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ABSTRACT

Electron Paramagnetic Resonance and Optical=-Absorption
studies on cu®* Impurity in Single/Poly Crystals of Hydrated
Monopyrazine zinc sulphate, (Cadmium, Nickel, Magnesium)-
Ammonium Sulphate, and Magnesium Acetate

CHUNZHENG WANG, Ph.D.
Concordia University, 1990

X-band electron paramagnetic resonance (EPR)
measurements on both, single crystal and polycrystalline,
specimen of Cuz'-doped monopyrazine zinc sulphate
trihydrate, cadmium ammonium sulphate hexahydrate, and
magnesium ammonium sulphate hexahydrate have bheen made at
room, and below and above room temperatures, as well as on
single-crystal specimen of cu®-doped nickel ammonium
sulphate hexahydrate and magnesium acetate tetrahydrate at
room and lower temperatures. The cu® spin-Hamiltonian
parameters, including the quadrupole interaction tensor, are
estimated from EPR line positions by the use of appropriate
least-square fitting. The room temperature optical-
absorption spectrum of magnesium acetate tetrahydrate,
recorded in the 190-820 nm wavelength range, is exploited to
study the crystal-field and charge-transfer transitions of
the cu®* ion.

The principal values of the g°- and A°- tensors for
Cua"-doped monopyrazine zinc sulphate trihydrate indicate
that the cu® ion is situated at a site of octahedral
symmetry with orthorhombic distortion in this lattice. The

EPR data indicate the occurrence of both the static and
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dynamic Jahn-Teller effects over the temperature range of
investigation, the transition from static to dynanmic
Jahn-Teller effect occurring at 334 ¢ 1 K.

The temperature dependence of the principal values of g
matrix for cu®*-doped cadmium ammonium sulphate hexahydrate
and magnesium ammonium sulphate haxahydrate are explained by
taking into account the pseudo Jahn-Teller effect
experienced by the Cu(HZ())i+ complex. The differences in
the energies of the three Jahn-Teller configurations of the
cu (HZO)? complex in the two hosts have been estimated.

The EPR spectra of Cuz’-doped paramagnetic host nickel
ammonium sulphate haxahydrate are considerably different
from those in the isostructural diamagnetic hosts cadmium
and magnesium ammonium sulphate haxahydrate. No cu®
hyperfine structure could be observed in the former at room
and liquid-nitrogen temperatures; even at liquid-helium
temperature the hyperfine structure was not well resolved,
it could only be observed at lower Zeeman magnetic fields.
It can be attributed to the dipole~dipole and exchange
interactions between the paramagnetic impurity ion cu® and
the host Ni® ions, which broaden the EPR lines.

Both the room temperature optical-absorption and EPR
data of magnesium acetate tetrahydrate are used to estimate
the core polarization contribution (K,) and the molecular
orbital coefficients for the cu®* ion doping magnesium

acetate tetrahydrate.
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CHAPTER 1I

INTRODUCTION

A large number of investigations on electron

2+

paramagnetic resonance (EPR) of Cu ion have been reported

[39]). Bleaney et al. [8] and Penrose [45)] were,
respectively, thz first to discover the fine structure in
undiluted copper Tutton salts, and the hyperfine (h.f.)
structure in magnetically-dilute salts by means of EPR.
Soon after, Bleaney et al. [9, 10, 11] made the

interpretation of EPR spectra of both the allowed and

forbidden h.f. transitions of the Cu2+ ion in

magnetically-diluted salts, and they estimated the relative
strengths of the quadrupole interactions from their EPR

data.

2+ 9

The paramagnetism of the Cu”® ion, which has 347, or

3d1-hole, configuration, arises from a single unpaired
electron spin, because the orbital angular momentum is

quenched by the crystal field, i.e., the matrix elements of

A A A
Lx Ly, Lz between the ground state wavefunctions are zero.
[

On account of such a simple configuration of the outer

electron shell, the ground state of the cu?t ion in

different local symmetries has been investigated in much

detail. The ground state of the free cu®t ion is 2D5/2.

This five-~fold degenerate state is split by the 1ligand

2+

field. When a Cu ion is in a crystal field, often, the

ground orbital levels are not split by the crystal field,



e.dg., in crystal fields with cubic, octahedral, or
tertahedral symmetry. On the other hand, they are
incompletely split in crystal fields with orthorhombic, or
lower, symmetries. The resulting two- or three- fold
degenerate (partially degenerate) orbitals can be, furﬁher,
split by a Jahn-Teller (JT) distortion. This fact makes EPR
a powerful tool to observe the Jahn-Teller (JT) effect. The

2+

ground-state wave function of the cCu ion in crystal

lattices depends upon the local symmetry of the
Cu2+-complex, which can be predicted by the crystal-field
theory, or more accurately, by the molecuiar-orbital theory.
The principal values of the g matrix, which can be directly
obtained from EPR data, provide information on the symmetry
of the Cu2+-complex. In the case of the Cu(150)§+ complex,
with an orthorhombic symmetry, the principal axes of the
orthorhombic g tensor are within experimental errors,
oriented parallel to the three inequivalent Cu-O bond pairs
[53]. The ground-state wave function is strongly influenced
by the anisotropy of the g matrix. Thus, a study of 1ligand
field, which determines the ground-state wave function, is
essential in the understanding of EPR data of Cu2+-doped
single crystals. This thesis is focused on the
Cu2+-comp1ex, its ground state wave function and the JT
effect, as studied from the EPR measurements in the X-band
(* 9.5 GHz) microwave range.

The following EPR studies of the cu’t ion are included

ir this thesis:
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(i) EPR measurements on a single crystal of Cu2+-doped
manopyrazine =zinc sulphate trihydrate (hereafter P2ZST),
0, were performed over an extended

Zn(C,H,N,)S0,.3H,

temperature range (4.2-375 K). Existence of three
physically equivalent, but magnetically inequivalent, cu?t
complexes was confirmed. The principal values of the g and

2+ . .
ion experienced an

A matrices indicated that the cCu
octahedral symmetry with an orthorhombic distortion in PZST.
The data were used to deduce the occurrence of both the
static and dynamic JT effects over the temperature range of
investigation, the transition from static to dynamic JT
effect occurring at 334 + 1 K.

(ii) The EPR measurements of both single and
polycrystalline specimens of Cu2+-doped cadmium ammonium

sulphate hexahydrate Cd(NH (SO4).6H20 (hereafter CASH),

4)2
and magnesium ammonium sulphate haxahydrate
Mg(NH4)2(SO4).6H20 (hereafter MASH), have been made over the
temperature range from 4.2 K to a temperature above the room
temperature. The hyperfine forbidden transitions of cu?t
were observed only at 4.2 K for CASH, while only at 77 and
4.2 K for MASH. In these two diamagnetic hosts, the
temperature dependence of the principal values of the g
matrix are explained by taking into account the pseudo JT
effect experienced by the Cu(H20)2+ complex. The
differences in the energies of the three JT configurations

of the Cu(H20)2+ complex have been estimated.

(iii) EPR measurements of Cu2+-doped nickel ammonium



salphate haxahydrate Ni(NH4)2(SO4).6H O (hereafter NASH),

2
have been made at 295, 77, and 4.2 K. Only the Cuz+ fine
structure was observed in these EPR spectra. At
2+

liquid-helium temperature the hyperfine structure of Cu
was observed only at the lower magnetic field values. It
can be attributed to the dipole-dipole and exchange

2+

interactions between the paramagnetic impurity cu®’ ion and

the host Ni2+

ions, which result in decreasing the
spin-lattice relaxation time. The principal values of the g
matrix show that Cu2+ion is in a complex with orthorhombic
symmetry at 295, 77, and 4.2 K.

(iv) EPR measurements on a single-crystal sample of

Cu2+-doped magnesium acetate tetrahydrate Mg(CH3COO)2.4H o,

2
(hereafter MAT), have been made at 295, 77 and 4.2 K. The
optical-absorption spectrum study of Cu2+-doped MAT single
crystal at room temperature shows that there are six
absorption bands in the wavelength range 190 to 820 nm.
They have been assigned as d-d transition and
charge-transfer transition bands. These provide the energy

levels of the Cu2+

ion in a tetragonal symmetry. Further,
the coefficient of molecular orbital and the core
polarization contribution, K , were estimated.

(v) The estimation of the spin-Hamiltonian parameters,
i.e., the g and A matrices, for all single-crystal
specimens, and the quadrupole-interaction matrix Q@ in the
case of cu®*-doped CA(NH,) ,(SO,) . 6H,0 and

Mg(NH4)2(SO4).6H 0 at 4.2 K, have been made from EPR 1line

2
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positions by the use of a rigorous least-square fitting
(LSF) procedure. The principal values of the g matrix for a
polycrystalline specimen in the case of Cu2+-doped CASH are
estimated from the average EPR line positions from the EPR
spectra recorded three times at the same temperature.

The organization of the thesis is as follows. The
experimental arrangement is described in chapter II. The

2+ » 3 L] ]
ion 1is discussed in chapter

spin Hamiltonian of the Cu
III. Chapter IV deals with the theoretical calculations,
and the estimation of spin Hamiltonian parameters from EPR
data. The details of EPR measurements and experimental
results are given in chapter V. In chapter VI is included

2+-doped magnesium acetate

the optical-absorption study of Cu
tetrahydrate. The details of observations of Jahn-Teller
effects of Cu2+ ions in single-crystals, and the estimation

2+ . 2
iln magnesium

of molecular-orbital coefficients of Cu
acetate tetrahydrate are described in chapter VII and VIII,
respectively. The conclusions are summarized in chapter IX.
The copies of the three published papers ‘'"Low and
high-temperature electron paramagnetic resonance studies on
Cu2+-doped monopyrazine zinc sulphate trihydrate single
crystal: observation of the Jahn-Teller effect", “EPR and
optical-absorption studies of Cu2+-doped Mg(CH3COO)2.4H20
single crystal", and "EPR of Cu2+-doped cadmium ammonium
sulphate: Pseudo-~Jahn-Teller effect", as well as the LSF

*2

computer program, for the estimation of the g°, A° and O

tensors, are included in Appendices I and II, respectively.



CHAPTER 11

EXPERIMENTAL ARRANGEMENT

All the EPR spectra discussed in the present thesis
were recorded on a homodyne X-band Varian V4502
spectrometer. A block diagram of the spectrometer is shown
in Figure II.1.

The microwive bridge is Varian V=-4500-42 X-band
microbridge. The magnet is Varian V3900 series 12"
low-impedance electromagnet, along with a Bruker B-MN50/200
power supply. The magnetic field is controlled by a Bruker
field controller B-H15. Magnetic field measurements were
made with a Bruker (B-NM20) gaussmeter, with an accuracy of
0.001 gauss. A small amount of «, o' diphenyl-g-picryl
hydrazyl (DPPH), for which g = 2.0036 * 0.0002, was used as
a reference to check the accuracy of the magnetic field
values.

The EPR spectrometer is equipped with a 100 kHz field
modulation for measurements at room and above-room
temperatures, and a 400 Hz field modulation for measurements
at liquid-nitrogen and liquid-helium temperatures.

The cavity arm of the spectrometer is of rectangular

type, resonating in the TE mode, at a frequency of

102
approximately 9.5 GHz at room temperature. It is designed
for use inside a commercial cryostat; the top flange is
sealed off for evacuation purposes by means of a mica sheet.

The cavity arm is evacuated in order to reduce condensation
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that would, otherwise, disturb the tuning of the sample
cavity at low temperatures. Full description of the metallic
variable-temperature cryostat is given in Ref. [52].

The temperature is varied by the use of a heater
resistor inside the 1low-temperature cryostat. The
temperatures in the liquid-nitrogen and 1liquid-helium
temperature ranges were determined by nmeasuring the
resistances of the platinum and germanium resistors,
respectively, using appropriate calibration charts. For
high-temperature measurements, a Varian Associates
variable-temperature controller (model No. E4540), attached
to a microprocessor digital thermometer, manufactured by
Omega (model No. 870), was employed.

The following details apply to all the crystals
discussed in this thesis. The angular variations of EPR
line positions were recorded for the orientation of B, the
external magnetic field, in three mutually perpendicular
planes at all temperatures of measurement for all
single-crystal specimens. The spectra were recorded for the
orientation of B at every 4° interval at room and high
temperatures, and at every 5 interval at liquid-nitrogen
and liquid-helium temperatures. The experimental laboratory
frame (x,y,z) was defined as follows. The largest flat
plane of the specimen was chosen to be the zx plane. The
direction of 3, in this plane, for which the positions of

the hyperfine (h.f.) lines were at the minimum values of '13,



was chosen to be the 2z axis, while the direction at 90" o
this direction was defined the x axis. The y axis is, of
course, perpendicular to the zx plane. For EPR measurements
in the 2y and xy planes at room temperature the
single-crystal specimen was rotated about the x and z axes,
respectively, keeping the direction of B fixed. At
liquid-nitrogen and liquid-helium temperatures, when the
low—-temperature csyostat was used, B was rotated about the x
and z axes keeping the single-crystal specimen fixed.
Optical-absorption spectrum was recorded on a
Hewlett-Packard spectrometer (model 8452A) in the wavelength
range 190-820 nm. The absorption spectrum and the
wavelengths of the absorbed peaks, were directly recorded

using a microcomputer.




CHAPTER III

SPIN HAMILTONIAN OF THE Cu2' ION

The energy of an atom, or radical, containing unpaired
electrons and nuclei with non-zero spins, can be expressed

in terms of the Hamiltonian operator. The EPR spectra of

u2+

c ion (electron spin S = 1/2, nuclear spin I = 3/2 for

each of the 69.09%-abundant 63Cu and the 30.91%-aboundant

65¢cu isotopes) can be fitted to the spin Hamiltonian [48]:

Hom By o+ Moy + Hped R+ R (III.1)

The first term, ¥, , in eq. III.1 is the electronic

Ze
Zeemann term, of the explicit form

=5

I
)~
o117
Qi
w0l

(III.2)

where the §2‘tensor is symmetric, u, the Bohr magneton, and
B is the external Zeeman field.

In the second term
®__ = 8.D.8, (III.3)

represents the spin-spin interaction called the zero-field

splitting term. It is valid only for those special cases

2+ 2

where there are present Cu“ -Cu + pairs with effective spin

2+

S =1, or four Cu ions aggregated with effective spin S =
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2t jons present S = 1/2. In

2. In the present cases the Cu
that case the spin-spin interaction is zero.
The third term in eq. III.1 is the hyperfine (h.f.)

interaction term. It can, in general, be expressed as

# _=8.AT+=8.A.T , (III.4)

where the h.f. interaction energy 2% and Kf tensors
are symmetric, and the summation over i covers the
interaction with N ligand nuclei. The first term in eq.
III.4 is due to the interaction of the unpaired electron

2+

spin with the nuclear spin of the Cu ion, called h.f.

interaction, while the second term is due to the interaction

2* jon with its 1ligand

of the unpaired electron spin of Cu
nuclear spins, called the 1ligand-h.f. or superhyperfine,
interaction. The superhyperfine structure was not observed
in the present work.

The fourth term in eq. III.1 expresses the nuclear-
Zeeman term
Ry = —3: ungmﬂ.‘l’i , (III.5)
where Mo is the nuclear magneton. This term is, usually,
not taken into account to interpret EPR data, for, its

energy is rather small, being about 0-10" cm™.

The last term in eq. III.1 stands for the energy of the




12

interaction of the nuclear electric-quadrupole moment with

the electric-field gradient

# =1.0.7, (III.6)

where the quadrupole energy tensor Q is symmetric and

traceless, i.e.,

QlJ = le (III.7)
and
Q, *Q,+te,=0. (III.8)

Thus, there are only five, rather than six, independent
components of the Q tensor.

The components of 62, 5, iz, and Q tensors are the spin
Hamiltonian parameters (SHP). The problem of interpreting
EPR spectra consists of (i) identification of EPR lines
corresponding to the various transitions, (ii) calculation
of SHP, and (iii) calculation of other physical quantities
of interest depending upon SHP, e.g., the molecular-orbital

coefficients.



CHAPTER 1V

SPIN HAMILTONIAN PARAMETERS

IV.1. Estimation of SHP from EPR data

The evaluation of SHP from EPR data of Cu2

+-doped
single crystals is important for further analysis. The
perturbation expressions for the eigenvalues of the spin
Hamiltonian are used to express the theoretical dependence
of resonant line positions on SHP. Thus, the EPR line
positions can be used to estimate SHP.

The computer evaluation of SHP by the use of
least~square fitting (LSF) technique is widely used. For

2+ the eigenvalues of the spin Hamiltonian can

the case of Cu
be calculated by second-order perturbation [32, 33]. Using
these, one can estimate the individual values of all SHP,
provided that EPR line positions for allowed transitions (AM
= %1, Am = 0; where M, m are, respectively, the electron and
nuclear magnetic quantum numbers) corresponding to several
orientations of the external magnetic field are
simultaneously fitted in a rigorous LSF. In the estimation

of parameters by LSF, the "chi-squared" value (xz) is

defined as [30, 31]
x* = Z (JaE| - hw )0t , (IV.1)

where AEl is the calculated energy difference between the

energy levels participating in resonance, v, is the klystron
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frequency, h is the Planck’s constant and o, is an effective
weight factor. The index i1 covers all the resonant 1line
positions (data points) used simultaneously in the fitting.
The elements of the Q tensor can be evaluated from the
forbidden h.f. 1line positions, employing another LSF
procedure, using the computér program, which was used to

calculate the § tensor in the case of V0°'-doped K,C,0,.H0

[34], considering only the forbidden h.f. transitions AM
+1, Am = #1, modified to take into account the forbidden
h.f. transitions AM = 1, Am = *2 for the present cases. 1In
this program, the previously-determined values of the §2 and
the A?> tensors are used as input constants, only the
components of the Q tensor are varied. The § tensor was
determined by inputting all the observed forbidden h.f.
transition line positions, observed for B in three mutually
perpendicular planes 2x, zy and Xy, in the LSF program.
Diagonalization of the Q tensor yields the principal values
of the O tensor, as well as its direction cosines with

respect to the principal axes of the g° tensor.

IV.2. Theoretical calculation of SHP

Perturbation theory is usually applied to calculate the
SHP. For the calculation of the g matrix, the spin-orbit
interaction of the electron is considered as a perturbation.
On the other hand, the electron-nuclear spin interaction and
the nuclear-spin-orbital interaction are considered as

perturbations for the calculation of the h.f. matrix A.
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Owing to the particular electron configuration of the cu?t

3d-shell, these calculations are relatively simple.

First, the ground state wavefunction of the Cu2+ ion is
determined from the local symmetry, then the components of
the g and A matrices are calculated by the use of
perturbation theory. The expressions for the components of
the g and A matrices, denoting the wavefunctions of the

ground and excited states as |0> and |n>, are as follows [1,

29]:

gpq = ge - 2qu (IV.Z)
and

qu - -P[K°apq + 3§£pq * qu - 3€qu] (1V.3)

In eq. IV.2 g, (= 2.0023) is the free electron g value, P =

3 2+

2g pu <r~°> = 0.036 cm [24] and £ = 2/21 [1] for Cu

ion, where g and <r'3>H are, respectively, the nuclear g

factor and the average of the inverse-cube radius of the

2+

Cu ion, K is the core-polarization contribution.

The various quantities appearing on the right-hand side

of eq. IV.2 and IV.3 are defined as follows:

¢ =2 <olLL +LL|0>- 25 , (IV.4)
Pq 2 P q qp Pq

Z’<0|L_|n><n|T_|0>
A == L | , (IV.5)

Pq -
E0 En
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<0|T |n><n|LL + LL |0>
ze . T 3 1 . (IV.6)

=

In egs. IV.3 p, q, t, and r are the coordinates, each one
can be chosen as X, Y, 2Z; Ll is the ith component of the
electronic orbital angular momentum; Eo and En the enerqgy
level of the ground state and the excited state n,
respectively. T = EHL when the calculation is based on the
crystal-field model, on the other hand, when the ligand ions
are taken into account by the use of the molecular orbital
theory T = gHL + ZEIIL. (Here En and gl are, respectively,

the spin-orbital coupling constants of the central metal ion
(Cu2+) and its ligand ions in the complex.) In this way,
the expressions for the principal values of the a and A
matrices consist of the core-polarization constant (X)) and
the molecular-orbital coefficients, which can be estimated
by solving the equations wusing the wvalues of the SHP
estimated from EPR data, and the energy splitting due to the

crystal field, estimated from the optical-absorption data.



CHAPTER V

EPR MEASUREMENTS AND EXPERIMENTAL RESULTS

v.1. cu?*-doped Zn(C,H,N,)S0,.3H,0 (PZST) single crystal
The crystal structure of PZST has been reported by
Tenhunen [57] to be triclinic (space group Pl); the unit
cell dimensions are a = 10.734 A, b = 4.427 i, c = 6.927 ﬁ,
« = 121.15°, B = 82.57°, ¥ = 104.02°. There is one formula
unit per unit cell (2 = 1), only. So for no structure-
analysis data have provided the exact positions of zn2* ions
in the lattice of PZST crystal. That the water molecules
are not structural water, can be concluded from experimental
data: the infra red spectrum of PZST reveals that there is
no band that confirms water coordination in P2ZST [20]; as
well, the thermogravimetric curve [44] indicates that the
three water molecules of PZST are rapidly removed at 115°C.
Cu2+-doped PZST single crystals were grown by slow
evaporation of an aqueous solution, consisting of
stoichiometric amounts of pyrazine C,H,N_ and Znso4.7H20, to

4742

which was added a sufficient quantity of CusO,.5H,0 so that
2+

there was one Cu“ ion for every 100 Zn ions. The grown
crystals look like parallelepipeds.

EPR spectra of Cu2+-doped single crystals of PZST were
recorded over an extended temperature range (4.2-375 K)
[37]. The EPR spectra for Cu2+-doped PZST at

liquid-nitrogen and 1liquid-helium temperatures are quite

similar. This can be seen from Figure V.1.1, which exhibits
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Figure V.1.1. EPR spectra of Cu2+-doped Zn(c4H4N2)sod.3H20
(PZST) at 1low temperatures. The upper spectrum is recorded
at liguid-nitrogen temperature, while <the 1lower at
ligquid-helium temperature for B at 75° from the z axis in

the zy plane.
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Figqure V.1.2. Angular variation of cu®* EPR spectra in
Zn(C,H,N,)S0,.3H,0 (PZST) at 4.2 K for the orientation of B
in the 2zx plane. The solid lines connect data points,
observed for the same ¢transition. Empty circles, solid
circles, and crosses represent three different sets of

spectra, corresponding to the three magnetically

inequivalent cu?? ione.
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the EPR spectrum for the magnetic-field orientation at 75°
from the z-axis in the 2zy plane, at liquid-nitrogen and
liquid-helium temperatures. These spectra are not much
different from that at room temperature. It can be seen by
comparing the spectra in Figure V.1.1 with those of Figure
V.1.3, which displays spectra with the same orientation of
the external magnetic-field at 295 K, that they consist of

three sets of four h.f. lines, typical of the Cu2+ ion. The

lines corresponding to the less-abundant isotope of the cu?t
could not be clearly seen. The three sets of h.f. 1lines
belong to the three physically equivalent, but magnetically

2* complexes; because their variations of EPR

inequivalent Cu
line positions with B (angular variations) are different
from each other. This can be seen from Figure V.1.2,
exhibiting the angular variations of spectra in the zy plane
at 1liquid-helium temperature. The peak-to-peak first
derivative linewidths do not change significantly, as one
lowers the temperature from room- to liquid~helium
temperature. They are 25, 22, 22, 34, 26, 25, 26, 21 gauss,
respectively, for the eight clearly-resolved EPR 1lines, in
order of increasing 3, as seen from Figure V.1.1; one
actually sees only eight clearly-resolved single EPR lines
(indicated as I, II, III, IV, V, VI, VII, VIII). The
lowest-field four lines belong to the cu®®  ion occupying
site I, while the highest-field four 1lines belong to the
Cu2+ ion occupying site II; the four lines belonging to Cu2+

ion occupying site III overlap the lowest-field line of site
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I and the three highest-field lines of site II, i.e., they
overlap the lines 1V, v, VI, VII.
The spin Hamiltonian appropriate to the present sample

is

# = pB.g.8 + 8.3.7 , (V.1.1)

where the notations have been defined in chapter 1II.

The principal values of the g and 2 matrices were
evaluated at various temperatures and listed in Table V.1.1.
It is noted here that the principal values of the g and &
matrices are the same, within experimental error, for the
three magnetically inequivalent cu??t complexes. The
direction cosines of the principal axes of the g and A
matrices are listed in Tables V.1.2 - V.l1l.4 at 295, 77 and
4.2 X respectively.

It is seen from Table V.1.1 that the principal values
of the g and A matrices remain the same, within experimental
error, over the temperature range 77-295 K, while Tables
V.1.2 and V.1.3 reveal that the principal axes of the g and
the A matrices remain coincident over this temperature
range. Although the principal values of the g and the &
matrices at 4.2 K, as given in Table V.1.1, were found to be
the same as those at room and liquid-nitrogen temperatures,
within experimental error, the principal axes of the A

matrix are now no longer coincident with those of the g

matrix, as seen from Table V.1l.4.
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TABLE V.1.1. Principal values of the g and A matrices

(square roots of the principal values of the g2 and A%

2+

tensors, respectively for Cu in Zn(c4H4N2)SO4.3H O (P2ST)

2
at different temperatures (T). The g principal values are
dimensionless, while the & principal values (Al'Az'Aa) are
in GHz. (The values in Refs. b, and c¢ are in Gauss.) The

labelling is such that g; > 9; > 9,

Tiﬁgzra- 95 9, 9, A, A, A, Ref.
295 K 2.3875 2.1924 2.0205 0.324 0.181 0.104 a
295 K 2.414 2.216 2.109 107 G 66 G 41 G b
77 K 2.3876 2.1923 2.0200 0.326 0.182 0.105 a
77 K 2.42 110 G c
4.2 K 2.3868 2.1929 2.0190 0.328 0.185 0.105 a

334 K 2.191 2.191 2.191 a

a. Present work.
b. Krishnan, Ref. [25), for a single-crystal specimen.

c. Krishnan, Ref. [25], for a polycrystalline specimen.



24

TABLE V.1.2. Direction cosines of the principal -axes of the

o~ ¢ Iy 2+
g and A matrices of Cu in Zn(C4H4N2)SO4.3H2
K. (The same as those of the §2 and 32 tensors,

O (PZST) at 295

respectively.) The direction cosines of the 52 tensor are
given with respect to the laboratory axes (x,y,z), while
those of the A matrix are expressed relative to (x’,y’,z’),

the principal axes of the 62 tensor.

Direction cosines of the §z'tensor

2z X y’'
z! 0.4510 0.2010 0.8696
X’ -0.6486 0.7431 0.1647
Y’ -0.6131 -0.6383 0.4655

Direction cosines of the X° tensor

2’ x’ y'
AL 0.9999 0.0062 0.0140
X" -0.0064 0.9998 0.0191

y" -0.0103 =0.0192 0.9998
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Table V.1.3. Same details as in the caption of Table V.1.2.

The values are those found at 77 K.

Direction cosines of the §° tensor

z X Y
z’ 0.4192 0.2720 0.8662
X’ -0.6498 0.7562 0.0770
Y’ -0.6341 -0.5952 0.4937

Direction cosines of the &2 tensor

2z’ x’ Yy’
A 0.9999 0.0062 0.0100
Xn -0.0064 0.9999 0.0156

Y -0.0099 -0.0158 0.9998




Table V.1.4.
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The values are those found at 4.2 K.

Zl

xl

z n
Xll

Y“

Same details as in the caption of Table 1II.

Direction cosines of the g2 tensor

2 X
0.3649 0.2468
-0.6372 0.7692
-0.6788 -0.5895

Direction cosines of the A

z’ %’
0.9969 0.0788
-0.0698 0.9126
-0.3700 0.4011

2

Y
0.8978
0.0476

0.4379

tensor
y’
0.0058
-0.4028

0.9153




27

As the temperature is raised above the room
temperature, the EPR spectra were found to be significantly
different from those at room and lower temperatures. The
h.f. lines of cu®’ become broader and weaker with increasing
temperature. Finally, at 334 *# 1 K, only one single broad,
isotropic line, is observed. Both the position of the line
centre and the 1linewidth become independent of the
orientation of the external magnetic field. There is no
significant change in the 1linewidth as the temperature is
raised to 375 K, the temperature at which the dehydration of
the crystal begins to takes place. Upon lowering the
temperature again below 334 K, after having raised the
temperature above 334 K, the same features of the EPR
spectra were obtained, as those observed before. This was
repeated three times, and each time the features of the EPR
spectra were recaptured. Figure V.1.3 shows the temperature
variation of EPR spectra of Cu2+-doped PZST over the range
295-374 K for the external magnetic field orientation at 75°
from the z-axis in the 2y plane. The single isotropic line
corresponds to g = 2.191, as listed in Table V.1.1.

EPR study of Cu2+-doped PZST has been previously
reported by Krishnan [25] at 295 K on a single crystal
specimen, and at 77 K on a polycrystalline specimen. His
EPR spectra also revealed the existence of three

magnetically different sites for Cu2+, although there is

2+

only one substitutional site available to Cu in the unit

cell of PZST. The principal values of the g and the A
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matrices reported by Krishnan [25] are also included in

Table V.1.1 for comparison.

v.2. Cu2+-doped Cd(NH4)2(SO4).6H20 (CASH) single and poly
crystals
The crystal structure of CASH is monoclinic, with the

space group P [42]:; the unit-cell dimensions at 300 K

21/a
are: a = 9.43 &, b=12.824, ¢ = 6.29 &, B = 106°52".
There are two formula units per unit cell (2 = 2); each ca®
ion is surrounded by six water molecules. The bond 1lengths
between the central ion cd®* and the ligand atoms are 2.298
R, 2.297 &, and 2.241 & for cd-0(7) (H,0), €d-0(8)(H0), and
Cd-O(9)(HéO), respectively; while the bond angles are 89.1°
for 0(7)-cd-0(8), 92.6 for O0(7)-cd-0(9), and 91.3° for
0(8)-cd-0(9). These data indicate that the cd® ion in CASH
is approximately in a compressed tetragonally-distorted
octahedral crystal field, as shown in Figure V.2.1.

Cualdoped CASH single crystal were grown by slow
evaporation of an aqueous solution, consisting of
stoichiometric amounts of 3CdSO4.8H20 and (NH4)ZSO4, to
which was added a sufficient quantity of CusoO, .5H. 0, so that
there was one cu®* ion for every 100 cd® ions.

The EPR spectra of Cu2+-doped CASH single crystal were
reported at 295, 77, and 4.2 K [38]. The spectra were found
to be quite different from each other in their profiles, as

seen from Figure V.2.2, which exhibits EPR spectra for the

orientation of the Zeeman field (3) at 10° from z-axis in
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Figure V.2.1. Relationship of the oxygens to b.ivalent atoms

in the structure of M(NH4)2(SO4)2.SH O, M= ¢Cd, Cu, Mg, Ni

]
(After Refs. [12, 28, 40, 41, 42)])
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the zx plane. The spectrum at 295 K consists of two broad
lines, which indicate the presence of two physically
equivalent, but magnetically inequivalent cu?? complexes in
the unit cell of CASH. At 77 K these two broad lines split,
due to the cu?? h.f. interaction, into two sets of tetrads

63Cu; the lines

due to the more abundant isotope
corresponding to the less~abundant isotope‘ECu could not be
clearly seen. At 4.2 K some satellite lines, corresponding
to the h.f. forbidden transitions, were also observed.

The EPR spectra of cu®t ion in CASH are fitted to the
following spin Hamiltonian:

-~ ~

® = usg.g.ia’ + 8.5A.T + 1.8.7 - 1. T.9_.B , (V.2.1)
where the notations have been defined in chapter II.

The estimation of the principal wvalues and direction
cosines of the g and the A matrices show that the directions
of the principal axes of the g matrix did not change with
temperature, the principal axes of the A matrix were
coincident with those of the g matrix at liquid-nitrogen and
liquid-helium temperatures, within experimental errors. The
principal values of the g and the A matrices at various
temperatures are listed in Table V.2.1. Table V.2.2 gives
the direction cosines of the principal axes of the g and the
A matrices.

The evaluation of the elements of the { tensor was

accomplished by the use of the another LSF computer program,



31

*[los] -3ay woajy

ejeq q

*}I0OM JuasaId e

e T100°0- ZI0°0- €T0°0 9ST°0 LLO°O0 GEE'O0 €IS0°Z V6ST'T O062v°T NMT'¥

q LST°0 8LO"0 €££°0 vs0°¢ eLi-¢ L3171 My 4 A LL
e T6T°0 ¥LO0°0 ¢€€€°0 TZSO0°C TCLI"Z ¢€19¢°C A LL
q ) €L0°2 coce Tee~¢ Asé6c

e ¢IL0°C TiI1Z°C ¢€Leee Asel
aanjex

-39y :xO ..>O ..NO :x< :hc ..N< an ~h0 .NO -aduay,
‘ZHD uy 8ae xosual O SY3 pue Xxyajeu ¥ 9y3z jo sanyea jedrouyad

ay) 21TYM ’'SsSaTuOTSUDUTP IIe sanjea m Tedioutad 9yl °saanjeaadwsaj 3juaaajJIp
3e usurosds te3shro erburs  (Hsw) o%H9' (Y0s)®(PmN)PD eur ur _no 103
2osuajl-0 9ayjy pue ‘(A1aarjoadsax ‘saosual ¥ pue mm ay3 Jo santea tedroutad

- 2=~

ayy jo sjoox aaenbs) ssojajeu y pue b ayy jo sentea tedroutag -1°

-~

¢°A d19el



32

Table V.2.2. Direction cosines of the g, A matrices (the
same as those for the g°, A° tensors), and those of the §

¢

tensor for Cu in the Cd (NH (504).6H20 (CASH)

4)2
single-crystal specimen at 4.2 K. The principal axes of the
g matrix are expressed with respect to the laboratory axes
(%,¥,2), defined in Sec. 3.1. The principal axes of the A
matrix are coincident with those of the g matrix, and the

principal axes of the Q tensor are expressed relative to

(%' .Y .,2'), the principal axes of the § matrix.

2 X y
9y 0.996 0.091 -0.022
Iy -0.042 0.227 -0.973
gy, ~0.084 0.970 0.230

zl xl y(
Qz" 0.970 0.242 0.032
Qx" ~0.195 0.848 -0.493
Q -0.147 0.472 0.869
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described in chapter 1IV. There were only six forbidden
transition lines observed in the best-resolved EPR spectrum.
At liquid-helium temperature, the allowed and forbidden line
positions for any orientation of the external magnetic
field, ﬁ, were calculated using the SHP evaluated
previously, in order that the observed h.f. forbidden
transition lines could be identified. Both the allowed and
forbidden transition-line positions for Bat 10° from the
z-axis in the zx plane for the set at lower magnetic fields
are indicated in Figure V.2.2. It is clear that the two
remaining forbidden transitions lines, not clearly resolved,
lie extremely close to the allowed h.f. 1lines. The
principal values of the Q tensor are listed in Table V.2.1,
wvhile the direction cosines of its principal axes are
included in Table V.2.2.

In order to study the temperature dependence of the
principal g-values the EPR spectra of a CASH polycrystalline
specimen were recorded in the temperature range 4.2 - 354 K.
Some of these are plotted in Figure V.2.3. As can be seen
from Figure V.2.3, a single, broad EPR line is observed at
high temperatures, at about T > 120 K, which consists of
three components, corresponding to the three principal
values - gyy and g, [48). At low temperatures, at about
T < 120 K, the component corresponding to g, lying at the
lowest values of the magnetic field exhibits h.f. structure,
while the h.f. structure corresponding to the other two

components (gxx and g”) remains unresolved, even at 4.2 K.
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Figure V.2.2. Single-crystal EPR spectra of Cuz'-doped
Cd(NH4)2(SOA).6H20 (CASH) single crystal for B at 10° from
the z axis in the 2x plane at various temperatures; the
allowed hf lines at 77 and 4.2 K are indicated by longer
bars, the eight short bars indicate the forbidden-transition
line positions, corresponding to the transitions Am = -1,
+1, =2, +2, +2, =2, +l1, -1 respectively, as expressed in

order of increasing magnetic field values.
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Figure V.2.4,. Temperature variation of the principal
g-values of cu?? in Cd(NH4)2(SO4).6H20 (CASH) . The values at

4.2, 77, and 295 K are those estimated from a single-crystal
EPR lines, while those at other temperatures are estimated

from the line positions due to a polycrystalline specimen.
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This is different from the cases of Cumldoped Zn Tutton
salts, where the three components of h.f. structure were
well resolved, even at temperatures slightly above 77 K
[63]. This indicates that the cu®® spins have a rather
strong interaction with the CASH lattice compared to that
with the lattices of Zn Tutton salts [50]. The principal g
values, as estimated for the polycrystalline CASH specimen
at various temperatures, are plotted in Figure V.2.4.

The experimental data, described above, for either
single-crystal, or the polycrystalline, specimen reveal the
following features: (i) All the principal values of the cu®

g and A matrices (g i @ =X, Yy, 2) are temperature

aa’ Aaa
dependent, except that Iyx does not change appreciably in
the temperature range 4.2 - 77 K. The directions of the
principal axes of the g and A matrices are coincident at all
temperatures within experimental error. (ii) The average of
the principal values of the g matrix at various temperatures
is close to 2.2. (iii) The widths of the EPR lines are
temperature dependent.

In the EPR study of cu®t ion in casH reported by
Satyanarayana [50], the EPR spectra of a single-crystal
specimen in the 77-300 K range indicated that the impurity
ion substituted for a cd?! ion in the CASH host lattice.
The SHP reported by him are listed in Table V.2.1 for

comparison. EPR spectra of a powder specimen at 300 and 77

K were also reported by hinm.
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v.3. Cu2+-doped Mg(NH4)2(SO4).6H O (MASH) single and poly

2
crystals

The crystal structure of MASH has been reported by
Montgomery and Lingafelter [41] to be the same as that of
CASH; the unit-cell dimensions at 300 K are: a = 9.383 &, b
=12.669 &, ¢ = 6.220 &, B8 = 107°03’. The bond lengths
between the central ion Mg2+ and the 1ligand atoms were
reported [28] as 2.083 &, 2.073 & and 2.051 A for Mg-0(7)
(HZO), Mg-0(8) (HZO)' and Mg-0(9) (HZO)’ respectively, while
the bond angles are 90.3° for O0(7)-Mg-0(8), 90.0° for
0(7)-Mg-0(9), and 91.5° for O(8)-Mg-0(9). These data
indicate that the symmetry of the Mg2+ complex in MASH is
approximately tetragonally-distorted octahedral, as shown in
Figure V.2.1.

Cu2+-doped MASH single crystals were grown by the same
procedure as that for CASH, except for the aqueous solution

consisting of MgSo,, . 7H,0, instead of 3€dso, . 8H.0. No EPR

2
study on Cu2+-doped MASH has been reéorted so far.

The single-crystal EPR spectra of Cu2+-doped MASH at
295, 77, and 4.2 K were found to be quite different in their
profiles, as seen from Figure V.3.1, which exhibits EPR
spectra for the orientation of B at 20° form the z axis in
the zx plane. The spectrum at 295 K consists of two broad
lines, which indicate the presence of two
physically-equivalent, but magnetically- inequivalent, cu?t
complexes in the wunit-cell of MASH lattice. At low

temperatures (LNT and LHT) these two broad lines split due
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Figure V.3.1. Single-crystal EPR spectra of Cu’'-doped

Mg (NH,),(SO,) .6H,O (MASH) for E at 20° from the 2z axis in -

the 2zx plane at various tenmperatures; the allowed hf lines
at 77 and 4.2 K are indicated by longer bars, the eight
short bars indicate the forbidden-transition line positions,
corresponding to the transitions 4m = <=1, +1, =2, +2, <2,
-2, +1, =1 respectively, as expressed in order of increasing

magnetic field values.
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to Cu2+ h.f. interaction, into two sets of tetrads due to

63Cu) ion; the 1lines

the more abundant isotope (
corresponding to the less-abundant isotope (65Cu) ion could
not be clearly seen. The EPR spectra at INT and LIHT are
almost the same in profile, except for the separations
between the lines at high magnetic field. The satellite
lines between the four h.f. lines can be seen in one of the
two sets of EPR lines located at low magnetic fields. These
satellite 1lines corresponding to the h.f. forbidden
transitions. There is a total of eight lines in the higher
magnetic field range. They are overlaps of the allowed and

forbidden h.f. transitions due to the other set of Cu2+ EPR

lines. The Cu2+

EPR spectra of MASH are described by the
spin Hamiltonian as eq. V.2.1l.

The analysis of EPR data indicates that the directions
of the principal axes of the g° tensor do not change with
temperature, while the principal axes of the A® tensor
remain coincident with those of the §2 tensor at INT and
LHT, within experimental errors. The principal values of
the g and A matrices at various temperatures are 1listed in
Table V.3.1. Table V.3.2. lists the direction cosines of
the principal axes of the g and A matrices. The principal
values and direction cosines of the Q tensor, at 4.2 K,
estimated by the use of the same computer program as that
used for CASH, are list in Table V.3.1. The Q tensor at 77

K could not be estimated from EPR spectra due to the poor

resolution of EPR lines. The identification of the six
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forbidden h.f. transitions, shown in Figure V.3.1, was
accomplished by the same computer program, that used for
CASH, for calculating line positions of the allowed and
forbidden h.f. transitions.

EPR spectra of a MASH polycrystalline specimen were
recorded in the temperature range 4.2-361 K, to study the
temperature dependence of the principal g-values. Some of
these are shown in Figure V.3.2. The powder EPR spectra are
much like those observed for CASH. A single broad, huge EPR
line was observed at high temperatures, T > 240 K. At T <
240 K, the component corresponding to 9, lying at the
lowest values of the magnetic field exhibited h.f.
structure, while the h.f. structure corresponding to the 9,
component was only resolved at T < 200 K; the h.f. structure
corresponding to the gy component is not at all resolved,
even at 4.2 K. This observation is different from that of
the cases of Cu2+-doped Zn Tutton salts [53], and Cu2+-doped
CASH (Sec. V.2.). It indicates the cu?’ spins have a
stronger interaction with the MASH lattice, as compared to
that with the lattices of Zn Tutton salts [53]. on the
other hand, this interaction is weak as compared to that
with the lattice of CASH. The principal g-values estimated
from powder specimen of MASH at various temperatures are
plotted in Figure V.3.3.

The experimental data, for either the single-crystal,

or the polycrystalline, specimen reveal the same feature as

those in the case of CASH, except that the Iy component of
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Table V.3.2. Direction cosines of the g, A matrices (the
same as those for the g°, A’ tensors), and those of the {
tensor for cu® in  the Mg(NH,),(SO,) .6H,0  (MASH)
single-crystal specimen at 4.2 K. The principal axes of the
g matrix are expressed with respect to the laboratory axes
(x,¥,2), defined in Sec. 3.1. The principal axes of the A
matrix are coincident with those of the g matrix, and the

principal axes of the Q tensor are expressed relative to

(x',¥’,2'), the principal axes of the g matrix.

z x y
g, 0.931 -0.202 0.304
gx, -0.123 0.609 0.784
gy, -0.343 -0.767 0.542
zl xl yl
Qz" 0.917 0.397 0.048
Qx" -0.226 0.613 -0.757
Q =0.330 0.683 0.651

yll
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Figure V.3.3. Temperature variation of the principal

g-values of cu?t in Mg(NH4)2(SO4).6H20 (MASH). The values at

various temperatures are estimated from line positions of a

polycrystalline specimen.
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the § matrix does not change in the temperature range 4.2 -
240 K, where it did not change in the range 4.2 - 77 K for
CASH.

V.4. Cu2+-doped Ni(NH4)2(SO4).6H20 (NASH) single crystal
The crystal structure of NASH has been reported [41] to
be the same as that for CASH; the unit-cell dimensions at
300 K are: a = 2.241 &, b=12.544 &, ¢ = 6.243 R, B =
106°58‘. The bond lengths between Ni-0,(H,0), Ni-Og(H,0),
and Ni-Og(H,0) are 2.085 &, 2.083 & and 2.036 &,
respectively. The bond angles are 90.4° for O_-Ni-O

2 7
for 08-Ni-07 and 89.3° for 08-Ni-09, as shown in Fiqure

, 88.5°

vV.2.1.

Cu2+-doped NASH single crystals were grown by the same
procedure as that for CASH, except that here the aqueous
solution consists of Niso4.7H20, rather than BCdSO4.8H;L
No EPR study on Cu2+-doped NASH has been reported so far.

The profiles of the single-crystal EPR spectra of
Cu2+-doped NASH at 295, 77, and 4.2 K were found to be quite
different from those for CASH and MASH, as seen from Figqure
V.4.1, which exhibits EPR spectra for the orientation of B
at 25° from the z axis in the zx plane. The spectra at 295
and 77 K consist of two broad EPR lines, which indicate the
presence of two physically-equivalent, but

magnetically-inequivalent cu?*

complexes in the unit-cell of
NASH lattice. At 4.2 K, only the 1line 1located at lower

magnetic field, of these two broad lines, splits into one



295 K DPPH
77 X
4.2 K
L | I |
2200 2600 3000 3400

MAGNETIC FIELD (K GAUSS)

Figure V.4.1. Single-crystal EPR spectra of cu®'-doped

Ni(NH4)2(SO4).6H 0 (NAaSH) for B at 25° from the 2z axis in

2
the zx plane at various temperatures.
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Table V.4.1l. Principal values of the g and A matrices
(square roots of the principal values of the g° and A°

tensors, respectively), for Cu® in the Ni(NH,),(SO,).6H,0

4)2 2
(NASH) single-crystal specimen at different temperatures.
The principal g values are dimensionless, while the

principal values of the A matrix in GHz.

Tempe- 9., g, g, A A A
rature Z Y X 2 y" ="
295K 2.3504 2.2080 2.1082

77 K 2.3818 2.1843 12,0775

4.2K 2.4110 2.,1765 2.1041 0.316 0.017 0.063
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Table V.4.2 Direction cosines of the g, A matrices (the

%2

same as those the g¢°, A° tensors) for Cu®>* in the

Ni (NH (804).6}120 (NASH) single-rystal specimen at 4.2 K.

a)2
The principal axes of the g matrix are expressed with
respect to the laboratory axes (x,y,2), defined in Sec. 3.1.
The principal axes of the A matrix are coincident while
those of the g matrix are expressed relative to (x',y',2"),

the principal axes of the g matrix.

2 b4 Y
g, 0.941 0.001 0.337
Gy ) 0.278 0.566 ~0.776
-0.191 0.825 0.532
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tetrad due to h.f. interaction of the more abundant isotope
6
(

isotope (65Cu) ion could not be seen. The EPR spectra of
2+

3Cu),' the h.f. lines corresponding to the less-abundant
Cu®’ ion in NASH were fitted to the spin Hamiltonian
described by eq. V.1.1.

The EPR line positions were used to evaluate the g
matrix at 295 and 77 K, while both the g and 2 matrices at
4.2 K. The principal values of the g and A matrices at 295,
77, and 4.2 K are listed in Table V.4.1. Table V.4.2 gives
the direction consines of the pr -ipal axes of the g and &
matrices. The principal ar¥ 3 £ the g matrix are
independent of temperature. Fu ° ; the principal axes of
the A matrix and those of the g matrix are coincident at 4.2
K within experimental errors.

The difference in the profiles of the EPR spectrua for
CASH and MASH can be attributed to the magnetic properties
of the host ions. In the case of Cu2+-doped NASH, the host
ion is Ni2+ ion which is paramagnetic, while in the cases of
Cu2+-doped CASH and MASH, the host ions are the diamagnetic

2+

¢d®’ and Mg2+ ions. In the paramagnetic host 1lattice of

NASH, the dipole-dipole and exchange interactions between

2+

the host Ni ion and impurity cu®t ion play important roles

in determining the EPR linewidths [1, 35].

v.5. cu®t-doped Mg (CH,COO) ,.4H,O (MAT) single crystal
The crystal structure of MAT, as determined from X-ray

data, has been reported by Shankar et al. [51]. It is
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Figure V.5.1. Relationship of the oxygen atoms to Mg atom
in the structure of Mg(CHscOO)2.4H20 (MAT) .
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monoclinic (space group Cgh-ch/c): the unit cell dimensions
are: a = 4.75 A, b = 11.79 4, c=8.52 & and B8 = 94°54’.
There are two formula units per unit cell (Z = 2); each Mg2+
ion is surrounded by four water molecules, two Hzo(l) and
two H20(2), in the equatorial plane, and by two oxygen ions
belonging to the two acetate groups situated on the axis
perpendicular to the equatorial plane. The distances
between the Mg2+ ion and the oxygen ions of the H20(1) and
HZO(Z) molecules are 2.07 A and 2.08 A&, respectively, and
those between the Mg2+ion and the two oxygen ions, which
belong to the two acetate groups, are 2.11 A each, as shown
in Figure V.5.1. The local site symmetry of the Mg2+ ion
is, thus, approximately tetragonal (elongated octahedron).

