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ABSTRACT

A Computer Vision System for VLSI Wafer Probing

Ramanamurthy V. Dantu, Ph.D.
Concordia University, 1990

This thesis is concerned with an important problem encountered in automating
VLSI wafer probing. In wafer probing, metallic probes are used to inject test vectors
through a set of input/output (test) pads. The accurate and sensitive operation of touching
a probe onto a pad has to be performed repeatedly with good resolution. This operation,
currently performed by human operators, demands great accuracy which is only available
through highly skilled labour. The probe tip has a thickness of less than a micron and
is very fragile. Hence it is essential that the touch of the probe onto the target wafer
surface be as soft as possible while ensuring a reliable electrical connection. In this
thesis we describe a method for guiding the probes using vision as feedback. The use
of a multiprocessor is also investigated as a means of speeding up the low level vision

algorithms used in the method.

Accurate information on the distance of a probe from the wafer is important for
the successful guidance of the probe to its destination. The camera in the vision system
is focused on the wafer and several images of the probe as it approaches the wafer are
analyzed. A theory has been formulated for calculating the degree of blur using the step
height of the probe’s edge and the slope of the intensity profile at the location of the edge.

The resulting formula provides a measure of the proximity of the probe to the surface



of the wafer. This formula is simple and easy to use. It is also robust in the sense that
it is valid even in the presence of significant noise in the images. When the probe is
very close to (i.e. about to touch) the wafer surface, accurate detection of touch is very
important for non-destructive wafer probing. The variance of pixel values of the image
of the probe together with insight gained from experimental observations are employed
for accurate determination of contact between the probe and the wafer. The methods
proposed in this thesis have been validated by experimentation with various images of a
probe approaching different VLSI wafers containing metal pads.

Parallel low level vision algorithms are implemented on a simulator specifically
written for the Homogeneous Multiprocessor. Substantial speedups have been shown for
local algorithms such as smoothing and edge detection, as well as nonlocal ones such

as histogram generation.
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Chapter 1
Computer Vision in IC Manufacturing

1.1 Introduction

Vision is one of the most powerful and complex of human senses. It enables
us to interact intelligently in the world without direct physical contact. It also enables
us to understand positions and identities of objects and the relationships between them.
It is natural that we attempt to provide computers with a sense of vision. Computer
vision is used in various industrial applications, some of the more recent ones being in
the semiconductor industry. To date, computer vision is used in several stages of IC
manufacturing, the more prominent ones being wafer inspection, testing, die bonding
and wire bonding.

Inspection and testing of VLSI wafers are becoming increasingly difficult to
perform. This difficulty is due to the continuous improvement of the fabrication process
which has resulted in reduced feature size and increased die size [1], [2]. Consequently,
more devices are put in a unit area which in turn increases the fault density and reduces

the yield*. Goldstein describes a simple model [3] for yield Y as
Y = e~ V4D « 100% (1.1.1)

where A is the area of the die in cn? and D is the defect density in defects/cm?. Thus the
model indicates a lower yield as the die size increases. Future demands will be even more
stringent with yield dropping further, not only due to the increases in packing density,

but also because of increases in the relative size of particle-to-device geometry. In spite

* Yield is calculated as the ratio of the number of good parts t» the total number of parts manufactured.



of the dramatic changes in feature size, die size, and defect density, several functions
in inspection and testing continue to be done manually [2]. Automating various aspects
of IC manufacturing provides repeatability and better control of the quality of the on-
going manufacturing process. This in turn tends to decrease the defect density and thus
improve the yield. The growing need to automate critical functions in IC manufacturing
was realized early on. Industries were surveyed to determine the detailed requirements
and the relative importance of each function. Based on this survey, in [1] and [2] Harris
reported a summary of current and future needs for wafer inspection, automation, and

yield benefits,

Automation in IC packaging using machine vision has been explored by various
researchers [1], [2] and [4]—[12]. Most of the papers deal with wafer inspection, wire
bonding, and die bonding. To our knowledge, no work has been reported so far in
automated testing of in-process wafers. We think that IC inspection for localization of
physical faults and wafer testing for functional and parameter estimation will benefit the
most from automating the different stages of IC packaging. The objective of this thesis
is to study the problem of automating wafer probing, which is used in the testing of

various semiconductor parameters.

In this chapter, we describe various steps in IC packaging which benefit from
computer vision, and describe the need for automated wafer probing. Sections 1.1.1,
1.1.2 and 1.1.3, briefly overview different tasks of wafer inspection, wafer testing and
wire bonding which can be automated using computer vision. In Section 1.2, we describe
the need for wafer probing and the techniques used presently. The need for a computer
vision system for wafer probing is explained in Section 1.3. Next, the various components
in a typical computer vision system and their operations are explained in Secticn 1.4.

Finally, the objectives and organization of this thesis are described in Section 1.5 and 1.6.



1.1.1 Wafer iInspection

An application of machine perception in the semiconductor industry is in the
growing field of IC screening [1], [2], [4], [8], [11], and [12]. Here, inspection of IC
chips is carried out to detect defects. This is done in-process before pre-cap testing either
by feature inspection or by generic property verification. In either case, inspection can be
automated. A well defined image of the die on the wafer is an essential ingredient for this
type of inspection. The end result is defect detection, identification and classification. The
inspection is usually done in two major steps: macro-inspection and micro-inspection.
During macro-inspection, the full wafer is inspected and a quick check is made for large
defects such as contamination (down to 10 microns), poor spin, and non-uniformities
of exposure or development. Macro-inspection is a fast way of avoiding catastrophic
yield loss due to repeating defects. Micro-inspection includes registration checking,
pattern checking for systematic defects and point defect checking. This inspection allows
automatic tracking of the manufacturing process and is usually used as an advance
warning that the process is drifting. The majority of dstectable faults fall into one

(or more) of the following classes [4]:
e open circuit on any layer
e short circuit between points in the same layer
e minimum width violation of any layer, particularly conductors
e minimum spacing violation between layers, particularly conductors
e minimum overlaps and poor step coverage
e crack faults
o conductor corrosion, etc.

Automated wafer inspection is a popular research area and several articles have

been published related to it. Harris [1], [2] reported an automated inspection system



which requires 5 minutes for macro-inspection and 13 minutes for micro-inspection of
a wafer of size lcm x lcm. These timings are found to be 6 to 8 times faster than
the human operator. Recently Yoda [13] reported a system which derives a minimum
of 0.6 micrometer defective patterns from the multilayered wafer patterns at a speed
30 times faster than that of a human inspector. The false alarm rate is less than 0.5
occurrences/chip. All image processing of the system is performed in a one-pass manner
by a high speed pipeline-structured image processor that can analyze an input image

signal at 7 Mbytes/sec video rate.

1.1.2 Wafer Testing

Once macro and micro-inspections have been performed and defective dies have
been identified, the remaining dies are tested electrically and are verified functicnally.
Liesign considerations for integrated circuits consist of two parts: the functional spec-
ifications and the specifications of various semiconductor parameters. The first set of
specifications is verified using boolean testing of the ICs. The second set is verified
using parametric analysis.

Generation of various test vectors for boolean testing has been a topic of interest
in “design for testability” [14]. In boolean testing the test points on the die are normally
the bonding pads. However, most VLSI chips produced today have convenient and well
determined areas for contact probing called “test pads” [8], [14]. These pads are inserted
in order to enhance controllability and observability of the VLSI circuits [3]. So, VLSI
circuits now a days are designed with testability in mind [14]. Test pads are included

in the circuit to

i. overcome fault blocking (a situation where a test vector is prevented from propagating
through the network to the outputs).

ii. reduce test vector generation or storage area.



iii. speed up testing time.

The AC and DC parametric analysis is performed by testing all the semiconductor
parameters. The representative AC timing parameters are: set-up time, hold time, and
propagation delays. During set-up and hold times, the data has to be stable before and
after an active clock transition occurs. The propagation delay is the time between a
stimulation and its reaction at the output of the device. Examples of DC parameters are:
i) threshold voltage (the gate voltage required to cause a predetermined value of drain
current to flow); ii) transconductance (device ability to drain current in response to gate
voltage variations, with drain-source voltage constant); iii) channel conductance (ratio of
drain current Ips to drain-source voltage Vps when Vps is near zero).

For measuring the above mentioned parameters, test vectors are stimulated and
signatures are picked up at the primary input/output bonding pads using micro-probes.
Whichever testing method is used, to be able to test a circuit completely, all the bonding
pads and test pads must be accessible for probing. A popular method is to use mechanical

probe needles for inserting test vectors. Hence, wafer probing requires the following:

i. Identification of the bonding and test pads.
ii. Placement of selected probes on the appropriate pads for non-destructive contact
probing (i.c. achieving a good electrical contact without scratching the pad).

iii. Active testing through signature analysis.

Future developments will also create problems in this task because of smaller pads
and more pads on a single die with less clearance between them. Therefore, there will
be more probes operating at the same time, sometimes more than a hundred probes!.

The above mentioned tasks are presently performed manually. The research
described in this thesis is aimed at automating such tasks by using vision as feedback.

More details of the wafer probing operations are explained in Section 1.2 and 1.3.



1.1.3 Bonding

Another area that benefits from the use of machine perception in IC packaging
is die and wire bonding [5], [6]. During the final stages of packaging, the ICs to be

assembled are placed on chip carriers. Two sub-tasks are performed here:

i. Die bonding: This involves identification of various ICs (as they arrive) by pattern
matching using predefined IC features, and bonding each die on a chip carrier with
a fixed accuracy.

ii. Wire bonding: This is the process of connecting gold or aluminum wires between

the pads on an IC and the leads of the lead frame.

The objective of the automated system is to identify the bonding pads which are
placed along the outer edges of the die. The shape and size of the bonding pads are
usually standard. Together with the test pads they are normally of square shape with a
top layer of metal which reflects ligiit more than the other layers. Generally bonding pads
have a larger diffused component than their surroundings, making them easily identifiable.
Future reductions of pad sizes, smaller clearances between pads, and the increased number

of pads per die will require more accurate recognition as well as manipulation techniques.

1.2 Wafer Probing

An important factor in improving yield is to study the relationship between fault
coverage and the quality of integrated circuits [15]. Three classes of wafer tests are
performed on integrated circuits: i) Gross tests, to check for open/short circuits (see
Section 1.1.1), presence of input protection circuits, etc., ii) Functional or boolean tests,
which ensure that the device logic behavior is correct, and iii) Parametric tests which
measure voltage, current and timing parameters (see Section 1.1.2) [15]. The yield

loss identified through these three tests has been studied in [15]. In some experiments



on the Motorola 68020, 93 wafers from 5 lots of varying yield were tested. Gross
failures eliminated 4,006 of the total of 22,506 dies, 6,444 dies failed the boolean
test and 5,000 failed the parametric test. Significant improvements in yield can be
achieved by employing these tests during fabrication. Hence, development of “hands off”
automated probing equipment will definitely be useful for designers and manufacturers

of semiconductor circuits [9)].

There are three classes of probing equipment available on the market: mechanical
probing, electronic beam probing and mercury contact probing. Probing using metal

needles (mechanical probing) is the most popular.

In electron beam probing, the electrical state inside a wafer is analyzed by irradiat-
ing the wafer with an electron beam (having a small diameter). This method is used while
the circuit is operating. In this method, the node (e.g. a metal pad) to be investigated is
exposed to primary electrons, thereby causing the emission of secondary electrons. The
number of secondary electrons emitted at the node is dependent on the surface potential.
When the node is at a high potential, it attracts back a large proportion of the secondary
electrons. The secondary electron collector then sees fewer electrons. When the node is
at a low potential, the collector sees a larger number of electrons. Hence, by projecting
all the points on the wafer to a two dimensional grid, an image representing wafer po-
tentials can be created. This image gives the complete electrical state of the wafer under
test. Because, there is no physical contact, this method of probing will not cause any
mechanical destruction of the IC surface. Another advantage over its mechanical coun-
terpart is that it can be used to scan the surface of an IC and thereby test large circuit
areas in a single stroke [16]. In recent years a great deal of work has been published in

the field of electron beam testing and a summary can be found in [17].

There are also some limitations of electron beam testing. The probing must be



done in vacuum and there is a problem of instability due to the charge-up phenomenon.
Irradiation damage of the IC is possible because of the high voltage levels of the primary
electron source. Also, due to lower line widths in the die, fewer secondary electrons
are available for measurement, hence long measurement times must be accepted as a

trade-off [17].

The demand for “safe” wafer probing has resulted in yet another technique.
Material Development Corporation [18] has developed a mercury probe. In this probing
technique, the measurement is done by making contact on the wafer with a mercury dot
in a well-defined area. Such a probe can be connected to various measuring instruments.
On bare silicon, mercury forms a Schottky barrier that enables the analysis of doping
profiles. This kind of probing is non-destructive, but to our knowledge, this method has

not been used by other manufacturers.

1.2.1 Probing using Metal Needles

As mentioned earlier, mechanical probing using metal needles is widely used and is
the most popular. There are two types of mechanical wafer probing: one for high volume
IC production and other for low volume. Probe cards are used for high volume production
where the ICs are tested for certain known electrical parameters. In these probers, the
wafer is loaded and aligned automatically, probes are lowered a certain distance (without
any feedback) and electrical measurements are made. At present this method is used
at the final testing stages of the finished wafers before packaging. Because there is
no feedback provided, good electrical contact cannot be made consistently. Moreover,
probing causes a loss of more than 10 percent in the yield [9], mostly due to the damage

caused by the probes themselves.

Analytical probing is generally manual and is suitable for low volume IC production

or when a few dies per wafer need to be tested. In this type of probing, X and Y



positioning is done manually and the probes are lowered manually to the target pad.
Important uses for analytical probing occur in the design of a new device and in the
failure analysis laboratory. These applications employ microanalytical probing which
requires a higher degree of accuracy since one has to access geometries of less than one
micron. Moreover, not all manual probing takes place during the final testing of the wafer.
Wafer probing can also take place during wafer fabrication for checking the electrical
characteristics of the device and for monitoring the processing equipment’s adherence to
wafer specifications. The research described in this thesis is aimed at automating this type
of probing using computer vision. This will also help to reduce the lead time between

the conceptual stage and the actual production of the circuits.

1.2.1.1 Materials used for Probe Needles

Generally, three materials are used for probe needles [19}—[21]. They are Tung-
sten, Beryllium Copper, and Paliney-7 Alloy. Tungsten is commonly used because of its
hardness and high yield point. Also, it can be electropolished to an extremely fine tip.
Beryllium Copper has a higher bulk conductivity than tungsten and offers better electrical
characteristics. However, it is a softer material and so is not useful for most analytical
probing and trace cutting applications [22]. Paliney has a lower contact resistance and is
an expensive material. It has higher mechanical strength than beryllium copper but less
than tungsten, with better electrical characteristics than tungsten. Laboratories stock all

three materials so that they can best match a material with an applications.

1.3 The Need for Soft Probing

Metallic probes are used to inject test vectors and check for continuity [9]. Input,

output or test pads are used for such probing (as explained in Section 1.1.2). The test



pads have dimensions of the order of 10 microns or less. The accurate and sensitive
operation of touching a pad with the probe has to be performed repeatedly for testing
each parameter. Animportant task in probing is to achieve good metal-to-metal contact
between the probe and the device. Resistance is often caused hy oxidation and dirt on
the device. Hence these two layers must be broken to make good metal-to-metal contact.
One way to break the oxide layer is to increase the probe pressure by increasing the
Z drive on the probe. As the probe pressure increases, contact resistance decreases.
However, this must be balanced against excessive pressure, which could cause damage
to the device or to the tip. Silicon devices are prone to these microfractures and recent

Gallium Arsenide devices are extremely susceptible to such damage.

Another concern while probing the wafer is the fragility of the probe tip. The probe
tip, with a thickness of less than a micron, is very fragile. Hence for non-destructive
touching of a wafer by the tip of the probe, the probe should have zero velocity at the
moment of touch. Our observations have shown that when the probe is being lowered
and the velocity of movement is small, the probe does not initially pierce the pad on
contact, but slides on the pad without scratching the surface. Hence, it is very important
to detect the slide before any damage takes place. The above described tasks could use

vision feedback for better and more accurate control.

1.4 A Computer Vision System

Computer vision is a key component of automated manufacturing systems. It is
required for tasks involving identification, location, verification, inspection, as well as
for guidance of the probes. In this sectior, we describe the processing steps involved
in a typical computer vision system [23]. Different stages of processing in the vision
system presented in this thesis closely resemble the classification given in [23]. This

hierarchical classification of the computational tasks performed in a computer vision
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system is presented in Figure 1.1. Low level processing deals with noise removal, edge
detection, image enhancement, two-dimensional feature detection and region analysis.
This processing results in the partitioning of an input image into meaningful parts. These
parts correspond (in our case) to physical objects such as probes, pads and background.
Grey levels of the image are used for this purpose.

The next level consists of intermediate processing, where the image is analyzed
for three dimensional information (depth from focus in our application). High level
processing deals with relational analysis and coordination of various low level modules.
A given task can be divided into several high-level actions. These high-level actions
(such as touch, move, lift) are achieved by coordinating low level-features such as mean
intensity of the scene, orientation and size of the objects, and intermediate level features
(such as focus, proximity and zoom). Sometimes, it is required to refer to a knowledge
base containing various characteristics of the scene before making a high-level decision.
Thus, it is required to execute layers of algorithms for a given task. On the other hand,
there is also a need for real-time operation in some applications (like ours). Hence,
speeding up the above mentioned algorithms is another concern in a computer vision
system.

Extensive research and experimentation has been done for the last 30 years in all
three stages of processing. But due to the complexity of visual perception, no general

purpose computer vision system is yet available.

