M(O) ] ; \\\- 3 Ft'-ﬂ
. N ’
! . 5
. 5
[ * L . ) . !
“ Vi al ] K
| | [ T
§ - -V ' " ~
P N T ,
Fig. 9a . " Fig. 9%
- " For g(é) as in eq.(5.5a) we ‘get, \ * ey T &
’ N =1_1 i Q
x : z ﬁ 0 . \
Hence we obtain from eq's.(3.11) and (4.6) ’
, o L
, ) #
. : 2 ’z ¢ .
. (5.5¢) .  E(Pa) = £%n Lo » a )
\ rvi . ‘ .
i - the mean square displacement for a symmetric random walk in the p]nane‘
‘i ‘with step length £ = 1 .

3

'30) Let g_(_r) be given by eq.(5.3) and/ ‘f»(o) by

N . (5.6a) j{(o) =" 1{5(0-1) + 5(8 +0)Y

~

where the distribution of the mu_’j is represented in fig. 10a

\
S
N ‘
N
. 2
A
&, > T
T . R S -~ oo e \ e L I e Tom e
resenppgiuing. . o
EX St £ 1 Loy sk g e et g —yr A.

<




s it
Py

" walk on a square lattice where the walker must turn left or right with

35 ' L ' ‘
.and an illustration of this walk in fig. 10b, where, from the relation

iy = Pp =/ we see that 84y = g- L -5..

(e) < i g'

oy | , r’m ' /
z .
| S

=
i3 ]
°I
R

Fig. 10a Fig. 10b

N 2
For this walk, we again get E(E;) = 1’1 It 1s a restricted

f

“equal probability "‘i'

in the forbidden steps: reversal steps g well as those where the
F~

The restrictive aspect of the walk appears

walker persists in the same direction. , i ,
t
B) Cases when |Al<i “and A#o© ‘ N Y,
1o) Let 4(f)  be given by eq.(5.3) and £(8) by
x ' .

3

(5.7a) {(8) = %{5(9‘%) + 3(9*%\}

Fig. 11a and fig. 11b represent the graph of the distribution of the
\ m A for- §(8)  and an illustration of this walk,

@ . ’
respectively. From fig. 11b we see that 0&, =‘%T __‘_#_g =[. We also have
. . .3

<

———
—

(5.7b) >\ = 1 4
4

AN L
q 2




e e AT

36 . o
\ /1
\ ~ i /
.- . ‘\J.
m@) | .
. (f .
{ T
, z o (%5 4 >
- - . x
s T o § ¢ °

Fig. 1la | Fig. 11b

From eq. (4.13) and recalling thatf 5—‘(9) is even, we have

&
(5.7¢) FCRA) =~ (6'2+ trau A )n— 2}1:_)__
r }" /J ‘_% Q‘h)l
where 0",2 =0 by eq.(5.3), and }j,'.' = Ql . Hence
(5.7d) E(RA) = (l +2h \nd® _ 25
-2 0 -A)
_— 3n£z - 431 for | Aﬁ-zl_

(5.7¢) Let  $(n) =30 24t

(5.7f) Then [E(Rk\ — -FLH)] =0
. n —» o0

Eq.(5.7e) is the asymptote toward which E(Qk) appr‘&shes o N—re@,
It has slope 312' and .n -intercept 4/3. A slope bﬂ?LL

indicates that the walker undergoing this walk moves further than a

walker yndergoing a random walk.

vl
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. ) ' ' ; S -
20) -ngg(r) be given by eq.(5.3) and {-Cﬁ)‘ by

v
e

(5.82)  §(8) = 1{59u)+59+£)+5(9)}
\

Fig. 12a apd Fig. 12b show the graph of the probab1hty dlstnbutwn

of the m;’s and @n illustratton of the path of such a walk,
respectively, - ' ) )
;/V
: , . Y )
gm(a) 9 } . N )
' 7
- v ‘|i N i
o Teat
» l \
. ot i
-8 . 0 '~ﬁ_ ) o ’ x
z ] X
Fig. 12a . " FRig. 12b

For this walk,

|
(5.8b) A = L

//‘ . A 4
This is a restricted walk on a square lattice where th:sl:i\c\*mm

expressed in the direct reversals which are for:bidden. The steps remain .,
as usual.correlated since Oie, = Qo= f; - In fig. 12b, we see that

