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N ABSTRACT

Stream Function-Vortic1ty Pressure Funct10nal
~Solution of ‘the Steady Euler Equations -

> et

®

s

thgang Fang, Ph D. .
. Concordia UnlveISLty, 1988

R

*

- In this- thesis, a pew‘variable is proposed“to couple the

.

s M R —

stream function-vorticity formulation kB of the steady'Euler
‘ equations. "The deveiOpmedt of_the vaqiable desxgnated the
x ‘
présSure functlonal and 1ts employment in' a stream
functlon-vort1c1ty formulatlon of the steady Euler equatlons
are . showny The,pa:tlal differential-equation relating the
mew Qariaole ‘to other variables of the flow field is
. 'derived from the steady Euler momentum. equation. Boundary
cooditions for this variable are very, straightforward to

implement'7when the finite element weighted residual method

is Aemployed{ With this formulation, the’ difficolty

. encountered when stream function formulation is applied té~;

transonic internal flow calculations is overcome easily.
This formulation is applied not only to inteérnal but also to
external flows. The solution procedure for this variable is
vetyflsimilar to that for velocity potential.. However, in
coottast to the velocity potential, rotational effects are

taken into account.

A



-a singular matrix system as the central

. does. Two procedures -to handle the ;

ot

iv . T ol

To aehieve thie purpose, ‘the. stream function and

vorticity method for solv1ng compre551ble inviscid flow

problems is studled in thlS thesis. The resulting vort101ty-

transport equatlon is proved to be valid for 1nv1sc1d flows

of an 1deal gas. For two dlmenSLOnal flows, the v 4t1city

tran5port equatlon reduces to a vorticity- ‘conservat j/on form.

It states that the ratio of: vorticity to pregsure is a -

-

constant along-a stream line.

In this study, a finite element eoldtion pfocedure . for

the Ffirst order vorticity transport equa ion is also

dlscussed because the Galerkim welghted reg&dual' approach'

for first order partial differential equatjons will‘lead to
K . r’\ - v

orticity transport

equation are discussed. First, the

- equation is :solved simultaneously with the stream function

L]

equation. Second, the second order :vorticity tranépqrt

.equation is solved. In the lafter case, an auxiliary

" boundary condition must be satisf}ed as the compensation for

-

the increase of partial differenfial equation order.

A particular result is that for transonic flow, a sharp

~shock can be .found with the hew variable formulation.

inite difference

vorticity transport
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INTRODUCTION

-
.

The Navier-Stokes equations describe the flows commonly

. .

encountered in - engineering problemé; However; it is
impractical in many. applications, or ionssible in some
cases today, fo solve the equations completely.
Nevertheless, if viscésity can be neglected, the
Navier-Stokes egquations reduce ‘to the Euler -‘equations.
%ymerical solutions of the Euler equations are partiéularly,

useful in some engineering problems where information on

pressure alone is desired.

1

One method for solving the Euler equations is the stream
function formulation. However, when stream function
formulations are used for internal transonic flows the ’
nozzle back pressure cannot be matched. As a result, shogké

whidh might occur in reality cannot be trapped numerically.

-

In this thesis, a new variable which can be called the
pressure functional is proposed to overcome the difficulty

encountered when the stream function formulation is used to

.

©

°
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- ’ .

‘transonic flows. This new formﬁlation-cah

external flows. o .

-

The presentation includes a study of 'the stream
‘function-voftidity” formulation of the steady Euler

equations, and the vorticity nature of compressible inviscid

’

giows. The Euler equatdons)\are solved for two dimensional
subsonic and transonic internal and external flows using the

finite element method. Based on the results of -the '

solution, statements about compressible inviscid flows are

made.and*direétions for future developements are suggested.
/ « . *
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A

1.1 Purpose of this research

>

Internal nozzlg flows occur in industrial applications
including suéersonic wind .tunnels and jet ghgine' inlet
diffusers.l These applications regquire both experimental
trials and calculations to create designs. The calculations
involve approximatiéﬁs to the complete WNavier-Stokes
equations. Nevertheless, it is both time "consuming and
costly to obtain the ‘solutions of the Navier-Stokes
eéuations. In ﬁarticular, in one approximation,the velocity
potential has been employed. However, the results of that
application of the velocity potential are limited: because
of the irrotatiod}l flow assumption.:

Stream function cformulétions are excellent substitutes
for the velocity \thé;tial ﬁormulation. This is because the

stream function formulation is straightforward to modify to

2

account for rotatiqnal effeqts. Nevertheless, this method
reqgiires knowledge of the vorticity, although the vorticity

is not known without a properly posed vorticity equatidn.

-

Furthermore, as mentioned above, when stream function

formulations are  used: to solve internal transonic nozzle

13

- Elows, it is extremely difficult to trap shocks because the

formulation cannot match the gszzlé back pressure. This
difficulty is resolved in this work by using a variable

called the pressure functional. This variable is used to

.o
v
RS
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: _ . o ;
- couple the stream . function-vorticity formulation - for

S ' pressure updating. The nozzle back preésur'e can then be - L
used' to determine the boundary conditions. Using the )
pressure  faunctional easily bypasses the difficulty

./ - , o
"encountered in' stream E£unction solutions of transonic
internal nozzle flows. , v -

o . The 'numerical approach e'mployed uses the finite element . i
methOd- v ’ ! -
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1.2 A brief history of the finite element method

The finite element method is an efficient numerical
procedure for solution of the differential equations of
engineering mechanics' This numerical' solution algorithm
has been used exten51vely in analysxs and design procedures

‘In englneerlng and lndustry

Tnis‘solution procedure was originally develeped by
strucfural engineegs in, the 1950's to analyze large
structural systems for aircraft. Turner, et al. presented
the first paper on this subject.2 Other authors innolved in
th; early research were Ciough3 and Argyris.4 ‘

Applications of the finite ' element method to ; wide
class of nonlinear mechanics problems were'cont;ibqted by
Oden.6 Other important research was done by Babuska and

10

Azfz,7 Ciarlet and'Raviart,8 Aubin,9 Strang and Fix, and

Lions and Magenes.11 /

In t e last flfteen years, finite eleient solutions of
fluid flow problems have been studied extensively.
.Abplication of the finite . element method to £1luid £low
problems was first reported by Zienkiewicz and Cheung.S
Other‘pioneering research on applications to fluid mechanics
problemé were undertaken by Oden,6 Cheng,12 Chan end

Larock,13 Baker,14 Olson,15 Doctors,25 Norrie and Vries.26

L.
o
ek «m‘ﬁ




.‘/ o |
‘ é,/' In 1978, Chung published the first bookgon this sul::jet_:t:,16
/ , . )
and in 1983, Baker published another book in this field.17
/ ‘ We "apply - «the method O transonic compressible flow
problems. : . .
, .
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1.3 Numerical solution of compressible inviscid flow

’
v

problems

a

. .
Numerical modeling of compressiple inviscid flow
problems 1is a very ihportant branch .of applied aerodynamics .

and fluid dynamics. Using these methods, as indicated by

Salas,l8 a large number of external aerodynamic problems can

s

be accurately described by a simple model consisting of an;

7

~outer inviscid flow plus a boundary—iayer thickness

correction for the vehicle shape.

At the start_of last decade, numerical solut sons ,were

maigly carried ‘out by the finite difference method, The

research'%ork included a mixed finite d{ffgrence s;heme"for
solving the transonic small-perturbation equation for the
velocity potential by Murman and Cole.l® This was considered

a breakthrough in the field of computational transonics.20

[l . A
! \ ’

Later, the transonic full potential equation was studied -

'by many researchers using both finite difference and finite

element methods. The methods included-development of @hetso
called artificial viscosity method for transonic flows. It
is . still used in many full potential codes today.
Basically, the artificial visccsiﬁ& method is dérgved from
Jameson's method- for the'conservative t;ansonic potentigl‘

ca}.culation'.21 This method was further studied by Hafez et

al.,22 Holst and Ballhaus,?3 and Purvis and Bupkhalter.24

1
r ’ . N

< ~

L4

”~

r




et i -

o

3

-0 . A"w; \
Early applications of finite element solutions of
transonic full potential equation were ;tudieq by‘ Deconinck
and Hirsch,27 Bristeau et a&.,zleberle,zg Qnd ﬁagéshi.3°

Finite element solutions of the stream functiom equation

have also been studied by Habashi and Hafez,3! and Hafez and

Lovell.32 L o,

Applications of these methods to turbomachinery were
. - A P

presented by Deconinck and Hirsch, 33 Habashi and Hafez,3!

n

~ .
Stegerbet al.,34 Keck and Haaé}35 Habashi and Youngson!36~

and Cedar and Stow.37 However, because the full potential
equatié% is based on the assumption that the flow is
irrotational, it does not account foi®f {he rotational

i .
reffects. Furthermore, it has been fouhd that thg solution

of the £full potential equation is not ‘unique. 'For certaih

' . ' * p * . . . \
values of angle o attack and Mach numbefﬂ the Dbasic

transonic potenti ‘% equation admits two or three solutions

1

for the lift.38(4 Therefore, application of ,the full

potential equaﬁion is limited.
; o ¢

«

Because the full-potential eéuéfion does not account for
rotational effects, a modified potential methpd was studied
by Habashi, 'Hagfz and Kotiuga.53'54 Using the modified
potentf%l, .the p;essute is calculated by solving the Euler
momentuin . quations°! ratgz;' than the depsity—velocity

-~

relation. It is reportéd in their papers thaf for transonic

flows over an %airfoil with an lattack angle, the modified’

-
% .
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potential gives a unique gglution. However, -the modified

~ L4

'potential method predicts no sharp shock waves when
transonlc flow problems are solved. Shock waves are smeared

over a number of elements.