Cu2+—doped single crystals of MAT were grown by the
same procedure as that followed for PZST. Here, a
sufficient quantity of Cu(CH3COO)2.2H20 was added to an
aqueous solution of Mg(CH3COO)2.4H20 so that there was one
cu®t ion per 100 Mq2+ ions.

The EPR spectrum for Cu2+-doped MAT single crystal was
recorded at 295, 77, and 4.2 K [36]. The spectrum at room
temperature consists of two sets of four h.f. 1lines each,
indicating that there exist two magnetically inequivalent,
but physically equivalent, cu?* centres in the unit cell of
MAT, as expected from the crystal structure of MAT. Each
Cu2+ centre is characterized by four h.f. lines, since its
electron spin S = 1/2 and nuclear spin I = 3/2 for the two

stable isotopes of copper, Cu63 (69.09% abundant) and Cu65
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Figure V.5.2. First-derivative X-band EPR spectrum of
cu’t-doped Mg (CH,C00) , . 4H, 0. (MAT) at  liquid-helium
temperature for the orientation of B at 28° from the z axis

in the 2zx plane. The h.f. 1lines corresponding to the

63 €5

magnetic isotopes Cu”” and Cu -, as well as the two spectra

corresponding to the two sites (I and II) for cm2+, have
been indicated. The two central h.f. lines for site I due to

the two isotopes overlap each other.
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Table V.5.1. Principal values of the g and A matrices

(square roots of the principal values of the Ejz and A%

2+

tensors respectively) for Cu in Mg(CH3COO)2.4H 0 (MAT) at

2
different temperatures. The g principal values are
dimensionless, while the A principal values are in em’. The
labelling 1is such that g, > 95- The errors of the
presently-estimated g principal values are * 0.0018 and

those for the A& principal values are * 0.0002 emt,

Temperature isotope g, g, A A Ref.
295 K cu®% 2.3738 2.0960 0.0108 0.0027 ([a]
300 K cu®®® 2.347 2.095 0.0108 0.0026 [27)
77 K cu® 2.3882 2.0962 0.0121 0.0031 ([a]

cu®® 2.3882 2.0962 0.0130 0.0034 [a)
77 K cu® 2.347  2.095 0.0121 0.0031 [27)
cu®® 2.347 2.095  0.0130 0.0034 [27)
4.2 K cu®® 2.3884 2.0963 0.0121 0.0031 (a]
cu® 2.3884 2.0963 0.0130 0.0034 [a)

a. Present work.
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(30.95% abundant), with non-zero nuclear magnetic moments.
The EPR spectra at both the liquid-nitrogen and
liquid-helium temperatures are different from those at room

temperature, insofar as the h.f. linewidth and the

63 65

and Cu isotopes

63

splittings of EPR lines due to the Cu

are concerned. The h.f. lines corresponding to Cu and

Cu65 split clearly from each other at 1liquid-helium
temperature, as can be seen from the spectrum, recorded for
the orientation of B at 28° from the z axis in the zx plane,
displayed in Figure V.5.2. Figure V.5.2 exhibits two sets
of h.f. lines corresponding to the two impurity sites for
cu’* ions in the unit cell of MAT; the set occurring at
lower magnetic field is designated as that belonging to site
I, while the other one belonging to site II. For site 1,

65 and Cu63, i.e., those

only the outer h.f. lines for Cu
corresponding to the allowed transitions M = 1/2, m = #3/2
«— M= ~-1/2, m = *3/2 split completely from each other
(Figure V.5.2). (Here M and m refer to the electronic and
nuclear magnetic qguantum numbers, respectively.) Oon the
other hand, for site II all the four h.f. lines, i.e., those
corresponding to the transitions 1/2, m & -1/2, m; m = 3/2,
1/2, =1/2, =3/2 for the two isotopes split completely
(Figure V.5.2). The EPR linewidth for any h.f. transition at
both the liquid-nitrogen and liquid-helium temperatures is
13 * 1 gauss, while at room temperature it is 34 * 1 gauss;

these linewidths are independent of the orientation and

magnitude of B.
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The observed EPR line positions of cu??

63 65

in MAT , for

each of the Cu and Cu isotopes, were fitted to the
spin Hamiltonian, described by eq. (V.1l.1).

The principal values of the g and A matrices at 295, 77,
and 4.2 K are listed in Table V.5.1. Two principal values
of the g and the A matrices were found to be the same, i.e.
g9, =9, =91 and A, = A, = A, these being smaller than the
third principal value of the g matrix (g; = g,) and the A
matrix (A3 =A,), respectively.

2% _goped MAT at 295 and 77 K has been

An EPR study of Cu
previously reported by Manakkil [27]. The principal values
of the g and the A matrices, as reported in his thesis are

also listed in Table V.5.1 for comparison.



CHAPTER VI

OPTICAL-ABSORPTION STUDY OF Cu?'-DOPED Mg (CH,C00),.4H,0 (MAT)

The optical-absorption spectrum provides information on
the energy separations between the excited states and the
ground state and the energy of charge-transfer bands of the
Cu2+ ion in crystal lattice. They can be used to estimate
the molecular-orbital coefficients, as dicussed in chapter
VIII. The crystal-field theory has usually been used to
explain the d-d transfer bands, which appear in

optical-absorption spectra due to transitions between the

excited states and the ground state.

VI.1l. Crystal-field Hamiltonian

The ground state of the free cu®’ ion is 2Dm. This

five-fold degenerate state splits in a crystal field. The
sequence of the energy levels depends on the symmetry of the
crystal field in which the cu?t ion is situated. In the

case of MAT, there &exists a tetragonally-distorted

2+

octahedral symmetry (D, ) at the site of the Cu ion. The

2+

energy of the Cu ion in a distorted-octahedral symmetry

can be expressed in terms of the Hamiltonian operator as

[3]:
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A A A

A A A A
where Lz' L+ (= Lx + i Ly) and L_ (= Lk + i Ly) are the

elecron orbital-angular momentum operators. The parameters
Dq' Ds' and Dt are referred to as the octahedral, and the
second- and fourth-order tetragonal field parameters,
respectively. They are expressed, using the point-charge

model, as [21]:

= - 1 2 <r >
Dq = 3 Ze Rs ’
e
3
2 R
D=_22e2<r> 1__3__'
s 2 R3 R3
e a
and

Ze

—-] . (VI.2)

~ I

2 4 .
where 2e, <r™>, <r >, Re’ and Ra are, respectively, the

charge of the ligands, the mean-square and mean-fourth-power

2+

radii of the Cu® ion orbitals, and the distances of the

ligands in the equatorial plane and those situated upon the

axis perpendicular to the equatorial plane and the Cu2+ ion.
VI.2. Energy 1level scheme of the Cu2+ ion in a
tetragonally-distorted octahedral symmetry

The energy 1levels of the cu?t  ion in a
tetragonally-distorted octahedral symmetry (D"), as

determined from the crystal-field Hamitonian Rcf' are shown
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Figure VI.1l. Energy-level diagram for the cu®* ion in a

tetragonally-distorted octahedral crystal field, with

increasing tetragonal distortions A, B and C; the limits of
. tq s 7 7 7

applicability are |Dq| > TGIDSI > EIDtI' ﬁlosl > |Dq| >

7 7 7

£/De |, and -1-3|Ds| > €|Dt| > |Dq| for the tetragonal

distortions A, B, and C, respectively.
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in Figure VI.1 [23]. There are three qualitatively
different energy level schemes, indicated as A, B, and C in
Figure VI.1l, corresponding to an initially pure octahedral.
field with increasing tetragonal distortions. The limits of

. oy 7 7 7
applicability are |Dq| > 151051 > gDl 15/Psl > Dl >

7 7 ql

7

ElDtl and Tﬁle| > E'Dtl > |Dq| for the tetragonal
distortions A, B, and C, respectively. Since the spin-orbit
coupling constant, A, of the Cu2+ ion is rather large, a

significant effect of the spin-orbit coupling upon the

2+

spectrum of the Cu complex is expected [19]. To first

order in perturbation, splitting into five energy levels

2+ ion (ZD configuration) is caused

(Figure VI.1l) of the Cu
by the tetragonally-distorted octahedral field along with
the spin-orbit coupling [47]. These five energy levels can

be expressed as follows:

tm
[

6D - 2Ds - 6D 2)

0 q (orbital d,,2.

t r

tm
"

-4Dy - Dg + 4Dy - A/2

t

(overlap of orbitals dxz and dyz):

Ej, = 1/2(=8D_ + D + 3D) + A/4 +

1 -
= 2 2
2 V,(-3D5+ 5Dt) + A(-3Ds+ SDt) + 9A7/4

(overlap of orbitals dxz and dyz):

E. = 1/2(-8D

] -
3 +D_ +7D,) + A/4

q
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l v/’ 2 2 s
2 (-3Ds+ 5Dt) + A(-3Ds+ SDt) + 9A7/4 (orbital dx )

y

and

E_ = 6Dq + 2DS - D

s (orbital dxz_ y2) . (VI.3)

t

In egs. VI.3 Eo > Ec > Eb > Ea > Es for a large tetragonal
distortion (scheme C), where Es is the ground state. Using
these, the energies of the d-d transfer bands can be derived
by calculating the energy differences between the excited

states (Eo, E E Ea) and the ground state (Es).

c' Tb!

VI.3. Optical-absorption spectrum of Cu2+ in MAT

The room-temperature optical-absorption spectrum of
Cu2+-doped MAT single crystal, in the wavelength range
190~-820 nm [36), is exhibited in Figure VI.2. There are

four bands in the visible range, occurring at v, = 15,243

em™?, v. = 16,611 cm', v. = 17,182 cm, and v, = 20,661
2 3 4

cm'I, and two bands in the ultraviolet (UV) range, which are

weak in intensity and are poorly resolved, occurring at

1 1

about v_ = 36,500 cm - and v, = 43,100 cm .

From the profile of the absorption spectrum in the
visible region, the observed bands at v, and v, can be
regarded, respectively, as the d-d transfer bands betwcen

the ground-state Es (dxz_yz) and the excited states Eb and
Ec’ into which the two-fold degenerate level dxz yz is split
1

by the spin-orbit coupling. Thus, the band at 16,897 cm ~,

which is egual to the average value of the main band V4 and
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Figure VI.2. Room-temperature optical-absorption spectrum

in the wavelength range 190 - 820 nm.



63

the shoulder on the longer-wavelength side, band V,, Can be

assigned as the d-d transfer band d «— dxz_yz, being

XZ,y2
usually the most intense band [54]). The other two bands,

observed at v. and v,, are assigned as dx

1 4 e dp2 2 and

Y Y

ag2ep? € dxz_yz transfer bands, respectively, as can be

seen from eqs. VI.3. The assignment of d-d transition bands
2+

d
shows that the local symmetry of Cu“’  ion in MAT belongs to
the energy level scheme C in Figure VI.1, which corresponds
to a big tetragonal distortion.

The crystal-field parameters Ds and Dt can be estimated
from the optical-absorption energies Vir Vor Vg, and Vyr

from eqs. VI.3, as follows:

v, = -4Ds - SDt ’
and
(v2 + v3)/2 vy = -3Ds + 5Dt . (VI.4)

1

This yields D, = -3,188 en ! and D, = -1,582 cm . The four

d-d transfer bands can now be calculated as functions of the

parameter Dq with the assumption that A = =830 cm_l, the
value for free cu?t ion [1]. Then, the present optical data
is found to fit well to Dq = «1,525 cm_l. This value is
close to -vl/lo, as it should be, since v, = -10Dq, which is

equal to (E_- E.) in the limit A » 0, as seen from egs.
VI.3. Both the experimental energies and the energies
calculated, using the presently-estimated values of Dq, D,

and D, of the d-d transfer bands, are listed in Table VI.1.

t
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Table VI.1. Observed and calculated energies, and the

l,D

assigned bands for Cu2+-doped MAT with Dq = =-1,525 cm s

= -3,188 cm-l, D, = -1,582 cm'l, and A = -830 cnm I. Vir Vo

Vg and v, correspond to the energies (Ea- Bs), (Eb- Es),

Es), and (Eo- Es), respectively, as shown in figure

(Ec-
(VI.1).
transition band position (cm %)
observed calculated
dxy — dxz ya v1 = 15,243 15,016
v, = 16,611 16,723
d — d 2 2
x2,¥yz X =Y v ;= 17,182 17,319
d3zz — dxz_ yz v, = 20,661 20,662
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The signs of D_, D, and D, are expected to be negative

g t
from the point-charge model, eqs. VI.2; these are 1in
accordance with those estimated above using the energy
levels given by the crystal-field theory, described by egs.
Vi.3. However, the ratio Dt/Dq of the estimated values is
close to unity; this should be less than 2/7 according to
the point-charge model, described by egs. VI.2. This 1is
obviously due to the deficiency of the crystal-field theory.
In practice, ab initio calculations are used to determine
the energies and wave functions of the many-electron states,
which characterize the bonding in molecules. Several
semi-empirical molecular-orbital (MO) procedures have been
proposed ([21]. Smith [54] employed a semi-empirical MO
method to explain the optical spectrum of tetragonal copper
(I11)-oxygen system. His method combined the point-charge
and the angular-overlap models; the latter is based on the
assumption that the amount by which the energy of the metal
orbital is raised as a result of covalent bonding, is
directly proportional to the square of the diatomic-overlap
integral. About one quarter of the final energies,
calculated by Smith, were accounted for by the electrostatic
terms in the point-charge model, while the remaining, about
three-quarter of the final energies, were accounted for by
the angular-overlap terms.

For comparision, the results of the optical-absorption
2+

on Cu ion in BaCuSi4010 single crystal [14]) are

summerized as: (i) The three observed d-d transition bands,
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occurring at 12900, 15800 and 18800 cm;!, have been assigned

to be dxy"—') dxz_yz, dxz,yzH dxz_ya and d,,2.,.2
dxz_yz, respectively. (ii) The dxz,yz‘_" dxz_yz transfer
band, has the maximum intensity, but the two lines of this

band are not resolved. (iii) The cu??

ion in the crystal
lattice is in a square-planar coordination with the oxygen
ligands.

From the aasingnments of the d-d transition bands of

2+ 2+

the Cu®’ ion in MAT and a comparison with the study of Cu

ion in BaCuSi4010, it appears that the cu?t ion in MAT

single crystal sees a square-planar, D‘m, symmetry. It is
due to the fact that when a cu®’ ion substitutes for a Mg2+
ion in MAT, the two oxygen ligands of the Mg2+ ion along “he
axis, belonging to two different acetate groups, move rather

far away from the centre of the Cu2+

-complex. This can be
attributed to the JT effect [19]. The original complex,
with an approximately tetragonally-distorted octahedral
symmetry, now possesses only a square-planar symmetry.

The two presently-observed absorption bands in the UV
range, occurring at frequencies v, = 36,500 cm"1 and v, =
43,100cm"l are, probably, charge-transfer-transition bands,
because they arise from the higher-lying energy levels, not
shown in Figure VI.1l. The present results can be compared
with those for the CuCli- complex, which possesses
square-planar symmetry [16]}, for which three charge-transfer

transitions have been observed in the UV range; they have

been assigned as la_«— 3b , 4ee— 3b and 3e «— 3b
29 1g u 1g u 1g
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transitions, in order of decreasing wavelengths. For CuClz-,
the intensities of the transitions 1a2g<-—> 3b19 and 4e —

3bm, are very weak; as well, these two transitions are
close to each other in energy [16]. Using these results for

2-

cucl, , combined with the poor resolution of the

spectrometer used presently in the UV range, the transitions

2+ in MAT can be

la_e— 3b and 4e «— 3b for Cu
29 19 u 1g

considered to have the same energy v, = 36,500 emt.
Finally, the remaining charge-transfer transition 3e

3blg corresponds to the observed frequency v 6 = 43,100 cm™.



CHAPTER VII

JAHN-TELLER EFFECT

The EPR technique has been extensively employed to
study the Jahn-Teller effect (JTE) [1, 7, 22]. Many

2

observations of the JTE have been reported on Cu +-doped

single crystals, characterized by a high-symmetry host site

2+

for the Cu”®’" ion [39].

Most cases of JTE for Cu2+

have been experimentally
found to occur in diamagnetic host lattices. A model has
been proposed to interpret the JTE in Cu2+-doped diamagnetic
host lattices. 1In this model, when the paramagnetic Cu2+
ion substitutes for an ion of a diamagnetic host lattice,
local distortions are introduced because of the difference
in size of the impurity ion from that of the host ion, as
well as due to its paramagnetic nature. This fulfills the
two conditions necessary for the occurrence of JTE [13];

namely, that the cu?t

ion be in a degenerate electronic
state, and that it occupy a minimum-energy non-degenerate
state consequent to the small 1local distortion of the
lattice that it produces.

JTE deals with complicated systems, which involve
phonons and degenerate electronic ground states, as well as
internal strains of variable strength and distortion in real
crystals. When the kinetic energy of the ligand nuclei can

be neglected, a static JTE is observed, otherwise a dynamic

JTE manifests itself. The internal strain affects mainly
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the anisotropy of the EPR line positions and its shape.
When the =zero-order electronic states are non-degenerate,
and they are insufficiently separated in energy compared to
hw where w is the frequency of the 1lattice phonons, a
significant dynamic effect may be expected, which is the

so-called pseudo JTE.

VII.1. Observation of static JTE of cu®‘ in pzsT
The principal values of the g and A matrices, over the
temperature range 4.2-295 K, as given in Table V.1.1,

2+ complex in PZST, i.e.

indicate a low symmetry of the Cu
orthorhombically~- distorted octahedral symmetry, since the
three principal values, for each of the g or A matrices, are
all different from each other. The independence of the EPR
spectra, as well as that of the EPR 1line width, on the
temperature below 295 K supports the occurrence of a static
JTE.

The orthorhombic g-values due to the static JTE, as

observed presently in PZST, can be analytically expressed as

follows [1}:

2\ S o 2,
gl = ge . ( COS—--'-'—-'2 + V3 Sln""""'-'2 ) H
¢ ¢
= - 2A = V3 ein—— }2.
9, = 9 A ( cos— V3 sin 5 ;
¢
_ _ 8 2
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In egs. VII.1 A (= 10Dq, Dq has been defined in chapter VI)
is the octahedral crystal-field-splitting constant for cu??
ion, ¢ is the vectorial angle of a polar coordinate system
(p,¢) which describes the distortions Q. (= p sing) and Qg

2+

(= p cos¢p) of the ML, complex, where M is Cu and L are

6
surrounding ligands, which are not, as yet, well identified
for PZST.

For an arbitrary value of ¢ (except for ¢ = nn/3, where
n is an integer), the g values expressed by egs. VII.1
correspond to an orthorhombic distortion of the octahedral
symmetry (i.e., g, * 9, * g3); the directions of the
principal values 9,0 9yr 95 being along the three mutually
perpendicular four-fold (tetragonal) axes of the ML6
complex. The substitutions of the values of ¢ = ¢ + 2n/3,
and ¢ = ¢ + 4n/3 in eqgs. VII.1 interchange 9, 9,/ 94
amongst themselves, i.e., they correspond to orthorhombic
distortions about the two other tetragonal axes. The
potential-energy surfaces, which are associated with the
coupling between the magnetic electrons and the ligand
nuclei, are referred to as the JT valleys. If ¢o is the
particular value that corresponds to the minimum, i.e., the
bottom of the JT valley of one potential- energy surface,
the ¢ values corresponding to the minima of the other two
potential-energy surfaces are located at ¢0 + 2n/3 and ¢0 +
4an/3. In general, the energies of these three minima are

different. In the case of Cu2+-doped PZST, using the typical

value of A/A = -0.05 [1] in eq. VII.1, and the measured
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values of 91+ 951 9qy ¢o has been estimated to be
approximately 30°.

There is only one substitutional site in the PZST
single crystal 1lattice. In order to explain the

2t EPR spectra in the

superposition of the three sets of Cu
temperature range 4.2-295 K, Krishnan [25] proposed the
existence of three domains in the crystal lattice. It is
entirely possible to account for the present results by
supposing that the different JT distortions of the cu?t
complexes are randomly distributed with equal probabilities
throughout the PZST crystal, rather than grouped into
domains. This is further supported hy examining the PZST
crystal through a polarizing microscope, which does not
reveal the existence of domains. That such a model
naturally leads to a satisfactory explanation of the dynanic
JTE observed at high-temperatures 1is explained in Sec.
VIiI.2.

2+

VIiI.2. Observation of dynamic JTE of Cu in PZST

As the temperature was raised above 295 K, the h.f.

2+ in PZST became broader duc to relaxation

lines of Cu
effects. At T > 327 K the h.f. components became so broad
that they were no longer resolved, only a single isotropic
line was observed above 334 K. This is characteristic of
the dynamic JTE. It occurs when the rate of tunneling

through the barrier from one distorted configuration of the

Cu2+ complex to the other exceeds the frequency difference
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between the corresponding EPR resonance lines for the
different distorted configurations, i.e. that between the
anisotropic spectra [22]. The present observation of static
JTE upto 334 K 1is unusual; usually it occurs at 1low
temperatures.

When the dynamic JTE occurs, only the time-average
values of eqs. VII.1l are observed, since th2 vibrational
frequency (= 10“’Hz) is large compared to the frequency at
which spin resonance is observed (» 10'° Hz). This is the
so-called time-averaging effect. Equations VII.1l yield the

time~average values:

9, =9, = 93 = 9o - 4a/4
since

<cosz¢/2> = <sin2¢/2> =1/2

and

<cos(¢/2)sin(¢/2)> = 0 .

From the typical value of A/A = -0.05 for cut

ion [1],
9o - 4)A/A is calculated to be 2.2; this value is very close
to the presentl)y observed g-value (2.191) at T =z 334 K. The
observation of only one isotropic line at T = 334 K can be
explained to be due to motional averaging, caused by the
rapid hopping between the three equivalent JT distorted
sites, randomly distributed in the crystal with equal
probabilities. Thus, at sufficiently high-temperatures the
g value ( 99 + g, + 9, )/3 is expected, where 9qr Gor and 9,

are the three principal values of the g matrix at 1lower
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temperatures. Using the 9qr 9y 9, values from Table V.1.1
at 295, 77, and 4.2 K, one finds the same average, i.e. ( 9,
+ g9, +9,)/3 = 2.200, within experimental error, at any
temperature. The observed g value 2.191 from the broad EPR
line at 334 K is, indeed, very close to this average ¢
value.

2* in P2ST, above 334 K,

Since the EPR spectrum for Cu
is isotropic as revealed by both the position of the centre
of the EPR line and the EPR 1linewidth, the oriented and
random strains of the crystal are expected to be very small
compared to kT (k is the Boltzmann constant), as deduced
using the fact that the centre of the EPR line is influenced
by oriented strains, while the EPR line-width is influenced
by random strains [22]. The transition from static JTE at
low temperatures to dynamic JTE at high temperatures has

been experimentally determined presently to occur at 334 * 1

K.

“II. 3. Observation of the pseudo JTE of cu??t in CASH and
MASH

The principal values of the g matrix, being all
different from each other, over the temperaturs range 4.2 -~
354 K for CASH, and 4.2-361 K for MASH, as plotted in
Figures V.2.4 and V.3.3, indicate a low symmetry seen by the
cu?t complexes in the CASH and MASH lattices, namely,
orthorhombically~distorted octahedral symmetry. According

to the crystal-field theory, the orbital doublet Eg of the
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cu?t ion is split in a field of orthorhombic symmetry. This

¢t plitting is sufficiently small to allow the mixing of the
two substates of Eg by coupling with the lattice vibrations.
The vibronic mixing of the close-lying (pseudo-degenerate)
levels due to the interaction of the cu’t ion with its
ligands manifests itself in the pseudo uvE [6].

The molecular and electronic structure of the Cu2+

ion,
surrounded by six identical 1ligands, is conventionally
described in terms of JT coupling between the doubly
degenerate electronic (Eg) and vibrational (89) functions of
the octahedral complex [6]. In a crystal 1lattice of
octahedral symmetry, the first order Eg ® 8g vibronic
coupling causes the potential surface of a Cu2+ complex to
take the form of a "Mexican hat". The nuclear geometry
fluctuates between the various configurations of’l:)4h and DZh

symmetries, which are generated by linear combinations of Qe
and Qe’ the components of the €g vibrational mode. When
higher-order coupling terms are included, the perimeter of
the Mexican hat becomes warped, giving rise to three
equivalent minima, whose projections correspond to different
symmetries, which are generated by linear combinations of Q
and Qe' (Qe and Qc are conventionally expressed as Qe = p
cos¢ and Qe = p sinp in terms of a polar coordinate system
(p, ¢).) The projections of the three minima correspond to
different ¢ values in the (Qe, Qc) space. Equivalently, the

Mexican-hat potential results in three equivalent potential

valleys. Ham [22] pointed out that a strain, having a
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tetragonal component, displaces the energy of the three
configurations with respect to each other, thereby

destroying their equivalence.

2

Comparing the Cu M principal g-values at 295 X in the

CASH and MASH lattices with those in the pure
Cu(NH4)2(SO4)2.6HZO lattice at 300 K (gz = 2.36, gy = 2.209,
g, = 2.06 [46]), it is found that these g-values are very

close to each other. This indicates that the local symmetry

2+

of the Cu ion either in the CASH lattice, or in MASH

lattice, is close to that of the Cu2+ ion in the pure
Cu(NH4)2(SO4)2.6H20 lattice, rather than that of the Cd2+ or

2+ 2+

Mg ion, which the Cu ion replaces, in the pure CASH or

MASH lattice. Thus, a large orthorhombic distortion of the

2+

lattice occurs when the impurity ion Cu enters the CASH

lattice substituting for a ca?t or Mg2+ ion, due to (i)

2+

difference in the ionic radii of the Cu and Cd2+, or Mg2+,

2+ ion. This

ions and (ii) the paramagnetic nature of the Cu
orthorhombic distortion can be seen to be due to the three
mutually perpendicular tetragonal components of the crystal
field, which perturb the three equivalent potential valleys,
resulting in three inequivalent potential valleys with
different energy levels.

Silver and Getz [53] studied Cu2+-doped Zn Tutton
salts, and proposed that when the JT effect is strong with
appreciable warping, and the overlap between the wave

functions describing the potential valleys in the three

different minima is rather small, the temperature dependent
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principal g- and A-values could be expressed as statistical
averages, using the occupation probabilities of the three
minima which possess different energies, wunder the
assumption of short reorientaticn times which ensures
Boltzmann population distributions. Petrashen et al. [46]
expressed the expressions of the temperature-dependent

principal g-values as follows:

N, N, N,
9. (T) = § Iy +T\1_gy2+'N_gx3;
N N N
T = 9 *F Jz2 P R Iys
gy( N “y1 N “zz2 N Zy3'
and
N, N, N,
I9e(T) = I * F % "N 923 (VII.2)

where 9, gy and Iy correspond to the Cd-07(H20),

C4-0, (H,0), and the Cd-0,(H0) directions in the Cd(H20)§+
complex, respectively, or to the Mg-O_,(HZO), Mg—OB(HZO), and
the Mg-Og(Hzo) directions in the Mg(HZO)‘z+ complex. (The
presently estimated principal values of the g matrix are

related to g as follows: g, =g g, =g

2z’ *yn 1 = gx")

21 yl ’

N, N and N are the populations of the first, second and
third potential valleys, so that the total population N = N1
+ N2 + N3; 9 o (¢ = %X, ¥y, 2; k=1, 2, 3) are the principal
values of the g matrix of the Cu(H20)§+ complex in the k-th
valley:; the = sets in egs. VII.2 are expressed according

to the identification of the JT configurations with the
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minima of the adiabatic potential in the (Qe, QC) space.
(The subscript k indicates the relative order of the
energies of the three minima of the potential valleys, k =1
indicates the 1lowest energy while k = 3 indicates the
highest energy of these minima.) It is necessary to know

g in order to estimate ga(T), 0« = X, Yy, 2. Generally

ok
speaking, g  values are different in different valleys.

However, 91 values may be used in place of all the 9o (k =
1, 2, 3) for the case of small deformation of the octahedron
at 4.2 K for the Cu(HZO)i"' complex, since the complex is
fully localized in the valley possessing the lowest minimum
energy (k = 1) at and below 4.2 K.

6L2’ the energy splitting between the potential
valleys 1 and 2, has been calculated [46,53] for Zn-Tutton
salt under the assumption that N3 = 0 at temperatures below
300 K, using the first two of eqgs. VII.2. This is because
the third of egs. VII.2 yields gx(T) ® 9., * 9., for this
case. Thus, one has to use only the first two of egs. VII.2,
putting N, = 0, to estimate N, and N, which yield 61’2,

using Boltzman population distribution, i.e.,

N /N = exp(s  /KT) (1 = 2, 3). (VII.3)
Equation VII.3 also yields the estimation of 613, when N3
is not equal to zero. As for estimating the value of 613,
the energy splitting between the potential valleys 1 and 3,

Silver and Getz [53] took into account the increase in 9, at
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high temperatures, while Petrashen et al. [46] estimated the

value of § _/$

A using the bond~lengths between the

central diamagnetic ion and its ligands, as determined from
X-ray data; they estimated the value of aha in terms of the
value of 6L2 using egs. VII.2.

In the case of CASH, the symmetry of the Cd(H?O)‘z+
complex is a distorted tetragonally-compressed octahedron,
since the bond-length difference between Cd-07(H20) and
cd-0 (H0) is very small (0.001 R) [42). These two bond
lengths can, thus, be assumed to be the same within
experimental error (0.007 A). According to Petrashen et al.
[46] the wvalue of 61'3/61’2 could not be estimated from
X-ray data in the present case. However, the same procedure
can, here, be followed as that for Zn-Tutton salt except
that the Iy value does not, here, change below 77 K, as
compared to the case of Zn-Tutton salt for which it does not
change below 300 K. It implies that the potential valley 3
must lie considerably higher in energy than the valley 2 in
the present case, and that the value of 6L3 in the present
case, i.e., for Cu2+ in CASH, must be less than that for
Cu2+ in the Zn-Tutton salt.

In order to calculate the ratio of the populations,
N/N, for CASH, in the temperature range 4.2 - 77 K, only
the first two equations in egs. VII.2 have been used,
because the value of 9, does not change in this temperature

range. At temperatures above 77 K, all three of egs. VII.2

are taken into account, since, here, 9, is temperature
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dependent. Finally, Ni/Né and NI/N3 ratios, as estimated
from egs. VII.2, at 295 K are 3.6 and 5.0, respectively,
which yield, using Boltzmann-population distribution eq.

VII.3, the values of & , and § ., to be 260 cm™' and 330

y 2
cm’!, respectively, at 295 K.
Figure VII.1 exhibits the dependence of 6l , upon

temperature in the range 4.2 - 295 K; it shows that 61'
increases, in general, with temperature, this increase being
guite enhanced at lower temperatures, while it is rather
small at intermediate temperatures, acquiring ultimately a
steady value (around 260 cmq) at temperatures between 212
and 295 K. The temperature dependence of the energy 61’2 is
due to the deformation of the crystal lattice with changing
temperature,14 as revealed by the change of Iy since N3 is
no longer zero, in the present case, at T > 77 K.

In the case of MASH, the symmetry of the Mg(H20)§+
complex is a distorted tetragonally-compressed octahedral,
since the bond length difference between Mg-07(H20) and
Mg-OB(HZO) is 0.01 & [28)]. The host-metal ion, Mg2+, is
diamagnetic, the same effect, i.e. JTE, can be expected when
cu®’ ion enters into MASH lattice. The experimental results
(Sec. V.3) confirm this prediction.

In order to calculated the ratio of the populations,
N&/Nz, for MASH in the temperature range 4.2-240 K, only the
first two of the egs. VII.2 have been used, because the 9,

component of g matrix does not change in this temperature

range. The estimation of 61 5 values, was then made, by the

\
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Figure VII.1. Temperature dependence of the energy

splitting between the lowest and the intermediate potential

valleys (5. .) for  the Cu(H0).  complex  in
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Cd(NH4)2(SO4).6520 (CASH) .
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use of eq. VII.3, using these values of DH/NZ. The values
of 51'2 estimated at T = 240 K are plotted in Figure VII.2.
At T > 240 K, all three of eqs. VII.2 were taken into
account, since 9, is here temperature dependent. Finally,
NI/N2 and Nl/N3 for MASH, as estimated from eqgs. VII.2 and

the values of 61 /8

/8, estimated from eqg. VII.3 at T > 240

K are as follows:

272 X 295 K 336K 361 K
N /N, 3.1 2.8 2.3 2.2
N /N, 33 13 12 9.3
8§ /8 3.0 2.5 3.0 2.9

1,3 1,2

The value of 8, /8, , at 295 K is close to that was

predicted to be 3.2 at 300 K from X~ray data by Petrashen et
al. [46].

/8 are easily understood if one

These values of &
1 1,2

, 3
examines the behavior of Iy value in the temperature range
from 4.2 - 300 K. In the cases of Zn Tutton salts,
51’3/51’2 was estimated to be 4.5 at 300 K [{46], with the 9
value remaining unchanged in the temperature range 4.2-300
K [53]. For the case of CASH, ¢51'3/61'2 at 295 K was
estimated to be 1.3 presently, with the 9, component
remaining unchanged over the temperature range 4.2-77 K,
while in MASH, 61'3/61’2 at 295 K was estimated to be 2.5

presently, with the 9y value remaining unchanged in the
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temperature range 4.2 - 240 K. Obviously, the temperature
range, in which the = value does not change appreciably, is
related to the value of 61 /o .

, 3 71,2

VII.4. Local symmetries of the Cu2+ complex
When cu??t impurity ions enter crystal lattices, the
local symmetry of the host suffers a distortion due to JTE.

2% in pzsT

VII.4.1. Local symmetry of the Cu

The present EPR studies of cu®t in p2sT provided the
details of the 1local symmetry at the Zn2+ site in PZST
lattice, which were previously not available (details in
Sec. V.1). In the case of Cu2+—doped PZST, the principal
values of the § and A tensors are found to be independent of
temperature in the temperature range 4.2 - 295 K. This
indicates that the populations N1' Nz’ and N3 in the
respective JT valleys are constant, and equal to each other,
in this temperature range, according to egs. VII.2. This is
only possible when the energies of the three JT valleys are
equal to each other, since the populations 1in the
corresponding JT valleys are governed by Boltzmann
distribution.

Petrashen et al. [46] have studied the dynamic JTE
nature of Cu(HZO)g+ complexes in the zinc and copper Tutton
salts, using EPR and X-ray data. They found that the ratio

of the energy splittings between the three JT

configurations of Cu(H20)2+ complex (613/612), as estimated
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from the temperature-dependent principal values of the 5
matrix, is close to that, which is estimated taking into
account the symmetry of the Zn(H20)2+ complex and the
variation of the energy of the JT-ion due to the
distortions. Thus, the symmetry of the host complex can be
deduced from the energy splittings between the three JT
valleys of the complex Cu(H20)2+, as determined from EPR
data. Proceeding in an analogous manner, it is concluded
that since the energies of the three JT valleys of the Cu2+
complex are identical in PZST, the local symmetry of the
Zn2+ ion in PZST is, either, regular octahedral, or, mostly
likely, octahedral with a small trigonal distortion. Wher: a
cut ion substitutes for a Zn2+ ion in PZST, it changes the
trigonally-distorted octahedral symmetry to
orthorhombically~ distorted octahedral symmetry, because of
its different size, and different interaction with ligands.
This manifests itself as the static JTE.

2* in CASH

VII.4.2. Local symmetry of the Cu

The local symmetry of the Cd2+ site in CASH is
approximately a compressed tetragonally-distorted octahedron
(details in Sec. V.2), because the bond length difference
between Cd—Q7 ﬂ%O) and Cd-o8 ugO) is very small (0 001&)
[42). These two bond lengths can, thus, be assumed to be
the same within experimental error (0.0073).

The principal g-values, as estimated from the present

EPR measurements, are orthorhombic, indicating that the
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local symmetry of cu®t  in casH crystal lattice is

orthorhombic. Comparing the principal g values of cu®? in

the pure Cu(NH4)2(Soq)2.6H20 [46], listed in Table VII.4.1,

in which those of Cu2+ in CASH are also 1listed for

convenience, it is found that the principal values of Cu2+
in the two crystal lattices at room and liquid-helium

temperatures are gquite clgse. Thus, the local symmetry cf
2+

cu in CASH at room and liquid-helium temperatures is very
close to that of Cu2+ in the Cu(NH4)2(504)2.6H20 lattice.
The bond lengths of cu®’  in Cu(NH,),(S0,) . 6H0

(orthorkombic symmetry) with its ligands are 2.230 &, 2.072

[+

A, and 1.966 & for Cu-0(7), Cu-0(8) and Cu-0(9),

respectively; while the bond angles are 88.90° for

°

0(7)-Cu-0(8), 90.65° for 0(7)-Cu-0(9), and 88.9 for
O(8)-Cu-0(9) [12] (Figure V.2.1). The conclusion is that

2% in CASH crystal lattice must be

the local symmetry of Cu
orthorhombically-distorted octahedral rather than
approximately tetragonally-distorted octahedral.
VII.4.3. Local symmetry of Cu2+ in MASH

The local symmetry of Mg2+ ion in MASH is approximately
a compressed tetragonally-distorted octahedral (details in
Sec. V.3), for the bond length difference between Mg-O7UEO)
and Mg-OBUQO) is only 0.01 & [28]). When an impurity cu??
ion enters into the MASH lattice, the same consequence as
that for the case of CASH can be expected. That is the

2+ 2+

local symmetry of Cu in MASH is the same as that of Cu
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Table VII.4.1] The principal g-values of Cu2+ in

M(NH4)2(SO4)2.6H20 (M = Cu, CA and Mg) single crystals

HOST COMPOUND TEMPERATURE (K) g, 9y 9, Ref.
Cu(NH,)_(SO,),.6H,0 300 2.36 2.209 2.06 b
77 2.424 2.11 2.067 b
4.2 2.427  2.11 2.065 b
Cd (NH,),(S0,),.6H,0 295 2.3373 2.2111 2.0712 a
77 2.3613 2.1721 2.0522 a
4.2 2.4290 2.1594 2.0513 a
Mg (NH,),(S0,),. 6H,0 295 2.324  2.220 2.209 a
77 2.418  2.122 2.072 a
4.2 2.426 2,144 2.068 a

a Present work.

b Data from Ref. [46]
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ion in CASH.
The principal g values estimated from the present work

are orthorhombic at 295, 77, and 4.2 K. Comparing with

those of Cu?'+ ion in pure Cu(NH4)2(so4)2.6H20 single
!

crystal, for convenience all these data are presented in

Table VII.4.1, they are quite close to each other. The

2+

local symmetry of Cu in MASH is orthorhombic, rather than

compressed tetragonally-distorted octahedral, which is the
local symmetry of Mg2+ ion in MASH lattice. This has to be

attributed to JTE.

2+

VII.4.4. Local symmetry of Cu® in MAT

2* in MAT crystal lattice the local

2+

In the case of Cu
symmetry changed somewhat due to JT distortion, when a Cu

* ion. The symmetry of the

ion substituted for a Mc;l2
Cu2+-complex in MAT can be considered to be square planar,
rather than an elongated tetragonal. For details, see

chapter VI.




CHAPTER VIII

ESTIMATION OF MOLECULAR-ORBITAL COEFFICIENTS OF Cu2+ IN MAT

Using the energy-level splittings of the cu’t ion in
the lattice of MAT, it is possible to estimate the

2* in MAT. The

molecular-orbital (MO) coefficients for Cu
splitting of the d, or f orbitals of transition-metal ions
in molecular complexes is usually described by crystal-field
theory. However, it does not take into account the effect
of interaction with the ligand electrons adequately. In
fact, the crystal-field theory is not fully applicable to
those complexes, which are characterized by strong
interactions between the electron orbitals of the central
atom and 1ligands, responsible for the formation of
molecular orbitals.

The spin-Hamiltonian parameters (S.H.P.) of the
transition-metal ions can be expressed in terms of (i) the
coefficients of the MO; (ii) the energy separations between
the excited states and the ground state of the ion; and
(iii) the energies of the charge-transfer transition bands,
which can be determined from optical spectrum. EPR, thus,
becomes an integral tool for the estimation of the MO
coefficients of transition-metal complexes, since S.H.P. are
determined from EPR measurements. The optical-absorption

2+

data for Cu2+-doped MAT indicates that the Cu complex in

MAT single crystal sees a loca1D4h square-planar symmetry.

2+

For the Cu“’ complex in MAT the equatorial Cu-O (H,0) bond
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Table VIII.1l. Molecular orbitals characteristics of the

antibonding 3b19, 2b_, 2eg levels and the bonding 1bzg, 1eq

29
levels

I3b‘.lg> = aoldxz_yz> -

By(k[k p (b, )> + (1 = %)%k (b, )>},

|2b2q> = “1|dxy> - Bilxpn(bqu,
|2egl> =a,ld > - lenpn(eqip,
|2ega> = a2|dyz> - 32|npn(eg2)>,
|1b29> = a;|dxy> + B;|npn(bzg)>,

|1e01> = a‘zldxz> + B;| >,

Kpn(em)

|1e92> = a;ldyz> - B;lacp"(egap,
= 1. -
[Kog (Byg)> = Z(P,(1) + B (2) + p,(3) - p (4)),
Ik, (> = Hs() = s2) + 5) - 5(0)),
=1 - )
| o (B,5)> = SR, (1) *+ p,(2) = p(3) -p(4),

Ko (e,)> =‘[§_{pz(1) - p,(3)},

Inpn(egz)> =\/_2-1:{pz(2) - p,(4)),
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length is 2.075 &, being the average distance of Mg-H,0 (1)
and Mg-H,0 (2) in the MAT host lattice [51].
Maki and McGarvey [26] were the first to apply the MO

2+ complex with tetragonally-distorted

theory to the Cu
octahedral symmetry in order to derive theoretical
expressions for the g and A matrices. The overlaps of the p
orbitals of the four ligand oxygens in the equatorial plane,
as well as those of the two oxygen ligands on the axis
perpendicular to the equatorial plane, were subsequently
taken into account by Smith [56], who derived theoretical
expressions for the g matrix, to second-order in
perturbation; these were later extended to third-order in
perturbation by Moreno [43]. Finally, Aramburu and Moreno
[2] deduced the theoretical expressions for all three g, A
and the superhyperfine (s.h.f.) matrices of the cu??t
square-planar complex, using the MO theory, to third-order
in perturbation, taking into account the contributions from
the bonding MO.

If one neglects, in a first step, the spin-orbit
coupling, the MO characteristics of the antibonding 1levels
3b1g' 2b2q' 2e‘J and those of the bonding levels 1bzq and
1eq, corresponding to the ground state 2BIg of the complex,
are as summarized in Table VIII.1 [8].

Explicitly, the S.H.P. can be formally expressed as
functions of K , the core polarization ccntribution, and the

eleven coefficients of MO o, B (=0,1, 2), and a;, B;

i

(=1, 2), and 4 as follows [2]:
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g" = ge + ak1 + a’ki

-8

-e

9, =9, * bk2 + b k2

o ’ 3 2_ ’ .
A" = -K + 2Ao+ P(a + a’ + 7b + 7b ) i
and
= -K - _11P ,
Al = =K, Ao + 14 (b + b") . (VIII.1)

In egs. VIII.1 Je (=2.0023) is the free electron g value, P

1l

= 2guu<r'3>M = 0.036 cm ~ [24), where g, u, and <r'3>“

N B N
are, respectively, the nuclear g factor, the nuclear
magneton and the average of the inverse-cube radius of the
cu®* ion.

The various quantities appearing on the right-hand

sides of egs. VIII.1 are defined as follows:

- -2 25,
Ao = o aoP ;

B B B
k1=1--qs -——1[251+—°1"(u)];
ao 2cx1 ao
£] B’ B
k'1=1-._°so+-—1 [zsl+—9r(u)];
ao 2a1 ao

B B
k2=1—_°so--—3 [fz‘sz+_%r(u)];
a V2a o

o] ] 0

B B’ B
k'2=1-_9so+—3 [ﬁsz+_°r(u)] ;

o Vaa! a
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BB K& |
a = 8o [1- Citalh ]|§H|/A1;
zcxoa1|§H|
B B M|
a’ = 8a§aé2 [ + _°_1___i.|]|§n|/A; ;
zaOaIIEHI
B B, K
b = 2a§a§[1 - ——————Iil-]lg |/,
V2a a2|§| "
and
B BiM|E |
b’ = 20 !’ [1 + Fofaltls ]|5H|/A; . (VITI.2)

‘/_aOaZ l Eﬁl

In egs. VIII.Z2 A1 and A2 are the d-d transfer encrgics of

the dxy<—-a dxz_yz and dxz,yz<_> dxzy transitions,

determined presently from the optical-absorption spectrum to

— -1
2 + v3)/2 = 16,897 cm ,

while A' and A, are the charge-transfer transition energies

be A = 15,243 cn’! and A, = (v

corresponding to the charge transitions 1bzg<—~ 3b1'3 and
1eg<—> 3b1g, respectively (determined presently from the
optical-absorption spectrum to be 43,100 cm-l, each). For

comparision, it is noted that for the CuCli- complex, which
possesses a D, symmetry [16], the calculated values of A
and A’2 are found to l,e, respectively, higher and lower, in
energy, than that of the observed charge-transfer transition
band Je > 3b1g' In egs. VIII.2 EH, gL are, respectively,
the spin-orbit coupling constants of the central metal ion

(Cu2+) and the ligand ions (02_) of the complex. (The values
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1

of |€| and |£/€,| are assumed to be 830 cm - and 0.18

[56].) Further, in egs. VIII.2 S, S; and S in the

1 2!

expressions for kl' ki, k and k., are the group-overlap

2'
integrals:
2
So = “Spa + V(1 - ) Ss '
Sl = <dxy|xpﬂ(b2q)> '
and
s, = <dlexpn(eg)> ; (VIII.3)
where
S = <dx2_y2|:<pc(b1g)>
and
- 7
Se <dX2-y2|KS(blg)> . (VIII.4)
The group-overlap integrals Smr' Ss' S1 and 82 can be
estimated in terms of Sor the diatomic-overlap integrals

between the 3d orbital of the Cu2+

ion and the 2s and 2p
orbitals of the oxygen 1ligands. For a square-planar
configuration, in which the contribution from the orbitals
of axial atoms can be neglected, these group-overlap

integrals are expressed as [55]:

S = V?Se(Zpa,Bdc),

S = V3s_(2sc0,3do),
s e

S1 = 2Se(2pn,3dn),

and

s, = VESe(an,3dn).
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Here the ¢ and m in parentheses after Se indicate o~ and
n-bonding, respectively. These diatomic-overlap integrals
are calculated from the approximate formulae for the 3d-,
2s-, and 2p-orbitals in ¢- or m-bonding [17, 18], using the

double-{ radial functions of the copper 3d-orbital [49]

2_-5.95 Ze-2.30I

$(3d) = 0.5933N!r‘ + 0.5744N/r

and the oxygen 2s- and 2p- orbitals [15)

0.70761N1re-2'688° + 0.37450N_re

¢(2s) -1.67543’

6(2p) -1.65864.

0.33221N3re-3.69445 + 0.74483N4re

By assuming the Cu-0 bond length (Re) in the -equatorial
plane to be 2.075 & the values of the group-overlap
integrals are here estimated to be Spa = 0.132, s_= 0.107,

S1 = 00,0730 and S2 = 0.0516.

I'(u), appearing in egs. VIII.2, is given by

a
ay (1)

F(u) =u = (1= u)""R<s(1)] p, (1)>, (VIII.5)

where (1) refers to ligand 1, representive of the four

equivalent (1, 2, 3, 4) oxygen ligands, while s and py

denote the corresponding orbitals.
a

8y (1)

The value of the integral <s(1)| ]py(1)> in the
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expression for I'(u) in eqs. VIII.5 is 0.57, whose magnitude
was estimated by Smith [56], while the sign was determined
by Aramburu and Moreno [2], in accordance with the fact that
the most-covalent systems experience positive g shifts,
whereas the most-ionic ones negative g shifts.

The eleven MO coefficients (s B‘; 1 =0, 1, 2 and a;,
ﬁ;; 1 =1, 2, and u), appearing in egs. VIII.2 - VIII.5 have
been defined in Table VIII.1. Specifically, « and B, for i
= 0, 1, 2, respectively, are the MO coefficients of the
antibonding levels 3bw’ Zb%, Zeg,*while a; and B; for 1 =
1, 2 are, respectively, the MO coefficients of the bonding
levels Zb%, 2eg;.here a refers to the coefficients of the
central cu®" ion of the complex, while B to those for the

ligands. u and (1—;12)"/2

are, respectively, the coefficients

of the p and s orbitals of the oxygen ligands in the 3blg
configuration, which depend on the hybridization of the
cxygen ion of the water molecule.