9“' = -% . This- is the walk that we have considered earlier

“in chapter II with the trqpsition matrix given by eq.(I11-3.12), for which

we had found the asymptotic expression for the mean square displacement

by another method, eq.(II-3.15). ' -
ﬁh
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From eq.(4.7)

o I
. N+l
(5.8¢) (Rn) (a" +pt +2)Jr——-—)ﬂ - 'Z)t,(i )\) z._>_\__’

S o

£ 22{,(“ 2l )n 4 2L
: . § | (

. A L
where <7;'-z =0 and /.Jf:l by eq.(_5.~3). We see that the
equations (I1-3.15) and (I11-5.8¢) are identical when A= |=2p

Now for A= —‘5 ", we express by
, - “
(5.8)  E(RA) = 2n’- 3 | )

-

the fact-that,'as MN—» o0 . s «E(Ey:) approaches t\he

asymptote given by

(5.8) fo) = an-32 T

where, in eq.(5.8¢c), 12.-_- 1

(5.57) 1-e. Dm [ECRY) - ﬁ(n,}] =
N> o0 .

°

) .
.- . - ) . )
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§ 6 | Example of a Restricted Walk

Y‘Bis example is-based on the representation of polymer formation

‘ (Montro]l.ﬁ9 0) by a Markov ®hain on an integer lattice in the plane.

wIn this-walk, the particle: ' .
) a) must turn left or right at a 90® angle from the previous
step, with equal probat;ﬂit_y;
«b) | cannot re;n"sit any lattice point in four steps, indicating
that qups with the fo]lgwing forms (see fig. 13 below), i.eo. 1st order

loops, are not adlowed.

LA

Fig. 13 !
’ [ | ,
ﬁ%particle« as a one step memory such that “itsv.;{\*l‘ step is inﬁuenced
by its (n—/;-.)"—iL "step. Such a walk is direction dependent by a)
and position de;Endent by lb). The Markov chain is a sequence {XL}
L=0,,2,. of groups of 4 steps, of videnticaﬂy distributed random
variables. 16 such groups of 4 scteps can be formed. The 12 allowed
groups are represented in Fig. 14., whére the 1st step of each éroup

illustrated takes either one of the &40 horizontal directions.

v
Let g4 be the probability that the walker, at the completion §

the &4 step, be as far away as possible from the position he was
in at the completion of the, (k-3)™d step. Let P be the

-probability that the walker, at the completion of the k th step, be

/
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L.

N
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r
[

. ’TH "‘_J_ F’. [.[" 1 ri?" -
7 '8 .9 6 i Y]
” \ 2\

Fig. 14 K
. . .
as Héar as possible to the posii"n he was in at the completion of the
(k 3)rd step. There is a joint probab Tity assoc1atedi§1th
each configuration. In particular, consid€r the first configuration

3

¢
which is drawn in fig. 15,

) 4

- \
i
Fig. 15

The frrst step has probability .* . The 2nd step has probability
% also, since the walker has taken a left step. \The 3rd and
4th steps have, each, probabi]ity q since at the completion of
the 3rd step, the walker is as far as he can be from the/starting
position; and at the completion of the 4th step, the walker is also

as far as he can be from the 1st position. Hence we gét

& /r“”Jt )
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The probability vector of the Ist step of the Markov chain given by
{Xiy b= s
. r
' . :
(6.2) F - ( fi Fa) fs) ) Poy P ﬂz)
) K

Montroll (1950)~computed the 144 conditional probabilities

.,'P(G'B) Fhk _ 2 L+‘ —{‘ XL — e\) : '

3 . é

~
where hk&(h%{fﬂ“%“ﬂq L,

In particular, the conditional probability that fheAparticle be in state 2 ,

at the gi-kl)th step given that it is in state 1 at the ith

step is
v -7 (
(6.4a) o, = B(Xpp = z\x&-.: )

©

Fig. 16 illustrates how the configurations 1 and 2 (see fig. 14),

i.e. two links of the Markov chain, join. "a", "b", "¢” and "d" in fig. 16

- §11lustrate, in broken line, the formation of the 1st, 2nd 3rd and 4th

step, respectively, of configuration 2 whlch follows conf1ghrat1on 1.

"e" dn fig. 16 illustrates configurations, . 1- and 2 in succession.

P TN




Fig. 16

. [ ]
The 1st step of conformation 2 in the making (i.e. broken“segment in "a")

has probability c' since at the gompletion of that step, the walker will
be as far away as possible from'the 2nd position of configuration 1,
i.e. the 3rd pr:evious position. By similar reasoning, the 2nd and 3rd
‘step, i.e. broken segments i'n “b" and “c", respectively, have each |

probab/ﬂity (‘ » while the 4th step (see "d", fig. 16) has probability P’

v_ (6-4l.3.) Hence | fla = -E(Kt.ﬂ""zjlxi.""‘) = Pﬂs.