. - &
Both modified stream function and other stream function
\formu;ations have been studied.32¢35/56,57,58 phege studies

show that stream function formulatipns arg excellent

w

substitutes for the full potential equation, since agreement
beéween the full potential and the stream ftinction equation
"is good. ' However, in contrast to the full potential, the

stream function formulation can dasily be modified to

4 .

.

|

account for rotatjonal effects. .
* \\f i - '

. ) .
~ Most of the modlfle& stream functlon formulations are

o

based on Crocco's relation. This method’feéﬁlres knowledge

! of the vorticity. However, vorticity is not known w1t?out a
. ) ‘ |
properly posed vorticity equgtion.

s

. In the past, salutions of the Eulet equations were
o studled mainly by finite difference method d\d finite volume

e method. 39740, 41,42,44,45,46 pq pointed out -by Steger and
L4

Warming5Lk§nd qohngonsz, attempts to deal directly with the

s . stead& first  order Euler equations have met with immediate

¢

difficulties. Thus, some alternative approaches were
studiéd, such as fe?i;direct solution procedures?® and high
order embedded method.%4:45 -

L] ! ‘} . O
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¢ . . _
The steady Euler equations are also difficult to 'solve

'

with. the finite element method.\ Th}s is mainly because a
set of first ggder part;ii differential equations are
iqyolved. fhe Galer&}n weighted ;esidua% aﬁpfoach for thgse
first order partial d;fferent}ar\equatons will ﬂlead to a
singular matrix system as the central finite difference
does. Finite Element least sqruare method for solving the
steady . and the unsteady Euler equations was st;udied.‘”'48
Other forms of the Euler equations are -also studied, such as
the use of Clebsch-type variables.49,50 The.above,séggies
have led toward alterhative implementations of the Euler

N
equations.

.
S
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1.4 Stream function and vorticity method | "

fhe stream funétibn and vofticity method for solving the
Navier-Stokes equations has  been studied by“ many
researchers. 5969 Unfortunately, most of these studies are
for incompressible flow problems. In 1972, Chengsg‘ applied
the stream f:Lction and vor;icity method to incompressible
Yiscous - fiows. Following Eheng, the stream
function-vorticity method wéé studied and applied to the
incompressible Navier-Stokes .flow probleﬁs. These studies
were 1limited to low Reynolds number flows. Now, it is Q:T?
Jknown ‘that this 1limitation 1is caused by the solution
procedulre.53'55'67 However, at that time, researchers did
not recggnize this. Olson and Tuann®?2 claimed that in the
stream ?functionbvorticity method, the discretized equations
for thé(streém function and the vorticity cannot be solved
simultaneously bgcause vorticity boundary conditions are not
known a priori. This opinion was in accordance with Ehe
paper by Taylor énd Hood.®l In that paper, they 'proposed an
itergtive technique for satisfying the vorticigy boundary
con@itions. These . solution procedures for sthe 'stream
function and vorticity equatiéns reducéd the stabilit; of
‘itérations. Thus, the stream functioh and vorticity'method

was limited to very low Reynoids number flow problems,

Later studies show that if the solution procedure  is,

changed, it. - is possible to apply the  stream

- i . ’




. o : O e R E s SRR R T R POV S R T IR
’ s b ‘ - P ST L S
/ O
4
<

fﬁnction—vorticity method to hﬁgh Reynoids number " flows.®3

‘It is algo found- out that the stream function—vortiLity"

* i

- .equations allow for soléing their discretized form

simultanedusly.65'67 When -solving the stream function

equation and the vorticity transport equation

. simultaneously, there is no convergence problem. The

Reynolds number can be higher than the laminar flow Iimit.

Vorticity boundary' conditions along body boﬁndar;es are

determined by stream func@iqn solutions-in ghe nearyy region

of the solid wall. - We observed that the stream

function-vorticity method for incompressiﬁle viscous fiéw'

problems has been studied only fb{ two dimensional flow
) 2 .

problems.

. & »

67 proposed a new procedure for

L4

implementation of ‘the boundary * conditiéns .of the.stream

Peeters et al.,

functionlvorficity formulation. In that paper, the no;slip

,solid wall boundar%.conditgon is applied by taking advantage

. .

of the siﬁple implementation of natural boundary conditions
in.the finite element formulation. The iterative evaluation
of wall vorticity is not needed. The extention of this

method to EompressiQ}g two dimensional flbws has héen.
studied by Habashi, et a1.69, - .\

*

Although the stream function-vorticity method has been

applied * to bbqth'inpompressible and compressible flows, the
details of formulation of this' method for cbmpressible

. N A
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inviscid flow problems remain unknown. In this work, it is
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found that the stream function-vorticity method is’ a ve;y~'

efficient and wuseful approach for compressible inQQSCid

+

flows. The vorticity transport .equation for compressible

inviscid €£flows provides an important clue for undersﬁéhding

*

the vorticity nature of compressible inviscid flows. ‘ .

-

.
’
’
: &
’ ¢
- L d
. v
-
A
:
q!\
- *
N
f o
) . -
1
o ° ~
-
B 1 >
* -
- Yos
-
* .
»' "
- - N
X . “
- .
‘s M 4 K
4 " - i

Bl i

[
R



~ . . . e P ST T, T A S e e
e .o . - SO DD TS AR TR R RIS
S - > ‘ - » N RAEIRAAE AN

i

| I
1.5 Outline of this thesis

-

o1
b

.The steady  Euler equations with primitive vaiiables are
. Qépy difficult to solve with the finite element method.
This is because thé Galerkin Qeighted residual finite
elémént apprbabh, like the cehtral'finite‘diéference method,
wili generate a singulaf matrix system. " For th{s ’reaéon,e
other forqg of the Euler equations'arertudied; Inlthis
— wo}k, the stream funct}qh and vorticity formulation is
applied for 'solving the stegdx Euler’ equations. This
approach inéolves invéking‘the vorticity transport eqguation
for éompressi?le‘ inviscid flowé. Ihe’vqrticity transport B
equation for compféssible inviscid flows is derived from the
Euler equations. For two dimensional compressible flows,
the quation states thét the ratio of vortjicity to pressyre

[

remains constant aldng a stream line. :
" ) m‘ | 2 ‘ |
It was indicated above that most of the yinviscid

transonic flow solutions iﬁtroduce the vorticity explicitly,
but .only after the shock wave. ﬁowever, according - to the
vorticity transport equation studied in thié ‘work; the.
‘'vorticity is conserved for two dimensional flows. Thus,
vorticity introduced écross the shock wave must be carried
infinitely, because there is no vorticity dissipation in the

»

inviscid flows governed by the Euler equations.



t

Tye vorticity transport equation studiea in this work is
a first order partial diffe;ential equation.. To include
such a first °ofder part@al differential equation in a
numerical procedure requires an efficient ‘"solution
algorithm. ° Therefore, in this study, - the vorticity
tFansport _equati;n is handled by two different solutioﬁ
procedures, In the first procédure, the stream function
equation and the wvorticity transport equation are solved
simultaneously. The Galerkin weighted reéidual apﬁroach can
be used for both the stream functiop equation and the
vorticity ransport equation. 'In this case, the matrix is
not ill—conditio?ed ‘because the vorticity term indb&ved in
the stréam function equatiog is dependen} 6 the wvorticity
transport equation. The second approéch is to solve the
second order form of fhe vortigity transport equation. In
ghis case, the stream function equatioﬁ ana the vorticity
transgoré equation can be solved seperately. However, an’
auxiliary boundary condition must be satisfied as the
compensation for the increase of the partiai differential
equation order. In this work, it 1is shown that the
auxiliary boundary condition is straightferward to handle
wigh the finite element method because the boundary integral

-~

in the finite element formulation - of the second order
. b Y

vorticity transport equation vanishes.
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. Next, a new formulation for internal transonic flows is
proposed based on a new variable définition. Th;s new
variable can ' be called 'pressure functional'. Physically,
the pressure functional represents the work done by the
fluid éloﬁg a stream line. The purpose of this formulation
is*to couple the stream function-vorticity formulation for -

.internal transonic flow calculations.