There exists a relationship between the antibonding and

bonding MO coefficients of 2b2g and 2eg levels [4]:

@y = BBy, * «BiS - RS =0 1= 1, 2 (VIIL.6)

Finally, the normalizations of the MO coefficients are [19]:

af + 3?- 20 85 =1; 1=0,1,2 (VIII.7)
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and

a;Z + 312 + 2a;2 3;2 s, =1 1=1, 2. (VIII.8)

In the present case (Cu2+-doped MAT) there are twelve
unknown coefficients; these are the eleven MO coefficients
and the core-polarization contribution (K ). However, there
are available only eleven equations: four expressions for
the S.H.P., eqgs. VIII.1, five normalization conditions
between aland Bl (+ =0, 1, 2), and a; and B; t« = 1, 2),
egs. VIII.7 and VIII.8, and two equations between the
coefficients of the antibonding and the bonding orbitals,
eqs. VIII.6. In order to reduce the number of unknowns to
be determined to eleven the value of the coefficient u has
here been assumed to be V3/2, corresponding to sp3
hybridization of oxygen (water) 1ligand [58]. It is
difficult to obtain well-defined solutions for the MO
coefficients, because the equations relating the MO
coefficients are non-linear. On the other hand, in order to
estimate their values one can always fit the MO coefficients

4

by a least-squares technique to M = Z (SHELI/SHEL;- 1)2,
e . .

with the condition that the best-fit MO coefficients
minimize the value of M. Here SHP' (1t = 1-4) refer to the
four principal values of the g and A matrices (g", g,, Ay,
and A ), while obs. and cal. indicate their observed and
calculated values, respectively.

The MO coefficients and K, so determined, using the
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program EUREKA on an IBM-PC XT, equipped with a MATH

coprocessor chip 8087-2, are listed as follows:

Ko(cmq) % B, % Bx % R, a; ﬁ; a; B;
125x164 .88 .65 1.0 .01 .98 .26 .02 1.0 .21 .97
These coefficients are characterized by the value of M =
0.54. The presently-determined value of K_ = 125x107% em™
is very close to K = 130x10™" cm’!, which has been

2+

calculated theoretically for the free Cu ion by Watson and

Freeman [59]. The present values of the coefficients a,
o and o, imply that the nature of the bonding of the Cu2+
ion in MAT crystal lattice is not purely ionic. This is
because as = 0.77 indicates that there is an appreciable

2t jon with the oxygen

in-plane covalent o-bonding of Cu
ligands in the equat._rial plane. (If az = 1, there would
have been no covalent bonding.) On the other hand, there is
no in-plane covalent m-bonding in the complex since af =
1.0. Although the axial ligands are not taken into account
in the DM‘square—planar configuration, the present value of
a:, being very close to unity (= 0.96), indicates that the
out-of-plane covalent m-bonding is quite small. Thus, the
nature of bonding with the oxygen ligands along the axis,
belonging to the two carboxyl groups, is expected to be
mostly ionic.

The presently-determined values of K and the MO

coefficients can be compared with those estimated by
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Manakkil [27], using a rather simple model ([26]. He only
estimated the values of Oy O, O, and K_. His values fqr a,
(=.86), o, (=.98) and o, (=.99) are very close to the
present values, while K = 115x10"* em™ is  somewhat

different from the present value.
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CHAPTER IX

CONCLUSIONS

The research described in the present thesis can be

summarized as follows:

2+
Cu”™ doped Zn(C4H4N2)SO4.3H20 (PZST)

NS

(1) The interpretation of the observed EPR spe.“ra of
Cu2+-doped PZST over the temperature range 4.2-375 KX has
been provided in detail in the present thesis. owing to
the extended temperature range (4.2-375 K) over which the
EPR measurements were carried out in the present work on a
single crystal of PZST, it has been possible to study not
only the nature of the EPR spectra at various temperatures,
but also to confirm the occurrence of static and dynamic JTE
in Cu2+-doped PZST; t“e transition from static JTE to
dynamic JTE occurs at 334 + 1 K. It has been estimated that
the heights of the three JT barriers are the same, equal to
230 cm™! , over the range 4.2-295 K.

(1i) The present studies lead to the conclusion that

2+ site in PZST lattice 1s most

the local symmetry of Zn
probably octahedral, or octahedral with a small trigonal
distortion. This is in contradiction with the suggestion
that the coordination around the zinc ion in PZST lattice is
tetrahedral [57].

Additional, detailed, research on the crystal structure

of PZST is required before its domain structure can be
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understood.

2+
cu®” doped Cd(NH,),(S0,).6H,0 (CASH) and Mg (NH,),(SO,).6H,0

(MASH)

(i) The orthorhombic cu® principal values of the g°
and 2% tensors in the temperature range 4.2 - 354 K for
CASH, while in the temperature range 4.2-361 K for MASH,
indicate that the local symmetry at a cd® site, i.e.,
tetragonally-compressed octahedral symmetry, in the undoped
CASH or MASH lattice, undergoes an orthorhombic distortion
when the cu®* ion enters the CASH or MASH lattice and
substitutes for a ca®t ion of MasH.

(ii) Forbidden h.f. transitions were observed in the
cu®* EPR spectrum in the single-crystal specimen at 4.2 K
for CASH, while at 77 K (poorly resolved), and 4.2 K for
MASH. The quadrupole interaction matrix Q for both CASH and
MASH was estimated at 4.2 K from their line positions.

(iii) The present study of both the single~crystal and
polycrystalline specimens, over the temperature range 4.2 -
354 K for CASH and over 4.2-361 K for MASH, provided the
temperature dependence of the principal wvalues of the g
matrix. The variation of their values was interpreted to be
due to the pseudo JT effect, experienced by the Cu(H;n:'
complex, in the CASH or MASH single-crystal lattice. The
ratios of the energy splittings between the three adiabatic

potential valleys (61 and 613) have been estimated from

2
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the temperature dependence of the principal values of the g

matrix.

cu®* doped Ni(NH,),(SO,).6H,0 (NASH)

EPR measurements of Cu2+-doped NASH were made at 295,
77, and 4.2 K. The orthorhombic principal g values at 295,
77, and 4.2 K show that the Cu2+ ion is in an
orthorhombically-distorted octahedral symmetry. only the
cu®’ EPR line due to the Zeeman splittings was observed at
295 and 77 K. At 4.2 K, the Cu2+ h.f. structure was also
observed, only for the spectrum located at lower
magnetic-field values. The non observation of h.f.
structure can be attributed to dipole-dipole and exchange

2+

interactions between the paramagnetic host Ni ion and

2+

impurity cu®’ ion, which broaden the EPR lines.

cu?* doped Mg(CH,C00) ,.4H,0 (MAT)

(i) The present EPR and optical-absorption studies
have enabled the determination of the spin-Hamiltonian

parameters Iyr 9,0 A and Al, as well as the crystal-field

]
Ds, and Dt' They have been used to estimate
2+

parameters Dq,

the core polarization, K , and the MO coefficients for Cu
in MAT lattice.

(ii) The values of 9 and Al, determined presently,
are significantly larger than, while those of g9, and A, are

very close to, those reported by Manakkil [27]. Further,
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the presently-determined principal values of the g- and
A-tensors at liquid-helium temperature are the same as those
determined at liquid-nitrogen temperature, within
experimental error. Manakkil [27] did not carry out any EPR
measurements at liquid-helium temperature.

(iii) The optical-absorption spectrum has been

explained well in terms of a D,, square-planar configuration

2 2+

of the 0°” ligands in the Cu“’ complex taking into account

the spin-orbit coupling. The presently-determined MO

2+

coefficients indicate that, for the Cu complex in MAT

2+

lattice, the bonding between the Cu ion and the oxygen

ligands in the square-planar configuration is partly

2+

covalent, while the bonding between the Cu ion and its

axial oxygen ligands is mostly ionic.
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2
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2
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Low- and high-temperature electron paramagnetic
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Abstract. Electron paramagnetic resonance studies on a single crystal of Cu** -doped mono-
pyrazine zinc sulphate trihydrate (P2sT) have been made over an extended temperature
rangc (4.2-375 K). Three physically equivalent, but magnetically inequivalent, Cu** com-
plexes have been observed. The spin-Hamiltonian parameters are rigorously evaluated at
334, 235, 77 and 4.2 K, by the method of least-squares fitting, utilising numerical diag-
onalisation of the spin-Hamiltonian matrix on a digital computer. The principal values of
the §- and A-tensors indicate that, in PzsT, the Cu** ion experiences an octahedral symmetry
with orthorhombic distortion. The data are interpreted to conciude the occurrence of both
static and dynamic Jahn-Teller effects over the temperature range of investigation, the
transition from static to dynamic Jahn-Teller effect occurring at 334 = 1 K.

1. Introduction

The understanding of the ground states of the Cu** ion (3d® electron configuration) in
different symmetries of crystal fields is an important topic in electron paramagnetic
resonance (EPR). Many studies have been particularly devoted to crystal fields charac-
terised by octahedral symmetry, or octahedral symmetry with a small trigonal distortion,
for which the Cu** ion possesses the twofold-degenerate ground state E,. Many occur-
rences of the Jahn-Teller effect (JTE) have been reported in these situations. JTE has
been observed by means of EPR in many zinc salts doped by Cu?* ions, e.g. in zinc Tutton
salts (Silver er al 1974, Petrashen et al 1980), zinc fluorosilicate hexahydrate (Bleaney
and Ingram 1950), zinc fluorotitanante hexahydrate (De er al 1984), zinc bromate
hexahydrate (Jesion et al 1976, 1977), hexaimidazole zinc dichloride tetrahydrate
(Keijzers er al 1983) and K,Zn(ZrF), - 6H,O (Petrashen et al 1978). The occurrence of
JTE in such cases can be explained as follows. Most cases of JTE for Cu** are found to
occur indiamagnetic host lattices, The diamagnetic ions possess a closed outer electronic
shell, thereby causing the local symmetry of the host lattice to be high. When the
paramagnetic Cu** ion is introduced into the diamagnetic host lattice, substituting for
the diamagnetic ions, some local distortions are introduced because its size is different
from that of the host ions, as well as being paramagnetic. This fulfils the two conditions
necessary for the occurrence of 5TE (Callaway 1976); namely, that the Cu** ion be ina
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degenerate electronic state. and that it occupy a minimum-energy non-degenerate state
consequent to the small local distortion of the lattice that it produces.

epPR study of Cu°*-doped monopyrazine zinc sulphate trihydrate,
Zn(C,H,N.)SO,-3H.0 (hereafter pzsT), has been previously reported by Krishnan
(1978), at 295 K on a single-crystal specimen and at 77 K on a polycrystalline specimen.
His EPR spectra revealed the existence of three magnetically different sites for Cu®*,
although there is only one substitutional position available for Cu** in the unit cell of
pzsT. Krishnan explained this to be due to the presence of three domains. He suggested
the occurrence of a static JTE in Cu?*-duped pZST from the features of the EPR spectra;
the orthorhombic g-values revealed that the admuxture of the [3Z2 - r°) orbital into the
|X? ~ Y?) orbital was less than 5%.

It is the purpose of this paper to present more detailed EPR studies on Cu**-doped
pzST single crystal. The occurrence of JTE in this low-symmetry crystal is deduced by
studying the features of the temperature-dependent EPR spectra. The measurements are
carried out over an extended temperature range (4.2-375 K), making it possible to
observe a dynamic JTE at high temperatures and a static STE at lower temperatures. The
€u®* spin-Hamiltonian parameters are evaluated using a rigorous least-squares fitting
procedure (Misra 1986, 1988a. b).

2. Sample preparation and crystal structure

Cu*-doped single crystals were grown by slow evaporation of an aqueosus solution,
consisting of stoichiometric amounts of pyrazine (C,H,N.) and ZnSO,- 7TH,0, to which
was added a sufficient quantity of CuSO, - SH,O so that there is one Cu** ion for every
100 Zn jons. The grown crystal possessed the same form as that of the crystal that was
used for EPR measurements by Krishnan (1978). It looks like a parallelepiped. The
crystal structure of pzsT has been reported by Tenhunen (1972) to be triclinic (space
group P1); the unit-cell dimensions are a=10.734 A, b =4.427A. c=6.927A, a =
121.15°, B = 82.57°, y = 104.02°. There is one formula per unit cell (Z = 1).

So far. no structure-analysis data have provided the exact positions of Zn** ions in
the lattice of PzST crystal. That the water molecules «re not structural water can be
conciuded from experimental data: the infrared spectrum of PzsT reveals that there is
no band that confirms water coordination in PzsT (Fujita er a/ 1956). In addition,
the thermogravimetric curve (Panlik and Erdey 1957) indicates that the three water
molecules of pzsT are rapidly removed at 115 °C.

3. Experimental arrangement and R data

The EPR spectra were recorded on a homodyne X-band Varian V4502 spectrometer,
using a 100 kHz field moduiation for room- and higher-temperature measurements,
and 400 Hz field modulation for measurements at liquid-nitrogen and liquid-helium
temperatures. The magnetic-field measurements were made with a Bruker (B-NM20)
gaussmeter. The temperature was varied by the use of a heater resistor inside the liquid-
helium cryostat for low-temperature measurements. For high-temperature measure-
ments. a Varian variable-temperature controller (model No E4540), attached to a
microprocessor digital thermometer, manufactured by Omega (model No 870), was
employed.

"
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The angular variation of the data was observed for the Zeeman field (H) orientation
in three mutually perpendicular planes at every temperature of measurement. The
spectra were recorded for the orientation of H at every 4° interval at room and higher
temperatures, and atevery S®interval atliquid-nitrogen andliquid-helium temperatures.
‘The most even face of the single-crystal specimen was chosen to define the ZX plane,
the plane that contains the crystallographic ¢ axis. The orientation of g,, the largest g-
value (the direction of H for which the positions of the lines are at the minimum) in this
plane, was chosen to be the Z axis. For EPR measurementsin the ZY and XY planesthe
specimen was set o that itcc:uld be rotated about the X and Z axes, keeping the external
magnetic field direction fixed.

3.1. errspectra at room, liquid-nitrogen and liquid-helium temperatures

The EPR spectra for Cu?*-doped PzsT at liquid-nitrogen and liquid-helium temperatures

are not much different from that at room temperature. This can be seen from figure 1,
H (KkG)

2.5 29 3.3

¥ Ll Ll

! n m v v Vi viivii

1 n o W v Vi viivn

Figure 1. EPR spectra of Cu**-doped rzsT at low temperatures, The upper spectrum is
recorded at liquid-nitrogen temperature and the lower one at liquid-helium temperature for
H at 75° from the Z axis in the ZY plane.
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which exhibits the EPR spectra for the magnetic field orientation at 75° from the Z axis
in the ZY plane, at liquid-nitrogen and hqund.helnun temperatures. It consists of three
sets of four hyperfine (HF) lines, typical of the Cu* ion; the lines corresponding to the
less-abundant isotope of Cu?* (%°Cu, 30.91% abundance) couid not be clearly seen. The
threesets of spectra belongto three phys\mlly equivalent, but magneticallyinequivalent,
Cu?* complexes; thus their angular variations are different, as can be seen from figure 2,

exhibiting the angular variations of spectrain the ZY plane at liquid-helium temperature.

The line widths do not change significantly, as one lowers the temperature from room
to liquid-helium temperature; they are 25, 22, 22, 34, 26, 25, 26 and 21 G, respectively,
for the eight clearly resolved £PR lines in increasing order of magnetic field. As can be
seen from figure 1, one 2ctually sees only eight clearly resoived lines (indicated as I, II,
I IV, V, V1, VII and VIII). The four lowest-field lines belong to Cu?* jon occupying

33p

e .
LY It
’O

"%’ ‘0’

14

29

H (kG)

25 -

Z‘ 30 6;) )" 120
Angle (deg)
Figure 2. Angular variation of Cu** EPR spectra in P2sT at 4.2 K for the orientation of H in

the 2Y plane. The full curves connect data points, observed for the same transition. Open
circles, full circles and crosses represent three differentsets of spectra.
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Tabie 1. The principal values of the §- and A-tensors (square roots of the principal values of
the #3- and A*-tensors. respectively) for Cu'* in P2sT at different temperatures. The principal
#-values are dimensionless, while the principal A-values (A, As, A,) are in gigahertz. The
labelling is such that gy > g, > 8.

Temperature

(K) 5 5 8 Ay Ay Aq Ref.

295 23875 21924 20205 0324 0.181 0.104 a

295 2414 2216 2.109 0357 0201 0132 b
ks 23876 21923 20200 0.326 0.182 0.105 a
ki 2.42 0.362 ¢

4.2 23868 2.1929 2.0190 0328 0.185 0.105 a
34 2191 2191 2191 2
* Present work.

* Krishnan (1978), for a single-crystal specimen.
¢ Krishnan (1978), for a polycrystalline specimen.

site I, the four highest-field lines belong to Cu?* ion occupying site II, while the four
lines belonging to Cu?* ion occupying site III overlap the highest-field line of site I and
the three lowest-field lines of site 11, i.e. overlapping lines IV, V, W and V1I.

The EPR spectra of Cu** ion in PZsT are fitted to the following spin Hamiltonian:

H=pupgH:-§-S+S-A -l (1)

where ug is the Bohr magneton, S (=4) is the electronic spin and I (=4) is the nuclear
spin of Cu**.

The principal values of the g* and A2-tensors and their direction cosines were
evaluated by the use of a procedure previously described (Misra 1986, 1988a, b). The
pnncxpal values of the g- and A-tensors so evaluated. at various temperatures, are listed
in table 1, which also includes the principal values reported by Krishnan (1978). It is

Tabie 2. Direction cosines of the principal axes of the §- and A-tensors of Cu?* in PzsT. (The
same as those of the §2- and 4’-tensors respectively.) The direction cosines of the §*-tensor
are given with respect to the laboratory axes (X, Y, 2) (as defined in $ 3), while thore of the
A-tensor are expressed relativeto (X*, Y", Z'), the principal axes of the §*-tensor. The values
are those found at 295 K.

Direction cosines of the §3-tensor

Z X Y
2' 0.4510 0.2010 0.8696
X ~(.6486 0.7431 0.1647
Y -~0.6131 -0.6383 0.4655
Direction cosines of the 4 -tensor
rA X Y
Z 0.9999 0.0062 0.0140
X =0.0064 0.9998 0.0191
Y -0.0103 =0.0192 0.9998

1
H
|
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Table 3. Same details as in the caption of table 2. The values are those found at 77 K.

Direction cosines of the #-tensor

Z X Y
Z' 0.4192 0.2720 0.8662
X ~0.6498 0.7562 0.0770
Y -0.6341 -0.5952 0.4937
Direction cosines of the Atensor
Z' X Yy
zZ 0.9999 0.0062 0.0100
X =0.0064 0.9999 0.0156
Yy -0.0099 =0.0158 0.9998

noted here that the principal values of the §- and A-tensors are the same, within
expenmental error, for the three magneticaily inequivalent Cu** complexes. The direc-
tion cosines of the principal axes of the §- and A-tensors are listed in tables 2—4 at 295,
77 and 4.2 K respectively. (It should be pointed out that the pnncxpal values of the g-
and A-tensors are the square roots of the principal values of the g*- and A*-tensors
respectively, while the dnrectnon cosines of the principal axes of the ¢- and A-tensors are
the same as those of the - and A2-tensors, respectively.)

It is seen from table 1 that the principal values of the - and A-tensors remain the
same, within experimental error, over the temperature range 77-295 K. while tables 2
and 3 reveal that the principal axes of the g*- and A2-tensors are found to remain
coincident over this temperature range. Although the principal vaiues of the g- and A-
tensors at 4.2 K (table 1) are found to be the same as those at room and liquid-nitrogen
temperatures. within experimental error. the principal axes of the A°-tensor are no
longer coincident with those of the g*-tensor (table 4).

Tabie 4. Same details as in the caption of table 2, The values are those found at 4.2 K.

Direction cosines of the #*-tensor

¥4 X Y
z 0.3649 0.2468 0.8978
X -0.6372 0.7692 0.0476
Y -0.6788 -0.5895 0.4379

Direction cosines of the A--tensor

z X Y’
z 0.9969 0.0788 0.0058
X ~0.0698 0.9126 -=0.4028
 of -0.3700 0.4011 0.9153
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3.2 £prspectra above room iemperature

Above room temperature, the EPR spectra of Cu**-doped single crvstal of pzsT are
significantly different from those at room and lower temperatures: the HF lines of Cu**
become broader and weaker. Finally, at 334 = 1 K, only one single, broad. isotropic line
is observed: both the position of the line centre and the line width are independent of
the orientation of the external magnetic field. There is no significant change in the line
width as the temperature is raised to 375 K, the temperature at which dehydration of the
crystal begins to take place. As listed in table 1. this single isotropic line corresponds to
g=2191=(g, + g, + g,)/3. where g, 8, and g, are the principal values of the g-tensor
at room temperature (these values are the same as those below room temperature).

Upon lowering the temperature again below 334 K, after having raised the tem-
perature above 334 K, the features of the EPR spectra return, as observed before. This
observation was repeated three times, and each time the features of the EPR spectra were
recaptured exactly the same as before recycling through temperatures higher than 334 K.
Figure 3 shows the temperature variation of EPR spectra of Cu**-doped pzsT over the
range 295-374 K for the exrernal magnetic field orientation at 75° from the Z axis in the
ZY plane.

4. Discussion

4.1. Temperatures below 295 K (static JTE)

The principal values of the ¢- and A-tensors. over the temperature range 4.2-295 K, as
given in tabie 1. indicate a low symmetry of Cu** complex in pzsT. i.e. orthorhombically
distorted octahedral symmetry, since the three principal values. for each of the §- or A-
tensors. are all different from each other. The independence of the EPR spectra. as well
as that of the EPR line width. on the temperature below 295 K supports the occurrence
of a static JTE, as proposed previously by Krishnan (1978).

The orthorhombic principal g-values due to the static ITE. for any magnetically
inequivalent Cu** complex. as observed presently in PZST, can be analytically expressed
as follows (Abragam and Bleaney 1970):

g1 = 8. ~ (24/A)[cos(@/2) + V3sin(@/2)}*
82 =8 ~ (24/A)[cos(@/2) — V3sin(/2))? 2)
g3 = 8. =~ (84/A) cos*(@/2).

In equations (2) g, is the g-value of the free electron (=2.0023); 4 is the spin-orbit
coupling constant for the free Cu=* ion (= —830cm™"); A (=120BY) is the octahedral
crystal-field splitting constant for Cu* ion: @ is the vectonal angle of a polar coordinate
system (p. @) which describes the distortions Q, (=p sin @) and Q, (=p cos @) of the
ML, complex. where M is Cu** and L are surrounding ligands, which are not as vet well
identified for pzsT.

For anarbitrary value of @ (except for ¢ = nt/3. where nis an integer), the g-values
of equations (2) correspond to an orthorhombic distortion of octahedral symmerry (i.e.
81 * g: ¥ g3). the directions of the principal values g,, g, and g. being along the three
mutually perpendicular fourfold (tetragonal) axes of the ML ,complex. The substitutions
of the values of @ = @ + 21/3 and ¢ = ¢ + 4:/3 in equations (2) interchange g,, g,
and g; amongst themselves, i.e. they correspond to orthorhombic distortions about the
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Figure 3. Err spectra of Cu?* -doped pzsT for # at 75° from the Z axis in the ZY plane at 295,
324,327,334 and 375 K.



17

Low- and high-temperature £pr studies of pzst ™9

two other tetragonal axes. The potentiai-energy surfaces. which are associated with tne
coupling between the magnetic electrons and the ligand nuclei. are referred to as the JT
valleys. If @, is the particular value that corresponds to the minimum (i.e. the bottom
of the JT valley) of one potential-energy surface. the p-values corresponding to the
minima of the other two potential-energy surfaces are located at ¢ + 21/3 and @ +
47/3. In general. the energies of these three minima are different. In the case of Cu?*-
doped P2sT, using the typical value of A/A = —0.05 (Abragam and Bleaney 1970) in
equation (2), and the measured values of g, g; and g;, @, has been estimated to be
approximately 30°.

Although Krishnan (1978) has ascribed the presence of three sets of EPR spectra at
295 K to the existence of three domains in the crystal. it is entirely possible to account
for the present results by supposing that the different it distortions of the Cu** complexes
(ML, type) are randomly distributed with equal probabilities throughout the crystal,
rather than grouped into domains. This is further supported by examining the pzsT
crystal through a polarising microscope. which does not reveal the existence of domains.
That such a view naturally leads to a satisfactory expianation of the high-temperature
spectrum is presented in § 4.2.

The temperature-dependent principal values g(T) and A(T) (i = 1, 2. 3) can be
expressed. in general. as the averages over the three IT potential valleys. '+ith the
corresponding weight factors being in proportion to the populations V,, N~ and V; in
the respective IT vallevs (Petrashen er a/ 1978). In the case of Cu-*.doped PZST. the
principal values of the ¢- and A-tensors are found to be independent of temperature in
the range 4.2-295 K. this indicates that .V,, N and N, are constant. and equal to each
other, over the range 4.2-295 K. This is only possibie when the energies of the three JT
valleys are equal to each other. since the populationsin the corresponding JT valleys are
governed by a Boltzmann distribution.

Petrashen eral(1980) have studied the dynamuc ITE nature of Cu(H, O)3* complexes
1n the zinc and copper Tutton salts. using the EPR and x-ray data. They found that the
ratio of the energy splittings between the three JT configurations of the Cu(H.0)i"
complex (8,3 0y,), estimated from the temperature-dependent principal values of the §-
tensor. is close to that estimated taking into account the symmetry of the Zn(H,0);*
comg ! .4 and the vanation of the energy of the JT ion due to the distortions. Thus, the
symmetry of the host compiex can be deduced from the energy splittings between the
three T valleys of the complex Cu(H,0)?#*, as determined from EPR data. Proceeding
in analogous manner. it is concluded that the energies of the three IT valleys of the Cu**
complex are idenucal in PZST: the local svmmetry of the Zn** ion in PZST is either regular
octahedral or most likely octahedral with a small trigonal distortion. When 2 Cu** jon
substitutes fora Zn>" ion in PZsT. it changes the trigonaily distorted octahedral symmetry
to orthorhombically distorted octahedral symmetry, because of its different size, and
different interaction with ligands. This manifests as static JTE.

The ground state of the Cu** ion. experiencing an orthorhombic distortion in an
octahedral crystal field. is an admixcure of [ X* ~ Y*)and |3Z° - ) orbitals: which one
of these two is predominant can be determined from the R-value (Budley and Hathaway
1970). defined to be R = (g, — g.)/(g; — &), where g;> g, > g.. When the R-value
is greater than unity. a predominantly {3Z% = r°) ground state is expected. while a
predominantly LX* ~ Y*) ground state is expected when it is less than unity. Since the
calculated R-value for the present case is [ess than unity at room temperature and below,
the predominant ground state of Cu~* ion. in PzST single crystal. is the | X* - Y%,
Further, the admixture of the excited state|3Z° — r) is given by sin*(@,/2), because the
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ground state for Cu* can be expressed as cos(@y/2)|X* = Y?) + sin(o/2)]32% = r)
(Abragam and Bleaney 1970). This admixture is less than 7% since @, = 30° in the
present case. as determined above.

4.2. Temperatures greater than 295 K (dynamic 7€)

As the temperature is raised above 295 K. the HF lines of Cu** become broader through
relaxation effects. At T> 327K the HF components become so broad that they are
no longer resolved. and only a single isotropic line is observed above 334 K. This is
characteristic of a dynamic JTE. This occurs when the rate of tunnelling through the
barrier from one distorted configuration of the Cu** complex (ML, type) to the other
exceeds the frequency difference between the corresponding £PR resonance lines for the
different distorted configurations. i.e. that between the anisotropic spectra (Ham 1972).
From the time-averaging effect, when the dynamic ITE occurs, equations (2) yield g, =
g2=83=8 —4A/A. since the averages (cos*(@/2)) = (sin*(@/2))=1% and
(cos(®@/2)sin(@/2)} = 0. From the typical value of A/A = =0.05 for Cu** ion (Abragam
and Bleaney 1970), g, — 4A/A is calculated to be 2.2, very close to the observed g-value
(2.191) at T = 334 K. This is characteristic of the type I dynamic ;TE (Ham 1972).

Since the EPR spectrum for Cu-* in P2ST above 334 K is isotropic as revealed by both
the position of the centre of the EPk line and the EPR linewidth. the oriented and random
strains are expected to be very small compared to kT, as deduced using the fact that the
centre of the EPR line is intfluenced by the oriented strains. while the EPR line width is
influenced by the random strains (Ham 1972).

The observation of only one isotropic line at T 2 334 K can be explained to be due
to motional averaging, because of rapid hopping between the three equival- nt JT-
distorted sites. randomly distributed in the crystal with equal probabilities. One then
expects a high-temperature ‘g'-value of g = (g, + g2 = 85)/3 = 2.2. The observed ‘g’
value of Z.191 is almost equal to0 2.2.

5. Concluding remarks

The interpretation of the observed EPR spectra of Cu**-doped PZST over the temperature
range 4.2-375 K has been provided in detail in the present paper. Owing to the extended
temperature range (4.2-375 K) over which the EPR measurements were carried out in
the present work on a single crystal of pzsT. it has been possible not only to study the
nature of the EPR spectra at various temperatures but also to confirm the observation of
both static and dynamic JTE in Cu-*-doped PZST: the transition between them occurs at
334 = 1 K. It has been estimated that the heights of the three JT barriers are the same
over the range 4.2-295 K.

The present studies lead to the conclusion that the local symmetry of Zn** site in
pZsT lattice is most probably octahedral. or octahedral with a small trigonal distortion.
This is in contradiction with the suggestion that the coordination around the zinc ion in
pZsT lattice is tetrahedral (Tenhunen 1972).

The high-temperature €PR spectra are found to be well explained by supposing that
the different JT distortions of the Cu** complex in pzsT are randomly distributed with
equal probabilities throughout the crystal. rather than being due to the existence of three
domains as suggested by Krishnan (1978). This is further supported by the fact that no
domains were indeed found upon examination through a polarising microscope.
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EPR and Optical-Absorption Studies
of Cu**-Doped Mg(CH;C00). - 4+H.0 Single Crystal

Core Polarization and Molecular-Orhital Coefficients

By

SusaiL K. Misga and CHUNZHENG WANG

X-band EPR measurements on a single crystal of Cul*-doped magnesium acetate tetrahydrate,
Mg(CH,C00), - 4 H,0, are made at 295, 77, and 4.2 K. The Cu** spin-Hamiltonian parameters
are evaluated, at all these temperatures, from the EPR line positions by means of a rigorous lesst-
squares fitting method. The principal values of the g2 and A? tensors indicate that the local sym-
metry of the Cu* ion, in the host lattice of Mg(CH,COO), - 4 H,0 crystal, is tetragonal. The room.
temperature optical.absorption spectrum, recorded in the 180 to 320 nm wavelength range, is
exploited to study the crystal-field and charge-transfer transitions of the Cu‘* ion. On the other
hand, both the room.temperature optical-absorption and EPR data are used to estimate the core
polarization contribution (K) and the molecular-orbital coefficients for the Cu‘* ion doping
Ag(CH,COO0), : 4H,0.

On a mesuré }e RPE i bande-X sur un monocristal de Mg(CH,C00), - +H,0, dopé par I'ion Cat*
& 295, 3 77 et & 4.2 K. Les paramétres du spin hamiltonisn du Cu** ont été évalués, i toutes ces
températures, par une méthode rigoureuse d'adaptation aux moindres carrés. utilisant les positions
des raies RPE. Les valeurs principales des tenseurs gé et A® indiquent que la symétrie ocale de
Iion Cus*, dans le résesu-héte du cristal de Mg(CH,COO), - 4 H,0, est tétragonal. Le spectre d’ab-
sorption optique, & la température ambiante, enregistré dans l'intervalle de longueur d’onde 180
820 nm, a été exploité afin d'étudier les transitions du champ cristallin. sinsi que ceiles du
transfert de charge. D’un autre coté, a la fois les donées d’absorption optique et les données de
RPE, 4 la température ambiante, ont été utilisées, afin d'estimer la contribution de la polsrisation
du core et des coefficients de 1’orbite moléculaire pour l'ion Cu** dopant Mg(CH,COO}), - 4 H,0.

1. Introduction

Some EPR studies of Mn2*. and Cu**.doped magnesium acetate tetrahydrate,
Mg(CH,C00), - $+H,0 (hereafter MAT), single crystal at 295 and 77 K have been
reported by Manakkil [1], indicating that these paramagnetic ions substitute for the
magnesium ions in the MAT lattice. forming tetragonal (i.e.. elongated octahedron)
complexes, The spin-Hamiltonian parameters for these ions were evaluated from the
EPR line positions. observed for the magnetic field orientations along three mutually
orthogonal magnetic axes. using perturbation expressions. Further. using the theoret-
ical expressions for the tensors g and A. as developed by Maki and McGarvey (2],
Manakkil [1] evaluated the molecular-orbital (MO) coefficients. However, to this end,
he used the optical-absorption data of Cu** in Cu(CH;CO0), - H,O aqueous solution,
rather than those in Cu*-doped MAT crystal. to determine the energy separations
between the excited states and the ground state of the Cu*.complex in MAT. This

}) 1435 de Maisonneuve Boulevard West, Montreal, Quebec, Canads H3G 1)M8.
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assumption is far-fatched. because the environment of Cu®* ion in the Cu(CH,COO), -
+ HaU solution is much different from that in the MAT crystal. No optical-absorption
studlies of the impurity Cu?* jon in the MAT single crystal have so far been reported.

The purpose of the present paper is to report detailed X.band EPR studies. not
only at room temperature and 77 K. but also at 4.2 K. as well as optical-absorption
studies of Cu?*.doped MAT single crystal in the wavelength range 190 to 820 nm at
295 K. The EPR data will be used to estimate the principal values and orientations
of the principal axes of the tensors 2 and A2 while both the EPR and optical data
will be used to estimate the MO coefficients of the Cu?*.complex in Cu**.doped MAT
single crystal.

2. Sample Preparation and Crystal Strueture

Cuz*.doped single crystals of MAT were grown by slow evaporation of an aqueous
solution of Mg(CH,CU0),- 4H,0. to which was added a sufficient quantity of
Cu,(CH,COQ), - 4 H,0. so that there was one Cu?* ion for every 100 Mg?* ions,

The crvstal structure of MAT. as determined from X.ray data. has been reported
by Shankar et al. [3). It is monoclinic (space group C2,-Ps,;c); the unit cell dimensions
are: a = 0475 nm. b = 1179 nm. ¢ = 0.852 nm. and 8 = 94° 54'. There are two
formula units per unit cell (Z = 2): each Mg?®* ion is surrounded by four water mole-
cules. two H,O (1) and two H,O (2). in the equatorial piane. and by two oxygen ions
belonging to the two acetate groups situated on the axis perpendicular to the equato-
ria] plane. The distances between the Mg** ion and the oxygen ions of the H.O (1)
and H,0 (2) molecules are 0.207 and 0.208 nm. respectively, and those between the
Mg?~ ion and the two oxygen ions. which belong to the two acetate groups. are 0.211 nm
each. The local site symmetry of the Mg** ion is, thus. approximately tetragonal
(elongated octahedron).

3. Experimental Arrangement and Spectra

3.1 Experimental arrangement

3.1.1 EPR

The EPR spectra were recorded on a X-band Varian V4502 spectrometer, equipped
with a 100 kHz field modulation for room-temperature measurement. and a 400 Hz
field modulation for liquid-nitrogen and liquid-helium temperature measurements.
The magnetic field was measured with a Burker (B.NM20) gaussmeter. For low-
temperature measurements. the temperature was varied by a heater resistor inside the
liquid-helium cryostat. Temperatures in the liquid-nitrogen and liquid-helium tem.
perature ranges were determined by measuring the resistances of the platinum and
germanium resistors. respectively, using appropriate calibration charts.

The angular variation of EPR spectra was recorded. at any temperature, for the
Zeeman field (B) orientation in three mutually perpendicular planes. This was done
for the orientation of B at every 4° interval at room temperature. and at every 5°
interval at liquid-nitrogen and liquid-helium temperatures. The largest flat plane.
which contains the c-axis of the single-crystal specimen. which grows into monoclinic
form, was chosen to define the zz plane. The direction of B. in this plane, for which
the positions of the hyperfine (h.f.) lines are at the minimum values of B, was chosen
to be the z.axis,
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3.1.2 Optical

Optical-absorption spectrum was recorded on a Hewlett-Packard spectrometer
(model 8432A) in the wavelength range 190 to 820 nm. The absorption spectrum,
and the wavelengths of the absorbed peaks. were recorded directly via a micro-
computer,

.2 EPR spectra and spin- Hamiltonian parameters

The EPR spectrum for Cu?*.doped MAT single crystal at room temperature consists
of two sets of four hyperfine (h.f.) lines each. This indicates that there exist two mag-
netically inequivalent. but physically equivalent. Cu** centres in the unit cell of MAT,
as expected from the crystal structure of MAT. Each Cu?* centre is characterized by
four hyperfine lines, since its electron spin S = 1/2 and nuclear spin I = 3/2 for the
two stable isotopies of copper, Cu®® (69.05%, abundant) and Cu (30.95°, abundant),
with non-zero nuclesr magnetic moments. The EPR spectra at both the liquid-nitro-
gen and liquid-helium temperatures are different from those at room temperature,
insofar as the h.f. linewidth and the splitting of EPR lines due to the Cu® and Cu®®
Jdsotopes are concerned. The h.f. lines corresponding to Cu® and Cu® split clearly from
each other at liquid-helium temperature. as can be seen from the spectrum. recorded
for the orientation of B at 28° from the :-axis in the zz plane, displayed in Fig. 1. Two
sets of h.f. lines corresponding to the two impurity sites for Cu* ions in the unit cell
of MAT are exhibited in Fig. 1: the set occurring at lower magnetic field is designated
as that belonging to site I. while the other one belonging to site II. For site I. only
the outer h.£. lines for Cu® and Cu®, i.e., those corresponding to the allowed transitions
H =12 m= =32~ =—1/2. m = =3/2 split completely from each other
(Fig. 1). (Here 3 and m referto the electronic and nuclear magnetic quantum numbers,

——
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Fig. 1. First-derivative X.band EPR spectrum of Cus*.doped MAT at linuid-helium temperature
for the orientation of 8 at 242 from the s.uxis in the =z plane. The h.L, lines corresponding to the
magnetic isutopes (Cu% and Cu®, i3 well as the two spectra corresponding to the two sites ([ and
ID for Cu**, have been indicated. The two ventral h.f. lines for site [ due to the two isotopes overlap
each other
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Table }

The principal values of the tensors g and A (square roots of the principal values of the
tensors g2 and A? respectively) for Cu?* in MAT at different temperatures. The ¢ prin.
cipal values are dimensioniess. while the 4 principal values are in em=. The labelling
is such that gy >g ). The errors of the presentir estimated g principal values are
=0.0018 and those for A principal values are <-0.0002 em~!

temperature (K)  isotope i g1 A 4. ref.
295 Cyts.es 2,3738 2,0860 0.0)08 0.0027 *)
300 Cynrss 2,347 2,085 0.0108 0.0026 m
i Cu®? 2.3882 2,0062 0.0121 0.0031 *)
Cu® 2.3882 2.0862 0.0130 0.0034 *)
" Cu® 2,345 2,095 0.0121 0.0031 ()
Cut 2.347 2.085 0.0130 0.0034 m
4.2 Cu® 2.3884 2.0963 0.0121 0.0031 "
: Cu® 2,3884 92,0963 0.0130 0.0034 *)

=) Preaent work.

respectively.) On the other hand. for site IT all the four h.{. lines. i.e.. those correspond-
ing to the transitions 1/2. m « ~1/2: m: m = 3/2. 1/2. —1/2. —3/2 for the two iso-
topes split completely (Fig. 1). The EPR h.{. linewidth at both the liquid-nitrogen and
liquid-helium temperatures is (13 = 1) x 10~* T. while at room temperature it is
(34 = 1) X 10~¢T, these linewidths are independent of the orientation and magni.
tude of B.

The observed EPR line positions of Cu?* in MAT. for each of the Cu®s and Cu
isotopes, were fitted to the following spin Hamiltonian:

X=uB-g- S-S A1, (1)

where uy is the Bohr magneton.

The principal values of the tensors g2 and A2. and their direction cosines. were eva.-
luated by the use of & rigorous least.squares fitting procedure {4 to 6). The direction
cosines of the tensor g* were calculated with respect to the laboratory axes (z, y, z),
while those of the tensor A? were calculated with respect to the principal axes of the
tensor g2 (The principal velues of the matrices g and A are the square roots of the
principal values of the tensors g2 and A2, respectively, while the direction cosines of
the principal axes of the matrices g and A are the same as those of the tensors g2
and A2, respectively.) The principal values of the tensors g and A at 295, 77. and 4.2K
are listed in Table 1. which also includes the values estimated by Manakkil [1).

It is seen from Table 1 that two principal values of the tensor g are the same (g, =
=g, = g ). being smaller than the third principal value of the tensor g (g5 = g;)).
This suggests that the local symmetry of the Cu?* ion in MAT is tetragonal (elongated
octahedron); this is compatible with the X-ray results [3].

3.3 Optical spectrum

The room-temperature optical-absorption spectrum of Cu*-doped MAT single crys-
tal, in the wavelength range 180 to 820 nm. is exhibited in Fig. 2. There are four
bands in the visible range. occurring at », = 15243 cm}, v, = 16611 em-}, vy =
= 17182 cm~!, and », = 20661 cm~}, and two bands in the ultraviolet (UV) range,
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Rig. 2. Room-temperature optical-absorption spectrum in the wavelength range 190 to 820 nm.
The lines indicated by 1 to 6 correspond to the energies », to vy, respectively, as cited in the text

which are weak in intensity and are poorly resolved, ogcurring at about vg =
= 36300 cm~! and vy = 43100 cm-1.

The energy levels of the Cu?* ion in a tetragonally-distorted octahedral symmetry
(Dyn), a8 calculated using the crystal-field theory, are shown in Fig. 3. They are deter-
mined from the crystal-field Hamiltonian K, given as [7]:

F.o=D [BL1t - 128 (LY — L)) - Dyli-2) -

13

- DB Lt -wit-6). (@
=<0q=0svuDs Vi
v/
v
A

! \.——'-—\
L \ 320 E
609=205=60s N ~. a
5’; B-'g a-vg - E,
50,7206~
' 2 5 £ -orbit
“ree  ocranearal — W Spi=orti
on Oun (ALS)

Fig. 3. Energy-level diagram for the Cu** ion in a tetragonally-distorted octahedral crystal field,
with increasing tetragonal distortions A, B. and C: the limits of applicability are | D4l > {51D] >
> 1Dy, 51D, >:Dqi >+ 1Dy and 10,0 > |Dy| >1Dg] for the tetragonal distortions A,
B. and C, respectively
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In (2), the {irst term represents the Hamiltonian for the purely.octahedral field.
while the second and third terms represent the Hamiltonians for the vetragonally-.
distorted field. The parameters L. D,. and D, in (2) are referred to as the octahedral.
and the second. and fourth.order tetmgonal field parameters. respectively. They are

"expressed. using the point.charge model. as [8]

1 (rh
Dq = - —b-Ze- R"' ,
2 L R
Dp=— w2 5 (1'3?)'
and
2, RS
D=~ =2 >33 (1-175) @)

where Ze. (r*). (r'). R,. and R, are. respectively. the charge of the ligands. the mean.
sguare and mean-fourth-power radii of the Cu3* ion orbitals. and the distances of the
ligands in the equatorial plane and those situated upon the axis perpendicular to the
equatorial plave and the Cu?* ion. The crystal-field parameters D,. D,, and D, are
usually determined from optical spectrum. There are three qushmtxvel\ different
energyv-level schemes [9). indicated as A. B. and C in Fig. 3. corresponding to an
initisliv pure octakedral field with increasing tetragonal distortions corresponding
to (2). Since the spin-orbit coupling constant. /. of the Cu2?+ ion is rather large.
a significant effect of the spin-orbit coupling upon the spectrum of Cu?* complex is
expected {10]. To first order in perturbation. splitting into five energy levels (Fig. 3)
of the Cu®* ion (3D configuration) is caused by the tetragonally distorted octahedral
field along with the spin-orbit coupling [11]. These five energy levels can be ex-
pressed as follows:

E, = 6D, — 2D, — 6D, (orbital dg;e—,1) .

E.=~4Dy ~ D, — 4D, — (overlap of orbitals d,; and d;),

wof N

Ey = = (=8Dy = D, = +3D) + S+

+%V(—3D, < 3D,)* + i(—3D, < 3D,) = 41

(overlap of orbitals d.. and d,,),
1 /

E, = 5 (=8Dg+ D, +3D)) + -~
= ‘ol" ]/ (—3D, = 5D,)* - i(—3Dy = 5D,) ~ gi—' (orbital dgy) ,
and
E,=06Dy ~2D,~ D, (orbitalds:ys). (4)

In (2) E, > E. > E,> E, > E, for the large tetragonal distortions (scheme C);
E, is the ground state. Using these, the energies of the d~d transfer bands can be




126

EPR and Optical-Absorption Studies of Cu**-Doped Yg(CH,C00), - + H.O : 265

derived by calculating the energy differences between the excited states (£, E,,
E\, E,) and the ground state (E,).

From the profile of the absorption spectrum in the visible region. the observed
bands at v, and v, can be regarded. respectively. as the d-d transfer bands between the
ground-state E, (d.:._,s:) and the excited states E, and E,, into which the two.fold
degencrate level d.,, , is split by the spin—orbit coupling. Thus. the band at 16897 cm-!,
which is equal to the average value of the main band v, and the shoulder on the longer-
wavelength side. band », can be assigned as the d-d transfer band da,,; = dyi_y,
being usually the most intense band [12]. The other two bands. observed at v, and ¥,,
are assigned a8 d,, == dzi_, and das_, « d;:o . transfer bands. respectively, as can
be seen from (4).

The crystal-field parameters D, anC D, can be estimated from the optical-absorption
energies v, v,, ¥y, and v, from (4), as follows:

vy = —4D, — 3D,
and
+ (0 =) — vy = =3D, - 5D, . (5)

This vields D, = —3188 cm~! and D, = —1382 cm-!. The four d~d transfer bands
can now be calculated as functions of the parameter D, with the assumption that
A = —830 cm-L the valu. tor free Cu?* ion [13]. Then the present optical data is
found to fit well to D, = —1525 cm~!. This value is close to —,/10. as it should be.
since » = —10D,, which is equal to (E, — E,) in the limit A — 0, as seen from (4).
Both the experimental energies and energies calculated. using the presentlv-estimated
values of D,, D,, and D, of the d-d transfer bands. are listed in Table 2.

The negative signs of D, D, and D, are to be expected from the point-charge model,
equations (3); these are in accordance with those estimated above using the energy
levels given by the crystalfield theory. equations (4). However. the rauo Dy D, of
the estimated values is close to unity: this shonld be less than 2/7 according to the
point-charge moclel. equations (3). This is obviously a deficiency of the crystal-field
theory. In practice. ab initio calculations are used to determine the energies and wave
functions of the many-electron states. which characterize the bonding in molecules.
Several semi-empirical molecular-orbital (MO) procedures have been proposed [8].
Smith (14] employed a semi-empirical MO method to explain the optical spectrum of
tetragonal copper (II'-oxvgen system. His method combined the point-charge and
angular-overlap models: the latter is based on the assumption that the amount by
which the energy of the metal orbital is raised. as a result of covalent honding, is

Tuble2

Observed and calculated energies. and assignments of the bands for Cus*.doped MAT
with Dq = — 1525 .m™!, Dy = =3188 e~ D, = ~1582 em~', and 7 = — 330 cm"!,
¥y, Iy by and v, correspond to the energies (£, ~ E,),(Ey — E,), (&, — E,), and (E,— E,),
respectively, as shown in Fig. 3

transition band position (cm=?)

observed calculated
d;y Lad d;i—y-‘ = 15243 15‘”“

r, = 18811 16723

Arz gz o> drieys 1, = 17182 17314
daz: < dpie s r, = 20661 20662
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directly proportional to the square of the distomic.overlap integral. About one
quarter of the final energies. calculated by Smith. were accounted for by the electro.
static terms in the point-charge model. while the remaining. about three-quarter of
the final energies. were accounted for by the angular-overlap terms.

From the assignments of the d-d transfer bands. it appears that the Cu** ion in
MAT single crystal experiences a square planar, D;;,. svmmetry. It is due to the fact
that when Cu®* jon substitutes for a Mg** ion in MAT cryvstal. the two oxyvgen ligands
of Mg** along the axis. belonging to two different acetate groups. move rather far
from the centre of the Cu®* complex. due to the Jahn.Teller effect [15). The original
complex. with an approximately tetragonally.distorted octahedral svmmetry. now
possesses only a square-planar symmetry.

The optical-absorption spectrum of Cu?*.doped MAT in the vigible region is similar
to that of Cu?*.doped BaCuSj,0,, single crvstal [16), in which Cu®* ion is also in a
square-planar coordination with the oxvgen ligands. for which the three observed
d-d transfer bands. occurring at 12900. 15800. and 18800 cm=2. have been assigned as
d” - d,x_!,x. dn"g - d,:_”:. and ds,:_'a - d;x-.,:, respectively. The dg'y: - d:!_yl
transier band. has the maximum intensity; the two lines of this band were not re-
solved [16]. perhaps due to inferior sensitivity of the spectrometer used.

