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L, . INTRODUCTION

S . L by

structure of the economic system. In this on-going process,

to take account of the non‘r‘eproducib'le nature of economic observations,

system,.and the dynamc chardcteristics ofithe econom‘lc process.

»

Indeed it was nééessa'ry to deve]op fundamental concepts suct; as j

-

”

stahst\cal ana1y51s and economic theor_y Many stat15t1ca1 est matwn.

testing and prediction procedures have been deve]oped to haridle he

)

vidrious kinds of problems in econometric models, including Tinear and

|

npn-linear interdependent structural models, models with time-serjes

.

implications, models for combined time-series and cross-section data, -
v L4

and models withmandom parameter's.

estimation procedures' for simultaneous lineir econometric models.
‘ 3

procedures will include varibus variants of least squares, maximum

likelihood etc. and some other a’}tern,at'e asymptotically justified

4

procedufes. In addition, we shall ‘a1so discuss the asymptoti¢ and
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LT CHAPTER 1

THE NATURE OF SIMULTANEOUS EQUATIOﬂ}MODELS

N f .
,
, .- 4

A 1. Research since the 1940's has led to the development of sophis-
d ! ' '
ticated estimating techniques QO hanﬁ]e the problem of simuﬁtaneity ’ »
K ’ / ‘
of economic relationships. Thé)pioneeVS #n this area postulated that
/ \J

economic actiéity could pé analysed.aé a system of simultaneous stochastic

/

S equations. Instead of determining i/%ingye dependent variable in a single
equation, they obtained a joint d}stribution,of dependent variables from

_ the simultaneous structure. - a 5 _ ’ ‘
e v ‘ . ,
Such a formulation led to the re-examiﬁation pf the Ordinary y
i / ) : .
Least Squares (OLS) method of estimation., /It was discovered that if

<

“more than one jointly dependent variable d&Peared in a particular

@equat1on least squares estimation yle]ddé biased and 1ncons1stent

estimates of the population parameters. This is a dlrect result of the ¢
intercorrelation between jointly dependéht variables and ‘the disturbances.f
In the ﬁ]assica] regressipn‘mode] this difficuity‘was obviated!ﬁy‘the
assumed fixed nature of all the independent variables. When the

. . )
simultaneous nature of economic activity is admitted into the model, the,

3

foregoing assumption becomes invé]id.’/. o . . .

A simultaneous equation model differs from the;ffgssica1 regression

‘models in the sense that all of the re]ationships inV01ved are needed for

determ1n1ng the value of even one of the endogenous varlab1es included in

B} " pge model. When an econom1c model has been specifically formulated as

’

. a set of we}l-dpf1ned stochastic relationships, it is termed an - 4
econometric model. The variables jnvolv%ﬁ in these equations may be -~
. . v
. N 3
’ . * /\,
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- classified into two groups, viz., endogenous and exogenous. The
endogenous variables are those ”héfh are required to be explained by
the equation system and the exogenous variables are considered a§99iven‘

for the purposes of explaining the endogenous variab]%i: . o

Fgr statistical purposes we distinguish hetween
' \
jointly dependent and predetermined variables. The current

wendogehous variables are called jointly dependent,

)

which are to be explained by the model, and the lagged variables (both

‘endogenous and exogenousx dlong with the curreqt exogenous variables méy
be éroupéd in a elass called predetermined var%gb]es. The values of the
exogeéous variéb]es.are comple%ely determiﬁed outside the system
whereas tﬁ§ Jalues of 1agged gndogen%us variables are rebﬁesentéd hy the
past value% of the endoggnpuf variables of the'mode{. We should observe
that in a darticu]ar equation there shaTl always bk one jointly

i depepdent vigriable which iﬁ "to be exp]ai;;d" and the others (bophfj

jointly dependent and predetermined) occu¢ring in the eqhation %ay be

.

<

~

called "exp{anatory." "

| : :
. ' | i ) .
. In an pttempt to effect a statistical estimation of Simultaneous

R . - . . rl
Equation Models (SEM), we must first make specific assumptions. about

. the stiucture of various equatioms in the particular model.  Some of

pt{ons are imposed bj the very nature of econdmjc theory
\ T ’ o0
white others are a direct result of empirical evidence. If ‘the number

of equations in the modé] is equal fo the number of variables to be

'.e%qufﬁEa:—i.e.,'the'joiﬁtly dependent variables, the sysj@m of

equations s said)to be complete.
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.. As an i11u$tration consider the simple dynamic Keynesian Model:
(-1521.1) Ct = Bo + B‘Yt;] ) ,
(1.1.2) Y, = Ct+1t

A3

‘ Here 1. is exogenous and C and Y are endogenous. C [consumption],-
. 7 . )
Y [income] and I [investment expenditure]. I, and Yo,y are
sn— ‘predetermined and Ct qu !t' are jointly dependent. Also Yt—T is

a 1aggéd endogenous variabTe. * There are two jointly dependent variables
and two equations. Thus, the mod’e} is complete Equations (1.1.1)

«

and (1. 1 2) ' are called structural equations.’
\ <7 . q
' In‘genera'l the, structural form of a simultaneous equation system

- . " <

* can be written as foﬂows

' 3115’113':“1‘25’&* secBuue TR 2%zt Yk T e
(1.1.3) ]

BorYat tBpo¥pt * "'-anynt”ﬂ u”zzxzt *zx"xt = Uy
o o e ' : . R
, - '\. - - “ - '0’ " :o - . : ‘, . Py
c Bt Bag¥ar T B Y e P 220 ke T e
“ for t = 1.2,....7, .-
H ' ) N ’ . ‘ " 9 ’ .

- - a4 - v ’
where the y's .denpte the endogenous variables, the «x's denote the

] “ ' -

3 predetermined. variable(' the u's represeht the unobserved stochastic

disturbances. The - 8 s and the T's are called structural coefﬁcients

.
—
.

* It is assumed that theory tymca'ﬂy spec1f1es some of the B's and the
/ - 'r s to be Fero ' . :
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P .
(1.1.4)\‘ BY, + [X, =‘u,c t=1,2,....T
./ -
where .
[ [ T
Nt *1t Uyt
Y2t X2t Uzt
Tt = » Xt = E s Ut =
[ 3 . .
Yt Xkt | Unt
L e .‘ PR o L, - E
(Mx1) c (ke x 1) '<\‘ﬂ"<1)
4 T,
B - ' 1
J ' [ B Bz oo By [ T2 é
, Bar Bap -+-- Boy J Ya Yoz ... Ya
v ot N . . ' - - .
B = N . s [ = . . .
. . . d . . .
‘ B Bz oo Buy T Tz Yk
ST (Mox ) - MxK)
> We assume that B is a nonsingula}r matrix. Hence we can solve
(1.1.4) for Y, to obtain the reduced form given by
o) -1, -
Ve = -BTIX, +B7 U,
~ (1.1.5) . )
= mX eV LT
. - - f
- a-d : S
Here T=-B [ ~ and Ve =B U, v . ‘
¥ q‘ ‘ » '
by * ]
Y SN
] o .
5
.. ~ ;..‘
b ar gl wigpearesy S e

The ‘entire system outlined in (1.1.3) can have the following

matrix representation:




. » v
h
e e e 57 St 7 i i 5y v vme m s

In (1.1.5) . : .

LTIP "k C [ e
1 T2 "2k ot
n =z [} vt = . ’ :
i
Lo . KY
“M} “Mz ----- "MK . ‘ - th
(M x K) ' (Mx 1)

The distinguishing feature of the reduced fo)rm [i.e. (1.1.5)] is that ,
in each of its equations only one jointly dependént variable app;ars. . '

This can be shown explicitly as follows:

s

< Ve T TR T M e Y MKk P e
(1.1.5" You = TopXlt + Mookpy + e H My Xy + Vo,
. T LN

.
-
. A

. .
. K]

Ime T T Y Moe oot Mk Ve ' - j
(t=1,2,...7 ™ . |

i
.

The r n's represent the reduced f?)mg coefficients and the ﬂ's. the

reduced form disturbances. It may be observed that, in general, each

e

reduch form distyrbance is a 1inear function of a1l structural

disturbances. . ’ S , . ‘
. i
¢ We assume that: , . A . fi!
’ a2 ,' 4 & ’ ' !
(1.1 ) E(ut) is a null vector and ) p e
Y o - ;
A 1 & ’ o ‘ - 't%.).




IS

Q;J.S) E(UtUE) =% isa nonsingular matrix whose elements are
finite and constant but unknown, '
& ¥
(1.1.9). the u's are iﬁﬂependen} between different observations
" in the sample, i.e. E(usug) is a null matrix so long as
\ s 1is not equal to t. (s, t =1, 2, ....T)
{(r.1.10) . the predetermined variables are generated by a stationary
. multivariate process which is independent of the stochastic
process generating sFE;cturai disturbances. .
(1.1.8) plim 575' is assumed to be goéitive definite, where
2 Xy S
r, < ‘
N A xz ‘ \ \‘
xe | © is the T x K matrix of o~
% :
X7 - o
~ | T i
observations on the predétermined variables.
__S}nce the reducel form disturbances are linear combinations of the
‘ N -
structural diSturbances, it follows that E(v,) = 0, and that the
variance-covariance matrix of the reduced form gisfurbances,‘ 2 is
, g
given by ST~ ‘ S
(1.1.12) 2= E(v,v) = e 0BT - e
e t't ot :
s , L (B") .
! ’ ) \ ’ “
: {
. /
» -
. J - - . .
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2. IDENTIFICATION

» <

Before attempt1ng to discuss methods of estimating the unknowq\\

parameters in the modE1 BY + [X + Y it is necessary to consider

t k]
the conditions that must be satisfied for any solution of
these equations. Tﬁis is génera11y termed as: the problem of
identification in SEM. ‘As soon as our model is expanded to make

- , .
for more than one structural relationship, the problem of identification-
emerges.\ .

- ¥ In theAcase of the Simultaneous Equation Model (SEM), it does not
suffice to know the precise 1ist of variables contained in the equation
to be estimated but it is also necessary to know what variables are
éontained in the other simu]faneohs]y holding equations or_even to hévé
additional information about the equation in questlon Empirical |
observat1ons alone,no matter, how extensive or complete, cannot give a]l
the information about the parameters in question, N

In deve16h1n§ a model, more than one structure or{ﬂbint in the
parameter spacé may be consistent with the-available data.  For example,
the structural model might imply that we have linear supply and demand
functions, both of which involve quantif& and price. In thiswcase, no
amount of observations, however large, on priEe and quantity can estimate
the parameters of the demand‘eqdatibﬁ or-the supply equation uniquely.

In other words, neither function is identifiable. If, however, our
specification of the model includes a sufficiént nmnber'of restrictions

? ‘ . . ‘ -
on the adnissible parameter space, then a series of observations on the

"set of’variables will permit idebtificatiou of both dsnand and supply

©

. ‘ E

. .
F Y T

-




. of the parameters. An analysis of‘ﬁhe identification propérties of the

* describing economic behaviour., The latter problem of inference is

equatjonsﬂ

It is therefore imperative that the structural model. must possess

a priori identification properties which are determined independently °

model may help in the sefgction of appropriate estimation procedures.
In generél, economic theory usually leads to the identificatiqn of most
structurgl relations. This is mainly due to the fact that the theory
often stipulates that several independent variables are togbg excluded

from each structural relation so that overidentification is usually

> .
'S

éuite common . ‘

dé&he first systematic work in fhe area of identification‘was done
by Koopmans (1949). In his article entitled, "Identificat{on Problems
In Economic Model Construétion", he made the following opening remark; Co !
"éxatistical inference, frsm observations to economic parameters, can ‘ ' !

L3 . \
be made in two steps:-inference from the obsgrvations to the parameters 1

of the assumed joint distribution of observations, and inference from

that distribution to the parameters of the structural equations

described b; the term, "identification problem".
Other important ear1y reférences on the identification problem ' ¢

include Koopmans and Hood (1953), Koopmans and Rubins and Léipnik (T950) . '

ok

and Basmann (1960). 'Fisher in his book entitled, "The Identification

Problem", McGraw Hi1l Book Company, New York, (1966), provides a -

generalized.4reatment of the conditions for identifiability: Fisher

(1966) looked in detail at idehtification through -"exclusion restriction." -

i.e., some variables are included and some excluded. He also discussed

identificatdon through restrictions dn the distutbance varian;e-covariance

¥ -
S
- . .
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matrix, identification under homogenous linear restrictions and the

complications of nonhomogenous restrichions, non1inear\€ies, and cross-

equation restrictions. 0

‘ Let ‘
(rv.2.1) Qt = 00 + G]pt + U]t' (DEMAND) ‘
(1.2.2) ‘ Qt = B, + ByPy + Uy, (SuPPLY)

where Q % the quantity demanded and supplied,” p 1is the price, the
u's are structural disturbances. As both of thése equations "involve

the same variables, any linear combination of then, viz.,
*

() #2500, = (o +280) + (Aag +3,8,)p,

+ (U Hhgune)

involves the same variables and

N2 A =1-d o for (o <As). ’

Now it is impossible to {dentify an empirical linear relation between

p and Q as demand function or supply function of the above ]inear
combination of then. Even the sﬁepification that a; <o and B, > o
does not help because the i's are arbitrary constants and can be so
appropriately chosen, as to keep intac£ the sign of a and B.

o Thereﬁgré, while compar'ing any two equations of the complété
system we must observe that the equations haqe at least one variable
which. is not common to the other. It means that quéti;ns in the.

‘ e )
system ‘must exclude Some variables. The equations (1.2.1) and (1,42.2)

become identifiable if we modify them as follows: N
L] E‘ r
. . v

g TN e

L ¢

o




. | | g "
i # ‘ ’

( DEMAND)

) (1.2.3) Q= ?o top az{t gy ‘
i N ’ . b
(1.2.4) ) Qt = Bo +'B]Pt + BZPt-] * Uy (SuppLY)
- where  Q, and Pt are endogenous and I and Py _, are predetermined.
-1 5 X
Since these are endogenous variables among the explanatory ‘

varia?les in the Simu]tanebus Equapjon Model (SEM), (OLS)'estimators of_/f
the structural coefficients are nb;’conéistent, at least in general.

We may try to estjmate the structﬁral coefficients by way of the reduced
form. 'Since in the reduced form equations, the explanatory variables

are represented by the predefermined variables of the 'system, then (gus) P
estimators of the reduced form coefficients are cbnsistent. The

quesﬁioﬁ then is whether we can derive estimates of structural coefficients
from the consistent estimates of the.reduced form coefficients. !n’othér
words, a structural parameter i; identified if and only if it,can be
deduced uniquely from the reduced form parametérs:

' " The reduced form equation given by S ) o

Vg =MXg + ¥,

represents. the unrestricted version of these equations, while the form
given by \

. - -1 - , |

. Yt = -8 [Xt + B Ut | . ;1

: _— , N . ~ i :

. represents: the restricted version. Whenever there is one-to-one \ ' .

corréspondence between the restricted and unrestricted parameters we
’ . R : ¢

have exact identification. On the other hand, when the number of the

. unrestricted coefficients exceeds the number of the restricted parameters

and there is no unique solution, we have overidentification. If the
' , .

c

e
. N ' Ld
- oL - PR
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number of gnres{ricted coefficients is insufficient for the solution, we
have underidentification. We say that an equétiop)is jdent-ified if i?
is either exactly %dentified or overidenfified.

In his értic]e; "A Simple Forecasting Model For The U.S. Economy”
(1955) and "Under1dentification; Structural Estimation, and Forecasting”

(1960), T.C. Liu takes jssue with the emphasis placed on overidentifica-

tion in the estimation of simultaneous equation models. He argued that

" economic theory supports the fact that underidentification is the usual

one. He further claimed that apparently "ﬁedSonab]e" overidentified
structures have been obtained probably only because the specification
errors have cancelled one anotheevand as a consequence of the prevaie;ce
of underidentified structures, the least squares reduced form equations
are llkely to be the best forecastwng results

Therefore, says Lui, the current emphasis on techniques of

estimation in overidentified systems is entirely misplaced; structural
‘ 5 “

estimation is generally not possible in simultaneous systems, and only

* reduced forms can be obtained. Furthermore, unrestricted least squares

| .
estimation of the reduced form is the appropriate method, for restricting

-

the reduced form by the a priori restrictions not only adds néd more /

information, it is positively harmful, as it adds misinformation.

Forecasting should therefore a1ways be done with the uﬁreeiricted

reduefﬁ}form which, as is well known; has’ smallest error variance for the

samp1e observations, as there is no reason to expect m1staken1y

» ey

overs1mp11f1ed and restricted modets tp do as well or better..

Fisher in his artic]e'entixled “On the Cost of Approximate

Specification in Simultaneous Equatioﬁ Estimation" (1961) examined Liu's

objections to simultaneous eqyation methods. Fisher claimed that the

+

.
it ot W o
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préb]em is not the discontinuous one of exact or overidentification ifﬁ

/

. the restrictions hold exactly and underidentification if they BO'not,

but rather one of diminishing estimation inconsistency as the'restrictions

are better and better appkoximatigns. However, we shall not indulge in

this kind of controversy and shall assume that structural equations under

© study are not underidentified. &

The following model serves to «illus:rate the notation of

o

jdentification. Consider the simplified Deﬁand and Supply model fora . »

given commodity:

(1.2.5) Qt =% f a]Pt + GZIt + uft . (DEMAND)
(1.2.6) Qt = Bo + B]Pt iy | . (SuppLY)
‘a] 0, aé 20, 31 >0 . where

1

|

i

Q fs the equilihrium quantity exchanged on the maykéf.
p fs the equilibrium prige.
I is the income of the consumer-. N =

The var%ables Q -and P are endogenous and I s exogenous.

a's and B's are the parameters fb be estimated. The u's “are v
random disturbances, and t represents a specific time period, :
~ Now equations (1.2.5) ‘and {1.2.6) can be‘written in the pattern .,

of ”BYt + th = Ut\ as fo1low;: . v \ - .

z BN LA —ay o, [ Uy
(1.2.7) . VB ||y tol-s, o 'It SR I i

. ‘ ,;
,\ _ -

&

R PP VI

I

The




The reduced form of

+

- P -
To determine whether the a's~and the B's_

T

can be expressed in terms
> .

Cof the w's, we substitute for Q, and P from the reduced form

(1.2.7) is given by . .- = : R |
| % LI el - 1
(1.2.8) = |- : + ‘ ' |
Py " T2 || Lt Vot | .
. ‘ ] ’ '
where B ‘ . 1 S !
™ M2 1o T [ e - i
. -
. s = -8 [ @’ ]
" T2 L N \
\_\ “ R
( 1 ) By 9] [ % "% } ‘
1 = - - i
: Ao PR I O T O - §
( 1 ) (081 - 3By)  agBy ]
Vy o Q. 'B _ ,
17" "(uo B, a, ‘ 1 ‘
and
# S
"It BNt PN Uit
]
0,8
) Vor Upg 151 -1 1 Upy
. ( 1 ) Bilyg + ayUp |
a,-B
- 178/,
' - u + u ]
[ ) T |t 2t ]
v P
o B { . .
From (1.2.8) wp can rewrite the reduced form as
. (!:2.10') P,G =y 4 “221t + Voy -




b

.

- B -

, - (1.2.9) and (1.2.10). Hence we have . : :

- -

(DEMAND) (Mg #Thp Ty #Vye) = o +aq(yy +TTpp Ty #vpy) oyl yfeivlyy

.
oy ¢

(SuppLY) (M) + Ty, 1 E i) = By BTy $ Ty T+ vpy) + uy,

Therefore,, o ’ T,
\ . i . _ ! ° .
n11+ My If = (a toy M 1) + (a n22+az)lt | ‘(DEMAND) .
L Y . N ‘ - g
. - Myt My Ty = (B, +By T 21)( B M2 1y . (SuPRLY)

~

(By virture of the def1nftion of Vit and Voi given prev1ously, the

stochast1c disturvances in g#ach equation cancel out each other)

The qualities from the Demand equation are é
. _ : t
My =8t Ty & Thp =Myt o o ;
Since tﬁeée are two equatiohs, we cannot solve. for the three unknowns f
a,» o and a, . ‘ R : v ;
From the supply equétioﬁ, % ' ‘ . %
: S My B By Ty s M =By Ty, 3
' * % ’ § -
: 1 n - .
e 12 12
hence, B =T, -— T and By = 5—
, o M. m, A o 10,

4 , The%efore, the Defnand equation is underidentified and the supply equation
] is exactly identified. '
| Let us consider once again the general representation of the M

. . £ : .
structural equations given by - BYt_+ [Xt s Ut“ and.the reduced form

given By __ L




16

¥o= X+, . e ;

\/

Substituting for Y, from the reduced form into the structural form to

t
. “a obtain
BriX, + BV, + [xt = U, = o
' 7~
o . BMX = —{xt .
P (1.2.11) LB = -] ‘ . . ” .

s

We shall use the relation (1.2.11) to derive a general . 3 .