1.5 Motivation and Objectives of the Thesis

Several laboratories [24] have reported difficulties in carrying out manual wafer
probing. This is because the operations involved in probing are sensitive, time consuming
and require highly skilled operators. On many occasions either the probe tip or the wafer

have been damaged while probing. The availability of completely automated probing
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equipment could alleviate these difficulties. We have surveyed some commercially
available equipment (details are given in Chapter 2) but have not been able to find
a completely automated one. Automating the operations involved in wafer probing
would definitely result in more accurate measurements and ultimately better devices and
improved yields. In this context, we have found some challenging research problems,

one such problem being that of a probe to a target surface on a wafer.

There are two important tasks in automating wafer probing. The first is to lower
the probe to the pad and the second is to make good electrical contact without scratching
the surface. We decided to use computer vision to solve these problems. We havs
several constraints in solving these tasks. First, we can only view the wafer from
one direction; second, the wafer is illuminated by bright-through-the-lens illumination;
and third, the probe is inclined with respect to the optical axis. In addition to these
constraints, all the vision algorithms need to be general and independent of the patterns
inscribed on the wafer. Once the probe has been brought very close to the wafer, the
next task is to establish a reliable and non-destructive contact of the probe with the
wafer. A problem that needs to be addressed in any vision system is that of real-time
response. Consequently, it is therefore necessary to consider some means of speeding up
the algorithms that are required. Research was carried out towards achieving the above

objectives and the results are reported in the following chapters.

1.6 Organization of the Thesis

The thesis contains seven chapters. The experimental set-up and the details of its
various parts are described in the Chapter 2. We have developed an interactive image
processing package as part of this research project. This is also described in Chapter
2. Next, various low level algorithms used in preparing the image data for further

analysis are explained in Chapter 3. Some special purpose algorithms designed for our
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experimental set-up are also explained in this chapter. For estimating the distance of
the probe to the wa{.., we have developed a new technique for measuring depth using
the sharpness of the edges in the images. The theoretical formulation of this method
and its experimental verification are described in Chapter 4. The ultimate objective of
the work is to guide a probe for good contact with a wafer. It is found that the probe
starts sliding after touching the surface and some sliding is permissible without risk
of damage to the wafer. This is measured using variance of the intensity values and
enables us to detect touch. Analytical expressions for the variance of intensity values
are derived for a general scenario in Chapter 5. The relationships in these expressions
are verified using experimental data, and the procedure is explained in Chapter 5. For
speeding up the system response, parallel low level vision algorithms are implemented
on a multiprocessor and the results are described in Chapter 6.

The automation of a complete wafer probing operation is complex and involves
several interdisciplinary areas. We have addressed one aspect of the operation, i.e.
probing using computer vision. Further work to completely automate such a system

is discussed in Chapter 7.
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Chapter 2
Experimental Set-up

2.1 Introduction

A step proven most effective in shortening the lead time between the conceptual
stage and actual productiun of VLSI chips is laboratory automation. A system capable of
automatically extracting parameters for analysis and providing the design engineer with
instant feedback is essential [25]. Wafer probing is therefore important in semiconductor
parameter analysis. Several probe systems available on the market are manufactured by
companies such as Wentworth Laboratories, Signatone Corporation, Alessi Industries,
Micromanipulator Company and Rucker & Kolls. These systems are made for extreme
precision and ruggedness for use in small-geometry probing. Several consist of high-
power optics such as the Bausch & Lomb “Microzoom” microscope with magnification
in the range of 25 to 2000. Wentworth Inc. and Signatone Corporation probe stations are
of similar configuration. Signatone Corporation has developed a probing station with a
built-in controller for micropositioning. They also have computer software for repeated
operations on the die, The probing is manual in all these systems and to our knowledge
no automation of wafer probing currently exists. The need for automation and its effect
on yield benefits were discussed in Chapter 1. We shall now describe the experimeatal
set-up that we designed to meet this objective.

Our set-up consists of a Wentworth Test Station (probe platform, probes, wafer
chuck and a three-lens microscope [19]—{21]) and is shown in Figure 2.1. A camera is
mounted on top of the test station, and an image can be captured through a custom-made
image grabber. The images are preprocessed by an HP 9000 (series 300) computer where
they are displayed and/or transferred to a SUN 3/60 workstation for analysis, processing




and storage. The processed images can later be used to provide information to the
motion controller for direct placement of the probes on the testing pads. This feedback

is achievable through the implementation of several layers of vision algorithms.

So far, we have developed a working system for image capturing, display, and
processing, an effective method of determining the probe distance from a contact point,
and the detection of contact. In this chapter, we shall describe the modules of the
experimental set-up, which we developed, and their operation. The camera is fixed to
the microscope using an extender tube and an adapter. The description of this optical
arrangement is given in Section 2.3. Section 2.4 describes a digital circuit designed for
interfacing the handshaking signals of a GPIO bus through which data is collected by a
DMA controller. Section 2.5 describes a program written to drive the hardware interface
and collect and format the data. The data is transferred to a SUN 3/60 for further
processing. The protocol for the data transfer is described in Appendix B. Section 2.7
describes an image processing package developed in our lab using Sun Windows for

display and manipulation of images.

All the probes we use are presently controlled manually. Recently, we acquired a
computer controlled probe and we are in the process of developing a motion controller
for it. Even so, the present set-up is not suitable for real-time operation. It has been
developed on a limited budget. Our prime objective was the proof of concept, i.e. our
ability to accurately determine the position of the tip of the probe. We hope to achicve
real-time operation by using a multiprocessor, and replacing the DMA controller by a
high-speed image grabber with dedicated image processing hardware. Some distributed
low level vision algorithms developed for a particular multiprocessor are explained in

Chapter 6.
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2.2 Block Diagram of the Set-up

The block diagram in Figure 2.2 shows the micromanipulator system under devel-

opment. We will now describe the various parts of this system.

2.2.1 Wafer Chuck

The wafer chuck is used to load and unload the wafers under test. This unit has
four degrees of freedom, three translational along the three axis of the X-Y-Z system
of coordinates and one rotational about the Z-axis. The chuck has a wafer probing
capability of 10 cm for the X-Y stage and 15 cm for Z stage. The micrometer resolution
for these movements is 30 threads per cm. For mounting the wafer under test, the chuck
is provided with two kinds of adapters. The first contains a base suitable for inserting
an IC and is useful for testing ICs already packaged. The second contains a mechanical

frame for mounting a wafer consisting of several dies.

2.2.2 Probe Platform

The probe platform shown in Figure 2.1 can take upto twelve magnetic 'y-based
micromanipulators which are manually controlled. Each micromanipulator has three
degrees of freedom in the X, Y and Z axes. Initially the X and Y micrometers on the
probe are used for aligning the probe tip with the pad. Next, the Z drive is applied for
lowering the probe tip onto the target pad (one revolution of the micrometer corresponds
to a vertical motion of 6.5 microns). Touching the probe tip to the wafer surface is a very
sensitive operation. Hence each probe tip is spring loaded, causing it to slide horizontally
after touching the wafer. This has become a useful feature for us in detecting contact

between a probe and a pad as it will be explained in Chapter 5.
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2.2.3 Microscope and Camera

In this application, we need to manipulate geometries in the order of a few microns.
So a microscope of very high magnification is required. We use the MicroZoom®
Microscope supplied by Bauch and Lomb Inc. A camera (manufactured by EG&G
Reticon Inc. model MC9256) is fitted on top of the microscope. It consists of a 256x256
photodiode array with 64 grey levels. The camera outputs are differential RS422A signals

transmitted on a 50 pin cable.

2.2.4 Image Grabber and Preprocessor

An important requirement in a computer vision system is high speed data collection.
This is generally done by a hardware module called a “frame grabber” or “image grabber”.
This module uses a high speed DMA controller to collect data. Since we already have
the HP 98620 Direct Memory Access controller in the HP 9000 computer, we developed
a custom-made irmage grabber by adding extra hardware circuitry and a software driver.
Information from the video data formatter is collected by the DMA controller and stored in
an HP 9000 series 300 computer. This computer is based on an MC68020 microprccessor

with 1 Mbyte of RAM memory and has a 20M HP9133 hard disk.

2.2.5 Low Resolution Display

We have a low resolution (16 grey levels) video monitor attached to the HP 9000
computer. During the set-up phase, it is not necessary to store images or transfer them
to the main computer. So, we use the video monitor to preset controls on the camera,
microscope and light source. We choose various options of the set-up, e.g., the digital
threshold of the camera, the magnification required in the microscope, and the power of
the light source. By using the local monitor, we can display a grey scale histogram and
choose the camera threshold which represents the range of the video to be digitized. This

feature is useful for expanding or compressing resolution over a portion of the video
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signal. This operation is called histogram equalization [26]. Since this is a hardware
feature of our camera, we can enhance the image during the set-up phase and thereby
reduce the software overhead. Another control preset uses the histogram to adjust the
power supplied to the lamp affecting the intensity level of the light source. This is set
according to the mean value of the histogram. All the above settings are done before
a test-phase of the wafer. During the test-phase all images are transferred to the SUN
3/60 [27].

2.2.6 Vision Algorithms

We have developed a set of low-level vision algorithms which include smoothing,
thresholding, edge detection, etc. for processing the images of the VLSI wafers. Further
details are given in Chapter 3. We have devised a method for guiding the probe so as
to satisfy our primary objectives of safe and reliable probing. We have used a two stage
procedure for this purpose. The first estimates the proximity of the probe, and the second
is concerned with the detection of contact between the probe and the wafer. Details of

these two stages are described in Chapters 4 and 5.

2.3 Optical Set-up

The optical arrangement of the existing Wentworth test station is tailored to suit
our imaging requirements (see Figure 2.3). A Halogen cycle lamp with white light is
used for illumination. The light source is controlled by a diffuser filter and an aperture
control. There is also a three-stage control for the power supplied to the lamp, so three

different intensity levels can be chosen.

We have replaced the existing microscope head in the Wentworth test station with
a tri-ocular head having a secondary viewing port. This tri-ocular head permits viewing

through the eyepieces and also imaging through the secondary viewing port. The camera
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Microscope Numerical Magnification | Field of view Working
Lenses Aperture (mm) Distance
(mm)
Objective 1 0.042 22.5x to 45x 8.76 29.5
Objective 2 0.15 80x to 160x 2.54 19.9
Objective 3 0.31 250x to 500x 0.8 12.9

Table 2.1 Characteristics of the objectives of the microscope

is attached to the secondary port through an extender tube of length of 70 mm. The tube
increases the length of the optical path and allows a focused iraage to be obtained at
the camera. The distance from the image to the objective of the microscope depends on
the magnification selected and the focal length of the optical set-up in the microscope
which is the distance of the object from the lens. The optical characteristics of all three

lenses are given in Table 2.1.

2.4 Hardware Interface to the Camera

The camera in our system consists of two units connected through a cable. One is
the camera heaa (containing the image sensor) and the other is the video data formatter.
Since the camera head is detachable from the power supply and data formatter, it
is mounted on top of the microscope and connected to the data formatter through a
25-conductor cable. The camera head is operated with an internal master clock of IMHz.
The analog video signal from the camera head (containing line and frame synchronization)
is fed to the A/D converter located in the video data formatter. The digital output (D1 —
D7), Line Enable (LEN), Frame Enable (FEN), and clock signals (DCLK) are available
on the 50 pin parallel connector with RS422A balanced lines. These signals are connected
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23



to the GPIO (General Purpose Input and Output) bus of the HP 9000 computer. Since
the handshaking signals of the GPIO bus are not compatible with the timing signals of
the video data formatter, we designed an interface circuit. The circuit diagram is shown
in Appendix C. The signals: PFLG, CTLO, and CTL1 on GPIO are used for the DMA
transfer. The control signals (CTLO and CTL1) are used to initiate the data transfer.
The Peripheral Flag Line (PFLG) is used to synchronize the data transfer. A software
driver was developed to start the data transfer, collect the data, and format the data. This

software module is explained in the next section.

2.5 Software Driver for the Camera

A software driver, running on the HP900O controls the hardware interface circuit
shown in Appendix C. Initially the control line (CTLO) is used to set the second flip-flop
to zero to inhibit the pulses going into the GPIO bus. Next, the control line (CTL1) is
used to start the transfer. For every pulse on the PFLG line, the data (one pixel) on the
input line is transferred to the buffer of the DMA Controller. This transfer ceases after
one frame, i.e. 65536 pixels. This is made possible by gating the clock pulses by the
frame enable line (FEN). The data is collected at the rate of 1Mbyte/sec. Then, the data
in the buffer is formatted, displayed and transferred to the SUN 3/60 workstation. A
complete listing of the software driver program is given in Appendix A.

2.6 Data Transfer between the HP 9000 Computer
System and the SUN 3/60 Workstation

As mentioned earlier, the data in our system is processed in two stages. The
first stage is the collection and formatting of the data and is carried out by the HP
9000. We used the HP 9000 to capture our data, since it provided us with a compatible
and accessible interface to our camera. A SUN 3/60 on the other hand is used for

its computational power and its good graphics environment for development of our
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application. The communication protocols of these two computers were studied [27]
and a procedure was developed for reliable transfer of data between these computers at

19200 baud rate. This procedure is given in Appendix B.

2.7 The Image Processing Package

In Chapter 1, we explained the need for a soft, reliable and safe method of wafer
probing. To this end, we have used visual feedback for manipulating images and have
formulated a method for lowering the probe onto the wafer. All these methods are verified
using data collected from the experimental set-up. During the course of this work, we
developed an image processing package to facilitate the development of the various
algorithms. This package was developed on the SUN 3/60 workstation and was written
using the SUN Windows environment. The Image Processing Package (IPP) comprises
the user interface and a set of functions that can be applied to selected images. The
user interface offers a seta set of buttons which can be used to activate particular vision
algorithms such as smoothing, thresholding, edge detection using the Roberts, Sobel and
Laplacian operators, the Hough transform, and histogram generation. Examples of the
menus are shown in Figures 2.4 and 2.5. The IPP also has the ability to select and
display upto 8 raster files. Each of the displayed images can be individually zoomed
infout. Also additional buttons can be attached to the unallocated buttons to increase the
functionality of the package (Figure 2.4). The procedure for including the user defined
functions is given in [28].

In addition to the processing of images, we have added a feature, to convert ASCII
files to raster format and vice-versa. The reason for this is that the uploaded data from
the camera is available in ASCII format, but, SUN workstations support only the raster
file structure. Also, the raster files are an efficient method for storage and retrieval. This

general purpose package can be easily exported to other Sun Workstations such as the
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SUN4 (Sparc) Workstation and has been found to be very useful in the development and

applications of image processing algorithms.

2.8 Conclusions

Several manufacturers offer computer-aided parameter testing, inspection and wafer
handling equipment. But not much automation has been done so far in the context
of wafer probing. However, safe and reliable probing is an important operation in
wafer testing. Mechanical probing is the most popular one among the different probing
techniques available. It is reliable and useful for testing several parameters of the wafer.
We have designed an experimental set-up. This incorporates a Wentworth Test Station
with a modified optical arrangement. Our set-up uses vision feedback and complex image
processing algorithms. With our experimental set-up, we are able to capture images and
at the same time observe the wafer through the viewing port in the microscope. We
have also developed a user-friendly image processing package. However, at present
our image capturing, storage, and processing is slow and not suitable for real-time
applications. Due to budget constraints we developed a custom-made frame grabber for
image acquisition. The use of high-speed frame grabbers with built-in hardware functions
for image processing environments would alleviate this difficulty. In the ncar future, it
is intended to use a Homogeneous Multiprocessor for real-time operation. Speeding up

processing time using this multiprocessor is explained in Chapter 6.
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Chapter 3
Low Level Vision Algorithms
for the Experimental Set-up

3.1 Introduction

The imaging process compresses much useful physical information into the gray
level array. This array represents intensity values in the image. The initial task in un-
derstanding this data is to format it in a form suitable for display and manipulation. The
way this is done depends on the various equipment used for processing the data. We
introduced the details of formatting and displaying the image data in Chapter 2. There
are three levels of processing in a computer vision system [23]; low-level processing,
intermediate-level processing and high-level processing. Low-level processing is con-
cerned with neighborhood operations and extraction of features using the intensity values
of the image. This kind of processing is generally done at the front end of the com-
puter vision system. In intermediate-level processing, an image is analyzed for three
dimensional information (depth from focus, in our application). High-level processing is
concerned with the symbolic interpretation of an image and the coordination of various

low level modules.

We have used two levels of processing, low and intermediate levels in our appli-
cation. In Chapters 4 and 5, we describe a method for detecting the depth of objects
in an image. This method is used in measuring the distance of a probe from the wafer.
In this chapter, we describe the low-level vision algorithms used in our system. These
algorithms include image formatting, elimination of noise, segmentation of the image
into regions, edge detection, and alignment of the probe and wafer. All these algorithms

are described in Section 3.2.



During our experimentation we also noticed specific discrepancies in some exper-
imental data. We found these to be mainly due to the arrangement of our set-up. To
explain and resolve these discrepancies, we have developed some solutions using our
practical experience. These are explained in Section 3.3. However, the main objective
of this work is to guide the probe to its target pad. In this operation, the first task is to
bring the image of the pad to the center of the scene. Wafer orientation is required for
this purpose. We use the edge-man of the metal layer of the die and detect the orientation
of the die using the Hough transform [29], which is described in the Section 3.2.4.

3.1.1 Existing Methods for Low-Level Vision

In this section we review the existing methods for low level image processing.
We concentrate on operations such as smoothing and edge detection. These are well
established techniques and are provided in many commercial vision systems. Since
the performance of a computer vision system depends directly or indirectly on these
operations, there has been a lot of research interest in improving the performance of the

existing techniques.