The two presently-observed absorption bands in the UV range. occurring at fre.
quencies v; = 36500 cm~! and », = 43100 cm-? are. probably. charge-transfer.
transition bands. because they arise from the higher-lying energy levels. not shown in
Fig. 3. The present results can be compared with those for CuCl;~ complex. which
possesses square-planar symmetry [17]. for which there have been observed three
charge-transfer transitions in the UV range: they have been assigned as lay — 3by;,
4e, — 3bye. and 3e, - 3by; transitions. in order of decreasing wavelengths. For
CuClz-, the intensities of the transitions lag, — 3b,, and 4e, — 3by;, are very weak;
as well. these two transitions are close in energy [17]. Using these results for CuCl2-.
combined with the poor resolution of the spectrometer. used presently, in the UV
range. the transitions las, — 3by; and 4e, «— 3b;g for Cu?* in MAT can be considered
to have the same observed energy », = 36500 cm=1. Finally. the remaining charge-
transfer transition 3e, — 3b;; corresponds to the observed frequency »g = 43100 cm-1.

4. Molecular Orbitals of Cu®+ in MAT Lattice

Using the energy-level splitting of the Cu®* jon in the Jattice of MAT single crvstal,
it is possible to evaluate the coefficients of the MO for Cu**-doped MAT. The splitting
of d, or {, orbitals of transition-metal ions in molecular complexes is usually described
by crystal-field theory. However. it does not take into account the effect of interaction
with the ligand electrons adequately. In fact. the crystal-field theory is not fully appli.
cable to those complexes. which are characterized by strong interactions between the
electronic orbitals of the central atom and ligands. responsible for the formation of
molecular orbitals.

The spin-Hamiltonian parameters (S.H.P.) of the transition.metal ions can be ex-.
presaed in terms of (i) the coefficients of the MOs: (ii) the energy separations between
the excited states and the ground state of the ion: and (iii) the energies of the charge.
transfer transition bands. which can be determined from the optical spectrum. EPR,
thus. becomes an integral tool for the estimation of the MO coefficients of transition.
meta] complexes. since S.H.P. are determined from EPR measurements. The optical-
absorption data for Cu®-.doped MAT indicates that the Cu?~ complex in MAT single
crystal sees a local Dy, square-planar symmetry. For the Cu?* complex in MAT the
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equatorial Cu-0 (H.O) bond length is 0.2075 nm. being the average distance of
Mg-H.0 (1) and Mg-H,O (2) in the MAT hoet lattice [3].

Maki and McGarvey [2] were the first to apply the MO theory to the Cu* complex
with tetrsgonally.distorted octahedral symmetry in order to derive theoretical ex.
pressions for the tensors g and A. The overlaps of the p.orbitals of the four ligand
oxygens in the equatorial plane, as well as those of the two oxygen ligands on the
axis perpendicular to the equatorial plane, were subsequently taken into account by
Smith [18), who derived theoretical expreasions for the tensor g, to second-order in
perturbation ; these were later extended to third.order in perturbation by Moreno [191.
Finally, Aramburu and Moreno {20] deduced the theoretical expressions for all three.
¢, 4 and the superhyperfine (s.h.f.) tensors of the Cu?* square.planar complex, using
the MO theory, to third-order in perturbation, taking into account the contributions
from the bonding MOs.

Explicitly, the S. H.P. can be formally expressed as functions of X, the core polariza.
tion contribution, and the eleven coefficients of MO «;, fi (§ =0, 1, 2), and x;, 5}
(¢ = 1,2), and u as follows [20]:

g = g, + ok, —a'ky.,
g =g, + bk + b'kz,
A” = -K‘;'zdo':'P(a +a'+%b+-§-b').

and

1P ,
AJ_=-K—.4.,-:-1—1T(b+b>. (8)

In (8) g, (= 2.0023) is the free electron g value. P = 2¢guppx(r~*)y = 0.036 cm=!
[21], where gv, 4y, and (r~3)y are. respectively, the nuclearg factor, the nuclear mag-
neton and the average of the inverse.cube radius of the Cu?* ion.

The various quantities appearing on the right-hand sides of (8) are defined as follows:

s .2
Ao=—-;aoP,

B 130 3 . ﬂ:-' ("" ' .30 )
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and )
b = 2a3ad (1 + b byl )Ei' ¥
TV V2 |8y 4

In equations (7) 4, and 4, are the d-d transfer energies of the dyy «~ dsi-y and
des vz =~ dyi_y: transitions, determined presently from the optical-absorption spectrum
to be 4, = 15243 em~! and 4, = (v, — 1)/2 = 16807 cm-!, while 4; and 4, are the
charge.transfer transition energies corresponding to the charge transitions 1bag ~ 3b,,
and le; — 3by,. respectively (determined presently from the optical-absorption
spectrum to be 43100 cm-!. each). For comparison. it is noted that for the CuCl3—
complex, which possesses a D, svmmetry [17], the calculated values of 41 and 4a are
found to be. respectively. higher, and lower, in energy, than that of the observed
charge.transfer transition band 3e, - 3bjg. In equations (7) &y, &y are, respec.
tively, the spin—orbit coupling constants of the central metal ion (Cu?*) and the
ligand ions (0%-) of the complex. (The values of |§y| and |§/&x| are assumed to be
830 cm~-! and 0.18 (18].) Further. in (7) §,, S, and S,, in the expressions for &,, &y, k,,
and k. are the group-overlap integrals,

So = uSpo ~ VO =49 8,
Sy = (dzy |Yp= (b2¢)> ’

and

8, = (da: 1= (&) , (8)
where

Spa = (datmyt | Xpo (b1g))
and

Sy = (daiyr |¥a (byg)) - (9)

The group-overlap integrals Sp,, S,, §,, and §, can be estimated in terms of S,
the diatomic-overlap integrals between the 3d orbital of the Cu?* ion and the 2sand 2p
orbitals of the oxygen ligands. For a square-planar configuration. in which the contri-
bution from the orbitals of axial atoms can be neglected, these group.overlap integrals
are expressed as [22]

Spe = V3 8,205, 3de),
S, = V3 8,2s6. 3de),

8 =2 8,(2p=, 3d=),
and N
S, = /2 8,(2p=. 3d=) .

Here the ¢ and = in the parentheses after S, indicate g- and =-bonding, respectively.
These diatomic-overlap integrals are calculated from the approximate formulae for
the 3d., 25, and 2p-orbitals in o- or =-bonding [23, 24], using the double.} radial
functions of the copper 3d-orbital [25], and the oxygen 2s. and 2p-orbitals [26].
By assuming the Cu-O bond length (R,) in the equatorial plane to be 0.2075 nm the
values of the group.overlap integrals are here estimated to be Spe = 0.132, S, = 0.107,
8§, = 0.0730 and S, = 0.0516.
I'(u). appearing in (7), is given by

Tw) =y — (1 — ) B, (su) c—jﬁ p.u)). (10)
\ i
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where (1) refers to the ligand 1. representive of the four equivalent (1. 2. 3. 4) oxygen
ligands. while s and p,d enote the corresponding orbitals.

The value of the integral (s(1)|8/8y(1}{py(1)) in the expression for [(u) in (10)
is 0.37. whose magnitude was estimated by Smith (18], while the sign was determined
by Aramburu and Moreno [20), in accordance with the fact that the most-covalent
systems experience positive g shifts. whereas the most-ionic ones negative g shifts.

The eleven MO coefficients (x,, §i; 3 = 0. 1. 2 anda,, 3i; i = 1. 2. and u), appearing
in (7) to (10) have the same definitions as those given by Aramburu and Moreno [20].
Specifically, x; and g fori = 0.1. 2, respecnvelv, are the MO coefficients of the anti.
bonding levels 3b,4, 2bay, 2¢;, whilex; and g; for i = 1. 2 are. respectively, the MO coef-
ficients of the bonding levels 2be, 2eg; here x refers to the coefficients of the central
Cu?+* jon of the complex. while 3 to those for the ligands. 4 and (1 — u?)¥2 are, respec-
ively, the coefficients of the p and s orbitals of the oxygen ligands in the 3b,g4 configu-
ration, which depend on the hybridization of the oxygen ion of the water molecule.

There exists a relationship between the antibonding and bonding MO coefficients

of 2bsg and 2e; levels [27],

Y xa— BB xS —afS, =01 i=12. a1
Finally. the normalizations of the MO coefficients are (28]

a; = 3% — 2x3S = 1; i=0.1.2 (12)
and :

a;g?ﬁ? —_-21?5?5:=1; i=12. (13)

In the present case (Cu**-doped MAT) there are twelve unknown coefficients; these
are the eleven MO coefficients and the core-polarization contribution (X). Howerver,
there are available only eleven equations: four expressions for the S.H.P.. equations
(6), five normalization conditions between x; and g, (i = 0. 1.2). and x; and 3; (i =
= 1. 2), equations (12) and (13). and two equations between the coefficients of the
antibonding and the bonding orbitals. equations (11). In order to reduce the number
of unknowns to be determined to eleven the value of the coefficient u has here been
assumed to be |'3/2. corresponding to sp® hybridization of oxygen (water) ligand [29].
It is difficult to obtain well-efined solutions for the MO coefficients. because the equa-
tions relating the MO coefficients are non.linear. On the other hand. in order to esti-
mate their values one can always fit the MO coefficients by a least-squares technique

+ . .
to M = S (SHP:,,.;SEP)y. — 1% with the condition that the best-fit MO coefficients

sl
minimize the value of JI. Here SHP* (i =1 to 4) refer to the four principal values of
the tensors 2 and A (gy. g-. d.. and 4 .\ while obs. and cal. indicate their observed
and calculated values. respectively.
The MO coefficients and K. so determned. using the prozram EUREKA on an
IBM.PC XT. equipped with a MATH Coprocessor chip 308%-2. are listed as follows:

K (em™) Y B0 % A P L X3 5
123 < 10-* 038 0.5 1.0 0.01 098 026 002 1.0 021 097

These coefficients are characterized by the value of JI = 0.3+, The presently.deter-
mined value of A = 125 ¢ 10~ cm-* is verv close to K == 130 x 10~ cm~*. which
has been caleulated theoretically for the free Cu2* ion by Watson and Freeman [30).
The present values of the coetticients x,. Yy andag imply that the nature of the bonding
of the Uu* jon in MAT crystal lattice is not purel\ ionic. This is because v§ = 0.77
indicates that there is an appreciable in-plane covalent g-bouding of Cu** ion with
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the oxygen ligands in the equatorial plane. (If a; = ]. there would have been no
covalent bondmg ) On the other hand. there is no in-plane covalent =-bonding in the
complex since ai = 1.0. Although the axial ligands are not taken into account in the
Dy, square-planar configuration. the present value of a3. bemg very cloge to unity
(= 0.96). indicates that the out-of.plane covalent =-bonding is quite small. Thus. the
nature of bonding with the oxygen ligands along the axis, belonging to the two car-
boxyl groups. is expected to be mostly ionic.

The presently-determined values of A and the MO coefficients can be compared
with those estimated by Manakkil [1] using a rather simple model [2]. He only estimat-
ed the values of x,. &,. a,. 8nd K. His values forx, (= 0.86).4, (= 0.98). and &, (= 0.99)
are very close to the present values. while K = 115 x 10-Y cm~! is somewhat different
from the present value.

3. Concluding Remarks

The present EPR and optical absorption studies have enabled the determination of
the spin-Hamiltonian parameters g, g, . A4, and d |, as well as the crystal-field par-
ameters D,. D,. and D,. These have been used to estimate the core polarization K
and the coefficients of MO and K for Cu®* in MAT lattice.

The values of g, and A4, determined presently, are significantly larger than. while
those of g . and 4, are very close to. those reported by Manakkil [1). Further. the pre-
sently-determined principal values of the tensors g and A at liquid-helium tempera-
ture are the same as those determined at liguid nitrogen temperature. within experi-
mental error. Manakkii [1] did not carry out any EPR measurements at liquid-helium
temperature.

The optical-absorption spectrum has been explained well in terms of a Dy, square-
planar configuration of the 02 ligands in the Cu?* complex taking into account the
spin-orbit coupling. The presently-determined MO coefficients indicate that for the
Cu?* complex in MAT lattice. the bonding between the Cu®* ion and the oxygen ligands
in the square.planar configuration is partly covalent, while the bonding between the
Cu?* jon and its axial oxygen ligands is mostly ionic.
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X-band EPR measurements on both single-crystal and polycrystalline specimens of Cu’*-doped
cadmium ammonium sulfate, CdINH,(S0,);-6H:0, have been made over the temperature range
4.2-354 K. Hyperfine Cul* forbidden transitions were observed at 4.2 K. The spin-Hamultoman
parameters, including the quadrupole-interaction tensor  (at 4.2 K only), are esimated by the use
of a rigorous least-squares fitting procedure from EPR line positions recorded at 295, 77, and 4.2 K
for the singie-crystal specimen. The temperature dependence of the g values are explained by taking
into account the pseudo-Jahn-Teller effect expenienced by the Cu(H,0),* complex. The differences
in the energies of the three Jahn-Teller contfigurations of the CutH,0),** complex have been es-

timated.

L INTRODUCTION

An EPR study of the Cu?* ion in a cadmium ammoni-
um sulfate, Cd(NH,),(SO,),-6H,0 (hereafter CAS) single
crystal at 300 and 77 K has been reported by Satyanaray-
ana,’ indicating that the impurity ion substituted for a
Cd** ion in the CAS host lattice. The ground state of
the Cu?* ion was determined, from the observed ortho-
rhombic spin-Hamiltonian parameters (SHP), to be
predominantly the iX?=Y?) orbital, with an admixture
of the [3Z%—R?) orbital.

Silver and Getz* examined in detail the temperature
dependence of the EPR spectra of Cu®* introduced in the
Zn Tutton salt K,ZniSO,);6D,0. They related the
temperature-dependent principal g values, and the
differences in the energy splittings between the three
Jahn-Teller (JT) configurations to the unpaired electron
(Boltzmann) populations in the three potential valleys.
Petrashen er ai.* studied the pseudo JT nature of
Cu(H,0)¢** complexes in zinc Tutton salts, and estimat-
ed the differences in the energy splittings between three
IT potential valleys from the EPR and x-ray data. They
established a relation between the ratios of the energy
splittings (8, ;/5, ;) of the three JT configurations of the
Cu(H,0)¢’* complex and the symmetry of the host com-
plex.

Misra and Wang® proposed a model to interpret the JT
effect in Cu’~-doped diamagnenc host latuces.
Specificaily, in this model, the diamagnetic 10ns, due to
their closed outer electronic shells, cause the local sym-
metry of the host lattice to be high. When the paramag-
netic Cu®~ ion substitutes for a diamagnetic ion in this
lattice, local distortions are introduced because of the
difference 1n size from that of the host ion, as well as due
to its paramagnetic nature. In the case of Cu’*-doped
CAS latuce, the pseudo JT effect, similar to that which
occurs in the lattice of Zn Tutton salts, might be expect-
ed, because the Cd?* ion is diamagnetic.

It is the purpose of this paper to present more detailed
EPR studies on Cu**.doped CAS single-crystai and
powder specimens. The measurements are carried out
over an extended temperature range, 4.2-354 K, making
1t possible to observe the pseudo JT effect. At 4.2 K the
forbidden hyperfine (hf) transitions are observed unlike
that at higher temperatures. The Cu*~ SHP, including
the quadrupole interaction tensor, are presently evaluated
using a rigorous least-square fitung (LSF) procedure,
fitting simuitaneously a large number of line positions ob-
served for several orientations of the Zeeman field (B).
The powder data are used to study detailed temperature
vanations of the g values required to estimate the energy
splittings between the potential valleys of the Cu(H 0"~
complex.

1 ©1990 The Amencan Physical Society
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Il. SAMPLE PREPARATION
AND CRYSTAL STRUCTURE

Cu®*-doped CAS single crystals were grown by slow
evaporation of an aqueous soluion. consisting of
stoichiometric amounts of 3CdSO,-8H.0 and
(NH,);SO,, to which was added a sufficient quantity of
CuSO,5H,0, so that there was one Cu®~ 1on for every
100 Cd?~ ions.

The crystal structure of CAS has been reported by
Montgomery and Lingafelter® to be monoclinic ispace
group Py, ); the unit-cell dimensions are ¢ =9.43 A,
b=12.82 A, ¢ =6.29 A, B=106'52. There are two for-
mula units per umit cell (Z =2); each Cd*~ 10m 15 sur-
rounded by six water molecules. The bond lengths be-
tween the central ion Ca*™* and the higand atoms are
2298 A, 2.297 A, and 2.241 A for Cd—O(T (H.0),
Cd—01(8) (H,0), and Cd—0(9) (H,0), respectively; while
the bond angles are 89.1° for O(1—Cd—01(8), 92.6' for
O(71)—C3--019), and 31.3* for O8—Cd—0(9).® [The
positions of Cd, O(7), O(8), and 0(9) are defined 10 Ref.
6.) These data indicate that the Cd*~ 10n n CAS 1s ap-
proximately 1n a compressed tetragonaliy distorted octa-
hedral crystal field.

III. EXPERIMENTAL ARRANGEMENT AND EPR DATA

The EPR spectra were recorded on a X-band Vanan
V4502 spectrometer using a 100-kHz field modulation for
measurements of room (RT) and high temperatures and
400 Hz field modulation for measurements at hquid-
nitrogen (LNT) and hquid-hebum (LHT) temperatures.
The magnetic field was measured with a Bruker (B-
NM20) gaussmeter. For low-temperature EPR experi-
ments, the temperature was varied by a heater resister in-
side the liquid-helium cryostat. Temperatures in the
liquid-mitrogen and liquid-helium ranges were determined
by measuring the resistances of the platunum and ger-
manium resistors, respectively, using appropriate calibra-
tion charts. For high-temperature specira, a Varian As-
sociates variable-temperature controller (model No.
EA4540) attached to a microprocessor digital thermometer
manufactured by Omega (mode] No. 870) was employed.

The angular variations of the EPR line positions were
recorded for the orentation of B in three mutually per-
pendicular planes at all temperatures of measurement for
the single-crystal specimen. The spectra were recorded
for the orientation of B at every 4" interval at room and
high temperatures, and at every 5 interval at LNT and
LHT. The largest flat plane, which contains the crystal-
lographic ¢ axis of the single-crystal specimen, was
chosen 10 define the zx plane. The direction of B, in this
plane, for which the positions of the hf lines were at the
minimum values of B, was chosen 10 be the 2 axis, while
the direction at 90" to this defined the x axis. (The y axis
is, of course, perpendicular to the zx plane.) For EPR
measurements in the zy and xp planes at RT the single-
crystal specimen was rotated about the x and z axes, re-
spectively, keeping the direction of B fixed. At LNT and
LHT, B was rotated sbout the x and 2 axes keeping the
single-crystal specimen fixed.

The EPR spectra of the powder specimen were record-
ed at various temperatures in the temperature range
4.2-354 K in order to study the 1emperiture dependence
of the g values.

A. Single-crystal EPR spectra at 295,77, and 4.2 K

The single-crystal EPR spectra of Cu’~-dopec CAS at
295, 77, and 4.2 K were found to be quite different from
cach other mn their profiles as seen from Fig. 1, which ex-
hibis EPR spectra for the orientation of B at 10° from
the z axis in the zx plane. The specirum at 295 K con-
sists of two broad lines, which indicate the presence of
two physncally eqmva]cnx. but magnetically inequivalent,
Cu®~ complexes in the vnit cell of the CAS latnice. At 77
K these two broad Lines spiit, due to the Cu®™ hf interac-
tion, 1nto two sets of tetrads due to the more abundant
1sotope 63Cu (69.09% sbundance); the lmes correspond-
ing 10 the less-abundant isotope of Cu®~ (4*Cu, 30.91%
abundance) could not be cleariy seen. At4.2 K, some sa-
telhte hines, corresponding to the hf forbidden transitions,
were observed.

DPPR

*"/\//r

4.2 K

UNITS )

FIRST-OERIVATIVE EPR SIGHAL. { ARB.

2.8 3.z 3.4
MAGNETIC TFIELD (kG)

i3]
w

FIG. 1. Single-crystal EPR spectra of Cu*~-doped CAS for B
at 10° from the 2z axis in the 2x plane at various temperatures:
the allowed hf hines at 77and 4.2 K are indicated by longer bars,
the eight short bars indicate the forbidden-transition line pos:-
tions corresponding to the transitions Am=—1, +1, =2, +2,
+2, =2, +1, =1, respecuvely, as expressed in order from low
to high magnetic field values.
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TABLE 1. Principal values of the g and 4 matnices isquare roots of the principsl vaiues of the §* and
A° tensors, respectively), and the J tensor for Cu* ™ 1n the CAS single-crystal specimen at different tem-
peratures. The pnincipal g values are dimensionless, while the principal values of the A matnix and the
@ tensor are in GHz.

Tem-
perature
(K) 8: 8 g A A, A, Q. Q, Q. Ref.

295 23373 2211 20712 a
295 2331 2202 2.073 b
n 23613 21721 1.0522 0333 0.074 0.151 A
n 2385 2172 2054 0333 0.078 0.157 b
4.2 24290 21594 2.0513 0335 0.077 0.156 0013 ~—0012 -—0.00! a

*Present work.
®Data from Ref. 1.

The EPR spectra of Cu’* ion in CAS is described by
the following spin Hamiltonian:

H=ugSyB+S A 1+1-Q-1—pyl-gyB . n

In Eq. (1), up and py are, respectively, the Bohr and nu-
clear magnetons, while 4 and @ are, respectively, the hf-
interaction matrix and the quadrupole-coupling tensor. §
{=1)is the electromc spin and I (=4)is the nuclear spin
of the Cu*™

The pnnmpal values of the 22 (g7 8 superscnpl T
denotes transposttion of a matrix) and A2 A7- 1) ten-
sors, as well as their direction cosines, were evaluated by
the use of a least-squares fitting procedure previously de-
scribed.”=? The direction cosines of the 22 tensor were
calculated with respect to the laboratory axes (x..2),
while those of the A4* tensor were calculated with respect
to the principal axes of the 2° tensor. The directions of
the principal axes of the g° tensor did not change with
temperature; the principal axes of the A? tensor were
coincident with those of the g2 tensor at LNT and LHT,
within experimental errors. The pnncipal values of the g
and 4 matrices at varous temperatures are listed n
Table I, which also includes the values estimated by
Satyanarayana.'! Table I gives the direction cosines of
the principal axes of the g and 4 matrices.

The elements of the ( tensor were evaluated from the
forbidden hf line positions employing another LSF pro-
cedure; using the computer program which was used to
calculate the Q tensor in the case of VO*.doped
K.C,04-H.O (Ref. 10) modified to take into account the
different nuclear spin of Cu®™ and the forbidden hf tran-

sitions, &m ==1i, £2. In thls program, the previously
determined values of g% and 42 tensors were used as con-
stants; only the components of the ( matnx were varied.
A total of 258 forbidden hf line positions which included
six forbidden hf lines for each orientation of the external
magnetic field in the three mutually perpendicuiar planes
zx, =¥, and xy were simultaneously fitted in the LSF pro-
cedure. The matnx of the J, so determined, was diago-
nalized to obtain the principal values of the § tensor as
well as its direction cosines with respect to the principal
axes of the J° tensor. There are eight forbidden hf transi-
tions for AM ==1; Am=1%],=2, which are expected
theoretically there M and m are, respectively, the clec-
tronic and nuclear magnetic quantum numbers); howev-
er, only six forbidden transition lines are observed in the
best-resolved EPR spectrum. At LHT, the allowed- and
forbidden-line posttions for any orientation of B were cal-
culated using the SHP evaluated previously, so that the
observed hf forbidden transition lines could be identified.
The results indicate that the two remaining forbidden-
transition lines, not clearly resolved, lie extremely close
to the allowed hf lines as shown in Fig. l. The principal
values of the { tensor are included in Table I, while the
direction cosines of 1ts principal axes are included in
Table 11.

B. Powder EPR spectrum {4.2-3%4 K)

In order to study the temperature dependence of the g
values the EPR spectra of the CAS polycrystalline speci-
men were recorded 1n the temperature range 4.2-354 K.

TABLE I1. Direction cosines of the 2. . matrices (same as those the 3° and 42 tensors) and those of
the @ tensor for Cu*~ in the CAS single-crystal spectmen at 4.2 K. The principal axes of the J matnx
are expressed with respect to the laboratory axes (x.y.2/. defined 1n Sec. [i1 A. The pnncipal axes of
the 4 matnx are coincident with those of the 3 matnx. and the principal axes of the @ tensor are ex-
pressed relative to (x’,y",2’), the principal axes of the g matnx.

z x y :' X y
By 0.996 0.091 -0.022 Q. 0.970 0.242 0.032
8 A —-0.042 0.227 -0973 Q. -0.195 0.848 -0.493

84, —0.084 0.970 0.230 Q. —0.147 0472 0.869
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Some of these are plotted in Fig. 2. As can be seen from
Fig. 2, a single broad EPR hne 1s observed at high tem-
peratures which consists of three components. corre-
sponding to the three principal values g, g,,. and g,,,
whereas at Jow temperatures, the components icorre-
sponding to g,.) lying at the highest values of the magnet-
1c field exhibits the hf structure, while the hf structure
corresponding to the other two components (g,, and g,,.)
15 not resolved, even at 4.2 K. This 1s 1n accordance with
the previously reported' spectrum of CAS, and different
from the cases of Cu*"-doped Zn Tutton salts w here the
three components of hf coupling were well resols ed. even
at temperatures shghtly above 77 K.° This indicates that

170 K \
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FIG. 2. Polycrystaline EPR spectra of Cu**-doped CAS at
vanous temperatures.

the Cu®* spins have a rather strong interaction with the
CAS lattice compared 10 that with the latuces of Zn Tut-
ton salts.' The principal g values, as estimated for the
polycrystalline CAS specimen at various temperatures,
are plotied in Fig. 3.

‘The experimental data described above for either the
single-crystal or polycrystalline specimen reveal the fol-
lowing features: (i) All the principal values of the Cu®" 2
and A matrices (g,,, Aq,t @=X, }\ 2} are temperature
dependent, except that g,, does not change appreciably
in the temperature range 4.2~-°7 K. The directions of the
principal axes of the 2 and 4 matnices are coincident at
all 1emperatures within the expenmental error. (ii) The
average of the principal vaiues of the 2 matrix at vanious
temperatures 1s close to 2.2 which 15 equal “to
1g, —4A/4), where g, is the g value of the free electron
1=2,0023), A (=—830 cm™') (Ref. 11) 15 the spin-orbit
coupling constant ;or the free Cu*~ 10n, and 4 1s the oc-
tahedral crystal-field-sphtung constant for the Cu®~ 10n
17./8==0.05)." (iii} The widths of EPR lnes are tem-
perature dependent.

IV. JAHN-TELLER EFFECT

The principal values of the § matria. being all different
from each other over the 1emperature range 4.2-354 K
as plotted in Fig. 3, indicate a low symmetry of the Cu?”
compliex in the CAS lattice. namely, orthorhombically
distorted octahedral symmetry. According to the
crystal-field theory, the orbital doublet E, of the Cu®”
jon is split in a field of orthorhombic symmetry. This
sphitting 1s sufficiently small to allow the mixing of the
two substates of E, by coupling with the lattice vibra-
vons. The vibronic mixing of the close-lying (pseudo-
degenerate) levels due to the interaction of the Cu*~ ion
with its lagands manifests itself i the pseudo Jahn-Teller
T effect. 2

The molecular and electronic structure of the Cu®™
ion, surrounded by six idenuical ligands, is conventionally
described in terms of JT coupling between the doubly de-
generate electronic (E, ) and vibrational (¢, ) functions of
the octahedral complex.’* Assuming a harmonic-
vibrational potential and taking into consideration only
the linear coupling terms gives nise to the well-known
Mexican-hat potential surface. The nuclear geometry
fluctuates between the various conformations of D, and
D,, symmetnies, which are generated by linear combina-
tions of Og and Q,, the components of the ¢, vibrational
mode. Q, and Q, are conventionally expressed as
Q.=pcosd and Q, =psind in terms of a polar coordinate
svstem (p,d). When higher-order coupling terms are in-
cluded, the perimeter of the Mexican-hat becomes
warped giving rise 10 three equivalent mimma whose pro-
jections correspond to different é values in the (Q,,Q,)
space. Equivalentiy, the Mexican-hat potential results in
three equivalent potential valleys Ham'' pointed out
that a strain, having a tetragonal component, displaces
the energy of the three configurations with respect to
cach other, thereby destroving their equivalence. Com-
paring the Cu?”™ principal g values at 295 K in the CAS
lattice with those in the pure Cu(NH,),(SO,}),*6H1O lat-
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FIG. 3. Temperature variation of the principal g values of the Cu** in CAS. The values at 4.2, 77, and 295 K are those estimated
from a single-crystal EPR lines, while those at other temperatures are estimated from line positions of a polycrystalline specimen.

tice ac 300 K.* it is found that the two sets of g values are
very close to each other. This indicates that the local
symmetry of the Cu*~ fon in the CAS lattice is close to
that of the Cu** 1on in the pure CulNH,)(SO,),-6H.0
lattice rather than that of the Cd?* ion, which the Cu*~
ion replaces in the pure CAS lattice. Thus, a large ortho-
rhombic distortion of the lattice occurs when the impuri-
ty ion Cu** enters the CAS lattice substituting for a
Cd** ion due to the difference in the ionic radii of the
Cu®* and Cd!* ions and the paramagnetic nature of the
Cu** ion. This orthorhombic distortion can be seen to
be due to the three mutually perpendicular tetragonal
components of the crystal field which perturb the three

quivalent potenuial valleys resulting in three inequivalent
potential valleys with different energy levels,

Sitver and Getz® studied Cu**-doped Zn Tutton salts
and proposed that when the JT effect is strong with ap-
preciable warping and the overlap between the wave
functions describing the potential valleys in the three
different mimima 1s rather small, the temperature depen-
dent principal g and A values could be expressed as sta-
tistical averages using the occupation probabilities of the
three minima which possess different energics under the
assumption of short reorientation times which ensures
Boltzmann population distributions. Petrashen er al.’
expressed the expressions of the temperature-dependent
principal g values as follows:

y, N, N,
A = Tgxl + Tgy1+'igxi ’

y N, Ny
8-‘T)=Tgvl+‘73:2+‘73y3 ’ 2

and

YN N
gt = ¥ & + Tg"+ N

where the g,. g,, and g, correspond to the Cd—OI7}
(H,0), Cd—018) (H,0), and the Cd—O0(9} H,O) direc-
tions, respectively, i the Cd(H,0)2" complex. (The
presently estimated principal values of the § matrix are
related to g, as follows: g,, =g, 8,1 =8,, 8 =8+ Ny,
V.. and .V, are the populations of the first, second, and
third potenual valleys so that the total population
N=N =N~V 8o (@a=x, p, 2o k=1, 2, 3) are the
principal values of the 2 matrix of the CuH,0i** com-
plex in the kth valley; the g, sets in (2) are expressed ac-
cording to the identification of the JT configurations with
the minima of the adiabatic potential in the (Q,,Q, !
space. (The subscript k indicates the relative order of the
energies of the three minima of the potential valleys.
k =1 indicates the lowest energy while k =1 indicates
the highest energy of these minima.) It is necessary to
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know g, in order to estimate g.(THa=x, y, 2). Gen-
erally speaking, g, values are different in different val-
leys. However, g, values may be used in place of ali the
8ai+ (k =1,2,3) for the case of small deformations of the
octahedron a1 4.2 K for the Cu(H,0)>~ complex, since
the compliex 1s fully localized in the valley possessing the
lowest mimmum energy (k =1} at and below 4.2 K.

5, ». the energy splitting between the potential valleys |
and 2, has been calculated™* for Zn-Tutton salt under the
assumption that N'y=0 at temperatures below 300 K us-
ing the first two equations of (2). This 1s because the
third equation of (2) yields g, ( T1=g, =g, . for this case.
Thus, one has to use only the first two equauons of (21,
putting N.=0 to estimate N, and N, which vield §, ,,
using a Boltzmann population distribution. As for es-
timating the value of §, 3, the energy splitting between
the potential valleys } and 3, Silver and Getz* 100k into
account the increase n g, at high temperatures while
Petrashen er al.* estimated the value of 6, ,/8, ,, using
the bond lengths between the central diamagnetic ion and
its ligands as determined from the x-ray data; they es-
timated the value of 8, ; in terms of the value of 6, , us-
ing (2). The symmetry of the Cd(H,0),>~ complex in the
CAS lattice 15 a distorted tetragonally compressed oc-
tahedron since the bond-length difference between
Cd—O0(7(H,0) and Cd—O(8)(H,0) 15 very small (0.001
A).® Thus. these two bond lengths can be assumed to be
the same within experimental error (0.007 A ). According
to Petrashen er al.* the value of &, ,/, » could not be es-
timated from x-ray data in the present case. As for the

present case, the same procedure can be followed as that
for Zn-Tutton salt except that the g, value does not here
change below 77 K, as compared 1o the case of Zn-
Tutton salt for which it does not change below 300 K. It
implies that the potential valley 3 must lie considerably
higher in energy than the valley 2 in the present case, and
that the value of b,  in the present case, i.c., for Cu*~ In
CAS, must be less than that for Cu*" in the Zn-Tutton
salt.

In order to calculate the ratio of the populations,
N\ /N,, in the temperature range 4.2-77 K, only the first
two equations in (2) have been used because the value of
8, does not change 1n this temperature range. At tem-
peratures above 77 K, the three equations of (2) are taken
into account since g, is temperature dependent in this
range. Finally, the N, /N, and N, /N, ratios, as estimat-
ed from (2), at 295 K are 3.6 and 5.0, respectively, which
vield, using Boltzmann population distribution, i.e.,
Ny /N, =exp(8,,/kT), the values of §, ; and b, ; to be
260 and 330 cm ™, respectively, at 295 K.

Figure 4 exhibits the dependence of b, » upon tempera-
ture 1n the range 4.2-295 K; it shows that 6, , increases,
in general, with temperature, this increase being quite
enhanced at lower temperatures while slow at intermedi-
ate temperatures, acquiring ultimately a steady value
taround 260 cm™') at tcmperatures between about 212
and 295 K. The temperature dependence of the energy
6,4 is due to the deformation of the crystal latuice with
changing temperature,' as revealed by the change of g,
since N, is no longer zero 1n the present case at 7> 77 K.

260} T -
E 200}
"
o -
140
80 |-
L]
20 1 1 1 1 1 1
4,2 50 100 150 200 250 295

TEMPERATURE ( K )

FIG. 4. Temperawre dependence of the encrgy sphtting between the lowest and the intermediate potential valleys (6,,5) for the

Cu(H,0).°" complex in CAS.
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V. CONCLUDING REMARKS

The main results of the present EPR study can be sum-
marized as follows: .

i) The orthorhombic Cu** principal values of the 2°
and A? tensors in the temperature range 4.2-354 K indi-
cate that the local symmetry at a Cd** site, iec.
tetragonal-compressed octahedral symmetry, in the un.
doped CAS lattice suffers an orthorhombic distortion
when the Cu** ion enters the CAS lattice.

{ii) Forbidden hf transitions were observed in the Cu*~
EPR spectrum in the single-crystal CAS specimen at 4.2
K. The quadrupole interaction matnix () was estimated
from their line positions.

{iii) The present study of both the single-crystal and
polycrystalline specimens over the temperature range

4 EPR OF Cu®*-DOPED CADMIUM AMMONIUM SULFATE: ... 7

4.2-354 K provided the temperature dependence of the
principal components of the 2 matnx. The variation of
their values was interpreted to be due to the pseudo JT
effect experienced by the Cu(H,0)3** complex in the
CAS single-crystal lattice. The ratio of the energy split-
tings between the three adiabatic potential valleys (§, ,
and §,;) have been estimated from the temperature
dependence of the prnincipal values of the § matrix.
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APPENDIX II

COMPUTER PROGRAMS

This appendix contains the computer programs for
estimation of (i) the six independent of the 52 tensor from
the fine-structure line positions, (ii) the six independent
components of A% tensor from the h.f. line positions, using
the §2 components as initial values as obtained from (i),
(iii) the twelve independent components of the g° and A°
tensors from the h.f. line positions, and (iv) the five

independen components of the Q tensor.
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141
PROGRAM CUG (INPUT,OUTPUT,TAPES5=INPUT,TAPE6=OUTPUT)

NO =THE NO. OF FIRST MAG FIELD
IN DATA INCLUDED IN FITTING
M =NO. OF PARAMETERS
L4 =NO. OF ITERATIONS ALLOWED
LL5=PARAMETER WHICH TELLS
COMPUTATIONS OF SMD OF INDIVIDUAL LINES
:WTTH L4 ITERATIONS IF LL5=0
:WITHOUT ANY ITERATIONS IF LL5=1
Q1 =MIN. VALUE OF SUM OF SQUARES FOR FITS
(CHI-SQUARE TOLERANCE)
2 (I)=MAGNETIC FIELD VALUES FOR FITS
B =PARAMETER MATRIX
N =NO. OF DATA POINTS USED IN LEAST-SQARES FITTING
Q1 =N/10
Q2 =TOLERANCE ON GRAD(CHI**2) =APPROX .01l
FM(I) = MEASURED VALUES
FC(I) = CALCULATED VALUES
ERR(I)= STANDARD DEVIATION ON FM(I) = SQRT(FM(I))

n

DIMENSIONS OF A,B IN EXAM AND MATINV SUBROUTINES
SHOULD BE THE SAME AS THOSE OF B2,Bl1 RESPECTIVELY IN
THE MAIN PROOGRAM AND IN CURFIT

DIMENSIONS OF Q,V IN JACOBI1 SHOULD BE THE SAME AS
THOSE OF B3,B2 RESPECTIVELY IN CURFIT

NUMBER=INDEX THAT CHANGES WITH EACH NEW CASE
NCASES=NO. OF CASES CONSIDERED.
ITS VALUE SHOULD BE ENTERED.

KILL=0 THE SAME CASE IS COMPUTED COMPLETELY
=1 THE CASE IS DROPPED AND MOVED TO NEXT ONE
(NEGATIVE SQUARE ROOT ENCOUNTERED)
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THIS PROGRAM ANALYSES KRAMER*S DOUBLETS DATA,
SPECIAL FOR CU2+
B(1) -B(6)=G-SQUARE COMPONENTS-(22Z,2X,XX,2Y,YY,XY)
B(7),B(8),B(9) ARE MISORIENTATION ANGLES IN
7X,7Y,XY PLANES, ENTERED IN DEGREES.

DIMENSION Z(200),FM(200),FC(200),DF(200),ERR(200),
1B(13),B1(13),B2(13,13),DC(3500),ABC(2),Y(4),

2THETA (200) ,HN(200) ,22 (200,20) , HHDPPH(200,20) ,NN(25),
3GG(13,20),SMD(20),IBB(200,2),SSMD(200),TEETA(200,20),
4G(13,20),GSQRT(3) ,DELHH (200, 20) ,DELH(200)

DIMENSION AG(3,3),AAG(6),E(40),VR(3,3),VI(3,3),

1FREQ (20) , FACTOR (20) ,ADD(20) ,NZERO (1) ,NCASES (1) ,

212X (1),LZY (1) ,LXY (1)

DIMENSION FFREQ(200,20),AADD(200,20),
1FFACTR(200,20) , BG(9)

DIMENSION VG2(3),VB(3,3),VG(3),VG2R2(3),

1VGR2 (3),D(3),WK(50)

COMMON/DATA1/ABC, ¥

COMMON,/DATA2/DC

COMMON/DATA3/DELH

EQUIVALENCE(Z,DC), (FM,DC(201)), (DF,DC(401)),
1(FC,DC(601)), (ERR,DC(801)), (THETA,DC(1001)),

2 (HN,DC(1201)), (B,DC(2500)), (B2,DC(2600)),
3(N,DC(1575)), (L4,DC(1576)), (Q1,DC(1577)),
4(Q2,DC(1578)), (M,DC(1579)), (I,DC(1580)),
5(L,DC(1581)), (B1,DC(2550)), (IBB,DC(2000)),

6 (SMD,DC(1989) ), (NUMBER,DC(1988))

Cx**** ANGLES IN ZX PLANE ARE ENTERED TO BE BETWEEN 0 AND

O 0O 0O 0 00

360 (2.*PI), THOSE IN THE ZY PLANE ARE ENTERED TO BE
NEGATIVE,I.E. BETWEEN LESS THAN O AND -360 (2.*PI),
THOSE IN THE XY PLANE ARE ENTERED BY FIRST CONVERTING
TO BE BETWEEN 0 AND 360 (2.*PI) AND THEN ADDING 9000
TO THEM (EXAMPLE: IN THE XY PLANE THE ANGLE -5 DEG
FROM X IN XY PLAN IS FIRST CONVERTED TO 355 DEG AND
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C THEN ENTERED AS 9355.)

READ (5,*) NZERO,NCASES,LZX,LZY,LXY
WRITE (6,5123) NZERO,NCASES,LZX,L7Y,LXY
5123 FORMAT(1X, 6HNZERO=,I8, 7NCASES=,18,
14HLZX=,I8, 4HLZY=,I8, 4HLXY=,I8)
READ (5, *) (2Z (J,NCASES) ,J=1,L2X)
READ (5, *) (TEETA (J,NCASES) ,J=1,LZX)
II=LZX+1
NII=LZX+LZY
READ (5, *) (2Z(J,NCASES) ,J=II,NII)
READ (5,*) (TEETA (J,NCASES) ,J=II,NII)
II=II+L2Y
NII=NII+LXY
READ (5,*) (22 (J,NCASES) ,J=II,NII)
READ (5,*) (TEETA (J,NCASES) ,J=II,NII)
NN (NCASES ) =NII
READ (5, *) (FFREQ (J,NCASES),J=1,NII)
READ (5, *) (DELHH (J,NCASES),J=1,NII)
READ (5, *) (AADD(J,NCASES),J=1,NII)
READ (5,*) (FFACTR (J,NCASES) ,J=1,NII)
READ (5, *) (G(J,NCASES) ,J=1,6)
188 FORMAT(1H1)
8 FORMAT(1X,4HQl = ,E13.5,5X,4HQ2 = ,E13.5)
137 FORMAT(3X,I2,5X,E16.6/)
136 FORMAT(10X,* INITIAL PARAME
1TERS*,//3X, *J*,10X,*B(J)*//)
135 FORMAT(1X,11H PARAME
1TERS, //3X, 1HJ, 10X, 4HB (J), 27X, 6HERRORS// )
9 FORMAT(2X, *HN=*,10(F9.4,4X))
140 FORMAT(3X,I2,5X,E16.6,15X,E16.6/)
138 FORMAT(5X,14H CASE NUMBER =,I2//)
141 FORMAT(10X,6H SMD =,E13.5//)
235 FORMAT (15X,5(E13.5,8X)/)

144 FORMAT(5X,*LINE NUMBER¥,5X, *LINE POSI
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1TION*,7X,*ANGLE*, /)

145 FORMAT(6X,I3,9X,F10.1,11X,6F8.2)

209

210

146

201

RD=3.1415926/180.

NUMBER=1
NCASES=1
NUMBI I=NUMBER
Q1 =1.E-8

Q2 =1.E-20
WRITE (6,188)
CONTINUE

M=6

MM=M

L4=5

N=NN (NUMBER)
DO 209 LL=1,9

B(LL)=0.