&
%
identification rule for each structural equation. o
+ Expressing BA = -[  in expanded fotmggives '
Y ‘ - - - / - * , -
z_ . L - ~ ‘ . .
, A W AL TV B AL DL PSR TN S ek
(1.2.12) ' . ” ..
! Bor Baa---Bam | |T1 oz - T oy
l B . . . - D ~
. b P Pmze By | |
. If we consider the mth equation, we have‘fy m (l;2;12) L .-
. i . ’ ) - nlz An-‘z,.,...n.‘K-"
b (1.213) [Bn Bnzee o Bow] [n SN =7 m Yhes o Yk
& L, ) o ) . 2‘ ----- :.-. ZK " 'z
. hnM].........'n‘MK- X L4 P
ors ) {
— £
(1.2.14) . B, T = - N
' ’ L}




. “appgar in the mt"
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b

. : ) j ]
1f aj1 of the endogenous and predetermined variables of the system do}not

.

equation, some of the B's and some of the Y's

T1 be zero.

(1.2.15), " Let" wb = number of included endogenous variables in
- the mth - equation where
S be nurber of excluded endoge@s variables. -
. oy - re )
L S K* ='number of predeterpined variables which appear

in the ,m“‘f‘ equét‘lon and

K** = K - K* which are not included.

o

Let us assume without any loss of generality that it is possible

. to partition Bm and Y, as follows: ™~
. ‘-2.]5) /’ Bm ='[BA OAA]-
(]217) ‘ »Ym = [Y* ’0(**] o = R
where %, , T
. BA = [Bm] ’ Bmz cey BmMA ] is 1 X% MA
OAA = [0, 0..... , 0 ] ijs 1 % MAA
- Y* [Ym'l [} Y'mz . > YmK* ] 'iS ] X K* ;
.~ -
' Ops = [0, 0.....3-0 ] is 1 x ko

R




- The matrix T can be portioned conformabty into (
: e S \
' RA,* . UA,** )
(1.2.18) n =
' : nAA,* HM’** :
. 3 ¢g~ ‘
where e : '
B -
. K* column K** column
- 'J. - N : ’ M
¥ rows LA S A \
> MAA r*()wsl . rjA'A,* ITM;** ‘ ‘ .
P . . N

L3

From (1.2.16), (1.2.17) and"(.1.218) we can now write (1.2.14) as

unknown Y's .

equations, one for each élement of. the 1 x K**

. ‘that if we want a solut‘ion for the

. ¢ nA’* HA’** d
(1.2.19) By, s O Yuos O .
' AN . * *% .
RN A A
-which gives
¥ ' » ,
(r.2.20) - s UA,* R £ . .
3 " s k e/ s ‘ ’ ) "h
(1.2.21) T By My ™ Oy \ "
*Now since one of the#8's in 'each‘i struct'ural equétion equals .
unity, (1.2.20) and (1.2.21) involve MA T unknown B's and K g

7
In particular §1.2.21) contams altogether K

vector. It is obvrous '

MA 1 unknown etements bf B, ,

equatwns

Tl

4 0

we need at least This means that we require "thats

s "o




4 0

(1.2.22) kx> MO, The relation (7.2.22) is known as

the order condition for identifiability. 1

The order conditian for identificatién‘given by (1.2.22) is only a

. necessary condition; it s not a sufficignt condition, since the‘ K**

€ ’ equations in (1.2.31)‘may not bé independent, i.e., it may happep that
the equations (f:2.21) gontain fewer thaq MA-1 different pieces of
information about the relation between the’ B's and the M's .
Consequently, a necessary and sufficient condition for 1dentif§cat%on
is that the number of independent equatiens in (l.%.Z]) is Mo,

i.e., if and only if , . N

(i.2.23) ranku(nA'**)”= Mo,

'f.;" ‘ ~
The relation (1.2.24) 1is known as the rank condition for identifSability.
The raﬁ{N;;d order condi;idn for identifiéatio derived above
utilize only "exclusion restrictions”. ,Fbr' : [ ussjon of other types

-~ 0of restrictions and ‘'derivation of the corresponding appropriate :

conditions, see Fisher (1966). - . ’ / <\

. | Vg to a
?Bvestiggting the rank of T is difoEu]t. However, an

A’**

alternative rank condition is the following. Partition the matrices of
’ “
sjruc&yral coefficients conformably .to the part?tionipg of Bm and Yo

as follows: . - .
L A Yo . O
{1.2.28) B = ' s =
i . B B, ' [* [i*
Ty A A

PP

¥ e e et i 4y
Il + .
L

s

where the dimensions of qu Opas Yo an&’¢0*, . have been
, . pan -

-

specified previously and




1Y & ~
4

e

' .20
) . |

[4

(r.2.25) B, . s (M-1) * u

- RE (y-l)ng

T

Iy  ds (M=1) x K+

r, is (M-1) x K+
[ 4 ) -
C\/’,‘ . "
It"should be noted that B,, apnd T,  represent matrices of
¢

the structural coefficients for variables omitted f?om the ‘mth equation
but included in the other structural equatiohs

\ If we define a new matrix A as follows .

A .
dmilgz.zs) A= {BAA , T**] . - thgn it can be shown that
o - \‘ . ‘

(1.2.27) Rank (1, ,,) = rank (A) - ML A

We show this by defining ‘ o :f\)

(].2-2‘8) ‘ ' 0** OM ’

(\) ,, S &
It is clear that rank A, and rank A is the same since the rank

of a matrix is unaltered by switching coﬁhmns or by enlarging 1¥ by a

row of zeros. Now we can write A,  as .
| . Ba Oan | [Ta,ee Oa.
(1.2.29) A =
o B Baa | [Taaex  Taay

PSS . -~

where 0

: ’ t :
Apa 1S 2 R matrix of zefos-and, Tage js an

w4 x ﬂAA identity matrix. o .
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From (1.2.29) ‘ ' &/

Ba T, »s Oan
x,A‘* - t :
& ¢
'('BQ nA** - BAA "M** B
-~ :
‘ 1
But from, (1.2.21) / |
. N
BTy ax T Oy -and from the relation ,
"
. v
‘ BM = -.r it follows that- . :
} ’ ° -
4 -B, M4 -8,,T =T .
A‘ A** AN AAR* %% *
. , . o
* Since the rank of a matrix is unaltered by premuTtiplication by.a e
. . . \)
nonsingular matrix, then
- rank (A,) = p
L T ® - -
A rank’ (A} = rank - e
4 ~ . ) - 3
-
a |
‘\‘
A =
f t
: . L Opn, # A
» . 5 " T B /- ’ v 4
. . A . ' . 4
\ : : LY =+ rank (HA**) + yio
' 2
~ n.’ s
1] - ¢> ' } 'A
- ~
N . -
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where 0., and  0,, ., are zero matrices«#f order K** x mB4
04 aA,

and MAQ X K** resvective1y, and 1., is an identity matrix of order
K** x K** . )
The order and rank conditions'brovide the following general rule

for determining the identification o¥_a_steuefural equation:

LI ks ua 1 and rank (M) = M-

we have overidentification. .

2. If K+ =MPo1 and rank (M) = K-

we have exact fdentification.

i

In all other cases thé structural equation is underidentified, ’ \u//
- :
% . N 4 q
4"' »
s ’

R R PSR PN
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CHAPTER 2
A .
METHODS OF STRUCTURAL ESTIMATION

1. There are chiefly two qpproaches to estimate the coefficients of
the structural equations, namely (a) single-equation methods, also known
as limited information methods, and (b) complete system methods, also
known as full irformation methods. In the’sing]e-equation‘méthods, we
estimate each equation ‘% the system iﬁdividua]]y, taking into account
any restrictions placed on that equation‘to be estimated without worrying
about the restrictions on the other equations of the system. In the -
complete system methods, we estimate all the equations in the model
simultaneously, taking into account all restrictions on such equations.
Ideally, we should use £he full-information methods in order te
preserve the spirit of the simu]taneit} of the structural equations.
In practice, however, such methods are (ére1y used for a Qpriety of
‘reasons. For instance, methods such as Full Information Maximun
Likelthood (FIML) often lead to equations whicQ‘arelhighly non-linear >
and hence difficult to solve even in this era ofrhigh-shéed comqgfers.
The major crifiﬁism of %he~1imited:informa;ion methods is that they fail
to utilize adequately the simultaneity of tte equi;ions in the model
and, thérefore they may not be genérally as efficient, even asymptotically
as full information method§:
it is well kggwn'that the app]iéagion of ordinary 1ea§; squares
(OLS) to the structural equations of a sihu]taneous‘equation moqe] yields '
inconsistent estim;tors except in the very §pecia1 case of fully recursiv%

models. The inconsistency of the (0LS) estimators is a direct

conseguence of thé fact that some of the explanatory variables are
L)

\
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typically corrdlated with the structural disturbances) A variety of

estimation procedures tfat provide consistent estimatdrs are availables
I

in the literature. A brief account of these estimatién procedures is

presented in this chapter.

2. INDIRECT LEASTISQUARES (ILS) ESTIMATION

In this method we start with estimation of the coefficients of the
reduced'form by least squares methods, and from'these;estimates derive -
desirable estimates. of the coefficients of the structural equation.

.

We consider the model described in Chapter I, d.e.,

(2.2.1) BY, + fxt - U, (t = 1,2;.1..T)
with reduced form given by ~
(2.2‘) ‘ ' Yo =Tk + Y,

, L L

We consider a single structural equation-v# the model described in

.(2.2.1) and ‘assume that the equation is identified.

Let this structural equation .be denoted by ‘ > ‘ T\
(2.2%) : By, + X, = Uy S {t=1,2,...T)

In keeping with the notation used in Chapter I, let

(2.2.4)

0

B = [ByysByp..onB , O veers -
[ N 12“ T 1,MA+1’ IM] and

Y: {Y1]. ------- Y]K* QO]’K*_’_]...‘..O]K] Q and
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% s
(2.2.7) ’ My, % LA
n = ’ Lo
* n ) n e ) /“"‘"I '
M:*l AN ¥ | . . AN

where the dimensions of the submatrices of N are given in (1.2.18).

As in (1.2.18) and (1.2.17), partition g and Y as‘fo1lows:

(2.2.8) =8, 0y ]

w ' . :
o (2.2.9) | Y=[y,,,. o,,,,}- B

and from the relation B = -[ , we obtain the relation between
m B and v, i.e.

o (2.2.10) B Max = ~Yu ) . ) ‘ .
(z.2.m1) By T a, %% = Oxx

N +

- [see (1.2219)1 . \j
" Since we specffied 5pat equation (2.2.3) is identified, then

. '

(2.2.12) rank {1,,,) = 4*-1 . .

Let the matrix P denote the unrestr1cted 1east §§hares estfmates _
of 1 and arrange the partition of P to conform to the partition of
; ' n in (2.2.7), i.e.

(2.2.13) . 1P PA,**

gy BT b - "
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- After obtammg the least squares estimates P of T, we shall
e -
show. that it is poss1b1e to determine desirable est1mat£s of the )
LY
“ - N -
; §trqctura1 coefficients when . ‘
' L
(2.2.14) . Kr* = MA-I (i.e. the case of exact jdentification).
' . L™ ' |
We shaH show also that. the determmatmn from the matrix P of '
' estimates of striictural coeff1c1ents is not possible in the same manner
when . / .
. (2.2.15) = K** > Al (i.e. the case of exact ‘
. o overidentification) .
. @ l ‘ ' W~
‘. Consider the estimators 8, and ?,, - 'defined by
X N -
A
| (2.2.16) By Pyw " 3, e L
. A
(2.2.17) B PA’*,,, = " Opn
. «
. A ’l
(2.208)F B, = . . ,
f Although in the case of exact or overidentification, ' “ s

rank (HA;*) b1, the rank of the estimating matrix Pa b

differs. In the case where K** = MA-l . the rank of-the MA X K*%
matrix PA,** will be MA-l. Having computed PA’** » Wemay
.use (2.2.17) to determine the elements of QA up to a factor of

proportionality; and the normalization rule (2.2.18) to determine the

aA dniquely. Then insertion of aA into (2.2.16) .

determines the elements of Q* uniquely. This method of estimation

elements of

.
e e e e

;.“r"‘t WO nn P - vy o ':’{l‘:‘r‘. = . ] . ,
= N . il atanad "}!‘"""ﬁ'm"ﬂwm

S

ST e e
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=Y

is knoqn as Indirect Least Squares method i;thewstructural estimates,. r

are derjved indirectly from\thteeast~squéres estimates of the reduced-

form coeffiqients. . , ‘

.

| o ' \
In the case where _KF* > MA=-1, “rank (PA ) 2 MA--l~ and since

PA,** has M2 rows, rank (?A,**) = yb . Therefore, no nontrivial
A '
solution to. 8 P
- 2 . A ‘
squares method of estimation cannot be applied.

e T 0,,. exists and hence the indirect Teast-

Thus, it should bé nated that the (ILS) procedure holds only when
the structural equation.is exactly identified. SiﬂEe economic models
usua]]} have many~#estrictions, overidentification rather than exact .’
identifjcatioﬁ is the prevailing condition. Hence, methods of

estimation other than (1LS) have been developed to handle the case of

¥

overidentification.

3. .= TWO-STAGE LEAST SQUARES (2SLS) ESTIMATION.

We wish to estimate the following structural equation

s

(2.3.1)‘

s : :

1 o

which is assumed to be identified and js the first equation of the model

(2.2.1). Suppose B]] equals unity, and that the included jointly,

dependent and predetermined variables\are . *

{

o

Bidie * Biglaen b Bane * Yii¥ie t ikee t o iy T e

Nes Yot ..‘.~yMAt vand 1> %ot o0t Xkt - g\\\ B
Then we can rewrite (2.3.1) as
: ]
- ¢
P .’;, N . AN ’ ) ”, L
- - v - A Pl R A Ao S 7 B




(2.3.2) y]t = ‘B‘zth'B‘l3y3t e MA MAt Y]] ]t Y‘K*XK*t * u].t. H

v ? .

- In matrix form (2.3.2) can be written as, » l
. r
‘(2.'3.3) A N RS A T
. 6 §
where n is the T x 1 vector of observat1ons on the "dependent" §
)

endogenous variable, Y; disa TXx (MA 1) matrix of observations on the
other included endogenous varidblgs.

X isa T XK* matrix 6f observations on the included Co ;
exogenous variables. o o
) By and 1, are (-1) x 1 and K* X1 vectors of
parameters, respectively. |

Uy, isa T x1: vector of disturbances.

If we let b] = [Y} s X1] and .

i ‘ then’
'l Y] ? en Y

equation (2.3.3) can be written as (2.3.4) e 2161 + U1

On
1

where &, is an (MA-I + K*) x vector.

Now the reduced form of the jointly dependent variables appearing

as explanatory variables in (2.3.3) is . !
, . . .
%(2.3.5) . YpE AoV , : - -
- ‘ » ' '; ' _
Inserting (2.3.5) in (2.3.3) and rearranging gives -~ ,
‘= . ) ' . ’ ﬁ \h
(2.3.6) oy M B+ Xywg 4 (”j +Vi8) 7




where X is the T x K- matf'ix of observations on all the

predetermined variables in the complete system given in (2.2.1). Now = _ )

~.

if T, were known, least squares applied to (2.3.6) would yield
consistent estimates of By, and Y, - Of cours# oy s not known.
Therefore, in the first stage of the (2SLS) methods we obtain the (gLS)
‘estimaAtes of ‘]'l] by regressing each var:iable in Y] on X. _ This yields

roo, 7
3

(2.3.7) o= (xx)] Xt N | : -

-

~and the calculated values in thié regression are given by

\‘ '(2.3.8) 9] = x(x1x)"! Xy o | T .

|
!
- In the se;:ond stage N is regressed on ¢] and: X] .. This ? ‘
yields the two-stage least squares normal equations: X {
5 - = il
- . A' A 'A' d A oy /\' 2
oo NN R 1 4 ~ ]
(2.3.9) . o :
' . ' A '
_ n Y SRS LN
‘which is a system of ‘\- 1+ K" equations in Tl R
unknowns and ) .
- \ A " i ' J“
-\ ' B'| ° L 14 ‘ “B} . '
‘ denotes the (2SLS) estimates of ,
N Y
N .M

A .
Now from (2.3.5). .542.3.7) and (2.3.8), let Vy be the matrix of

’ .estimated residuals) from the reduced-form so. that

- P . i - -
- . .
. - . . . .

(2.3.10) ' Y

A r“. -
+V . . ‘ ‘

A
h+y

1N
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Then from the usual propertles of Teast squares r'es1dua1s, i. ey the
, (0LS). residua‘ls are orthogonal te Mﬁtted value of the dePendent
/ var1ab‘le and to each explanatory variable, we have
{
. - A A - A, _ [\ .
(2.3.77) WY sy, =0
A
Xt 0] = V]' X=0 which implies - X]' Q'I =0
. Rlso s . ‘
. p - A _ O = yv! ) “-]
] (2.3.11) p =Py -V = ! Y3 X xry, .
Y o (213.13 AN = - -
o @3 1 B DAY .
- ) .
vy, -4 ¢
T Th R
A
© o (2.3.14) v]' X, = (Y, -Tﬁ"i]
“ ., @ - ‘f'
and g
] A _ A _ %
(2.3-]5) o X] Y-l _X-‘(Y] "'V]) "'o X'I ¥T/ .
" (2.3.16) ] = (Y 0)- =y y. - O :
Vo Leeds S 104 IR Bt R4 TS T T S B p
4" ’/ ‘ ~ '
‘; " In view of the results (2.3.11) to (2.3.16), the normal equations
j of the (2SLS) estimator given by (2.3.9) can be written as . )
: v ix(xexy ey v x| 8 YIx(ex) Ve
( ) N 1 1R AKXy,
2.3.19 : =
. - LIV ’ A '
~ X4 41N 5 ¥
) L
, ot
Vi “ . ‘ .‘ .
A
4

-
<
|
—
?
!
i
1
- !
&=
N
1
1.,.—-\ li(‘
T -y
\




o _J \
. = ‘ 3
. |
h - 3 o
or as . f ,
L] i
. ) {
1 Ay A ' . A' )
v (2.3.18) Hh-hWiy 1 5] (8 YWy hy ‘
i [ ] t A = [ ] ]
X% S RS Sy
* -
. L 0 - ’ .
. Using (2.3.10) we can write (2.3.3) as 1
N A A : St ‘ ;
(2.3.19) .y = VB +Xpry + (Uy + Vo)), oo T
more compactly, as ' L ) ‘
» - i
. A A : > ‘ |
(2.3.20) y«‘ o= ‘216“ + (U] t v" B] ) . !
where - ’ ; N
o ' "
- A A : ' . B
(2.3.21) 7, = [¥. , X and &= | !
1 105
N v 3 , Y] v
e -~ ~
' Now if we apply (OLS) t0%(2.3.21) we obtain the (25LS) estinator in the .
form |
’ &7 . A . .
’l i A . B] ’ A' . -]A 1
(2.3.22) = &= - = (z] z]) Ly
Y
.o From (2.3.20) and (2.3.22) -
4 . [} " e . ) \

. , ) . «_] )
. A
(2.3.23) 3 = 6] + (Z; Z]) ?' U]‘ » . since
, bl
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R .
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Y
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since the variables in“the system are stable, we assume that | . o :
AR T, »
plim (T LA Z‘) is finite. |
A /
plin £ 3 U, ~
= (1% A . N
Now plim {27, U = .
T 1,
! . ‘p]"ﬂ '-'r' X] U]
. : 1

* plim G X'{\U ) =0 since the X variables by assumption are

uncorrelated with the disturbances in the limit,
ptin (31 xiy
plim T' 1 1

s
, . : . . . .
1‘:0 \’w A .
. ‘ o . ) ' 3.
- . + . *

r
.