Py
Let Rn be the vector which connects the two ends of the chain

of groups of four steps. Montroll (1950) found that

{

(6.5) E(.én) = 0

(6.6)  Hom ERD) _ (Ltff).i.

N -» o0 N a2 1_.',2- P

where N=4n and 0o , the bond length.

. ‘ .

(6.7) Let  f(p) = [(&_’_f_"_’\)_g_]/z

o '\_\/__‘,;"\ M 1"?: r i ’
|

rlaps are allowed, this walk becomes exactly that

When 1st order ov

discussed 12/ -A-30, eq's.(5.3) and (5.63< And Montroll (1950)
Al

' found

il tis i
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(6.8) L E(RW)

n—sx NO}

(6.9) Let | :C(P) — (%)I/Z. . ) | \j

Eq's (6.7) and {6.9) are the limiting expressions for t ot mean

° I

=3
P

équare distance between the ends of the chain‘ (very long) when st
order overlaps are allowed and when they are not, respectively. Fig. 17

expressey the root mean square of the distance as function of P

“ ) i
\ L4
7> ‘ h -

¥
4
()
3 - 1%orcler oveclaps )
. excluded ’ :
/
2 9
I 1 .
. $F order overlapt
olowed -
& 1 ' 2
\\ j ]
. ° y P 1
) -
Fig. 17

¢

When 1st order over]apsg;g allowed, f(p).,.:. when p=4 , as T

expected, for a random case. When they are not allowed, Monjcroﬂ (1950)
" has found thdt the average cﬁa‘in length has increased by a factor of -

1.8, as indicated by fig. 17, even when p=i .
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CHAPTER IV

3

- » 2

Applications to Biological Cell Motibn on Surfaces

7

h 3hd without chemotaxis (i'.e., movement towards

/ .
Studies haye heen made,of the planar cell motion of certain
e

biological cells wi
an attracti\'/e agent). Gail and Booné (1970), Nossal and Weiss
(1974a,b) Nossal (1976) and Hall (1977) have dealt with the problem
of modeling this cell motion as a c&elated walk in  [R?

Salient aspects of their work will be mentioned here.

Gail and Boone (1970) studied the lf\otion of mouse fibroblasts in
tissue cu]tgre on surfaces, in the absence of chemotactic agents.
They have observed the pogition of the cells at equal intervals of time
and analyzed an idealizatiron of the path formed by the sequence of |
2-vectors joining these points. The resultant sum squared was assumed

to have an expdnentia1 density given by

T2
/ J——— @
(1.1) {(Tz) = 1 @ 40t , for fixed tyo
4Dt
SN
where D js the diffusion constant,

The mean square displacement for this walk is given by'

(1.2) E(T*) = 4Dt

M
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by the exponentiﬂ property of -s: . These authqrs have shown
in theory that a "persisting" cell, like a random wa]kerwundergoes

a mean square displacement prbportiona]_ to time if suitably long
intervals of time_are chosen. Because these authors studied only the

cell posiéions spaced at equal intervals of time, i.e. "equal—tiine step",
?-\ ~

.they overlooked the detail of the actual trajector%es of the cells in

space. Fig. 17 shows an illustration for a path formed by a sequence
of 2-vectors\)'~ in. the plane where the positions at equal intervals

of time are indicated by dots and the “equal-time steps" by the dashes.
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' . Fig. 18 @

A more detajled model for planar cell motion was constructed by Nossal
and Wetss (1974b), who proposed a theory of planar cell motion in a

cﬁemotactic gradient. The correlation between the steps in this model

is introduced by the way of the re]_ative angles.




e et o e o

6 . ] , |
(ﬁl » Hall (1977) Qas rep;esented the motion of the amoeba Dictyostelium '
. discoideum in the absence'of chemotactic agents as a éorre]ated walk
. (/ﬁhith straightflinefitep§"of variable lengths. HE; assumption of .
. 1ndepeqﬂent re]at}ve angles 9( ‘ and indifendent step ]engtps Fi .

were suggested by a detailed statistical analysis of the data. This
led to the correlated walk model for cell trajectories he proposed. ‘ )
Hall (1977) raised the question of the difficulty which a representaticuL‘

by "time step" runs into if the time interval is chosen to be small.

Taylor (1920) has presented a- tentative. theoretical analysis of the

Q
passage to the limit of vanishingly small steps for a correlated walk.
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