DO 210 LL=1,MM

B(LL) =G (LL, NUMBER)

WRITE (6,138) NUMBER

WRITE (6,136)

WRITE (6,137) (J,B(J),J=1,M)

N1=N

DO 3 IJK = 1,N1
HN(IJK)=FFREQ(IJK, NUMBER)

THETA ( IJK) =TEETA (IJK, NUMBER)

7 (1JK) =22 (IJK,NUMBER) * FFACTR ( IJK, NUMBER) +
1 AADD (IJK,NUMBER)

DELH (IJK)=DELHH (IJK, NUMBER)
CONTINUE

WRITE (6,144)

DO 146 IJK=1,N1

WRITE (6,145) IJK,Z(IJK) , THETA (IJK)
WRITE (6,8) Q1,02

WRITE(6,9) (HN(J),J=1,N1)

Do 201 J = 1,N1

FM(J) =HN(J)
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CALL CURFIT
WRITE(6,188)
WRITE(6,135)
DO 220 LL=1,M
220 GG(LL,NUMBER) = B(LL)
WRITE(6,140) (J,B(J),B1(J),J=1,M)
$SS=0.
c SSSs1 IS SMD(1) ,THAT IS WHEN ALL (LINES) SIGMA=1
$551=0
WRITE(6,11140) N1,N
11140 FORMAT(*N1=%,I3,*N=%,13)
DO 555 ID=1,N1
SSS=DF (ID) *%2
SSS2=DF (ID)**2/ (ERR(ID) **2)
$551=5551+5SS
WRITE(6,656) ID,SSS,Z(ID),SSS2
555 CONTINUE
WRITE(6,657)SSS1
657 FORMAT(10X,*SMD(1)*,E13.5,//)
656 FORMAT(10X,*LINE NUMBER = *,I2,5X,*SMD(1) = *,
1E13.5,* MAG. FIELD VALUE = *,E13.5,*SMD=%,E13.5)
301 FORMAT(10X,*FREQUENCY NO. = *,I3,5X,*EIGEN
1VALUE1l =#,I3,5X,* EIGENVALUE 2 =%,13)
WRITE(6,188)
AG(1,1)=B(1)
AG(1,2)=B(2)
AG(1,3)=B(4)
AG(2,2)=B(3)
AG(2,3)=B(6)
AG(3,3)=B(5)
AG(2,1)=AG(1,2)
AG(3,1)=AG(1,3)
AG(3,2)=AG(2,3)
C CALL SVLVC1(AG,50,50,E,40,VR,30,40,3, ITER)
CALL JACOBI (3,AG,1,NR,VR)
995 FORMAT (5X,I4)

s
Y |
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996 CONTINUE
WRITE(6,998)
998 FORMAT (5X, *EIGENVALUES OF G-SQUARE -TENSOR ARE:*,/)
WRITE(6,888) (AG(II,II),II=1,3)
DO 23 J6=1,3
IF(AG(J6,J6).LT. (0.)) GO TO 24
GSQRT (J6) =SQRT (AG (J6,36))
WRITE(6,26) J6,GSQRT(J6)
GO TO 23
24 WRITE(6,25) NUMBER,J6
23 CONTINUE
25 FORMAT(5X,*CASE NO.=+*,I3,* EIGEN
1VALUE *,I2,* OF G-SQUARE TENSOR IS NEGATIVE*)
26 FORMAT(5X, *EIGENVALUE #,I2,* OF G-TENSOR IS =*,E16.6)
WRITE (6,887)
887 FORMAT(5X,*EIGENVECTORS OF G-SQUARE -TENSOR ARE:*,,)
888 FORMAT (5X, 3 (E16.6,5X),/)
DO 885 II=1,3
885 WRITE(6,888) (VR(JJ,II),JJ=1,3)
VB(1,1)=B1(1)
VB(1,2)=B1(2)
VB(1,3)=B1(4)
VB(2,2)=B1(3)
VB(3,3)=B1(5)
VB(2,3)=B1(6)
VB(3,2)=VB(2,3)
VB(2,1)=VB(1,2)
VB(3,1)=VB(1,3)
FOLLOWING CALCULATES VARIANCES
VARIANCE OF G-SQUARE COMPONENTS
WRITE(6,38)
38 FORMAT(5X,*VARIANCES OF G-SQUARE COMPONENTSARE=+,//)
DO 31 K=1,3
VG2 (K)=0.
DO 31 II=1,3
DO 31 JJ=1,3
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VG2 (K)=VG2 (K)+ (VB(II,JJ)*VR(II,K) *VR(JJ ,K)) **2
VG2R2 (K) =SQRT (VG2 (K) )
31 CONTINUE
WRITE(6,32)VG2
32 FORMAT(5X,*VG2(1)=*,E16.6,2X,*VG2 (2)=*,E16.6, 2X,
1%VG2(3)=*,E16.6,//)
WRITE(6,39)
39 FORMAT(5X, *STANDARD DEVIATIONS OF G-SQUARE
1TENSOR COMPONENTS ARE=*,//)
WRITE(6,40)VG2R2
| 40 FORMAT(5X,*VG2R2(1)=*,E16.6,2X,
1*VG2R2(2)=*,E16.6,2X,
2#VG2R2(3)=*,E16.6,//"
c VARIANCE OF G-TENSO: «( '2ONENTS
DO 33 K=1,3
VG (K)=VG2 (K)/ (4.*AG(K,K,
VGR2 (K) =SQRT (VG (K) )

33 CONTINUE
WRITE(6, 35)

35 FORMAT(5X, *VARIANCES OF G-TENSOR
1COMPONENTS ARE=*,//)

WRITE (6,34)VG

34 FORMAT(5X,*VG(1)=*,E16.6,2X,*VG(2)=*,
1E16.6,2X,*VG(3)=*,E16.6,//)
WRITE(6, 36)

36 FORMAT(5X,*STANDARD DEVIATIONS OF
1G-TENSOR COMPONENTS ARE=*,//)
WRITE(6,37) VGR2

37 FORMAT(5X,*VGR2(1)=*,E16.6,2X,*VGR2(2)=*,
1E16.6,2X,*VGR2 (3)=%,E16.6,//)
WRITE(6,188)

NUMBER=NUMBER+1

IF ( NUMBER - NCASES) 1,1,2
2 CONTINUE

WRITE(6,188)

DO 230 LI=NUMBII,NCASES
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WRITE (6,138) LL
WRITE (6,141) SMD(LL)

WRITE (6,235) (GG(LM,LL),LM=1,M)
STOP

END

SUBROUTINE CURFIT

EXAM HANDLES ALL MATRICES OF DIMENSIONS UPTO THE
DIMS.MM OF A,B,C THAT IS M IS LESS THAN OR EQUAL TO MH
(SAME IS TRUE OF MATINV AND JACOBI)

FORTRAN 4

DIMENSION Z(200),FM(200),FC(200),DF(200),ERR(200),
1B(13),B1(13),DC(3500),ABC(2),Y(4),X(200),GRAD(13),
2D1(13),D2(13,13),SMD(10),B3(50,50),B2(13,13)

DIMENSION AI(13,13),W(40),2R(13,13),2I(13,13),FV1(13),
1FM1(2,13),FV2(13)

COMMON/DATA1/ABC, ¥

COMMON/DATA2/DC

EQUIVALENCE (Z,DC), (FM,DC(201)), (DF,DC(401)),
1(FC,DC(601)), (ERR,DC(801)), (B,DC(2500)),
2 (GRAD,DC(2513)), (B2,DC(2600)), (N,DC(1575)),
3(L4,DC(1576)), (Q1,DC(1577)), (Q2,DC(1578)),
4 (M,DC(1579)), (I,DC(1580)), (L,DC(1581)),
5(D1,DC(2800)),(D2,DC(2900)),
6 (SMD,DC(1989)), (NUMBER, DC(1988) )

EQUIVALENCE (B1,DC(2550)), (N2,DC(2490))

DATA (ABC=2HNO, 3HYES), (Y=1H , 1HC,1H*, 1HM)

L1 =0
SA = 0.0
MM =M

DO 1000 J =1,MM
B1(J)=0.0
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DO 1000 K = 1,MM

1000 B2(J,K)=0.0
WRITE(6,901)
NN = N
DO 100 II = 1,NN
I=I1I
L=1
CALL FUNC(2)
X (II)=ERR(II)*%2

901 FORMAT(5X,10H FUNC2,210 )
DF(II) =FM(II) - FC(II)
DO 101 J=1,MM
B1(J)=B1(J)~(2.0*DF(II)*D1(J))/X(II)
DO 101 K=1,MM

101 B2(J,K)=B2(J,K)~(2.0*%(DF(II)*D2(J,K)-
1 D1(J)*D1(K)))/X(II)
SA = SA + DF(II)**2/X(II)

100 CONTINUE
WRITE(6,901)
GMOD=0.0
DO 102 J=1,MM

102 GMOD=GMOD+B1 (J) **2
WRITE(6,243)SA,GMOD

243 FORMAT (1X,26H*INITIAL VALUE SUM OF SQ.=,E13.5,20%X,
117H*SQ MOD OF GRAD =,E13.5)
WRITE(6,1751)

1751 FORMAT(14HO DERIVATIVES-)
WRITE(6,240) (B1(J) ,J=1,MM)

240 FORMAT (15X,5(E13.5,8X)/)
IF (SA - Q1) 110, 110, 200

110 LE = 1
GO TO 600

200 S = 0.0
GMOD
BMOD
PROD

L}

I




210

902

221

220

230

903

250

231
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A2=ABC (1)
DO 210 J =1,MM
B1(J) = 0.0
DO 210 K=1,MM
B2(J,K) = 0.0
WRITE(6,902)
DO 220 II=1,NN
I=I1
L=1
CALL FUNC(2)
X(II)=ERR(II)**2
FORMAT (5X,10H FUNC2,210 )
DF(II) = FM(II) ~ FC(II)
DO 221 J=1,MM
B1(J) = B1(J) = (2.0*DF(II)*D1(J))/X(II)
DO 221 K =1,MM
B2(J,K) = B2(J,K) = (2.0%(DF(II)*D2(J,K) -
1 D1(J)*D1(K)))/X(II)
CONTINUE
WRITE(6,902)
DO 230 J=1,MM
GRAD(J) = B1(J)
Ll = L1 +1
WRITE(6,903)
CALL EXAM (B2,Bl1,MM,LF)
WRITE(6,903)
FORMAT (5X,9H EXAM, 230 )
IF \LF) 250, 250, 305
DO 231 II=1,MM
DO 231 JJ=1,MM
AI(II,JJ)=0.
B3 (II,JJ)=B2(1I,JJ)
WRITE(6,904)
CALL SVLVC1 (B3,50,50,W,40,2R,30,40,13,ITER)
CALL JACOBI1(13,B3,1,NR,ZR)
DO 5005 IR=1,MM
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DO 5005 JR=1,MM
5005 B2 (IR,JR)=2R(JR,JR)
WRITE(6,904)
904 FORMAT (5X,12H JACOBI1,231 )
DO 235 K =1,MM
235 B1(K)=B3(K,K)
A2=ABC(2)
DO 260 J=1,MM
260 D1(J) = 0.0
DO 270 J=1,MM
DO 270 K=1,MM
270 D1(K) = D1(K) + B2(J,K) *GRAD(J)
DO 275 J = 1, MM
IF (B1(J)) 280, 290, 285

280 B1(J) = - B1(J)
285 D1(J) = D1(J)/B1(J)
GO TO 275

290 D1(J) = 0.0
275 CONTINUE
DO 295 J=1,MM
295 B1(J) = 0.0
DO 300 J=1,MM
DO 300 K=1,MM
300 B1(J) = B1(J) + B2(J,K)*D1(K)
305 DO 310 J=1,MM

GMOD = GMOD + GRAD(J)#*#*2
BMOD = BMOD + B1(J)*+*2
310 PROD = PROD + GRAD(J)*B1(J)

IF (GMOD - Q2) 315, 315, 320
315 1E = 2
WRITE(6,1761) GMOD
1761 FORMAT (5X,7H GMOD =,E13.5//)
GO TO 600
320 C=PROD/SQRT ( BMOD*GMOD)
IF (C) 335, 335, 400
335 LE = 4
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GO TO 600
400 LD = 0
I3 =0

DO 410 J=1,MM
410 GRAD(J) = B(J) - B1(J)
WRITE(6,905)
450 DO 420 II=1,NN
I=1I
1=2
. CALL FUNC (1)
X(II)=ERR(II)**2
: 905 FORMAT(5X,10H FUNC1,450 )
DF(II) = FM(II) - FC(II)
S = S + DF(II)**2/X(II)
420 CONTINUE
IF (SA - S) 435, 500, 500
435 LD = LD + 1
430 DO 440 J=1,MM
B1(J) = B1(J)/2.0
906 FORMAT(5X,16H BINARY CHOP, 430 )
440 GRAD(J) = B(J) - B1(J)
S = 0.0
L3 = L3 + 1
IF (L3-150)450,460,460
460 LE = 5
GO TO 600
500 IF (LD) 505, 505, 506
506 LD = 0
GO TO 430
505 DO 510 J=1,MM
510 B(J) = GRAD(J)
SA = §
IF (SA - Q1) 507, 507, 530
507 LE = 1
GO TO 600
530 IF (L4) 200, 200, 900
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900 WRITE(6,920)L1,IA2,13,S,GMOD, (B(J),J=1,MM)
920 FORMAT(//,15H ITERATION NO.=,I5,10X,* TRANSFORMA
1TION MADE TO PRINCIPAL AXES = *,A4,10X, 18H BI
2NARY CHOP USED=,I3,6H TIMES/1X,* WL1GHTED SUM OF SQ
3UARES = *,E14.7,25X,* SQUARE MODULUS OF GRADIEN
4T = *,E14.7,/20H PARAMETERS B(J) ,/(6E17.8)/)
IF (L1 - L4) 200, 910, 910
910 LE = 6
GO TO 600
600 DO 710 J=1,MM
B1(J) = 0.0
DO 710 K=1,MM
710 B2(J,K) = 0.0
I=1
DO 721 II=1,NN
I=I1
CALL FUNC(2)
X(II)=ERR(II)**2
DF(II) = FM(II) ~ FC(II)
DO 720 J=1,MM
B1(J) = B1(J) = (2.0%DF(II)*D1(J))/X(II)
DO 720 K=1,MM
720 B2(J,K) = B2(J,K) - ((DF(II)*D2(J,K) -
1 D1(J)*D1(K)))/X(II)
721 CONTINUE
CALL MATINV(B2,MM,B1,1,DETERM)
DO 730 J=1,MM
IF (B2(J,J)) 2001,2001,2002
2001 Bl(J) = =-SQRT(-B2(J,J))
GO TO 730
2002 B1(J) = SQRT(B2(J,J))
730 CONTINUE
DO 740 J=1,MM
DO 740 K=1,MM
740 B2(J,K)=B2(J,K)/(B1(J)*Bl (K))
WRITE(6,551)LE, SA
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551 FORMAT(//,* EXIT NUMBER=*,6I3,20X,* WEIGHT
1ED SUM OF SQUARES=*,E15.8//)

SMD (NUMBER) =SA

GO TO 105

103 CONTINUE

SMD (NUMBER) =SA

WRITE (6,104)

104 FORMAT(/,5X, *LL5=1,S0O NO ITERATIONS DONE*,/)
105 CONTINUE

RETURN

END

SUBROUTINE FUNC (LX)

SUBROUTINE FUNC

DIMENSION DC(3500),B(13,2),D1(13),FC(200),2(200),
1HN(200),5(2,2),R(2,2),SIGN(200),THETA (209),
2IBB(200,2),D2(13,13),ERR{200)

DIMENSION AR(2,2),AI(2,2),W(2),2R(2,2),2I(2,2),FVi(2),
1FM1(2,2),82(2,2),8%X(2,2),5Y(2,2),
2SR(2,2),8I(2,2),FV2(2),BG(9)

DIMENSION DELH(200)

COMMON,/DATA2 /DC

COMMON/DATA3 /DELH

EQUIVALENCE (Z,DC), (FC,DC(601)), (THETA,DC(1001)),
1(B,DC(2500)), (D1,DC(2800)), (D2,DC(2900)),
2(M,DC(1579)), (I,DC(1580)),(L,DC(1581)), (HN,DC(1201)),
3(IBB,DC(2000)), (N,DC(1575)), (NZ,DC(2490)),

4 (NUMBER ,DC(1988)), (ERR,DC(801))

FACTOR=92.732/66252.

RD=3.14159%6/180.

PI2=2.%3.1415926

B(7,L)-v.

B(8,L)=0.

B(9,L)=0.

130 CONTINUE
131 CONTINUE
IF (THETA(I).GT.720.) GO TO 10
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IF(THETA(I).LT.(0.)) GO TO 13
ALZ=COS ( (THETA (I)+B(7,L) ) *RD)
ALX=SIN ((THETA(I)+B(7,L))*RD)
ALY=0.
GO TO 14
13 CONTINUE
ALZ=COS ( (-THETA(I)+B(8,L) ) *RD)
ALX=0.
ALY=SIN ((-THETA(I)+B(8,L))*RD)
14 CONTINUE
GO TO 15
10 CONTINUE
ALZ=0,
ALX=COS ((THETA(I)+B(9,L) ) *RD)
ALY=SIN((THETA(I)+B(9,L))*RD)
15 CONTINUE
132 CONTINUE
139 FORMAT (5X,3 (E16.6,5X),/)
IF(Z(I).NE.(0.)) GO TO 135
FC({I)=HN(I)
GO TO 134
135 CONTINUE
FCI=(B(1,L) *ALZ*ALZ+
1 2.%B(2,L)*ALZ*ALX+B(3, L) *ALX*ALX+2. *B(4,L) *ALZ*ALY+
2 B(5,L)*ALY*ALY+2.*B(6,L)*ALX*ALY)
c FOLLOWING FOR NEGATIVE FCI
IF(FCI.GT.(0.).OR.FCI.EQ.(0.)) GO TO 192
DO 193 JJ=1,9
193 BG!JJ)=B(JJ,L)
KILL=1
WRITE(6,190) I
WRITE(6,191) (B(JJ,L),JJ=1,9)
LL6=1
GO TO 110
190 FORMAT(/,5X,*NEGATIVE FCI FOR LINE NO. =%,13,/)
191 FORMAT (5X,6E12.6,/)
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192 CONTINUE
FC(I)=2 (I)*FACTOR*SQRT(FCI)
ERR(I)=SQRT(FCI)*DELH(I)*FACTOR

134 CONTINUE
IF(LX-1) 110,110,121

121 CONTINUE
IF(2(I).EQ.(0.)) GO TO 915
DO 235 IZ=1,13
D1(IZ) = 0.0
DO 235 J2=1,13

235 D2(IZ,J2) =0.0

133 CONTINUE
F=2.%FC(I)/((2Z(I)*FACTOR) **2)

FF=2,*RD/F

D1(1)=ALZ**2/F

D1(2)=2.*ALZ*ALX/F

D1(3)=ALX**2/F

D1(4)=2.*ALZ*ALY/F

D1(5)=ALY**2/F

D1(6)=2.*ALX*ALY/F

D1(7)=0.

D1(8)=0.

D1(9)=0.

IF (THETA(I).GT.(720.)) GO TO 910
IF(THETA(I).LT.(0.)) GO TO 913
ANG7=(THETA(I)+B(7,L))*RD
D1(7)=FF*(B(1,L)*ALZ* (-SIN(ANG7) )+B(2, L) * (ALX*
1 (-SIN(ANG7))+ALZ*COS (ANG7))+B(3,L)*ALX*COS (ANG7) )
GO TO 914

913 CONTINUE
ANG8=(-THETA (I)+B(8,L))*RD
D1(8)=FF*(B(1,L)*ALZ* (-SIN (ANG8) ) +B(4, L) * (ALY*

1 (-SIN(ANG8))+ALZ*COS (ANG8))+B(5,L)*ALY*COS (ANGS) )

914 CONTINUE
GO TO 915

910 CONTINUE
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ANGO9=(THETA (I)+B(9,L)) *RD
D1(9)=FF*(B(3,L) *ALX* (~SIN(ANG9))+B(6,L) * (ALY*
1 (~SIN(ANG9))+ALX*COS (ANG9))+B(5,L) *ALY*COS (ANGY))
915 CONTINUE
110 CONTINUE
RETURN
END
SUBROUTINE EXAM(A,B,M,LF)
SUBROUTINE EXAM
FORTRAN 4
DIMENSION A(13,13),B(13),C(13)
DO 80 J=1,M
80 C(J)=A(J,J)
IF(A(1,1)) 60,200,70
60 A(1,1) =-SQRT(-A(1,1))
GO TO 300
70 A(1,1) =SQRT(A(1,1))
GO TO 100
100 IF(M-1)400,400,110
110 DO 115 K=2,M
115 A(1,K)=A(1,K)/(A(1,1) )
DO 120 J=2,M
J1=J~1
S=A(J,J)
DO 125 L=1,J1
125 S=S~A(L,J) **2
IF (S) 50,200,40
50 A(J,J) =-SQRT(-S)
GO TO 300
40 A(J,J) =SQRT(S)
GO TO 130
130 IF(J-M)135,400,400
135 J2=J+1
DO 120 K=J2,M
S=Aa(J,K)
DO 145 L=1,J1
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145 S=S-A(L,J)*A(L,K)
120 A(J,K)=S/A(J,J)
400 B(1)=B(1)/A(1,1)
IF(M-1)420,420,405
405 DO 410 J=2,M
S=B(J)
J1=J-1
DO 415 L=1,J1
415 S=S-A(L,J)*B(L)
410 B(J)=S/A(J,J)
420 B(M)=B(M)/A(M,M)
J=M-1
435 IF(J)450,450,425
425 S=B(J)
J2=J+1
DO 430 L=J2,M
430 S=S-A(J,L)*B(L)
B(J)=S/A(J,J)
J=J-1
GO TO 435
450 LF=1
GO TO 460
200 LF=0
GO TO 460
300 LF=-1
460 DO 465 J=1,M
A(J,J)=C(J)
IF(J-M)470,475,475
470 J2=J+1
DO 465 K=J2,M
465 A(J,K)=A(K,J)
475 RETURN
END
SUBROUTINE MATINV(A,N,B,M,DETERM)
SUBROUTINE MATINV
FORTRAN 4
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MATRIX INVERSION WITH ACCOMPANYING
SOLUTION OF LINEAR EQUATIONS
DIMENSION IPIVOT(13),A(13,13),B(13,1),
1 INDEX(13,2),PIVOT(13)
EQUIVALENCE (IROW,JROW), (ICOLUM,JCOLUM),
1 (AMAX,T,SWAP)
DETERM=1.0
DO 20 J=1,N
20 IPIVOT(J)=0
DO 550 I=1,N
AMAX=0.0
DO 105 J=1,N
IF(IPIVOT(J)-1)60,105,60
60 DO 100 K=1,N
IF(IPIVOT(K)-1)80,100,740
80 IF(ABS(AMAX)-ABS(A(J,K)))85,100,100
85 IROW=J
ICOLUM=K
AMAX=A(J,K)
100 CONTINUE
105 CONTINUE
IPIVOT (ICOLUM)=IPIVOT (ICOLUM) +1
IF (IROW-ICOLUM)140,260,140
140 DETERM=-DETERM
DO 200 L=1,N
SWAP=A (IROW, L)
A(IROW,L)=A(ICOLUM,L)
200 A(ICOLUM,L)=SWAP
IF (M) 260,260,210
210 DO 250 L=1,M
SWAP=B(IROW, L)
B(IROW,L)=B(ICOLUM, L)
250 B(ICOLUM,L)=SWAP
260 INDEX(I,1)=IROW
INDEX(I,2)=ICOLUM
PIVOT (I)=A (ICOLUM, ICOLUM)
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DETERM=DETERM#*PIVOT (I)

A(ICOLUM,ICOLUM)=1.0

DO 350 L=1,N

A(ICOLUM,L)=A(ICOLUM, L) /PIVOT (I)

IF (M) 380,380,360

DO 370 L=1,M

B(ICOLUM,L)=B(ICOLUM,L)/PIVOT (I)

DO 550 L1=1,N

IF (L1-ICOLUM)400,550,400

T=A(L1,ICOLUM)

A (L1, ICOLUM)=0.0

DO 450 L=1,N

A(Ll,L)=A(L1,L)~A(ICOLUM,L)*T

IF (M) 550,550,460

DO 500 L=1,M

B(L1,L)=B(L1,L)-B(ICOLUM, L) *T

CONTINUE

DO 710 I=1,N

L=N+1-I

IF (INDEX(L,1)~INDEX(L,2))630,710,630

JROW=INDEX (L, 1)

JCOLUM=INDEX (L, 2)

DO 705 K=1,N

SWAP=A (K, JROW)

A(K,JROW)=A (K, JCOLUM)

A (K, JCOLUM) =SWAP

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE JACOBI1(N,Q,JVEC,M,V)

SUBPROGRAM FOR DIAGONALIZATION OF
MATRIX Q BY SUCCESSIVE ROTATIONS

DIMENSION Q(13,13),V(13,13),X(13),IH(13)

NEXT 8 STATEMENTS FOR SETTING
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INITIAL VALUES OF MATRIX V

IF(JVEC) 10,15,10
DO 14 I=1,N

DO 14 J=1,N
IF(I-J) 12,11,12
V(I,J)=1.0

GO TO 14
V(I,J)=0.
CONTINUE

M=0
NEXT 8 STATEMENTS SCAN FOR

LARGEST OFF DIAG. ELEM.

IN EACH ROW

X(I) CONTAINS LARGEST ELEMENT IN ITH ROW

IH(I) HOLDS SECOND SUBSCRIPT

DEFINING POSITION OF ELEMENT

MI=N-1
DO 30 I=1,MI
X(I)=0.
MI=I+1
DO 30 J=MJ,N

IF (X(I)-ABS (Q(I,J))) 20,20,30

X(I)=ABS (Q(I,J))
IH(I)=J
CONTINUE

NEXT 7 STATEMENTS FIND FOR

MAXIMUM OF X(I)S FOR PIVOT ELEMENT

DO 70 I=1,MI

IF(I-1) 60,60,45

IF (XMAX-X(I)) 60,70,70
XMAX=X (I)

IP=I

JP=IH(I)
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70 CONTINUE

NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10**-8,GO TO 1000

EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000,148

148 M=M+1

NEXT 11 STATEMENTS FOR
COMPUTING TANG,SINE,COSN,Q(I,I),Q(J,J)

IF (Q(IP,IP)-Q(JP,JP)) 150,151,151
150 TANG =-2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1 SQRT((Q(IP,IP)-Q(JP,JP) ) **2+4.+Q(IP,JP) **2))
GO TO 160
151 TANG =+2.%*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1 SQRT((Q(IP,IP)-Q(JP,JP))**2+4,+%Q(IP,JP)*#*2))
160 COSN=1.0/SQRT(1.0+TANG**2)
SINE=TANG*COSN
QII= Q(IP,IP)
Q(IP,IP)= COSN**2* (QII+TANG* (2.*Q(IP,JP)+
1 TANG*Q(JP,JP)))
Q(JP,JP)= COSN**2*(Q(JP,JIP)-TANG*(2.*Q(IP,JP)-
1 TANG*QII))

Q(IP,JP)=0.

NEXT 4 STATEMENTS FOR PSEUDO
RANK OF THE E1GENVALUES
IF (Q(IP,IP)-Q(JP,JP)) 152,153,153
152 TEMP=Q(IP,IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,JP)=TEMP
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NEXT 6 STATEMENTS ADJUST
SIN, COS FOR COMPUTATION OF Q(I,K),V(I,K)

IF(SINE) 154,155,155
154 TEMP=+COSN
GO TO 170
155 TEMP=-COSN
170 COSN=ABS (SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING THE I"S BETWEEN
I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM VALUE
SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS 1IN
THE I OR J ROW

153 DO 350 I=1,MI

IF (I-IP) 210,350,200
200 IF (I-JP) 210,350,210
210 IF (IH(I)-IP) 230,240,230
230 IF (IH(I)-JP) 350,240, 350
240 K= IH(I)

TEMP=Q (I, K)

Q(I,K)=0.

MI=I+1

X(I)=0.

NEXT 5 STATEMENTS SEARCH
IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=MJ,N

IF (X(I)=-ABS(Q(I,J))) 300,300,320
300 X(I)=ABS(Q(I,J))

IH(I)=J
320 CONTINUE

Q(I, K)=TEMP
350 CONTINUE
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X (IP)=0.
X (JP) =0.

NEXT 30 STATEMENTS FOR
CHANGING THE OTHER ELEMENTS OF Q

DO 530 I=1,N

IF (I-IP) 370,530,420
TEMP=Q (I, IP)
Q(I,IP)=COSN+TEMP+SINE*Q (I,JP)

IF (X(I)-ABS(Q(I,IP))) 380,390,390
X (I)=ABS(Q(I,IP))

IH(I)=IP
Q(I,JP)==SINE+*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
X (I)=ABS(Q(I,JP))

TH(I)=JP

GO TO 530

IF (I-JP) 430,530,480
TEMP =Q(IP,I)

Q(IP, I)=COSN*TEMP+SINE*Q (I,JP)

IF (X(IP)-ABS(Q(IP,I))) 440,450,450
X (IP)=ABS(Q(IP,I))

IH(IP)=I
Q(I,JP)=-SINE+*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530

TEMP=Q (IP, I)
Q(IP, I)=COSN*TEMP+SINE*Q (JP,I)
IF(X(IP)-ABS(Q(IP,I))) 490,500,500
X (IP)=ABS (Q(IP,I))

IH(IP)=I

Q(JP, I)=-SINE+*TEMP+COSN*Q(JP, I)
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IF (X(JP)-ABS(Q(JP,I))) 510,530,530
X (JP)=ABS (Q(JP,I))

IH (JP) =1

CONTINUE

NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF EIGENVECTORS

IF (JVEC) 540,40,540

DO 550 I=1,N

TEMP=V (I, IP)

V(I,IP)= COSN*TEMP+SINE*V(I,JP)

V(I,JP)=-SINE*TEMP+COSN*V (I,JP)

GO TO 40

RETURN

END

SUBROUTINE JACOBI(N,Q,JVEC,M,V)

SUBPROGRAM FOR DIAGONALIZATION OF

MATRIX Q BY SUCCESSIVE ROTATIONS

DIMENSION Q(3,3),V(3,3),X(3),IH(3)

FORMAT (2E15.5)

NEXT 8 STATEMENTS FOR SETTING
INITIAL VALUES OF MATRIX V

IF (JVEC) 1U,15,10
DO 14 I=1,N

DO 14 J=1,N
IF(I-J) 12,11,12
V(I,J)=1.0

GO TO 14
V(I,J)=0.
CONTINUE

M=0

NEXT 8 STATEMENTS SCAN FOR LARGEST OFF DIAG.

ELEM.




O 0 00

O 000

O

O 0O 00

20

30

40

45

60

70

148

166

IN EACH ROW X(I) CONTAINS LARGEST ELEMENT IN ITH
ROW IH(I) HOLDS SECOND SUBSCRIPT DEFINING
POSITION OF ELEMENT

MI=N-1
DO 30 I=1,MI

X(I)=0.

MI=I+1

DO 30 J=MJ,N

IF (X(I)-ABS (Q(I,J))) 20,20,30
X(I)=ABS (Q(I,J))

IH(I)=J

CONTINUE

NEXT 7 STATEMENTS FIND FOR
MAXIMUM OF X(I)S FOR PIVOT ELEMENT

DO 70 I=1,MI

IF(I-1) 60,60,45

IF (XMAX-X(I)) 60,70,70

XMAX=X (I)

IP=1

JP=TH(I)

CONTINUE

NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10%**-8,GO TO 1000

EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000,148

M=M+1

NEXT 11 STATEMENTS FOR COMPUTING
TANG, SINE, COSN,Q(I,I),Q(J,J)

IF (Q(IP,IP)~Q(JP,JP)) 150,151,151
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150 TANG =-2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1 SORT((Q(IP,IP)-Q(JP,JP))**2+4,*Q(IP,JP)*+2))
GO TO 160
151 TANG =+2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1 SQRT((Q(IP,IP)-Q(JP,JP))**2+4.*Q(IP,JP)*+2))
160 COSN=1.0/SQRT(1.0+TANG**2)
SINE=TANG*COSN
oII= Q(IP,IP)
O(IP,IP)= COSN**2+(QII+TANG* (2.*Q(IP,JP)+
1 TANG*Q(JP,JP)))
Q(JP,JP)= COSN**2#(Q(JP,JP)~TANG* (2.*Q(IP,JP)-
1 TANG*QII))

Q(IP,JP)=0.

NEXT 4 STATEMENTS FOR PSEUDO
RANK OF THE E1GENVALUES
IF (Q(IP,IP)-Q(JP,JP)) 152,153,153
152 TEMP=Q(IP, IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,JP)=TEMP
NEXT 6 STATEMENTS ADJUST
SIN, COS FOR COMPUTATION OF Q(I,K),V(I,K)

IF(SINE) 154,155,155
154 TEMP=+COSN
GO TO 170
155 TEMP=-COSN
170 COSN=ABS (SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING T8E IHS BETWEEN
I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM VALUE
SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS IN
THE I OR J ROW




O 0O 00

O 0O a0 0

153

200

210

230
240

300

320

350

370

380

les

DO 350 I=1,MI
IF (I-IP) 210,350,200

IF (I-JP) 210,350,210

IF (IH(I)-IP) 230,240,230
IF (IH(I)-JP) 350,240,350
K= IH(I)

TEMP=Q (I,K)

Q(I,K)=0.

MJI=I+1

X(I)=0.

NEXT 5 STATEMENTS SEARCH
IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=MJ,N
IF (X(I)-ABS(Q(I,J))) 300,300,320
X(I)=ABS(Q(I,J))

I4(I)=J

CONTINUE

Q(I,K)=TEMP

CONTINUE

X (IP)=0.
X (JP)=0.

NEXT 30 STATEMENTS FOR
CHANGING THE OTHER ELEMENTS OF Q

DO 530 I=1,N

IF (I-IP) 370,530,420
TEMP=Q (I,IP)
Q(I,IP)=COSN*TEMP+SINE*Q(I,JP)

IF (X(I)-ABS(Q(I,IP))) 380,390,390
X(I)=ABS(Q(I,IP))

IH(I)=IP



0O 0 00

390

400

420
430

440

450

480

490

500

510

530

540

550

1000

169

Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
X(I)=ABS(Q(I,JP))

IH(I)=JP

GO TO 530

IF (I-JP) 430,530,480
TEMP=Q (IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(I,JP)

IF (X(IP)=-ABS(Q(IP,I))) 440,450,450
X(IP)=ABS(Q(IP,I))

IH(IP)=1
Q(I,JP)=-SINE*TEMP+COSN*Q (I ,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530

TEMP=Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(JP,I)

IF (X (IP)-ABS(Q(IP,IY)) 490,500,500
X(IP)=ABS(Q(IP,I))

IH(IP)=I
Q(JP,1)=-SIFE*TEMP+COSN*Q(JP,I)

IF (X(JP)-ABS(Q(JP,I))) 510,530,530
X (JP)=ABS(Q(JP,I))

IH (JP)=I

CONTINUE

NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF E1GENVECTORS

IF (JVEC) 540,40,540
DO 550 I=1,N

TEMP=V (I, IP)

V(I,IP)= COSN*TEMP+SINE*V(I,JP)
V(I,JP)=-SINE*TEMP+COSN*V (I,JP)
GO TO 40

AAM=FLOAT (M)
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WRITE (6,13) EPSI,AAM
RETURN
END
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PROGRAM CUA (INPUT,OUTPUT, TAPE7=INPUT, TAPE58=0UTPUT)
THIS PROGRAM ANALYSES EPR DATA WITH NUCLEAR HYPERFINE
LINES WITH ELECTRON SPIN S=1/2 AND NUCLEAR SPIN I=3/2
FOR HOST/CU2+ USING FIRST-ORDER PERTUBATION THEORY

M =NO. OF PARAMETERS

L4 =NO. OF ITERATIONS ALLOWED

Q1 =MIN. VALUE OF SUM OF SQUARES FOR FITS
(CHI-SQUARE TOLERANCE)

2 (I)=MAGNETIC FIELD VALUES FOR FITS

B =PARAMETER MATRIX

N =NO. OF DATA POINTS USED IN LEAST~SQARES FITTING

Q1 =N/10

Q2 =TOLERANCE ON GRAD(CHI**2) =APPROX .01

FM(I) = MEASURED VALUES

FC(I) = CALCULATED VALUES

ERR(I)= STANDARD DEVIATION ON FM(I) = SQRT(FM(I))

DIMENSIONS OF A,B IN EXAM AND MATINV SUBROUTINES
SHOULD BE THE SAME AS THOSE OF B2,Bl1 RESPECTIVELY IN
THE MAIN PROOGRAM AND IN CURFIT

ENTER TEETA IN DEGREES
DIMENSIONS OF Q,V IN JACOBI1 SHOULD BE THE SAME AS
THOSE OF B3,B2 RESPECTIVELY IN CURFIT

PARAMETERS=I.GT IS G#**2-TENSOR
(G**22Z ,G**2ZX,G**2XX,G**2ZY,G**2YY, G**2XY)
GGT (J,NUMBER) REPRESENTS G-SQUARE TENSCR.
II. (B(I),I=1,6)=AZZ,AZX,AXX,AZY, 6 AYY,6 AXY
A=A-SQUARE TENSOR ABOVE
ENTER A WITH POSITIVE SIGN

DELANG(I,J),J=1,2,3 ARE ANGLE CORRECTIONS FOR ZX,2ZY,XY
PLANES AS DETERMINED BY "KRDBLT" FOR VARIOUS CASES.
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NUMBER=INDEX THAT CHANGES WITH EACH NEW CASE ITS
VALUE SHOULD BE THAT OF THE FIRST CASE CONSIDERED.
NCASES=NO. OF LAST CASE CONSIDERED.
ITS VALUE SHOULD BE ENTERED.

N1(J1,NUMBER)=NO.OF LINES(FOR VARIOUS ORIENTATIONS)
FOR J1 HYPERFINE LINE OF CASE NO.=NUMBER

DATA FILE SHOULD BE USED LZX,LZY,LXY ARE THE NUMBER OF
THE ANGLES ON THE 2ZX,Z2Y,XY PLANES WHICH ARE CONSIDERED.

2Z(J,K,L)=LINE POSITIONS,J=WHICH ONE OF K=HYPERFINE
LINE OF CASE NO.=L

DIMENSION Z(400),FM(400),FC(400),DF (400),ERR(400),
1B(12),B1(12),B2(12,12),DC(5000) ,ABC(2),Y(4) ,HN(400),
2G(6,8) ,GG(6,8),SMD(9), AAA(3,3),0Q00(3,3),AAV(3,3),
3QQV(3,3),IBB(400,2),THETA(400) ,D1(12),D2(12,12),
4HHN(3,8),AADD(3,8) ,FFACTR(3,8),TEETA(100,4,8),
522(100,4,8) ,NN(8) ,N1(4,8),GGT(6,9),GT(6),ACOSZ (400),
6ACOSX (400) ,ACOSY (400) ,DELANG(8,3),AJ1(400) ,GGTL(8,3),
7GGTM (8,3),GGTLL(8,3) ,GGTMM(8,3),GGTNN(8,3) ,GGTN(8,3),
8DELHH (400, 8) ,DELH (40C) ,A4(3),L2X(1) ,LZY(1),LXY (1),
9NZERO (1) ,NCASES 1)

COMMON/DATA1/ABC, Y

COMMON/DATA2/DC,ACOSZ,ACOSX,ACOSY,AJ1,GGTL, GGTM, GGTN

COMMON/DATA3/DELH

EQUIVALENCE (Z,DC), (FM,DC(401)),(FC,DC(801)),
1(DF,DC(1201)), (ERR,DC(1601)), (HN,DC(2001)),

2 (THETA,DC(2401)), (IBB,DC(2801)),(B,DC(4101)),

3 (B1,DC(4125)), (B2,DC(4137)), (N,DC(4301)),

4 (L4,DC(4302)),(Q1,DC(4303)),(Q2,DC(4304)),

5 (M,DC(4305)),(I,DC(4306)),(L,DC(4307)),(BO,DC(4308)),
6 (SMD,DC(4309)), (SSMD,DC(4320) ), (D1,DC(4321)),

7 (D2,DC(4333)), (NUMBER,DC (4100) ), (GT,DC(4093))
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READ(7,*) NZERO,NCASES,LZX,LZY,LXY
WRITE(58,5123) NZERO,NCASES,LZX,LZY,LXY

5123 FORMAT (1X, 6HNZERO=,I8, 7HNCASES=,18,

14HLZX=,I8, 4HLZY=,I8, 4HLXY=,18)
READ(7, *) (HHN(J,NCASES) ,J=1,3)
READ(7, *) (FFACTR(J,NCASES) ,J=1, 3)
READ(7, *) (AADD (J, NCASES) ,J=1, 3)
READ (7, *) (GGT (J,NCASES) ,J=1,6)
READ(7,*) (G (J,NCASES) ,J=1,6)

READ (7, *) (DELANG (NCASES, J) ,J=1,3)
READ(7, *) (GGTLL(NCASES,J),J=1, 3)
READ (7, *) (GGTMM(NCASES,J) ,J=1, 3)
READ (7, *) (GGTNN (NCASES,J),J=1, 3)
READ(7,*) (N1 (J,NCASES) ,J=1,4)
NSUM=LZX+LZY+LXY

NSUM=4 *NSUM

READ(7,*) (DELHH (J,NCASES) ,J=1, NSUM)
READ(7,*) (TEETA(J,1,NCASES) ,J=1,LZX)
READ(7,*) (22 (J,1,NCASES) ,J=1,LZX)
READ(7,*) (22 (J,2,NCASES) ,J=1,L2X)
READ(7,*) (2Z(J,3,NCASES) ,J=1,LZX)
READ(7,*) (2Z(J,4,NCASES) ,J=1, LZX)
II=LZX+1

NXY=LZX+LZY

READ(7,*) (TEETA(J,1,NCASES) ,J=II,NXY)
READ(7,*) (22(J,1,NCASES),J=II,NXY)
READ(7,*) (2Z(J,2,NCASES) ,J=II,NXY)
READ(7,*) (22 (J,3,NCASES) ,J=II,NXY)
READ(7,*) (ZZ(J,4,NCASES) ,J=II,NXY)
II=NXY+1

NXY=NXY+LXY

READ(7,*) (TEETA(J,1,NCASES) ,J=II,NXY)
READ(7,*) (22(J,1,NCASES),J=II,NXY)
READ(7,*) (22(J,2,NCASES) ,J=II,NXY)
READ(7,*) (2Z(J,3,NCASES),J=II,NXY)
READ(7,*) (22(J,4,NCASES) ,J=II,NXY)
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188 FORMAT (1H1)
8 FORMAT(1X,4HQl = ,E13.5,5X,4HQ2 = ,E13.5)
137 FORMAT (3X,I2,5X,E16.6/)
136 FORMAT (10X,19H INITIAL PARAMETERS//
13X, 1HJ, 10X, 4HB(J)//)
135 FORMAT (1X,11H PARAMETERS//
13X, 1HJ, 10X, 4HB(J) , 27X, 6HERRORS//)
9 FORMAT (2X,4H HN= ,F9.4)
140 FORMAT (3X,I2,5X,E16.6,15X,E16.6/)
138 FORMAT (5X,14H CASE NUMBER =,I12//)
141 FORMAT (10X, 6H SMD =,E13.5//)
235 FORMAT (15X,5(E13.5,8X)/)
236 FORMAT (15X, 3(E13.5,8X)///)
237 FORMAT (15X, *xDIAGONAL ELEMENTS OF A-
1SQUARE TENSOR ARE=*,///)
238 FORMAT (15X, *"A" DIR. COS.(ROWS) ACC. TO E.
1VALS. ABOVE= *,///)
PI2=2.%3.1415926
RD=PI2/360.
NZERO=1
NUMBER=NZERO
NCASES=1
M=6
L4=7
Ql=1.E-8
Q2=1.E-20
MM=M
WRITE (58,188)
1 CONTINUE
N11=N1 (1, NUMBER)
DO 1188 J=1,4
DO 1188 J1=1,N11
1188 TEETA(J1,J,NUMBER)=TEETA (J1,1,NUMBER)
DO 9242 J1=1,3
GGTL (NUMBER, J1)=GGTLL (NUMBER, J1)
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GGTM (NUMBER, J1) =GGTMM (NUMBER, J1)
GGTN (NUMBER, J1) =GGTNN (NUMBER, J1)
LINE=0
DO 150 J1=1,4
NN1=N1(J1,NUMBER)
DO 150 I1l=1,NN1
LINE=LINE+1
AJ1(LINE)=J1
THETA (LINE)=TEETA(I1,J1,NUMBER)
IF (THETA (LINE) .GT.8000.) GO TO 155
IF (THETA (LINE) .LT.0.) GO TO 160
TH=THETA ( LINE) *RD+DELANG (NUMBER, 1) *RD
ACOSZ (LINE)=COS (TH)
ACOSX (LINE)=SIN (TH)
ACOSY (LINE)=0.
HN (LINE) =HHN (1, NUMBER)
Z (LINE)=(22(I1,J1,NUMBER)+
1AADD (1, NUMBER) ) *FFACTR (1, NUMBER)
2 (LINE)=(22(I1,J1,NUMBER) *
1FFACTR (1, NUMBER) +AADD (1, NUMBER) )
IF(2Z2(I1,J1,NUMBER).EQ.0.) 2Z(LINE)=0.
FORMAT (5X, *ACOSZ ETC=*,3E12.5)
GO TO 165
TH=-THETA (LINE) *RD + DELANG (NUMBER, 2) *RD
ACOSZ (LINE) =COS (TH)
ACOSY (LINE)=SIN (TH)
ACOSX (LINE)=0.
HN (LINE) =HHN (2, NUMBER)
2 (LINE)=(22(I1,J1,NUMBER) +
1AADD (2, NUMBER) ) *FFACTR (2, NUMBER)
2 (LINE)=(ZZ(I1,J1,NUMBER) *
1FFACTR (2, NUMBER) +AADD (2, NUMBER) )
IF(22(I1,J1,NUMBER).EQ.0.) Z(LINE)=0.
GO TO 165
TH=THETA (LINE) *RD+DELANG (NUMBER, 3) *RD
ACOSZ (LINE)=0.
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ACOSX (LINE)=COS (TH)

ACOSY (LINE)=SIN (TH)

HN (LINE)=HHN (3, NUMBER)

2 (LINE)=(22(I1,J1,NUMBER)+

1AADD (3, NUMBER) ) *FFACTR (3, NUMBER)

Z (LINE)=(22(I1,J1,NUMBER) *

1FFACTR (3, NUMBER) +AADD ( 3, NUMBER) )

IF(22(I1,J1,NUMBER).EQ.0.) Z(LINE)=0.

165 CONTINUE
150 CONTINUE

NN (NUMBER) =LINE

N=NN (NUMBER)

N9=N

DO 181 LL=1,12

181 B(LL)=0.
DO 210 LL=1,MM
210 B(LL)=G(LL,NUMBER)
WRITE (58,138) NUMBER
WRITE (58,136)
WRITE(58,137) (J,B(J),J=1,M)
WRITE (58, 6659)
WRITE(58,6657) (2(J),J=1,N)
WRITE (58, 6660)
WRITE(58,6657) (HN(J),J=1,N)
6660 FORMAT (5X,*FREQUENCY-KLYSTRON ARE=*,/)
6659 FORMAT (5X,*MAG. FIELD VALUES ARE=%,/)
6657 FORMAT(5X,8(E12.5,2X))
DO 180 J1=1,6
180 GT(J1)=GGT(J1,NUMBER)

DO 201 II=1,N9

DELH (II)=DELHH (II,NUMBER)
201 FM(II) = HN(II)

CALL CURFIT

SMD (NUMBER) = SSMD

WRITE (58,188)

WRITE (58,135)
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DO 220 LL=1,M

220 GG(LL,NUMBER) = B(LL)
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WRITE(58,140) (J,B(J),B1(J),J=1,M)
WRITE(58,188)

3 CONTINUE
588=0.
S851=0.

DO 555 ID=1,N
SSS=DF (ID) **2
SSS1=8551+585

WRITE(58,656) ID,SSS

555 CONTINUE

WRITE(58,6656) SSS1

6656 FORMAT(/,10X,*CHI-SQUARE=*,E13.5,/)
656 FORMAT(10X,*LINE NUMBER =

ARA(1,1) =
ARA(1,2) =
AAA(2,2) =
AAA(1,3) =
AAA(3,3) =
AAA(2,3) =
DO 20 J1 =

J4d =J1 + 1

B(1)
B(2)
B(3)
B(4)}
B(5)
B(6)
1,2

DO 20 J2 = J4,3
AAA(J2,J1) = AAA(J1,J2)

20 CONTINUE

*,13,5X,*SMD

CALL JACOBI3(3,AAA,1,NR,AAV)
WRITE (58,237)
WRITE(58,236) (AAA(J1,J1),J1 = 1,3)
WRITE (58,238)

DO 25 J1 =

1,3

WRITE (58,236)

25 CONTINUE

DO 245 J=1,
IF (AAA(J,J)
245 A4 (J)=SQRT (AAA(J,J))

3

(AAV(J2,J1),J2 = 1,3)

.LT. 1.0E-4) AAA(J,J)=0

*, E1

3

.5)
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WRITE (58,246)

WRITE (58,236) (A4 (J),J=1,3)
FORMAT (5X, *PRINCIPAL VALUES OF A-TENSOR ARE=%,/)
NUMBER=NUMBER+1

IF (NUMBER-NCASES) 1,1,2

CONTINUE

DO 230 LL=NZERO,NCASES
WRITE(58,138) LL

WRITE(58,141) SMD(LL)

WRITE (58,235) (GG(LM,LL),LM=1,MM)
STOP

END

SUBROUTINE CURFIT

EXAM HANDLES ALL MATRICES OF DIMENSIONS UPTO THE
DIMS.MM OF A,B,C THAT IS M IS LESS THAN OR EQUAL TO MM
(SAME IS TRUE OF MATINV AND JACOBI)

EQUIVALENCE OF GRAD BEGINS AT
DIMENSION OF B AFTER THE EQUIV. OF B

FORTRAN 4
DIMENSION Z(400),FM(400),FC(400),DF (400) ,ERR(400),
1B(12),B1(12),B2(12,12),DC(5000),ABC(2),Y(4),
2X(400),GRAD(12),D1(12),D2(12,12),B3(12,12),SMD(9),
3HN (400) ,ACOSZ (400) ,ACOSX (400) ,ACOSY (400)
DIMENSION IBB(400,2),THETA(400),GT(6)
DIMENSION AJ1(400),GGTL(8,3),GGTM(8,3),GGTN(8,3)
COMMON/DATA1/ABC, Y
COMMON/DATA2/DC, ACOSZ , ACOSX, ACOSY , AJ1,GGTL,GGTM, GGTH
EQUIVALENCE (2,DC), (FM,DC(401)),(FC,DC(801)),
1(DF,DC(1201)), (ERR,DC(1601) ), (HN,DC(2001)),
2 (THETA,DC(2401)) , (IBB,DC(2801)),(B,DC(4101)),
3(B1,DC(4125)),(B2,DC(4137)), (N,DC(4301)),
4 (L4,DC(4302)),(Q1,DC(4303)), (Q2,DC(4304)),
5(M,DC(4305)), (I,DC(4306)), (L,DC(4307)), (BO,DC(4308)),
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5(SMD,DC(4309)), (SSMD,DC(4320)), (D1,DC(4321)),
6 (D2,DC(4333)), (GRAD,DC(4113)), (NUMBER,DC(4100)),
7 (GT,DC(4093))

ABC(1)="NO"
ABC(2)="YES"
Ll = 0
SA = 0.0
MM=M
I16=1
NN=N
DO 1000 J=1,MM
B1(J)=0.0
DO 1000 K=1,MM
1000 B2(J,K)=0.0
DO 100 I6 = 1, NN
L=1
I=16
CALL FUNC(2)
X(I6)=ERR(I6)**2
901 FORMAT (5X,10H FUNC2,210 )
DF(I6) =FM(I16) - FC(I6)
DO 101 J=1,MM
B1(J)=B1(J)~(2.0*DF(I6)*D1(J))/X(I6)
DO 101 K=1,MM
101 B2(J,K)=B2(J,K)=(2.0%(DF(I6)*D2(J,K)~-
1D1(J) *D1(K)))/X(I6)
100 SA = SA + DF(I6)**2/X(I6)
GMOD=0.0
DO 102 J=1,M
102 GMOD=GMOD+B1 (J) *#2
WRITE (58,243)5A, GMOD
243 FORMAT (1X,26H*INITIAL VALUE SUM OF SQ.=
1E13.5,20X, 17H*SQ MOD OF GRAD =E13.5)
WRITE(58,1751)
1751 FORMAT(14HO DERIVATIVES-)
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WRITE(58,240) (B1(J),J=1,M)
240 FORMAT (15X,5(E13.5,8X)/)
IF (SA - Q1) 110, 110, 200

110 LE = 1
GO TO 600

200 S = 0.0
GMOD = 0.0
BMOD = 0.0
PROD = 0.0
A2=ABC(1)
DO 210 J = 1, MM
B1(J) = 0.0

DO 210 K = 1, MM
210 B2(J,K) = 0.0
WRITE (58,902)
DO 220 I6 = 1, NN
L=1
I=16
CALL FUNC(2)
X(I6)=ERR(I6)**2
902 FORMAT(5X,10H FUNC2,210 )
DF(16) = FM(I6) - FC(I6)
DO 220 J = 1, MM
B1(J) = B1(J) - (2.0*DF(I6)*D1(J))/X(16)
DO 220 K = 1, MM
220 B2(J,K) = B2(J,K) - (2.0%(DF(I6)*D2(J,K) -
1D1(J) *D1(K)))/X(I6)
DO 230 J = 1, MM
230 GRAD(J) = B1(J)
Ll =11 + 1
CALL EXAM (B2,B1,M,LF)
WRITE (58,903)
903 FORMAT(5X,9H EXAM, 230 )
WRITE (58,914) LF
914 FORMAT (5X,I3)
IF (LF) 250, 250, 305
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250 DO 231 II=1,M
DO 231 JJ=1,M
231 B3(II,JJ)=B2(II,JJ)
WRITE (58,904)
CALL JACOBI4(M,B3,4,NR,B2)
904 FORMAT(5X,12H JACOBI1,231 )
WRITE(58,904)
DO 235 I6=1,MM
235 B1(16)=B3(I6,16)
A2=ABC(2)
DO 260 J = 1, MM
260 D1(J) = 0.0
DO 270 J = 1, MM
DO 270 K = 1, MM
270 D1(K) = D1(K) + B2(J,K) *GRAD(J)
DO 275 J = 1, MM
IF (B1(J)) 280, 290, 285
280 B1(J) = - B1(J)
285 D1(J) = D1(J)/B1(J)
GO TO 275
290 D1(J) = 0.0
275 CONTINUE
DO 295 J = 1, MM
295 B1(J) = 0.0
DO 300 J = 1, MM
DO 300 K = 1, MM
300 B1(J) = B1(J) + B2(J,K)*D1(K)
305 DO 310 J=1,MM