Now plim (JT' ; U‘)

Therefore

A .
(2.3.25) plim 6] = 61, which establishes the consistency of the

(25LS) estimator o | | ;

Is

- Also the (2SLS) estimator will in general be biased since

. A . - ! | .
C o (2320 E() -6 *‘{\@; AN ud from (2.3.23) '

. C N /
A , .
and. Z] is for finite samples correlated with U]. Indeed, as pointed

"out by Dhrymes#(1970), the expgc‘tation in {2.3.26) may not even exist

Alternately, we can obtain the (2SLS) estimator as follows: N
Premultiply (2.3.4) by X' to obtain .
3 .
: 4
(2).3.27) X'y] = )('Z.l 6] + X'y ‘.

" -
where X 1is the T X K matrix of observations on'all the predetermined

i bt

T St s L S S
.
.
-

_ varjables in the entire system with rank (X) = K.

\
-

. ,
N . ) -
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3 l { a R ' . .
The covariance matrix of the resiciua},s/BJf the transformed system -
(2.3.27) is given by
v " ' 2, 3 I' J s
(2.3.28) E(X‘U]U]X) = o (X'X) |. . The (G.L.S) kstimator of &
*from {2.3.27) is
(2:3.29) 5 = [ oz ] 2o e i B v
e A yu ™
wmch 1s the (ZSLS) estimator.” Thus, the (2SLS) estimator of 6] js ®
the (GLS) estimator of 6] from the transformed system {2.3.27). ' T
We can actually make one more transformation of equation (2.:3.27).-
We can find a nonsingular matrix R "such that  (X™X) = RR' .  Now . l
transform (2.3.27) by prengglfip]ying throughout by R-1 to obtain . ;
(2.3.30) Ry, = R Txovs, + RNy, + R-I-X'U' . o
s - B S L B 1 +
The covariance matrix of residuals is now given Ey
- . , . ~ 1
(2.3.31) E[R']. x'uu'x(*R“)'] = 1. f
“ +
Equation (2.3.30) can be written compactly as ; :
. Y 5
5 \. , . - & . ’ ;
(2.3.32) . as = Alyél tq : where . ,
. / M ’ ‘ l" 1 ‘
T A L [R“x'v1 , R"]X'X]] .
= R ]x ,
9 #) ‘ '*
NG : K : ' o Ny
The OLS) estimato\\a'ppﬁed to (2.3.32)e is denoted by ¢ ' . ‘
. 1) 4 = (A Ay Al o R S g
# (2@3.3 ) A'I ]) ] ] - ‘U B ) . . : G'
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By some simple a'lge'braic manipulations it can be shown that the (OLS)
estimator of § in (2.3.30) s exactly the same as the (2SLS)

estimator of 6] in (2.3.22).

ASYMPTOTIC PROPERTIES OF THE (2SLS) estimators .

1 -
Now following Dhrymes (1970) ‘f
. ' MANT )X gy XU
(2,3.34) J‘F(as)-( )_______.___ " | .
o . T T \T VT . e ,
from the relations (2.3.32) and (2.3.33). ,
’ X'y T - i
With the exception of ~— , the probability limits of the quantities ]
. VT B |
“on the (R.H.5) of (2.3.34) are finite. Following Dhrymes (1970) once f
. S 4 X'u ,
‘more, we establish the limiting distribution of i as follows. i
- : T ;
Choose C; a K-dimensional vector as the i'th-,c01umnxyf/‘ . The,
el e_men:s of 61 are by assumption either nonstochastic or, if stochastic, ,
theq independent of U;y and ) * N
- | ' * v %}“ a :
)
Xu T N i ™
(‘2.3u35) , . ] = ] z C1 ui“ . . and A ‘ 3
. S r i=1 ) ) \ ‘
: ’ - ‘L. « : L 4
J(2.3.3%) T Cov (c.u )= czc1Q3 ', - j
‘Hence by an apphcation of an\ppropnat} Central Limit L IR
Thereom ‘ xvu] o o = ¢
h *——  is asymptotically normal with'mean zero .
ﬂ— N : ) . . Y
and covariance matrix ~
I3 ‘o ‘é'




A as the (ZSLS) estimators. e : /\
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o 1im 1rc.c! - ’1/1m (x_'x>

‘T
I : M
There K . o
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4. k-CLASS ESTI)‘!ATORS

Th1e1 19@4) defined a family of estimators called the k-class

’ 3
extimator wh13h are a generalization of the (25LS) est1mators defined

in (2.3. 18)///The k-class estimators.are given by. .
/. _ :
' A ) t T ' I A -
B, (k) YiY -kOO YiX (Yy-V1)'yy
(24.1) /6](k) A . 11 .'l]\ :1 1 TN
A : ', - 1

wheree is any sca'lar, stochastic or nonstochast1c For nonstochastic
k, for k=0 and -k =1 we have ‘the (OLS) ahd the (2SLS) estimators

reépectively:ﬁ

’

O If Kk 'isléfochastic, the k-class estimator will ‘be consistent if

. o (

“and only if plimk =1, f.e.,/if plim k 41, the norhal equations
N T'm T"'w ! N / >

. ' ‘3( .

of tbe k-class estlmator will converge to the ?ormallequations of the

) ®
" (25LS) estimators and in that case the k-class!e fors will be

The k&c1ass estimators descr1bed in (2.4. 1) can be expressed

compactly as

4
RV S

a
[ F VR




. : ’ -1
7 (2.4.5) 8y k) = |2 -mz] 2]t My, ,

! . 36
A i -1 ) ' -
61&)—[21(1—@!)2]] 2] (1-kM) y, e
M=1 - x(x'x)"xz and _
i] = [Y] . X]] as defined previbusly. *
, !
A\
)i
i
Double k-class Estimator ‘ $ '

To achieve more flexibility, Nagar (1962) proposed the double-

k-class, a famj]x of limited information methods. The double k-class

E .
estimator of 61 “is given by( S o o .
, , AgA Y ' 1
o ) RN 0 D A WA
(2.44) ](k“’kz) = X'Y . X" y )b xl y‘ l
M 11 B

[

wheré k] and kz‘ are arbitrary scalars characterizing the estimator.

+ The Double k-class estimator of 6] “can be expresse

compactly as

° ?

3

The Double k-class estimator will be consistent if

(2.4.6) ~plim(k,-1) = plin(k,1) = 0 .
‘. ‘// . . " » \ .
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» The h-class Estimator ?
’ Setting k] = l-hz and k2 = 1-h we get the h-class estimator.

Thus, we see that the h-class is-a modification of the Double k-class

£stimators, The h-class estimator-of 61 .is given by

;
| S A A < YA !
A - fv:vl - (1-h2)v]v] Y'X, 1, Y]'-(l—h)v; g
(2.4.7) &;(h) = Y :
1y ! 1 1
X]Y] X]X] X] %
4 ’ :
The k-class estimators of 6] can also be obtained from the Double ) o
k-class estiﬁators by setting kf = k2'= k. Far* h=1and h=0 in. 3
: §
. (2.4.7) we obtain the (OLS) and the (25LS) estimators of 6] respectively. :
o . ¢ ! . \
\l &\\ ‘\ ’
3 ' £ ' ’ * 5/
t : \m
‘ ' "5, . LIMITED-INFORMATION MAXIMUM-LIKELIHO0D METHOD {(LIML) (
) The Vimited-information maximum-1ikelihood (LIML) estimator beiongs
to the k-class family and is consistent. This estimator is also called f

the- 1east-var1ance ratio (LVR) estimator, and” Goldberger (1964)refers to
it as the least general1zed res1dua1 variance (LGRY) est1mator
In the (LIML) method due to Anderson and Rubin (1949, 1950)

P o consider the limited 1ikelihood funétlon of the MA ~jeint1y dependent,

variables under the_assumption of normality of the diéturbancgs and

o

maximize it subject to the restriction rank (M A,,,,,,) =w*-1.  The

Epproach‘;aken by GoP@berger (1964) was to consider the 1ike1ihogd
function for the reduced form and maximize. it subject to the implied i .

1

4
.rgstrictions on the reduced form. This approach reduces to maximizing

the generalized residual variance IT—]VAVA I\, where V, is the

) r'a '

.

I e PP L |



i ) . 38

{ A P
matrix of reduced form residuals for the included endogenous varigbles, .

subject to the restrictioq B = 0

A nA** «« (defined in Chapter I) on

the reduced form.

Koopmans and Hood (1953) showed that we can obtain the results of

Anderson and Rubin (1949, 1950) by the least-variance-ratio (LYR)

/ principle and also demonstrated the egyivalence of the two approaches.
ﬁq We obtain the (LIML) estimator by the (LYR) principle as foHows:h -
* Consider the first structural equations . ’
(2.5.1) "”Y + X + U 4
‘. '3 HeENR A Y
defined in Chapter I and we can rewrite (2.5.1) as oo i
(2.5.2) Yo = YaBp = Xyp t U] , where
. N4
. A
o . ‘ ’ o 1 % i ‘
(2~5-3) YA = [.y] Y-'] ’ BA = e ' ‘
e B N
: and ‘ ; o .
# o (254t - ey | s B
. ' which is a 1inear conbination of the jointly dependent variab]res c _ 1

appearing in equation (2.5.1), the coefficients of the combination being
the unknown By parameters. For observed values of Yp Vs We shall

estimate A0 By the (OLS) method. This would Yead to

”r

(2.5.5)- | Ql = (x]'x])" )(]'yA and the residual  sum of squares ' ¢ ]

would be ' ~

-y

J—
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N 7
] ‘ - oyt -] 1
(?.5.6}' yAM]yA where ‘M{ =1 - X](X]X] X1 .

N

oyt ‘ 1y! 1 1,4 ‘
Bp Ya¥aBa = BAYA¥ (X1X)) X\YyB,

-

' N .
( Ba Wy 8y .

where ,

‘o y? ' ! 1
Similarly if Ya is regressed on all the predetermined variables

X = [X] R XZ] where X s a T x K matrix, the residuaf sum of

squares would be

' - -1 = a!
(2.5.8) Yp M Ya where M =1 - X(X'X)  X*. = BA W BA

|
where ,

-

(2.5.9) w;fv'v -x! x(x'x)'1x'v‘
4 A'A A SR

The addition of further explanatory variables will not increasg .
the residual sum of squares, i.e., the second residual sum of squares

will be no greater than thg first since the second regression includes
fh
all the explanatory variables in the first regression, X], plus the
: ) A
_Ba N By

: can never be smaller
BANB;l

set X2. Hence the ratio A

than unity. ; The least-variance-ratio"method suggests minimizing
NN _a! .
BA WTﬁBA BA W BA . .
: .
By W B,

y
. L]
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or equivalently minimizing
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A03$A w] BA
1
BA W By d

L]

(2.5.10)

¥

In other words, the (LVR) method sugdgsts that the estimate of Ba

should be chosen to keep the reduction of the residual sum of squares

as small as possible.

. -
Differentiating X with respect to By gives

(2.5.11) (P N GEN R CUENTGEN) ‘
‘ (BA W‘BA) o=
' DY . v 7 :
i = 0
;ett ng QF; ‘ , Q?QIESA

(”1 -xxw)aA =0 . | g k

Hence the minimum value of the variancé ratio (2.5.10) is given by the

minimum root of the determinatal equation

(‘2.;5.12) y !w]' - mi -

Since’ W - W20, all the roots of equation (2.5. 12) are 21,
By obtained*as the solution of the equations
(2.5.13) o (w, - MYe =0 ”

ot -I }' A

Kl
4

A , : ' : .
where A s the minimum root of (2.5.12) . Since equation (2.5.13)

Y

determines BA only up to a multiplicative constant, the estimator

A N ‘
. B, of Ba is obtained from _ . .
- v ‘ -

'(2.5;14) o - (n] - ﬁw) B, =0

— o}

O —
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We nov deﬁins\\~“ ” N N

~ B, (k)
6](k)= “given earlier, i.e.
Y] k

. ‘ : AM.‘ A ' A . A \!
{2.5.17) (Y.;Y.l-'kV]V]) B-I(k) + Y]X]Yl(k) (Y] kV]j N

R

‘ A IV IV R

(2.519)  H(0 = (xx)7" ! [yl -, pl(k)] and

: : ™~
- substituting (2.5.19) in equation (2.5.17), we get ' -
'
© -1
" 1 ' ‘yty *

- ' + 4

by setting the first element in SA' equal tounity.

A <A S * ‘A “
(2.5.15) ' Yy = ?A BA and obtain \f by regressing Y, on X,
we lget -
AL ' -1 A - ‘ L] %1
(2.5.16) Y, = (x] XX Y By 1

We can show that the (LIML) estimator is a member of the k-class

family by choosing k " We can write the k-class est!mator of

~

B, (k)

g(k) N - .
| - A B ] ' '
Amp Y L, ¥

Y, - kv’O

as , .

and - . .

o .
(2.5.18) Yy Bk, + (GK) (k) = Xy .

v

The sélution of the equation (2.5.18) for Q](k) gives )

‘A 1 \
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Since YA =\[}] s Y]] and BA = [ ! ] it is easy to see that ;’l
B N i “B] , ,/

: i
or _
) (v{ij‘ - k@{?,) gﬁk) = (Y{M1¥1 - k9{91)
whEQQ M= - x](x;x])-1 X, J
o

A
Also since Yy = Y] - (defined previpus]y)

Y, - x(x'x)'1 X'Y,
MY €.

- X(X'X)'] X . we can write (2.5.20) as

Va4

where M=

—t

t 1 A - 1) . ! ’ ( ,o"
(2.5.21) (Y]MY] Yimey ) By (K) = YoMy - kYpy, - ;

\ /

equations (2.5.19) and (2.5.16) are equivalent, and noting that
w] = YAﬂ1YA . and W =,IA M YA , 1t can bel§een that (2.5.21) follows

from (2.5.14). R _ s

™

Hence the (LIML) estimator is.a ﬁ-cléss estimator with Kk 3 .
It should be observed that, in the case of LIML, &k 'is a stochastic
variable since igijs obtained by minimizing (2.5.10).

Anderson and Rubin (1950) have shown that under general conditions
the asymptotic distribution of T(ﬂ -1) ds a Xz(n) distribution
with ded?ees of freedom eqha1 to the degree of overidentification,

n-= (th - MA-+1)= Since n and 2n are the expected value and

variance of -Xz(n) respectively, it follows that

. AN

. A . MA .
(2.5.22) AEVT(A-1) =E2-M 1 4nd (A.E. denotes
L, | .

3

asymptotic expectation)

JEPRORE

:-;.r“f .-',-ma -..——«-“;.._.-:
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(2.5.23) asymptotic variance of VT (A-1) s

' L A(
- N G )

~ T
. ) . | |
Hence, plimy T (A-1Y=0 anda fortogi, plim (i-'1) =0,

We havé shown that the LIML estimator is a ‘k-class estimator -with
A ..

k = A .- Hence by the condition derived earlier for the consistency of .

the k-class estimator, i.e., plim {k-1) =0, 1t'¥o]10ws that the

(LIML) estimator is consistent and it has the same asymptotic covariance

l
matrix as @he (2SLS) estimator.

"

In a subsequent chapter based-on exact finite sahp1e properties,

‘we shall show that the {LIML) estimators do not possess finite moments.

Fullgr (1977) presents a modified version of the (LIML) estimator and

demonstrates that this modified estimator possesses finite moments ahd:

is a member of the k-class family.
[ N

5,

-
Fuller's modified (LIML) estimator is given by:

[P IRY GV

A N A*:*u ' ' ) A L '
. ~ 1B MY (*W) LIRS B AN '(A - T-K) YiMy

(2.5.24) &=, =1 : Y :

Y ! t 1
L P 2 S XYy
' A k A . '

where A is the smallest root of ,
) IH] - AH] =0 and o> 0 1s a fixed real

number .

- E ’ &
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éELATIONSHIP AMONG K-CLASS ESTIMATORS - :

. . . i
Maeshiro’ (1966) working with a structural equation of the form,

¢

(2.5.25)  yyp = Byp Yo F Y X t oo Yyge F Uy o

deduced firstly th?t the coefficient estimates of the (2SLS) lie between
tHOSe of the (OLS) and (LIML) estimates and, secondly that small changes
in the samé]e déta aré 1ikely to produce widely varying coefficient
estimates by the (LIML) mE@hod than by the (OLS) and the (2§LS) methods.
It should be noted that Maeshiro (1966) wbrked with the special case
where only one endogenous'variable appear on the (R.H.5.) of equation
(2.5.25). . '

of (1969[ working with the moré general case where two or more
jointly dependent varfables aépear on the (R.H.S.) of the structural
équation, confirmed Maeshird's results for the estimates of the
coefficients of the 5gint1y dependent\variables but claimed that no
simple inference is possible, except in the special case chosen by
Maeshiro, for the estimates of, the coefficients of the predetermined
variables. Fisher (1966) looked at the sensitivity of the different
k~-class estimators to specification errors and found that none is
uniformly superior to the others. | ’ /‘l

Kadiyala (1970) proved that the residual sum of squares, S,

Q

defined by

} . }] , .
(2.5.26) S = [y, - 2,8(k)1" Ly, - Z,6(k)]

] 11 1 1
is amonotone increasing.function of k for 0 < k < k* where k* is

the smallest root of

[

-2
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< -t MRSt e

"
(2.5.27) . MY, - kYiMY,| =0, It should be recalled -

(I} A B] ‘ (

that 6](!() is the k-class estimator of of the equation
Y'I ]
. b | -

3 = + + i

! . N Yy B Xt Y, . ‘

- 0‘
= Z]{)] + U where Z, = [Y.l , X]]

PR . o
an = , .
. ] : ] PO

. N H ' : ]

In (2.5,27) M o) TR " .
21y fyryylyn . )
M I X](X]X) X.| , > 3

-

!‘adiya'la (1970) used the monotonicity of the residual sum of squares as
(\'i
a. cr:fterion for ordering any two consistent k-class estimators

<t B b

éwsmesults indicated that the (2SLS) estimator /

is preferable over the (LIML) estimatorand that if éonsistency is our

.
A ki e Ao

i
. criterion for rejecting the (0LS) .estimator, then it could be achieved

by choosing k arbitrarily close to zero, say k =1 - g(n) *where
9 <eln) <1 arid €(n) +0 as n+ w. He syuggested that an optimal

choice of k could be achieved by 6sing an average of the three

estimates rather than any one of them.

Farebrother's (1972) work is mainly a refinement of that of

. Maeshiro aqd Kadiyah. He',showed that there is no noticeablw gain by

' )
adhering to Kadiyala's suggestion.of using the average of the three
estimates over the use of any one of them. Far‘eb‘rother (1972)
examned the way m which the %- c'lass estlmator varies vnth k and

derived an expresswn from which the main fea,tures of the graph of the

-~

;-h r'\a"l AT
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,/ ) | g

k-class estimator can be constructed. Farebrother and Savin (1974)
presented an algebraic analysis of the q™5phs of the k-class estimato?

.dhd‘discussgd the implications of the algebraic and statistical aralysis

. ) L3
for the selection of a k-class,estimator.