The Smoothing operation is generally used either for filtering noise or as a pre-
processing operation for edge detection. Some of the popular image smoothing techniques
are [30]: i) Neighborhood averaging, ii) Gaussian smoothing, and iii) Lowpass filtering.
All these techniques produce a blurring effect in the image. Neighborhood averaging
is a spatial-domain technique for image smoothing. In this technique, each pixel is
replaced by the average of the intensity values of the neighborhood. The degree of
blurring produced by this method is proportional to the size of the neighborhood. Another
technique is Gaussian smoothing, where the image is convolved with a Gaussian function
with a space constant . This Gaussian function blurs the image effectively, wiping out

all structures (image features) at scales much smaller than the space constant o of the
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Gaussian. This kind of smoothing is used as a first step for edge detection by the Marr
and Hildreth edge operator [31]. The Gaussian distribution has the distinct characteristic
of being smooth and localized in both the spatial and frequency domains and of being the
unique distribution that is optimally localized in both domains. If the blurring is smooth
in both the spatial and the frequency domains, then it is least likely to introduce any

features that were not present in the original image [31].

Another common approach for smoothing is lowpass filtering. This is an established
technique used for filtering noise in the image data. Sharp transitions (such as noise) in
the gray levels of an image contribute heavily to the high-frequency content of its Fourier
transform. It follows, therefore, that blurring can be achieved via the frequency domain
by attenuating a specified range of high-frequency components in the Fourier transform of
a given image [30]. Several lowpass digital filters are described in the signal processing
literature where there are examples of Butterworth, exponential and trapezoidal filters
[32]. Since we need to compute the Fourier and inverse Fourier transforms, these filters
are computationally very expensive. Of all the above described methods, neighborhood
averaging is simple and computationally inexpensive. Gaussian smoothing is used for
detecting edges on different scales (for different sizes of image features). Lowpass

filtlering is used for removing various types of noise, where other methods are ineffective.

Another low level operation is edge detection. An edge in an image may be defined
as a discontinuity or abrupt change in the gray levels. In general, images may contain a
variety of edge sizes, some short and others long. Also, these edge segments may occur
at any orientation. An efficient edge-detection procedure would necessarily be able to
distinguish contrast at different angles [26]. Mask operators are the most popular ones
for edge detection. The first significant operator was due to Roberts [26] who employed

a simple 2x2 mask, a first-order difference operator, to enhance the edges of solids. The

31



Roberts operator detects both horizontal and vertical edges but is sensitive to noise and
object surface irregularities. The Sobel operator, a second-order difference operator, [26]
was designed to approximate the discrete gradient function in a selected orientation. This
means, different masks are used on each pixel of the image for different orientations.
Generally, the operator producing the maximum response represents the orientation of
the edge. The Sobel operator is used in industrial inspection and is explained in [26]. A

parallel implementation of this operator is explained in Chapter 6.

Instead of taking a set of directional masks as done by Roberts and Sobel, it is
also possible to employ a scalar, isotropic (omni-directional) edge detector. A second-
derivative operator, the Laplacian [26], is one of these. We have used this operator as
described in Section 3.2.3. The Laplacian is a rotationally-symmetric operator which is
useful because it treats image features in the same way, irrespective of their orientation
[33]. A new theory of edge detection, based on finding the zero-crossings of the
output of an even-derivative operator applied to the image, is described by Marr and
Hildreth [31]. They applied the Laplacian operator after Gaussian smoothing to produce
a rotationally symmetric edge operator. This edge-finding method is very popular and
well experimented. Several researchers have used this operator for various applications

and this is still an active area of research.

All the above described operators are either first-derivative or second-derivative and
it is well known that derivatives emphasize high frequency noise. In fact the higher the
order of the derivative, the more pronounced is the presence of high frequency noise [34].
Also, the noise-characteristic of an operator depends on its size. The larger the operator,
the more it averages out random noise. However, it is also more likely to overlap several
edges or corners simultaneously and thus degrade its resolution capability. So one has

to be careful in selecting the proper edge detector since the edge-information is going to
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influence further analysis (e.g. object recognition, depth determination) of the image.

3.1.2 The Hough Transform

The Hough transform [29], as suggested originally, is a method for detecting
straight-line segments in an input image. This concept is extended to include circles
and ellipses [35]. Recently, the Hough transform has been used for the estimation of

scale, rotation, and translation of an input image with respect to a reference image [36].

In this transform, we apply a coordinate transformation such that all points belong-
ing to a given line in the edge-map are mapped to a single location in the transformed
space [26]. To illustrate the approach, let us consider an image plane f{x,y) as shown
in Figure 3.1. Given a point (x',y') on a line AB, an infinite number of lines can be
drawn to pass through it. Let us suppose that a line KK' is passing through that point.
It can be parametrized by two parameters p and 8, where p is the normal distance of the
straight line from the origin and 4 is the angle of the normal to line KK’ passes through
the origin. Thus any point (x',y’) on line AB in f{x,y) is mapped to a sinusoidal curve
in Hough space H(6,p) given by

p = z'cosd + y'sinb (3.1.1)

This sinusoidal curve gives the p and 6 parameters of all the straight lines passing through
the point (x',y’). If we perform the identical transformation for all the points on the line
AB in the image plane f{x,y), then each point maps to a different sinusoidal curve given
by the above equation. This is shown in Figure 3.2. All these curves intersect at a point
(#,p') in the Hough space and this point defines the p and  parameters for the straight

line AB as shown in Figure 3.2.

We now consider a discretized space (,p), forming an array of discrete (8,p) pairs.

As the transform for a given value (x,y) of each image point is plotted in (6,p) space, each
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Figure 3.1 Parametrization of the line KK’ in the image plane f{x,y). Points on the

line AB are mapped to sinusoidal curves in the Hough transform plane (Figure 3.2).

34



(x’, ")

Figure 3.2 The Hough transform space representation of four points on the line AB

shown in Figure 3.1. (¢',p') gives the parameters of the line through the points [26].
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array element is incremented whenever a sinusoidal curve passes through it. Thus, several
(8,p) points are “voted” for each point (x,y) forming an accumulated array H(f,p). After
all the points in the f{x,y) plane have been transformed, the array elements (H(6,p)) with
high counts are determined by thresholding. These elements represent the straight lines
in the image plane. In our application, the array elements having high counts are used

for calculating the orientation of the wafer. The results are described in Section 3.2.4.

3.2 Generic Low Level Vision Algorithms used in our System

In this section we describe low level vision algorithms which are frequently used in
our system. These algorithms are: smoothing the raw image from the camera, identifying
various regions in a scene, generating an edge-map and determining the wafer orientation
using such an edge map. These algorithms form a stepping stone for estimation of the
[roximity of the probe to the wafer (Chapter 4), and detection of contact of the probe
with the wafer (Chapter 5). Furthermore, parallel implementations of these algorithms

are discussed in Chapter 6.

3.2.1 Smoothing

Smoothing is the first preprocessing step applied to the raw image of the camera.
In our experimental set-up, the camera is mounted on top of the microscope head and
along the optical axis of the light source. Therefore, the viewing angle is the same as
the incident angle of the illumination. Due to the bright through-the-lens illumination of
the VLSI metal patterns, the image consists of artifacts and spurious effects. In order to
smooth these effects and also to reduce the overall noise level, it is required to smooth
the gray level variation of the image. Our primary purpose of smoothing the image is to
obtain three distinct regions (probe, metal and diffusion layer) from the histogram of the
gray levels and then accomplish separation of the regions of the image. We accomplish

smoothing by simple neighborhood averaging. This can be described as follows. Given
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an NxN image, f(x,y), the smoothed image, g(x.y), is obtained by averaging the gray level
values of the pixels of the original image contained in a predetermined neighborhood
S(x,y) of a pixel (x,y)

Y flnm) (3.2.1)

n,meS(z,y)

g(:c,y =

EIH

where M is the total number of points in the set S(x,y). We have used a 3x3 neighborhood
in this work.

The image from the camera is shown in Figure 3.3. The histograms of the raw and
smoothed images are shown in Figures 3.4 and 3.5. The histogram for the smoothed image
consistently shows three distinct regions corresponding to metal, probe and background.
The task of separating different regions is accomplished by thresholding the image using
the gray values which identify the three regions in the histogram. The procedure for
thresholding is explained next.

3.2.2 Identification of Probes, Pads, and VLSI patterns

In our application, the images generally consist of regions containing highly regular
geometrical patterns which correspond to the VLSI component geometry, as well as
triangular and much darker regions which correspond primarily to the probe. The metal
and diffusion layers appear gray, the darkest being in the region corresponding to the
probe.

The averaging process described in the previous section tends to smooth out the
image histogram which now exhibits three easily discernible regions corresponding to
the probe, background and metal. Thresholding is then used to segment the patterns
of interest corresponding to these regions. The procedure for thresholding is explained

as follows. Let us consider Figure 3.5 with different peaks in intensity at I, I, I,
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Figure 3.3 Image of the probe touching the pad.
corresponding to the probe, background, and metal layer. These values correspond to
the lamp setting and can be determined from the histogram of the smoothed image*.
Therefore, if we know Iy, where 6 denotes the region of interest, we can convert any
image I(x,y) to an equivalent binary image, such that,
B(z,y)=1 forI(z,y)<1Ip
B(z,y) =0 forI(z,y}>1Iy (3.22)

where B(x,y) represents the thresholded image of the region with intensity value 7,

In our research, we are primarily interested in the metal layer, since this is the most
visible one and also since both the test pads and /O (input/output) pads are implemented
in this layer. Also, the processing steps outlined above rely heavily on the fact that the

images obtained correspond to essentially two-dimensional-objects of high reflexivity.

*  For example, sample parameters for Figure 3.5 are: /=15, /,=30 and /,=45.
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No. of Pixels

Gray Level

Figure 3.4 Histogram of Figure 3.3.

The only “‘dark’’ region corresponds to the probe (which is out of focus and of lower
refractive index). Simple thresholding therefore seems to be adequate in distinguishing

patterns of interest.

3.2.3 Edge Detection using Zero-crossings

After separating the different regions using thresholding, we can find the boundaries
of each region by edge detection. The Laplacian operator is used as an edge detector.

The Laplacian operator we have used is as follows:

-1 -1 -1

(3.2.3)
-1 8 -1
-1 -1 -1
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By convolving the thresholded image with the above operator, we obtain second
derivatives of large magnitudes around the edges. These values are positive and negative
corresponding to the intensity variations. A neighborhood of 3x3 is considered in the
convolved image and a pixel is considered a zero-crossing, whenever there is a change
of sign in the convolved image. The sst of such zero-crossings represents the boundaries
(edge-map) of each region. Figures 3.6 and 3.7 show the zero-crossings for the probe

and the metal layer in Figure 3.3.
3.2.4 Calculation of Wafer Orientation using the Hough Transform

Wafer orientation information is useful in aligning the probe with the pad and for
further recognition of the elements of the die. The edge-map of the metal layer is obtained
using the procedure described in Section 3.2.3. The Hough transform of such an edge-

map is calculated. As shown in Figure 3.8, the patterning on the ICs is accomplished

Background
2
[2]
x
&
G
e
e
r4
1 Probe Metal
0 63
Gray Level

Figure 3.5 Histogram of Figure 3.3 after smoothing.
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Figure 3.6 Segmentation of Probe in Figure 3.3.
by using ‘‘Manhattan distances’’. Hence the prevailing patterns in the edge-map are
collections of short vertical and horizontal line segments. Therefore, in the Hough space
(a plot of 6 versus p as described in Section 3.1.2) two peaks at a distance of 90° are
observed. These peaks can be seen in Figure 3.8 and correspond precisely to the groups
of vertical and horizontal line segments in Figure 3.7. The value of § corresponding to the
peaks in this figure represents the orientation of the wafer with reference to cross-wires

in the camera (an example of 62° in this figure).

3.3 Special Purpose Algorithms used in our System

The requirement to build a computer vision system in an unstructured environment
is not uncommon. Our application is one such example. Some components in our
experimental set-up cannot be changed easily, e.g. the optical arrangement of the

microscope. We encountered some difficulties due to reflections from the wafer and
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viewing collinearly with the illumination. We observed periodic noise while using a
small aperture light source with high lens magnification. Sometimes, we also observed
misalignment of images as the probe approached the wafer, due to the vibration of
the wafer chuck. Since these effects occur only on certain occasions, and we can not
easily change the set-up, we have developed procedures to counteract them. These are

explained in the following sections.

3.3.1 Elimination of Periodic Noise

We found that some raw images taken from the camera contained periodic noise.
This can be seen in Figure 3.9. We observed this using some combinations of the
parameters of the apparatus, e.g. high numerical aperture of the lens, small aperture of

the light source, and also certain optical filters at the light source. Since we need to use

Figure 3.7 Edge mup of metal region in Figure 3.3.
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these components in a probing operation, we have developed a technique for eliminating
this periodic noise. This noise is in the form of parallel lines in the image. This is shown
in Figure 3.9. Since the noise is periodic, the frequency components of the noise will be
harmonic. Hence, in order to isolate this noise, it is convenient to study the frequency
components of the image data. Therefore, an FFT of the image is taken. This shows that
frequency components of the parallel lines lie on the vertical axis [37]. Aninverse FFT is
taken after masking these frequency components. Figures 3.9 and 3.10 show the original
and filtered images. This method of eliminating noise is computationally very expensive
and is not useful in real-time operation. However, this method was used to create a library

of “clean images” for use in studying the algorithms described in Chapters 4 and 5.

0 180

Figure 3.8 Hough picture of Figure 3.7.
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Figure 3.9 Raw image from the camera.

Figure 3.10 Image after filtering periodic noise,
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3.3.2 Alignment of Images

In our experimental set-up, the wafer remains stationary, while the probe is
approaching it. We capture the images of the focused wafer at different instants until
the probe touches the wafer. In this operation, only the z-drive of the probe is used for
lowering the probe. However, a small displacement of the wafer (equal to a fraction of a
micron) with respect to its initial position (x,y), is observed. This results in misalignment
of consecutive images of a given section of the wafer, This is due to vibration of the wafer
chuck, probe platform, etc. In this section, we describe an algorithm for the alignment
of the images of the wafer captured at different instants. For instance, the images are
captured at different instants of the probe movement, starting at time #y, when the image
Iy represents the pad, and ending at time t,, when the image /, represents the contact
of the probe with the pad. A sequence of these images is shown in Figure 3.11. We
notice misalignment in these images by close obszrvation. Since we use the intermediate
images for estimating the proximity of the probe to the pad, the preliminary task is to
align these images, i.e. to calculate the shift of the image I; with respect to /y.

The shift described in the above paragraph is calculated using the algorithm given
in Appendix D. A brief description of this algorithm is given below. Each pixel in the
image [; at time 1; is considered to be shifted by a few rows and columns away from
the original position of the image [y at time tp. Certain parts of these images, namely
windows W; and Wy of images /; and Iy (e.g. top left quarter of the image) are selected
for calculation of this shift. Subsequently a search is made to determine the number of
rows and columns shifted by sliding the window W; on /. In other words, an error value

E(zy)= Y I Ki+e,j+3)— L) | (3.3.1)
1,7€W,

is calculated for all the values of x and y (maximum of 416 rows and columns), where

x and y represent the row and column index for the slide. When E(xy) is minimum,

45



'o’! hm.ru: 12:Image of dn.ru - ’x: of datal res

4
i . N

Figure 3.11 A sequence of displaced images while the probe is approaching the pad.
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the corresponding index values of this slide, the row_shift and column_shift are noted.
These values represent the row and column shift of the image I; with respect to image
Ip. Finally, all the rows and columns of the image /; are shifted by an amount equal to

row_shift and column_shift.

The parameters for the length and breadth of this search are set as search_length,

and search_breadth. The location of the window W; is set by the parameter search_origin.

3.3.3 Elimination of Traces of the Background

All the images described so far contain the metal layer of the wafer and the image
of the probe. We separate the pixels corresponding to the probe and use these pixel
values in determining the proximity of the probe to the wafer. The method used for
estimating proximity using these pixels is described in Chapter 5. For separating the
probe pixels from the background, we use the thresholding technique described in Section
3.2.2. However, if there is a misalignment between the background and the probe, we
cannot completely separate the probe pixels using this thresholding technique. Although
we use the alignment procedure described in the previous section, the image of the probe
sometimes contains traces of the background patterns. This is shown in Figure 3.12. We
have developed an algorithm (given in Appendix E) to eliminate such traces. In this
algorithm, the probe is considered as a gray continuum, so all the isolated pixels are
considered as traces of the background. This process helps in providing a clean probe
image for further processing. More specifically, number of pixels in the neighborhood
(16 x 16) of each pixel are counted. If more than 40% (empirical) of the neighborhood
(i.e. 0.4 x 256 =102 pixels) is present , then this pixel is considered as a part of the
probe. Otherwise, it is considered as the background trace and deleted from the image.
The size of the neighborhood is set by experimental observations. By choosing a large

value for the size of the neighborhood, even dense background traces can be eliminated.
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The above procedure was applied to the image in Figure 3.12. and the result is shown
in Figure 3.13. The last two algorithms described in this section were used in sequence

and found to be very useful in rectifying misaligned images.

3.4 Conclusions

There are broadly two kinds of processing in our computer vision system. The first
involves cleaning of the image and preparing the data for further processing. The second
uses the data from the first and interprets 3—dimensional information in the image under
consideration. This includes feature detection, object recognition and image analysis.
In our application, this stage contains depth perception and detection of touch. For
successful completion of a given task, each stage of processing is equally important. In
this chapter, we have considered the first stage of processing, i.e., low level processing.
We first described the generic low level algorithms used in our system. For obtaining
edge-maps from high contrast images the following sequence of operations is widely
used: smoothing, thresholding, and the Laplacian mask operation. The histogram of
the smoothed image (Figure 3.5) contains three peaks which correspond to the three
regions in the image. Hence, the thresholding operation works very well on smoothed
images. This is because the images of VLSI wafers including the probe have very high
contrast. The Laplacian works well after thresholding because we get a step edge by
thresholding. It was found that a window size of 3x3 produced satisfactory results for
edge detection. Such an edge-map of Figure 3.3 is shown in Figure 3.7. A small size
window is acceptable because the image being thresholded has sharp edges.