]

]

GMOD = GMOD + GRAD(J) **2
BMOD = BMOD + B1(J)*#%2
310 PROD = PROD + GRAD(J)*B1(J)

IF (GMOD - Q2) 315, 315, 320
315 LE = 2
WRITE(58,1761) GMOD
1761 FORMAT(5X,7H GMOD =,E13.5//)
GO TO 600
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905

420
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510
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C=PROD/SQRT ( BMOD*GMOD)
IF (C) 335, 335, 400

LE = 4
GO TO 600
ID =0
L3 =0

DO 410 J = 1, MM

GRAD(J) = B(J) - B1(J)

DO 420 I6 = 1, NN

I=2

1=16

CALL FUNC (1)
X(I16)=ERR(I6)**2

FORMAT (5X, 10H FUNC1,450 )
DF(I6) = FM(I6) = FC(I6)

S = S + DF(I6)**2/X(16)
WRITE (58,905)

IF (SA - S) 435, 500, 500
ID = LD + 1

D0440 J = 1, MM

B1(J) = B1(J)/2.0

FORMAT (5X, 16H BINARY CHOP,430
GRAD(J) = B(J) - B1(J)
WRITE (58,906)

S = 0.0

I3 = 13 + 1
IF(L3-5)450,460,460

IE =5

GO TO 600

IF (LD) 505, 505, 506

ID = 0

GO TO 430

DO 510 J = 1, MM

B(J) = GRAD(J)

SA = S

IF (SA - Q1) 507, 507, 530

)
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530
200
9220

910

600

710

207

720

3029
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LE =1
GO TO 600
IF (L4) 200, 200, 900

WRITE(58,920)11,A2,L3,S,GMOD, (B(J) ,J=1,M)

TORMAT(//,15H ITERATION NO.=I5,10X,

143H TRANSFORMATION MADE TO PRINCIPAL AXES = A4,
210X, 18H BINARY CHOP USED=I3,6H TIMES/1X,27H W

3EIGHTED SUM OF SQUARES = El4.7,25X,32H
4DULUS OF GRADIENT = E14.7/20H  PARAME
5TERS B(J) -/ (6E17.8)/)

IF (L1 - L4) 200, 910, 910

IE = 6

GO TO 600

DO 710 J=1,MM

B1(J) = 0.0

DO 710 K=1,MM

B2(J,K) = 0.0

I=1

WRITE (58,907)

FORMAT (5X, * FUNC(2),720 *)

DO 720 16 = 1, NN

I=I6

CALL FUNC(2)

X(I6)=ERR(I6)**2

DF(I6) = FM(I6) - FC(I6)

DO 720 J = 1, MM

B1(J) = B1(J) - (2.0*DF(I6)*D1(J))/X(I6)
DO 720 K = 1, MM

B2(J,K) = B2(J,K) - ((DF(I6)*D2(J,K) -
1D1(J) #D1(K)))/X(I6)

WRITE (58,3029)

FORMAT(* I AM LOST IN MANTINV*)

CALL MATINV(B2,M,B1,1,DETERM)

WRITE (58,3029)

DO 730 J=1,MM

IF (B2(J,J)) 2001,2001,2002

SQUARE MO
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2002
730

740

551

9999
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B1(J) = -SQRT(-B2(J,J))

GO TO 730

B1(J)= SQRT(B2(J,J))
CONTINUE

DO 740 J=1,MM

DO 740 K=1,MM

B2 (J,K)=B2(J,K)/(B1(J)*B1(K))
WRITE (58,551) LE, SA

FORMAT (//,13H EXIT NUMBER=I3,20X,25H WEIGH
1TED SUM OF SQUARES=E15.8//)
SSMD = SA

CONTINUE

RETURN

END

SUBROUTINE FUNC (LX)
SUBROUTINE FUNC

DIMENSION DC(5000),B(12,2),D1(12),D2(12,12),FC(400),
1% (400),S(4,4),SIGN(400) ,HN(400),ST(4,4,16) ,F1(400),
2DF(400),DELH (400) ,ERR(400),B1 (12),B2(12,12),SMD(9),
3ACOSZ (400) , ACOSX (400) ,ACOSY(400),IBB(400,2),
4THETA (400) ,DD(16) ,GT(6) ,AJ1(400),AL(400),AM(400),
SAN(400),GGTL(8,3) ,GGTM(8,3),GGTN(8, 3)

COMMON/DATA2/DC, ACOSZ , ACOSX, ACOSY,AJ1,GGTL,GGTM, GGTN

COMMON/DATA 3 /DELH

EQUIVALENCE (Z,DC), (FM,DC(401)),(FC,DC(801)),
1(DF,DC(1201)), (ERR,DC(1601)), (HN,DC(2001)),

2 (THETA,DC(2401)), (IBB,DC(2801)),(B,DC(4101)),
3(Bl1,DC(4125)), (B2,DC(4137)), (N,DC(4301)),
4(L4,DC(4302)),(Q1,DC(4303)), (Q2,DC(4304)),

5(M,DC (4305) ), (I,DC(4306)),(L,DC(4307)), (BO,DC(4308)),
6 (SMD, DC(4309)), (SSMD,DC(4320) ), (D1,DC(4321)),
7(D2,DC(4333)), (NUMBER, DC(4100)), (GT,DC(4093))

IF(2(I).EQ.0.) GO TO 135
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BETA=92.732/66252.
BETAN=. 00054464 *BETA
RD=3.1415926/180.
R2=SQRT (2.0)
R3=SQRT (3.0)
R5=SQRT (5.0)
R7=SQRT (7.0)
FACTOR=92.732/66252,
AL(I)=ACOSZ(I)*GGTL(NUMBER, 1)+ACOSX (I)*
1GGTL (NUMBER, 2) +ACOSY (I) *GGTL(NUMBER, 3)
AM(I)=ACOSZ(I)*GGTM (NUMBER,1)+ACOSX (I) *
2GGTM (NUMBER, 2 ) +ACOSY (I) *GGTM(NUMBER, 3)
AN (I)=ACOSZ (I)*GGTN (NUMBER,1)+ACOSX (I)*
3GGTN (NUMBER, 2) +ACOSY (I) *GGTN (NUMBER, 3)
FCI=GT (1) *AL(I)**2+GT(3) *AM(I) **2+GT (5) *AN (I)**2
ENELSP=Z (I) *BETA*SQRT (FCI)
BB1=GT (1) *AL(T) **2
BB3=GT (3) *AM (I) **2
BB5=GT (5) *AN (I) **2
BB2=2.*SQRT(GT (1) *GT(3) ) *AL(I) *AM(I)
BR4=2.*SQRT(GT (1) *GT(5) ) *AL(I) *AN(I)
BB6=2. *SQRT(GT (3) *GT(5) ) *AM (I) *AN(I)
AEFF2=B(1,L) *BB1+B (3,L) *BB3+B(5, L) *BB5+
1 B(2,L)*BB2+B(4,L) *BB4+B(6,L)*BB6
AMI=2.5-AJ1(I)
IF (AEFF2.LT. (0.)) GO TO 109
AEFF=SQRT (AEFF2/FCI)
HYPFEN=AEFF*AMI
FC(I)=ENELSP+HYPFEN
ERR (I)=SQRT(FCI)*DELH (I)*FACTOR
ERR(I)=1.
GO TO 136

135 CONTINUE
FC(I)=HN(I)
ERR(I)=1.

136 CONTINUE
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IF(LX-1)110,110,120
120 CONTINUE
DO 235 IZ
D1(IZ) = 0.0
DO 235 JZ = 1,12
235 D2(I2,J32) =0.0
IF(2(I).EQ.0.) GO TO 110
DDD=, 5*AMI/ (FCI*AEFF)
D1 (1)=DDD*BB1
D1(2)=DDD*BB2
D1 (3)=DDD*BB3
D1 (4)=DDD*BB4
D1 (5)=DDD*BBS
D1 (6)=DDD*BB6
GO TO 110
109 WRITE(58,108) I
108 FORMAT(5X,*NEG AEFF2 FOR I=*,I3)
FC(I)=FM(I)
DO 197 JJ=1,6
197 D1(JJ)=0.
110 CONTINUE
RETURN
END
SUBROUTINE EXAM(A,B,M,LF)
SUBROUTINE EXAM
FORTRAN 4
DIMENSION A(12,12),B(12),C(12)
DO 80 J=1,M
80 C(J)=A(J,J)
IF(A(1,1)) 60,200,70
60 A(1,1) =-SQRT(-A(1,1))
GO TO 300
70 A(1,1) =SQRT(A(1,1))
GO TO 100
100 IF(M-1)400,400,110
110 DO 115 K=2,M

1,12
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435
425
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A(1,K)=A(1,K)/(A(1,1)
DO 120 J=2,M
J1=J-1

S=A(J,J)

DO 125 L=1,J1
S=S~A(L,J) **2

IF (S) 50,200,40
A(J,J) ==-SQRT(-S)
GO TO 300

A(J,J) =SQRT(S)
GO TO 130

IF(J-M) 135,400,400
J2=J+1

DO 120 K=J2,M
S=A(J,K)

DO 145 L=1,J1
S=S=A(L,J) *A(L,K)
A(J,K)=S/A(J,J)
B(1)=B(1)/A(1,1)
IF (M-1)420,420,405
DO 410 J=2,M
S=B(J)

J1=J-1

DO 415 L=1,J1
S=S=-A(L,J)*B(L)
B(J)=S/A(J,J)
B(M)=B(M)/A(M,M)
J=M-1
IF(J)450,450,425
S=B(J)

J2=J+1

DO 430 L=J2,M
S=S-A(J,L)*B(L)
B(J)=S/A(J,J)
J=J-1

GO TO 435
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LF=1
GO TO 460

LF=0

GO TO 460

LF==1

DO 465 J=1,M
A(J,J)=C(J)
IF(J-M)470,475,475
J2=3+1

DO 465 K=J2,M
A(J,K)=A(K,J)
RETURN

END

SUBROUTINE MATINV(A,N,B,M,DETERM)
FORTRAN 4

MATRIX INVERSION WITH ACCOMPANYING SOLUTION

OF LINEAR EQUATIONS

DIMENSION IPIVOT(12),A(12,12),B(12,1),

1INDEX(12,2),PIVOT(12)

EQUIVALENCE (IROW,JROW), (ICOLUM,JCOLUM), (AMAX,T,SWAP)

DETERM=1.0

DO 20 J=1,N

IPIVOT(J)=0

DO 550 I=1,N

AMAX=0.0

DO 105 J=1,N

IF (IPIVOT(J)-1)60,105,60

DO 100 K=1,N

IF(IPIVOT(K)~-1)80,100,740

IF (ABS (AMAX)-ABS (A(J,K)))85,100,100

IROW=J

ICOLUM=K

AMAX=A(J,K)

CONTINUE

CONTINUE
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IPIVOT (ICOLUM)=IPIVOT (ICOLUM)+1
IF (IROW-ICO. ‘ - 140,260,140
DETERM=~DETEKM

DO 200 L=1,N

SWAP=A (IROW, L)

A (IROW,L)=A(ICOLUM,L)
A(ICOLUM,L)=SWAP
IF(M)260,260,210

DO 250 L=1,M

SWAP=B (IROW, L)
B(IROW,L)=B(ICOLUM,L)
B(ICOLUM, L) =SWAP
INDEX (I, 1)=IROW
INDEX (I, 2)=ICOLUM

PIVOT (I)=A(ICOLUM,ICOLUM)
DETERM=DETERM*PIVOT (I)

A (ICOLUM, ICOLUM)=1.0

DO 350 L=1,N

A(ICOLUM, L)=A(ICOLUM,L)/PIVOT(I)
1F (M)380,380,360

DO 370 L=1,M

B(ICOLUM, L)=B(ICOLUM,L)/PIVOT(I)
DO 550 Ll=1,N

IF (L1-ICOLUM)400,550,400

T=A (L1, ICOLUM)

A(L1,ICOLUM)=0.0

DO 450 L=1,N
A(L1,L)=A(L1,L)-A(ICOLUM, L) *T
IF (M)550,550,460

DO 500 L=1,M
B(L1,L)=B(L1,L)-B(ICOLUM,L)*T
CONTINUE

DO 710 I=1,N

L=N+1-I

IF (INDEX (L, 1) -INDEX(L,2)) 630,710,630
JROW=INDEX(L, 1)
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JCOLUM=INDEX (L, 2)

DO 705 K=1,N
SWAP=A (K, JROW)

A (K,JROW)=A (K, JCOLUM)
A (K,JCOLUM)=SWAP
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE JACOBIZ2(N,Q,JVEC,M,V)
SUBPROGRAM FOR DIAGONALIZATION OF MATRIX Q
BY SUCCESSIVE ROTATIONS

DIMENSION Q(6,6),V(6,6),X(6),TH(6)

NEXT 8 STATEMENTS FOR SETTING
INITIAL VALUES OF MATRIX V

IF(JVEC) 10,15,10
DO 14 I=1,N

DO 14 J=1,N
IF(I-J) 12,11,12
V(I,J)=1.0

GO TO 14
V(I,J)=0.
CONTINUE

M=0
NEXT 8 STATEMENTS SCAN FOR

LARGEST OFF DIAG. ELEM. IN EACH ROW
X(I) CONTAINS LARGEST ELEMENT IN ITH ROW
IH(I) HOLDS SECOND SUBSCRIPT

DEFINING POSITION OF ELEMENT

MI=N-1
DO 30 I=1,MI
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X(1)=0.
MJI=I+1

DO 30 J=MJ,N

IF (X(I)-ABS (Q(I,J))) 20,20,30
X(I)=ABS (Q(I,J))

IH(I)=J

CONTINUE

NEXT 7 STATEMENTS FIND FOR MAXIMUM OF
X(I)S FOR PIVOT ELEMENT

DO 70 I=1,MI

IF(I-1) 60,60,45

IF (XMAX-X(I)) 60,70,70

XMAX=X (I)

IP=1

JP=IH(I)

CONTINUE

NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10**-8,GO TO 1000

EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000,148

M=M+1

NEXT 11 STATEMENTS FOR COMPUTING
TANG, SINE, COSN,Q(I,I),Q(J,J)

IF (Q(IP,IP)~Q(JP,JP)) 150,151,151
TANG ==2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+

1SQRT((Q(IP,IP)-Q(JP,JP)) **2+4,.*Q(IP,JTP)**2))

GO TO 160
TANG =+2.%*Q(IP,JP)/(ABS(Q(IP,IP)=-Q(JP,JP))+

1SQRT((Q(IP,IP)-Q(JP,JP)) *#%2+4 ,%Q(IP,JP)**2))

COSN=1.0/SQRT (1.0+TANG**2)
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SINE=TANG*COSN
QII= Q(IP,IP)

Q(IP,IP)= COSN#*#*2% (QII+

1 TANG* (2.*Q(IP, P)+TANG*Q(JP,JP)))
Q(JP,JP)= COSN#*2#% (Q(JP,JP)-

1 TANG* (2.*Q(IP,JP)~-TANG*QII))

Q(IP,JP)=0.

NEXT 4 STATEMENTS FOR PSEUDO
RANK OF THE E1GENVALUES
IF (Q(IP,IP)-Q(JP,JP)) 152,153,153
TEMP=Q (IP,IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,JP)=TEMP

NEXT 6 STATEMENTS ADJUST SIN, COS
FOR COMPUTATION OF Q(I,K),V(I,K)

IF(SINE) 154,155,155
TEMP=+COSN

GO TO 170

TEMP=-COSN

COSN=ABS (SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING THE I"S BETWEEN

I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM VALUE
SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS IN THE
I OR J ROW

DO 350 I=1,MI

IF (I-IP) 210,350,200

IF (I-JP) 210,350,210

IF (IH(I)-IP) 230,240,230
IF (IH(I)-JP) 350,240,350
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K= IH(I)
TEMP=Q(I,K)
Q(I,K)=0.
MI=I+1
X(I)=0.

NEXT 5 STATEMENTS SEARCH
IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=MJ,N

IF (X(I)-ABS(Q(I,J))) 300,300,320
X(I)=ABS(Q(I,J))

IH(I)=J

CONTINUE

Q(I,K)=TEMP

CONTINUE

X(IP)=0.
X (JP)=0.

NEXT 30 STATEMENTS FOR
CHANGING THE OTHER ELEMENTS OF Q

DO 530 I=1,N

IF (I-IP) 370,530,420
TEMP=Q (I, IP)
Q(I,IP)=COSN*TEMP+SINE*Q(I,JP)

IF (X(I)-ABS(Q(I,IP))) 380,390,390
X(I)=ABS(Q(I,IP))

IH(I)=IP
Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
X(I)=ABS(Q(I,JP))

IH(I)=JP

GO TO 530
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IF (I-JP) 430,530,480

TEMP =Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(I,JP)

IF (X(IP)-ABS(Q(IP,I))) 440,450,450
X(IP)=ABS(Q(IP,I))

IH(IP)=I
Q(I,JP)=-SINE*TEMP+COSN#Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530

TEMP=Q (IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(JP,I)

IF (X (IP)~ABS (Q(IP,I))) 499,500,500
X(IP)=ABS(Q(IP,I))

IH(IP)=I

Q(JP, I)=-SINE*TEMP+COSN*Q (JP,I)

IF (X(JP)-ABS(Q(JP,I))) 510,530,530
X(JP)=ABS(Q(JP,I))

IH(JIP) =1

CONTINUE

NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF EIGENVECTORS

IF (JVEC) 540,40,540
DO 550 I=1,N

TEMP=V (I,IP)

V(I,IP)= COSN*TEMP+SINE*V(I,JP)
V(I,JP)=-SINE*TEMP+COSN*V (I,JP)
GO TO 40

RETURN

END

SUBROUTINE JACOBI4 (N,Q,JVEC,M,V)
SUBPROGRAM FOR DIAGONALIZATION OF

MATRIX Q BY SUCCESSIVE ROTATIONS
DIMENSION Q(12,12),V(12,12),X(12),IH(12)

e e




O Q0 0O 0

QO O 00

)

QO

13

10

11

12
14

15

20

30

40

60

195

FORMAT (2E15.5)

NEXT 8 STATEMENTS FOR SETTING
INITIAL VALUES OF MATRIX V

IF(JVEC) 10,15,10
DO 14 I=1,N

DO 14 J=1,N
IF(I-J) 12,11,12
V(I,J)=1.0

GO TO 14
V(I,J)=0.
CONTINUF.

M=0

NEXT 8 STATEMENTS SCAN FOR LARGEST OFF DIAG. ELEM.

IN EACH ROW X(I) CONTAINS LARGEST ELEMENT IN ITH ROW
IH(I) HOLDS SECOND SUBSCRIPT DEFINING POSITION OF ELEMENT

MI=N-1

DO 30 I=1,MI

X(I)=0.

MI=I+1

DO 30 J=MJ,N

IF (X(I)=-ABS (Q(I,J))) 20,20,30
X(I)=ABS (Q(I,J))

IH(I)=J

CONTINUE

NEXT 7 STATEMENTS FIND FOR
MAXIMUM OF X(I)S FOR PIVOT ELEMENT

DO 70 I=1,MI

IF(I-1) 60,60,45

IF (XMAX-X(I)) 60,70,70

XMAX=X(I)

IP=I
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JP=IH(I)
79 CONTINUE

NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10%**-8,GO TO 1000

EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000,148

148 M=M+1

NEXT 11 STATEMENTS FOR COMPUTING
TANG, SINE, COSN,Q(I,I),Q(J,J)

IF (Q(IP,IP)-Q(JP,JP)) 150,151,151
150 TANG =-2.%*Q(IP,JP)/ (ABS(Q(IP,IP)-Q(JP,JP))+
1SQRT( (Q(IP,IP)~Q(JP,JP) ) **2+4.*Q(IP,JP)**2))
GO TO 160
151 TANG =+2.%Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1SQRT( (Q(IP,IP)~Q(JP,JP) ) **2+4 , *Q(IP,JP)**2))
160 COSN=1.0/SQRT(1.0+TAN. *2)
SINE=TANG*COSN
QII= Q(IP,IP)
Q(IP,IP)= COSN**2* (QII+
1 TANG* (2.#Q(IP,JP)+TANG*Q(JP,JP)))
Q(JP,JP)= COSN*#*2#% (Q(JP,JP)~
1 TANG* (2.*Q(IP,JP)-TANG*QII))

Q(IP,JP)=0.

NEXT 4 STATEMENTS FOR PSEUDO RANK OF THE E1GENVALUES
IF (Q(IP,IP)-Q(JP,JP)) 152,153,153
152 TEMP=Q(IP,IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,JP)=TEMP
NEXT 6 STATEMENTS ADJUST
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SIN, COS FOR COMPUTATION OF Q(I,K),V(I,bK)

IF(SINE) 154,155,155
154 TEMP=+COSN
GO TO 170
155 TEMP=-COSN
170 COSN=ABS (SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING T8E IHS BETWEEN

I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM VALUE
SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS IN THE
I OR J ROW

153 DO 350 I=1,MI
IF (I-IP) 210,350,200
200 IF (I-JP) 210,350,210
210 IF (IH(I)-IP) 230,240,230
230 IF (IH(I)-JP) 350,240,350
240 K= IH(I)
TEMP=Q(I, K)
Q(I,K)=0.
MI=I+1
X(I)=0.

NEXT 5 STATEMENTS SEARCH
IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=MJ,N

IF (X(I)-ABS(Q(I,J))) 300,300,320
300 X(I)=ABS(Q(I,J))

IH(I)=J
320 CONTINUE

Q(I,K)=TEMP
350 CONTINUE
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X(IP)=0.
X(JIP)=0.
c
c NEXT 30 STATEMENTS FOR
c CHANGING THE OTHER ELEMENTS OF Q
c
DO 530 I=1,N
c

IF (I-IP) 370,530,420
370 TEMP=Q(I,IP)

Q(I,IP)=COSN*TEMP+SINE*Q(I,JP)

IF (X(I)-ABS(Q(I,IP))) 380,390,390
380 X(I)=ABS(Q(I,IP))

IH(I)=IP
390 Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
400 X(I)=ABS(Q(I,JP))

IH(1)=JP

GO TO 530

420 IF (I-JP) 430,530,480
430 TEMP=Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(I,JP)
IF (X(IP)-ABS(Q(IP,I))) 440,450,450
440 X(IP)=ABS(Q(IP,I))
IH (IP)=1
450 Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)
IF (X(I)-ABS(Q(I,JP))) 400,530,530

480 TEMP=Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(JP,I)
IF (X(IP)-ABS(Q(IP,I))) 490,500,500
490 X(IP)=ABS(Q(IP,I))
IH(IP)=I
500 Q(JP,I)=-SINE*TEMP+COSN*Q(JP,I)
IF (X(JP)-ABS(Q(JP,I))) 510,530,530
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510 X(JP)=ABS(Q(JP,I))
IH(JP)=1
530 CONTINUE

NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF E1GENVECTORS

O 0 00

IF (JVEC) 540,40,540
540 DO 550 I=1,N

TEMP=V(I,IP)

V(I,IP)= COSN*TEMP+SINE*V(I,JP)
550 V(I,JP)=-SINE*TEMP+COSN*V(I,JP)

GO TO 40
1000 AAM=FLOAT (M)

WRITE (58,13) EPSI,AAM

RETURN
END
SUBROUTINE JACOBI3(N,Q,JVEC,M,V)
c SUBPROGRAM FOR DIAGONALIZATION OF
C MATRIX Q BY SUCCESSIVE ROTATIONS

DIMENSION Q(3,3),V(3,3),X(3),IH(3)
13 FORMAT (2E15.5)

c
c NEXT 8 STATEMENTS FOR SETTING
C INITIAL VALUES OF MATRIX V
c
IF(JVEC) 10,15,10
10 DO 14 I=1,N
DO 14 J=1,N
IF(I-J) 12,11,12
11 V(I,J)=1.0
GO TO 14
12 V(I,J)=0.
14 CONTINUE
c

15 M=0
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NEXT 8 STATEMENTS SCAN FOR LARGEST OFF DIAG. ELEM.
IN EACH ROW X(I) CONTAINS LARGEST ELEMENT IN ITH ROW
IH(I) HOLDS SECOND SUBSCRIPT DEFINING POSITION

OF ELEMENT

MI=N-1

DO 30 I=1,MI

X(I)=0.

MJI=I+1

DO 30 J=MJ,N

IF (X(I)-ABS (Q(I,J))) 20,20,30
X(I)=ABS (Q(I,J))

IH(I)=J

CONTINUE

NEXT 7 STATEMENTS FIND FOR
MAXIMUM OF X(I)S FOR PIVOT ELEMENT
DO 70 I=1,MI
IF(I-1) 60,60,45
IF (XMAX-X(I)) 60,70,70
XMAX=X (I)
IP=I
JP=TIH(I)
CONTINUE

NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10%*-8,GO TO 1000

EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000,148

M=M+1

NEXT 11 STATEMENTS FOR COMPUTING
TANG,SINE,COSN,Q(I,I),Q(J,J)
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IF (Q(IP,IP)-Q(JP,JP)) 150,151,151
150 TANG =-2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1SQRT ((Q(IP,IP)-Q(JP,JP)) **2+4.*Q(IP,JP)**2))
GO TO 160
151 TANG =+2.*Q(IP,JP)/(ABS(Q(IP,IP)=-Q(JP,JP))+
1SQRT ( (Q(IP,IP)-Q(JP,JP))**2+4.*Q(IP,JP)**2))
160 COSN=1,0/SQRT (1.0+TANG**2)
SINE=TANG*COSN
QII= Q(IP,IP)
Q(IP,IP)= COSN**2*% (QII+
1 TANG*(2.*Q(IP,JP)+TANG*Q(JP,JP)))
Q(JP,JP)= COSN**2* (Q(JP,JP) -
1 TANG*(2.*Q(IP,JP)~-TANG*QII))

Q(IP,JP)=u.

NEXT 4 STATEMENTS FOR PSEUDO RANK OF THE E1GENVALUES
IF (Q(IP,IP)~Q(JP,JP)) 152,153,153
152 TEMP=Q(IP,IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,JP)=TEMP
NEXT 6 STATEMENTS ADJUST
SIN,COS FOR COMPUTATION OF Q(I,K),V(I,K)

IF(SINE) 154,155,155
154 TEMP=+COSN
GO TO 170
155 TEMP=-COSN
170 COSN=ABS(SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING T8E IHS BETWEEN
I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMU# VALUE
SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS IN
THE I OR J ROW
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DO 350 I=1,MI

IF (I-IP) 210,350,200

IF (I-JP) 210,350,210

IF (IH(I)-IP) 230,240,230
IF (IH(I)-JP) 350,240,350
K= TH(I)

TEMP=Q (I,K)

Q(I,K)=0.

MI=I+1

X(I)=0.

NEXT 5 STATEMENTS SEARCH
IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=MJ,N

IF (X(I)-ABS(Q(I,J))) 300,300,320
X(I1)=ABS(Q(I,J))

IH(I)=J

CONTINUE

Q(I,K)=TEMP

CONTINUE

X (IP)=0.
X (JP) =0.

NEXT 30 STATEMENTS FOR
CHANGING THE OTHER ELEMENTS OF Q

DO 530 I=1,N

IF (I-IP) 370,530,420

TEMP=Q(I, IP)
Q(I,IP)=COSN*TEMP+SINE*Q(I,JP)

IF (X(I)-ABS(Q(I,IP))) 380,390,390
X (I)=ABS(Q(I,IP))

IH(I)=IP
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Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
X (I)=ABS (Q(I,JP))

IH(I)=JP

GO TO 530

IF (I-JP) 430,530,480
TEMP=Q (IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(I,JP)

IF (X(IP)-ABS(Q(IP,I))) 440,450,450
X(IP)=ABS(Q(IP,I))

IH(IP)=I
Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)=-ABS(Q(I,JP))) 400,530,530

TEMP=Q (IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(JP,1I)
IF(X(IP)-ABS(Q(IP,I))) 490,500,500
X (IP)=ABS(Q(IP,I))

IH(IP)=1I
Q(JP,I)=-SINE*TEMP+COSN*Q(JP,I)

IF (X(JP)-ABS(Q(JP,I))) 510,530,530
X (JP)=ABS(Q(JP,I))

IH(JP)=1I

CONTINUE

NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF El1GENVECTORS

IF (JVEC) 540,40,540
DO 550 I=1,N

TEMP=V (I, IP)

V(I,IP)= COSN*TEMP+SINE*V(I,JP)
V(I,JP)=-SINE*TEMP+COSN*V (I,JP)
GO TO 40

AAM=FLOAT (M)



WRITE (58,13) EPSI,AAM
RETURN
END
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PROGRAM CUGA (INPUT,OUTPUT,TAPES=INPUT, TAPE58=0UTPUT)

THIS PROGRAM ANALYSES EPR DATA WITH NUCLEAR HYPERFINE
LINES WITH ELECTRON SPIN S=1/2 AND NUCLEAR SPIN I=3/2
FOR SIGLE CRYSTAL/CU2+. IT FITS BOTH G-SQUARE AND A-
SQUARE TENSOR ELEMENTS (12 PARAMETERS) ------ SECOND
ORDER PERTURBATION.

M =NO. OF PARAMETERS

L4 =NO. OF ITERATIONS ALLOWED

Q1 =MIN. VALUE OF SUM OF SQUARES FOR FITS( CHI-SQUARE
TOLERANCE)

2 (I)=MAGNETIC FIELD VALUES FOR FITS

B =PARAMETER MATRIX

N =NO. OF DATA POINTS USED IN LEAST-~SQARES FITTING

Q1 =N/10

Q2 =TOLERANCE ON GRAD(CHI**2) =APPROX .01

FM(I) = MEASURED VALUES

FC(I) = CALCULATED VALUES

ERR(I)= STANDARD DEVIATION ON FM(I) = SQRT(FM(I))

DIMENSIONS OF A,B IN EXAM AND MATINV SUBROUTINES
SHOULD BE THE SAME AS THOSE OF B2,Bl RESPECTIVELY IN
THE MAIN PROOGRAM AND IN CURFIT

ENTER TEETA IN DEGREES
DIMENSIONS OF Q,V IN JACOBI1 SHOULD BE THE SAME AS
THOSE OF B3,B2 RESPECTIVELY IN CURFIT

PARAMETERS=I. GT IS G**2-TENSOR
(G**222 ,G**22X,G**2XX ,G**2Z2Y ,G**2YY ,G**2XY)
GGT(J,NUMBER) REPRESENTS G-SQUARE TENSOR.
II. (B(I),I=1,6)=AZ2Z,AZX,AXX,AZY,AYY,6AXY
A=A-SQUARE TENSOR ABOVE
ENTER A WITH POSITIVE SIGN

DELANG(I,J),J=1,2,3 ARE ANGLE CORRECTIONS FOR 2X,ZY,
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XY PLANES AS DETERMINED BY "KRDBLT" FOR VARIOUS
CASES.

NUMBER=INDEX THAT CHANGES WITH EACH NEW CASE ITS VALUE
SHOULD BE THAT OF THE FIRST CASE CONSIDERED.

NCASES=NO. OF LAST CASE CONSIDERED. ITS VALUE SHOULD
BE ENTERED.

N1 (J1,NUMBER)=NO.OF LINES(FOR VARIOUS ORIENTATIONS)
FOR J1 HYPERFINE LINE OF CASE NO.=NUMBER

ZZ(J,K,L)=LINE POSITIONS,J=WHICH ONE OF
K=HYPERFINE LINE OF CASE NO.=L

DIMENSION Z(400),FM(400),FC(400),DF(400),ERR(400),
1B(12),B1(12),B2(12,12),DC(5000),ABC(2),Y(4),HN(400),
2G(5,12),GG(6,8) ,SMD(9),ARA(3,3),Q00(3,3),AAV(3,3),
3QQV(3,3),IBB(400,2),THETA(400),D1(12),D2(12,12),
4HHN(3,8) ,AADD(3,8) ,FFACTR(3,8),TEETA(100,4,8),
522(100,4,8) ,NN(8),N1(4,8),ACOSZ(400),ACOSX(400),
6ACOSY(400) ,DELANG (8,3),AJ1(400),GGT(3,3),GGTT(8,3,3),
7DELHH (400,8) ,DELH (400) ,A4 (3),L2X(1),L2Y(1),LXY (1),
8NZERO(1) ,NCASES (1)

COMMON/DATA1/ABC, Y
COMMON/DATA2,/DC, ACOSZ , ACOSX, ACOSY ,AJ1
COMMON/DATA3/DELH

EQUIVALENCE (Z,DC), (FM,DC(401)), (FC,DC(801)),
1(DF,DC(1201)), (ERR,DC(1601)), (HN,DC(2001)),

2 (THETA,DC(2401)), (IBB,DC(2801)), (B,DC(4101)),
3(B1,DC(4125)), (B2,DC(4137)), (N,DC(4301)),
4(L4,DC(4302)),(Q1,DC(4303)),(Q2,DC(4304)),
5(M,DC(4305)), (I,DC(4306)),(L,DC(4307)), (BO,DC(4308)),
6 (SMD,DC(4309)), (SSMD,DC(4320)), (D1,DC(4321)),
7(D2,DC(4333)), (NUMBER,DC(4100)), (GT,DC(4093))
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READ(5,*) NZERO,NCASES,L2X,LZY,LXY

WRITE (58,5123) NZERO,NCASES,LZX,LZY,LXY
5123 FORMAT(1X, 6HNZERO=,I8, 7HNCASES=,I18,

1 4HLZX=,I8, 4HLZY=,I8, 4HLXY=,18)

READ(5, *) (HHN(J,NCASES) , =1, 3)

READ(5, *) (FFACTR (J,NCASES) ,J=1,3)

READ(5, *) (AADD(J, NCASES) ,J=1, 3)

READ(5,*) (G (NCASES,J) ,J=1,3)

READ(5, *) (G (NCASES,J) ,J=7,12)

READ(5, *) (DELANG (NCASES, J) ,J=1,3)

READ(5, *) (GGTT (NCASES, 1,J),J=1,3)

READ (5, *) (GGTT (NCASES, 2,J) ,J=1,3)

READ(5,*) (GGTT (NCASES, 3,J),J=1,3)

READ(5,*) (N1 (J,NCASES) ,J=1,4)

NSUM=0

II=0

NXY=0

NSUM=LZX+LZ Y+LXY

NSUM=4 *NSUM

READ(5, *) ( DELHH (J,NCASES) ,J=1,NSUM)

READ(5,*) (TEETA (J, 1,NCASES) ,J=1,LZX)

READ(5,*) (22(J,1,NCASES) ,J=1,LZX)

READ(5,*) (22 (J, 2,NCASES) ,J=1,L2X)

READ(5,*) (22(J,3,NCASES) ,J=1,12X)

READ(S5,*) (22(J, 4,NCASES) ,J=1,LZX)

II=LZX+1

NXY=LZX+LZY

READ(5,+*) (TEETA(J,1,NCASES) ,J=II,NXY)

READ(5,*) (22(J,1,NCASES),J=1II,NXY)

READ(5,*) (22(J,2,NCASES),J=IT,NXY)

READ(S,*) (22(J,3,NCASES) ,J=II,NXY)

READ(5,*) (22(J,4,NCASES),J=II,NXY)

IT=NXY+1

NXY=NXY+LXY

READ (5, *) (TEETA(J,1,NCASES) ,J=II,NXY)
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READ(5, *) (22 (J,1,NCASES) ,J=II,NXY)
READ(5,*) (22 (J,2,NCASES) ,J=II,NXY)
READ(5, *) (22 (J,3,NCASES) ,J=II,NXY)
READ(5, *) (22 (J,4,NCASES) ,J=II,NXY)

188 FORMAT(1H1)
8 FORMAT(1X,4HQ1 = ,E13.5,5X,4HQ2 = ,E13.5)
137 FORMAT (3X,I2,5X,E16.6/)
136 FORMAT(10X,19H INITIAL
1PARAMETERS//3X, 1HJ, 10X, 4HB(J)//)
135 FORMAT(1X,11H PARAMETERS//3X,1HJ,
110X, 4HB(J) , 27X, 6HERRORS//)
9 FORMAT(2X,4H HN= ,F9.4)
140 FORMAT(3X,I2,5X,E16.6,15X,E16.6/)
138 FORMAT(5X,14H CASE NUMBER =,12//)
141 FORMAT(10X,6H SMD =,E13.5//)
235 FORMAT (15X,5(E13.5,8X)/)
236 FORMAT(15X,3(E13.5,8X)///)
7237 FORMAT (15X, *DIAGONAL ELEMENTS
10F G-SQUARE TENSOR ARE=%*,///)
237 FORMAT (15X, *DIAGONAL ELEMENTS
10F A-SQUARE TENSOR ARE=*,///)
238 FORMAT(15X,*"G" DIR. COS.(ROWS) ACC.
1TO E.VALS. ABOVE= *,///)
7238 FORMAT(15X,*"A" DIR. COS.(ROWS) ACC.
1TO E.VALS. ABOVE= *,///)
PI2=2.%3,1415926
RD=P12/360.
NZERO=1
NUMBER=NZERO
NCASES=1
M=12
L4=7
Q1=1.E-8
Q2=1.E-20
MM=M
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WRITE (58,188)
1 CONTINUE
N11=N1(1,NUMBER)
DO 1188 J=1,4
DO 1188 J1=1,N11
1188 TEETA(J1,J,NUMBER)=TEETA(J1,1,NUMBER)
DO 300 IA=1,3
DO 300 JA=1,3
300 GGT(IA,JA)=GGTT(NUMBER,IA,JA)
WRITE (58,121)
DO 122 IA=1,3
122 WRTTE(58,123) (GGT(IA,JA),JA=1,3)
121 FORMAT(5X,*ELEMENTS OF INITIAL GGT MATRIX AS THE
1IMATRIX OF DIR. COSINES OF G-SQUARE TENSOR ARE=%,//)
123 FORMAT(5X, 3 (F10.6,2X),/)
CALL EULER (GGT, THITA, PHI,PSI)
B(4)=THITA
B(5)=PHI
B(6)=PSI
LINE=0
DO 150 J1=1,8
NN1=N1(J1, NUMBER)
DO 150 I1=1,NN1
LINE=LINE+1
AJ1(LINE)=J1
THETA (LINE) =TEETA (I1,J1,NUMBER)
IF (THETA(LINE).GT.8000.) GO TO 155
IF (THETA(LINE).LT.0.) GO TO 160
TH=THETA (LINE) *RD+DELANG (NUMBER, 1) *RD
ACOSZ (LINE) =COS (TH)
ACOSX (LINE) =SIN (TH)
ACOSY (LINE) =0.
HN (LINE)=HHN (1, NUMBER)
Z (LINE)=(22 (I1,J1,NUMBER)+
1AADD (1, NUMBER) ) *FFACTR (1, NUMBER)
Z (LINE)=(2Z (I1,J1,NUMBER) *
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1FFACTR (1, NUMBER)+AADD (1, NUMBER) )
IF(22(I1,J1,NUMBER) .EQ.0.) Z(LINE)=0.
9160 FORMAT(5X,*ACOSZ ETC=+,3E12.5)
GO TO 165
160 TH=-THETA (LINE)*RD + DELANG (NUMBER, 2) *RD
ACOSZ (LINE)=COS (TH)
ACOSY (LINE)=SIN(TH)
ACOSX(LINE)=0.
HN (LINE) =HHN (2 , NUMBER)
Z (LINE)=(22(I1,J1,NUMBER) +
1AADD (2, NUMBER) ) *FFACTR (2, NUMBER)
Z (LINE)=(2Z(I1,J1,NUMBER) *
1FFACTR (2, NUMBER) +AADD (2, NUMBER) )
IF(22(I1,J1,NUMBER) .EQ.0.) Z(LINE)=0.
GO TO 165
155 TH=THETA (LINE) *RD+DELANG (NUMBER, 3) *RD
ACOSZ (LINE)=0.
ACOSX (LINE)=COS (TH)
ACOSY (LINE)=SIN(TH)
HN (LINE)=HHN (3, NUMBER)
c Z (LINE)=(22(I1,J1,NUMBER) +
1AADD(3,NUMBER) ) *FFACTR (3, NUMBER)
Z (LINE)=(2%(I1,J1,NUMBER) *
1FFACTR (3, NUMBER) +AADD (3, NUMBER) )
IF(22(I1,J1,NUMBER).EQ.0.) 2(LINE)=0.
165 CONTINUE
150 CONTINUE
NN (NUMBER) =LINE
=NN (NUMBER)
N9=N
DO 210 LL=1,MM
IF (LL.GT.3.AND.LL.LT.7) GO TO 210
B (LL) =G (NUMBER, LL)
210 CONTINUE
WRITE(58,138) NUMBER
WRITE(58,136)
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WRITE(58,137) (J,B(J),J=1,M)
WRITE(58,6659)
WRITE(58,6657) (2(J),J=1,N)
WRITE (58, 6660)
WRITE(58,6657) (HN(J),J=1,N)
6660 FORMAT(5X,*FREQUENCY-KLYSTRON ARE=*,/)
6659 FORMAT(5X,*MAG. FIELD VALUES ARE=*,/)
6657 FORMAT(5X,8(E12.5,2X))
DO 201 II=1,N9
DELH (II)=DELHH (II,NUMBER)
201 FM(II) = HN(II)
CALL CURFIT
SMD (NUMBER) = SSMD
WRITE(58,188)
WRITE(58,135)
DO 220 LL=1,M

220 GG (LL,NUMBER) = B(LL)
WRITE(58,140) (J,B(J) ,B1(J) ,J=1,M)
WRITE(58,188)

3 CONTINUE
$SS=0.
5551=0.
DO 555 ID=1,N
SSS=DF (ID) **2
SSS1=5SS1+SSS
WRITE(58,656) ID,SSS
555 CONTINUE
WRITE(58,6656) SSS1
r 556 FORMAT(/,10X,*CHI-SQUARE=*,E13.5,/)

656 FORMAT(10X,*LINE NUMBER = *,I3,5X,*SMD = *,E13.5)
WRITE (58,7237)
WRITE(58,236) (B(J1),J1
WRITE (58,238)
SB4L=SIN(B(4))
CB4L=COS (B(4))
SB5L=SIN (B(5))

1,3)
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CB51=C0S (B(5))
SB6L=SIN(B(6))
CB6L=COS (B(6))
GGT (1,1)=CB4L
GGT (1,2)=SB4L*SB5L
GGT (1,3)=-SB4L*CB5L
GGT (2,1)=SB6L*SB4L
GGT (2,2)=CB6L*CB5L-CB4 L*SB5L*SB6L
GGT (2,3)=CB6L*SB5L+CB4L*CBSL*SB6L
GGT (3,1)=CB6L*SB4L
GGT (3,2)==-SB6L*CB5L-CB4L*SB5L*CB6L
GGT (3,3)=-SB6L*SB5L+CB4L*CB5L*CB6L
DO 25 J1 = 1,3
WRITE (58,236) (GGT(J1,J2),J2 = 1,3)
25 CONTINUE
DO 245 J=1,3
245 A4 (J)=SQRT(B(J))
WRITE (58,246)
WRITE(58,236) (A4 (J),J=1,3)
246 FORMAT(5X,*PRINCIPAL VALUES OF G-TENSOR ARE=%*,/)
AAA(1,1)=B(7)
AAA(1,2)=B(8)
AAA (2,2)=B(9)
AAA (1,3)=B(10)
AAA (3,3)=B(11)
AAA (2,3)=B(12)
DO 720 J1=1,2
J4=J1+1
DO 720 J2=J4,3
AAA (J2,J1)=RAA(J1,J2)
720 CONTINUE
CALL JACOBI3(3,AAA,1,NR,AAV)
WRITE (58,237)
WRITE (58,236) (AAA(J1,J1),J1=1,3)
WRITE (58,7238)
DO 725 J1=1,3
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WRITE (58,236) (AAV(J2,J1),J2=1,3)
CONTINUE
DO 7245 J=1,3
IF (AAA(J,J) .LT. 1.0E-4) AAA(J,J)=0
A4 (J)=SQRT(AAA(J,J))
WRITE (58,7246)
WRITE (58,236) (A4(J),JT=1,3)
FORMAT (5X, *PRINCIPAL VALUES OF A-TENSOR ARE=*, /)
NUMBER=NUMBER+1
IF (NUMBER-NCASES) 1,1, 2
CONTINUE
DO 230 LL=NZERO,NCASES
WRITE(58,138) LL
WRITE (58,141) SMD(LL)
WRITE (58,235) (GG(LM,LL),IM=1,6MM)
STOP
END
SUBROUTINE CURFIT

EXAM HANDLES ALL MATRICES OF DIMENSIONS UPTO THE
DIMS.MM OF A,B,C THAT IS M IS LESS THAN OR EQUAL TO
MM (SAME IS TRUE OF MATINV AND JACOBI)

EQUIVALENCE OF GRAD BEGINS AT DIMENSION OF
B AFTER THE EQUIV. OF B

FORTRAN 4
DIMENSION Z(400) ,FM(400),FC(400),DF(400),ERR(400),

1B(12) ,B1(12),B2(12,12) ,DC(5000),ABC(2),Y(4),X(400),

2GRAD(12),D1(12),D2(12,12),B3(12,12),SMD(9),HN(400),

3ACOSZ (400) ,ACOSX (400) , ACOSY (400)

DIMENSION IBB(400,2),THETA(400),GT(6)
DIMENSION AJ1(400),GGTL(8,3),GGTM(8,3),GGTN(8,3)
COMMON/DATA1/ABC, Y
COMMON/DATA2/DC, ACOSZ , ACOSX, ACOSY,AJ1
EQUIVALENCE (2Z,DC), (FM,DC(401)), (FC,DC(801)),
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1(DF,DC(1201)), (ERR,DC(1601)), (HN,DC(2001)),

2 (THETA,DC(2401)), (IBB,DC(2801)),(B,DC(4101)),
3(B1,DC(4125)), (B2,DC(4137)), (N,DC(4301)),

4 (L4,DC(4302)),(Q1,DC(4303)),(Q2,DC(4304)),
5(M,DC(4305)), (I,DC(4306)), (L,DC(4307)), (BO,DC(4308)),
6 (SMD, DC(4309) ), (SSMD,DC(4320)), (D1,DC(4321)),

7 (D2,DC(4333)), (GRAD,DC(4113)),

6 (NUMBER, DC(4100)) , (GT,DC(4093))

ABC(1)="NO"
ABC(2)="YES"
Ll =0
SA = 0.0

=M
I16=1
NN=N
DO 1000 J=1,MM
B1(J)=0.0

DO 1000 K=1,MM
1000 B2(J,K)=0.0
DO 100 I6 = 1, NN
L=1
1=16
CALL FUNC(2)
X (I16)=ERR(I6)**2
901 FORMAT(5X,10H FUNC2,210 )
DF(I6) =FM(I6) - FC(I6)
DO 101 J=1,MM
B1(J)=B1(J)~-(2.0*DF(I16)*D1(J))/X(I6)
DO 101 K=1,MM
101 B2(J,K)=B2(J,K)-(2.0%(DF(I6)*D2(J,K)-
1D1(J) *D1(K)))/X(I6)
100 SA = SA + DF(I6)**2/X(I6)
GMOD=0.0
DO 102 J=1,M
102 GMOD=GMOD+B1 (J) **2
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WRITE (58,243)SA,GMOD

243 FORMAT (1X,26H*INITIAL VALUE SUM OF SQ.=E13.5,20X,
117H*SQ MOD OF GRAD =E13.5)
WRITE (58,1751)

1751 FORMAT(14HO DERIVATIVES-)
WRITE (58,240) (B1(J),J=1,M)

240 FORMAT (15X,5(E13.5,8X)/)
IF (SA - Q1) 110, 110, 200

110 LE = 1
GO TO 600

200 S = 0.0
GMOD =
BMOD =
PROD =
DO 210 K = 1, MM

210 B2(J,K) = 0.0
WRITE (58,902)
DO 220 I6 = 1, NN
L=1
I=I6
CALL FUNC (2)
X(I6)=ERR(I6)**2

902 FORMAT(5X,10H FUNC2,210 )

DF(I6) = FM(I6) - FC(I6)

DO 220 J = 1, MM

B1(J) 5 B1(J) - (2.0%DF(I6)*D1

o O ©

= O O O

200
GMOD = 0.0
BMOD = 0.0
PROD = 0.0

DO 210 K =1, MM
210 B2(J,K) = 0.0

WRITE (58, 902)
DO 220 I6 = 1, NN
I=1
I=16

CALL FUNC(2)
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X(I6)=ERR (I6)**2
FORMAT(5X,10H FUNC2,210 )
DF(I6) = FM(I6) ~ FC(I6)

DO 220 J =1, MM

B1(J) = B1(J) - (2.0*DF(I6)*D1
B3 (II,JJ)=B2(II,JJ)

WRITE (58,904)

CALL JACOBI4(M,B3,4,NR,B2)
FORMAT (5X,12H JACOBI1,231 )
WRITE (58, 904)

DO 235 I6=1,MM
B1(I6)=B3(I16,I6)

A2=ABC(2)