' i 'The presention proéeeds to thi paftial differential

- equation relating the~pressure‘functionél and variables of

‘ the flow field. It too is derived from the steady Eulér
equations. Boundary conditions for the pres§gzgﬁgfggggipnal'

equation are ve;} easy to implement when ﬁjni£e el;ment

weighted reéidual method 1is employed since b%undary

conditions along stream line boundaries or body boundarigs

‘ are Neumann boundary conditions. In the finite element

formulation, Néumann b?undary conditions are straightforward

to implement sfhce boundary inteérals appearing in finite

e;ehent equatiogs are null. - It isb also interesting to

observe that upstream inlet and downstream outlet boundary

conditions for this wvariable are very similar to thése of

the velocity potential for internal . flows. Free stream

Vo boundary CQnditionsc for extern;l flows also take similar

forms. The solution procedure is very siﬁilar to the one

»

used for the velocity potential for both subsonic and

transonic internal flows.’® For transonic flows, pressure -
. |



functional values must be 'specified. at both inlet and

p ¥

outlet. The increase_ of the | pressure functional values .

between - inlet and outlet is ;uniquely determined by the

3

nozzle exit back pressyre. k :
This thesis includes two calculations. The £irst is the
transonic internal nozzle-flow. The second is thelttdnsohic

flow over the NACA-0012 airfoil. '
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CHAPTER 2.

et ’ GOVERNING EQUATIONS

. In this chapter, we discuss the Euler equations, namély
the basic equations for inviscid flows and continue to

discuss the stream function-voifticity-pressure fu&?tional .

’ )
, formulation of the steady Euler equations.
7 »
A
- 3 ¥ i
" \—/
i .
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2.1 The basic equations - ) -
‘ /
/ ) ’ . » [}

The ' conservation laws for compressible inviscid fluid

flows are described by the Euler equations; These equations

demonstrate how the mass, momentum, and energy are conserved

in’the flow field,

.

The cohtihuity equation is

219"

+ pV¥ = 0 o (2-1)

v

a

" where p is density, V is the velocity vector.,and t is time.

' The operator

¢

3 -
=3¢ Vv o (2-2)

? A

T

-

¢
denotes that the derivative is taken following the fluid

particles. , -

-

The momentum equation can be written as

»

DV 1 ~ .
Dt + pVP = 0 . - (2-3)

.
v

where P is the presé%re and all external body forces are

neglected.

*

If .there, is: noahqat conduction in inviscid flows, Ehg

'ehergy equation can be written as

-

s d
=

. men
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Dh _ 1pp - -
; t ¥ oDt ‘ ‘ _ - (2-4)
[ \ - , . . ° ’
T, . , -7 . R
; where h is the enthalpy. -If the inviscid fluid is also a
_ perfect gas, 'the enetgy equation can be written as
Dp Do SN
PDt = YPDE, (2=5) |
i where y=cp/cy. This equation can also be written as .
P/pY = constant (along a stream line). ‘ (2-6)"
, XA Engtion (2~6) is valid for.compressible inviscid non-heat .
conducting flows of the perfect'gas. If the upstredm

stagnation condition is uniform, eqﬁatioﬁ (2-6) is vélid

through the entire field.

<
-

By taking the .scalar product of the velocity vector and

the momentum equation, we can obtain

- DV , .
v+(pt + VB/p) = 0. _ ~ \ (2-7) :
'Therefore, we have ' \ _ .

. 9 1. , : C,
D(V<4/2)/Dt + PVeVP = 0. \ (2-8)

U
e s e
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For steady flows, the energy equation and the momentum

[

>

Vevh + Ve(v2/2) = 0. - v . (209)

3

-
]

" This equation states that the total enthalpy is a constant

along a stream 1line in steady flows., If the fluid is a-

perfect gas, the energy equation becomes
N
H ) 1 R

t

1 e : .
v2/((y-1)p) + 3v2 = constant , (2-10)

A
<

«along a stream ‘line. This form- of ‘the steady énergy

equation is  freguently used for solving compressible

Q

inviscid flow problems. Other forms of-the Euler equations

are discussed by by salasl®, and Moretti’3, for example.

e
o

[

s
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, equation combine to yield C . L
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w o 2.2 6ogticity transport equation
The vorticity transporg‘ eqiration, which represents
‘ conservation of vorticity, _can be derived from momentum
. T P .
equations. The definition of the.vorticity vector in any
+  orthogonal coordinate 'system is = V4
. _ » . i
Q= UxV . \ : (2-11) ’
' ' .- 9
£ - where 1 is the'vorticitydvector, V is the velocity of the
‘.*t,‘ . flow, and V is the-gradient operator. 3
‘ So . » ¢ ' ¢ l ‘ . )
' Since the momentum equation for compressible inviscid
ooN . o .
1 T flows can be written as
i » -
oo W . .
. 3t * (VeV)V = - 57 - ) (2-12) )
A o e ‘ °
P N T .
e ‘ the convective  term in the .momentum equation can be !
ot expressed in the fellowing way ,
‘ L4
o o e ’ o ’ ' ? ‘.
S V(TV-T) = 2V-V7 + 2Ux(VxV) - (2-13) - .
‘ ‘. o’ ’ i s, > y ‘ ' \
. " i ' l ‘ ‘~ ‘ : ’ ) ~
of ) . -
' (7+7)V = 29v2 - ¥xQ, (2-14) " -
[ [y ) 2 [y e
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Substituting equation (2-14) inbd'équation (2412), we can

obtain
: v 1 VP
3e=Ux0- (3VV2+5) . . (2-15)

.

Taking the curl of each term in equation (2-15), we can

obtain the following equation

AN
@
Lol |

- 1 '
£=Vx (VxR)~ (V5)xVP. . (2-16)

Qs

In équation (2-16)

U (Fxf) = (FV)T - (FW)T - Q(V-V) (2-17)
¢ " i )

and by perfect gas eguation

a ? . ,
f : é.

~V(1/p)xVP = =VTxVP/(pT) ’ ~ | (2-18)

From thermodynamic- relation \
VP/p = Vh - TUS | (2-19)

& equation (2-18) becomes ] . | ‘ ‘}/’

> ' ‘
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=9(1/p)xVP = VIxVS : o (2-20)
. Co o ) _ o ¢ : -
Thus, equation\(z—ls) can be written as !
. ‘ ) ]
p@/p) &  _
pt = (p°NIV
+ YTxVS/p , (2<21)
‘ For steady isoenergetic flow, Crocco equation is
’ WV = TVS ' . (2-22)
| = .
Thus, ' \'“’
S
YTxVS = VTx(QxV)/T
" “ \\;\)
=\(~"§(V'V'I;) - H(R-vT))/T | (2-23)
. . . ’ | %
Using equation '(2-23), equation (2-21) is written as
’ ‘ ) “a ﬁ ‘ \\ 5 , ‘ Y .
a/mEv.nr | B W
. t , ) < . ' - -
Py = {1/0)8V(V/T) L (2-24)




25 —
= For steady'two dimensional floé, eqnation;42:244_:edu;as' ~§
- _‘l’_ A , * - . ‘:
VeVpp.= 0 (2-25)

where w=vyx-uy. .. , —

-

~ Thus, the ratio of vorticity to pressure is a constant along

. a stream line’4 /

-t w L3
VeV = 0 (2-26) ot

Equafion (2 26) not only states that if a flow begins

1rrotationally, it, w;lL, gemaln irrotational through the
A

entlre‘ two dlmensgonal‘Lflow field, but also describes the

relation-of vorticity to pressure. ‘

.t

For . steady flows,‘;he vorticity transport eéuation can

also be written in second order form as e

- - w l '
pVV(pVeV(P)) = O. - (2-27)
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- 2.3 Stream function formulation L )

1

-

For three dimensional flows, two stream functions.are
needed because one scalar value function in a three
dimensional flow field cannot determine stream 1line

patterns. These two scalar functions are two stream

surfaces in a three dimensional flow field. Their

v intersection contour represents a stream line.

P

If these two functions are expressed by ¥; and Y¥;, the

compressible velocity field is given by :
PV = V¥1xV¥j3. : , . (2-28)
Since vg;ticity is the curl of the velocity,
¥ | . . ¢ : <
2 = Ux((V¥1xV¥3)/p0). . - . . (2-29) ”
4 . | . L .
If the flow field is reduced to two dimensions, we have
‘ ¥y = 2 o : | S (2-30)
and
x ' . . , o . 3
T ¥y = £(x,y). v - (2-31)
JM ' . ' i : -' ' ’ ,
A Y 2 L,
b . : - .

[T . ‘a .
s ERan
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The above equations

3 .