Although the data in our application can be easily separated into different regions,
we face several other problems due to physical constraints in our experimental set-up. We
have unconstrained illumination, high intensity of light, specularity due to the metal layer,

noise due to multiple layers of the VLSI patterns, shadow cast by the probe, vibration
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Figure 3.12 Images of the probe containing traces of the background patterns.

49



3 Imege of fiqed ras ras  J Image of f£16%4 ras re% 1 Imege of 1934 ras

d &

3 Image of fi1a<d 1a% 14t I mege of f19dd raz tas 1 Image of fig74 ras ras

4 4 4

Figure 3.13 Images of the probe after eliminating

|

traces of the background in Figure 3.12.
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of the wafer chuck, etc. In addition, we have image resolution of only 6 bits per pixel.
We used some special purpose algorithms to overcome the above mentioned difficulties.
Elimination of periodic noise was discussed in Section 3.3.1. This noise is intermittent
and is due to the different components of our optical set-up. We used an FFT technique
to obtain up a “clean image”. For a production environment, a special study of the image
acquisition and optical equipment must be performed to ensure that the equipment used
does not give rise to periodic noise. We have also encountered some problems due to
vibration of the equipment. This results in misregistration of the images. Presently we
have no means to provide a vibration free environment. Hence, we have used algorithms

based on heuristics to resolve this difficulties.
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Chapter 4
Estimation of Proximity
using Blurring around Edges

4.1 Introduction

Computer vision provides important sensory information in many robotic tasks.
Measurement of depth of an object in a scene is very useful information for the success
of these tasks. This measurement is required for obstacle avoidance and navigation, pose
determination, inspection, manipulation, and assembly of objects [38]. The methods for
distance measurement can be categorized into two subclasses. The first is monocular,
relying on a single-viewpoint. The second is nonmonocular requiring two or more images
from cameras displaced laterally along a defined basecline. The depth of an object is
calculated by measuring the displacement of image features in these images. In our
application, automatic wafer probing, we have used the monocular method for obtaining
the depth information. The description of this method and the experimental results are

described in this chapter.

Guidance of the probe to its target pad is an important operation in the automation
of wafer probing. In order to achieve closed-loop control of the probe, the position of the
probe relative to its target must be established. This includes the proximity of the probe
to the wafer which is determined from the depth of the object. Hence, the measurement
of the depth of the probe is a vital task in this automation. As described in Chapter 2, in
our experimental set-up, we only have a single view of the probe along the optical axis
of the light source. Hence, we have to measure distance using only the available data,
i.e. the pixel value of the image of the probe. We have used two modes of measurement.

The first mode is applied when the probe is far from the wafer. In this case, the pixel



values are corrupted by the bright light of the through-the-lens microscope (Figure 4.1).
Hence, we cannot use the absolute values of the probe pixels for measurement. We have
devised a method for measuring the distance using the degree of sharpness of the edges
in the image. In our application, the scene comprises of the probe on a background of
pads in the VLSI wafer. We have chosen the edges of the probe for the measurement of
sharpness. A parameter related to sharpness is the blur around an edge. The amount of
blur in a defocused object is inversely proportional to the sharpness of the object. We
have developed a method of measuring the blur in the image and which, we then relate
to the distance from the probe to the wafer.

The second mode of measurement is used when the probe is close, but not touching
the wafer. In this case, we use the variance of intensity values to detect the touch of the
probe to the wafer. This technique is described in Chapter 5.

As the probe approaches the wafer, images are captured at various instants and
the two methods are applied for every probing operation. In this chapter, we discuss
the first method for estimating the distance. In the following sections we describe the
measurement of the degree of blur of the edges and relate this to the distance of the
object. In Section 4.2, the previous work done in perception of depth using a single view
is reviewed. A theoretical relation for estimation of blur near the edges is derived in
Section 4.3. In Section 4.4, an algorithm for implementation of this relation is described.
Finally, the algorithm is applied to a synthetic image and to experimental data, and the

results are described in Sections 4.5 and 4.6 respectively.

4.2 Measurement of Depth using Blurring

Measurement of depth from focusing/defocusing has been studied by several

rescarchers [39]—{46]. Initial work concentrated on automatic focusing algorithms.
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Figure 4.1 Figure showing the probe approaching the pad in the experimental set-up.
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Hausler and Komer [46] used the following focus function for finding the extrema of

intensity.

N

R(z)=)_

n=0

0l (z,z)

P 4.2.1)

where n is the number of pixels considered, I(x,z) is the intensity function with position
x and depth 2. They expected R(z) to have only one lowest extremum at the best focus.
At this extremum the derivative of the image intensity is zero. This method may be
useful for automatic focusing, but in our application since we analyze the grey values
of the pixels on one side of the focus plane (i.e. when z is positive or negative), we
cannot use this technique. Moreover it is also our intention to estimate the proximity

of the probe to the wafer.

A recent approach to depth perception is to measure the degree of blur in the image.
To our knowledge, three researchers, Grossmann [47], Pentland [40], and Subbarao
{44] have used edge information in measurement of depth of objects. A method of
obtaining depth profiles from sharpness of the edges was first used by Grossmann. The
author described this method using experimental data. Initially, the first derivative of
the intensity profile perpendicular to the edge direction is computed. The derivative
function is bell shaped with a peak at the location of the edge. The width (W) of this
distribution peak is evaluated. Grossmann also suggested a linear relationship between
‘W’ and the distance ‘d’ from the focused plane. The constant of proportionality was
determined through calibration of experimental data. However, Grossmann concluded
that this method is ill-defined and sensitive to noise. No further improvements on this

method have been reported so far.
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Pentland [40] used the second derivative of the intensity profile for calculating the
blur in an image. The blurred image of a point object is considered as the point spread
function of the optical system. This function is usually modeled by a two-dimensional
Gaussian G(r,c) with a spatial constant o and radial distance r [40]. The value of o
in this model is the radius of the imaged point’s “blur circle” or the blur parameter. A
direct relation exists between the value of ¢ and the distance of the imaged point. This

is given by the following expression [40].

Fvg

D=vo—F—a_f

(4.2.2)

where vp is the distance between the lens and the image plane (i.e. the sensor location in
the camera), f is the f-number of the lens system, F is the focal length of the lens system,
and o is the spatial constant of the point spread function. So, the spread parameter o
of the "aussian distribution is inversely proportional to the depth D of the object in the
scene. It is then possible to determine the distance of an object from the camera by

estimating the value of o.

Pentland [40] used the Laplacian operator of the intensity profiles near the edges
for the calculation of 0. He derived the following expression for the calculation of the

spread parameter o of the Gaussian distribution as a linear regression of x2.

B 2 C(z,y)
In\/éw_;;- - 202 =In l'—“—;-—“ (423)

where x is the variable perpendicular to the edge and § is the step height of the edge.

By estimating the value of o Pentland determined the distance of the image point. In
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this approach the Laplacian C(x,y), around each edge is calculated. The value of § is

taken to be constant.

Subbarao [44] considered the first derivative of the intensity profiles perpendicular

to each edge and calculated the distance of the object using the formula
(4.2.4)

where £ is the camera constant, f is the focal length of the lens, D is the diameter of the
lens, 5 is the distance from the lens to the image detector plane, u is the distance of the
object from the lens and ¢ is the spread parameter (or blur parameter) of the line spread
function. Subbarao computed the first derivative g, along the intensity gradient by taking
the difference of gray values of adjacent pixels (perpendicular to the edge direction). A

line spread function 6(i) is computed using the following equation:

0(i) = L 4.2.5)

where gy is the first derivate of the intensity function near the edge and N is the number
of pixels considered. The spread o of the line spread function is computed using the

expression for the standard deviation of the line spread function.

N 1/2
o=% Y (i- Z)"’o(i)} (4.2.6)

1=0

where 1 is the edge location. Although the height of the edge is considered in this
approach, the first derivative in a noisy environment results in erroneous depth values.
The two methods described above attempt to estimate the spread o of the point
spread function which is modeled as a Gaussian distribution. They assume that the two
surfaces separated by the edge are homogeneous and smooth. We found it difficult to

use the above methods in our application as we have a mix of blurred and focussed
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regions. Also the object of interest (i.e. the probe) is at an angle to the optical axis,
and therefore the focus varies along its edges. This can be observed in Figures 4.2 and
4.3. In addition, in our environment, we do not have smoothed regions or edges for
estimation of proximity. The task is made even more difficult by the fact that we have to
work with unconstrained illumination, background and hidden surfaces. We have derived
a workable solution to this problem by dividing the region around an edge into three
sections. The first and third sections belong to the background and the blurred object
respectively while the second one belongs to the edge itself. We analyze these three parts
of the edge separately and calculate the spread o of the point spread function contributing
to the blurring of the edge. By doing so, we arrived at a robust procedure for estimating
o and hence the distance from the tip of the probe to the focal plane i.e., the target pad.
We have applied our algorithm to images of different backgrounds such as those shown
in Figures 4.2 and 4.3. The following secti . describe the theoretical background to our

approach, the details of the algorithm, and the results obtained in our application.

4.3 Theoretical Development

We consider a step edge f(x) with magnitude 4, i.c.

F(2)={i4s i £SO (4.3.1)

The line spread function of the camera with the lens system is modeled as a Gaussian

distribution

€77 (4.3.2)
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Figure 4.2 Images of the probe while approaching a uniform background.
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Figure 4.3 Images of the probe while approaching an Input/Qutput pad.
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The step edge is convolved with the line spread function and yields a blurred edge.

The blurred edge is represented by the following convolution function A(x,c).

h(z,0) = / F©)g(z -6 a)de 433)
00— 00
=k_£ g(x—e,a)de+0/(k+6)g(z—e,o)de (43.4)
=k glz—€,0)dE+6 | g(z—¢€,0)dE (4.3.5)
I /

Taking the first term on the right hand side

k /g(r—s,a)de=—k/g(x—e,a)d(z—e)
IR s (4.3.6)
= -k g(r,o)dr

where we have changed the variable of integration to 7=x-£. Then (4.3.5) can be written

as
h(r,a):k/g(r,a)dr+5/g(r,a)dr 4.3.7
Since
/ g(r0)dr=1 (4.3.8)
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and
0

/ g(r,0)dr=1/2 (4.3.9)

-—00

Equation (4.3.7) can be written as

F 1
h(m,a)=k+g+6/g(r,a)dr (4.3.10)
0
h(za)—k+§-+6/z 1.5 @3.11)
T 2 ) oV2r o

The integral on the right hand side can also be expressed as an error function*. However,

by differentiating the above equation with respect to x, we get

Oh(z,0) ) (4.3.12)
a |z=0 =
z

oV 2r

The function h(x,0) can be represented using piece-wise linear segments.

( k for z € (—o0o0 .. py)

Ji(z,0) for z€[p;.. p2)

J2(z,0)  forz€lp2 .)

h(z,0)={ (4.3.13)
ap+aiz  for 2 € [p;-1 .. prt1)

Je41(2,0) for T € [prt1 . pey2 )

L k+6 for € p3.. Px)

T _2
*  An eror function is defined as k= [ eTdt
0
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where J(x,0), J2(x,0) and J,,(x,0) are piece-wise linear functions. Here p; is the point
of zero crossing. In order to calculate ¢ (using (4.3.12)), we must calculate the derivative
of the blurred edge at its zero crossing and also the height of the step edge 6. This is
shown in Figures 4.4 and 4.5. In our case, we approximate the blurred edge by a least-
squares fit of the piece-wise linear segments. Then, we differentiate this function with
respect to x and evaluate the result at x=0 i.e., at the point p; in Figure 4.4.

Oh(z

L)y =a (43.14)

From equation (4.3.12), we obtain an expression for o as

o= alf/ﬂ (4.3.15)
We can also estimate § from (4.3.13) as
0 = h(+00) — h(—00) (4.3.16)
where
h(£oo) =lim;— 300 h(z,0) (4.3.17)

The standard deviation ¢ (which from now onwards we shall call “‘the blur
parameter’’) of the Gaussian distribution allows us to determine the distance of the
object using equation (4.2.2) or (4.2.4). We have used the following algorithm to obtain

different parameters in (4.3.15).
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4.4 Algorithm

In this section we describe the different steps in evaluating (4.3.15). These
processing steps include the following: i) Obtaining an edge-map of the probe, ii) Using
this estimate to find the actual zero-crossing and hence the ‘‘blur parameter” o along each
edge, and iii) Correlating & with the measured distance of the probe from the surface of

the pad. A detailed description of the algorithm is given in the following sections.

4.4.1 Generation of an Edge Map of the Probe

For analyzing the neighborhood of a blurred edge we need to determine the location
of the edge. The procedure for obtaining the edge-map of the probe is described here.
The image of the VLSI wafer consists of pads, probes and layout patterns. Due to bright
through-the-lens illumination and different reflection characteristics of the materials of the
wafer (e.g. substrate, metal and poly-silicon) the image is corrupted by a considerable
amount of noise. Hence, for the extraction of edges, we smooth the image using a
neighborhood of 3x3 pixels (the procedure for smoothing is described in Section 3.2.1).
The probe, pad and background have distinct grey levels; we use these levels as threshold
values for creating their images (the procedure for thresholding is described in Section
3.2.2). The edge-map of the probe is generated from the zero-crossings of the Laplacian
of the probe-image (the procedure for edge detection is explained in Section 3.2.3). Such

an edge-map is shown in Figures 4.2 and 4.3.

4.4.2 In*erpolation of the Edge Map

’ +~ presence of noise, the edge-map obtained in the previous section is
not continuc.. ., but contains gaps within the neighboring edges. These gaps are *‘filled
in’’ with linear segments as follows: If (x;, y;), and (x, y2) are the end points of two

adjacent regions, then the new point (Xav,Ynew) at a distance d from (xy,y;) is calculated
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using the following equation,

dz 1/2

Tnew = Int [:2:1 + [1 +'m2] ] 4.4.1)
1/2

Ynew = Int [yl + [1 f?—l-;] ] (4.4.2)

where m is the slope of the line joining (x1,y1), (x2.y2). The operator ‘inr’ produces a

rounded value of the right hand side of the above formula.
4.4.3 Chaining of Edges

The probe is a conical object and the projection of this on the image plane has a
triangular shape. We can observe this in Figures 4.2 and 4.3. The edges in the image
plane represent the boundaries of the conical surface of the probe. Also, the probe is at
an angle to the optical axis of the microscope. The end point of the tip is considered
as the first element of the edge-map. The next element of the edge-map is located by
searching the neighborhood and then linking to the first one. This chaining is continued
upto the mount of the probe, i.e. until the farthest end is reached. This procedure results

in a linked list of the edges starting from the tip to the mount.

4.4.4 Determination of Pixels Perpendicular to Edges

The blurring around each edge in the edge-map is analyzed. More specifically,
we have to analyze the pixels perpendicular to each edge. This section describes the
procedure for determining these pixels.

Each probe pixel in the image plane is the vertical projection of the three dimen-
sional surface of the probe. Also, the grey levels of the pixels depend on the blurring
due to defocusing. So the grey level profile around all the edges is considered for the
calculation of the blur parameter o. As per our assumption in (4.3.1), a profile of the

edge is perpendicular to the edge. This profile is a set of image pixels lying normal to
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the edge under consideration. For each edge at (x,y) with slope m, we calculate a point
(xi,yi) in the direction perpendicular to the edge and at a distance d; from (x,y) using

the following formula:

d? +$2+(y—6)2]l/2]

yi = Int [c:l:
' [1+4)°

(4.4.3)

By varying the distance d; (i=1,2,3....) we find all the points (x;,y;) in the perpendicular
direction. The operator ‘Inf’ in the above mentioned formulas produces the rounded
value of the right hand side. Sixty pixels (i=1,2,3...60) in the perpendicular direction are
considered for each edge. This number is determined experimentally to give a sufficiently
detailed profile for most of the edges in our images. The edges and the region of pixels

in the perpendicular direction are highlighted in Figures 4.2 and 4.3.

4.4.5 Extraction of the Three Regions in an Edge Profile

In this section we describe the procedure for determining the three regions in the
edge profile. The vertical cross-section (profile of the edges) obtained with the above
procedure (previous section) constitutes the blurred edge. The degree of the blur o at
each edge point can be calculated from the slope of the edge at its zero-crossing, and the
height of the edge (see (4.3.15) ). In our application, the height of the edge is the grey
level difference between the two regions, i.e., the body of the probe and the background.
The edge location computed using a Laplacian ( described in Section 4.4.1) may not be
the true zero-crossing of the edge profile. Hence we re-calculate the zero-crossing of
the Laplacian using the following procedure. All the grey levels along the perpendicular
direction are fitted with a polynomial. A zero-crossing of the second order derivative of
this polynomial is taken as the true edge. The shape of the edge profile is shown in Figure

4.4. The point p, denotes the zero-crossing and points p; and p3 denote the two extrema
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of the edge. The points p; and p; for every edge profile are obtained by detecting the
zero-crossings of the third order derivative of the edge profile. All the grey values of the
points with coordinates in the range from the first point on the perpendicular direction
to p; are considered to belong to the body of the probe. The grey levels of points with
coordinates in the range (p;, p3) are considered to belong to the edge. Finally, the grey
levels of points with coordinates from pj3 to the last point on the perpendicular direction
point (60 in our case) are considered to belong to the background. These three sets of

grey levels are used in the next step to calculate the blur parameter o .