DO 260 J = 1, MM
D1(J) = 0.0

DO 270 J = 1, MM
DO 270 K = 1, MM

D1(K) = D1(K) + B2(J,K) *GRAD(J)
DO 275 J =1, MM
IF (B1(J)) 280, 290, 285

B1(J) = - B1(J)
D1(J) = D1(J)/B1(J)
GO TO 275

D1(J) = 0.0
CONTINUE

DO 295 J = 1, MM
B1(J) = 0.0

DO 300 J =1, MM

DO 300 K = 1, MM

B1(J) = B1(J) + B2(J,K)*D1(K)
DO 310 J=1,MM

GMOD = GMOD + GRAD(J)**2
BMOD = BMOD + B1(J)**2
PROD = PROD + GRAD(J)*B1(J)

IF (GMOD - Q2) 315, 315, 320
LE = 2

DO 231

JJ=1,M
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WRITE (58,1761) GMOD
FORMAT (5X, 7H GMOD =,E13.5//)
GO TO 600

C=PROD/SQRT (BMOD*GMOD)

IF (C) 335, 335, 400

LE = 4
GO TO 600
LD = 0
L3 =0

DO 410 J = 1, MM
GRAD(J) = B(J) = B1(J)

DO 420 I6 = 1, NN

I=2

I=16

CALL FUNC (1)
X(I6)=ERR(I6)**2

FORMAT (5X,10H FUNC1,450 )
DF(I6) = FM(I6) - FC(I6)

S = S + DF(I6)**2/X(I6)
WRITE (58, 905)

IF (SA - S) 435, 500, 500
LD = LD + 1

DO440 J = 1, MM

B1(J) = B1(J)/2.0

FORMAT (5X, 16H BINARY CHOP, 430
GRAD(J) = B(J) = B1(J)
WRITE (58, 906)

S = 0.0

L3 = L3 + 1
IF(L3-5)450,460,460

ILE = 5

GO TO 600

IF (LD) 505, 505, 506

LD = 0

GO TO 430

DO 510 J = 1, MM

)
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510 B(J) = GRAD(J)
SA =8
IF (SA - Q1) 507, 507, 530
507 LE =1
GO TO 600

530 IF (L4) 200, 200, 900

900 WRITE(58,920)L1,A2,L3,S,GMOD, (B(J),J=1,M)

920 FORMAT(//,15H ITERATION NO.=I5,10X,43H TRANSFOR
IMATION MADE TO PRINCIPAL AXES = A4,10X,  18H BINARY
2CHOP USED=I3,6H TIMES/1X,27H WEIGHTED SUM OF SQUARES =
3E14.7,25X,32H SQUARE MODULUS OF GRADIENT = E14.7/
420H PARAMETERS B(J) -/(6E17.8)/)

IF (L1 - L4) 200, 910, 910
910 LE = 6
GO TO 600

600 DO 710 J=1,MM
B1(J) = 0.0
DO 710 K=1,MM

710 B2(J,K) = 0.0
L=1
WRITE(58,907)

907 FORMAT(5X,* FUNC(2),720 *)
DO 720 I6 = 1, NN
I=I6
CALL FUNC(2)
X(I6)=ERR(I6)**2
DF(I6) = FM(I6) - FC(I6)
DO 720 J = 1, MM
B1(J) = B1(J) - (2.0*%DF(I6)*D1(J))/X(I6)
DO 720 K = 1, MM

720 B2(J,K) = B2(J,K) - ((DF(I6)*D2(J,K) -

1D1 (J) *D1(K)))/X (16)
WRITE (58,3029)

3029 FORMAT(* I AM LOST IN MANTINV*)
CALL MATINV(B2,M,B1,1,DETERM)
WRITE (58,3029)
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DO 730 J=1,MM
IF (B2(J,J)) 2001,2001,2002

B1(J) = -SQRT(-B2(J,J))

GO TO 730

B1(J)= SQRT(B2(J,J))

CONTINUE

DO 740 J=1,MM

DO 740 K=1,MM

B2(J,K)=B2(J,K)/ (B1(J)*B1(K))

WRITE (58,551)LE, SA

FORMAT(//,13H EXIT NUMBER=I3,20X,25H WEIGHTED SUM
10F SQUARES=E15.8//)

SSMD = SA

CONTINUE

RETURN

END

SUBROUTINE FUNC (LX)
SUBROUTINE FUNC

DIMENSION DC(5000),B(12,2),D1(12),D2(12,12),FC(400),
1Z(400),S(4,4),SIGN(400) ,HN(400),ST(4,4,16) ,FM(400),
2DF (400) ,DELH (400) , ERR(400),B1(12),B2(12,12),SMD(9),
3ACOSZ (400) ,ACOSX (400) ,ACOSY (400) ,IBB(400,2),
4THETA (400) ,DD(16) ,GT(6) ,AJ1(400) ,AL(400) ,AM(400),
5AN(400) ,GGT(3,3),C1(12) ,AZ(6),AX(6) ,AY(6),GB(6),
6F2(6),C2(12),C3(12),CK(12),F4(12),CC(12),AK2(6) ,BB(6)

COMMON/DATA2/DC, ACOSZ , ACOSX,ACOSY,AJ1

COMMON/DATA3 /DELH

EQUIVALENCE (Z,DC), (FM,DC(401)), (FC,DC(801)),
1(DF,DC(1201)), (ERR,DC(1601)), (HN,DC(2001)),

2 (THETA,DC(2401)), (IBB,DC(2801)), (B,DC(4101)),
3(B1,DC(4125)),(B2,DC(4137)), (N,DC(4301)),

4 (L4,DC(4302)),(Q1,DC(4303)), (Q2,DC(4304)),
5(M,DC(4305)),(I,DC(4306)),(L,DC(4307)), (BO,DC(4308)),
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6 (SMD,DC (4309)), (SSMD,DC(4320)), (D1,DC(4321)),
7(D2,DC(4333)), (NUMBER, DC(4100) ), (GT,DC(4093))
IF(Z(I).EQ.0.) GO TO 135
BETA=92.732/66252.
BETAN=. 00054464 *BETA
RD=3.1415926/180.
FACTOR=92.732/66252.
SB4L=SIN(B(4,L))
CB4L=COS (B(4,L))
SBSL=SIN(B(5,L))
CBSL=COS (B(5,L))
SB6L=SIN(B(6,L))
CB61=COS (B(6,L))
GGT(1,1)=CB4L
GGT(1,2)=SB4L*SB5L
GGT(1,3)=-SB4L*CBSL
GGT (2,1)=SB6L*SB4L
GGT (2,2)=CB6L*CB5L~CB4L*SB5L*SB6L
GGT (2,3)=CB6L*SB5L+CB4L*CB5L*SB6L
GGT(3,1)=CB6L*SB4L
GGT(3,2)=-SB6L*CB5L-CB4L*SB5L*CB6L
GGT(3,3)=-SB6L*SBSL+CB4L*CBSL*CB6L
IF (I.GT.1) GO TO 119
WRITE (58,118)
DO 117 IA=1,3
117 WRITE(58,116) (GGT(IA,IB),IB=1,3)
116 FORMAT (5X,3(F10.6,3X),/)
118 FORMAT(5X,*ELEMENTS OF COMPUTED GGT MATRIX FROM
1EULER ANGLES ARE=%, //)
119 CONTINUE
AL(I)=ACOSZ (I)*GGT(1,1)+ACOSX(I)*GGT(1,2)+
1 ACOSY(I)*GGT(1,3)
AM(I)=ACOSZ (I)*GGT(2,1)+ACOSX(I)*GGT(2,2)+
2 ACOSY (I)*GGT(2,3)
AN(I)=ACOSZ (I)*GGT(3,1)+ACOSX(I)*GGT(3,2)+
3 ACOSY(I)*GGT(3,3)
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FCI=B(1,L)*AL(I)**2+B(2,L)*AM(I)**2+B(3,L)*AN (I)**2
ENELSP=2 (I) *BETA*SQRT (FCI)

BB(1)=B(1,L)*AL(I)**2

BB(3)=B(2,L) *AM(I)**2

BB(5)=B(3,L) *AN(I)**2
BB(2)=2.*SQRT(B(1,L)*B(2,L))*AL(I)*AM(I)
BB(4)=2.*SQRT(B(1,L)*B(3,L))*AL(I)*AN(I)
BB(6)=2.*SQRT(B(2,L)*B(3,L))*AM(I)*AN(I)
AEFF2=B(7,L) *BB(1)+B(9,L) *BB(3)+B(11,L) *BB(5) +
1 B(8,L)*BB(2)+B(10,L)*BB(4)+B(12,L) *BB(6)
AMI=2.5-AJ1(I)

IF(AEFF2.LT. (0.)) GO TO 109

AEFF=SQRT (AEFF2/FCI)

HYPFEN=AEFF*AMI
CC(7)=B(7,L)**2+B(8,L) **2+B(10, L) **2
cC(8)=B(7,L)*B(8,L)+B(8,L)*B(9,L)+B(10,L)*B(12,L)
CC(9)=B(i,L)**2+B(9,L) **2+B(12,L) **2
CC(10)=B(7,L)*B(10,L)+B(8,L)*B(12,L)+B(10,L)*B(11, L)
CC(11)=B(10,L)*#*2+B(12,L) **2+B(11,L)**2
€C(12)=B(8,L)*B(10,L)+B(9,L)*B(12,L)+B(11,L)*B(12, L)
CKK=CC (7) *BB (1) +CC(9) *BB(3)+CC(11)*BB(5)+CC(8)*BB(2)+
1 CC(10)*BB(4)+CC(12)*BB(6)

AKK=SQRT (CKK/AEFF2)

AI=3.5

AT1=AT* (AI+1.)

DELE3=(0.5% (B(7,L)+B(9,L)+B(11,L))* (AI1-AMI#*2) -

1 AKK**2% (AI1-3.*AMI*%2)/2.-HYPFEN*%2)/(2.*ENELSP)
FC(I)=ENELSP+HYPFEN+DELE3

ERR(I)=SQRT (FCI)*DELH (I) *FACTOR

ERR(I)=1.

GO TO 136

CONTINUE

FC(I)=HN(I)

ERR(I)=1.

CONTINUE

IF(LX-1)110,110,120
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CONTINUE

DO 235 IZ = 1,12
D1(IZ) = 0.0

DO 235 J2 = 1,12
D2(IZ,J2) =0.0 .
IF(Z(I).EQ.0.) GO TO 110
DDD=. 5*AMI/ (FCI*AEFF)
C2(7)=DDD*BB (1)
C2(8)=DDD*BB(2)

C2 (9) =DDD*BB (3)
C2(10)=DDD*BB(4)
C2(11)=DDD*BB(5)
C2(12)=DDD*BB(6)

BETAB=BETA*Z (I)

GZ=SQRT (B(1,L))

GX=SQRT(B(2,L))

GY=SQRT(B(3,L))

AZZ=SQRT (BB(1))

AXX=SQRT (BB(3))

AYY=SQRT (BB(5))

AZ(1)=0.5*AL(I)/GZ

AZ(2)=AZ(3)=0.

AX(2)=0.5*AM(I)/GX

AX(1)=AX(3)=0.

AY(3)=0.5%AN(I)/GY

AY(1)=AY(2)=0.

ALL=ACOSX(I)

AMM=ACOSY (I)

ANN=ACOSZ (I)

AZ(4)=GZ* (ALL*CB4L*SB5L~AMM*CB4 L*CB5L-ANN*SB4L)
AZ (5)=GZ* (ALL*SB4L*CB5L+AMM*SB4 L*SB5L)
AZ(6)=0.

AX (4)=GX* (ALL*SB4L*SB5L*SB6L~AMM*SB4L*
1CBSL*SB6L+ANN*CB4L*SB6L)

AX (5)=GX* (ALL* (~CB6L*SB5L-CB4L*CB5L*SB6L) +
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1AMM* (CB6L*CB5L~CB4L*SB5SL*SB6L) )

AX (6)=GX* (ALL* (~SB6L*CB5L-CB4L*SBSL*CB6L) +
1AMM* (-SB6L*SB5L+CB4L*CBSL*CB6L) +ANN*CB6L*SB4L)
AY (4)=GY* (ALL*SB4L*SB5L*CB6L-
1AMM#*SB4L*CB5L*CB6L+ANN*CB6L*CB5L)

AY (5)=GY* (ALL* (SB6L*SB5SL-CB4L*CB5L*CB6L) +
1AMM* (-SB6L*CB5L~CB4L*SB5L*CB6L) )

AY (6)=GY* (ALL* (~CB6L*CB5L+CB4L*SB5L+SB6L) +
1AMM* (~CB6L*SB5L~CB4L*CB5L*SB6L) ~ANN*SB6L*SB4L)
DO 910 IA=1,6

GB(IA)=(AZZ*AZ (IA)+AXX*AX(IA)+
1AYY*AY (IA) ) *BETAB/ENELSP

IA1=IA+6
C1(IA1l)=0.

C1 (IA)=BETAB*GB (IA)

C1(IA) ARE DERIVATIVES OF ENELSP

AXX=SQRT (BB(3))

AYY=SQRT (BB(5))

AZZ=SQRT (BB(1))

F2(1)=2.*AZ(1)* (AZZ*B(7,L)+AXX*B(8,L)+AYY*B(10,L))
F2(2)=2.*%AX(2)* (AZZ*B(8,L)+AXX*B(9,L)+AYY*B(12,L))
F2(3)=2.*AY(3) * (AZZ*B(10,L) +AXX*B(12,L)+AYY*B(11,L))
DO 915 IA=4,6

F2 (IA)=2.% (AXX*AX (IA)*B(9,L)+AYY*AY(IA) *B(11,L)+

1 AZZ*AZ (IA) *B(7,L)+(AXX*AY (IA)+AYY*AX (IA)) *

2 B(12,L)+ (AXX*AZ (I~ +AZZ*AX (IA))*B(8,L)+

3 (AYY*AZ (IA)+AZZ*AY (IA))*B(10,L))

CONTINUE

F4 (1)=2.%AZ (1) * (AZZ*CC(7)+AXX*CC(8)+AYY*CC(10))
F4 (2)=2.%AX(2) * (AZZ*CC(8)+AXX*CC(9)+AYY*CC(12))

F4 (3)=2.*AY(3) * (AZZ*CC (10) +AXX*CC(12)+AYY*CC(11))
DO 920 IA=4,6

F4 (IA)=2.% (AXX*AX (IA)*CC(9)+AYY*AY (IA)*CC(11)+

1 AZ2*AZ(IA)*CC(7)+(AXX*AY (IA)+AYY*AX(IA))*CC(12)+
2 (AXX*AZ (IA)+AZZ*AX(IA))*CC(8)+

3 (AYY*AZ (IA)+AZZ*AY(IA))*CC(10))
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920 CONTINUE
DO 925 IA=1,6

925 C2(IA)=(-BETAB*HYPFEN*GB(IA)/ENELSP+
1 (BETAB*#2) *F2 (IA)/ (2.* (ENELSP**2)*HYPFEN) ) *AMI
C2(IA) ARE DERIVATIVES OF HYPFEN
DO 927 IA=1,6
IA1=IA+1

927 C2(IAl)=(AMI**2)*BB(IA)/ (0.5%FCI*HYPFEN)
DO 930 IA=1,6

930 AK2 (IA)=((BETAB*AMI/ (ENELSP*HYPFEN) ) **2)* (F4 (IA) -
1 (2.*CCK/ (ENELSP*HYPFEN) ) *
2 (C1(IA)*HYPFEN+ENELSP*C2 (IA)))
DO 935 IA=1,6

935 C3(IA)=(ENELSP*(~0.5% (AT1-3.% (AMI*#2))*AK2 (IA)=-2.*
1HYPFEN#C2 (IA))=(0.5%(B(7,L)+B(9,L)+B(11,L))*
2 (AI1l-(AMI*#2))~0.5% (AKK**2) % (AT1-3,* (AMI#*%2) ) -
3HYPFEN*%2) *C1(IA) )/ (2.% (ENELSP**2))
C3(IA) ARE DERIVATIVES OF DELE3

F4(7)=2.*BB(1)*B(7,L)+BB(2)*B(8,L)+BB(4)*B(10,L)
F4(8)=2.%(BB(1)+BB(3))*B(8,L)+BB(2) *(B(7,L)+B(9,L))+
1 BB(4)*B(12,L)+BB(6)*B(10,L)
F4(9)=2.*BB(3)*B(9,L)+BB(2)*B(8,L)+BB(6)*B(12,L)
F4(10)=2.% (BB(1)+BB(5))*B(10,L)+BB(4)*(B(7,L)+

2 B(11,L))+BB(2)*B(12,L)+BB(6) *B(8,L)
F4(11)=2.*BB(5)*B(11,L)+BB(4)*B(10,L)+BB(6)*B(12,L)
F4 (12)=2.*(BB(3)+BB(5))*B(12,L)+BB(6)*(B(9,L)+

3 B(11,L))+BB(2)*B(10,L)+BB(4) *B(8,L)

DO 1237 IA=7,12

1237 CK(IA)=-AKK*C2(IA)/(AEFF*AMI)+F4(IA)/

1 (2.*FCI*(AEFF#%2)*AKK)

DO 1236 IA=7,12

AIA=0.

IF (IA.EQ.7.0R.IA.EQ.9.O0R.IA.EQ.11) AIA=1.

1236 C3(IA)=(AKK*CK(IA)*(3.*AMI**2-AT1)+0.5%

1 (AI1-AMI*#2)*ATA-2,*HYPFEN*C2(IA))/(2.*ENELSP)
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DO 1235 IA=1,12

D1 (IA)=C1(IA)+C2(IA)+C3 (IA)
GO TO 110

WRITE(58,108) I

FORMAT (5X, *NEG AEFF2 FOR I=*,I3)
FC(I)=FM(I)

DO 197 JJ=1,12

D1 (JJ)=0.

CONTINUE

RETURN

END

SUBROUTINE EULER(GGT,THETA,PHI, PSI)

THIS PROGRAMME CALCULATES THE EULER ANGLES THETA,
PHI AND PSI FROM THE DIRECTION COSINES OF G-SQUARE
DIAGONAL MATRIX.

DIMENSION GGT(3,3),TPS(4,4,4),AMTRX(9),BMTRX(64,9),

1 A(64),B(64),C(64),IA(64),IB(64),IC(64),ABSMT(9)

AMTRX (1)=GGT(1,1)

AMTRX (2)=GGT (1, 2)

AMTRX (3)=GGT(1,3)

AMTRX (4)=GGT(2,1)

AMTRX (5)=GGT (2, 2)

AMTRX (6)=GGT (2, 3)

AMTRX (7)=GGT(3,1)

AMTRX (8)=GGT (3, 2)

AMTRX (9)=GGT (3, 3)

DO 50 I=1,9

ABSMT (I)=AMTRX(I)/ABS (AMTRX(I))
ATHETA=ACOS (ABS (AMTRX (1) ))
APHI=ATAN (ABS (AMTRX (2) /AMTRX(3)))
APSI=ATAN (ABS (AMTRX (4) /AMTRX(7)))
API=3.141592654

DO 5 Il=1,4

DO 5 I2=1,4
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DO 5 I3=1,4
ITK=I3+(I2-1) *4+(I1-1)*16
IF (I1.EQ.1.) THETA=ATHETA
IF (I2.EQ.1.) PHI=APHI
IF (I3.EQ.1.) PSI=APSI
IF (I1.EQ.2) THETA=API-ATHETA
IF (I1.EQ.3) THETA=API+ATHETA
IF (I1.EQ.4) THETA=2.*API-ATHETA
IF (I2.EQ.2) PHI=API-APHI
IF (I2.EQ.3) PHI=API+APHI
IF (I2.EQ.4) PHI=2.*API-APHI
IF (I3.EQ.2) PSI=API-APSI
IF (I3.EQ.3) PSI=API+APSI
IF (I3.EQ.4) PSI=2.*API-APSI
BMTRX (IJK, 1) =COS (THETA)
BMTRX (IJK, 2) =SIN(THETA) *SIN(PHI)
BMTRX (IJK, 3) =-SIN (THETA) *COS (PHI)
BMTRX (IJK, 4) =SIN(THETA) *SIN(PSI)
BMTRX (IJK, 5) =COS (PHI) *COS (PSI) -
1 COS(THETA)*SIN(PHI)*SIN (PSI)
BMTRX (1JK, 6) =SIN(PHI)*COS (PSI)+
1 COS (THETA) *COS (PHI)*SIN (PSI)
BMTRX (IJK, 7) =SIN (THETA) *COS (PSI)
BMTRX (IJK, 8) =-COS (PHI) *SIN(PSI) -
1 COS(THETA)*SIN(PHI)*COS (PSI)
BMTRX (IJK,9)=-SIN (PHI)*SIN(PSI)+
1 COS (THETA) *COS (PHI) *COS (PSI)
DO 100 I=1,9
100 BMTRX(IJK,I)=BMTRX (IJK,I)/ABS (BMTRX(IJK,I))
IA(IJK)=I1
IB(IJK)=I2
IC(IJK)=13
WRITE(58,60) IJK,IA(IJK),IB(IJK),IC(IJK),BMTRX(IJK,1),
1 BMTRX(IJK,2),BMTRX(IJK,3),BMTRX(IJK,4),BMTRX(IJK,5),
2 BMTRX(IJK,6),BMTRX(IJK,7),BMTRX (IJK,8), BMTRX (IJK,9)
60 FORMAT (5X,4(I3,2X),9(F8.2,1X),/)
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5 CONTINUE
DO 25 IJK=1,64
AC0S2=0.
DO 10 II=1,9
10 ACOS2=ACOS2+(BMTRX(IJK,II)~ABSMT (II))**2
WRITE (58,55) ACOS2,IA(IJK),IB(IJK),IC(IJK)

55 FORMAT(5X, *ACOS2=*,E10.4,3X, *IA=*,I2,

13X, *IB=%,12,3X,*IC=*,12,/)

IF (ACOS2.GT.(0.01)) GO TO 15

WRITE (58,35) IJK, IA(IJK),IB(IJK),IC(IJK)
I1=IA(IJK)

I2=IB(IJK)

I3=IC(IJK)

I14=IJK

15 CONTINUE

25 CONTINUE

35 FORMAT (2X,*IJK=*,I4,2X,*IA=%,614,
12X, *IB=%,I4,2X,*IC=*,14,/)

40 FORMAT (2X, *THETA=+,F10.4,2X, *PHI=*,
1F10.4,2X,*PSI=*,F10.4, 2X, *DTAETA=+,F10. 4,
22X, *DPHI=*,F10.4,2X,*DPSI=+*,F10.4)

IF (I1.EQ.1) THETA=ATHETA

IF (I2.EQ.1) PHI=APHI

IF (I3.EQ.1) PSI=APSI

IF (I1.EQ.2) THETA=API-ATHETA
IF (I1.EQ.3) THETA=API+ATHETA
IF (I1.EQ.4) THETA=2.*API-ATHETA
IF (I2.EQ.2) PHI=API-APHI

IF (I2.EQ.3) PHI=API+APHI

IF (I2.EQ.4) PHI=2.*API-APHI
IF (I3.EQ.2) PSI=API-APSI

IF (I3.EQ.3) PSI=API+APSI

IF (I3.EQ.4) PSI=2.*API-APSI
DTHETA=180 . *THETA/API
DPHI=180.*PHI/API
DPSI=180.*PSI/API
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WRITE(58,40) THETA,PHI,PSI,DTHETA,DPHI,DPSI
RETURN
END

SUBROUTINE EXAM(A,B,M,LF)
FORTRAN 4

DIMENSION A(12,12),B(12),C(12)

DO 80 J=1,M

C(J)=A(J,J)

IF(A(1,1)) 60,200,70

A(1,1) =-SQRT(~A(1,1))

GO TO 300

A(1,1) =SQRT(A(1,1))

GO TO 100

IF (M-1)400,400,110

DO 115 K=2,M

A(1,K)=A(1,K)/(A(1,1) )

DO 120 J=2,M

Ji=J-1

S=a(J,J)

DO 125 L=1,J1

S=S~-A(L,J) **2

IF (S) 50,200,40

A(J,J) =-SQRT(-S)

GO TO 300

A(J,J) =SQRT(S)

GO TO 130

IF(J-M)135,400,400

J2=J+1

DO 120 K=J2,M

S=A(J,K)

DO 145 L=1,J1

S=S-A(L,J)*A(L, K)

A(J,K)=S/A(J,T)

B(1)=B(1)/A(1,1)

IF (M-1)420,420,405
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DO 410 J=2,M
S=B(J)

J1=J-1

DO 415 L=1,J1
S=S-A(L,J) *B(L)
B(J)=S/A(J,J)

B (M) =B(M) /& (M, M)
J=M-1

IF(J) 450,450,425
S=B(J)

J2=J+1

DO 430 L=J2,M
S=S-A(J,L) *B(L)
B(J)=S/A(J,J)
J=J-1

GO TO 435

LF=1

GO TO 460

LF=0

GO TO 460

LF=-1

DO 465 J=1,M
A(J,JT)=C(J)
IF(J-M)470,475,475
J2=J+1

DO 465 K=J2,M
A(J,K)=A(K,J)
RETURN

END

SUBROUTINE MATINV(A,N,B,M, DETERM)
FORTRAN 4

MATRIX INVERSION WITH ACCOMPANYING SOLUTION

OF LINEAR EQUATIONS

DIMENSION IPIVOT(12),A(12,12),B(12,1),

1 INDEX(12,2),PIVOT(12)
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EQUIVALENCE (IROW,JROW), (ICOLUM,JCOLUM), (AMAX,T,SWAP)
DETERM=1.0

DO 20 J=1,N

IPIVOT(J)=0

DO 550 I=1,N

AMAX=0.0

DO 105 J=1,N

IF (IPIVOT(J)~1)60,105,60

DO 100 K=1,N

IF (IPIVOT(K)~-1)80,100,740

IF (ABS (AMAX) -ABS (A(J,K) ) ) 85,100,100
IROW=J

ICOLUM=K

AMAX=A(J,K)

CONTINUE

CONTINUE

IPIVOT(ICOLUM)=IPIVOT (ICOLUM)+1

IF (IROW-ICOLUM)140,260,140
DETERM=-DETERM

DO 200 L=1,N

SWAP=A(IROW,L)
A(IROW,L)=A(ICOLUM,L)
A(ICOLUM,L)=SWAP

IF(M)260,260,210

DO 250 L=1,M

SWAP=B(IROW,L)

B(IROW,L)=B(ICOLUM, L) ]
B(ICOLUM, L) =SWAP

INDEX(I,1)=IROW //
INDEX(I,2)=ICOLUM (
PIVOT(I)=A(ICOLUM, ICOLUM)
DETERM=DETERM*PIVOT (I)
A(ICOLUM,ICOLUM)=1.0

DO 350 L=1,N
A(ICOLUM,L)=A(ICOLUM,L)/PIVOT (I)

IF (M)380,380,360
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360 DO 370 L=1,M
370 B(ICOLUM,L)=B (ICOLUM,L)/PIVOT(I)
380 DO 550 L1=1,N
IF (L1-ICOLUM) 400,550,400
400 T=A (L1, ICOLUM)
A(L1,ICOLUM)=0.0
DO 450 L=1,N
450 A(L1,L)=A(Ll,L)~A(ICOLUM,L) *T
IF (M)550,550, 460
460 DO 500 L=1,M
500 B(L1,L)=B(Ll,L)-B(ICOLUM,L) *T
550 CONTINUE
DO 710 I=1,N
L=N+1-1I
IF (INDEX(L,1) -INDEX(L,2)) 630,710,630
630 JROW=INDEX(L, 1)
JCOLUM=INDEX (L, 2)
DO 705 K=1,N
SWAP=A (K,JROW)
A(K,JROW)=A (K, JCOLUM)
A(K,JCOLUM)=SWAP
705 CONTINUE
710 CONTINUE
740 RETURN
END

SUBROUTINE JACOBI2(N,Q,JVEC,M,V)

SUBPROGRAM FOR DIAGONALIZATION OF MATRIX Q
BY SUCCESSIVE ROTATIONS

DIMENSION Q(6,6),V(6,6),X(6),IH(6)

NEXT 8 STATEMENTS FOR SETTING
INITIAL VALUES OF MATRIX V

IF(JVEC) 10,15,10
10 DO 14 I=1,N
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DO 14 J=1,N
IF(I-J) 12,11,12
V(I,J)=1.0

GO TO 14
V(I,J)=0.
CONTINUE

M=0

NEXT 8 STATEMENTS SCAN FOR LARGEST OFF DIAG. ELEM.
IN EACH ROW X(I) CONTAINS LARGEST ELEMENT IN ITH ROW
IH(I) HOLDS SECOND SUBSCRIPT DEFINING POSITION

OF ELEMENT

MI=N-1

DO 30 I=1,MI

X(I)=0.

MI=I+1

DO 30 J=MJ,N

IF (X(I)-ABS (Q(I,J))) 20,20,30
X(I)=ABS (Q(I,J))

IH(I)=J

CONTINUE

NEXT 7 STATEMENTS FIND FOR MAXIMUM
OF X(I)S FOR PIVOT ELEMENT

DO 70 I=1,MI

IF(I-1) 60,60,45

IF (XMAX-X(I)) 60,70,70

XMAX=X(I)

IP=I

Jp=IH(I)

CONTINUE

NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10%**~8,GO TO 1000
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EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000,148

148 M=M+1

NEXT 11 STATEMENTS FOR COMPUTING
TANG, SINE,COSN,Q(I,I),Q(J,J)

IF (Q(IP,IP)-Q(JP,JP)) 150,151,151
150 TANG =-2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1SQRT( (Q(IP,IP)=-Q(JP,JP))**2+4.%Q(IP,JP) *%2))
GO TO 160
151 TANG =+2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1SQRT ( (Q(IP,IP)-Q(JP,JP))**2+4.*Q(IP,JP) **2))
160 COSN=1.0/SQRT (1.0+TANG**2)
SINE=TANG*COSN
QII= Q(IP,IP)
Q(IP,IP)= COSN**2* (QII+TANG*(2.*Q(IP,JP)+
1TANG*Q (JP,JP)))
Q(JP,JP)= COSN**2*(Q(JP,JP)-
1TANG* (2.%*Q(IP,JP) -TANG*QII))

Q(IP,JP)=0.

NEXT 4 STATEMENTS FOR PSEUDO
RANK OF THE E1GENVALUES
IF (Q(IP,IP)-Q(JP,JP)) 152,153,153
152 TEMP=Q(IP,IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,JP)=TEMP

NEXT 6 STATEMENTS ADJUST SIN,COS
FOR COMPUTATION OF Q(I,K),V(I,K)

IF(SINE) 154,155,155
154 TEMP=+COSN
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GO TO 170
TEMP=-COSN
COSN=ABS (SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING THE I"S BETWEEN
I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM
VALUE SHOULD BE COMPUTED SINCETHE PRESENT
MAXIMUM IS IN THE I OR J ROW

DO 350 I=1,MI
IF (I-IP) 210,350,200

IF (I-JP) 210,350,210

IF (IH(I)-IP) 230,240,230
IF (IH(I)-JP) 350,240,350
K= IH(I)

TEMP=Q (I,K)

Q(I,K)=0.

MI=I+1

X(I)=0.

NEXT 5 STATEMENTS SEARCH IN DEPLETED ROW
FOR NEW MAXIMUM

DO 320 J=MJ,N
IF (X(I)-ABS(Q(I,J))) 300,300,320
X(I)=ABS(Q(I,J))

IH(I)=J

CONTINUE

Q(I,K)=TEMP

CONTINUE

X(IP)=0.
X(JP)=0.

NEXT 30 STATEMENTS FOR CHANGING
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THE OTHER ELEMENTS OF Q

DO 530 I=1,N

IF (I-IP) 370,530,420
TEMP=Q (I, IP)
Q(I,IP)=COSN*TEMP+SINE*Q (I, TP)

IF (X(I)-ABS(Q(I,IP))) 380,390,390
X(I)=ABS(Q(I,IP))

IH(I)=IP
Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
X(I)=ABS(Q(I,JP))

IH(I)=JP

GO TO 530

IF (I-JP) 430,530,480
TEMP =Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(I,JP)

IF (X(IP)-ABS(Q(IP,I))) 440,450,450
X (IP)=ABS (Q(IP,I))

IH(IP)=I
Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530

TEMP=Q (IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(JP,I)
IF(X(IP)-ABS(Q(IP,I))) 490,500,500
X (IP)=ABS (Q(IP,I))

IH(IP)=I
Q(JP,I)=-SINE*TEMP+COSN*Q(JP,I)

IF (X(JP)-ABS(Q(JP,I))) 510,530,530
X (JP)=ABS (Q(JP,I))

IH(JP)=I

CONTINUE
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NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF EIGENVECTORS

IF (JVEC) 540,40,540

DO 550 I=1,N

TEMP=V (I, IP)

V(I,IP)= COSN*TEMP+SINE*V(I,JP)

V(I,JP)==SINE*TEMP+COSN*V (I,JP)

GO TO 40

RETURN

END

SUBROUTINE JACOBI4(N,Q,JVEC,M,V)

SUBPROGRAM FOR DIAGONALIZATION OF MATRIX
Q BY SUCCESSIVE ROTATIONS

DIMENSION Q(12,12),V(12,12),X(12),IH(12)

FORMAT (2E15.5)

NEXT 8 STATEMENTS FOR SETTING
INITIAL VALUES OF MATRIX V

IF(JVEC) 10,15,10
DO 14 I=1,N

DO 14 J=1,N
IF(I-J) 12,11,12
V(I,J)=1.0

GO TO 14
V(I,J)=0.
CONTINUE

M=0

NEXT 8 STATEMENTS SCAN FOR LARGEST OFF DIAG. ELEM.
IN EACH ROW X(I) CONTAINS LARGEST ELEMENT
IN ITH ROW IH(I) HOLDS SECOND SUBSCRIPT
DEFINING POSITION OF ELEMENT

MI=N-1
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DO 30 I=1,MI

X(I)=0.

MI=I+1

DO 30 J=MJ,N

IF (X(I)=-ABS (Q(I,J))) 20,20,30
X(I)=ABS (Q(I,J))

IH(I)=J

CONTINUE

NEXT 7 STATEMENTS FIND FOR MAXIMUM OF
X (I)S FOR PIVOT ELEMENT

DO 70 I=1,MI

IF(I-1) 60,60,45

IF (XMAX-X(I)) 60,70,70

XMAX=X(I)

IP=1

JP=IH(I)

CONTINUE

NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10#%*-8,GO TO 1000

EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000,148

M=M+1

NEXT 11 STATEMENTS FOR COMPUTING
TANG, SINE,COSN,Q(I,I),Q(J,J)

IF (Q(IP,IP)-Q(JP,JP)) 150,151,151

150 TANG =-2.+*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+

1 SQRT((Q(IP,IP)=-Q(JP,JP))**2+4.%Q(IP,JP)**2))
GO TO 160

151 TANG =+2.%Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+

1 SQRT((Q(IP,IP)-Q(JP,JP))**2+4.*xQ(IP,JP)**2))
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160 COSN=1.0/SQRT(1.0+TANG**2)
SINE=TANG*COSN
QII= Q(IP,IP)
Q(IP,IP)= COSN**2% (QII+TANG*
1 (2.*Q(IP,JP)+TANG*Q(JP,JP)))
Q(JP,JP)= COSN**2% (Q(JP,JP)-
1 TANG* (2.*Q(IP,JP)~-TANG*QII))

c
Q(IP,JP)=0.
C
C NEXT 4 STATEMENTS FOR PSEUDO
C RANK OF THE E1GENVALUES

IF (Q(IP,IP)~Q(JP,JP)) 152,153,153
152 TEMP=Q(IP,IP)

Q(IP,IP)=Q(JP,JP)

Q(JP,JP)=TEMP

c NEXT 6 STATEMENTS ADJUST SIN, COS FOR
c COMPUTATION OF Q(I,K),V(I,K)
c

IF(SINE) 154,155,155
154 TEMP=+COSN
GO TO 170
155 TEMP=-COSN
170 COSN=ABS (SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING T8E IHS BETWEEN
I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM
VALUE SHOULD BE COMPUTED SINCE THE PRESENT
MAXIMUM IS IN THE I OR J ROW

O 0O 0 0 00

153 DO 350 I=1,MI
IF (I-IP) 210,350,200
200 IF (I-JP) 210,350,210
210 IF (IH(I)-IP) 230,240,230
230 IF (IH(I)-JP) 350,240,350




0 0 0O 0

0O O 00

240

300

320

350

370

380

390

400

239

K= IH(I)
TEMP=Q (I, K)
Q(I,K)=0.
MI=I+1
X(I)=0.

NEXT 5 STATEMENTS SEARCH IN DEPLETED

ROW FOR NEW MAXIMUM

DO 320 J=MJ,N
IF (X(I)-ABS(Q(I,J))) 300,300,320
X(I)=ABS(Q(I,J))

IH(I)=J

CONTINUE

Q(I,K)=TEMP

CONTINUE

X (IP)=0.
X (JP)=0.

NEXT 30 STATEMENTS FOR CHANGING
THE OTHER ELEMENTS OF Q

DO 530 I=1,N

IF (I-IP) 370,530,420
TEMP=Q (I, IP)
Q(I,IP)=COSN*TEMP+SINE*Q(I,JP)

IF (X(I)=-ABS(Q(I,IP))) 380,390,390
X (I)=ABS(Q(I,IP))

IH(I)=IP
Q(I,JP)=-SINE*TEMP+COSN*Q (I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
X(I)=ABS(Q(I,JP))

IH(I)=JP

GO TO 530
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IF (I-JP) 430,530,480

TEMP=Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(I,JP)

IF (X(IP)-ABS(Q(IP,I))) 440,450,450
X (IP)=ABS (Q(IP,I))

IH(IP)=I
Q(I,JP)=~SINE*TEMP+COSN*Q (I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530

TEMP=Q (IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(JP,I)
IF(X(IP)-ABS(Q(IP,I))) 490,500,500
X (IP)=ABS (Q(IP,I))

IH(IP)=I
Q(JP,I)=~SINE*TEMP+COSN*Q (JP,I)

IF (X(JP)-ABS(Q(JP,I))) 510,530,530
X (JP)=ABS (Q(JP,I))

IH(JP)=I

CONTINUE

NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF E1GENVECTORS

IF (JVEC) 540,40,540

DO 550 I=1,N

TEMP=V (I, IP)

V(I,IP)= COSN*TEMP+SINE*V (I,JP)
V(I,JP)=-SINE*TEMP+COSN*V (I,JP)
GO TO 40

AAM=FLOAT (M)

WRITE (58,13) EPSI,AAM

RETURN

END

SUBROUTINE JACOBI3(N,Q,JVEC,M,V)

SUBPROGRAM FOR DIAGONALIZATION OF MATRIX Q
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BY SUCCESSIVE ROTATIONS
DIMENSION Q(3,3),V(3,3),X(3),IH(3)
FORMAT (2E15.5,//)

NEXT 8 STATEMENTS FOR SETTING
INITIAL VALUES OF MATRIX V

IF(JVEC) 10,15,10
DO 14 I=1,N

DO 14 J=1,N
IF(I-J) 12,11,12
V(I,J)=1.0

GO TO 14
V(I,J)=0.
CONTINUE

M=0

NEXT 8 STATEMENTS SCAN FOR LARGEST OFF DIAG. ELEM.
IN EACH ROW X(I) CONTAINS LARGEST ELEMENT IN
ITH ROW IH(I) HOLDS SECOND SUBSCRIPT DEFINING
POSITION OF ELEMENT

MI=N-1
DO 30 I=1,MI

X(I)=0.

MI=I+1

DO 30 J=MJ,N

IF (X(I)-ABS (Q(I,J))) 20,20,30
X(I)=ABS (Q(I,J))

IH(I)=J

CONTINUE

NEXT 7 STATEMENTS FIND FOR MAXIMUM OF
X(I)S FOR PIVOT ELEMENT

DO 70 I=1,MI

IF(I-1) 60,60,45
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45 IF (XMAX~X(I)) 60,70,70
60 XMAX=X(I)

IP=1

JP=IH(I)
70 CONTINUE

NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10**-8,GO TO 1000

aQ o o0 o0

EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000,148

(@}

148 M=M+1

NEXT 11 STATEMENTS FOR COMPUTING
TANG, SINE, COSN,Q(I,I),Q(J,J)

O 0O o0 o0

IF (Q(IP,IP)~Q(JP,JP)) 150,151,151
150 TANG =-2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+

1 SQRT((Q(IP,IP)=-Q(JP,JP))**2+4.%Q(IP,JP)**2))

GO TO 160
151 TANG =+2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+

1 SQRT((Q(IP,IP)-Q(JP,JP))**2+4,*Q(IP,IJP)**2))
160 COSN=1.0/SQRT(1.0+TANG**2)

SINE=TANG#*COSN

QII= Q(IP,IP)

Q(IP,IP)= COSN#*#2* (QII+

1 TANG*(2.*Q(IP,JP)+TANG*Q(JP,JP)))

Q(JP,JP)= COSN*#*2% (Q(JP,JP)-

1 TANG*(2.*Q(IP,JP)~TANG*QII))

Q(IP,JP)=0.
NEXT 4 STATEMENTS FOR PSEUDO

C RANK OF THE E1GENVALUES
IF (Q(IP,IP)-Q(JP,JP)) 152,153,153
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152 TEMP=Q(IP,IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,JP)=TEMP
NEXT 6 STATEMENTS ADJUST SIN, COS FOR
COMPUTATION OF Q(I,K),V(I,K)

IF(SINE) 154,155,155
154 TEMP=+COSN
GO TO 170
155 TEMP=-COSN
170 COSN=ABS (SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING T8E IHS BETWEEN
I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM
VALUE SHOULD BE COMPUTED SINCE THE PRESENT
MAXIMUM IS IN THE I OR J ROW

153 DO 350 I=1,MI

IF (I-IP) 210,350,200
200 IF (I-JP) 210,350,210
210 IF (IH(I)=-IP) 230,240,230
230 IF (IH(I)-JP) 350,240,350
240 K= IH(I)

TEMP=Q(I, K)

Q(I,K)=0.

MI=I+1

X(I)=0.

NEXT 5 STATEMENTS SEARCH
IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=MJ,N

IF (X(I)-ABS(Q(I,J))) 300,300,320
300 X(I)=ABS(Q(I,J))

IH(I)=J
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320 CONTINUE
Q(I,K)=TEMP
350 CONTINUE

c

X (IP)=0.

X(JP)=0.
c
c NEXT 30 STATEMENTS FOR CHANGING
c THE OTHER ELEMENTS OF Q
C

DO 530 I=1,N
c

IF (I-IP) 370,530,420
370 TEMP=Q(I,IP)

Q(I,IP)=COSN+*+TEMP+SINE*Q(I,JP)

IF (X(I)-ABS(Q(I,IP))) 380,390,390
380 X(I)=ABS(Q(I,IP))

IH(I)=IP
390 Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
400 X(I)=ABS(Q(I,JP))

IH(I)=JF

GO TO 530

420 IF (I-JP) 430,530,480
430 TEMP=Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(I,JP)
IF (X(IP)-ABS(Q(IP,I))) 440,450,450
440 X(IP)=ABS(Q(IP,I))
IH(IP)=I
450 Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)
IF (X(I)-ABS(Q(I,JP))) 400,530,530

480 TEMP=Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(JP,I)
IF (X (IP)-ABS(Q(IP,I))) 490,500,500
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X (IP)=ABS(Q(IP,I))
IH(IP)=I
Q(JP,I)=-SINE*TEMP+COSN*Q(JP,I)

IF (X(JP)-ABS(Q(JP,I))) 510,530,530
X (JP)=ABS (Q(JP,I))

IH(JP)=I

CONTINUE

NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF E1GENVECTORS

IF (JVEC) 540,40,540

DO 550 I=1,N

TEMP=V (I, IP)

V(I,IP)= COSN*TEMP+SINE*V(I,JP)
V(I,JP)=-SINE*TEMP+COSN*V(I,JP)
GO TO 40

AAM=FLOAT (M)

WRITE (58,13) EPSI,AAM

RETURN

END



Q0O 00 0000000000000 O000O0O00A000O06000606a0000n0000n0n

e e b e <‘.{4‘A£_

246
PROGRAM CUQ (INPUT,OUTPUT,TAPES5=INPUT,TAPE58=0UTPUT)

THIS PROGRAM ANALYSES EPR DATA WITH NUCLEAR HF
FORBIDDEN LINES WITH ELECTRON SPIN S=1/2 AND NUCLEAR
SPIN I=3/2 FOR CU2+DOPED TUTTON’S SALTS ( A-SECOND
ORDER) .

M =NO. OF PARAMETERS

L4 =NO. OF ITERATIONS ALLOWED

Q1 =MIN. VALUE OF SUM OF SQUARES FOR FITS
(CHI-SQUARE TOLERANCE)

7 (I)=MAGNETIC FIELD VALUES FOR FITS

B =PARAMETER MATRIX

N =NO. OF DATA POINTS USED IN LEAST-SQARES FITTING

Q1 =N/10

Q2 =TOLERANCE ON GRAD(CHI**2) =APPROX .01

FM(I) = MEASURED VALUES

FC(I) = CALCULATED VALUES

ERR(I)= STANDARD DEVIATION ON FM(I) = SQRT(FM(I))

DIMENSIONS OF A,B IN EXAM AND MATINV SUBROUTINES
SHOULD BE THE SAME AS THOSE OF B2,Bl RESPECTIVELY IN
THE MAIN PROOGRAM AND IN CURFIT

ENTER TEETA IN DEGREES
DIMENSIONS OF Q,V IN JACOBI1 SHOULD BE THE SAME AS
THOSE OF B3, B2 RESPECTIVELY IN CURFIT

PARAMETERS=I.GT IS G**2-TENSOR
(G**227,G**27ZX,G**2XX,G**22Y , G¥*2YY ,G*¥*2XY)
GGT (J,NUMBER) REPRESENTS G-SQUARE TENSOR.
II.(AB(I),I=1,6)=AZ%,AZX,AXX,AZY,AYY,AXY
III. (B(I),I=1,5)=QXX,QXY,QYY,QXZ,QYZ
A=A~SQUARE TENSOR ABOVE
ENTER A WITH POSITIVE SIGN

DELANG(I,J),J=1,2,3 ARE ANGLE CORRECTIONS FOR ZX,ZY,XY
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PLANES AS DETERMINED BY "KRDBLT" FOR VARIOUS CASES.

NUMBER=INDEX THAT CHANGES WITH EACH NEW CASE ITS
VALUE SHOULD BE THAT OF THE FIRST CASE CONSIDERED.
NCASES=NO. OF LAST CASE CONSIDERED.
ITS VALUE SHOULD BE ENTERED.

N1(J1,NUMBER)=NO.OF LINES(FOR VARIOUS ORIENTATIONS)
FOR J1 HYPERFINE LINE OF CASE NO.=NUMBER

22 (J,K,L)=LINE POSITIONS,J=WHICH ONE OF K=A SWITCH
CONTROL PARAMETER, WHEN K=1,4 CORRESPOND TO THE
FORBIDDEN TRANSITIONS M_M+-1, I.E., 3/2_3/2-1,
1/2_1/2+1, -3/2_-3/2+1 AND -1/2_ -1/2-1,
RESPECTIVELY, WHILE K=5,8 CORRESPOND TO THE
FORBIDDEN TRANSITIONS M_M+-2, I.E., 3/2 3/2-2,
-1/2_-1/2+2, =3/2_-3/2+2 AND 1/2_1/2-2 RESPECTIVELY.