L pu = §y o (2-32)
\
) s

* and
L]
. .
pvV = - 5%. (2-33)

This 1is the élassical two dimensional definition of the
velocity field. . The stream function equation becomes

\ \ B ) . > ’

t
i

! ,
Ve (509) + w = 0. o (2-34)

3

To closg»thé set of partial differential equations for a .

complete formulation OE) compressible ﬂ&ug~ problems,

equations (for pressure and density are also required..

coners
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2.4 Pressure functionral method _ - %

L)
+

A pressure relﬁ&ion can be derived from the momentum
equation. By' taking the divergence of the momentum

‘equation, we get
' -¢

-~

V2 = - Ve (p(VeT)V). (2-35) -
. L .

2

T 54 ‘
As ‘'indicated by Hafez, et -al., if this formulation is
employed for transonic flow problems, no sharp shock can be

found: >4 Thé*shock is smeared 6ver a number of elements.

In this work, we introduce a new formulation in order to

¢ »

trap sharp shocks. The new variable introduced in this work
can be called 'preséhre'functiénal'. Thg goveﬂning partial
differential equation fér the pressure functional can be
derived from tﬁe momentum equation. With this new variable,

" » 3 -
finite element discretization can be done easily.

; The pressure functional Q is defined by
A . .
P = [7]'7Q o (2-36)

~

&.
where P is the local pressure in the flow field. By ' taking

the scalar product of the velocity vector with the

\ \ | ‘
N " N
.
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divergence of equatidn (2-36); we obtain.

-, 2 —
pv:v[|§|-vol= pV7P. » " (2-37)

Using the momentum equation for steady flows written as

in equation (2-37), we have

h7A

oV V( [T} vQ)=~ o2T(Vo1)T. . (2-39)

Equation (2-39) provides a required necessary relation
between the pressure\ggsfiional and the velocity of the flow X
field.

4 .
For subsonic flows, both the pressure equation and the

pressure functional equation can be solved and bour
fbrmulations give the same solution. For.transonic flows,
presgq;e is calculated by solving the pressure fupctional
Equatioﬁ’(above. Our results indicate that employing the

finite element-weighted residual discretization method, the

pressure functional demonstrates a similar b viour to the

velocity potential, for internal %ransonic flow pfoblems.
. - 1 |
So, the 'difficulty encountered in the solution’ procedure of

\
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' the internal transonic - stream function ‘formulation
disappears.' s . \ ‘ \ O . \\J/V/

. /

N
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After the pressure is obtained, the density is

calculated using the eﬁergy equation.,
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* CHAPTER 3.

FINITE ELEMENT SOLUTION ALGORITHM

Most of partial differential equations that describe
fluid flows are. nonlinear and may have complex or unknown
initial and boundary <conditions. This makes  fully

analytical solution of real engineering problems impractical

at this time. Nevertheless, today'é technological equipment
still . demands 'solutiops of these partial differential
equations. These solutions can be determiﬁed by ' numerical
procedures. One of the préceduiés'is—the finite ele@ent

method.

The finite element method is a solution methbd based on

N

a numerical discretization of a mathematical statement such
"as a variational principle. When variational principles are
“not available, a weighted residual formulation or a least

square method is used as an approximation.

In this thesis, a finite element solution procedure
usiflg a weighted residual formulation is applied to solve

those equations for two dimensional, subsonic and transonic

"flows both over airfoils and in channels.
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3.1 Solutions using the finite element method

The finite élement method was originally developed to
solve differential equations numericaly by employing
variational principles. Howeve}, for aQ large c;ass of
partial differential equations encountered in engineering

problems, there is no variational principle. An alternative

developed to preclude this difficulty is the Galerkin

..weighted residual formulation.l7 In this work, the Galerkin

weighted residual method is used for the finite element

formulation. &

With the Galerkin weighted residu?l method, a partial
differential equation is written so that zero ‘occurs on one
side of the equal sign; if an exact solution could be
sub;tituted into thg equation, the result would be zero.
However, the exact solution is not known for most partial
differential equations | ih engineering problems.
Accoréingly, if an approximation to the exact so;ution is
substituted into the differential equation, an erroneous
value results. In the procedure, this error is multiplied

by a weighting function and the product is integrated over

the solution region and set equal to zero,

The next step is to divide the solution region into

‘apbrOpriately shaped elements. This process is called grid

generation. Then, within each,K element, the physical
\ <
\

.
)" .ﬁ
Tt
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variable is approximated by a simple function. Thus, the
variable within an element may be approximated Py a lingar
\
combination of element values at the nodes variables. :‘The

coefficients of the nodal values are called shape. functions.

4

In each element, a local stiffness matrix is formed ‘in

)

accordance with the nodal values of the physical variable.

The entire field is then characterized “by a global'u

matrix constituted from local matrices. This forms a set of

“~

aibebraic equations for the nodal values of the physical
» . P
variable. The solution of the'aigebraic equations. provides

thg solution for the field.

v =
2

For nonlinear partial differential equations, an

iterative procedure iq required because the 'global matrix is

. depandent on the physical variable. . 3

~F
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3.2 Finite element formulation of SF-V-Q equations

The Qorticity' transport equation is a first order
partial differential equation., In the previou chapter, it
is’ indicated that the Galerkin weighted residual finite

element method will give the same -discrq*}zed simultaneous

equations as does the central finite difference for first:

@

sorder partial differential equations. Thus, the solution

procedure is "~unstable or oscillates in the stream line
direction. Two approaches can be used té overcome this

difficulty. In the fi{Ffst approach, the stream function
: S\ -
equation and the vorticity transport equation are solved

n

+ simultaneously with f{he Galerkin weighted residual method.

oHowéver, since phe Yorticity transport equa?ion is codpled

with the stream function equation solutions of the -

a

discretized simultaneoqs‘ equations of . the vorticity
. v g ' '

transpért‘equation are not independent. The second approach
4 ' . .

solves the second order form of the wvorticity transport
equation. Heregj‘however;‘“stream " function equation and

vorticity equation can be solved indebendently:

L]
o

The Galerkin weighted residual formulations foi these

. \
equations are

L -
< JIW(Ve(5V) + w)dxdy =0

P

for stream function equation,



- W ' ’
IIW(prVp)dxdyl =0 , 5 (3-2)
s ., ) ' + !
for vorticity transport equation, equation (2-19), "/
] - - ’w ¥
J[#pV v (p¥-Vp)dxdy = 0 ] (3-3)

° )

for the second orden VOtthlty transport equatxon, egquation

(2- 20).
. [[wv2pdxdy = [[wfdxdy S (3-4)
- for pressure equation,. equation (2—35f and .
. : : . : / '
[[WoT+9( 7] +vQ)axdy” - e
. 4 (,- Q‘ T, '
e . : o . .
' : ‘ .= [ [wEidxdy ‘ (3-5
L . .- NS "(3

€

'for pressure functional equation, equation (2-39). In the

4

. above relations, f£is the right hand side of the pressure ;°
“ LT equatlon, £l 1s the right hand side of the pressure functional
Peo o equation, and W 1s the WElghtlng functlon. ' L

[ 4 L N - .
N . Carrying out the Green transformation, we can obtain the
. / . -

*» following equations : .
ce S | & i

- 1 - . . .
S TG TRy dxdy - _ R
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WOy
= Jrpands

for stream function equatfuoh,

.. e

”Wp-'V'u"‘dxd"y =0
W'

for vorticity transport equatipn,
B

w "
[I(oV+Vg) (pV+ W) dxdy

]
[N

W
= JTWpV+VgpVpds

ey

for the second order vorticity transport equation,

’
4

[(vR)« (VW) dxdy=[J (VW) (pV+VV)dxdy
¢ + JPW(pV*VV+VP)nds

for pressure "equation,.and

IJ‘(T%f-VQ)(pV-vadxdy  —

=[[WoV(V+V)pVdxdy

==f[ (Vé') 5. VWdxdy+ S rWp ( p{V2+p)Vnds

(3-10)
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for pressure functional equation, where /rds represents an

integral along the positive direction of thé field boundary,

;épd n is tHe normal direction of the béundary.

If the second order vorﬁicity\ transport egpation is

equation switches from

.

solved§ the partial differential

first order to second order. This implies. an auxiliary

boundary condition,

- w . G R -
Vevg = 0. \ , © . (3-11)

¢ ., -
( W

Thus, the bdundary integral of the  right hand side of“

»
’

equation 3-8) disappears.




3.3 gssembl& of the matrix

ol
The simultaneous equations are constitufe@b from the 'f
local stiffness mét:ices. Within an element, the déighting

function is chosen to be the element shape function...
In this study, isoparametric bilihear elements with four .
] N

nodes are used with the following approximations:

[ 3

Y(x,y) = Nj(x,y)¥;€ (i=1,2,3,4) - (3-12)
\\ / |

-U_). . e ' . .

pl%:¥) = Ni(x,y) (w/p)i - (3-13)

P(x,y) = Ni(x,y)Pj:e , : \\‘(3-14\)(\

e

or for pressure functional

- ‘ .
Q(x,y) = Nji(x,y)Qi® _ S (3-15) .
L | -
where ¥;®, (w/p)i® Pi® and Qi;® are nodal wvalues of the -
. ‘ . ®
element e. .
“ -
. , <
The discretized simultaneous equations are assembled by
the following local stiffness matrices. For coupled stream 23
funct.on ang vorticity, the ‘local stiffness matrix is - L i ?
K®3, §(¥,¥)+K®;, §(¥,0/p)=E%p (V) o (3-16) i

A
'
4
"y
O
vhe

e e .