4.4.6 Piecewise Plane Fitting Around the Surface of the Edge

To determine the accurate slope of the edge profile (even for noisy profiles) we
have used the neighboring edge profiles. This operation is valid since all the edge profiles
are formed by a single object (probe) and the background. Thus, in order to evaluate
the slope of the zero-crossing for an edge, we obtain the best fit plane for the set of
points lying near the zero-crossing. This plane is represented as gp+ax in (4.3.13). This
is additionally parallel to the edge (refer to Figure 4.4). Similarly, the sets of points
in the range (—o0,p;) and (p3, + oo) are also fitted with two planes and represent the
probe and the background. Their difference yields an estimate of the height of the edge.
In practice, the grey level value of the probe and the background cannot be accurately
evaluated using the above mentioned fitting of two planes. This is because the grey levels
of the probe in the image are corrupted by the high intensity reflection of the background.
Moreover, the true height of the step edge is the grey level difference between the two
ends of the edge profile (4.3.16). Since we have a single object (probe) and a unique
background (metal pad), the grey level difference between these two ends is a constant

for a selected lamp setting. This value was determined experimentally.
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4.5 Application of the Algorithm to a Synthetic Image

The theoretical development of a new technique for depth perception was described
in Section 4.3. Also, an algorithm was suggested in Section 4.4 for implementation of the
formula derived in Section 4.3. Before applying this new technique to real experimental
data, we have validated and evaluated our approach using a synthetic image. A step edge
(shown in Figure 4.4) is generated and convolved with a Gaussian function of known o
(as given in Section 4.3). The blurred edge (for various values of o) is shown in Figure
4.6. The blur parameter o for these images is calculated using the algorithms described in
Section 4.4. The results are given in Table 4.1. The two columns in this table represent
the theoretical and experimentally determined values of .

We have used six bits per pixel in generating the synthetic edge. This resolution
is chosen since our camera has a resolution of only six bits per pixel. Nevertheless, we
have achieved close agreement between the theoretical and estimated values of o. The
estimated values at lower ranges are affected by quantization. In this method, we are
more interested in estimating the proximity between the prebe and the wafer when the
probe is far from the warer, i.c., at higher ranges of o. Hence, this method can be used

with confidence for this application (see Table 5.1).

4.6 Application of the Algorithm to Images of VLSI Wafers

The real challenge for any new technique is the ability to solve problems in the
real world. In fact, all our efforts are directed towards the successful guidance of the
probe to the target surface on the wafer. In this section we describe the results obtained
by applying of the formula (4.3.15) to experimentaiiy obtained images of the probe. The
algorithm described in Section 4.3 is used to estimate the blur ¢ in the image of the probe.
The algorithm is applied to images containing different backgrounds in VLSI wafers.

In particular two kinds of image are considered; i) Diffusion layer as the background
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Theoretical Estimated
3 427
4 498
5 5.09
6 6.15
7 12
8 198
9 9.034
10 10.09
11 11.05
12 12.074
13 12.94
14 13.66
15 14.67

Table 4.1 Theoretical and estimated values of

o for the synthetic image shown in Figure 4.6.

(described in Section 4.6.1) and ii) I/O metal pad as the background (described in Section
4.6.2). However, in practice, only metallic pads are used for probing the wafer. But,
for validating our technique of calculating o, we have considered various pads in the
integrated circuits available in our laboratory. The deviation in the calculated value of o
for ten sets of experimental data is discussed in Section 4.6.2. Finally, with this value of
o, the actual distance can also be evaluated using (4.2.2) or (4.2.4). For this, we require

the optical constants obtained from the specifications of the microscope and the camera.

4.6.1 Diffusion Layer as Background

Images of uniform background, i.e. images of non -inscribed wafers are considered
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in this section and the value of o is calculated using (4.3.15). A sequence of frames
(images of the probe and background) with known distance is captured. These are shown
in Figure 4.2. We can observe in the figure that the image of the probe is blurred when
the probe is “far” from the wafer. The last frame in Figure 4.2 represents the probe
when it is touching the wafer. In our experimental set-up the probe is at an angle to
the optical axis. Since the microscope is focused on the wafer, the mount of the probe
is more blurred compared to the tip. Although the wafer surface in Figure 4.2 appears
smooth, the grey level surface is rough due to the specular and diffused noise (Figure
4.5). The situation is further aggravated by the blurred image of the probe. Even then,

the results are satisfactory.

The edge profile of the probe is obtained as described in Section 4.4. Consecutive
images are analyzed while the probe is approaching the wafer. For each image, the value
of o at every edge of the probe is calculated. The variation of o along the surface of
the probe (while it is touching the surface) is shown in Figure 4.7. Each point in this
figure represents the value of o for the corresponding edge in the image of the probe.
Least-squares fitting of a straight line through a!l these points is also shown in Figure 4.7.
We can observe from this higure that the probe orientation with respect to the optical axis
can be estimated from the measurement of . This is a useful feature in understanding
orientation using blurring.

The procedure described above, i.e., fitting a straight line along the probe, is
repeated for all the images while the probe is approaching the wafer. The variation
of o for each image (represented by a straight line) of the probe is shown in Figure 4.8.
In this figure, all the lines are staggered and almost parallel to each other. The bottom line
represents the image of the probe while touching the wafer. The top line represents the
image of the probe farthest away from the wafer surface. This confirms our assumption

that the probe is approaching the wafer through movement along the z-axis.
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4.6.2 Metal Pad as Background

The second set of images considered are the I/O pads. A sequence of images was
analyzed as the probe approaches the wafer. These are shown in Figure 4.3. There are
two visible layers in the image of the wafer; metal and substrate. The metal region is
bright and consequently has very high contrast with the probe. The tip is positioned
at the center of the /O pad. As the tip of the probe is very sharp, the loci of the
perpendiculars to the edges consist of different regions in the image. Also, the edge
profiles at the point of contact are corrupted by the high intensity reflections from the
metal surface. Moreover, the surface of the probe near the boundary of the metal pads
does not have a homogeneous background (Figure 4.3). This is not desirable because
irregular edge profiles result in inaccurate o values. Because of the above mentioned
reasons, we have considered the edge profiles over a small region (30 edge profiles) near
the tip and calculated the average value of ¢ for this region. The values of o for various
frames while the probe is approaching the wafer are shown in Figure 4.9.

The final objective for the measurement of o is the controlled guidance of the probe
to the target pad. The degree of confidence in the measurement of o and subsequently
the estimation of distance is an imi)ortant consideration in any new technique, and ours
is no exception. We describe below some experimental results to meet this consideration.
One useful observation in our application is that only metal pads are used as contact
points in any VLSI design. Therefore, we have considered 10 sets of images, where
each set contains images of the probe while approaching different metal pads. For each
image of the probe, the value of ¢ is calculated as described in the previous paragraph.
The mean values of all 10 sets is plotted against the distance and are shown in Figure
4.9. The deviation of o for each distance is also shown. By observing the figure, we
can conclude that for any calculated value of o it is possible to estimate the distance of

the probe and hence the required Z-drive to the probe.
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4.7 Conclusions

We have developed a method to estimate the depth of an object using information
concerning blurring around the edges. The methods suggested by Pentland [40], [41]
and Subbarao [44] use second and first derivatives of the intensity profiles perpendicular
to the edge. Because of the derivative calculations along the entire cross-section, these
methods are sensitive to noise and are not suitable for some uncontrolled environments,
like the application considered in this thesis, where the image is corrupted by noise due
to incorrect illumination, motion etc. In our method, we need to find the slope of the
edge-profile at one point, i.e. at zero-crossing. In order to estimate the slope of an edge,
even in the presence of noise, we fit a plane surface in the neighborhood of the zero-
crossing. The slope of this plane is used in calculating ¢. In contrast to other methods,

the measured slope in our procedure is less susceptible to noise.

In order to confirm our theory, as well as to test it in a real environment, we have
applied it to determine the distance of a probe from the surface of a VLS] wafer. We
have considered 10 sets of images of different VLSI wafers belonging to different batches
in the fabrication process. The parameter which is uniformly varied in all these images
is the blur parameter o . It can be observed from Figures 4.7 and 4.8 that similar values
of o were obtained for different backgrounds. This confirms our theory and shows that
o can be used as a measure in guiding the probe to its destination on the wafer. The
deviation i1 the measurement of o can be reduced by considering a higher number of
grey levels (e.g. 256) than in the present set-up (64 levels). Another concern is in the
measurement of § (the height of the step edge in (4.3.15)). The values of § need to be
calibrated for different settings of the lamp illumination. This will further improve the
measurement. Due to the above mentioned limitations, we use this method for coarse

measurement of distance of the probe from the wafer. Hence, this method is not suitable
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for the detection of touch (when ¢ =0). We shall use another method for this purpose
[48]. This is described in the next chapter

Another interesting observation is that a smoother variation of & is observed for a
uniform background, e.g. a single layer of the background material (Figure 4.2), than for
non-uniform backgrounds, e.g. one having several layers (Figure 4.3). Hence a blurred
object on a uniform background gives a more accurate measure of the distance from
the object to the background. Also, we observe that the slope of the plane near zero-
crossings, for different backgrounds, varies very significantly and agrees with common
experience that a blurred object looks sharper against a high contrast background than
against a low contrast one. This type of information may also be used for identifying
boundaries between different regions. Our human visual system can neither estimate
nor identify the vertical orientation of the probe by viewing along the optical axis (see
Figures 4.2 and 4.3). But it is possible through machine vision to obtain this information
by measuring the blur parameter of the blurred object (Figure 4.8). This interesting result

may be useful in other applications of machine perception.
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Chapter 5
Detection of Touch

5.1 Introduction

One of the problems in the automation of assembling operations using industrial
robots is the detection of satisfactory contact between the object and the end effector.
This contact can be detected using a visual or nonvisual sensor. However, the visual
sensor is ideal since it is a non-contact sensor. Other types of sensors are: touch, tactile
and slip. All nonvisual sensors use force measurement and hence require physical contact
with the object. This mode of sensing is not always possible and sometimes not desirable.
One such application is wafer probing, where the detection of contact between the probe
tip and the wafer surface is a very sensitive operation due to the thickness of the probe
tip (1 micron). Moreover, the thickness of the metalization layer of the wafer is around

0.5 micron. So, implanting any of the above mentioned nonvisual sensors is not possible.

For detecting contact in wafer probing, another solution is the measurement of
leakage current between the probe tip and the die (grounded). But, the leakage current will
be in the order of pico amperes and its measurement is subject to errors due to infringing
capacitances. Alternatively, we can measure the closed circuit resistance between the
probe and the contact area of the die (also grounded). For these measurements, we have
to ground either the die or the contact area of the wafer surface. Also, grounding the
contact surface (in an intermediate die in the wafer) is a difficult and time consuming task.
Hence, measurement of resistance for detecting the contact is not a practical solution and
we have not pursued it any further. Thus, visual information for guiding the probe was

selected as a viable alternative.




In order for the probe to make good contact and not destroy the metalization layer,
the probe’s impact velocity and force must be accurately controlled. Also, the probe has
to make good electrical contact for reliable testing of the wafer [9]. Deformation of the
distance of a probe from the wafer and the detection of touch are important issues in
achieving the above objectives. We have evolved a two stage control strategy for the
guidance of the probe to its target pad. The first stage is a coarse control (by using
distance information) for the movement of the probe which was described in Chapter 4.
In this chapter we describe the second stage which is to be used for fine control of the

movement of the probe and detection of touch.

The approach used for coarse control is as follows: when the probe is near the
wafer, the image consists of the background and the blurred probe. Using information
on blurring around the edges, the algorithm described in Chapter 4 [48] estimates the
parameter o (standard deviation) in the line spread function*. As the probe comes close
to the wafer, the value of the parameter o decreases [48). The measurement of blur using
this procedure is very suitable for coarse control of the probe but is not suitable for small

values of o (e.g. less than 3 pixels, when the probe is about to touch the wafer).

Since we require a robust but very accurate sense of touch, we have devised another
procedure (for fine control of the movement) using the pixel values of the blurred probe.
This is made possible by the fact that when the probe is very close to the wafer, it is
easy to separate the pixels of the probe from the background. We considered two sets of
pixel values, the first containing the probe with the background and the second containing
only the probe. The second set is obtained from the first by subtracting the background.
We study the relation of the variance of the pixel values in each set with the standard

deviation o of the line spread function.

2

*  The line spread function of the optical sysiem is modeled as a Gaussian function, which is 751;;&.'7
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We have also studied the relation of the above mentioned variances (corresponding
to the two sets of data) and the depth of the object in a given scene. We consider
the general scenario where an object is approaching a uniform background. We cbtain
analytical expressions for the mean and variance of the object and study the variation of
these values with respect to the distance of the object from the surface. Initially, we derive
analytical expressions for variance in different sets of data in the image and relate them
to the value of ¢ (Sections 5.2 and 5.3). Next, we prove that the variances corresponding

to the two sets of data in the image are enough for the calculation of o (Section 5.4).

In addition to the variance of pixel values of the probe, we used an experimental
phenomenon for detecting touch. This is explained below. We observed that the probe
“slides” as soon as it touches the surface. The permitted “sliding” has been found
experimentally to be of the order of a few micrens, which corresponds to a difference
in the position of the tip of the probe by about 32 pixels (using a lens 3 magnification
500x). Therefore, the slide of the probe introduces considerable change in the mean and
variance of the pixel values of the probe in the image. This change corresponds to the

moment of contact. The experimental results are described in Section 5.5.

5.2 Variance of Intensity Values of a Blurred Object
with a Focused Background

In a vision system which comprises an optical element with a small numerical
aperture focused on a fixed background, the movement of an object towards or away from
the background gives rise to a change in intensity values of the image. By measuring
this change, it is possible to determine the distance from the object to the background.

A simple method is to calculate the mean and the variance of the intensity values.

In this section, we derive a relationship between the variance of the pixel values

of an object (c/%) and o, the “blur parameter” in the line spread function, To simplify
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the mathematical analysis, a cross-section of an object of a certain width is considered in
Figure 5.1. Also shown in this figure are the background (K), the blur function A;(x), and
the spread of the Gaussian (f) function*. (The area under the Gaussian function (—oo to
+00) is equal to 1. Since we do not have oo points, we choose the limits as large as
possible so tha! the value of the function is close to 1. For our purpose we have selected
the value of the function as 0.97) The variance of the pixel values of the function h;(x)
is calculated and used in Section 5.4 to derive a formula for the blur parameter . The
theorem below explains the relationship between the variance of h; (z), the spread of the
Gaussian (f), the width of the object (T) and the pixel value of the background (K).

Theorem 2.1 Let f(x) be the image (defined in the interval —N/2 to N/2 ) consisting
of an object with width T and a background of grey value K. Let k) (x) be the image of
the background and the object away from the background. If the line spread function of
the blurred object is modeled as a Gaussian function g (z) with standard deviation g, then
the variance o2 of the pixel values of such a blurred object with a focused background
is given as K*? [% - %:— - iﬁZ], where q is a constant.

Proof. As shown in Figure 5.1, the function f{x) is defined in the interval from

—~Ni2 to N/2 as follows:

0 -T<z2<T
f(w)={ (5.2.1)

K otherwise

The convolution of f{x) with g(x) results in a function &, (z) which is expressed as:

hi(z) = f(z) * g (z) (5.2.2)

t
*  The value of 1 is selected such that [ g(z)dz~1  where g(x) is a Gaussian distribution with
-t
standard deviation o.
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The function hy (z) in the interval —(t +T) <z < —(T —~t) is expressed

by the following equation.

~T+t 1 ©
g(z — 1) d1 = —=—— / e37 dv
iy VAT 7 gt (5.2.3)
z+T
-o(57)

ol 3
where Q(z) = 712-; 1) e dt
x

Similarly we write the blur function k) (z) intheinterval (T —¢) < = < (T +t)

T+t 4 00 \
/ g(z —T) dr = / e;—:Tdv
o varo J. (5.2.4)

___Q(x;T)

Hence, the blur function b (z) in the range —N/2 to N/2 can be written as follows:

[ K -N/2<z<(-T~-1t)
KQ (%) (-T—-t)<z<(t-T)
hi(z) =14 0 (t—T)<z <(T-t) (5.2.5)
K-KQ(x=L) (r-t)<z<(T+1)
| K (T+t) <z <N/2

In our application, the background is uniform near the probe. Hence, the value of
K can be considered to be constant. The mean or expected value of the function hy (z)

can be written as

N /2
E[hl(xn.—_N-l— / by (2) da (5.2.6)
_NJ2



We now evaluate the above integral for the intervals defined in (5.2.5).

: N/2 K ~T—t -7 T T+t
1 / hi(z) do =2 /d:c+ / (e + [ dz
N N o
-N/2 —Np2 ~T-t T-1
T+t N2
- / Q(”‘;T)dx + /da:]
Tt T+t

(5.2.7)

By using the results in Appendix F to evaluate the above integrals, we get the

following expression:

E[hy (z) = % [N — 2T] (5.2.8)

and the square of the expected value is:

-2
[E [ (2)])% = %3- [N2—4NT +4 77 (5.2.9)

The expected value of the square of the function k) (z) can be written as follows:

N/2
E[#? (@]:% / 13 (z)dz (5.2.10)
iz

Again, we evaluate the above integral for all intervals in (5.2.5)
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eacant Rl T i A

—N/2 i ) t-T T+t

*2
73— / hf(m)dm:%[ / dz + / QZ(‘“‘:T) dw+/dz (5.2.11)

-N/2 ~N/2 -T—t T-t
T+t - T+t 7 N/2
—2/Q(x; )d:c+/Q2(x; )dx+/dz] (5.2.12)
T—t T-t T+t
Evaluating the above integrals (see Appendix F), we get
KZ
E[h} (z)] = ~ [N-2T 4] (5.2.13)

where ¢ is a real value defined in Appendix F.