Dhrymes (1969) obtained an identity between Double k-Class (DKC)

and (2SLS) "estimators which can be put in the following form: o

, ' A ) . : l‘ . . _]
2.5. ke) = -
(2.5.28) 8,(0Ke) = &,(z5L3) + |71(1 k]M)Z]]

‘[(1-k2)z;pxy1-(1-g])z{mzﬁl(25L§)]

Tp = x(x'X)']x':

where
whe X

Moo= T - X(0K) T ‘

V.K. Sriva%taya and R. Tiwari (1977) presented a simple proof of

Dhrymes' identity, (2.5.28). \

*

A,
¥
»
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6. ~ INSTRUMENTAL VARIABLES (IV) ESTIMATORS

%t is well-known in the literature that the (2SLS) estimator is

an (1V) estimator where ’9, =,9] - Q is used as a set of instrumental

~

variables. As usual,. the equation to be egtimated is given by

¢

N,

) ‘ o ,
(2.6.1) I RSSO [Yy.%,]
l' (‘ ‘ . B] ‘ N \
’= 116] '+ U] . ; 6" = ' «
; Ak .
aqd
= ! 1 ‘
?]_ X(x™ xey
A A
‘ Wty )

‘ % ,
« A
Goldberger (1965) has shown that the k-class estimator élék) ‘can
A LB+)
be interpreted as.an (IV) estimator with N = [Y kV] » X ] used as

instruments. The (1IV) estimator of. 5, of (2.6.1) is given by

. et o
4 . 1 ' - ' -1 - '
YR E A O W T - ) "
(2.6.2) EH =
A B i
and, as before, . -
’ ' ’l A’A ¥
‘ o YiY - kv, LR B
(2.6.3) 5,{k)_= ’ S
oo X
' v . « r | m I s
‘ EqUatiohs (2.6.2) and (Z.é.3)vare equivalernt: .
(}-kv)' ==Y)Y]-kv(9 +0) Y’(-k]'].
e ,
V ‘. "‘ . ’X 5 ‘ "
. ‘ . A“ .
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r ! S .
since iy o=o0 ) b \ ~ -
; 11 . ' ey :
1s0” _ k ¥ 3' = Yy! ' 3 Al - - - . | g
Also’, (Yl -k V] Xy = Yl»)_(k since Vl )(1 = 0 .
For the (IV) estimators to be consistent we reqi;ire. ,
- -~ ¢ ¢ i .- P ,
. : . i
plim ]T We U; =0, i.e. we need to show i t Cl
' * e, - ¢
C . |
y . Svipg =n® :
(2.6.4) plim 7 (Y] - kV] )‘ U] 0 , .and , g ‘
€ ' =
. | ) . ¢
2.6.5) plhlm T(X]' U])' =0 i
Now (2.6.5) is always. siisfied by the conventional assumptions on the *
'stnructbral equatio’né. ’ ’ R . )
. _ A _ , . A ’ _ ) A N
_ Since LYy s kv] = Y] -k(Y] -Y]) = (1 -k)Yl +l|‘<Y‘] , Wwe have ,
plim LY kY. ) = plim(1-k) . plim Lv'u. +plimk . plim (& Pru) . o
AL AR B R - : il he MR SR L R Kl :
e olimE v U = plin L vs xe0"! plim X' U= 0 . and B
Now plim 7 Y] jU] <p11m 7 YT X(QX X) . plim X U] 0, Ma'n'd . )
plim ]T Y' U] + 0 since disturbances and endogenous variables are in
gengrél correlated in simultaneous equation models, Tt;en thé "k-class
estimators are consistent if and only if plim(1-k) = 0: ,
. ' . s, R 1 R
Th“e asyniptot'ic covariance matrix of the k-class estimator is =~ - -
2 » . ilh :. , . ’ -] ) \\‘__ ——
o°T plim [u* 21} [w, w,{] [zyu,] . If plim VT (k-1) = 0. this |
* covariaice matrix reduces to that of the‘-(ZSI,.S‘)\ést;im\anr.
,' I : T T :
1 :’\‘\»
- - ‘\\>
v . \) ' o
- - ’ )
- :’l‘ N % £ o .
] ‘ :. ' > ‘4‘\"’
N,j ’ N )) N
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7. 'INSTRUMENTAL VARIABLES ESTIMATION OF A SINGLE EQUATION = . -
' C Y. As be)fore our equation of mterest is given by B
-
%nt' | I .
t o b / R 2 T ﬂ[ X Y] \,+ U .
. ‘ w‘ , ‘ . . \ ) | .
(2.7.1) = Z't 6] +'U1 ) witp ;
" -
s » .
Y , " reduced form of the (R.H,S.). Joinﬂy dependent e‘i(planatory var1ab1es ’
S < given by
» ¢ '6 , A
(?-7.3) - J‘”Y-‘ = xn] :" V] X ’ ‘ 7 ~
o . ' ) , , ; LA *
T : ' where X = [%,X,] isa TxK matrix of observations on all the e
) ' predetermiﬁed variables~of the system; T, is a_h KxM.1 matrix of
" redueed form disturbances.. We alsd make the ‘usualzfiifésumption that
(a) the rows of v] are independently and\nonﬁal"ly distributed with
— " a 0 ~
¥ ? . mean zero and non-$inguTar covariance matrix *) . §
T e ] - a find l efthi |
, (b) the matrix T X'X .converges to a finite positive definite matrix i
» * . ' ' '
b ‘as T oo , .. s P i
1 E ) o o 1.0 . . v ’ §
- * (2.7.3) ; Tim 3 X'X = Ty, - N o ;
; | ) . , 3 T X' X % \
. .~ » ‘ - . Cok
Suppose that we premultiply (2.7.1) by a T ¥-(M|-1+K*) matrix of L}
‘f’\ ,  instruments R,ﬁofﬂ rank(MA-IAK*) to obtain * | .
Poa \ S 4 “F T
o (27.4) Ry = RS R e VL
p.: \ R 2 N
X ' '
¢ Further, suppose that following conditions hol*
Y - 'Q, . . . “ i .
' (2.7.‘5) o pnni lpu =0 g

‘ BEEALLS g}

A




'~ - . - ’ ’ l.
cccccc . Fs .
R . ‘-//‘~ . !, l . . . ) m
L} .- ~ . —
» ‘ . 1, _ . :
o (2.7.§) plim T R'Z, ZR'Zq ; XR’Z] (nonsingular) . .
. :
. . \ [4 . .
. The (;.yx:/) “estimator 3] of 61 is obtained by solving B .
te [. 2 . ' -
- /- : "
(2.7.7) Ry, = R'LE,  to give " !
‘(2.7.8)‘ 3] = (F_{'IZ1)'1 R'_y] provided. R'Z] is nonsingular. ]

. P B ]

-

The (I\g.) estimator '5] of 61 is condistent since

' (2.7.9) 1im3, = & + plim (L R'Z ! plim (L R'U /
SO PHR Sy B o BRI AT RG] - P AT R , g
: =&+ V.0 ’ 3
‘s ' ‘ - , - 1 R Z-I - . ~ ‘
. : ; =4 ,
Sargan (1958) showed that
N ] ) < 4 . .
L e VTG o prin (B2} (ReR) (iR
' . (2.7.10) . ] -6]?.~ Nj O, plim (—-.l-.—) (—?—) (_T_._) . .|
- P ‘ * Brundy and Jorgenson (1971) proved tﬁai; a.n.ecessary ‘and sufficient
conditio%‘ for the (¥.V) estimator given in (2.7.8) to be asymptotically
. s i . . [ ) 1'
1 ‘ efficient in the spnse of attaining the Cramer-Rao bound is that the ‘
“ “matrix of instrumental - variables R include two subsets, i.e.
(2.7.01) 0 R=[R LRI ‘such that ,.
e T ) g o a |
(2.7.12) p’l‘im.T R‘ X = n]' I X'X , )
. | ‘ - | n
and o . . ‘ ‘ —
’ /' .. v Cp [} 'I ’ ' T ) . Lo ‘ - ,
e : (2.7.13‘) ‘. plim T Rz X] = zx‘x] - .whe;g ’ y
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Brundy and Jorgenson (1971) showed that the (2SLS) instruments given by

. A

. (2.7.15) [v, - vy s x]r]
oA

. LR U

A .
= [Y] ;,XJ] ' ' !

“

: ; S
satisfy the conditions (2.7.5), (2.7.6), (2.6.12) and (2.7.13), where,

as pofnted out -earlier,

(2.7.16) v, =[O -.x(x'X),'1x‘]v1

a e . i -

.(\—’; and o : . ‘

(2.7.17) . ﬁ] = (x'x)"x'v] =T + (x-.x)"x'v1

o~ "o are respective]y‘the (OLS) estimates of the reduced-form disturbances Y,

-and the reduced-form.coefficients 1, of (é.7‘2). Therefore the (2SLS)

‘ . A
""1s consistent and asymptotically efficient. However,

(2.7.18) ' | t(?i*ﬁ‘)‘¢ 0 - since from (2.7.15) and (2.7.17)

. i A
ot , it can be seen that each row in. Y1 depends on v] and hence through

the re1ationsh1p between the structural and reduced-form dlsturbances,

'_*hd.:77’;pgnﬁi]} the components in U,. ‘ .7
' / Phillips and Hale (1977) constructed 1nstruments aimed at obtaining

%

L. an (I.V.) estimator with smaller bias than (ZSLS) The (2sLs) é

1nstruments in (2 7.15) may be expressed as ° !

R
\ N . . . 4
- -

o i A % it e A e

P
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\ N . . ) A " .
- x] 0 .. 0 ﬂ]
! 5 ¢ , | A
" (-7.19) A 0 X2 . O { n2
A Y = \
Q/ 0 9

() S . . . . .
\ . . 4' A :
. . 0 0 ‘ XTJ‘ -n .l 1

: o Tx (TxK) (Txk) M*-1 z,

from X = {xt':} where x;,_ is a K element row vector of the t-th
observation on the predetermined variaBles. e ¢ ,
( ' - - - 3
\ . A \\ﬁ { f
K Now\define m, to be the (0OLS) estimate of m based on (T-1) ;
n . - ‘ , ]
~nbser'vatfc\ms on the predetermined variables when the t-th ogiervat'ion
vector is excluded (t=1,...,Tj. Hem:e,.we could now defipe~a new set °
of instruments for the jointly depend’ent variables denoted by ]
. [ 1 A L] j
- . L ‘ X | 0. .... 0 m > ,
{2.7.200 0 xp....0 fi,
N ' * - . . .
N 0 ....: :
: : 0 " i
| B VL
{ «
i T (TxK) (TxK) xM®-1
g | " The t-th observation of tH®sinstruments depends upon all the
- rows of V] except the t-th "and tence does: not depena upon the t-th
1 component of - U, .° - .
. " Now since f )
/ K A ‘
(2.7.21) E(y x, U,) =0, t=l,...,T N
it follows that
\ ;
R e




Phillips and Hale (1977) have shown that

g
u
. : 1
* Ay A, A,
(2.7.22) E(Y]U]) -‘E(H1X] s n2X2 P | Xg U,
GT

E(ﬁ' ﬁ' + A
XYt 2‘xzuz een. t nTxTuT)
\ -0

Thus, by the successive re-estimation of tﬁe reduced form‘parametéf,.it
is possible to construct a set of instruments for the jointly dependent

regressors which are'contemporaneously independent of the disturbance.

-

¢

Using the fact that

(2.7.25) “1im D =0

Teto0

[see Miller 1974],

A
it follows that as the sample size gets large, ‘N; converges to Y]4.

A - A
since Y] = Y]~ V] . Hence the new (IV) estimator has instruments which

—

satisfy the conditions (2.7.5), (2.7.6), (2.7.12) and (2.7.13) and so is

consistent and efficient. It was found that the bias of the new (IV)

estimator was smaller than that of the (25LS) in the speciai.case where
the toté] hunber of predeterhined variables in the system :;ceeded twice
the number of variables jnpludéd in the equation being estimated. This
find;ng seems to indicate that the property ofhcontenparaneous

independence between instrumental variables a29>xhe disturbance does not

o>

(2.7.23) Yy =y, - [I- D]" v
: 1 N 1
A"
where
(2.7.28) D= diag. (X(X'0) X" ,
! * | *

\S!
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play a major role in obtaining (IV) estimators with,small bias.

\ .
8. THE FIX-POINT OR FIXED-POINT (FP) METHOD r

In the (2SLS) approach we observed that if 9] , the estimates of
the jointly dependent variables, are obtained from the unrestricted
A
reducéd~fprm then Y] can be used as either regressors or as

Al

instrumenti}/Vériables and the resultant estimators of the parameters are

the same.

Maddala (1971) pointed out ihat tbe two different estimitors are

A . .
~obtained when Y] » the estimates of the jointly dependent variables,

? -

are derived from the restricted reduced form. He referred to these two

new estimators as (1) the restricted reduced-form two-stage least-squares

. (RRF2SLS) and (2) the restricted reduced-form instrumental variables

- (RRFIV). Both of these estimates have to be computed by an iterative

. , *
procedure. Maddala (1971) used two such procedures: the solved reduced-

form method and the Wold's method or the method of successive iteration.
0f these two fterative procedures, Wold's methods is computationally
simpler because the structural system need not be solved at each stage
of the iteration.

Maddala (1971) examined the convergence properties of the (RRF2SLS)
and the (RRFIV) .through the use of the twg above named iterative
procedures. He found that the (RRF2SLS) has several limitations. In some
cases it did not converge and inothers it gave oscillatory solutions.

In some -examples the iterations conve;ged to different solutions dependiné

on the start16§ point. In general, however, he found that the (RBEE§LS)




[/

(2.8.1) - By, + Ix, = u
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has better convergence properties with the Wold's iteratién method than\\
with the solved reduced-form method. '

On the other hnd, the (RRFIV) éstimator often failed to converge
when the Wold's iterative procedure was used. But, in all the cases‘
considered, the (RRFIV) by the solved reduced form method converged to
one point no matter what variablesqwere chosen-as the initial stage
instruments, ‘ 1 ‘ /

It should be notéd that the (RRF2SLS) method computed by the Wold's
iteration procedure is often referred to as the fix-point FP) method.
Wold (1965) developed the (FP) method in the context bf the generalized
independent system (GEID) and was viewed as an alternative to the other \n*'
simu]taneouiﬂgquatron methods.

The Fix-Point (FP) method pfoposed by Wold {1965) uses a

Reformulated Interdependent (REID)‘system which can be treated as a,

- special case of the Generalized Interdependent (GEID) system. As fefore,

we denote the system of structural equations by

(t=1,2,...,T) . .

t t

Imposing the standard ndnmalization on the diagona1~$1ements of B,

«

the structural eqpét#gns of (2.8.1) can be written as

. -
(2.8.2) yt = g0 v, * th + “t where the diagonal elements of

4

B® are zeros and the matrix [ -,B°] is non- s1ngu1ar

Solving the structural form (2.8.2) for yy we obtain the reduced form - |
d 0q-1 04-1

(2.8.3) Yyt f1-8"] Ix, + [1-8")

Let

S . o
(2.8.4) C[1-8 4] Ixy =y,

- SUTTR M ot
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equations, 15 called the (REID) system specification. .

/YEEID) system which asserts that n,

#.56

. | o
" (2.8.5) - f1-8") 'u, =

. o~

R

By introducing Yy = yt +n, on the (R.H.S) of (2.8.2). Wold (1965)

refbrmulates the structyral form in the following manner:

L 4

. ' _ gOr— :

(2.8.6) Yy = 3 [yt + nt] + Yxt tuy - ;
. ﬁ ;

= po : . i

By, + Ix, +1ny - (using 2.8.5) . » §

The form (2.8.6), with the conventiona]zassumption the structural > i

Wold (1965) in his development of the (FP) method introduced the

t is uncorre]atgd with those"

components of ?i and Xy which occur in the i-th reformulated

structural equation [é;é (2.8.6)], but otherwise correlations can occur

between s and the components of yi and x_ which do not occur in -~

t t
the i-th equation. .Wold (1966) imposed an even stronger assumption for

the (GEID) specification in that ¥;; is the conditional expectation of

|
|

Yit for given components of 7t. and 'xt,/ which occur in the (R.H.S)
of the 1i-th equation. | |

It should bé<noted that in the "Classical" spécificatioh of the |
(SEM) Simu]ganéous_ﬁquations Model (2.8.1) the disturbange term in any
equation is uncorrelated with all the predetermined variables of the

model. Let T be the matrix of regression coefficients of Yy on the

components of x When n, is independent of x, we have

t- t

n =.[I{ Bo]']F . For the (GEID) specification, where»corre]atibn occur i
between some elements of U and some elements of ;é, the maérices
n and [1 -Bo]_]F are in general different.

Mitchell (1974) in his criticism of the (GEIQ) specification

remarked that there do not seem to‘be grounds for saying in advance that

et e s e o . IS "
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the disturbance in a given equation ?ﬁ uncorrelated with particuiar
linear combinations of the predertimed va}iables, yet correlated with
other linear combinations of the same variables. [See Watts (1964) for
a critical appraisal of the (GEID) Systems]

_'

As pointed out by M1£\hell (1974), the (FP) Fix-Point estimation

prob]em can be stated as follows find the coefficients B° and o
and varlables yt which simultaneously satisfy
R ~

(2.8.6) yy =By, + Ixy + n,
(2.8.7) v, = [1-8°1'r ‘ b :
(2.8. Ye - Xy
(2.8.8) Zero restrictions ont 8% and T

A‘ /J
(2.8.9) Least-squares regression restrictions on (2.8.1),
j.e., in eacfx%quation the disturbance nt smust be orthogonal to all
noR-normalized. Yf and Xy appearing in that equation with non-zero g
W‘b ¢ '
coefficients.

Unlike the (2SLS) estimator, the (FP).estimator is not defined in

terms of unrestricted reduced-form coefficients, since the yt's' are

~ determined by the non-zero elements of B and I' . Wold (1966, 1969)

and Mosback and Wold (1970) proposed a non- -linear iterative partial
legﬂt~squares method where the regressors in one approximation are used

when the coeff1cients in the‘next approximation are obtained, and:then‘

. élnew approximation of the regressors is ca1cu]ated

A e e i s G o | -~

Hr e

Starting -with some initial value of the rlght hand jointly dependent

variables, y(o) and the known values of Yi and Xy » We regress

y¢ on y(o)t' and x. in each equationf excluding the variables séécifigd

t

o Rty ey




& e

16 IR

iy XA T bl

58

to have zero coefficients a priori, to obtain

(2.8.10) %=B%Hﬂﬂt+ﬁﬂﬁ+nﬂh.

Now in each structural eqdation calculate the predicted values of Ye

from these first round estimates applied to x

¢ anduthe 1n1§ia] y(o)t

and call them y(l)t.
Therefore,

(2.8.11) YDy = 8°(1) ylo)y + r(N)x,

We return to (2.8.10) and for this round we regress ‘yt on y(l)t and
Xy and/;his obtain the second round estimates BO(Z), r(2). This
iterative process is continued until successive values of all‘the
parameters are practically unchanged f.e., if yt(j-T) be the s-th
approximation of ¥,,- then the (REID) specification in the j-th

approximation is writtenJas
. ,

(2.812)  y, = 8G)y(E1) + I+ i),

Again with y(j-1), considered as known we apply (OLS) to'each
structural equation, until we obtain

.

- (2.8.13) vli = 8%(i-1), + o{idx, . -
t t. t L)

~

The fixed point is defined by

(2.8.14) yla-1, = vl), = 5,
8%(3-1) = 8%(j) = &° ,
) r(j-1) =1(§) =T

-

R
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t
= i

and hence if convergence occurs at the . J-th iteration we have j‘= J

and

(2.8.15) © 7 y(i) = [I-Bo(j)]'1 r(jlx, as required from (2.8.7).

Wold (1965, 1966) suggested that the initial approximation y(())t

S . . :
can be obtained as linear combinations of the vector  x whereas

t
Mosbaek and Wold (1970) determined the initial approximation by making
use of the (OLS) estimates of the matrix 1 of the regreﬁsion coefficients ;

of the components of ‘y,C on the components of x This kind of -

¢
initial approximation is ofteg reférred to as the .(ZSLS}” starat.

Questions on the existence and uniqueness of ‘fix-point estimates
and on t\e convergence of sugéested iterations have given rise to a,
number. of computing techniques for the (FP) estimator. Mitchell (1974)
and Lyttkens (1973) dealt with the folTowing alternative iterative
te‘chniques (1) the Recursive Fix-Point Method which has been extensively
investigated by Bodin (1969, 1970, 1973); (2) The Fractional Fix-Point
Method which has been employed by Agren {1969, 1970, 1972);

i3) ‘The Basmann ‘and Bakoney"s Iterative Method and {(4) The Reduced

Fix-Point Method of Wold (1966) and Maddala (1971), .

P

Lyttkens (1973) compared the fix-point estimator with the two-stage

least-squares (2§LS), the three-stage least-squares (3SLS) and”the Full.
Information Maximum Likelihood (FIML) estimators and reviewed most of
the literature related to the search for'asymptd:otic properties of the
fix-point estimator. Mitchell (1974) and Lyttkens (1973) outl i‘ned

methods for computing the fix-point (FP) estimation of models containing

" both linear and non-linear identities. Dhrymes and Pandit (1972} ﬁroved
N

AN

the cansistency of the first iterate of the (RRFZS_LSJ)E,A i.e., the second
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approximation of the structural paramete]rs obtaﬁineg by the reduced fix-:

et

€ L]

point method with (2SLS) start. They also considered the asymptotic ’ .