-~




e, WU _ ~ ,
K5, j(p,p)=0 (3-17)
_where
L .
e N 3 l . :
K%, j(v,)= IIE(VNi)'(VNj)dxdy 3 (3-%3)
Kei;j(ﬁr%)=-fINidexdy ; (3-19)
0 ' . ‘ | I |
Ke. (=,
1%p . . \
= [[Nj (pV+VN4)dxdy . (3-20)
- ; ‘
and ’
. \ Cw .
£810(¥) = [rNj/p .3pds | (3-21).

¢ .
-

In the§e equations, f®p(¥) only appears on boundary

elements. N

For the second order vorticity transport equation, the

vorticity - term in the stream function equation appears on

.the right ‘hand side- and is updated in the rsubsequent

iterations. The boundary ~integral of the. vorticity
formulation . disappears.  Thus, the auxiliary boundary

condition is satisfied as compensation for the increase of

"~ the vorticity transport équation order. The local stiffness
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matrix in this case

v

e
=11 (o¥EWNy ) (o7 TN5) dxay.

LT
(3-2312

4

Next, the local stiffness matrix for the pressure ..

equation is 3/,

K®i,j(P/P)

where

<
»

-K®j,5(P,P),= [[(UN})e*(VNj)dxdy

£%5(P)

and for pressure functional equation,

*

K®;,$(2,Q) = £251(Q) + £%12(Q)

)

-

3

£%3(P)

a

==[[(UNj )+ (pV*VV)dxdy. -

»

'

e e
h t
. - B PR
- ‘ L PO
% . PRI N
. W P I LR SO
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(3-24f

(3-25)
(3-26)
(3-27) '
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where ‘ )
K®i, §(Q:Q)=[{(pV-UN;) g-%'VNj)dxt_iy_ . - (3-28)
feil(Q)"".U(Vp)2V‘VNidxdy ‘ ~ ,
. | , ;
'”NipV(TI.V)p"?dxdy . ‘ (3~29) ~,f “ “’4’4‘
A /
£%12(Q)=/TN;p(pV2+P)Vpds. o o ~ (3-30)

Fox three dimensional axisymmetric flows, the Mocity
companen®s are defined by ) ‘

.

pu = ‘i‘:‘ 3% ] , I ’ .(3"31)

: . v ) i '
and q

C 1 3y o ‘ . "
pv = - T Tx. fé '(,‘3-32),.
The vortic’ity'transpdrt ‘equation B’ecomeS‘

Dlu/p) wyv C alaay
2lusp) -84 , (3-33)

v t

Here, w/p 1is no longer constant along a stream line. . This

leads to another equation governing three dimensional .flows

e
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with axial symmetry. That is, :

) v [*S
—~ , . .
D(gérz - - :
Dt = .0. . . ( 3-34) , ' ' Y

r l
Thls equatlon states that for three dimenSLOnal axlsymmetrlc

flows, w/(pr) is conserved along a stream line.

L
The stream function equation in this case has the form

1. ~ .
Ve(or W) + w'= 0. v (3=35)

Thus, the finite element weighted.tesidual formulation for
these équations\ takes a similar form to that of the two

dimensional flow case. : ‘
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3.4 So{;tion ptocédure

To obtain solutions of the steady-state nonlinear
partial differential equations shown in the above section, a
relaxation procedure is applied. This relaxation procedure

shown below is ‘very efficient and is' shown to be an

‘excellent solver for nonlinear systems.

~

Assume we are ati . the nth iteration of the relaxation

'do-loop', and the 'nth solution of the dependent variable GI

is obtained from the system. The sfstem ﬁatrig antl g
formed with G". Thus, we have X
Antlgn.pntl o pn+l '~ (3-36)

I NJ

where F“+l‘/fg.the right hand side of the matrix system and
Rt is the residual of the system. When we get the
solution of the dependent variable G“+1, the matrix system
w&ll give an exact s&lution under A"l angd. pR*1, Thus,

J\ .

an+lgn+l _ pn+l _ g c (3-37)

and so a relationship between the increase of §6"*1 and the

L]

residual RPM1 is obtained, which®is

antlegntl & — gA*L, ' | (3-38)
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: To relax .the system, a relaxation f;ctor a is
introduced. Thus, ‘ o .
AP*tlggntl - o GRD*T (3-39)

N\

This relaxation method can be wused for both the
simultaneous solution procedure and the seperate solution
procedure of the stream function—vo}ticity-pressure
functional formulation. The'relaiation can alsp be applied
to the stream function equation alone while other eguations
are being solved without relaxation. The relaxation factor
is greater than one for over relaxation and less than one

-

for under relaxation.

¥

During each iteration, the stream fungtion equé?ﬁon and
vorticity transport‘ equation or stream function equation
. alone are solved first, depending on whether thé first order
vorticity transport’ equation or the second order one is
used. Then, pressure is calculated by solving‘the pressure
equation or the pressure functional equation for subsonic
flow. For transonic flow, the pressure functional equation

N

is solved. Finally, the density is obtained from the’energy

equation. For transonic flows, the formulation requires the

E%fg‘“j use of a artificial viscosity,30 The form of the artificial
viscosity used is . N .
B=p-Max(0, 1-1/M;2%, 1-1/M;_12)pgAS ‘ ¢

where s is the stream line coordinate, i-1 is the upstream
location of the element i, M is the Mach number, and p is

density. ) i
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3.5 Boundary conditions

One of the advantages of the finite element stream
function and vorticity formulation is that boundary
conditions are simple to implement. In' this work, three

types of boundary conditions are studied. They are stream

~ line boundaries, inlet and outlet boundaries, and free

stream boundaries. Stream line boundaries are associated
‘with body boundaries in inviscid flows and boundaries for
symmétry. Inlet and outlet bounda;fes are needed for
"internal flow situations, such as, the nozzle flow and the
channel flow. Free stream boundaries refe{ to the far-field

boundaries for external flows.

Centre lines of the nozzle and the channel ag;
considefed ‘'stream lines because of ' | symﬁétry.. Thus,
stream function boundary conditions have a very simple form
along %Pese lings.‘iStream functioh‘is also a constant along
the upper wall of the nozzle and the channel. This constant

must be determined by the inlet flow rate.

Pressure and pressure functiongl boundary conditions
along a stream line ‘are not required because the boundary
integrals, appearing-in the weighted residual finite element

equations, vanish along a stream line.

A detailed discussion of boundary conditions for a |,

particular flow problem’is shown in the next chapter.

* I .
. .
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CHAPTER 4. 2

SOLUTION EXAMPLES ,

In Chapter two, we derived the stream

»

fuhctionrvorticity-pressure' functional . form of the steady

Euler equat;onsi In Chapter three, we applied the finite

i

‘element method to theée equations and derived their

discritized form. 1In this Chapter, these steady <Eauations

are solved for both internal and external flows. The

z

numerical solutions are compared with both analytical
results and experimental data. Based on thekgumerical

’

results and’ the vorticity transport equation, _ general
: - . /

vorticity conservation for inviscid flows is also discussed.
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4.1 -An introductory discussion:

Rotational effects in inviscid flow;}%re mainly caused

14

by upstream vorticity, because the Euler equations conserve

it. ., An example 1is the incompressible inviscid flow in a

channel- with a sudden-enlargement as shownwin\Figure l. For
oo 4

irrotational flows, no vortex can be found in the channel.

_On the other hand, if the flow ‘at  the channél inlet is

rotational, a vortex may be found’ at the corner of the

sudden enlargement, as shown in Eidure 2.

-

3

Nevertheless, not all problems can be adequaéely

hdesbribed by inviscid models. An example is the attached/)

fiow past a liftiﬁg airfoil. 1In the absence of viscosity,
the wvelocity of the flow at the trailiné edge is infinite’
and zero JQift is predicted. ~ In this situation,  the
irrotational a§sumptidn fails. 3 Howevér, Jbecause of

¢

mathematical simplicity of the iriotationgl 23Ael, it is

still wused. for céibulations ot the lifting ajrfoil. To

- employ the irrotational model, an extrq&eous condition is
j .

needed at t ‘trailing edge of the airfoil. This is the

Kutta-Joukowski condition, which requires - that, the  flow

- leave the airfoil smoothly at the trailing edge. Thus, the-

Kutta-Joukowski condition adds vorticity around the airfoil.
The irrotational assumption conflipts with this condition.