The variance of h1(x) can be evaluated by using the following expression:

of = E[ b (2)] - [E M1 (2)]]? (5.2.14)

Using (5.2.9) and (5.2.13) we get the following expression for the variance o?.

(5.2.15)

Completion of the proof.
From the above equation, we note that the variance o of the pixel values of the
blurred probe with a background increases with decreasing values of ¢, the blur parameter

in the line spread function, provided that o satisfies the following inequality.

oT — 4T°
0<o< -4 (5.2.16)

4q
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Since ¢ is non-negative and ¢ is positive definite and real, the above condition is valid
when T < N/2. Therefore, the above condition is valid when the object width 2T is
less than the image size, N. Since this is always true, we conclude that the variance o2

of the blurred object with a background increases with decreasing value of o.

Equation (5.2.15) also contains the pixel value of the background. But, we need
a relation independent of the background value. Hence, we need to derive the variance
of the pixel values contributed by the blurred object by excluding the background. This

procedure is explained next.

5.3 Variance of Intensity Values of the Blurred Object

In the real world, we often deal with objects (probes) having various types of
uniform backgrounds (e.g. metal and diffusion layers). In this section, we formulate
another variance o3 by taking into account the pixel values contributed by the probe.
This is achieved by deleting the background from the blurred image of the probe with
the background. Then the variance of is calculated for these pixel values. In this section,

we derive a relationship between o522 and o.

Theorem 3.2 Let a background (defined in the interval —N/2 to N/2) with gray
level K and size N be given and let an object of width T be close to the background.
If the line spread function of the blurred image is modeled as a Gaussian function g(z)

with standard deviation o, then the variance of the pixel values of the blurred object is
K?2a K?4¢ 4K2%%
N N N?

Proof. The blurred function hy(x) is shown in Figure 5.1. As in Section 5.2, the

] , where a and g are constants.

blurred function ks (z) can be represented in various intervals as:
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(0 -N/2<z < (-T—1t)
KQ (=) (-T-t)<z<(t-T)

hy(z) =40 (t-T)<z<(T-t) (5.3.1)
K-KQ(=L) (T-t)<z<(T+1)
| 0 (T+t)<z < N/2

The expected value of the above function can be obtained as follows.

N/2
Bl @ =5 [ M) ds
-N/2
K 1-T - T+t T+t -
— — T + — ¥ — "
=5 /Q( 5 )dx+/dz /Q( = )d.v]
=Tt T-t T-t
_2tK
N
(5.3.2)
Therefore, the square of the expected value is
4t2K?
E[h 2=
[Elh2 (2)] ) = =57 (5.33)

We also calculate the expected value of the square of the function as follows:
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t-T T+t T+t

st -] [ (20)es Jus (557
-t

=T—t T T-t
T+t T
+ [ (5)«]
Tt
(5.3.4)
Using the results in Appendix F, we get
K2
E [h% (z)] = w [2t - 4q o] (5.3.5)
The variance of h; (z) is given by
o3 = E [h} (2)] - [E[hz ()]’
K? 4¢? K?
= [2t-4q o]~ N7 (5.3.6)
o R?2a K?4q 4K2a%0
- N N ~ N?

where we have substituted t=ae, This completes the proof of the theorem.

From equation (5.3.6), we see that the variance o2 of the blurred object is directly
proportional to o, the standard deviation of the Gaussian distribution for o > 2¢ and
Zlgf >> 1. In fact, the value of « is set by the threshold value (described in Section 5.4)
and always greater than 2q. We have calculated o2 experimentally and we use this value
for detecting the operation of touch. This method is described in Section 5.5.

Since we have two relations (5.2.15) and (5.3.6) involving a?, ag, o, and back-
ground gray level K, we can eliminate the parameter K to obtain a solution for the value

of ¢ in terms of o7 and &2. Such a closed-form solution is derived in the next section.
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5.4 Calculation of the Blur Parameter o

Recently, there has been considerable interest in measuring depth using blurring as
described in [39]—([41] and [44]. All these researchers have formulated a relationship
between the distance of an object and the amount of blur (o in the line spread function)
in the scene. In our application, we can control the guidance of the probe by measuring
o. In this section, we derive a closed form solution for the value of ¢ as a function
of af and a%.

By using the expressions for the variances derived in Sections 5.2 and 5.3 we
evaluate the value of o, the blur parameter in the line spread function. From Section
5.2, the variance o? is given by

af = -?{7-2- [ZT - ;4]-1\-;-2- —4q a] (5.4.1)

Also, from Section 5.3 the variance o2 is given by

(54.2)

5 K?2a K?4q d4K%%0
“2ENNTN TN TN

By eliminating K from the above two equations, we get the following quadratic equation

in o.
4q? ol o 4T?
2 - -2 _ —— = 4.
o [——N ] o [2a+4q [af 1” +—2-af 2T N ] 0 (5.4.3)

We obtain values of ¢ by solving this equation. We know N (the size of the image),
T (the size of the object), q (given in Appendix F) and the experimentally deterr.aned
variances o? and o2. The value of a is chosen according to the value of the threshold
used in the algorithm given in Appendix G. For example, for threshold value 0.05 (which
is Q(a)), the value of a is 2.5. This also implies that the area under the Gaussian function
in Section 5.2 is 0.97. This value of threshold is selected experimenally and satisfies
the following criteria. The smaller the value of the threshold, the larger is the number
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Theoretical Estimated
1.0 0.771421
1.5 1.6489
20 1.9935
25 2.346
30 2.69
35 3.083
40 3.87

Table 5.1 Theoretical and estimated values of o calculated

using variance of the pixel values of the object.

of probe pixels which influence the measurement of . However, we cannot choose a
smaller value of the threshold than the signal-to-noise ratio of the image.

The formulation (5.4.3) is verified using a synthetic image. An object similar to the
shape of the probe is generated. Also, an uniform background is chosen for this object.
Such a synthetic image is blurred with a Gaussian function with a spread ¢. The variances
of the pixel values with background (0?) and without background (c2) are calculated.
Then, the value of o is estimated using (5.4.3). The theoretical and estimated values of
o are given in the Table 5.1. This method of measuring blur is a useful alternative to the
one described in Chapter 4. However, our goal is to achieve fine control of movement
for the touch operation. Touch (contact with the wafer) takes place when o0=0. But, the
Gaussian distribution is not valid at this value of . Hence, it is not possible to detect
touch by measuring o. Therefore, we make use of an experimental observations and the

variance of intensity values of the blurred probe to detect touch. This is discussed next.
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5.5 Detection of Touch

The primary goal of our computer vision system is to provide controlled guidance
of the probe so that the probe makes a soft contact with the wafer. As a first step, the
probe is brought to the vicinity of the wafer using the method described in Chapter 4
[48]. When the probe is very close to the wafer, the pixel values provid: very useful
information about the proximity of the probe to the wafer. As we showud in Section
5.3 the variance of the pixel values of the blurred probe is directly proportional to the
distance of the probe from the wafer surface. So, the value of o2 decreases as the probe
approaches the wafer. After touching the surface, the probe slides on the surface and the

variance increases. The reason for this phenomenon is explained below.

In our experimental set-up, when the probe is approaching the wafer, the micro-
scope is focused on the wafer surface. Hence, the image of the probe is defocused while
the wafer surface remains in focus. The probe comes into focus at the moment of touch
with the wafer. Any further drive of the probe results in sliding of the probe tip on the
wafer. Since the probe is at an angle to the optical axis, this sliding of the probe on the
wafer will bring a larger area of the probe into the image. Also, the tip of the probe which
is in contact with the wafer surface will be in focus while the other end of the probe in
the image will be out of focus. When the probe starts sliding, the tip will remain focused
but a larger defocused region appears. Therefore, the variance of the pixel values of
the probe increases. We have used this observation for detecting touch. The variance is

calculated from the image data and a dip in this value corresponds to the instant of touch.

A sequence of images taken when the probe is approaching the wafer is shown in
Figure 5.2. We have separated the blurred probe from the background using the algorithm
in Appendix G. The change in the mean and the variance of the pixel values as the probe

approaches the surface are shown in Figures 5.3 and 5.4.
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5.6 Conclusions

An important task in automating wafer probing is to detect a touch of the probe
with the wafer. So measurement of the distance from the probe to the wafer is essential
for the guidance of the probe to the target pad. In this chapter, we have described an
algorithm that can be used for fine control of the probe movement when the probe is
very close to the wafer (o less than 3 pixels). We have considered the variance of the
pixel values of the blurred probe and used this information for the guidance of the probe.
Since the main objective of this guidance is to achieve non-destructive contact, we have
concentrated our efforts on the detection of touch. To this end, we have utilized the
experimental observation that the probe slides after touching the wafer surface. This
corresponds to a dip in the value of the variance at the instant of touch (see Figure 5.4).
The variance of the probe pixel values decreases as the probe gets into focus. Any slide
after the touch will result in a larger blurred region in the image and the variance starts
increasing again. For example, Frame 4 in Figures 5.3 and 5.4 is the instant of touch.
The accuracy of this procedure is in the order of a few pixels (equal to the signal to noise
ratio of the image). This is well below the maximum acceptable slide ( ~ 32 pixels,

found experimentally).

The change in variance with distance agrees well with the theoretical analysis
described in Section 5.3. We have tested the algorithm in Appendix G for detection of
touch for different types of tips such as tungsten and tungsten carbide and with different
NMOS and CMOS processes. We have also used commercial dies, such as the Motorola
6805 and Intel 2708. We have detected touch successfully for all these varying processes,
pad sizes and probe tips.

As a by-product of our touch procedure, we have derived a formula for estimating

the distance of the probe using the two different variance calculations. The two variances
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o? and o2, are evaluated as in Sections 5.2 and 5.3. Next, the valuc of o (the standard
deviation of the line spread function) is expressed in terms of the two variances, and the
size of the object. However, there are some limitations to the measurement of distance

using this method:

i. A uniform background is assumed in this method and hence this is not a solution
for the general problem.

ii. A single object of uniform intensity is assumed and this may not be true in some
applications.

iii. The accuracy of the measurement of blur using this technique depends on the value
of a, which in turn depends on the value of the threshold in the algorithm given
in Appendix G.

However, this method can still be applied by constraining the measurement to a

uniform region of the background with a homogeneous probe.
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Figure 5.3 Mean of pixel values of the probe approaching and touching a pad.
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Chapter 6
Low Level Vision Algorithms on
Homogeneous Multiprocessor

6.1 Introduction

Many applications in image processing require a large amount of computation
especially if they involve anything more than the most elementary image processing
techniques. This is because image processing and pattern recognition algorithms in gen-
eral are very computation intensive. Multiprocessor implementations offer the possibility
of making these algorithms useful for practical, real-time applications. The complexity
of such algorithms is in general a function of the size of the problem and the number of
transfers between the processes cooperating in the solution. Thus a structure on which
such computations can be performed efficiently requires the availability of communication
pathways linking processors in a pattern that matches the one imposed by the algorithm
chosen. In the following section we describe some multiprocessor architectures suitable

for image processing.
6.1.1 Speed Requirements for our Computer Vision System

The computer vision system described in this thesis is required to meet the timing
requirements of the wafer probing operation. These requirements are two fold. The
first is related to the response time of the probes (a HOP2000 remote controlled probe
manufactured by Wentworth Inc.) for each probing operation. The probe has travel speed
in the range of 2 to 20 microns per second. As described in Chapters 4 and 5, we use a
two stage (coarse and fine) control scheme for the guidance of the probe toward the target

pad. The high travel speeds (around 20 microns per second) of the probe are suitable for



coarse movement and the low travel speed range (around 2 microns per second) is suitable
for the fine movement. So the sensory (vision) feedback should be available within this
time frame. The second timing requirement is related to the speed of probing which,
in tum, is related to the overall speed for testing a die. A typical wafer test involves
checking various semiconductor parameters of the process and design specifications. To
achieve this objective, we need to conduct several tests, each test involving the probing
of several pads. Thus, the total time required for probing is an important consideration
in the automation of wafer probing. A human operator takes 5 to 10 seconds for each

probing operation. An automated probing operation should be faster than this.

The various vision algorithms used in our system are described in Chapters 3-5.
The execution times (CPU time on a SUN 3/60) for these algorithms are given in Table

6.1. For each probing operation, the following sequence of operations are executed:

i. Smoothing, histograming, thresholding, edge detection and other special purpose
algorithms (i.e. all the low level vision algorithms) described in Chapter 3.
ii, Estimation of proximity using the algorithm presented in Chapter 4.

ili. Detection of touch using the algorithm described in Chapter 5.

By analyzing the timing requirements of the above operations in Table 6.1, we
find that the low level algorithms require the most time. Also, these algorithms perform
neighborhood operations. Therefore it is likely that these operations will speedup through
the simultaneous execution of the algorithms on different parts of the image. Such a task
can be easily achieved using multiple processors.

In this chapter, we describe potential applications of the Homogeneous Multipro-
cessor [55], [56] and [57] in low level image processing. Initially, we shall review the
use of multiprocessors in computer vision (Section 6.2). Next, we describe the paral-

lelization of some well known low-level vision algorithms and the performance of these
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format and writing on to a file (a
raster image of 256x256x8)

Algorithm CPU time
(sec)
Eliminating background traces 15.559
Smoothing 2.569
Edge detection 4439
Interpolating the edge-map 0.02
Chaining of edges 0.440
Finding points on the 7.82
perpendicular (for 49532 points)
Finding slope of the plane (for 0.52
116 surfaces)
Reading a raster file and 0.44
converting to a 2D array (a raster
image of 256x256x8)
Converting 2D array to raster 0.759

Table 6.1 CPU time on the SUN 3/60 for the vision algorithms.

close agreement (Sections 6.4.3 and 6.5).
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6.2 Use of Multiprocessors in Computer Vision

algorithms on the Homogeneous Multiprocessor (Sections 6.4.1, 6.4.2 and 6.5). The per-
formance was obtained analytically, and through simulation experiments on the existing

simulator for the multiprocessor [58]. The results obtained by both the methods are in

Several multiprocessor architectures have been proposed in recent years [55],
[49]—[54]. Partitionable SIMD/MIMD Architecture (PASM) proposed by Siegel [49]
was one of the first generation multiprocessors and was targetted at image processing.
Several low level algorithms, like convolution, histogram generation and edge detection

have been implemented on this architecture. In recent years, three kinds of architectures



have become popular for the implementation of parallel algorithms for image processing.
These are: i) the Mesh connected architecture, ii) the Pyramid architecture and iii)
the Hypercube architecture. A survey of these archite.tures and their performances
related to several image processing algorithms is reported in [59]. The performance
of an architecture depends on the interconnection mechanism between the processors and
the complexity of the vision algorithms. The computational requirements for low and
high level vision algorithms are different. These have been discussed in great detail by
Cypher and Sanz [59]. We shall briefly review the performance of these architectures

with reference to low level algorithms.

A mesh connected computer is an array of processing elements (PEs) where each
PE consists of a processor and an associated memory. Each PE has a communication
link with four PEs: above, below, to the left and to the right. One example of this
architecture (CLIP4) was built by University College, London [60]). The greatest strengths
cf the mesh connected computer are its ease of construction and its performance on local
neighborhood operations. Bu, the main drawback is its poor performance in solving
problems involving global communication. Hence, this architecture is not suitable for

high level vision algorithms [59].

Another popular architecture is the pyramid architecture. A pyramid machine
consists of (3logN + 1) levels, where the ith level, 0 < i < (1logN), is a mesh
connected computer with N/4‘ PEs. Each level has connections to the levels above
and below, giving 9 connections: 4 to its children in the level below, 4 to its nearest
neighbors at the same level, and 1 to its parent in the level above. One example of
the pyramid architecture is the HCL Pyramid, built by the University of Washington,
Seattle {61]. Pyramid computers are more difficult to build than mesh computers [59].

They have similar performance to me«h architectures but have advantages over the mesh
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architectures in region growing algorithms, where the image is analyzed at different
resolutions. Tanimoto [61] studied the problem of bright spot detection, where a relatively
bright region of the image must be located so that it can be used as a seed for a region
growing operation. In this application, the bottom most level of the pyramid holds the
image and each level of the pyramid contains the same image with different resolutions.
This algorithm takes logN (N is the image size) time. Tanimoto [61] also computed
histograms on a pyramid, which involves performing a log(N) time “pass” from the
bottom of the pyramid to the top for each gray level value to be computed. Again, this

architecture is not very suitable for high level vision algorithms [59].

Both mesh and pyramid architectures are very suitable for neighborhood opera-
tions. However, there are several algorithms where data transfers to distant processors
take place. One multiprocessor which is useful in such applications is the hypercube ar-
chitecture. A hypercube multiprocessor consists of N=2" (N is the image size) processing
cells interconnected as if each were located at one vertex of an n-dimensional hypercube,
so that two cells share a direct connection if and only if their corresponding hypercube
vertices are connected by a hypercube edge. One such multiprocessor is the Connection
Machine, which is an SIMD hypercube architecture and was built in 1986 by Thinking
Machines Corporation. The hypercube computer is better suited to high level computer
vision because communication with distant nodes is easy in this architecture. The reason
is that each processor is connected to log(N) processors. Some interconnection networks
for this purpose are described in [59]. A final observation is that each of the above
mentioned architectures can simulate the other architectures and this helps in designing

ideal algorithms for specific architectures [52]

In this chapter we shall investigate the application of the Homogeneous Multi-

processor [55, 58] which is a closely coupled MIMD architecture that provides nearest
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neighbor communication. Execution of image processing algorithms such as smoothing,

edge detection and relaxation benefit from the use of such an architecture.

6.3 The Homogeneous Multiprocessor and the H-Network

As shown in Figure 6.1, the Homogeneous Multiprocessor [55] is i tightly coupled
MIMD architecture, composed of k (k>3') processing elements, ¥ memory modules,
k+1 interbus switches s; isolating the processing elements from each other and the H-
Network which is a fast local area network used for point-to-point and broadcast mode
communications. The architectur= can be considered to be composed of two parts: namely
the Homogeneous Multiprocessor Proper incorporating the processors and the interbus

switches, and the H-Network [57].