4'd‘1'stribut1‘on of the first iterate of the (RRF.ZSLS) and found that the

estimators of some parameters can be more efficient than those{of (25LS)
A ¢ DSE

et e -

and the estimatPrs of some other palrameters can be less efficient“than
those of (254S). Finally, it should be noted that inthe (GEID) ' A é
specification thg matrices T and [I- B°]'1I‘ are in general’differen&. ’
, In this case no known method of obtaining a consistent start 6f the ‘7
‘fi)f-Péint iteration has been found." { b i

[

9. . MINIMUM DISTANCE ESTIMATORS (MDE) .

‘ ' t v . : .

.From the M structural equations .given’ by. Byt +.I‘xt U the .. .
reduced-form is given I;y ) _ ¢ ’ ‘ 1

(2,9.1) . :yt =nxt'

8 R (5 S

wherein the overidentified case T is subject to restrictions and
. M &
k] N J

(2.9.2) ‘nm=-B"'F

P C (2.9.3) - vy, =8Ny | g

denote the true codfficients structures as By » Ty and M respectively
. ’ St

OT no = 'Bo ro . 4 “ s

| ) 'Malinvaud (1966) proposed the Minimum Distance (MD) estimators of "

nr(S)‘ of the matrix n satYsfying the restrictions and minimizing b

~~~~~~




T - 7”’ﬁT:i;f"f‘"’—ﬁ”—'"“_F’ﬁ*" . ]
e N : v,
b i -~ . l' t ’
L} ' ’;;

’ !

, (] ‘ B ) ‘, - . . . ..' . 't, ' . ' 6] §

. . A X - . . - ) | !

/ : h s , ks . T 1 A ‘ Co . '\
(2.9.4) . Ldsim) = % ¥

( sl ) S .
F=1 X (‘ X )

e

‘whe?e S is‘a positlve def1n1te matrix of order M. The estimators
By (S) and Fl(S) corresponding to . n (S) can ‘be obta1ned by imposing ’

%
standard normalizat1on and simu1taneous3y 501V1ng the a priori restric- <

tions subject to the equa]ity oo o

e e < b s o S e M s W S 2
. ,

(2.9.5) anls)+r=0-, - L
-.I : ¢ ,[
Mallnvaud (1966) suggested that under fairly genera1 cond1t1ons . ’
‘ + . ® 4 | 3 '5T" -
' T(S) - g° and TT(S) - F o
and showed that B (S) and T (S) attain ma imum’ asymptotwc efficfency
1 ” o < ’ ¥ .', ) k' N
when S ltends to ﬂ’f (Bo) X(Pb)'/il“ tﬁe‘i‘f“ R‘QVEd that if.the .
© matrix o S ( '
G TR T e
. . :,, T- o - t ‘u . "
2 " ‘ ~ )” : '.‘ ¥ ’ b -, :
o e AR i L IR
have 2 1imit1ng normal distribution and correspOhdineg that . \
-(2.9.7) _ V"T.["f(sr):i na] , 1Jh&§-a Timiting qdrmgr distribption[
o oo L ' | : » o s i.lf. - < —
. K SRR i~/.’~
N {,/’ . .
y ' T !\ ’
»',L ) Py [

3 * -
A L
- . ] .
- N '
« ' ' N )
€ ) -‘
¥ »
~ '
It i ¥ - . i
-
s R > [
[ ~ s 3
- + 4
K N \ i -
- - :
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a

SIMULTANEQUS LEAST SQUARES {(SLS)

Brown (1960) propos’ed the Simultaneous Least Squares (SLS) method

. of¥stimation which'is a spec1a1 case of the Minimum Distance (MD) °

estimators outhned in (2. 9 4) wvth S =1 and the proposed estimators

n

become B (H and I“T(I) correspondmg'ly

Nakemura (1960) establisfed the consistency of the (SLS) estimators.

b

Dhrymés (1972) compared the minimands 6f the (SLS) and Full Information

Max imum Likel ihood (FIML) and showed that contrary to Browns's»a’ssertion,

(sLs) is not a Full Inf'ormatigr]r method. Ifh his iterated instrumental

variables estimation of (SLS), Dhrymes (1972) pointed out that if the
, initial estimate of the iteration procedure is, consistent\%
t

subsequent 1terates are consistent and that (SLS) is asymptotically

" dominated” by (FIML) estimatorsG (See Dhrymes (:1972) for detafls of A

proof.)

3 » L]
. .

THE_ Q CLASS ESTIMATORS s s , . *

a ﬁmited information estimator. )

interpreted geometrically as a Minimum Bistance e&timator (MDE) defined

7 preted as a Maximum-l.ike‘lihoqd (NIL) estimator

Ke1fer (1975) preposed the so-called Q-class estimator‘ which 15

’
The ﬂ-class estimator can be

on a symmetric, posﬂ:ive semdefinfte index matrix n . Kel’ler (1975)

°

2 of the reduced-forn distrybances, and if these disturbances are

‘assuned to be normally distrjbuted the fi-class estirpator can be 1nte’i- :

- a

Keller (1.975) first'ly‘ develaped “the Q-class estimator by deyeloping

-
\J

v

‘u' o
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2

[N P

<y
" the (ML) maximum 1ikelihood estimators of the structural coefficients as .

functions of the reduced-form covariance matrix Q .

From our model of M structural equations

i

b * ’ . ’ ]
' (2.9.8) By, *+ xy = lit (t=132,....,7)
. . s .
we can write (2\.?.8) as ‘
‘ * [J- % y!pPt = gt | C
(2.9.9) lth + xtI' !‘t . ¢
‘. Now d,&;ine . b
' : i
> (2 .
. s ) . ] ] N
3 ’1 | [ X [y . i
' Yy=1| ¥ , X .= | %2 LU= Y2
P ? . 1Y . j h E . ’
, < .l . 'l .'l.
j , : A X1 U1
| s ‘ g . '
. { Then a1} M equatfons at all T samp]e periods ca;n be written as
L (2:9.10) YB' + XI =‘u" ' ‘
v *
\ where § {s Tx¥ , 'B' 1s MxM s X = [x] . XZ] is TxK '
4 . v
. r is KXM and’ U is TXM / The reduced-form correspon>ding to
(2.9, 10) is given by , o, —— -
. \ R N
" ! P 4 ) ’ .,
) (2.9.11) IR EES || U A .\u e
) wbgre‘ o= -pie) '
< v R ) & -
; v i =Uu(B ). -
‘ . . . o : s
) As before, the first strlictural equation is given by
4 L] ' ! [}
. (2.9.12) "= Y].Bf'.jw lel + q 3 !
1Y ﬁ ‘
[ B LJ .
Ny e . o
e ; S - -
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practice 9 fis rare1y known.

B L L

'S

»

From Keller (1975), the maximum-1ikelihood estimators of the

structural coefficients as a function of 'Q is givet{ by ' :
A § -1 A
' B, R LAS TR IR T B S Lo Rt
(2.9.13) _ . ‘
A v ®
A \ [} ]
¥ S0 L iy
1 0 1
" Where
(2.9.19) P = X(X'X)7'X .
. ’ a : ) {Dn ' * l ” L
(2,9.15) 0= [ " al B .
CL N L B
where - ‘Q”” fs or-order M-1 and
8, \ k ' \ n . R ) Wt
(2.9.16) ° X is the smallest-root of the de'term'inaﬁt,‘al equation
' l ‘ {:ﬁ & .
~ Yy - MY -oa) =0 .
. o
. Co , ‘ ) . . -
'and ‘ . N ’ "
. i et Corery v=lod . S
| B IR L U N

M o=1- x(x'x)")
" ‘ Y = [y Y ]w . .
o 4 (
\

In the (ML) approach keller pmnted out that the normal'ity
/

assumption on the disturbances cou1d be too restrictive and that ‘in

Therefore,- he dropped the 'l*ikelihood‘

approach and considered (2.9. 13) as % class of (Mb) Minimum Distance

' estimators. T}xese (MD) estimators were referred to by KeHer R-class
{
estimators, ,9
~ 4 [
S g - 2,
-~ It .
Ve




In the gontext of (MD) estimators, (2.9.13) is considered the

L

estimator -coxresponding to that of TN which minimizes
T B :
(2.9.»17) vLT -, M) = tfl(ytenxt)' nP (yt“""t) 7
Qﬁere P s the Eﬁeudo-inverse (generalized inverse) of the M3<M
matéix [ : . A
‘The estimators' in (2.9.15) is now redefined as a function of T,
whi;h is nof necessarily equal to R . The resulting estimaE?r fo; the

strucfura] coefficients, i.e., the Qf-class estimator, is given by,

5 ~

A oy - Nao vx:] YiPy. §‘
. yl - . [} |y - o
(.2.9.]8)( -] L , .‘ ! .‘] ] ] 1 1
b BN A I ] B B &
;k ' . . . i
and 1 s the‘ﬂna11gst root of
A &
(2.9.19) | Yo, QOmy -oa | =0

' Ke][gp»eéz;gfg;;;d the consistency of the, f-class estimators by

showing that under the usial assumptions the -class estimator defined

in (2.9.18),.(2.9.19) is a conéistent estimator of the structural

coefficients; , u
: A o . ! A
“(2.9.206) . . plim =
; | ) T /A\/ T.l \ i
LA}
and ~ . - N
. . ‘ » A . . o ‘ } '
(2.9.21) plim $ =0 : o
! : T+ .

> f

¥
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) oo . It is interesting to note that in view of (2.9.21) we could , ‘

demonstrate the asymptotic equivalence of the 9—c1d§§jbstimator anJ

S
the k-class ator wh;éh cbuld bes/defined as & |
) - A 1 ' , t \ t "] 1 [ . )
. B](k) Y]Y] - kY]MY] Y]X] Y]y] - kY]My]
v o (2.9.22) = Pt
A A ” i
. vy (k) XY S SN §

The k-class estimator is defined on a scalar k which must converge

S et v—— it = o

in brobébi]ity to one inorder to secure the consistency of the estimators.
) In the Q-cldss, however, the estimators are defined on a symmetric

s ‘ positive semidefinite matrix which can be chosen arbitrarily, under very _ :

p——

general yonditiogs, all members of the Q-class are consistent estimators.

’

.
T
1

P e

10. THE THREE-STAGE LEAST SQUARES (3SLS) METHOD . .

Zellner and Theil (1962) 49vef3ped the (3SLS) as a consistent
estgmatjon procedure which takes into_acébunt all the equations of the . e
simultaneous equation model under study. '
‘ We consider a cgmp]etebsystem of M Tlinear stoéhaétic structural
< o equations in M jointly depenﬂent variables and K predetermined |

th

var%ables. The m structural equation can be written as

(2.10.1) xh = YmBm + meh + Um y ~ m = 1;2,...,M)’

where Y is a 'TX1’ column vector of observations on one of the ‘
jointly depéndenf varigg]eé in the mth equation, Ym‘ jsmthe Tx (wm- 1)

matrix of observations on the explanatory jointly dependent variables,

' ﬁ“ is the Tx Kn matrix of observations on the explanatory
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- (2.10.4) to obtain . '{ B
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predetermined V§F§ab1es, Bm apd Yy are vectors of Q?rameters and

Um is the column vector of T structural disturbances.

Let,
. Bm
(2.10.2) . Zm s [Ym-’ xm] and 6m =
' \ . . . Yh

3

From (2.10.2) we can rewrite (2.10.1) as

(2.10.3). y

- Zmém + Um .

In the (3SLS) approach, we write all the equations in a nstacked" form
- . . ’ ‘

and apply generalized-least-squares method to the system as a whole
after making a transformation (as in Zellner's "seemingly unrelated

regression”). ™

Premultiply (2.10.3) by X' where X is' a TxK matrix of rank

K, then , . ' f .

(2.10.4) X'ym = X'Zmém +* X'u m=1,2,...,M) . o
Let ‘ ‘
1 - N l l_lq N s N
(2.10.5) . E(U, ¥)) = o1y » 1.e:, the disturbances in the ‘
different equations are contemporanebu;ly correlated but are ingependent"
] ' - .

‘over time. Therefore the variance-covariance matrix 6f the disturbance

-

iga(2.10.4) is given by

(2.10.6) . E(X'um ué x? =,omm(XiX)

Qhere %an is therconstant varfance of each of the ‘T djsturbances in
the m-th’ equatf%n. Then we can apply Geheral1ieq-Least-Squaresfto

i o

-

3}3 B ™~
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(/ : (2.10.7) %o X'X) "'y = 2'X(o X'X)']X'Z d — )/ ;
‘ P KRS m. " mm Im momme mm . |
' 4 - .7 H
p from which we derive the”(ZSLS) estimator \ .
' | e vreel ] N > !
= ' 1yy” ' = ryY Ty
(2.10.8) dp = [Zx(x'x)"x'2.] ;mx(x N7y .
+
It should be noted that if the m-th equation is exactly identified,
the matrix Z' X is square and non-singular. In this dge (2.10.7)
X
, simplifies\to
vyt =y o {
| (2.10.9) (x Zm)dm X Y ‘ :
The solution of (2.10.9) written out and rearranged will be seen to be
e Just ,%he“indirect least-squares estimates. '
) X . : "
. (2.10.10) ‘ | : ~
¢ . | Xy ] [ XL 0. o 1 [6 ] X' ]
. * ' ] 3 ’
J ’X‘yz _ 0 X'zz ..... 0 5, . X'U2
: : 0 « . . .
LRt 0 X'2 5 XU
| ¥ ) IR N '
) ’ To apbly (GLS) to (2.19.10) we need the covariance matri(of the
disturbance vector of (2.10.18): >
‘: * N r b ‘ . - . 1 ’ ] b
: — ‘X'U] a”X'X .olzx X .... omX X
S, , ‘ :
¢ e, (2.00.1) ' ) vy C gy,
. | . , v X'U”z . O XX OppX'X ... OZMX X |
H * . % i |
, : . : @ -
. °© t X'UM‘_ Lo | cmx‘x ...... GMMX X.J
a3 L
Grouping the °rr;n “in a matrix "z, (m, n=1,2,...,M) we have - ] i
. * C / ) T, N " N '
| ” (2.10.12) o V=x8(Xxx) ., -* and o . ‘ . o
- + i )
»




-

T

i e byt

L

(2.10.13) v'] =5 e(x'x)"

' mn, . _ -1
where l[o ] g lo,,]

-

In practice, . % is not known. Following Zelliner and Theil's
suggestion, we estimate each structural equation by the {2SLS) method,

. ‘ A . Y
get the estimated residuals_ Um , estimate %n by Smn,' T (Om ﬁn) R

o
invert this matrix and dencte it by Smn and use gnn for o™ .

Thus, the (3SLS) estimator is given by

(2,10.14) 5, -
. r M

- _ -] _
A ., 12, ™., m,,
8 s''zipz s'Czpz, ...l Z]PZM‘J mffs ZiPy.
8. =1n» 21, 22, M,
B | 6, | = | sty snppr, ... sMpery M om.
. ' ‘ - X ST LPy,
o : . . =]
3 M. M., M. "
| O | | s aypry SVer, o ST | .-
’ x s¥7ipy
, a Lm’"] . Mplﬂ
where .
A\ . ’
(2.10.15) P o= X(X'X) Tk

-

The covariance matrix of the (3sLS) estimator is given by the inverse of

the (R.H‘.‘S‘) of(2.10.14), i.e.,

{ P

T mn.,, -1
{2.10.16) [s""z:p )

It should be noted that the (35LS) estimators are more efficient than the

(25LS) estimators only if {Gmn]. is not'diagona1.,llf O = 6 (m+n),

m
then the (3SLS) reduces to the (25LS).

Writing allsthe equations cdmpactly as

. -

i




> ‘ 70 L ™
» |
, ?
(2.30.17) ., y=126+u i.e.
L y 7, 0 01718, ) [y
(2.10.18) [ 1 1 ! .
y - 0 Z, .... 0 6 u ‘
( . 2 . .2 . .2 + 2 ' ' .
[yM 0 0 ZM ] [.6M [ UM
Then .
. (2.10.19) 325&5’ [2'(1, 8 PYZ]" 241, 8 Ply

<1 .
(2.10.20) QGL<=’ [z'(z" B*P)Z]v z'(.z'1 8 Py

A, : ., e
“2'(Z 8 P)y

Therefore o . .o - ,

(210.21) 0= [73(8 0 p)2]

A ' . o~
where I 1{s a consistent estimator of = .

) A
. It can be shown that 635Ls 1s a consistent estimator, {.e.

: , ~ » o .
- / “
(2.1p.22) glim 33SLS =5 . . : rj%
- 00 ]
' " * . : . v
The consistency of the (3SLS) estimator can be shown as follows: .

‘ Consifer the following set of transformed 7tructural equations -, f
s | ° |

\ ' (2.10.23) + a=Ab+gqg ', i.e. , {

! L. !
g E | . [ a, 1 | A] .0 eeee 0] f.61 Y [ 9 ] =
g *\ - , ' A . .
; | T3 N IR P N B % e «(

| 2y 0. - SRR K] :




o Lt

—tt
i
b

. :,:ﬂe;,M' -
o
s

n

: where .
. NN b
a, = R X Yo )
A =R Ty
(2.10.24) . m m
. T ; v
qm R )(um

Ty
L 4
where R is a non-singular matrix such that- X'X = RR'

[rank/ X = K by assumption and X'X {s positive definite, hence there

exists a non-siﬁgular matrix. R- such that X'X = RR']. g ° " //;
»

The generalized-least-squares (GLS) estimator of & in’(2.10.23)

is given by

7, GLS

| | ' 11, ool

| , (2.10.25) 6..=(& 871 Ta o't
| , .

* PP where - cov(ig) = @ =xg1l )

; : .

Therefore,

' A - ) -1..~-
- (2.10.26) 63515 = (A' 8 ~'p)
. ‘ A 4 ‘ .
‘ | [ o = a1, . .
: _Now from (2.10.23) and (2.10.26)

. A

(2.10.27) Bl =64 (A 5 °IA$" woly :
U . 3SLS ‘ g | i

, For consistency bf 635, 5> we need to show

.
.l
‘a

-~

S Ay - A © e . .
ise (A9 A A'"g-1_q ‘ 2 :
| (2.10.28) _ pii ( ) o variabres. ﬂ |
‘\ . M N ! A\ - T 1’ T: ‘/ T o - ; '
' . . ) ’ ' ' . E *
* It should be noted that the probability Vimit of ,
: ' ' ar . n |

N - -
—r" . . ¢ " . B B
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( ) entails a nonstochastic probability limit of the

‘quantities .
mn,, mn, '

(2.10.2) S AmAn=S Z'X oyt X, _ N

U T T T ) T |
and since S™ s a consistent estimator of o s the probability
1imit of {2.10.29) is a nonstachastic matrix with finite elements
(in.v{ew of our usual assumptions) i.e., the model contains no lagged -

" endogenous variables and the error terms are mutually independent.
f . v ' ) A_
Similarly the probability 1imit of (2.10.30) AL &1 s also a
: , . VT . ~
nonstochastic matrix with finite elements. Also,
‘ ‘] ' -r]
R X'U R X'U
(2.10.31) . | = VT ——
VT T
B 1 ¢ < i . k.
Ho plim ETK exists as a nonsfingular matrix (by assumption). Y
B T-+eo . :
1\~ 1 : - L ‘ ! ‘

Since (x_T_x_) =1RY RV,  then plimVT R = R* exists ,

. . ’ Troa v " .
as a matrix with finite elements. *
Therefore, (2.10.31) becomes . N

* X'u )

(2.10.32) R*-plim T . -where : -

. Treo | P - ' 3 ,

UO x.um . ' B
' plim — 20 (by assumption).

T

o

Thus, we conclude

~

(2.10.33) . plin' &

T2




et

Zellner and Theil (1962) demonstrated that the asymptotic

distribution of 335Ls is

AT, -1
. (2.10.34) WT@%B-QmNP,mm(ABA\}

Too T }
o |
Foflowing’Dhrymes (1970), we establish the result of (2.10.34) as follows: ?
Now '
' ’ A (-1 4 A- ' !
. - (ADO AQ g j
(2.10.35) Vﬁ@%w‘q ( - L = o
| | Y o |
. From (2.10.35), it is clear that finding the asymptotic distribution of
," ,\/'T_(33SLS—6) reduces to the question of finding the asymptotic
2 A_] ) ' '
f distribution of (2.10.36) AS g which 1s exactly the asymptotic
i ‘ VT ‘
) distribution of
| ' ‘ A e“g
- ' (2.10.37) Where 9=xX81,6 . o, e ,
o K , | |
Now
(2.10.38) ~ Aeg = AME B 1)(1, 8 RTIXY
, ‘ N '
¢ i o
s where .
; Uy \