Poésibly this is the reason that the full potential equation

’

A

< ' .
L

does not predict unique solutions. On the other -hand, .the

S~
©

. ‘5&%
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<< Euler equations can give reasonable solutions for the .
lifting chse becduse of the conservative nature of the

=

vorticity as explained by the vorticity transport equation:

.
{ ,;% is believed that shock waves can also introduce

’ ' vorqicity into the flow, but only across shock waves.?0 1n
d
this study, it is shown that vorticity introduced after

shock waves will be carried infinitely downstream because . -
there is no vorticity dissipation in inz}scid flows governeé
- ‘/ by the” Euler equations. In fact, forlrotatidnaﬂ flows,
\although‘vorticity inc;gasés acr8ss the shock the increase

22

is constrained because the ratio of vorticity to density
( . . \ B s o -
v remains constant, while the. density ihcreases. For

>

’ iriotational flows, wvorticity is not introduced across the

. shock in this‘éﬁudy.,

o Finallyk.upstreém vorticity can: be caused by, viscous
)/‘/“, ’ ~ properties of real flows.%7, In this case, as the vorticity

'transpoyt equation shows, vorticity must be given at the ‘

i LN

.( upstream = boundary in order to carry. out a numerical

-

solution. JIn addition, upstream supplies of heat can change

th&'cstabnation_ pfoperties of ‘the flow and 8o generate

R upstream vorticity. However, since flow problems wiﬁn\ heat

ei : Eénduction are relatgd to viscous properties of real fluids, / «
S numerical 'solutions for this kind of flows can be obtained P
v , . ’ . [ s “ . . ' P

i from the full Navier-Stokes equations.
. 4

. K
“« - v
. N ' . A 3 " L. + . —
. . ' - .
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In the ekamples that follow, we focus on two inviscid
frows, the ‘flow in the internal nozzle and the Elow over two (
dimensional airfoils. )
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‘4.2 Quasi-one dimensional nozzle flow

Quasi-gne dimensional subsonic and transonic - Eflows
o . :

through nozzles are very important topics in £luidl dynamics.

@

Since .analytical 'sdlutions are available, numerical

N ’
’ solutions can be validated by comparing them with analytical
solutions. The solutions can also apply to. for  two

* dimensional flows where comparisons can also be made with

the quasi-one dimensional analytical solutions.

p
LI ! N 2

; —
The numerical proJedure used in

3

this study for transonic
‘quasi-one dimensional does not need the artificial density

procedure of

»

required for the é%angard solution the £ull

™  functional equation. Thus, numerical results of this
L] -
procedure can qu ma?e arbitrarily close to those from

] ' analytical models. -

! . ¢

Since the flow is igrotational, the quasi-dne

) dimenéﬁonalQSozzle flow can be solved using-  the ¢ potehtial
C . ° N { .
\tbquatibn.

equation,

The first basic eguation needed is the 6ontinuity

-
M

[} * “‘-é__ gi - \ 1
dx(Apdx) = 0 P ©o{4-1).

~
L

¢ 7/

whereW is area, p is density, ¢ is velocity functional --and
. e

e A /
x is. the streamline codordinate. The ; density-velocity

Y i 3
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relation is also needed for .updating the “density and

i

pressure. That is,

0/005(1-(y-1)u2/(2292) )1/ (¥-1) - . (4-2)

where y=cp/cv, a is the soudd)velocity and the '0!' suBscrip
equals stagnation properties. "

s

The standard sofktion-procedure is an iterative one. It

solves the continuity equation for ¢ with an updating value

of p. With this method, the solution for a subsonic flow  is
the same as the analytical solution. Hquéver, for transonic

flows, artificial viscosity 'is needed for the.convergence of

the iterative procedure. Artificial viscosity introduced:
'into a flow makes the chdking point move upstream of the.

throat. 1In our study, we define a new relation for the full.

functional by using

dc  d¢

dx = Pdx- ' s .- (4-3)

Thus, equation (4-1) becomes

d  de 4 . \ .
& (Ba) = 0. o g (4-4)

<

>

The variational princiéle for this equation does not require

an itarative procedure. Thus, the product of the densify

1
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.and the velocity can be determined by solving equation (4-4)
only once. Coupled 'with the density-velocity relation,

N

equation (4-2), density and velocity are determined.

»

ihe\solution is unique for subsonic flows. ’ However, ﬁor
transonic flows this is not the case because expansion .
sgocks may appear. Artificial fiscosity or density are "not \
needed because there are no | iterations in the sdlution
procedure. \Nevertheless, the entropy condition must bet
satisfied or a pﬁysically meaningless expansion shock could

be found.

The results of a quasi-one dimensional solution
procedure are shown in Figure 3 and 4. 6 Pigute 3 shows the
Maéh\ndmber distribution alon? a nozzle that extendg- from
x=0 to x=10 with the throat located at x=5. The area ratio
of the nozzle inlet to the throat is 2.5 and the area ratio
of tﬁe nozzle exit go the throat is 1.5., The flow problems
are solved with five inlet Mach numbers of values 0.15,
0.18, 0.2, 0.22, 0.24. The figure shows that in all cases,
numerical'resulés of equation (4-4) agree very well with
analytical and full functiona lutions. Figure 4 shows
pressure distributions along the nozzle for the same
coorgiﬁates and Mach numbers as shown in Figure 3. Good
agreement between pressure values can be séen. In order to

see the comparison between the analytical solution and the

numerical solution in detail, results are also given in
4
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~ Table 1. Numerical solutioni'show that for subsonic flows,
both the classical method and our method agrde with the

analytical solution. * : ' ) .

hY .
For transonic flows, Mach number and pressure

distributions along the nozzle are given in Figure''5. and

Figure 6 for an’ inlet Mach number of 0.24. A detailed
comparison iS)ﬂaan in Table 2. 1In Fiqure 5 and Figure 6,
we see that the potential solution shifts the chocking point
upstream somevhere of the ‘nozzle throat. The potential
“ gélution requires the artifigial viscocity to .obtain
solutions and the results can vary witﬁ values of the
artificial viscosity selected. quever; the method shown in
this work does not need artificial viscocity; a unigue
solufion can be obtained with this'method. The solution of

equation (4-4) shows a good agreement with the analytical

solution.

LY
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‘4.3 Two dimensiona{iﬁpzzle flow

In this study, the classical two dimensional and three
dimensional axisymmeﬁric inteaﬁﬁfjnozzle flows are chosen as
internal flow examples. The Euler equations are solved with
the method developed in this study ‘for subsonic and
transonic flows fo; different inlet Mach numbers. . Numerical

s§1utions to these problems have been, reported by Habashi

gn Hafe253 and others.

A coarse grid for the two dimensional internal nozzle is
given in Figugg 7. The coarse grid has .8x30 nodes. A
refined grid size also used hag 8x100 nodes. The inlet‘area
of the nozzle is 2.5 times bigger than the throat area. The

{
exit area of the nozzle=~is 1.5 times bigger than the throat

area. ‘ /l /’
{

e

Boundary conditilons for these problems can Dbe
impl?mented easily. Along the centre 1line-of the nozzle,
the stﬁeam function value is chosen to be zero because the
centre line can be considered a stream line. Along the
upper wall, the stream function 1is also a constant
determined .gy the 1inlet flow rate. Pressure and pressure
functional.bouhdary conditions along the nozzle centre line

"and the upper wall are not required because boundary

N -

integrals, appearing in the weighted residual finit%?element

fofhd&gtions, vanish along a stream line.
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-As shown in Chapter 3, to solve first order vorticisy
transport equation, vorticity boundary conditions along a

stream line are determined by

oiE

= constant . ‘ ’ (4-5)

and for three dimensiondl axisymmetric flow, by

Tp- constant. © . : ~ (4-6)

If\ the second order vorticity transport equation is solved,
vorticity boundary conditions along a stream line are not

necessary, since the auxiliary boundary condition must be

satisfied and the boundary integral disappears. However, .

vorticity boundary conditions at the inlet must be given.
¥

Eounéary conditions at the nozzle inlet are determined
by the inlet flow situation. 'If an if;otational flow is
expected, a uniform inlet velocity is given. If a

‘rotational flow is going to be solved, a sutable cﬁrved

velocity profile is assumed at the nozzle inlet. A typical

curved velocity -profile is given by the relation
u=23acos(bmwy) (4-7)

where  u is 4the 1inlet wvelocity, y 1is the transverse
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coordinate of the flow field, and coefficients a and b are

determined by matching the uniform inlet mass flow rate. At

the inlet of the nozzle, the velocity in transverse

direction is assumed to be zero. Stream function boundary
- i

conditions at inlet are determined by the inlet velocity

‘'profile. Vorticity and pressure boundary conditions at

inlet are also determined by the inlet velocity profile.