Each processing element P; owns its local memory module M; and accesses it
via its local bus b;; it also has the exclusive use of the respective network station HS;.
Local buses are separated by the intervening switches s;. These switches provide each
processor P; with the ability to access the memory modules of either one of its two
immediate neighbors by requesting the appropriate switch to close, thus creating an
“extended bus”. Also, for I/O or data transfers to and from distant processors, each
processor may utilize the H-Network. Although the H-Network could have been used for
data transfers to and from distant processors (especially in histogram calculations), the
results reported in this work were obtained through the utilization of the “extended bus”
communication mechanism. It was felt that this mechanism was considerably faster for
short to medium distances since no task switching is involved. Nevertheless, we expect
further improvement in the performance by employing the H-Network for long distance
transfers when it becomes operational. The Homogeneous Multiprocessor is currently
under implementation using the 8-MHz MC68000 processor. The performance results

reported in this study therefore pertain to an implementation of the multiprocessor using
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the aforementioned processor. Before describing the results of our implementation, we

will discuss the need for speeding up the execution of the vision algorithms in our system.

6.4 Neighborhood Operations

The Homogeneous Multiprocessor, being a closely coupled MIMD architecture,
is perfectly suited for context dependent algorithms. The often used image processing
algorithms like smoothing, histogram computation, and edge detection are considered
here. In the following sections wc present the method we used to run these algorithms

on the Homogeneous Multiprocessor as well as results showing their performance.

6.4.1 Image Averaging

Averaging (smocthing) operations [30] are primarily used for diminishing noise.
The raw image usually has sharp edges, but it is also noisy and may contain small spiky
artifacts. One of the most commonly used algorithms for smoothing is local averaging.
Given an M x M image f{x,y), the smoothed image g(x,y) is obtained by averaging
the grey level values of the pixels of the original image contained in a predetermined
neighborhood 5(x,y) of (x,y).

A

Y, fG6.9) (64.1)

§,J€S(z,y)

where n is the total number of points in the set S(x.y).

9(z,y) =

The operation is performed for each pixel in the image with the possible exception
of the edge pixels. We implement the smoothing algorithm on the Homogeneous
Multiprocessor as follows. The M x M image is divided into N strips with each
strip having M x M/N pixels. Each processor is allotted a strip of the M x M
image and smoothes the pixels in the strip located in its local memory using equation
(6.4.1). Each processor needs to communicate with a neighboring processor only for the

calculation of the smoothed image at the boundaries of the strip. This communication is
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accomplished directly through the “extended bus” mechanism described in Section 6.3,
and is transparent to the programmer. Figure 6.2 shows the plot of the speedup factor
obtained against the number of processors involved in the computation for two image

sizes. The number of grey levels is fixed at 64 for both cases.

6.4.2 Edge Detection

Edge detection plays an important role in segmenting an image. Some of the edge
detection algorithms are very attractive for parallel implementation, e.g. mask operators.
In fact, we have used a mask operator, the Laplacian, for the edge detection in our
computer vision system. This operator is omni-directional and hence useful in detecting
edges in all directions. But, there are also directional mask operators for edge detection
which are effective in identifying objects in automated visual inspection [26]. One such
operator, the Sobel, estimates the partial derivatives in four directions (one operator for
each direction), and is given in Figure 6.3. For edge detection, the response in all four
directions is computed and the one giving the maximum response is considered as the edge
direction. Hence, the Sobel operator is more time consuming than the Laplacian. In order
to evaluate the performar e of the Homogeneous Multiprocessor for edge detection, we

have considered the Sobel operator. The implementation details are given in this section.

Each edge detector is described by a set of templates whose application on an
intensity function f{x,y) results in a set of gradient arrays. The above procedure can be
implemented on the multiprocessor as described below. The M x M image is divided
into N strips having M x M /N pixels. Each processor calculates the gradient arrays of
its strip, i.e., the corresponding edge enhanced values of each pixel. In a similar fashion
as in smoothing, the edge enhanced values of the strip boundaries are calculated based
on the values of the pixels in the neighboring processors. This is repeated for all the

directional mask operators. The partitioning algorithm is similar to smoothing. Figure
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Figure 6.2 Speedup vs. the number of processors for the

distributed averaging algorithm as obtained through simulation .
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6.4 shows the speedup factor against the number of processors for two image sizes. The

number of grey levels is fixed to 64 for both cases.

6.4.3 Speedup Calculation for Local Operations

Several image processing algorithms can be executed by repeating a set of oper-
ations on a well defined neighborhood of each pixel. Examples are the local averaging
and edge detection algorithms mentioned previously. These algorithms can be effectively
ported to the Homogeneous Multiprocessor by assigning to each of the N nodes a strip of
MxMIN. If we denote by 7op the time necessary to perform the set of operations on the
pixel neighborhood, by 7, the time needed to transfer a single pixel from a neighboring
memory module, and by a the percentage of pixels in the neighborhood of a pixel lying
at the edge of a strip, then we can estimate the achievable speedup as follows. The
time to carry out the algorithm on a uniprocessor is given [62] by T = M?r,,, while
the execution time for the Homogeneous Multiprocessor is Tpag = %’vz-ro,, + 2%4V2-ar¢,.
Therefore, the speedup is given as

T M 21‘,,,,

S = =
TPAR —%ETop + 2‘%2'6"'"‘

(6.4.2)

. N
It is easy to see that the speedup equal to -11-2;-%-

6.5 Histogram Generation

A histogram of grey level content provides a global description of the appearance
of an image. Histograms are frequently used in thresholding images while interactive
histogram modification is useful for enhancing the picture quality. We have used
histograms of grey values for the thresholding operation. This was discussed in Chapter
3. In this section we describe the implementation details of the histogram algorithm on

the Homogeneous Multiprocessor.
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It is assumed that there are N (N = 2¥) nodes in the Homogeneous Multiprocessor.

The image is divided into N strips. Each strip is loaded in the memory of each of the

nodes, which calculates the partial histogram of the region assigned to it.

The next step accomplishes the merging of the partial histograms. This is done
through a form of recursive doubling [49], [63], [64). Suppose that there are B grey
levels in the image. Initially, processors Pyy; : ! = 0,1,2,..... (N/2 ~ 1) merge the
B/2 least significant bins of the partial histograms contained in their own memory as
well as those of their neighbors to the right. Similarly, processors Py, merge the B/2
most significant bins located in their own memory as well those of their neighbors to
the left. At the end of these operations, nodes Py, hold the least significant halves
of the merged partiai histograms, while their neighbors to the right (nodes Pj12) hold

the most significant halves.

Next, nodes Pyy1;1=0,1,2,...(N/4 — 1) transfer the B/2 least significant bins of
their merged histograms to nodes Py, and similarly nodes Py, 4 transfer the B/2 most
significant bins to nodes Py;43. At this point, nodes Py, and Py.3 contain partial B
bin histograms and the process is repeated. The final completed histogram is to be found
in node Ppy;. Under this algorithm, the partial histograms are merged on a tree structure

of processors embedded on the Homogeneous Multiprocessor as depicted in Figure 6.5.

"Observe that, as the process continues, partial histograms are located in nodes that
are progressively further away from their neighbors. Their merging requires the transfer
of data between distant processors. This is done through the implementation of a form of
a “bucket brigade™ to efficiently transfer long vectors between distant processors. Thus,
in order to transfer a B-bin vector from processor P; to processor Pj, the intervening
processors form a pipeline through which the B-vector is transferred in O(j-i+B) steps.

Since neighboring nodes communicate by accessing each others memory modules, it is
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possible to form a pipeline consisting of alternate nodes. Each node in the pipeline
moves data from the memory module of its left neighbor to the memory module of its
right neighbor. The following example will clarify the strategy. Consider the transfer of
a vector of B elements from node 5 to node 8 (Figure 6.5.). The transfer is accomplished
by forming a two stage pipeline consisting of nodes 6 and 8 (In this case node 8 transfers
data to itself since it is the last stage of the pipeline). Thus node 6 transfers data
from the memc:y module of node 5 to the memory module of node 7 while node 8
completes the pipeline by transferring the data from the memory of node 7 to its own.
The total transfer requires B+2-1 steps. This result can be generalized as B+/(j-i)/2]-1
for transfers between nodes i and j.

The histogram merging algorithm outlined above is carried out in log(N) iterations.
Each iteration consists of a partial merging step requiring B/2 additions and B/2 transfers
together with B/2 transfers needed to locate the merged histogram in the appropriate node.
Iterations 2 to Jog(N-1) require the pipelining of intermediate nodes and each iteration
requires B + 2(™=2) — 1 transfers (m is the iteration number). Thus, if we denote by 74
the time required to perform a single addition, and by 7 the time required for a single
transfer from the memory module of the left neighbor to that of the right neighbor. Then
the time required for the histogram merging algorithm can be calculated as* [62].

logN log N-1
Tvrc = (a+21)B/2 470 Y [B 4 om=2) _ 1]
m=1 m=2 (6.5.1)

= (T"§> log N + 7y [_]‘;r_ + (2B -1)logN - 2B+1]

Now, given an MxM image, the time required to obtain the N pania! histograms on a
- o e . . 2
Homogeneous Multiprocessor consisting of N nodes is given as Tysr = Mﬁ-'ra. Thus,

the total time required for the parallel algorithm is obtained as

*  Itis assumed that the time spent to merge each of the B/Z bins of two partial neighboring histograms
is T, + 7, which corresponds to the transfer of one bin frum the neighboring memory module and the
addition to the corresponding bin in the local memory module.

113



11 12 13 14 15

ITERATION 1

ITERATION 2

ITERATION 3

ITERATION 4

X
——p Transfer of a vector of x elements

X Merge of two neighboring partial historams

Figure 6.5 An example of the distributed merge algorithm on sixteen processors.
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M2 B N
Tpar=TyrsT+TMmpg =Ta | — + —logN |+ y +(2B—1)logN — 2B +1

N 2
(6.5.2)

Similarly, the total time required to obtain the histogram of an MxM image on a

uniprocessor is given as T = M?r,. The speedup factor can therefore be obtained as

T 2
S= = M (6.5.3)
PAR 1y [ME + ZlogN| + 74y [£+ (2B ~ 1) logN — 2B +1]
2
= M (6.5.4)

(% + Ltogh] +r [¥ + (2B ~ 1) log ~ 2B +1]

where r = Ir&:- is the ratio of the transfer over the add times. The efficiency of the
algorithm is given by
M2

- .55)
[M? + £N1ogN] + 7 | & + (2B - 1) NlogN + N (1 - 25)|

e =

s
N

Figure 6.6 shows the speedup factor obtained both through simulations and equation
(6.5.3) plotted against the number of processors for histogram calculation for images with

varying sizes. The number of grey levels used is set at 32.

6.6 Conclusions

The final goal of the computer vision system described in this thesis is to attain
real-time operation of wafer probing. Towards the achievement of this goal, we have

investigated the parallelization of low level algorithms. We have used the Homogeneous
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Figure 6.6 Speedup vs. the number of processors for the distributed

histogram algorithm as obtained through simulation and analysis.
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distributed histogram algorithm as obtained through analysis.
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Multiprocessor for this investigation. In this chapter we presented the performance of
the following low-level vision algorithms: (i) Smoothing, (ii) Edge Detection and iit)
Histogram Generation. The results were obtained through simulation experiments run

on the simulator developed for the Homogeneous Multiprocessor and are presented in

Figures 6.2, 6.4 and 6.6.

As can be seen in Figures 6.2 and 6.4 both smoothing and edge detection algorithms
show almost lincar speedup with the number of processors involved. This is to be
expected, since these algorithms require very little interaction between processors, apart
from the occasional exchange of the values of the pixels located at the boundaries of the
strips allocated to the processors. This is also in agreement with (6.5.2) which describes
the behavior of the speedup for local algorithms implemented on the Homogeneous

Multiprocessor.

Also, almost linear speedup was obtained for large images for the histogram
algorithm presented in Section 6.5. Figures 6.6 and 6.7 show substantial agreement

between the theoretical calculation (as given by equation (6.5.2)) and the simulated results.

On the other hand, as can be seen from Figure 6.7, the speedup for the histogram
generation algorithm slows down and actually reverses itself when a large number of
processors is used. This was also to be expected, since the algorithm used for the
distributed merging of the partial histograms requires O(n) transfers. Hence for every bin

size there exists an optimum number of processors beyond which the speed-up drops.

Our distributed merge algorithm can be improved if the pipelined transfer of the
partial histograms is started immediately after the merging of the neighboring histograms.
Further improvements may be achieved if the H-Network were to be used instead of
the bucket brigade scheme for long range transfers. This transfer mode would become

efficient when the transfer time over the H-Network becomes less than the transfer time
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obtained through the bucket brigade mechanism.

Nevertheless we were able to show substantial speedups for both cases of local
algorithms (such as local averaging and edge detection) as well as nonlocal ones (e.g.
histogram generation).

The analysis and simulations carried out in this work helped us to understand
the performance of the Homogeneous Multiprocessor for image processing, parailel
implementation of image processing algorithms for a given architecture, and selection
of an optimum number of processors for a given operation. In addition, the use of a
multiprocessor can be beneficial for the real-time execution of the control algorithms and

trajectory planning algorithms required for the micro-manipulator.
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Chapter 7
Conclusions and Further Work

The semiconductor industry is one of the principal beneficiaries of computer vision
research. It is also a major buyer of vision hardvsare and software. The high precision
required by this industry can only be achieved using high resolution optics and vision
systems, particularly since the introduction of VLSI. The increased complexity and small
feature size of VLSI circuits have created challenging research problems in several
manufacturing areas. Machine vision has been successfully applied to wafer inspection,
die and wire bonding, and testing. However, there are several areas such as automatic
wafer probing where further research of a more interdisciplinary nature is required. In
wafer probing, metallic probes are used to contact the surfaces of the wafer. Compliant
and reliable probing is a highly skilled operation which has to be repeated with good
accuracy. In this chapter, we summarize the contributions of this thesis and discuss the
practical applicability of the proposed methods. The application we have chosen involves
multiple disciplines and further work is required towards realizing an end product of this
research, as we shall discuss in the latter part of the chapter.

This thesis describes a method for automating the wafer probing operation. The
primary objective of this research was to investigate various aspects of guiding a probe
to its metal target pad. Another objective was the detection of probe contact for non-
destructive probing. In addition, it was also intended that the computational time required
for these solutions be within the reach of real-time operation. All these objectives were
achieved through analytical solutions of the problem and by experimentation with real
data.

The contributions of this thesis are two-fold. So far, to our knowledge, no one

has reported automatic wafer probing using sensory feedback. Probing the wafer without




damaging the wafer surface and the probe tip, is a major difficulty in wafer probing.
We have solved this problem using vision as feedback. Hence, the first contribution of
this thesis is a step towards the development of completely “hands-off” wafer probing
system. The second contribution is a simple and workable solution to the problem
of depth perception in a scene with a single point of view. This method is new and
significantly more robust in comparison to existing methods. In addition to the above
mentioned contributions, this thesis investigated the use of a multiprocessor to achieve

real-time operation.

Our experimental set-up consists of a probing station, a camera, an image grabber,
and a computer for processing the images. We selected the Wentworth VLSI test station
for our experimental set-up. We have modified the optics of the station and also used a
solid state camera for capturing images of the VLSI patterns. We developed an in-house
frame grabber for the camera. Due to budget constraints we have developed a custom-
made image grabber for image acquisition. A user-friendly image processing software
package was developed in our laboratory. This software package was very useful at

various stages of the development for manipulation of images.

The images from the camera contain specular noise. We eliminated this noise using
the neighborhood averaging technique. We were able to separate the three regions (probe,
background, and metal layer) by thresholding the smoothed image. This is possible
because of high contrast between these three regions. By applying the Laplacian edge
operator on the thresholded images, we were able to obtain the edge map of the probe
and the metal pads. These edge maps are used for further analysis such as estimating the
proximity of the probe to the the wafer and detecting the contact between the probe and the
wafer. Some of the problems resulting from the physical constraints in our experimental

set-up were addressed. These are unconstrained illumination, high intensity of light,
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specularity due to the metal layer, noise due to multiple layers of the VLSI patterns, the
shadow cast by the probe, vibration of the wafer chuck, etc. Special purpose algorithms

were developed to resolve these difficulties.

Accurate determination of the distance from the probe to the wafer is important
for the successful guidance of the probe to its destination. We have developed a method
to estimate this distance using the information from the blurring of the probe image
around the edges. This method used the slope of the edge profile at the zero-crossing.
A theory was formulated for this method and a closed form solution was derived to
obtain a measure of the distance of the probe from the wafer. This formula was verified
using experimental data. It was found that the method works very well at the large
distances. Its accuracy at smaller distances is affected by quantization errors and noise
in the image, but can be improved by increasing the resolution of the camera. We have
also observed that the slope at the zero-crossings, for different backgrounds, varies very
significantly and agrees with common experience that a blurred object looks sharper
against a highly contrasting background than against a low contrast one. This type of
information can be used for identifying boundaries between different regions. Another
interesting observation occurs in the determination of the probe’s orientation. Our human
visual system cannot determine the orientation of the probe in the vertical direction by
viewing along the optical axis. By calculating the blur parameter along the edge of the
probe, we were able to determine the inclination of the probe with respect to the wafer

surface. This interesting result may be useful in other applications of machine perception.