(2.10.39) u |- Co
. U= .
t “
| y . |
Define ‘ I ~ | .

(200.40) K= AR, R = disgR] S Ep ... K

" " Then we see that
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N ) v
R T | ' A
(2.10.41) Ao ]q = AL ! 8 IT)U and further observe that - ( ;
. N ‘ 3 _ —.}
[— . '
(2.10.42) A A(IM 8 R. )(IM 8 x )y . /i~ )
. //7 . ‘ C oy
N 1
Now define . ) o : .
: ‘ F ' . ' Ql‘ '
(2.10.43) . B = diagfB,, B,....8 ] where ’ .
N .-. * -"\ . N
BM-%R (m(l,....M) ] i
.. . ) ]
and observe that. the quantities
(2.10.44) | Tim B = plim ™ -1 S
e e Tem ,—“,_T._‘fT—R;M Lo ,

exist as nonstochastic matrices with finite°e1ements: I :
Choosing d" to be the m-th row of ) » Uy to be the row :

¥

vector containing the error térms of the . M equations of the system_at

"time" r and x; the r-th column of X' . Then we can verify

that
, o1 T vur , -
(2.10.45) A® 9 . 55 Xrr where , T,
: VT r<1 VT
_ N ENOR
(2.10.46) '(’ S {
) 2 . ‘ .
v. (m) _ .. oo
. V. = r ’ Yy Xp " St \\\ ‘
: () '
L r ’

L 4

Since© 8 has a well-defined nonstochastic probability limit, then

- | .- . .
the asymptotic distribution of ATQ——Q is determined‘by the asymptotic

3
% 3
3
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e T

.

(]

s h NN
; > T v . 5
{2.10.47) ; 2 ¥y LI where . >
T VFea VT o

-

V;u; , r=1,2, .... constitﬁ}e a sef of-mutua11y random vebtors. The

,d&}mptotic_distribut%on of i;/30 .47) «can be established by an appropriate

{C.L.T.) Central Limit Theo which establxshes the asymptot1c distri-
1 - . E'
\ bution of A8 g and in turn that of V (63$LS
. ‘/ T . - N

I , . ° S ?

1T, EFFICIENCY OF THE (2SLS) AND (3SLS) ESTIMATORS
T

From {2:10.23), we caﬁ write a single structural equation as

- (2.1,1) _a.l = A 8, +q . Then the (2SLS) estimator of .8
’ ’ ‘ ' idl“‘
is .simply the (OLS) applied to (2.11.1), X , : o
" Therefore, . . S '

:\' + . = -1 .
(2.11.2) - Sigasis) T MY

Hence the (25LS) estimator for.all the 3graﬁeters of the entire system

= AS + q- s

»

- (2.1.3) g(ZSLSi ='?R‘¥1§]A'a =8 +(A'A)'IA‘Q

o JALA S o N
and since " plim (’T;) , exists as a matrix with finite nonstochastic .

\‘c’ I..’w . . ‘0
- 4 ‘ . N A

elements and c g o %

plim 5%9 =0 , -, (Am é‘R°1K'26 P = R']X’qh):f- ,

e ——— o
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. w ',r‘b»' o ' . 2.

Then

gl‘;" 32s{Ls

\ ‘. . A4
A . v .

From Dhrymes (1968) . - * - EEN

(2.11.4)

u‘ 1 . g‘ “
(2.01.5)

' N b 5 '9 -1 y =1 ’
) MANT aen (aa) ]
v (ZSLS 6) ‘”A"["" plim ) T (»f)

-

ZSLS and CBSLS be the covariance matrices of the

Let c
asymptbtic distribution of the (2sLS) and (BSLS) estimators respectively,

where' . - . N . : ) {

- 7 o
. .

ey o rfaay! adaparayly ¥
(2,.‘] . 6) L "CZSLS~ . ¥Tim l_ T ; T "‘"f-— . L
. ¢ . . ?L\& . Ty

L , ATy
. - AT
o @) €3sts ;_‘.f:‘( T )
= Define a matrix -Q by ' e ' S
(2.11.8) 0= wn - Wty -
and note that .QA ='0. .- PO o )

* Also’
’ N ' . " ’ o f ‘ ‘ -1 _.]" -]. 4 .
L JTo - [AA7 A [AEAT! A oaa
‘(2.‘1.9) ~. A Q‘ [ T ] ﬂ'l- [ T ‘ J J:'T 9 “' '.

He.ﬁave established that the matrices on the {RHS) of (2. ll 9)

have well defined prob;bility Timits, therefore.;;i fo]lows that

“(2.11.10) plim VTS Q= 6 exists as a uell defined matrix of
’ 17 Vo B .

(finite) constants,.

*

' . -
. .
. . s
=8 L _— :
) o o~
" . . BN .
s n
.
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R (2.11.8), we have.” -, _ « E
/- o _ PRI T ' \
‘ © (AAYT A'GA [A'AY A'Q” A Al A
(2.11.11) (—— oA (—) - [( ’*9 5 s VT q ] 5 x
! T ~T o7 1 TW A
- . . N R f’ .] .
o o - % 6‘1,—5——(";85) +‘/_T_Q']
. oy vy .
. " ) . .
Taking the probability limits ahdMng that QA =0
)" proteyiTity fipits
‘e St -1 16 ' -1 A-1\ -1 A
' (2.17,2) plim KA A) A_SA (A A) ] = plim (A o A) +de 0
2 ety w5 e VT N
-y . -
. Since 6 is\by assumption is ‘positive definité, then
. . : \ L
. e A Lo . ;
L 2..3) c=qeQ is positive semidefinite.
~ Then from*(2.11.12) . Y
" \ . L u’.'= , ‘

Yy

s

/‘ . \ " «
N ¥

L - - . - . IS .
o - . . .t ’ .
- N . . t »

4
. s

Dhr'ymes (1969) has’ shown that theJ(asLS) is "strict]y efficient" relative

S

e S
Q the (ZSLg) est1mator in -the Sense that the generalized v r1ance of

. :"‘/ .
(R H _— "

’, 4 P

the: ZSLS) is s&:igﬂy less than that of the (ZSLS)jf and onTy if
|

(2:11.15) . rank(Q) > 0 -

It should be noted ‘€ 2 0 when O = O

. N
~m#n_i.e., when every
} .
'equatwn 1n thé system is exactly idenﬁfﬂed

In this case the (25LS).

and (3SLS) estimators are equivalent.

.8

estimator%ver the (2sLS) estimator when the vamance covariance matrix !

“is diagon{rand/or a1l the equations of the system ar& exactly fdent?’fved

. . He have o}served that there is no gain in dfﬁciency of the (3SLS)

eIy
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Srivastava and Tywari (M978) have obtained somewhat more ‘general condi-

b 4

tions under which f:!le (2SLS) and (3SLS) estimators will be identical.

-~

They employed a necessary and sufficient condition which C.R. Rao (1968)
N A A H
obtained for 5, o and gLs o b(.a identical. o i
e | :
a Consider” . .
,-\.. oy /s € A
- s
f (2.11.16) A'GD = 0 here
J1. ‘ 'oD= - where,
~ ] / ) \ ' * . 5
N s 7 . 3
Gnan M I T 0 o i
. ]
D = 0 .Dz a-‘.:.-- g
< . v
‘ 0 *O DM 3 :
‘ : ; }
, M , . :
+ s a MKX (MK - ¥ (Mm-l + Km) s matrix, with full column rank,
& - s M=1 , ) . '
- , orthogonal/t{‘A afd Dm(m=1l,.&..,M) is a KX(Mm_] +~Km)' - 1
. Now L ' | '
o (2.1.18) A" D =0 ' by the orthogonality of A and D.
A A In view of (2.11..17) and (?.11.,18), the conditipn (2.11.1'6)'reduces
; # -to the following conditions:. \ ‘ e .
: ‘ . . - ‘ . ) 5‘
i . ) , ~ Iy
i . (2.11.19) Sn A'p Op. = (l : for everym ¢ n (m,n=1,2,...M) . L
“ . ’ 13 ; A
As}i/ﬁzéd out by Zellner and Theil (1962) 325[."5 agd 6GLS will be °
oot ' . . ™ . ' W .
' ’ ‘fdentical if di{s,turbances are uncorrelated. The sameé result holds true
“ A v '; . ' . _. [
- if , , ’ ’ ’ . ' ' ' : 3
) (en20), . b =0 L o - L
. ) - ("
_' % / Q for every m + n which are free from the cmn's and hence characterize
\ “‘ \1- ) . - o ‘
A A . f
‘under which &, nd - 8 are identical, since -
s ' the iituat.ion*s under whic 2%5Ls @ d 351 re ? al, c?
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A
§3SLS is a feasible versfon of 3GLS .

. o
From (2.10.25) Am =R X Zm
if . ~
-1 _
(2.11.21) RD =0
and since (x'x) = rR',
(2.11.22)

p—

A
which also characterize the equivalence of &,¢ ¢

cotumn rank, of order KxN
|

(2.]1223) A* D*

If v

-

coordinates, then
N ——

LY

(2.11.24)

where. M(A*) and M(D*) are co1umn'spacek of

and Kx (K-N) respectively, such that

= 0.

denote the vector-space of all

Vet
v§/= M(A*) 8 M(D*)

, the relations (2.

for every n

(X'X)"Dn =0 ., -for everyn,
- t

v

Now Tet A* and D* e matrices, with nonstochastic elements and full

|

v

N

y 'tively and @ indicates the dire;t sum of subspaces.

[y

entire.épace vS i$ generated by the columns of A* and D*,

. ’ - < .
, find matrices Gm], sz, Qn3 and q“4 such that

- . £
(2.11.25) Am ='A*Gml + D*sz’,‘ \ '9 A
- ’ . - /\ : . Y
‘ 0, = D*Gm3 + D*G 4 N

when a1l Ay's lie }the column space of  A* and ,all' D 's liein

: el S
the column space of "'D*. Then sz and Gm4 will be null matrices.

-

A
and 6 . :

K-tuple vectors with

s

.P“

11.20) will hold

GLS % r .

'\t * - f
™ » |
V4 W <
real
-

\

RN
and D* , respec~ P
Since the (,7
we cafi ..
A
|
]
. |
)
- .
b
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Therefore, we have - o g
= A% ' - ;
(2.11.26) Ay = MGy |

\ | Ve 4 \
Dm = D*Gm3 )
) . | .
. . T - i
. satisfying (2.11.20), i.e. AmDn 0 for all m and) (m,n=1,2...M).

1t should also be observed fhat if all the A';‘s contain linear

. . A A .
combinations of the same varlables_, 6ZSLS and 63SLS vpﬂ be

fidnetical. . - ‘ . ]
| \ . - . ¢ : . -
Zellner and Theil (1962) proved that if the s /ystem of M structuralm i
equations Consists of a subsystem of M* equatlons that are exactly %
o v q1d&nt1f1ed and M- M* equations that are overidentified, the large )
/K sample efficiency of the estimates of the pér-ameters in the class of
- overidentified equations is unaffected if the (3SLS)[:method is applied
"to that class alone, ignoring the M* exactly identified equations. * &
Naray:nan (1969) demonstrated that the \6\3SLS) estimates themselves - not V
s | B just their sax'np\e efficien‘cy - are unaffected if the M* exactly (

- identified equations are ignored akd the (35(S) method of estimation is

U’ -appliedionly to the M-M* overidentified equations. ‘ \

|
|

4 ) . '

s
«
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12. THE FULL INFORMATION MAXIMUM LIKELIHOOD (FIML) METHQOD

[

The (FIML) method Tike the (3sLS) 1's a "system.method" in which
we estimate the parameters of all the equatwns 51multaneous1y using all

the information’ on the model. | o

«

As was done in {2.9.10), we use the mode] Byt + I‘xt =-ut

'

w

. . . |
(t =1,2,...,T) to write all M equations at all T sample Q‘g}iods as

»

Y2.2.1) ) . VS Ty .

L]

We assume that | .
¢ &

(2.12.2) Uy~ N(0,Z) where I 1is a positive definite matrix.

_where ¥ 1is a positive ‘definite matrix. With no loss of generaTlity, we

" assume exclusion r-estricti'ons of B and I‘.\’E;ﬁre‘r?.are no restrictions

onz. O N

: P A
~ The reduced-form corresponding to (2‘.'12.1) is given by s
\‘ o I ’ 4
(2.12.3) Y=Xn'+V where 4
(2.12.4) 1N TC SLE TR T Y - .
w2 | V2 L B
(2.12.5 fu,) = (2™ [ z.| expl-3 vk u) .
]

The join%/density of the -u's. (for all 1 obseryations)is given by,

| 172 ST
- (2.12.6)  (2m) M2 j ¥ | exp [-% 5 ul £ ut]

t=1° |
- |

Transfomin& this densjty from the unobservable u's to observable

y s 5 we have the joint density of the  y's (the endogenous variables)

/.

»
I

» 7




estimate’of I , i.e., N . >

| , |
\ ' Y S
82 o
given.the x's (the exogenous variables) as:
- * A
(2.12.7) |8 | ‘ ] 4 N
exp L'f te X (YB' + XT*)'(YB' + xr')]
2 a‘/t

where from ,f(ytixt) f(”t)l 3}; l

3(By, + I'x,)
£(u,) l____lL_____E_
t | ayt

‘ .
T o]

where IB ' 1S THE-Jacobian of the transformation from Uy to Yy

Denoting the log-likelihood by L, we have ‘

4

'(2.12.8)  L(B';I";T) = constant + log lzl + T Tog la'1

|
? * 1 t =1 ' 1y t l‘n
o , -5 [tr (YB* + XT')'(YB' + XI'){ .

Maximization of ‘L(B',I'',Z) with respect to the a priori resprjctfon on

| tors.e” | *
B' and_T yjelds the (FIML) estimators.’ o

-
\

Since there are no restrictions on X, we'can replace-the °
[}

o A
! AT L .
(2.12.9) I= T-(YB' +xr')'(v8' +xr') - A

1

in (2.12.8) to get the concentrated likelihood function.

(2.12.10) ' L*(B',r') = comst. —‘T\ﬁog'(YB@\+ x) vt +xen)|
. ' “

o .
- ¢

- ' +T log!B'[ Lo
} ! e 9 - ) - "

Since log‘afla=‘%-fbg|3v'vs'l - %-loglv'vl and 17'7' fﬁ a constant
. e ' ) ) - o

r

2
. L

e} |
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(being a function of observations only) then ‘ -
3 1 4
(212.11)  L*(B',I") = const + 1 1og|BY'YB'|
-0 lva' £ XI')'(YB' + XI') e
z '\ - : S A

It has been established in the literature that we can obtain the

same normal equations of the (FIML) estimatdl as those obtained by .

L Y
‘,.',_4' N ,

‘maxﬁﬁizing the 1ikelihood function (2.12.8) if we minimize the generalized

. residual variance |T'V'VI of the reduced form Y = X1' + V

subject to the a priori restrictions. \ : 3
Chow (1968) inter;reted the (FIML) estimates as generalized least-

squares estimates, in the sense that the generalized variance of

U{= YB' +OXI'' is minimized relative to the generalized variance qf,the

}
Tinear combinations YB' of the dependent variables, i.eﬁi the ratio

S Uy ‘
(2'12‘12); ——lT————l———- is minimized. o ’
! e /

Scharf (1976) used the same arguments as Chow (1968) to derive the

normal eqﬁafions of the (FIML) estimates. He, however, pinimized ;ngtead
. |

[}
L

l
N 1+-1,.4 . ‘
(2.12.13) > e , a
|1 v mve | .
A | v \. ~
o | ,
where, - M=1- X(X]X)']X' and (2.12.13) is\equiva1ent§to ",

s .

-t




) \ 8
~ 5
1 .
‘ -
E (2.02.18) [ vy] | :
PR where
! =] A A . L] !
( TV V],
N ] I . ,
v and , 7
3
! A € . ,
) J Vev¥-0=v- x0Ty , _ =
x> ! . N .

_ the (Qgs) egtimated-error-term of the reduced form. - In other ﬁordé,
// i J Scharf (1976) obtained the (FIML) estimate$ by minimizing the generalized
residual variance of the reduced form relative to -the estimated residual

variance of the reduced form as a function of the struchr&l parameters

-

stuect to a priori restrictions. ‘
Multiplying (2.12.13) by % and taking logarithms we have i, -

oo (21215 L= (og|r'uv] - 7 lg|T v ms | _ .
Let ) o ' -
(2.12.16) W= Teyme ‘ ’

Ct then the (m,n)th element of W 1is given by

; ' (2.12.37) « T Dy, -8 Yl My, - Y 8] “Yan . . e :

i : g Y '

;- Let

! - A, - . - -

; (2.12%18) §5=T10'0 - : . . !

i, . ) \\ N ) ,‘. ‘ . .

‘% : and the (ﬁ;n)th element of S 1is given by~ ‘ S -

' 1
8 .

. LA C oo vl -yl s ' - SN\
(2.12.19) Ty = Vg = pXed Dygr- Yoo - Xl = o - ’

\ . B . . . . |
‘ s = ¢
) ' - B . ; .
, , . . .
. .
A - 1 L
. , .
. .
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g Taking the partial dertvations of L w.r.t. B% and 71! (§=1,2,....,M)
wer have '
5 (2.12.20) 2T g o m B 1 B M
B 24 CHE . %, .
where ™ and W are the (m,n)th element of S'1 " and w". ‘
_ respectively. ﬁ
Following Chow (1968) and Scharf (1976), we have R
¢ . - » !
9s 6 i+m, 1#n ~
o mn__ Bt . \ o
(2.12.21) 381 Ty ] S
T Yi[ly -~-YB' - X8 for {=m
— - - i%n n'n n'n
< ow 0 i+m, i+ n
' (2.12.22) BB'E'" =3 . .
‘ i L - ' for ism
_ -7 YiM(yn Ynsn) \/‘/
-'#. ( L] + ' :‘ “
o ¥ Then;', ' g ~
’ aL . in [ ' : in ' - ] ' "
(z.nz.zal) i : s _,v;(yn.- yhsn-xnrn?ﬁ ﬁ." ViM(y, ’vnan) - (
J . .- '
INY Simiparly, ‘
-~ o ¢ aL - ‘n ) ' ' ,| N
(2.12.24) o b,f R H O R R .
. I
’ Then . ' ] | e
| . COAL L in ' iy e ey
N (2.12.25) 3, " TIS Ll -8) +EwT 7 My -L8) -
v . ’ o J\ ‘k b ‘ ' - ,
LY 2 ' 8 . o ,
‘ whee;j 5_i'=[i]" 2=y, %] :
- ] 3 [ 3 . Yi \ ) ﬂ
TTe '
' - ‘ 3 - M
3 } S‘ . 4 . - . \ o l'(. . LY
. e ./ *': ‘m
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? o
% Then i L _
en if we put . —z= =0 (i=1, .»M)
: : i , ,
; and 2
% ’
6= | ¢ ,
\] “
On N
we have (W
: an 1A M
(2.12.26) [zz(s‘"x - Witz ] 8 = [ r (s - winM)y']
i ‘ n n=] i ‘ n
1 =1,...,M
s {
or o ) .
M‘ N P Wi Jn
\ (2.12.27) 3 Zi(l':ﬁ M)Zn nf'ls Z (1- —T- M}y Yn
L . i=1,...M
. , - /
/ T‘///- ,' . ] . . ’ d Q' s
_ K-MATRIX-CLASS (KMC) ESTIMATORS . . o ‘
A Now Scharf (1976) defined the (KMC) estimators by the normal
. ‘ M
equations:
, K., .
s A ' i [N
(2.12.28) ( "z - k1 Wz )3 . [ r s'" [1-k, M)y,
] . =} %
‘ ' S =1, M
. where k (Tn 1,. M) .are stochastic or non- stochastic scalars..
4 ']
Comparing ‘the normal equations in.(2. ]2 27) with thO@of ()12 28} we
AN\
observe that 3FIML belongs tp the (xnc) famﬂ‘y with
, ) S RIS
, koo ot L & . v -
§ ) T ~ Lo - SRR
~ . N ! ;"‘.
. . . i
e . N

S .7

LN

it At gt
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//' ) ' ’ AN

o e . in ’ ,\\\\\
(2.12.29) K= (k, ) =¥ . '

. LINEARIZED MAXIMUM LIKELIHOOD (LML) ESTIMATO& K

The normal equations for the (FIML) est1mates are c]early non-1inear.

in in

These equations caﬁ)be linearized if s and w are computed from

any consistent estimator of the parameters B and r. Rothenberg and
Leenders (1964), out11ned an interesting procedure for 1inear1z1ng the
FIML normal equations. They differentiated the 1ikelidood function
(2.12.8) with respect to the unknown elements of ¥ . Thespfpartial

derivatives are set equal to zero and the resulting equations are used
‘ ’ X

’3(, 1
I in (2.12.8) . This new function thus :

to eliminate the unknown °*

obtained is called the concentrat 'd 11ke11hood function, (2.12.10).
The concentrated 1ikelihood function is,differentiated with respect to
' 6,1 o .o ' '
6=1| 6 . g _ .