Boundary conditions at inlet and outlet for the pressure
functional for both subsonic and transonic flows are similar
to velocity functional boundary conditions. At the outlet
of the nozzle, pressure functional values are specified. At
inlet, boundary integrals in the finite element formulations
are carried out. For transonic flow problems, the iterat#e
procedure is very similar to that of the transonic internal
functfonal solution used by Habashi et al.%® At the both
inleEﬁ::ynd outlet, pressure functional values must be
specified. The increase of pressure functional wvalues
between inlet and outlet is determined by nozzle exit back

pressure uniquely. I
{

For internal nozzle flows, vortiy is given at the

inlet through a- velocity profile at inlet. Because
«

vorticity is conserved for inviscid flows governed by the

r

Euler equation, the upstream vorticity _distribution is

N 13
Ay,

: kRl
necessary. \\\ i A

%
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Several inlet velocity profiles are shown in Figure 8.
In ‘this figure, the velocity ratip of u/Uy where Up is tge
uniform velocity is plotted againt transverse distance from
the centre 1line. The irrotationai limit of these velocity
profiles islthe uniform inlet flow. The coef%iqients ““q"
and "b" can be chosen the following way. Select "b" first

4

and then calculate "a" from

’ v

Myniform = IOYODUdy ' ' (4-8)

where y0 is the nozzle inlet width and mypjiform is the mass
flow rate pﬁ\i:z uniform flow. The velocity profile values
t

decrease from centre line toward the no;zle wall.

Pressure values at the throat section are given for
P

different inlet Mach numbers from 0.1 to 0.24 in Fiqure 9.

As inlet Mach number increases, 1lower pressures are
predicted. The pressure has a lowest value at the nozzle

center because the flow is rotational.
. {
Figure 10 shows stream line patterns drawn along the

nozzle. For rotaticdnal flows, stream lines are spaced

further apart as the distance £rom the center line

L4

increases. In comparison, for irrotational flows, stream

»

lines are arranged uniformly.

AT AR R Sl FA STy et AT M R R PN SR
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When the stream.  function formulation is applied to’
internal transonic flow problems, it is very difficult to
match the back pressure. If the pressure equétion is
‘ employed, the back pressure can be used as a boupdary
condition for. this formulation. However, sharp shocks
cannot be calculateé since shocks are smeared over many
elementé. The pressure”functional formulation studied in

this work, overcomes this difficulty.

The pressure functional formulation involves a similar
approach to that for véloéity functional for both subsonic
and transonic flow problems. éoundar§ conditions are very
simple to imélement when finite element method is used.
Along stream line bou _ériés, Neumann boundary conditions
are satisfied since bodnzgfy integrals in finite element
formulations are null. For transénic internal f£flows,
pressure functional boupdary conditions at inlet and outlet
sﬁould be determined by ~the given back pressure. For a
beginning guess, inlet and outlet boundary conditions can be

" chosen from the choking flow. A
. — |

In Figure 11, ‘the vorticity distribution along thé\
nozzle boundary is shown. As the nozzle throat jis
approacheqd, vorticity decreases because  the density
decreases. Across the shock wave, a sudden jump of the
vorticity 1is: observed for rotational flows. H;wever, the

ratio of vorticity to density is still a constant unless an
\
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explicitly argued vorticity term exists. .For rotational
flows, Mach number distributions along the nozzle are shown
in Figure 12 and Figure 13. The shock along the central
line is stronger than the irrotational shock because the
velocity, reaches a hig@er value. Pressure distributions

)

along the nozzle are shown in Figure 14 and 15. The
irrotational fdnctional ' solutions for the 'same back
pressurés are also shown in these figures. For 1lower back
pressure, the shock is stronger as shown in Figure‘13. The

pressure reaches a lower value for a lower back pressure as

shown in.Figure 15. g ’ SN

1

The equal vorticity lines are shown in Figure 16 and 17.
g THere are jumps for vorticity vilues across °a -shock. = The
stronger a shock, the bigger the jump in vorticity. For

/Iines end on

-

higher vorticity values, the equal vorticity
[
4
the nozzle boundary because vorticity decreases in the
converging part and increases in thenjﬁvergihg part of the -

nozzle. : ' )

v
v
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4.4 External flows ' ‘

L

The Euler equations are also solved for flows over the

1)

NACA-0012 airfoil, as external flow examples using the

L

formulation developed in this work. Comparisons are égde

L
with experimental data.’?

Boundary conditions for external flows in these cases
are discussed as follows. Free stream boundary conditions

for stream function are

’

2

- R

-

V=UnPo (Y ga - x sina). (4-9) .

) | .
where Uy is free stream velocity, peo is free stream density
and a is attack angle of the agéfoil. Thé free stream
boundary condition given in Reference 57 is correct only for
incompressible flows. hFor compressible flows, the error
caused by the free stpeam boundary condition given in
Réferencé 57 is up to twenty percent if free stream Mach
number is 0.7. For by her{E:;; st{eam Mach number, higher
errors are expecge:?F If the pressure equation is solved,

the free stream pressure value is taken to be the boundary

condition for the pressure equation. Free stream boundary .

conditions for the pressure functional equation are similar
to? the free stream boundary conditions for the velocity

functional equation. .

]
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Bbpndary conditions for.the pressure functional can be .
written as o L ,

. Q = Po(x poi§{+ y sifa). . , (4-10)

’
- . hY -

where Ps, is free stream pressure. The airfoil surface can

be considered to be a stream 1liné. . Thu§>&—£he stream
’ . ®
function is a constant along the airfoil. No boundary -

_conditions are required for vorticity, pressure and pressurg
'y , S o o : L
2 . functional on the airfoil because boundary integals

appeating in finite €lement formulations for these variables - -

* k]

vanish. ' L
\ . ‘ ) . .

' ©
A coarse grid ' for flows over the NACA-0012 airfoil is

shown in®Figure 18.. The refined grid;is shown in Figure 19.

The coarse grid Has 21x118 nodes and the refined grid has

+

34x204 rodes. Numerical results for both the coarse grid ;

—~—

and the refined grid are ’Presented and compared. The
presehtation includes subsonic flows and supersonic flaws,
b !

. e ) ~
"for ' both. nonlifting airfoil and 1lifting airfoil. Thé

i
’ ! <

convergence rates of this solution procedure are alsp shown.
. . \ . 3.
Numerical results "are %ompared with experimental data for

o . ! , . . -

‘ 0 both subsonic and transonic flows. These experimental data
- Vo ‘ -
were designed for estimagg of numerical solution procedures

-

and were used by otheré,?s . | o

-~
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& For subsonic non .ftmg flows, eressure cpeff1c1ents on

. - i
the alrfM shown in Figure 20 and 21 for free stream
‘ - 93 '
Mach-humber 0.5 and 0.703. , For supersofic non-lifting

flows ,: pressure poefficients are shown in Figure 22 ‘and 23

o

-

-

T A .Y
for free' stream Mach number, .0.803 andi0.829. In" the :

non—lifting case, "the Kutta condition is needed because

the fiﬁow‘gs’ symmetric.  Numerical results show that for

¢
©

° subsonic . flows, solutions of the’ steady Euler equations

g § - L . ' ¢
;’\égree‘ wellkwith experimental data. For transonic flows, the
| . : &

s .
. B
’ N H]

J - o . . . . ’ . ’ o .
pressure coefficient distribution curve moves further

% oa

. o~ : ~ s
) B ! ~ & -

.
' 4
.

3
= . e R '

Numéric’al fegults.’ f,orr the 1lifting airfoil \aref.al,s,o

. , ) '/ R v
presented in this. work. Comparison with ',experimen?al’
PR '
i r%sults are mad% ﬁor both supsonic apd transonlc flows. In

»

Flgure 24,, "thé’ed fessure ~coeff1c1ent over the alrfml “4or

.

freé s*traam Mac,h number 05 502 and an angle of attack 2. p6 is .

+

shown. \ -The -upper curve« reprsentswe pressure\coefflments-

‘on the upperl surface of the a1rf01l *For this free cstream '
4 } ¢
\Ma(:h ‘humbet and attack angle,,khe flow s, subvsom.c. The
K . &

numer:.cal SOlUthl‘l is very .close to exp@clmental “data. The

[

~pressuﬁe co.efj:'lcz.ents for free stream Mach number 0.75 whth ¢

X

v at:tack angle,s 2.0 and 3.0 are .shoyn in F’igure 25 and 26.