The final operation in the guidance of the probe is the detection of touch. We
have solved this problem using a method involving an experimental observation. In this
method, we used the observation that the probe slides horizontally after touching the

wafer. We calculated the variance of the intensity values of those pixels consisting of the
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probe and noticed a dip in this value at the moment of touch. The slide can be detected
within the accuracy of a few pixels. This is well within the allowable limit of accuracy
(experimentally found as 0.1 um=: 32 pixels). We have derived analytical formulations for
this variance value of the probe and proved theoretically that the variance of pixel values
decreases as the probe approaches the wafer. As a by-product of the above formulations,
we have derived another formula for the calculation of depth. These formulations are

generic and have applications where only a single view is possible.

Our ultimate goal is to use the computer vision system described in this thesis for
real-time operation. The algorithms described above are computationally very expensive.
We have investigated the use of the Homogeneous Multiprocessor for speeding up
the low level vision algorithms. The performance of smoothing, edge detection, and
histogram generation algorithms were studied by running simulation experiments on a
simulator developed for the Homogeneous Multiprocessor. The algorithms for smoothing
and edge detection showed a linear speedup with respect to the number of processors
involved. This is understandable since these algorithms require very little interaction
between processors, apart from the occasional exchange of the values located at the
boundaries of the image data allocated to the processors. On the other hand, the speedup
of the histogram generation algorithm slowed down and reversed when a large number of
processors were involved. This is expected since the algorithm used for the distributed
merging of the partial histograms requires O(n) transfers. Hence, for every bin size
(number of gray levels in the image) there exists an optimum number of processors
beyond which the speedup drops. Theoretical formulations were derived for the speedup
of neighborhood operations and histogram generation. The experimental results agreed
well with the theoretical formulations. These formulations will be helpful in designing

parallel algorithms to achieve the desired speedup.
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Further Work

Research in the development of completely automated VLSI wafer probing poses
challenges in the areas of robot vision, plan generation and robot control. One aspect,
measurement of the distance from the probe to the wafer, was investigated in this
thesis. Future advances in the area of automation of VLSI wafer probing will require
contributions from several interdisciplinary areas. The following are a few proposed

areas of endeavor.

Development of a Motion Controller

Presently, human manipulation is used to control the guarded motion of the probe.
A computer vision system for the measurement of distance is described in this thesis.
This information can be used to control the Z-drive of the probe. Recently a computer

controlled probe has been acquired and its software driver is being developed.

Development of an Intelligent Plan Generator

An expert system for vision and plan generation for the micro-manipulator is
required for “hands-off” VLSI wafer probing. The expected characteristics of the expert
system are the following; Given a specific test (from a menu of available tests), the
present locations of the probes are identified (through vision). Then the probes are
moved, suitable optical magnification is set, visual patterns are recognized, and electrical
measurements are done through specific test pads. Plans like SEE, ZOOM, FOCUS,
MOVE, CHECK, FIND, TOUCH, LIFT, and TEST are generated in sequence according
to the goal specified by the selected test and the knowledge base. This intelligent plan

generator can provide the overall strategy for generating various plans to test a VLSI chip.
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Study of Vision Algorithms on the Homogeneous Multiprocessor

We have studied the implementation of some low level algorithms on the Homo-
geneous Multiprocessor. Further work will involve the study of the performance of the
Homogeneous Multiprocessor for the remaining algorithms in the vision system. New

parallel algorithms need to be developed to implement the depth perception schemes.

Study of Blurring at High Numerical Apertures

We have considered the Gaussian function as the point spread function for modeling
the blurring in the microscope. The change in intensity distribution near the focal plane
for high and low numerical apertures is reported by Mansuripur [65], [66]. The choice
of an appropriate point spread function (PSF) for the defocusing system is important
to achieve accurate measurement of the distance from the probe to the wafer. Hence,
we need to obtain analytical expressions for the relationship between exact intensity

distributions and distances, taking into account high numerical apertures.

Neural Networks for Depih Perception

It would be interesting to study the use of neural networks for understanding the
depth perception problem. Human vision can easily identify the depth of various objects
in a given scene. This is due to the training we acquire in the real world. Such training is
based on a context-dependent interpretation of objects and boundaries. In our application,
the human operator obtains distance information using a single view combined with
his past experience. Neural networks are capable of retaining such experience through

repeated training and thus provide a viable alternative to algorithmic solutions.
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Appendix A
Program for HP 9000 for Capturing
the Image using a DMA Controller

1 I+ IMAGE GRABBER AND DISPLAY OF GREY LEVEL IMAGE ON
2! 16-:COLOR HP TERMINAL **#*

6 ! AUGUST 18, 1986

7! Version 0.80

91

10t This program will gather a digitized 64-gray-level image from a
11 ! camera through the GPIO bus. The number of frames are

12 ! limited by the size of the buffer which can vary

13 ! depending on available memory. Each frame will be displayed, one
14! at a time. The user has to press <KRETURN> between each frame
15 ! (allowing enough time for the computer to process the frame)

16 ! for the next frame to be displayed. The process continues until
17 ! either no more data is found (an error is reported), or the user

18 ! interrupts the program. This program drives the circuit diagram
19 ! described in Appendix C. Note that

20! this program will display a grey level image

20A ! on the HP color Terminal.

21 ! The terminal is only capable of displaying sixteen possible

22! levels, thus no quantization is needed.

24

25 OPTION BASE 0

26 INTEGER Nx,Ny,N,LJ,K Irow,Icol,Jcol,Jj,Ni,Nj

133



27 !The control line CR1 (Appendix C) will set the second D flip-flop to zero
28 ! to inhibit the pulses going into the GPIO bus, then

29 ! wait for one second and set CRO to the HI state

30 !in order to keep ready the input of the monostable,

32 CONTROL 12,2;2

33 WAIT 1

34 CONTROL 12,2;0

35 WAIT 1

36 Nx=255

37 Ny=255

38 ALLOCATE INTEGER Gray(Nx,Ny),Gr(Nx,Ny),Gr2(Nx,Ny),Hist(64)
39 | GET DATA

40 Gpio=12 !select code of GPIO

41 lIset cr0 to 0 and bring back to 1 to start the

42 !transfer event. Subsequently the 1 to 0 transition

43 lof the input to the monostable will cause a 5 second

44 delay. The O to 1 transition of the monostable

45 loutput will make the Q output of the flip-flop which will start the DMA
transfer.

47 CONTROL 12,2;1

48 WAIT 1

49 CONTROL 12,2;0

50 ASSIGN @Buff TO BUFFER [256000] !Create a buffer as large as
51 ! memory permits

52 ASSIGN @Camera TO Gpio

53!
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54 Transfer one frame from the camera which consists of 256 Pixels
55 !per line (COUNT 256) and 256 lines per frame (RECORDS 256).
56 1The END should be redundant and is signaled by the cameras

57 {ROW line. This should only occur at the same time that the

58 1256th Pixel on a row is sent.

59!

60 DISP "WAITING TO CONNECT"

61 TRANSFER @Camera TO @Buff

62 DISP "TRANSFER STARTED"

63 WAIT FOR EOT @Camera

64 BEEP

66 DISP "TRANSFER FINISHED, LOOKING FOR START OF FRAME"
67!

68 ! Set graphics terminal

69 !

70 GINIT

71 PLOTTER IS CRT,"INTERNAL";COLOR MAP

72 GCLEAR

73 FOR I=0 TO 15! Set the sixteen displayable gray levels

74 SET PEN I INTENSITY 1/15.0,1/15.0,1/15.0

75 NEXT I

76 !

77!

78 !

79 ALLCCATE Image$(256)[256]

1Store 256 lines of 256 pixels/line

135



AT R
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80 ALLOCATE Line1$[256],Ch$[1]

81 INTEGER X,Xmin,Xmax,P

82 Xmin=255

83 Xmax=0

98 !

99!

100 ! *** STORE FROM BUFFER INTO AN ARRAY ***

114 ENTER @Buff USING "%,256A";Image$(*)
1Copy buffer into an array.

117!

118 DISP "CONVERTING DATA"

119 N1=0

120 FOR I=0 TO Nx

121 Ni=255-1

123 FOR J=0 TO Ny

131 N=NUM(Image$(D[I+1;1])

132 Gr2(1,))=N

133 IN=N-64 talso remove the offset of 64 which was

134 !created by the frame line going high

137 Gray(Ni,J)=INT((N-64)/4) ! scale value to range 0..15

138 NEXT J

139 NEXT1

145 DISP "CREATING IMAGE, ";N1;" DATA BYTES LOST"

146 !

147 ! The following lines will create a new matrix, Gr(*), which is in

148 ! a form that the GLOAD command can use directly.
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! The form is described
149 ! in the BASIC 4.0 Language Reference Manual,
! Page 154, ’storage format’
150 ! for the HP-9000 model 236 color computer.
! This description is also valid for
151 ! the HP-9000, model 300 color terminal
! except that the display is 1024 x 400
152 ! (Monitor model 35741A). Because of the difference in horizontal and
153 ! vertical resolution, there will be two horizontal pixels and one vertical
154 ! pixel used to display each pixel of the image.
155 FOR Irow=0 TO Nx
156 Jcol=0
157 FOR Icol=0 TO Ny STEP 4
158 ! See Page 154 of Language Reference Manual for description of
159 ! P11to P8
160 P1=Gray(Irow,Icol) !P1 and P2 have the same value = P1
161 P3=Gray(Irow,Icol+1) !P3 and P4 have the same value = P3
162 P5=SHIFT(Gray(Irow,Icol+2),-4) ! P5 and P6 have same value = P5
163 P7=SHIFT(Gray(Irow,Icol+3),-4) ! P7 and P8 have same value = P7
164 Gr(Nx-Irow,Jcol)=SHIFT(PS,-8)+SHIFT(P1,-8)+P5+P1
165 Gr(Nx-Irow,Jcol+1)=SHIFT(P7,-8)+SHIFT(P3,-8)+P7+P3
167 Jcol=Jcol+2
168 NEXT Icol
169 NEXT Irow
170 ! The image is now ready to be GLOADed

171 BEEP
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172 'INPUT "PRESS <RETURN> TO DISPLAY IMAGE",Dummy
173 DISP " "

174 GLOAD Gr(¥) !Display image

175 PEN 15

177 FOR I=0 TO 255

178 FOR J=0 TO 255

179 P=Gr2(L,J)-64

180 Hist(P)=Hist(P)+1

181 NEXT J

182 NEXT I

183 BEEP

184 !INPUT "PRESS <RETURN> TO HISTOGRAM DISPLAY",Dummy
185 !PLOTTER IS CRT,"INTERNAL"

186 !GRAPHICS ON

187 VIEWPORT 70,130,50,100

188 FRAME

189 WINDOW 1,64,0,10000

190 AXES 1,1,1,1,5,5,3

191 FOR P=1 TO 64 STEP 1

192 PLOT P,Hist(P)

193 NEXT P

194 1INPUT "PRESS <RETURN> TO STORE THE FILE"Dummy
195 DISP " "

196 DISP "STORING DATA ON FILE"

197 ASSIGN @File TO "DATAFILE2:MEMORY,0,0";FORMAT ON
198 OUTPUT @File;Gr2(¥)

138



199 ASSIGN @File TO *

200 !GOTO 100 !Finished processing, go get next frame to display
201 BEEP

202 BEEP

203 BEEP

204 BEEP

206 END
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Appendix B
Procedure for Uploading Images from HP 9000 to SUN 3/60

The following procedure describes the uploading process from the HP 9000 to SUN 3/60.

1. Since the data coliected from the camera is in the RAM of HP 9000 we transfer the

data to the hard disk. This is done using the following command:
copy “datafile2:Memory,0” to “datal:HP9133,700”
2. Enter the HP 9000 set-up using the function keys and select the following options.

Set EOF as ‘'LF EOT’

Set EOR as ‘CR’

Choose SOURCE file name (same as the file name in the hard disk of the HP
9000)

Set device control as DC1/DC3 protocol.
3. Enter SUN UNIX OS using the function keys

Set the terminal to ‘tandem’ mode using stty tandem command.

Set the terminal to ‘cbreak’ mode by using stty cbreak command.

Set the terminal echo off by using stty echo command.

Keep SUN ready for collection of data. This is done by cat > file name where

‘file name’ is the name of the destination file.

4. Enter the HP 9000 set-up again and the choose function key ‘FILES’. Start the
uploading by pressing the function key ‘UPLOAD’. When the transfer is finished the
terminal will go back to the set-up menu,

5. Enter SUN UNIX OS and stop the uploading process by “Z.

Set the terminal echo by using stty echo command.
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Remove the ‘cbreak’ mode by using stty —cbreak command.
Resume the uploading process by fg %+.

Physically close the file using “D. The uploading process is now complete.
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Appendix C
Circuit Diagram for Camera Interface to HP98620 DMA Controller
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Appendix D
Algorithm for Alignment of Images

Inputs: A window of size window_size is selected at the address of search_origin.
The parameters search_length, search_breadth denote the length and breadth of the
search. Threshold is the limit for the change in gray values due to misalignment. This
value is set above the signal to noise ratio of the image. Window_gray value is the
total gray value of the window. This depends on the material of the wafer area under
consideration. Hence this parameter is set experimentally. Iy indicates the image at the
instant 0 and /; indicates the image under consideration.

Outputs: The parameters row shift and column_shift are calculated from this
algorithm and indicate the number of rows and columns shifted due to the misalignment.

1. Set the parameters of search_length, search_breadth, search_origin, threshold.
2. Set the window gray_value, window _size.
3. For i from —search_length to search_length
Begin
For j from —search_breadth to search_breadth
Begin
Set sum_gray_difference=0
For all rows and columns in the window from search_origin to
search_origint+window_size

Begin

Calculate the difference= I;(row+i,column+j)—~Ip(row,column)
If difference is greater than threshold then
sum_gray_difference=sum_gray_difference+difference

End

If sum_gray_difference is greater than the window_gray_value

Begin
Set window_gray value=sum_gray_difference
row_shift = i
column_shift = j
End
End

End
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Appendix E
Algorithm for Elimination of Background Traces

Inputs: The size neighborhood is set according to the thickness of the background
traces to be eliminated. J; is the image consisting of background traces. The parameter
threshold is used to test whether the pixel under consideration belongs to the probe or
to the traces of the background. If its neighborhood is empty or nearly empty, then it is
considered to be belonging to the traces of the background.

Cutputs: All pixels corresponding to the traces of the background are set to 0
in the image I.

Set the value of neighborhood=15
Set the value of threshold=0.4
For all pixels of the image I;(p,q)
Begin
Set the value of the surround to 0
For ps from p-neighborhood to p+neighborhood
Begin
For gs from g-neighborhood to q-neighborhood
Begin
If ps is equal to (p-neighborhood) OR (p+neighborhood)
(q-neighborhood) OR (q+neighborhood)
then Add /i(ps.gs) to surround
End
End

Set average_surround equal to surround/((4)*(2 * neighborhood))
If average_surround is less than threshold * Ii(p,q)

then [;(p.q) equal to 0
End

144



Appendix F
Integrals of Q(x) and Q3(x)

Integral of a Q Function

The integral of the Q function is evaluated as follows.

7)- fo2)

t—

[o(=

-T—t
M
/Q ®+/Q
= t (since Q(—x) =1-Q(z))
Similarly we can prove that
t+T T
z -—
o)
T-t

Bounded Values of Integrals of Q(x) and Qz(x)

z z
Lemma 1. For all x>0, the values of integrals [ @ (p)dp and [ @ (p)dp are bounded.
0 0

Proof: The upper bound of Q(x) can be written as %e-_;l. Hence, the upper bound
x ] z

of the above integrals can be written as [ 2¢ dp and [ e~ dp respectively. But,
0 0

oo 2 z
we know that [ et dp = JZE Therefore it follows that the integrals [ Q(p) dp and
0 0

f Q?(p) dp are bounded.
0
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The Integral of the Square of a Q Function

Lemma 2.
t-T T +T T
[@(557)i= [ @ (555)e
o o
~T—t Tt
=t-2q0
Proof:

t-T 1

_T/_¢ Qz(ij>dz=;[Q2(-§)dv
- [@ Qs [ @)

L
a

0
=0/Q2(p)dp+00/Q2(P)dP

=t
oo
4

L
2

=a/u—o(p)12dp+a/02(p>dp
0 0

We can further reduce the above expression to

1-T

i

z4+T 9 ; - :
[ o(HE)a=t-2 0/cz(p)dp+z 0/czz(zo)dp

€)

4)

(5)

(6)

@)

kS i
Since [ Q(p)dp = ¢ (a bounded value) and [ Q*(p)dp = ¢3, (a bounded
0 0

value) we can write
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t-T

/ % (z:T)dz=t—2¢7(q1"q2)

-T-t

®)
=t- 2q0'

where g=(q1—q,) (the value of q is calculated by numerically evaluating the integrals for
1 approximated to 0.42, and g, approximated to 0.16). Similarly, we can also show that

1+T

/ 0 (sz) dz =t —20 (g1 — q2) ©

T-1

=t—2qU
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Appendix G
Algorithm for Detection of Touch

Inputs: The pixel values correspunding to the background are inputted using the variable
background(the value K in Figure 5.1). When the probe approaches this background, the
image contains the background and the probe. The pixel values corresponding to this
image is inputted using the variable with_probe(the function hj(x)). If the difference of
these two values is greater than the threshold then the pixel in the image is considered
as contributed by the probe. The value of threshold is chosen to be more than the signal
to noise ratio(SNR) of the image.

Outputs: The pixel values contributed by the probe(probe and hz(x) in Figure 5.1) are
collected from the image containing background and the probe. This algorithm calculates
the mean (Equation 5.3.2) and variance (Equation 5.3.6) values of the pixel values of
the probe.

Begin
Set the value of threshold=5% of the maximum grey value in the image
Begin
read(background)
read(with_probe)
For all pixels
Begin
difference=background—with_probe
If (difference>=threshold)
probe= with_probe
else probe=0
End
End
Calculate_mean(probe)
Calculate_variance(probe)
End
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