tet £(6) denpte the resu]tvng grad1ent of the concentrated 1ikelihood

’lfunction Then the" (FIML) est|mator is obtaiqu‘from the (nonlinear)

! -
equation (&) = 4 R )

\ : ) v

N
To obtain the (LML) estimator choose ‘éf as some consistent -

‘\\\\::N\fstimate of . 6 lsuch thaF’/Gﬂ -6 s of order T'”2 in probability

i.e., .
(2.12.30) \ . VT (8%-8) - ~

T
*c. g T
TP e

-

/‘

T : “7 M ,
el N / |
) M K l ' ’k\iﬂﬂy E

st b s TSt i i hn 4 Do b 5 o kel n e~
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o

has a 1imiting_dfst}ibution with zero mean vector and finite variance

covériance matrix. One possible choice of &* s thg\(ZSLS) yeciﬁr

4

A
\\\\\ 6(25LS) . New equate to zero the Taylor-series linear approximation
. | :
N of £(8) , 1.e., S ’
(2.12.31) e K= EM=0 R

where H* 1{s the Hessfan matrix of the concentrated 1ikelihood fun
v

"evaluated at 6 .- -

From (2.12.32), we obtain

1}

R ' (2,12.33) 5= 6% - (u%) " e(s%) . -
: 5 which is known as the‘]ine&:qze maxjmdm 1ikelihood (LML) estimator.
PA B | \,
' “ Q . *
\ , U \ .
7\\(/J . ' LINEAR (KMC) ESTIMATORS \ (fw .

From (2.12.28) it is c1ear that the nonnal ‘equations of the (KMC)

estimators are non-linear. We can linearize the normal equations ¢f the
KMC estimators by computing s’ and (i f necessary) kin from any
“consistent estimator the true parameters B and T . “The solution

thus obtained is called the Linear (KMC) estimator, e.g., if we take

Er

»

6(ZSLS) " thj/;ZSLS) estimator for s(\t and se£) in ~.1,

iun = 1,2,...,M) we %htain the (3SLS) est1mator as a special case of

. <

thh\?inear (KMC) estimator. ‘ .
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Then, the i-th reduced-form equation is given by

4
-

(3.1.7) ’ Yy Xy by ” T

where ¥; is the T x 1 vector of observatigns on the ‘i-th dependent

variable, X fs the T x K matrix of observations on all the
. ] - ¢

predetermined variables, U “is the Kx 1 vector of reduced-farm

coefficients of the <4-th equation, and v, is the T x1 vettor of

i
distrubancés in the 1{-th reduced-form equation.

The (OLS) estimator. of m,, is given by
o 5 Lok
(3.1.8) oo = (X)) Ry, o

and its sampling error is given' by o

"

(3.]:9) o W, - W, (X'f)"]X'yi -n

i

1"

[ ‘]' .
(x'x) X'(Xni + Vi) - n
' -1 '
= (X'X) X Vs

i

Also,

(3190, pimdn, - w) = prinrTex) B

,".»'( ' - =0 N . ]
 Since ” ' ' .
. ._1 P
plim(T X'vi) =0
[the disturbances are uncorrelated with the predetermined var}ables]

and by assumption

TSR I L .

5 . 1

e 4
T e L T

Bt e s M b A b 5
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4

exists as a_nonsinguiar matrix with finite ‘elements. Therefore,
Tty . i:ﬂimni=ﬁ11 “

\ Hence n, is a consistent es}tignatoi' of n “and fts ;asympi:otic covariance

matrix is given by

i

(3.1.12) - ,T/" ‘piim‘[v"r‘(ﬁ; . “1)(35 ] AR} ) o

777 plim T0X) Tx0w Vi (x'x)"? .o -

/ ! . ) b 9
‘Now if we consider alt M reduced-form equations, ¥.e. (3.1.4)
-~ . ‘ \ e ‘ ?
Y=Xn"+v , a -~ ' .
. ,

the coefficient matrix 0" 1is consistently estimated by .

(3103 (rry = (0
or by
s A'A ¢ ; -
(3.1.14) (uar) - RN b i \

This met hod of-est‘imating the reduced-form coefficients M - is called £he
Unrestrlcted Reduced Form (URF) metii%i In this method; consistent
- estimates of the reduced f‘orm coefficients are obtained by appiying (oLs)

,

to eqch reduced-form equation. This unrestricted (OLS) estimator of 1N

. " does. not in general, incbrporate the a priori_information. r/ '
al

It should be noted that in the’ estimation of reduced or structu
form of an econometric model: we make use of two types of information
LA sampie 1nfor1natron (embodied in the predetermined variabies) and ‘
jdentifying restnictions (a/priori infonnation). The (URF) estiinatdrs

use all the sample infunna‘tion but none of the a priori information, i.e.,

. . . 4

s

[N




A

f - ; J o8

» s

. does not ipcorporate’the a priori restrictions imposed by the relation

"n=-g'r . - : Co

2. Wer now ook at a-more efficient method of reduced-form estimation
. called the Restricted (or Dev;ivéﬁ) ReducedYForm (RRF) method which was
used by Goldberger, Nagar and Odeh (1961) to obtain reduced- form es‘tiinalt‘es

and forecaas from consistently estimated structural equations.”’

»

A A . . '
. If. B and T are estimates of the structural coefficients B and .

a

' » we may estimate the reduced-form coefficient matrix T by the , -

- ‘ -
Restricted Reduced Form (RRF) coefficient matrix.

e Wk

- . A _ A_'l e
(3.2.1) "(nnr)“‘“‘? o e

: Y A A, -
and ﬁ(RRF) will be consistent since B and T are ¢consistent

4T

B

estimates of B.and T respectively. .

*

-A, . . M
If ¥ 1is a consistent estimate of the structural form d_isturbance

13

covariance matrix .I , we may estimate the reduced-form disturbance

B

covariance matrix N by the restricted reduced form residual covariance H

matrix: 4 % R
(3.2.2) f =81 287y :
~since . . o ‘ . \
) . “Hyfe =Ty, Tepoly, |
. : -2 = E(v'V) = E[((87 )0W(B™")'] = BT 2(B"") )

A . .- ' A A .
and . will be consistent since B and 1 are consistent estimates

- ) . . [ ' . v

R et i et g b b o

o ot s Gl o s A Y. g dopla -y
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"of B and X respectively.’ : S
It should be noted that the Restricte@ Reduced Form (RRF), ﬁnar
will coincide with the Unrestncted Reduced. Form, ﬁURF s on1y if all

“the structural equa#ions of the model are exactly 1dent}ﬂed Although

and M are consistent estimators of T1 , «the latter

"(URF) (RRF)
incorporates more a priori information and will therefore be more ﬁ ,
efﬁ‘cient, at léast asymptotically.
N If we obtain consistent estimators 8 and T of B and'T .
respéctive]y {say, by Maximum Like'lihcod or éSLS) methods) with known
asymptot1c variance- covariance matrices, we may’need to find out the .
asymptotic'wamance covaﬂauce matrix of the el ements of n(RRF) To
] ‘ answer the Epr.eceding ques‘g-ion, we fo]low close‘ry E}we work of Gotdberger,
0 Nagar and Odeh (1961), | ' ' ‘ .
- ylt Should be recalled that in the reduced-form each current R
endogenous variable is expressed in téms of onTy}predetérminéd variab.lej’s', .
“ and a disturbance. The disturbance is unc'orr;elated with the‘predétérmined,

variab] es so that the conditmna] expectatmn of the endogenous vamable

™

+ s gwen by a linear functan of the predetermined variables, oi.e.,

(3.2.3) . E(yt,xt) = E[(nxt + vtlxt)] : . R

v
pa—
v

. : ' Mix,

- s

. . since E(Vt]xt) = E(Vt) = 0. A particular reduced form \coefvficj’ent

— L (say) may be interpreted as the partial’ derivative (of the conditional s
* % ‘e . .

~ . ) .

expectation) of the current endogenous variables Yt with respect to.,

the predetermined «x ¢ with.all the other x,'s held constant.

t
k L}

o Mb«nﬁi-—gs o g

. :
i o B T4 A A Y] S2 S B At o e o RV T T PRV 1 i
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~ The derivation ofhthe asympfotic variances and covariances o% all
(RRF) coefficients.‘is a,uproblem which calls for "going from the vgn’ances
and covariances of one set of random variables to the variances andy
COvariar;ces of another, fu'nctional'ly‘re'lated, set of random variables.

» L]

The following Lemma aids ip the 'solution of the preceding problem:

LEMMA (3.2.A)

-

A ! -
Let x be the typital item of a sequence of randor:/ vectors and
* . . \ " " '
let 9= £(}) be a vector whose elements are differentiable functions '

of x., If plim E‘(Q) = hlim R = x and Ld
. ( T+ T+ .
. ¢ : .
-1 . A A -1
T plim [VT(X - x)JIVT (x -%x)]' =77 &
- T-» 00 -

(where A "is a matrix of finite constants). Then ' B

-
«<

L m i) =plim § o= plim f(X) = f(x)
' T"’Q . T-DW T"’N” ‘ <
AQ ‘
and - )
. | ' A ) A ‘ _1 "
T g”m VTly-»IVT(y-y1' = T L'aL
- b )

where = - ) . - . ;

A
ts evaluated at x =x .

N
. »

,._
1]
4N S48

»

{see Goldberger (1964), page 125). .. .

J

In our case, let a be’a column vector of all structural i
coefficients such that : ‘ o, e
(3.2.4) a' 2,[6.“....B'MY]]-.-.T‘]Kazl."‘.72*.."BM]..:‘BMMTH}'..'YMK].

-

) 'uith"the coefficients of the first structural equatfcn followed by the .

coefficients o‘f the second, and so on, for the M §tructura1 equations. .

PR

8 e v e
.
-
.
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Let & dﬁte the consistent estimates of a obtaimed by (25LS), say.

(1t should be noted that o has M (M+K) ‘components.) That is,

(3.2.5) Yim E(8) = plimbG=a ..
T~x [ T - . \ N

Let n dengte the column vector of all the reduced-form coeff(cients.

f.e., n 1s a vectorof MK components and

v

"(3.2.6) I A '["11“12"""2K","“M1’" '“MK] o .

o
] -

with T being the MK vector of consistent (RRF) coefficients wrheré{
- ’ q ,

4

N e e e N At A . SNy 10

(3:2.1) Tef@) te K= f(8) 1=12,.... L
Let ¢ be the: M(M+K) th order square matrix of asymptotic variances )
and coVamancps of the elements of VT (3-a) , i.e., ¢
(3.2.8) i plim (VT(8-a)IVT (a-a)]* = T"¢
R 7/

-Then by Lemma (3.2.A): ad . S ' <

. ' ‘ ‘-’ ’

(3.2.9) . Tim E(%) = plin 0 = plim £(8) = f(a) = n

" T-+o0

a'nd i %, . ) ' & \

N

(3.2.10) - .= 1= prim (VT (R - W) IIVT(R -1
=7 Ven - '
where
B C A, an ' ' y i
- an ] 2 \ |
(3.2.»]") D =,‘7=(—A—’T"")A . R
SR L] & aa a=a .
N N
Since the matrix D is evaluated at 3. =a , ‘then L
» N v
» "'Q L
1 I 4 ; g,‘




_on . I
(3.2.12) P D = ™
A . : . 13
Go]dbergef, Nagar and Odeh (1961) have shown that - :
. s .
n
. an _ o=l
. (3.2.13) 3" (878 { 1, ]
where B s MxM and [ n ] is (M + M) xK
I
so that * ‘ .
- 1 ‘ ( M ]
(3.2.14) [ 8V 0 ]S p[n
1 ) ‘
o : ; S
' 9 : . '

¢

! -
In practice D will be unknown, i.e., the true coefficiqnts fn
(3.2.13) and (3.2.14), are unknown but consistent estimators are
provided by 8 and T. - Also "¢’ will be unknown but a consistent

estimate 3 of ¢ may be computed. Then

(3.2.15). 0=Dv%D

: . . A )
is clearly a consistent estimate of ¢ . (D, the'consistent estimate

of D wfll, be obtained from the condistent estimates B8 and f .
4 -

‘ ' 102
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3. We now Took at the prob‘l_e!n of predicting or for‘ecaslting'endogenous
variables for given values of ;:he exogenous (predetermined) variables
with reference to the reduced f(;nn equations.

Suppose tr;e (K x 1).vector x, represent the values of th’etforecas‘t
period, where ‘the asterd sk denotes the éeriod for which the forecasts are
made, Then the forecast valués %f the)M endogenous values are gi\;en’

>

by the vector

(3.3.1) Vo' = fix,

A

M by M = v x(xx)” and by

(URF)

: A A

T¥ing consistent estimates of the structural coefficients, say 8 and T
. A A_'l A

and setting nN= -8 T . ) . .

. , o
In this section we derive the variance-covariance matrix when~ Tl

> N A o
has been obtained by a diréct application of (OLS) i.e. n(URF) . From

(3.1.2), the true values of‘ the endogenous variables in the forecast ) _

f N s o~
~period are .

(3.3.2) AR AR

)

where y*\ is.the MxX1 wvector of endogenous v-griabl es [which wil 'be.
determined by (3.3.2)], x, is the Kx1 vector of values of the

predeternined values for the forecast period and v, fsane (Mx1)

-

vector of reduced - form di sturbances for the/fjrecast period, l( is the

Mx K matrix of reduced-form coefficients.

Let the vector of forecast errdrs be

3

4

L e e

[P
- pam——

PR
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. ‘ A A
(3.3.3) « Y- YE=TIX, - X, -V,
N -
T A
<M N = (TI - ﬂ)x* - V*

A 12
The forecasts are unbiased since . E(N) =T and E{v,) =0 . The

variance-covariance matrix of the forecast error is

3

(3.3.4) E[Vs - v e - ¥4)'] = I,

’“

Substituting (3.3,3) into (3%8.4) leads to

o
1A -
(3.3.5) Fun * ECCR - mxx i (M m) '] + E(vvl) .

A L]

A .

[The cross-product terms vanish siite T and v, are independent on '

., , ;. 3

tQF usual assumptions of serial independence in the structural (and hence }

reduced-form) disturbances. ‘ }

™~ ¥ : ;
If we assume constant varijances and non-zero contemporaneous ~ )

covariances for the reduced-form disturbances, we can set . P

o

' r
(3.3.5) E(vyvy) = I, (say).
- ,

Hence we need only evaluate Yy - -

ECCT - 1) xoxl (B - )]

. L)
) » Now we can write all M reduced form equations as
&
. ey g
where ’
- . ' . . - ~1 v\
,(3.3.7) Vv = [vl.vz.,:..”. N]. ;. A.e., :/y y(a )
fs the (TxM) matrix of reduced form disturbanges and vy (i=l,2;...M) ‘
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is the column vector "for the reduced-form disturbances for Yi'
From Y=Xn +V "
N
< n AYUsTX' o+ )
. Therefore, ¢
’ ) ] _.‘ 1 1 ‘] ) i ‘]
YOX(X'X) o= mX(X'X)T o+ veX(X'X)
v ' Au -] ‘ ,
using m o= y'xX(x'x) , we have
\ )
+ ! .
- (3.3:8) f=mevxpen? - .
A ‘ -
or . fi-n)=vxx!
Therefore N :
) {
= Y S A ‘
(3.3.9) E[m - n) x,x, (M- 1) gives
T v]'A'A\)] v.iA'sz ..... \ V;A'AVM )
; .
V"QA'AV] ................... V"‘A'AVM
where
- ’ -1 » 4
(3.3.10) . A= xAXX)7XC. " 3 ]
; Consider the terms on the principal diagonal of (3.3.9):
: " ~ . , .
0 (3.3.11). E(v.atav,) = E[tr{v . atav,)] .
. i i B | i . L
W ! 1 / ' ' b
1 = E[atr(,wiv'i/\')]
S = w,. tr (a') :
L , . i . ii ) .
4 . "
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.- 1 . "ot ‘
where wy, 1s 4n element of Q. (Sinces E(vivi) = “iiIT on the

usual assumptions on the reduced form disturbances.) From (3.3.10)

we have havé

Y

(3.3.12) at =, () TRk (e ) My, :

k]

=X, (x'x)”! X4

Therefore,
(3.3.13) E(viatavy) = o x,(X0) 7', o
£ ' ‘]
(3.3.14) E(viA'Avj) = Oy x,(X'X) "x,
. , ) o ;
where P and wyj are elements O%,
E(V*V;) = ZVV ‘ r .
‘ 7 :
Thus, - '
‘ ’ A A -1 ' )
(3.3.15) ECCR - Mxxy (M= m'] = x,{X'X)’ XeEyy N v
zvv is unknown but an unpiased estimator for ZVV is provided-by - }
. "o, ) . ) \, ‘1
' = AT A )
(3.3.16) Syy = o (Y- AT (Y- xm) - ‘
o = g (V- Ty -y + B
N
‘ e (VY STy
Kince ' ‘
. A .
YOXT = YOX'X)X'Y
. E

v
. .
- -
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and N o
A ' - -
e = vexoex) (e ey
3 - \ =¢v'x(x'x)'7x Y
.

" Now substituting (3;3;15)'inxo (3.3.5) gives

E . 13

L]

X)L 4

(3.3,17) ey o * Eoy

A

A Y
I

URENEL x) 5, “ ~

=

and the estimated variance-covariance matrix of.the error of forecast is

given by

(3.3.18) S = (14,0008,

Now we derive the asymptoiik-covarianhe métrix of forecasts when

A1 ¢ i.e,, ﬁRRF . On;e again we follow the approacdh taken by
Goldberer, Nagar 'and Odeh (1961).
For the (Kx1) vector x, of values of the predetermfned variables
for a forecast périod, the (Mx1) vector y, of the endogenous ‘

* variables will be determined by

7

(3.3.19) Yo =Ty +'v, . ‘ ~
[N “«
42;\;> Let f be the (M><MK) matrix disp1ay1ng the va!ues of the
predeterm1ned varfables for the forecast per1od
i " ' ’
C oy
g
3 ;-‘)
{ :‘ N "

" . v




-
%
(3.3.20) Xy . kw0 0 0 0
0 .% 0 X1 Xy
Fo = '
' Y
[¢ I 0 L0 0... Xpdere-Xypw
so that Fon= N, where n is the vector of MK elements '
defined in (3.2.6).
Therefore ‘. : , " | 0<E>

(3.3.21) Ye S Faut v, . . (:)

our forecast will be determined by

) -

) | . ‘
(3.3.22) Vo =Tx, , and therefore
" ’ ' ' ' | ‘
{3.3.23) Ve = F, - o

.

The vector of forecast errors is given by . 4

(3.3.24) 3

A .
Yo = Ye = (- 1) x, - v,

A
Fom = Fom - v,

ol - m) - v,

v If we treat x, as fixed, we find that
t . . . \ '
” ) . t . ,A . ’
plim E{(n - m) =0 and . E(v,) =.0.
T2 r )

ha

¢
The asymptotic forecast covarian

Rl

ce matrix is given by
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1

(3.3:2) 0, T plinlVTRemIVT(R-m1 F} vEy

T_] F,VE + @ . \ ' .

n

" where ¥ .was defined in (3.2.10) and.if we assume Q is uncorrelated
with v, and v, 1is distributed as v, (t =1,2,....,7)

[Recall E(vtvi = n].

In practice © will be unknown since ¢ and ' are unknown.