These, %‘ ate transonlzbflows. For tne}\lftmg alrf%

the Kutta condition is /1mp mented for the reason dlscussed o '

i) ‘\ '
above. 'Géqd agfeement vh%x expe}:upental.data 'appears .+

. N | 3 o
' ' , . , t A~ ’ T
- . . N . . * ‘ 's p “ »
’ ' : e f ‘ C . ' v
\, ¢ - - v
v * t r ) » i ¢
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rhe‘ convergence history- for 'free stream Mach number

'

. 0.703 over the NACA-0012 airfoil is ,shown in Figure 27. The

qofivergence history for free stream Mach rumber 04803 is

- 13

shown in Figure 28. For subsonic flows, only ten iterations

. [ 4
are heeded. For transonic flows, the calculation needs more
iterations to oonverge. ComparisoAE of numerical results
"
between reflned grid and uqreflned grid are shown in 'Figure,

29 and 30. For subsonic flows, the’ results are close to

'each other. However, for fransomic flows, hlqher shxgk Mach

numbeg is obtained because the. artificial viscosity has

/

lower values. Good agreement shows that gr;b generations

o

used in this work can predict écqgrate results.
. . . @

N
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This study shows that _the pressure funqtional

r

.formulation coupled with the stream function-vorticity

’

method i3 a very useful approach in numerical solution °of

the steady Euler equations. In par%icular, the difficulty

encountered when the stredm function formulation is-used for.

integyn&l transonic f£flows is ’overcomé eabily by using the
pressG;e ,functional approach. Next, the study of the
voFt;gity‘ t;ansporé equation "ﬁ”f¢gi§, work -completes the
detailed formulation of EQe st eamtfunctign-vorticity method
for compressible inviscid flow problems. This makes it

possible to use the thi§ formulation to solve the steady

Euler equations for transonic flow problems.

o
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5.1 Pressure functional method

~

-

Transonic internal nozzle flows had been difficult to
solve with stream function formulations. This ‘is because
matching the nozzle back pressure is difficult when stream

b} lfunction formulation® is applied. Furthemore, when the
pr;ssdre equation 1is coupled' with the stream function
formulation, the back pressure®f the nozzle can be used as
a bpundary condition. , However, no sharp shock can bg found;

. the §ﬁbck is smeared over many elements.

‘

P On the other hand, in this study, a new formulation is

proposed based on a ‘hew variable definition. This variable

* N
is called pressure functional. 1If this new formulation is
used to solve inter?al transonic flows, the difficulty

encountered for the stream function formulation is overcome

A easily. We have shown that this formulation is easy to
”\\ handle. The partial differential equation relating  this
> variable to variables of the flow field is derived from the

‘momentum equation. Also, boundary conditions for the
pressure functionaly equation are very simple to implement
when finite element weighted residual approach 1is applied,

. since along stream lines, boundary integrals appearing.in.
‘ the finite element formulation are null. 1Inlet .and outlet
béunéary conditions are Ivery similar, to those of Lhe‘

x velocity potential method. For external flows, free stream

+ boundary conditions also take similar forms,

T PR L TN
fﬁ":’u e ..
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. This solution procedure internal ‘transonic f£lows is

. very similar to that for the yelocity potential equation.
P&gsqure functional values at both inlet and outlet must be

specified. Finaly, the increase of the pressure functional

A

values ' between inlet and outlet is uniquely determined by

.

'y

the nozzle exit back pressure.
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5.2 Stream function~vortibity formulation

Prior to this work, the stream function-vorticity method
was mainly apélied to incompressible £flow problems. ' For
comp{essible inviscid flows, the modified stream function
formulation was employed to take account of rotational
effects. The modified stream function formulation requires
knowledge of the vorticity. Unfortunately, vorticit§ is not!'

tracked if thé 9orticity transport equation is not involved.
( ,

-

This derivation of the vorticity transport equation fér
t - , ,
_compressible inviiscid fluid flows is valid for non-heat \
conducting flow of perfect gases. In most aerodynamic

problems of interest, this is a reasonable assumption. ¥

We have successfuly applied our stream
function-vorticity formulation of Qge Euler equations to a

variety-of fluid flows @f epgineering interests.
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5.3 Conservation of vorticity

i\
Our expression for the vorticity transport equation

indicates that vorticity is . conserved in inviscid flows..

Thus, vorticity + can be initiated upstream to create

rotational flows. This is the case in the internal nozzle

flow example studied in this work. Because the real flow is

" viscous, the inlet flow for the nozzle could be rotational.

¢
We gave this inlet rotational condition as a non-uniform

inlet velocity profi{s.

2

Nevertheless, in some cases, the Euler equations cannot
£ '

predict a physical flow problen correctly. An exampie is
.
the solution of the Euler equations for the fiow past a
lifting airfoil. In this case, E%e mathematical model is
not valid because the free stream flow is irrotational.
According to the vqrticity .tranigort equation, the flow
through the ’entire field is irrotational because the
vorticity is conserved in the inviscid fluid flow governed
\

by'the Euler equations. In this situation, 'the irrotational

assumption fails.

In \order to get a solution which is physically correct,
an extraneous condition is needed at the trailing edge of
the airfoil. Tpié condition is the famous Kutta-Joukowski
condit_on. The Kutta condition forces the flow to leavé'the

airfoil smoothlﬁ. Thus, the Kutta comrdition introduces

It
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vorticity around the airfoil. However, the Kutta condition
is implemented, it conflicts with the irrotational full
potentia, mocdel because of thq irrotational assuﬁption.‘

Possibl% this is the reason that the full potential equation

J :
predicts non-unique solutions. .
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5.4 Solution technigue

The vorticity tra#sport equation studied in this work is
a first order partial differential equation. It 1is very
difficult to solve such first order partial differential
equations directly with either the finite element method or
thé finite ‘différence method. The finite element weighted
residual formulation leads to a singular matrix as the

central figéte difference approach does.

]

In this study, the vorticity transport equation is
solved by two procedures. The firét approach is to solve
the wvorticity transport equation simultaneously with the
stream function equation. In this procedure, the vorticity
trahsport equation takes a first order form. The‘weighted
residual finite element formulafion is used for both the
stream function equation and the wvorticity trénsport

equation. Because these two equations are solved

simultaneously,.the resulting matrix is not singular. }

The second procedure to solve the vorticity transport
equation is to derive the sécond order form of this equation
and then apply the finite element weighted residilal approach

N

to the resulting equation. In. this case, the 'stream

function equatfgh and the vorticity equation can be solved

inaepemiently. However\ an ¢ auxifiary boiindary condition
must be satisfied as the compensation for the increase‘of
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the partial differential equation order, In this work, it
is shown that the auxiliary boundary condition is very
simple to implement with the finite element method; ¥ the

boundary integral appearing in the finite elemqnﬁ

formulations vanishes.

.

¢
,
¥
.
¢
) ; 4
.
AR 8
N
\d .
°
, [
-
’ »
& -
d
' o N
L]
M a
FR
'
,
- -
’
' -
13 - -
~ - 14
. .
. > - . -
'
r . _ .
-
A
- h -~
o ¢ f
o - g
*
' -
- 4 - s -
. i <
1 1 ~
[
s .
- : : : ©
. . ! . vy
2 R * [ .
' v foL8 -y '
\ i ' ..
v . '
; e K .t N ; ‘:_ ,
i X < e Yy -
. P t, PR '
', PN . 4 i e
S ; s
$ot

+ i Y
£ "M.
4
R \

- i
s

I3

AR o et % -
Rttt ki, WBRAN. 4 L




s
'
v
K
i
.

.

5.5 Numerical results

.

Numerical results for -inviscid flow problems in this

‘work are discussed in previous chapters. For fhe two
dimensional nozzle, numerical results are comparig Qith the
solutions of the full potential equation. Good‘agreement
among théﬁ shows that approaches pFoposed in this study are
efficient. and useful. For transonic flows, the nozzle is
choked upstream soméwhere o; the throat. Further studies of
the quasi-one dimensional transonic nbzzle flow point out

that chbking upstream of the throat 1is "~ caused by the

"artifitial viscosity. PRor the NACALOO;Z’airfoil, numer ical

results are compared with experimental data and results of

'the_ full potential equation. Good .agreement shqws the
' A
solution approaches proposed in this study are also useful -

for external flows. . .
; . ‘ .
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. Bhis thesis demonstrates that the Euler‘equations can be
solvéd " with the : stream . function-vorticity-pressure
functional formulation, provided the vorticity ﬁransport“
equation is employed.: With the pressure functional, the

-

difficulty encountered in the transonic internal stream
d .

function solutions is overcome. The finite element method

gdgﬂ\be Qﬁed to perform the numerical calculations. The

approacqfi§’useful for both subsonic -and transonic flows.
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1. 1-D Nozzle Solution (chokigg)
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Table 2. 1-D Nozzle Solution (traﬁsqnic)

A

Aera
2.46985
2.23967

1.97949

1.74992
1.55096
1.38261
1.24487
1.13774
1.06122
1.01530

1.00000,

1.00510
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1.04591
1.08162
1.12754
1.18365

1.24997

1.32650
1.41322

1.48995

Pressure Ratio P/PO

Analytical

0.95984
0.95065
0;93570
0.91581
0.88940
0.85474
0.81007
0.75420
0.68718

TN

0.61080
0.52828
0.47942
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0.65

0.70153
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_0.77720

0.80866
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10.85999 *

0.87663
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Potential

0.95976
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0.91567
0.88920
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0.60792
0.51169
0.42044
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