CASE NO.=L

DIMENSION Z(400),FM(400),FC(400),DF(400),ERR(400),
1B(12),B1(12),B2(12,12),DC(5000) ,ABC(2),Y(4),
2HN(400) ,G(6,8) ,GG(6,8),SMD(9),AAA(3,3),Q00(3,3),
3AAV(3,3),0QQV(3,3),IBB(400,2),THETA(400) ,D1(12),
4D2(12,12) ,HHN(3,8),AADD(3,8),GGTT(6,9) ,AB(6),
SFFACTR(3,8),TEETA(100,4,8),2%(100,4,8) ,NN(8) ,N1(8,5),
6GGT (6,9; ,GT(6) ,ACOSZ (400) ,ACOSX (400) ,ACOSY(400),

DIMENSION DELANG(8,3),AJ1(400),GGTL(8,3),
1GGTM(8,3) ,GGTLL(8,3) ,GGTMM(8,3) ,GGTNN(8,3),
2GGTN (8,3) ,DELHH (400,8) ,DELH(400) ,A4(3),
3L2X(1),L2Y(1),LXY(1) ,NCASES(1),NZERO(1)
COMMON/DATA1/ABC, Y
COMMON/DATA2/DC, ACOSZ , ACOSX, ACOSY,AJ1, GGTL, GGTM, GGTN
COMMON/DATA3/DELH
EQUIVALENCE (Z,DC), (FM,DC(401)), (FC,DC(801)),
1(DF,DC(1201)), (ERR,DC(1601)), (HN,DC(2001)),

2 (THETA,DC(2401) ), (IBB,DC(2801)), (B,DC(4101)),
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3(B1,DC(4125)), (B2,DC(4137)), (N,DC(4301)),
4(L4,DC(4302)), (Q1,DC(4303)), (Q2,DC(4304)),
5(M,DC(4305)), (I,DC(4306)), (L,DC(4307)), (BO,DC(4308)),
6 (SMD,DC(4309)), (SSMD,DC(4320)), (D1,DC(4321)),
7(D2,DC(4333)), (NUMBER,DC(4100)),

8 (GT,DC(4093)), (AB,DC(4500))

READ(5,*) NZERO,NCASES,LZX,LZY,LXY

WRITE(58,5123) NZERO,NCASES,L2X,L2Y,LXY
5123 FORMAT (1X, 6HNZERO=,I8, 7HNCASES=, I8,

14HLZX=,18, 4HLZY=,I8, 4HLXY=,1I8)

READ (5, *) (HHN(J,NCASES) ,J=1,3)

READ (5, *) (FFACTR(J,NCASES) ,J=1, 3)

READ (5, *) (AADD (J,NCASES) ,J=1, 3)

READ (5, *) (GGT (J,NCASES) ,J=1,6)

READ (5, *) (GGTT (J,NCASES) ,J=1, 6)

READ (5, *) (G(J,NCASES) ,J=1,5)

READ (5, *) (DELANG (NCASES,J) ,J=1, 3)

READ (5, *) (GGTLL(NCASES,J) ,J=1,3)

READ (5, *) (GGTMM (NCASES, J) ,J=1,3)

READ (5, *) (GGTNN (NCASES,J) ,J=1,3)

READ (S, *) (N1(J,NCASES) ,J=1,6)

NSUM=0

II=0

NXY=0

NSUM=LZX+LZY+LXY

NSUM=6*NSUM

READ (5, *) (DELHH (J,NCASES) ,J=1,NSUM)

READ(5,*) (22 (J,1,NCASES),J=1,LZX)

READ (5, *) (22 (J,2,NCASES) ,J=1,L2X)

READ(5, *) (22 (J, 3,NCASES) ,J=1,12X)

READ(5,*) (22 (J,4,NCASES) ,J=1,12ZX)

READ(5,*) (22 (J,5,NCASES) ,J=1,L2ZX)

READ(5, *) (2Z(J, 6,NCASES) ,J=1,LZX)

READ(5, *) (TEETA(J,1,NCASES) ,J=1, L2X)

II=L2ZX+1
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NXY=LZX+L2ZY
READ(5,*) (22(J,1,NCASES) ,J=1I,NXY)
READ(S, *) (22 (J,2,NCASES) ,J=II,NXY)
READ (5, *) (22 (J,3,NCASES) ,J=II,NXY)
READ(5,*) (22(J, 4,NCASES),J=II,NXY)
READ(5,*) (22 (J,5,NCASES) ,J=IT,NXY)
READ(5,*) (22 (J,6,NCASES) ,J=II,NXY)
READ (5, *) (TEETA(J,1,NCASES) ,J=II,NXY)
II=NXY+1

NXY=NXY+LXY

READ(5, *) (22 (J,1,NCASES) ,J=IT,NXY)
READ(5, %) (22 (J,2,NCASES) ,J=II,NXY)
READ (5, *) (22 (J,3,NCASES) ,J=II,NXY)
READ (5, *) (2Z(J,4,NCASES) ,J=II,NXY)
READ(5,*) (22(J,5,NCASES) ,J=II,NXY)
READ (5, *) (22 (J,6,NCASES) ,J=II,NXY)
READ(5,*) (TEETA(J,1,NCASES),J=II,NXY)

188 FORMAT (1H1)
8 FORMAT (1X,4HQl = ,E13.5,5X,4HQ2 = ,E13.5)
137 FORMAT (3X,I2,5X,E16.6/)
136 FORMAT (10X,19H INITIAL PARAME
1TERS//3X,1HJ, 10X, 4HB(J) //)
135 FORMAT (1X,11H PARAME
1TERS//3X,1HJ, 10X,4HB(J) , 27X, 6HERRORS//)
9 FORMAT (2X,4H HN= ,F9.4)
140 FORMAT(3X,I2,5X,E16.6,15X,E16.6/)
138 FORMAT (5X,14H CASE NUMBER =,I2//)
141 FORMAT(10X,6H SMD =,E13.5//)
235 FORMAT (15X,5(E13.5,8X)/)
236 FORMAT (15X,3(E13.5,8X)///)
237 FORMAT (15X, *PRINCIPAL ELEMENTS OF Q TENSOR ARE=*,///)
238 FORMAT (15X,*"Q" DIR. COS.(ROWS) ACC. TO E.
1VALS. ABOVE= +*,///)
PI2=2.%3,1415926
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RD=PI2/360.
NZERO=1
NUMBER=NZERO
NCASES=1

M=5

L4=7

Ql=1.E-8
02=1.E-20
MM=M

WRITE (58, 188)
CONTINUE
N11=N1(1, NUMBER)
DO 1188 J=1,8
DO 1188 J=1,6

HERE J IN J=1,8 OR J=1,4 STATEMENTS HAS THE SAME
MEANING AS THE K IN 2Z(J,K,L), WHICH INDICATED IN
THE BEGINING OF THIS PROGRAM.

DO 1188 J1=1,N11

TEETA (J1,J, NUMBER)=TEETA (J1,1, NUMBER)
DO 9242 Ji1=1,3

GGTL (NUMBER, J1) =GGTLL (NUMBER, J1)

GGTM (NUMBER, J1) =GGTMM (NUMBER, J1)

GGTN (NUMBER, J1) =GGTNN (NUMBER, J1)
LINE=0

DO 150 J1=1,8

DO 150 J1=1,6

NN1=N1(J1,NUMBER)

DO 150 I1=1,NN1

LINE=LINE+1

AJ1(LINE)=J1

THETA (LINE)=TEETA (I1,J1,NUMBER)

IF (THETA (LINE) .GT.8000.) GO TO 155
IF (THETA (LINE) .LT.0.) GO TO 160
TH=THETA (LINE) *RD+DELANG (NUMBER, 1) *RD
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ACOSZ (LINE)=COS (TH)
ACOSX (L INE)=SIN (TH)
ACOSY (LINE)=0.
HN (LINE) =HHN (1, NUMBER)
2 (LINE)=(22(I1,J1,NUMBER)+

1AADD(1,NUMBER) ) *FFACTR (1, NUMBER)

Z(LINE)=(2Z(I1,J1,NUMBER)*

1FFACTR(1,NUMBER) +AADD (1,NUMBER) )

IF(22(I1,J1,NUMBER).EQ.0.) Z(LINE)=0.
FORMAT (5X, *ACOSZ ETC=*,3E12.5)

GO TO 165

TH=-THETA (LINE) *RD + DELANG (NUMBER, 2) *RD
ACOSZ (LINE)=COS (TH)

ACOSY (LINE)=SIN (TH)

ACOSX(LINE)=0.

HN (LINE) =HHN (2, NUMBER)

Z (LINE)=(22(I1,J1,NUMBER)+

1AADD(2,NUMBER) ) *FFACTR (2, NUMBER)

Z (LINE)=(22(I1,J1,NUMBER)*

1FFACTR (2 , NUMBER) +AADD (2 , NUMBER) )

IF(ZZ(I1,J1,NUMBER).EQ.0.) Z(LINE)=0.
GO TO 165

TH=THETA (LINE) *RD+DELANG (NUMBER, 3) *RD
ACOSZ (LINE)=0.

ACOSX (LINE)=COS (TH)

ACOSY (LINE)=SIN (TH)

HN (LINE)=HHN (3, NUMBER)

7 (LINE)=(22(I1,J>,NUMBER)+

1AADD(3,NUMBER) ) “FFACTR(3,NUMBER)

2 (LINE)=(22(I1,J1,NUMBER) *

1FFACTR (3, NUMBER) +AADD (3 ,NUMBER) )

IF(22(I1,J1,NUMBER).EQ.0.) Z(LINE)=0.
CONTINUE

CONTINUE

NN (NUMBER) =LINE

N=NN (NUMBER)
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N9=N

DO 181 LL=1,12

B(LL)=0.

DO 210 LL=1,MM

B(LL)=G{LL, NUMBER)
WRITE(58,138) NUMBER

WRITE (58,136)

WRITE (58,137) (J,B(J),J=1,M)
WRITE (58,6659)
WRITE(58,6657) (Z(J),J=1,N)
WRITE (58,6660)

WRITE (58,6657) (HN(J),J=1,N)
FORMAT (5X, *FREQUENCY-KLYSTRON ARE=*, /)
FORMAT (5X, *MAG. FIELD VALUES ARE=*,/)
FORMAT (5X,7 (E12.5, 2X))

DO 180 J1=1,6

GT(J1)=GGT (J1,NUMBER)
AB(J1)=GGTT (J1,NUMBER)

DO 201 II=1,N9

DELH (II)=DELHH(II ,NUMBER)
FM(II) = HN(II)

CALL CURFIT

SMD (NUMBER) = SSMD
WRITE(58,188)

WRITE (58,135)

DO 220 LL=1,M

GG (LL,NUMBER) = B(LL)

WRITE (58,140) (J,B(J),B1(J),J=1,M)
WRITE (58,188)

CONTINUE

SSS=0.

$551=0.

DO 555 ID=1,N

SSS=DF (ID) **2

S§51=5551+5SS

WRITE(58,656) ID,SSS

b
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555 CONTINUE
WRITE (58,6656) SSS1
6656 FORMAT(/,10X,*CHI-SQUARE=+,E13.5,/)
656 FORMAT (10X, *LINE NUMBER = *,I3,5X,*SMD = *,6E13.5)

ARA(1,1) = B(1)
ARA(1,2) = B(2)
AAA(2,2) = B(3)
AAA(1,3) = B(4)
AAA(3,3) = -(B(1)+B(3))

AAA(2,3) = B(5)
DO 20 Jl = 1,2
J4 = J1 + 1
DO 20 J2 = J4,3
AAA(J2,J1) = AAA(J1,J2)
20 CONTINUE
CALL JACOBI3(3,AAA,1,NR,AAV)
WRITE (58,237)
WRITE (58,236) (AAA(J1,J1),J1 = 1,3)
WRITE (58,238)
DO 25 J1 = 1,3
WRITE (58,236) (AAV(J2,J1),J2 = 1,3)
25 CONTINUE
NUMBER=NUMBER+1
IF (NUMBER-NCASES) 1,1,2
2 CONTINUE
DO 230 LL=NZERO,NCASES
WRITE (58,138) LL
WRITE(58,141) SMD(LL)
230 WRITE (58,235) (GG(LM,LL),LM=1,MM)
STOP
END
SUBROUTINE CURFIT

EXAM HANDLES ALL MATRICES OF DIMENSIONS UPTO THE
DIMS.MM OF A,B,C THAT IS M IS LESS THAN OR EQUAL TO MM
(SAME IS TRUE OF MATINV AND JACOBI)
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EQUIVALENCE OF GRAD BEGINS AT DIMENSION OF B AFTER
THE EQUIV. OF B

FORTRAN 4

DIMENSION Z(400),FM(400),FC(400),DF(400),ERR(400),
1B(12),B1(12),B2(12,12),DC(5000) ,ABC(2),Y(4),X(400),
2GRAD(12),D1(12),D2(12,12),B3(12,12),SMD(9) ,HN(400),
3ACOSZ (400) ,ACOSX (400) ,ACOSY(400)

DIMENSION IBB(400,2),THETA(400),GT(6),AB(6)
DIMENSION AJ1(400),GGTL(8,3),GGTM(8,3),GGTN(8,3)
COMMON/DATA1/ABC, Y

COMMON/DATA2/DC, ACOSZ,ACOSX, ACOSY,AJ1,GGTL,GGTM, GGTN
EQUIVALENCE (Z,DC), (FM,DC(401)), (FC,DC(801)),
1(DF,DC(1201)), (ERR,DC(1601)), (HN,DC(2001)),

2 (THETA,DC(2401)), (IBB,DC(2801)), (B,DC(4101)),
3(B1,DC(4125)),(B2,DC(4137)), (N,DC(4301)),
4(L4,DC(4302)),(Q1,DC(4303)), (Q2,DC(4304)),
5(M,DC(4305)),(I,Dc(4306)),(L,DC(4307)), (BO,DC(4308)),
6 (SMD,DC(4309)), (SSMD,DC(4320)),(D1,DC(4321)),
7(D2,DC(4333)), (GRAD,DC(4113)), ‘
8 (NUMBER, DC(4100) ), (GT,DC(4093)), (AB,DC(4500))

ABC(1)="NO"
ABC(2)="YES"
Ll =0

SA = 0.0

MM=M

I6=1

NN=N

DO 1000 J=1,MM
B1(J)=0.0

DO 1000 K=1,MM
B2(J,K)=0.0

DO 100 I6 = 1, NN
I-1
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I=I6
CALL FUNC(2)
X(I6)=ERR(I6)**2
901 FORMAT(5X,10H FUNC2,210 )

DF(I6) =FM(I6) - FC(I6)
DO 101 J=1,MM
B1(J)=B1(J)-(2.0*DF(I6)*D1(J))/X(16)
DO 101 K=1,MM

101 B2(J,K)=B2(J,K)=(2.0%(DF(I6)*D2(J,K)-
1 D1(J)*D1(K)))/X(I6)

100 SA = SA + DF(I6)**2/X(I6)
GMOD=0.0
DO 102 J=1,M

102 GMOD=GMOD+B1 (J) **2
WRITE(58,243)SA,GMOD

243 FORMAT (1X,26H*INITIAL VALUE SUM OF SQ.=
1E13.5,20X,17H*SQ MOD OF GRAD =E13.5)
WRITE(58,1751)

1751 FORMAT (14HO DERIVATIVES-)

WRITE(58,240) (B1(J),J=1,M)

240 FORMAT (15X,5(E13.5,8X)/)
IF (SA - Q1) 110, 110, 200

110 LE = 1
GO TO 600
200 § = 0.0
GMOD = 0.0
BMOD = 0.0
PROD = 0.0
A2=ABC(1)
DO 210 J =1, MM
Bl1(J) = 0.0

DO 210 K = 1, MM
210 B2(J,K) = 0.0

WRITE(58,902)

DO 220 I6 = 1, NN

I=1
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I1=16
CALL FUNC(2)
X(I16)=ERR(I6)**2
902 FORMAT(5X,10H FUNC2,210 )
DF(I6) = FM(I6) - FC(I6)
DO 220 J =1, MM
B1(J) = B1(J) - (2.0*DF(I6)*D1(J))/X(16)
DO 220 K = 1, MM
220 B2(J,K) = B2(J,K) - (2.0%(DF(I6)*D2(J,K) -
1 D1(J)*D1(K)))/X(I16)
DO 230 J =1, MM
230 GRAD(J) = B1(J)
L1 = L1 + 1
CALL EXAM (B2,B1,M,LF)
WRITE(58,903)
903 FORMAT(5X,9H EXAM,230 )
WRITE (58,914) LF
914 FORMAT (5X,I3)
IF (LF) 250, 250, 305
250 DO 231 II=1,M
DO 231 JJ=1,M
231 B3(II,JJ)=B2(II,JJ)
WRITE (58,904)
CALL JACOBI4(M,B3,4,NR,B2)
904 FORMAT(5X,12H JACOBI1,231 )
WRITE(58,904)
DO 235 I6=1,MM
235 B1(16)=B3(I6,16)
A2=AB(2)
DO 260 J = 1, MM
260 D1(J) = 0.0
DO 270 J = 1, MM
DO 270 K = 1, MM
270 D1(K) = D1(K) + B2(J,K) *GRAD(J)
DO 275 J = 1, MM
IF (B1(J)) 280, 290, 285

1l
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B1(J) = = Bl(J)
D1(J) = D1(J)/B1(J)
GO TO 275

D1(J) = 0.0
CONTINUE

DO 295 J = 1, MM
B1(J) = 0.0

DO 300 J = 1, MM

DO 300 K = 1, MM

B1(J) = B1(J) + B2(J,K)*D1(K)
DO 310 J=1,MM

GMOD = GMOD + GRAD(J) **2
BMOD = BMOD + B1(J)#*#*2
PROD = PROD + GRAD(J)*B1(J)

IF (GMOD = Q2) 315, 315, 320
LE = 2

WRITE(58,1761) GMOD
FORMAT(5X,7H GMOD =,E13.5//)
GO TO 600

C=PROD/SQRT (BMOD*GMOD)

IF (C) 335, 335, 400

LE = 4
GO TO 600
LD =0
L3 =0

DO 410 J = 1, MM
GRAD(J) = B(J) - B1(J)
DO 420 I6 = 1, NN

1=2

I=I6

CALL FUNC (1)

X(I6)=ERR (I6)**2

FORMAT (5X,10H FUNC1,450 )
DF(I6) = FM(I6) - FC(I6)
S = S + DF(I6)**2/X(I6)
WRITE (58, 905)
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IF (SA - S) 435, 500, 500

435 LD = 1D + 1

430 DO440 J = 1, MM

B1(J) = B1(J)/2.0
906 FORMAT (5X,16H BINARY CHOP,430 )
440 GRAD(J) = B(J) - B1(J)
WRITE(58,906)
S = 0.0
L3 = L3 + 1
IF(L3-5)450,460,460
460 LE = 5
GO TO 600
500 IF (LD) 505, 505, 506
506 LD = 0
GO TO 430
505 DO 510 J = 1, MM
510 B(J) = GRAD(J)
SA = S
IF (SA - Q1) 507, 507, 530
507 LE = 1
GO TO 600

530 IF (L4) 200, 200, 900

900 WRITE(58,920)L1,A2,L3,S,GMOD, (B(J),J=1,M)

920 FORMAT(//,15H ITERATION NO.=I5,10X,43H TRANSFORMA
1TION MADE TO PRINCIPAL AXES = A4,10X, 18H BINA
2RY CHOP USED=I3,6H TIMES/1X,27H WEIGHTED SUM OF SQU
3ARES = E14.7,25X,32H SQUARE MODULUS OF GRADIEN
4T = E14.7/20H PARAMETERS B(J) -/ (6E17.8)/)

IF (L1 - L4) 200, 910, 910

910 LE = 6

GO TO 600
600 DO 710 J=1,MM
B1(J) = 0.0
DO 710 K=1,MM
710 B2(J,K) = 0.0
L=1
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WRITE(58,907)
907 FORMAT(5X,* FUNC(2),720 *)
DO 720 I6 = 1, NN
I=16
CALL FUNC(2)
X(I6)=ERR(I6)**2
DF(I6) = FM(I6) - FC(I6)
DO 720 J = 1, MM
B1(J) = B1(J) =~ (2.0%DF(I6)*D1(J))/X(I6)
DO 720 K = 1, MM
720 B2(J,K) = B2(J,K) - ((DF(I6)*D2(J,K) -
1 D1(J)*D1(K)))/X(I6)
WRITE (58,3029)

3029 FORMAT(* I AM LOST IN MANTINV*)
CALL MATINV(B2,M,Bl1,1,DETERM)
WRITE (58,3029)

DO 730 J=1,MM
IF (B2(J,J)) 2001,2001,2002
2001 B1(J) = =-SQRT(-B2(J,J))
GO TO 730
2002 Bl (J)= SQRT(B2(J,J))

730 CONTINUE
DO 740 J=1,MM
DO 740 K=1,MM

740 B2 (J,K)=B2(J,K)/(B1(J)*B1(K))
WRITE(58,551) LE,SA

551 FORMAT(//,13H EXIT NUMBER=I3,20X,25H WEIGHT
1ED SUM OF SQUARES=E15.8//)
SSMD = SA

9999 CONTINUE

RETURN
END

SUBROUTINE FUNC(LX)
SUBROUTINE FUNC
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DIMENSION DC(5000),B(12,2),D1(12),D2(12,12),FC(400),
12(400),S(4,4) ,SIGN(400) ,HN(400),ST(4,4,16),FM(400),
2DF(400) ,DELH(400) ,ERR(400),B1(12),B2(12,12),SMD(9),
3ACOSZ (400) ,ACOSX (400) ,ACOSY (400) , IBB(400,2),
4THETA (400) ,DD(16),GT(6),AJ1(400),AL(400),AM(400),
5AN(400) ,GGTL(8,3),GGTM(8,3) ,GGTN(8,3) ,AB(6),
6C2(6) ,C3(6),CK(6),F4(6),JAL1(400)

COMMON/DATA2/DC,ACOSZ , ACOSX, ACOSY , AJ1, GGTL, GGTM, GGTH
COMMON/DATA3/DELH
EQUIVALENCE (Z,DC), (FM,DC(401)), (FC,DC(801)),
1(DF,DC(1201)), (ERR,DC(1601) ), (HN,DC(2001)}),

2 (THETA,DC(2401)), (IBB,DC(2801)), (B,DC(4101)),
3(B1,DC(4125)), (B2,DC(4137)), (N,DC(4301)),

4 (L4,DC(4302)),(01,DC(4303)), (Q2,DC(4304)),
5(M,DC(4305)), (I,DC(4306)),(L,DC(4307)), (BO,DC(4308)),
6 (SMD, DC(4309) ), (SSMD,DC(4320) ), (D1,DC(4321)),
7(D2,DC(4333)), (NUMBER,DC(4100)), (GT,DC(4093)),

8 (AB, DC(4500))

IF(Z(I).EQ.0.) GO TO 135
BETA=92.732/66252.

BETAN=.000544 64 *BETA
RD=3.1415926/180.

R2=SQRT(2.0)

R3=SQRT(3.0)

R5=SQRT(5.0)

R7=SQRT(7.0)

FACTOR=92.732/66252.

AL(I)=ACOSZ(I)*GGTL(NUMBER, 1)+ACOSX(I)*

1 GGTL(NUMBER, 2)+ACOSY (I) *GGTL (NUMBER, 3)

AM(I)=ACOSZ(I)*GGTM(NUMBER, 1)+ACOSX (I)*
2GGTM (NUMBER, 2) +ACOSY (I ) *GGTM (NUMBER, 3)

AN (I)=ACOSZ(I)*GGTN (NUMBER, 1)+ACOSX (I) *
3GGTN (NUMBER, 2) +ACOSY (I)*GGTN (NUMBER, 3)

FCI=GT(1) *AL(I)**2+GT (3) *AM (I) **2+GT (5) *AN(I) **2
ENELSP=Z (1) *BETA*SQRT (FCI)

T P~ |
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BB1=GT (1) *AL(I) **2

BB3=GT (3) *AM(I) #*2

BB5=GT (5) *AN(I) #%2
BB2=2.*SQRT (GT (1) *GT(3) ) *AL(I) *AM(I)
BB4=2.*SQRT (GT (1) *GT(5) ) *AL(I) *AN(I)
BB6=2.*SQRT (GT(3) *GT(5) ) *AM(I) *AN(I)
AEFF2=AB(1) *BB1+AB(3) *BB3+AB(5) *BB5+

1 AB(2) *BB2+AB(4) *BB4+AB(6) *BB6
AMI=4.5-AJ1(I)

IF (AEFF2.LT. (0.)) GO TO 109

AEFF=SQRT (AEFF2/FCI)

HYPFEN=AEFF* (AMI-0.5)

CC1=AB (1) **2+AB (2) **2+AB (4) **2

CC2=AB (1) *AB(2)+AB(2) *AB(3)+AB(4) *AB(6)
CC3=AB (2) **2+AB (3) **2+AB (6) **2

CC4=AB (1) *AB(4)+AB(2) *AB(6)+AB (4) *AB(5)
CC5=AB (4) **2+AB(6) **2+AB (5) **2
CC6=AB(2)*AB(4)+AB(3)*AB(6)+AB(5) *AB(6)
CKK=CC1*BB1+CC3*BB3+CC5*BB5+CC2*BB2+CC4*BB4+CC6*BB6
AKK=SQRT (CKK/AEFF2)

DETA=AB (3)* (AB(1) *AB(5) -AB(4) **2)+

1 AB(6)* (AB(2)*AB(4)-AB(1)*AB(6))+

2 AB(2) * (AB(4)*AB(6)~AB(2)*AB(5))
DETA1=SQRT (DETA) / (4 . *AEFF*ENELSP)

AI=1.5

AI1=AI* (AI+1.)

DELE3=(0.5% (AB(1)+AB(3)+AB(5)) * (AI1-AMI**2+AMI~0.5) -
1 AKK#**2% (AI1-3,*AMI*%243 *AMI-1.5)/2.-

2 AEFF**2% (AMI**2-AMI+0.5))/(2.*ENELSP)
QEFF=B(1,L) *BB1+B(3,L) *BB3-(B(1,L)+B(3,L)) *BB5+
1 B(2,L)*BB2+ B(4,L)*BB4+ B(5,L)*BB6
QEF=QEFF/FCI

HYF=QEF* (2. *AMI-1)
FC(I)=ENELSP+HYPFEN+DELE3+DETA1+HYF
JA1=AJ1 (I)

1001 GO TO (1111,2222,3333,4444,5555,6666) ,JAl



262

1111 AMI=1.5
GO TO 1110
2222 AMI=0.5
GO TO 1220
3333 AMI=-1.5
GO TO 1220
4444 AMI=-0.5
GO TO 1110
5555 AMI==0.5
GO TO 2211
6666 AMI=-1.5
GO TO 2211
1110 HYPFEN=AEFF* (AMI-0.5)
HYF=QEF* (2+AMI-1)
DELE3=(0.5% (AB(1)+AB(3)+AB(5) -AKK**2) *
1 (AI1-AMI**24+AMI-0.5)+ (AKK**2-AEFF*%2) %
2 (AMI**2-AMI+0.5))/ (2. *ENELSP)
FC(I)=ENELSP+HYPFEN+DELE3+DETA1+HYF
GO TO 8008
1220 HYPFEN=AEFF* (AMI+0.5)
HYF=QEF* (2%AMI+1)
DELE3=(0.5% (AB(1)+AB(3)+AB(5) ~AKK**2) %
1(AI1~AMI**2-AMI-0.5)+ (AKK**2-AEFF**2) *
2 (AMI**2+AMI+0.5))/(2.*ENELSP)
FC(I)=ENELSP+HYPFEN+DELE3-DETA1~HYF
GO TO 8008
2111 HYPFEN=AEFF* (AMI-1)
HYF=QEF* (4 *AMI-4)
DELE3=(0.5% (AB(1)+AB(3)+AB(5) ~AKK**2) *
1(AI1-AMI**2+2%AMI-2)+ (AKK**2-AEFF**2)
2 (AMI**2~2*%AMI+2))/ (2*ENELSP)
FC(I)=ENELSP+HYPFEN+DELE3+2*DETA1+HYF
GO TO 8008
2211 HYPFEN=AEFF* (AMI+1)
HYF=QEF* (4*AMI+4)
DELE3=(0.5% (AB(1)+AB(3)+AB(5) ~AKK**2)
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1(AT1-AMI**2-2%AMI-2)+ (AKK**2-AEFF##2) %
2 (AMI**2+2%AMI+2) )/ (2*ENELSP)
FC(I)=ENELSP+HYPFEN+DELE3~2*DETA1-HYF
GO TO 8008
8008 ERR(I)=SQRT(FCI)*DELH(I)*FACTOR
ERR(I)=1.
GO TO 136
135 CONTINUE
FC(I)=HN(I)
ERR(I)=1.
136 CONTINUE
IF(LX-1)110,110,120
120 CONTINUE
DO 235 IZ = 1,12
D1(IZ) = 0.0
DO 235 JZ = 1,12
235 D2(1Z,J2) =0.0
IF(Z(I).EQ.0.) GO TO 110
DDD=(2.*AMI~1)/FCI
D1 (1)=DDD* (BB1-BB5)
D1 (2)=DDD*BB2
D1 (3)=DDD* (BB3-BB5)
D1 (4)=DDD*BB4
D1 (5)=DDD*BB6
GO TO 110
109 WRITE(58,108) I
108 FORMAT (5X,*NEG AEFF2 FOR I*,I3)
FC(I)=FM(I)
DO 197 JJ=1,6
197 D1(JJ)=0.
110 CONTINUE
RETURN
END
SUBROUTINE EXAM(A,B,M,LF)
SUBROUTINE EXAM
FORTRAN 4
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DIMENSION A(12,12),B(12),C(12)
DO 80 J=1,M
C(J)=A(J,J)

IF(A(1,1)) 60,200,70
A(1,1) =-SQRT(~-A(1,1))
GO TO 300

A(1,1) =SQRT(A(1,1))
GO TO 100
IF(M-1)400,400,110

DO 115 K=2,M ,
A(1,K)=A(1,K)/(A(1,1) )
DO 120 J=2,M

J1=J-1

S=A(J,J)

DO 125 L=1,J1
S=S=A(L,J) **2

IF (S) 50,200,40
A(J,J) ==SQRT(-S)

GO TO 300

A(J,J) =SOQRT(S)

GO TO 130

IF(J-M) 135,400,400
J2=J+1

DO 120 K=J2,M
S=A(J,K)

DO 145 L=1,J1
S=S~A(L,J)*A(L,K)
A(J,K)=S/A(J,J)
B(1)=B(1)/A(1,1)
IF(M-1)420,420,405

DO 410 J=2,M

S=B(J)

J1=J-1

DO 415 L=1,J1
S=S~A(L,J)*B(L)
B(J)=S/A(J,J)
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B(M) =B (M) /A (M, M)
J=M-1
IF(J)450,450,425
S=B(J)
J2=J+1

DO 430 L=J2,M
S=S=-A(J,L) *B(L)
B(J)=S/A(J,J)
J=J-1

GO TO 435

LF=1

GO TO 460

LF=0

GO TO 460

LF=-1

DO 465 J=1,M
A(J,J)=C(J)
IF(J-M)470,475,475
J2=J+1

DO 465 K=J2,M
A(J,K)=A(K,J)
RETURN

END

SUBROUTINE MATINV(A,N, B,M,DETERM)
SUBROUTINE MATINV
FORTRAN 4
MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR
EQUATIONS
DIMENSION IPIVOT(12),A(12,12),B(12,1),INDEX(12,2),
1 PIVOT(12)
EQUIVALENCE (IROW,JROW), (ICOLUM,JCOLUM), (AMAX, T, SWAP)
DETERM=1. 0
DO 20 J=1,N
IPIVOT(J) =0
DO 550 I=1,N
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AMAX=0.0
DO 105 J=1,N
IF (IPIVOT(J)-1)60,105,60
60 DO 100 K=1,N
IF(IPIVOT(K)-1)80,100,740
80 IF(ABS(AMAX)-ABS(A(J,K)))85,100,100
85 IROW=J
ICOLUM=K
AMAX=A(J,K)
100 CONTINUE
105 CONTINUE
IPIVOT (ICOLUM)=IPIVOT (ICOLUM) +1
IF (IROW-ICOLUM)140,260,140
140 DETERM=-DETERM
DO 200 L=1,N
SWAP=A (IROW, L)
A(IROW,L)=A(ICOLUM,L)
200 A(ICOLUM,L)=SWAP
IF (M) 260,260,210
210 DO 250 L=1,M
SWAP=B (IROW, L)
B(IROW,L)=B(ICOLUM,L)
250 B(ICOLUM,L)=SWAP
260 INDEX(I,1)=IROW
INDEX (I,2)=ICOLUM
PIVOT (I)=A(ICOLUM,ICOLUM)
DETERM=DETERM*PIVOT (I)
A(ICOLUM, ICOLUM)=1.0
DO 350 L=1,N
350 A(ICOLUM,L)=A(ICOLUM,L)/PIVOT(I)
IF(M)380,380,360
360 DO 370 L=1,M
370 B(ICOLUM,L)=B(ICOLUM,L)/PIVOT (I)
380 DO 550 L1=1,N
IF (L1-ICOLUM)400,550,400
400 T=A(L1,ICOLUM)

T
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A(L1,ICOLUM)=0.0
DO 450 1=1,N
450 A(L1l,L)=A(L1,L)-A(ICOLUM,L)*T
IF(M) 550,550,460
460 DO 500 L=1,M
500 B(L1l,L)=B(L1,L)-B(ICOLUM,L)*T
550 CONTINUE
DO 710 I=1,N
L=N+1-1
IF (INDEX(L, 1) -INDEX(L,2)) 630,710,630
630 JROW=INDEX(L,1)
JCOLUM=INDEX (L, 2)
DO 705 K=1,N
SWAP=A (¥, JROW)
A (K, JROW)=A (K, JCOLUM)
A (K, JCOLUM) =SWAP
705 CONTINUE
710 CONTINUE
740 RETURN
END

SUBROUTINE JACOBI2(N,Q,JVEC,M,V)

SUBPROGRAM FOR DIAGONALIZATION OF MATRIX Q BY
SUCCESSIVE ROTATIONS

DIMENSION Q(6,6),V(6,6),X(6),IH(6)

NEXT 8 STATEMENTS FOR SETTING
INITIAL VALUES OF MATRIX V

IF(JVEC) 10,15,10
10 DO 14 I=1,N

DO 14 J=1,N

IF(I-J) 12,11,12
11 V(I,J)=1.0

GO TO 14
12 V(I,J)=0.



268

14 CONTINUE

C
15 M=0
C NEXT 8 STATEMENTS SCAN FOR LARGEST OFF DIAG. ELEM.
c IN EACH ROW X(I) CONTAINS LARGEST ELEhcNT IN ITH ROW
C IH(I) HOLDS SECOND SUBSCRIPT DEFINING
C POSITION OF ELEMENT
C
MI=N-1
DO 30 I=1,MI
X(I)=0.
MJI=I+1
DO 30 J=MJ,N
IF (X(I)-ABS (Q(I,J))) 20,20,30
20 X(I)=ABS (Q(I,J))
IH(I)=J
30 CONTINUE
C
C NEXT 7 STATEMENTS FIND FOR
C MAXIMUM OF X(I)S FOR PIVOT ELEMENT
40 DO 70 I=1,MI
IF(I-1) 60,60,45
45 IF (XMAX-X(I)) 60,70,70
60 XMAX=X(I)
IP=I
JP=IH(I)
70 CONTINUE
c
c NEXT 2 STATEMENTS TEST FOR XMAX,
C IF LESS THAN 10**-8,GO TO 1000
c
EPSI=1.E-12 ¢
IF (XMAX-EPSI) 1000,1000,148
C
148 M=M+1
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c NEXT 11 STATEMENTS FOR COMPUTING
c TANG, SINE, COSN, Q(I,I),R(J,J)
c

IF (Q(IP,IP)-Q(JP,JP)) 150,151,151
150 TANG =-2.*Q(IP,JP)/ (ABS(Q(IP,IP)-Q(JP,JP))+
1SQRT( (Q(IP,IP)=-Q(JP,JP))**2+4.%Q(IP,JP)*%2))
GO TO 160
151 TANG =+2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1SQRT((Q(IP,IP)-Q(JP,JP))**2+4,.%Q(IP,JP) **2))
160 COSN=1.0/SQRT (1.0+TANG**2)
SINE=TANG*COSN
QII= Q(IP,IP)
Q(IP,IP)= COSN#%2* (QII+TANG*(2.*Q(IP,JP)+
1 TANG*Q(JP,JP)))
Q(JP,JP)= COSN*#*2#%(Q(JP,JP)-TANG* (2.*Q(IP,JP)-
1 TANG*QII))

c
Q(IP,JP)=0.
c
NEXT 4 STATEMENTS FOR PSEUDO RANK OF THE E1GENVALUES
GO TO 897
IF (Q(IP,IP)-Q(JP,JP;) 152,153,153
152 TEMP=Q(IP,IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,JP)=TEMP
C
c NEXT 6 STATEMENTS ADJUST
c SIN, COS FOR COMPUTATION OF Q(I,K),V(I,K)
C

IF(SINE) 154,155,155
154 TEMP=+COSN
GO TO 170
155 TEMP=-COSN
170 COSN=ABS (SINE)
SINE=TEMP
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NEXT 10 STATEMENTS FOR INSPECTING THE I"S BETWEEN

I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM VALUE
SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS IN THE
I OR J ROW

DO 350 I=1,MI

IF (I-IP) 210,350,200

IF (I-JP) 210,350,210

IF (IH(I)-IP) 230,240,230
IF (IH(I)-JP) 350,240,350
K= IH(I)

TEMP=Q (I, K)

Q(I,K)=0.

MI=I+1

X(I)=0.

NEXT 5 STATEMENTS SEARCH
IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=MJ,N

IF (X(I)-ABS(Q(I,J))) 300,300,320
X(I)=ABS(Q(I,J))

IH(I)=J

CONTINUE

Q(I,K)=TEMP

CONTINUE

X(IP)=0.
X(JP)=0.

NEXT 30 STATEMENTS FOR
CHANGING THE OTHER ELEMENTS OF Q

DO 530 I=1,N

IF (I-IP) 370,530,420
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TEMP=Q (I, IP)

Q(I, IP)=COSN*TEMP+SINE*Q(I,JP)

IF (X(I)-ABS(Q(I,IP))) 380,390,390
X(1)=ABS(Q(I,IP))

IH(I)=IP
Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
X(I)=ABS(Q(I,JP))

IH(I)=JP

GO TO 530

IF (I-JP) 430,530,480
TEMP =Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(I,JP)

IF (X(IP)-ABS(Q(IP,I))) 440,450,450
X (IP)=ABS(Q(IP,I))

IH(IP)=I
Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530

TEMP=Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(JP,I)

IF (X (IP)-ABS(Q(IP,I))) 490,500,500
X (IP)=ABS(Q(IP,I))

IH(IP)=I

Q(JP, I)=-SINE*TEMP+COSN*Q(JP,I)

IF (X(JP)-ABS(Q(JP,I))) 510,530,530
X (JP)=ABS(Q(JP,I))

IH(JP)=1

CONTINUE

NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF EIGENVECTORS

IF (JVEC) 540,40,540
DO 550 I=1,N
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TEMP=V (I, IP)

V(I,IP)= COSN*TEMP+SINE*V(I,JP)

V(I,JP)=-SINE*TEMP+COSN+V(I,JP)

GO TO 40

RETURN

END

SUBROUTINE JACOBI4 (N,Q,JVEC,M,V)

SUBPROGRAM FOR DIAGONALIZATION OF MATRIX
Q BY SUCCESSIVE ROTATIONS

DIMENSION Q(12,12),V(12,12),X(12),IH(12)

FORMAT (2E15.5)

NEXT 8 STATEMENTS FOR SETTING
INITIAL VALUES OF MATRIX V

IF(JVEC) 10,15,10
DO 14 I=1,N

DO 14 J=1,N
IF(I-J) 12,11,12
V(I,J)=1.0

GO TO 14
V(I,J)=0.
CONTINUE

M=0

NEXT 8 STATEMENTS SCAN FOR LARGEST OFF DIAG. ELEM.
IN EACH ROW X(I) CONTAINS LARGEST ELEMENT IN ITH ROW
IH(I) HOLDS SECOND SUBSCRIPT DEFINING

POSITION OF ELEMENT

MI=N-1

DO 30 I=1,MI

X(I)=0.

MI=I+1

DO 30 J=MJ,N

IF (X(I)-ABS (Q(I,J))) 20,20,30
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X(I)=ABS (Q(I1,J))
IH(I)=J
CONTINUE

NEXT 7 STATEMENTS FIND FOR
MAXIMUM OF X(I)S FOR PIVOT ELEMENT
DO 70 I=1,MI
IF(I-1) 60,60,45
IF (XMAX-X(I)) 60,70,70
XMAX=X (I)
IP=I
JP=IH(I)
CONTINUE

NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10#%**-8,GO TO 1000

EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000,148

=M+1

NEXT 11 STATEMENTS FOR COMPUTING
TANG, SINE, COSN,Q(I,I),Q(J,J)

IF (Q(IP,IP)-Q(JP,JP)) 150,151,151
TANG =-2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP})+

1 SQRT((Q(IP,IP)-Q(JP,JP))*#*2+4.%Q(IP,JP)**2))

GO TO 160
TANG =+2.*Q(IP,JP)/ (ABS(Q(IP,IP)-Q(JP,JP))+

1 SQRT((Q(IP,IP)~Q(JP,JP))**2+4,.*%Q(IP,JP)*%*2))

COSN=1.0/SQRT (1.0+TANG**2)

SINE=TANG*COSN

QII= Q(IP,IP)

Q(IP,IP)= COSN*#*2% (QII+TANG* (2.*Q(IP,JP)+

1 TANG*Q(JP,JP)))
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Q(JP,JP)= COSN**2% (Q(JP,JP)-TANG*(2.*Q(IP,JP)~
1 TANG*QII))

Q(IP,JP)=0.

NEXT 4 STATEMENTS FOR PSEUDO RANK OF THE E1GENVALUES
IF (Q(IP,IP)-Q(JP,JP)) 152,153,153
TEMP=Q (IP, IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,JP)=TEMP
NEXT 6 STATEMENTS ADJUST
SIN, COS FOR COMPUTATION OF Q(I,K),V(I,K)

IF(SINE) 154,155,155
TEMP=+COSN

GO TO 170

TEMP=-COSN

COSN=ABS (SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING T8E IHS BETWEEN

I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM VALUE
SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS IN THE
I OR J ROW

DO 350 I=1,MI
IF (I-IP) 210,350,200

IF (I-JP) 210,350,210

IF (IH(I)-IP) 230,240,230
IF (IH(I)-JP) 350,240,350
K= IH(I)

TEMP=Q(I,K)

Q(I,K)=0.

MI=I+1

X(I)=0.

P

~
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NEXT 5 STATEMENTS SEARCH
IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=MJ,N

IF (X(I)=-ABS(Q(I,J))) 300,300,320
X(I)=ABS(Q(I,J))

IH(I)=J

CONTINUE

Q(I,K)=TEMP

CONTINUE

X(IP)=0.
X(JP)=0.

NEXT 30 STATEMENTS FOR

CHANGING THE OTHER ELEMENTS OF Q

DO 530 I=1,N

IF (I-IP) 370,530,420
TEMP=Q (I, IP)
Q(I,IP)=COSN*TEMP+SINE*Q(I,JP)

IF (X(I)-ABS(Q(I,IP))) 380,390,390
X(I)=ABS(Q(I,IP))

IH(I)=IP
Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
X(I)=ABS(Q(I,JP))

IH(I)=JP

GO TO 530

IF (I-JP) 430,530,480
TEMP=Q (IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(I,JP)

IF (X(IP)-ABS(Q(IP,I))) 440,450,450
X(IP)=ABS (Q(IP,I))
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IH(IP)=I
450 Q(I,JP)=~SINE*TEMP+COSN*Q(I,JP)
| IF (X(I)-ABS(Q(I,JP))) 400,530,530

480 TEMP=Q(IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q(JP,I)
IF (X(IP)~-ABS(Q(IP,I))) 490,500,500
490 X(IP)=ABS(Q(IP,I))
IH(IP)=I
500 Q(JP,I)=-SINE*TEMP+COSN*Q(JP,I)
IF (X(JP)-ABS(Q(JP,I))) 510,530,530
510 X(JP)=ABS(Q(JP,I))
IH(JP)=I
530 CONTINUE

NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF E1GENVECTORS

0O 0O 0 o0

IF (JVEC) 540,40,540
540 DO 550 I=1,N
TEMP=V (I, IP)
V(I,IP)= COSN*TEMP+SINE*V(I,JP)
550 V(I,JP)=-SINE*TEMP+COSN*V(I,JP)
GO TO 40
1000 AAM=FLOAT (M)
WRITE (58,13) EPSI,AAM
RETURN
END
SUBROUTINE JACOBI3(N,Q,JVEC,M,V)
SUBPROGRAM FOR DIAGONALIZATION OF
c MATRIX Q BY SUCCESSIVE ROTATIONS
i DIMENSION Q(3,3),V(3,3),X(3),IH(3)
: 13 FORMAT (2E15.5)

s

NEXT 8 STATEMENTS FOR SETTING
C INITIAL VALUES OF MATRIX V

ks
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IF(JVEC) 10,15,10
DO 14 I=1,N

DO 14 J=1,N
IF(I-J) 12,11,12
V(I,J)=1.0

GO TO 14
V(I,J)=0.
CONTINUE

M=0

NEXT 8 STATEMENTS SCAN FOR LARGEST OFF DIAG. ELEHM.
IN EACH ROW X(I) CONTAINS LARGEST ELEMENT IN ITH ROW

IH(I) HOLDS SECOND SUBSCRIPT DEFINING
POSITION OF ELEMENT

MI=N-1
DO 30 I=1,MI

X(I)=0.

MI=I+1

DO 30 J=MJ,N

IF (X(I)=-ABS (Q(I,J))) 20,20,30
X(I)=ABS (Q(I,J))

IH(I)=J

CONTINUE

NEXT 7 STATEMENTS FIND FOR
MAXIMUM OF X(I)S FOR PIVOT ELEMENT

DO 70 I=1,MI

IF(I-1) 60,60,45

IF (XMAX-X(I)) 60,70,70

XMAX=X (I)

IP=I

JP=IH(I)

CONTINUE
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NEXT 2 STATEMENTS TEST FOR XMAX,
IF LESS THAN 10**-8,GO TO 1000

EPSI=1.E-12
IF (XMAX-EPSI) 1000,1000, 148

M=M+1

NEXT 11 STATEMENTS FOR COMPUTING
TANG,SINE,COSN,Q(I,I),Q(J3,J)

IF (Q(IP,IP)-Q(JP,JP)) 150,151,151

150 TANG =-2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+

151

1 SQRT((Q(IP,IP)-Q(JP,JP))**2+4,%*Q(IP,JP)**2))
GO TO 160
TANG =+2.*Q(IP,JP)/(ABS(Q(IP,IP)-Q(JP,JP))+
1 SQRT((Q(IP,IP)-Q(JP,JP))**2+4,%Q(IP,JP)**2))

160 COSN=1.0/SQRT(1.0+TANG**2)

152

SINE=TANG*COSN
QII= Q(IP,IP)

Q(IP,IP)= COSN#%2% (QII+TANG* (2.*Q(IP,JP)+

1 TANG*Q(JP,JP)))

Q(JP,JP)= COSN**2% (Q(JP,JP)-TANG* (2.*Q(IP,JP)-
1 TANG*QII))

Q(IP,JP)=0.

NEXT 4 STATEMENTS FOR PSEUDO RANK OF THE E1GENVALUES
IF (Q(IP,IP)-Q(JP,JP)) 152,153,153
TEMP=Q (IP, IP)
Q(IP,IP)=Q(JP,JP)
Q(JP,TP)=TEMP
NEXT 6 STATEMENTS ADJUST
SIN, COS FOR COMPUTATION OF Q(I,K),V(I,K)

IF(SINE) 154,155,155
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154 TEMP=+COSN
GO TO 170
155 TEMP=~COSN
170 COSN=ABS (SINE)
SINE=TEMP

NEXT 10 STATEMENTS FOR INSPECTING T8E IHS BETWEEN

I+l AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM VALUE
SHOULD BE COMPUTED SINCE THE PRESENT MAXIMUM IS IN THE
I OR J ROW

153 DO 350 I=1,MI

IF (I-IP) 210,350,200
200 IF (I-JP) 210,350,210
210 IF (IH(I)-IP) 230,240,230
230 IF (IH(I)-JP) 350,240,350
240 K= TH(I)

TEMP=Q (I,K)

Q(I,K)=0.

MI=T+1

X(I)=0.

]

NEXT 5 STATEMENTS SEARCH
IN DEPLETED ROW FOR NEW MAXIMUM

DO 320 J=MJ,N
IF (X(I)-ABS(Q(I,J))) 300,300,320
300 X(I)=ABS(Q(I,J))
IH(I)=J
320 CONTINUE
Q(I,K)=TEMP
350 CONTINUE

X(IP)=0.
X(IP)=0.
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NEXT 30 STATEMENTS FOR

CHANGING THE OTHER ELEMENTS OF Q

DO 530 I=1,N

IF (I-IP) 370,530,420
TEMP=C (I, IP)
Q(I,IP)=COSN*TEMP+SINE*Q(I,JP)

IF (X(I)=-ABS(Q(I,IP))) 380,390,390
X (I)=ABS(Q(I,IP))

IH(I)=IP
Q(I,JP)=-SINE*TEMP+COSN*Q(I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530
X(I)=ABS(Q(I,JP))

IH(I)=JP

GO TO 530

IF (I-JP) 430,530,480
TEMP=Q (IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q (I,JP)

IF (X(IP)-ABS(Q(IP,I))) 440,450,450
X (IP)=ABS(Q(IP,I))

IH(IP)=I
Q(I,JP)=-SINE*TEMP+COSN*Q (I,JP)

IF (X(I)-ABS(Q(I,JP))) 400,530,530

TEMP=Q (IP,I)
Q(IP,I)=COSN*TEMP+SINE*Q (JP,T)
IF(X(IP)-ABS (Q(IP,I))) 490,500,500
X (IP)=ABS(Q(IP,I))

IH(IP)=I
Q(JP,I)==-SINE*TEMP+COSN*Q (JP,I)

IF (X(JP)-ABS(Q(JP,I))) 510,530,530
X (JP)=ABS (Q(JP,I))

TH(JP)=1

CONTINUE
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NEXT 6 STATEMENTS TEST FOR
COMPUTATION OF E1GENVECTORS

IF (JVEC) 540,40,540

DO 550 I=1,N

TEMP=V (I,IP)

V(I,IP)= COSN*TEMP+SINE*V(I,JP)
V(I,JP)=-SINE*TEMP+COSN*V (I,JP)
GO TO 40

AAM=FLOAT (M)

WRITE (58,13) EPSI,AAM

RETURN

END