However we may obtain . . ' ' : u E

A A . :
L B=FuF R /

B

o
(7]
-1
[g]
[«
=
w
—bdo
w
t
1}
=1
e
o
. (%)
. <~
‘—’-
3
-1
[ d
i
[}
=2
. 1 4
RN

oL
7

4. By this time it. should be c?ear'that there is a statistical

'
e A 3 s b v

. difference eetween a'reducédiform system and a structural sy%tem. In the
reduced form system oniy preeetermined variaﬁfes appeﬁr as explanatory '
varidbies, whereaks, in the structural System current endogerous variables :
-~ may (and usua]]y do) appear as exp]anatory variables. }he structural , i
'-system describes accurately the exact manner in which all current
endogenous variables andppregeterm1ned variables mutually interact with
the specified economic system;

A reduced systen,‘on the-other hand, gives onfy a"partiai view of

this 1nteract1on, for it mere]y descr1bes the way in which the predeter-

. mined var1ables serve to 1nf1uence the behav1our of the current

endogenous variables, after allowance has been made for all interactions

'

among jointly dependent variables. . - .

w
]
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In the preceding sectians of Chapter 3, we d1scussed the derivation,

of (asymptot1c) variance-covariance matrix of reduced form coeff1c1ents

: and forecasts by both the (25LS) induced (RRF) estimates and the (URF)

est%mates. The obvious question should now be whether -there is a gain
1n'efficiency’of the (2sLS) induced (RRF) estimates over the (URF)
estimates. , | B
Dhrymes (1973) provided an answer to this question by proving®the
following Lemma: (see Lemma 5, Dhrymes, 1973) "Unless (a) the” ‘

f‘ .
covariance matrix of the structural errors is diagonal, or (b) all

‘equations of the system are exactly identified, (25LS) induced (RRF) are,

asymptotically, neither efficient nor inefficient re]ativeA}o (URF)
est1mators " McCarthy (1973) sﬁowed that for small samples (1n his
model has worked w1th two endogenous varwables) moments of the (ZSLS) ’ i
induced (RRF) est1mates are in doubt. For his model, he found that (
forecasts from the {RRF) possess no moments in.the case of the over: ’

identified systems. v

*

Since (FIML) and (BSLS) methods lead to asymptot1ca\1y efficient:

o

estimates of .B and T and since this property carr1es over to any ‘ ’ N2

' éing]e-mued“functions of B and T, it follows that the (BSLS) B

or (FIML) lnduced (RRF) estimator leads to a smaller afymptotic var1ance ' :
of reduced.iorm coeff1cients and forecast error than ‘2’ (25LS) or (LIML)
induced (RRF) est1mator. Dhrymes.(1973) (see Lemma 2, Dhrymes, 1973)

proved that .the (BSLS) induced (RRF) estimator is asymptotically

eff1c1ent relat1ve to the (ZSLS) induced (RRF) estimator...

We conswder the ‘derivations by Court {1973) of the asymptqtic K
covariance.matrix of the (3SLS) induced (RRF)/ Let us conside% the

’ &
i-th structural equation:




-~

/

o

with reduced’ form

Yy T YiB
=. Zié
y‘ =\ X"i

+v'i

We can write a submodel consisting of severai‘structural

of the form
(3.4.1)

€

Yi

=1

.-+ u
i

i i

.....

0..... 6
ZZ""E u§

1 U
2 + |.Y2

<3

equations

Since’not all the structural equations have been included in

(3.4.1), this submodel can be written concisely as

(3(4:22 .

= +
’ys 16 + u

o

where 7' is a'block diagonal matrix,’ & s a vector of structural

coefficients fnd‘ u 1is a vector of the several structural disturbances

in (3.4.1). ‘We assume E(u) = 0,

E(uU'Y =

£81.

In a similar

manner we cam write the corresponding reduced form eqbétions jointly as

o

(3.4.3)

¢

[ [»X 0.... n
4 .
- ¥ . 0 X .. L
- yz = . 2
M . ) gL -
I | : r:
* B N
v - ° 3
. - Fabid .’
Lo .
-~ e
. e R R o T Tkt o i NNy

it

e a0 S —— o |




e ' L 112
. i - T '(W
(3.4.4) g * (I8 X)n +v
(3.4.5) E(v) =0 , Ew')=n81

A

Following Court (1973) we estimate the equations (3.4.2) and (3.4.4)

Jointly by (35LS). We can write these equations together as

oA
N o :

(3.4.6) v 7 </5 sT " [u * o
' P ' L . Y ' a + ' . ‘
yR 0‘ 18X Y- v
o

Let the covariance between u'and v in (3.4.2) and (3.4.4) be .

s

TIPSV R

(3.4.7) - E(w') =681 (say)

then the covariance matrix of disturbances in (3.4.6) is

. . >

(3.4.8) u T L 6'
| E{{ v ] w vl}e [ ¢ n ] 81

-~

.

We assume that this covariance matrix is non-singular with inverse .

given by ‘ ' ‘ , -

03.4.95 -[z as}“ [p' Q'] .
. 01 = ' 81
. |

6 . Q Q R

To estimate (3.4.6) by the (3SLS) method, we premultiply (3.4.6)

by (18X') where I {s an identity matrix, and then apply Generalized

3

Least Squares (GLS) to the transformed system:

-




- N3

(3.4.00) . (IQX\')yS (18X")Z 0 6 (X 1

It
+

'(IGX')yR ‘ 0 (16X')X n (18x')v

-

a?

-The covariance matrix of disturbances in (3.4.10) is given by

' (3.4.11) 61 . .
co 8 XX

Vo

and its inverse is given by

(3.4.12) e e |
: vyl
: Q@ .r | & (X

Application of (GLS) to (3.4.10) leads to estimators of ‘Q and 1

defined by the equations: h
: A 3 N . A ‘ »_ ,
C3.833) By o= (2 Tex(en"x12) Tz'[z‘gx(x'x) "x'Ty,
and ' ﬂ
(3.408) s re(xnx a 0y DB, )
e 3s4s . R ! Ys~283515
- Q) . *

Consistent estimators of the covariance matrices gf‘)g3SLS and -

Ao i
3%LS 2re given by
(3.4.15) Est. Cov(s) = (Z'[z-] 8 x(i'x)“lx‘]?)-? =F

(3.4.16) Est Cov(f) = (a2 - az”l6) 8. (x'x)”" + aR0’

14

where

Wl g




G

-, ' .14
(3.4.17) .' J = [sz""e (x'x)"X']

(See Court (1973) for more details.)

It should ﬁe observed that 83SLS given in {3.4.13) is the same as,f
that given in Chapter 2 Lhen we applied the (3SLS) technique to the
structural equations (3.4.2) .while ignor1ng the reduéeﬂ-form equation§. @

This result supports thé arqument of Narayanan (f669), mentioned in ° °

Chapter 2, that the exclusjgn of exactly id?ntjfied equgtions from ihe
(3SLS). procedure makes ;o diffesenng,to~%ﬂélestimates of the remaining
‘*equations. Here the reduégg férm equations can be treated as a special
6ase of the exactly identified equitfons. *
| Court (1973) demonstrated the efRiciency of thé (3sLs) induced
(RRF)ee;timatef over the (URF) estimates. Let T be the estimator of °,
;' 1 when (OLS) is. app1ied’d1rect1y to (3.4.4),l13e.,
\ (3.4.18) ‘w-[le (%)% Dy
while the covariance matrix of I™* {is consistently estimated by . ’/j
(3.8.19) gst Cov(m) =8 (XX .
jtbmparing (3.4.15) and (3.{.19) it will be seen that'the estimated
covérﬁancé\matrix m*, the (URF) estimator, exceeds that of the (3SLS)
induced (RRF) estimator J*, bya positive semidefinite‘matrix. (See
.kouri for algebﬁyic details.} : . . <
It should also be noted that strict -adherence to the (3SLS)
procedure would demand that I, G ‘and Q be replaced by consistent
estimators. Court (19?3) suggested the following estimators of X, G
and @ o \ , : -
~ .
- /

FPNFORRE

P

e R s bt A =

P




N\ \
w ' l
~ ! . ' 15 ‘ 5
- v ! (7}
~ ' ' ' .
(3.4.20) 6. =1¢ L8, )" (y: = 2.8, () \
- ak 95 T 7 Vi T 5%s1s) Y5 T f5ests -
o4y = — ’ . ' - *
S z
‘ (3.4.22) AT ] (y, - er*)' (y, - Xm¥) ~ % d
et ij 1TYi i ol i’ , f
' . _— : | L ;
where wi and o are (OLS) estimators. ;v
l . .
s o Y
. 5. . We now obtain the‘.(3SLS) induced (RRF) estimates for the com&fte 3
model. Once more the complete model is givdrb_y c i y
e , YB' + X' =y - : BN I
“' with feduced-form
. L oy ' b
) Y,/ Xn v . . p ) .
where - n = -I"(B'T‘)' N ‘
3 S TR 1{ U | o
'We use the same notation for the :covariance matrix of ‘the complete
o | 7 ’
< model as that used for the submodel in the. preceding section. Therefore
. , * a "3 1 ‘ ('.‘ ". ] .
¢ . ] [ U' . z . Gl] . A ‘.
s . 1 E{ R N TR I | —
: » '
which has rank at most equal t6 M where -
E ‘- 1 S TR -1,
(3.5.2) G' =T E(U V) = T E[U u(B ' )'} =x(87")
A 3 . ] ."' .. ‘

“ ke - .4




carry out the ‘dey

Howeyver,
‘ -
section is clearTyd

" From (3.4.15) we have

.
- “ !

Mp

: ‘ . 116
1
' and . !
C ] 1
(3.5.3) G = T E(V'U) = T-E[V‘VB'] = (B’
. [since ¥ ='U(B'])' , then VB' = U] o
Therefore: .
(3.5.4) r 6 I ):(5“)'
4 16 @ Q Q
- The covariance matrix described in (3.5.4) is singular since thq;e
- I .
exist a nomtrivial matrix of rank M such that-
-B’ -
(3.5.5}) [ r 6 I [ £ - 6'B ‘ ?
6 o |-8] |&- ns\\ ’
- [ £ -5y [ 0
| a8 - 8 0
st e
It should be recalled that in-the previous section, we assumed that
B ’ N e
A% ~, ‘z G. ’ . s .
s [ ] is nonsingular . But since (3.5.1) is singular we cannot
6 0 ~ - . ,

4 &¢

vation outlined in the previous section.
-gducea form estimator developed in-the preceding

ined for the complete model with YR Y " Y-

-

SULAN
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" A 1 "] ' " ¥ "'] 1 A
(3.5.6) naSLS = [1 8 (X X) X Jy - [627 8 (X X)) X ](y-ZG3SLS)
=1 e (xex) %y - 87 e (x0T X I (y-28.0 L)
y Y=£03515
since from (3.5.2) GZ"l = B']‘ and from (3.5.3) . , «

]

f - e lg = g-m8'r g8 ) =0 .

. o
Hence fromép‘.’#.IS) and. (3.4.16) we have .

“f

| (3.5.7) . Est cov(fl) = JFJ’ ,
{ ‘ :
TN » We have observed previously that the reduced form coe‘fﬁcients can
be estnmated by - & N
¢ ~ ’ (_:/"'

A_1 A

(3.5.8) . “hi=T

A A oo
where B and T . It should be noted that the T estimated -in (3.5.6)
. and N estimated in {3.5.8) are not qulte in the.same form. Let us
2
. ‘ denote the M appearing in (3.5. 6) by n, - Now Ay estimatqd
‘ Hin (3.5.6) is.that which was defined earher on in-Chapter 3, 1i.e., n

w3
*

is an MK column vector whereas n estimated in (3 58) is an M x K

matrix, . In other words "o is a‘vector consisting of the columns of

n ;tdcked on top of each other. -~ -

Court- {1973) *used the “Stacking Operator“ to demonstrate the

equwalence of these two estimators. B

R s .




* (AL

S Definition:  Let S(D) =d where, d consists of the columns of D

"stacked” on top of each other. Then if M and N are arbitrarj

) * matrices conformable for the indicated mu]tfplicatioqg ¢
. ‘ !
- -
S{MDN) = (N' & M)S{D) = {N' 8 M)d
W
* Hence
. tA _ ! '.’
(3.5.9) no=s(hy =si87 P o
- = s[oen T ex(-P @)
7 . : ‘
’ ] ( * 1..; ‘l\ ALl ‘
o= sen e (8 - U)ET) )
- ' "1| \l.“]‘OAA-]IH J
= syl - st RBE
since from '
YB' + XI'*' = U we /hive . )
. K. 23N
"
4 . CA -
. ar =y 7 ‘
Now from the definition of the stacking operatorx‘
oo A - ‘ - - A .
(3.510) - B = (s0en T welsen - s exdy xedsed)
. ‘
. .
Now if we write the model as
' )
- y = 8+ u '
5\\ i} 1h‘tbe~ﬁ;nqer of the (BSLS)'brocedurg outlined in Chapter 2, 1i.e.
s(Y) =y and S(ﬁ) =‘G theh {3.5.10) .becomes
¢ . * .

RPN




< ' “Ne

=
"

[re () ' xdy - 871 e (xrx) 'xr 4

(18 (X'X)y Ty ly - [B“] 8 (x'x)"x'](y - zg)'

which demonstrates the equivalence of ‘the two estimators. Finally, it ,{.
should be nolced that the (3SLS) induced (RRF) provides a covariance

matrix which is much easier to compute than that of ‘the (2sLs) (RRF)
estimates comcputed by Goldberg, Nagar and Odeh (1961). U

» ' d

L

~ 6. We now consider an alternative estimator of the reduced-form,

namely, the Partially Restr;,ict;ad Reducec'ri‘ Form (PRRF), unlike the (RRF)
which incorporates all overidentifying restr‘ictionﬁ on all structdral
equgtions, uses the overidentifying ‘v:)estrictionso on the coefficients of .
one structural equation at a time. o

Let us write one of t.He equations from the complete model of M
structural equati/ms as : _ L ’ . ‘-

Y""u=26+u -\,“,

(3.6.1) y=1Yg + X.l

where

4

) B
Z'[st'l]" 6‘=[ } . @

Y.
Also y isa Tx1 vector of observations on‘the‘ left hand joiﬁtl] . - ,3*
d“ependeﬁt variab\e,' Y and X] are matrices‘of T 'observations on 'l \ §
m(< M- 'I) right- hand jointly dependent variables and K*(< K) »
predetermined varijables respectwely, u \'\a T component vector of - .
- e B . . '

structural-disturbances and 6 = L] is an \(m + K*)  vector of

. L ) )
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v
coefficients, !
The reduced-form corresponding to y and Y in (3.6.1) is given
by )
it
(3.6.2) y = Xa* + y = X]nf + XZ“E +vyv = [51 X2] { ﬂf ] tv
B : &
v ‘ '“*
‘5 \ = X ! ]-+v
. . . . +*
L] “2
and
™
(3.6.3) Y= XT* +V = [X, . X,] + ¥
A LI An [
| 2
where . - X = [X] , Xz] ~is the TxK matrix of all the

predetermined variables, X] is ? TxK* matrix of predetermined
variables included in (3.6.1) ;nd fxz is a TxK** mqtrix of |
predeterm}ned variables excluded froma(3.6.1) and K = K* + K**,  In
(3.6.2) n* 1is a K-component vector of reduced~f6rm ogefficients and in

(3.6.3) m* isa Kxm matrix of reduced-form coefficients.

Since X1 is a submatrix ot X, we can write
|1
(3.6.4) ‘ X1 = X o

where I *is a K x K*  {dentity matrix and the null matrix, 0 is

K** x K*.. [f we substitute (3.6.3) into'(3.6.1) we obtain
: e » -

o

e e

g e >
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“ .
. _ I :
(3.6.5) y = [Xm* +V ]g + X Y +u
0 :
I B
= X {1 +[Vv,0] Tty
0 Y
. = Xpdo+ Vzé +u
where
(3.6.6) v, =[V,01, 4
*
0 being a null matrix of order TxK* and
| g
(3.6.7) =1 M
. 0
Thérefore from (3.6.2) it follows that
(3.6.8). =96 and v = .Vzé, +u .
The (PRRF) 6f n* = is given by '
A %
2 ‘
. . - ¢ ‘e
(3.6.9) G* = $3 where
N
(3.6.10) 0= ('x)Txz
=*(i;x)‘]x‘| [Y . x‘l] .
S ., 11171
< e Tev e Tex
) ' 0
S T | I
= (XIX) X'y . caane
, ‘ .0
g i ‘h“é_x___g_;".._;._:._ .




. 22 3
It should be noted that (X'X)"]X'Y *is the (OLS) estimatore of . %
» ) . —
My B ‘ S
n* in (3.6.3) and . 3 = A is ihe (2SLS) estimator of ‘
] )
6=( ] . ;
T’ .
From Chapter 2, we can express the (2SLS) estimator of & in . 3
y= Y5,+'X]Y +u=126+u as (f

A Al

(3.6.11) o ' ‘

A L =1 -1 % 3
» g 8 ) YOX(X'X) X'y Y'X, Y'X(X'X) X'y i
. A 'l. LERTR] | . ' ".
3] Ny oo X% : X3y , |
(
where .
' A vy
(3.6.12) B = (Y'NY) 'Y'Ny
. .
, ¢ . t .
A -1 A, .
(3.6.13) Y = (X{Xlxqu (y - Y8) , where . ;
(3.6.18) - N o= X)X - X (xk) TTe
"o l kit E I o
. , \ _
fs a TxT independent symmetric matrix such, that rank
N =tr.N=K-Kr=Ke, Then the (PRRF) estimator of n* is
denoted by
(3.6.15). [ n* B} !
A 1 -1
\ | mEs = (X'x})7x'y e
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and the ) PRRF) estimatom in’ (3 6.15) 1is the same as the (URF) in the-

‘

case where the structural equatwon under estimation_ is exactly identified,

ie., -K=m+K*, *
- ]

(3.6.18) [ A . :
. , = (X'X) X'y . ~

o

. ] ‘ n*

Foltowing Nagar (1959) we can write

-— ~

3.6.17)

(3.6. . V=ur" +W . ’
+ .
which describes thé (normally distributed) reduced-form disturbances as

consisting of a part which is propiftiona] to the corresponding disturb&nce '
of tﬁe equation, y = YR + X]Y +u ;. (viz., ur]}’r being a column
vector of m components) and a part (viz., W) which has dimensions
- TX|p .and is also nérma]]y distributed but indepeﬁdent]y of the u
vég;or. “[See Appendix B of Court and Kakwani (1972) for a prooé?of-
" Nagar's decomposition (3.6.17)]. ) h |

: It should be recalled that wi is assumed to be of rank K;s:T And
all its e]emeqts are nonstochastic and also that E(u) = O, ﬁ(uur) = 021,
62 beins the residual va;idnce. |

Then the vector o(\fovariances of the (RHS) Ja?iab]gs of 2336t1)

and the disturbances can be expressed as

1

I Yu o E(V'u 2 { r } -t
E =7 ' = ¢ .
X'u 0 S lo .
. _ —~3 ’
Using (3.6.17), the moment matrix of V is given by

(3.6.18)
q =

——

AN

(3.6.19) ]TE WVl =or e +LEWW)

. ' \
T « Lo N * ) -
- n. . i . ’

ey 2
'
\
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: \ -
D . . '
and bordering these matrices with K* rows and K* colutins of zeros, we
obtain three square matrices of order m + K*. - Vv
' T 0 [ L eew) 0
(3.6.20) c - . oo | T
, T LI of 2. 0 0
» © _ 4 i
(3.6.21) GG :
AY ’ . ‘ ‘
[see Nagar £1959) for more details]. ;
] . ( - :
, Kakwani and Court proved the following theorems: . ;
; R : ' .‘, ‘ /" 1 ) -] . ". o
L - « THEQREM (3.6.A) :. . The bias the order T~ of the (PRRF).,
. ' " \gstimhator T of n* (T b\gtnﬁ/the numﬁer of observatfons) is : -
i : L . AL AL L ‘ ' * :
N C(3.6.22) E(n* - W) = L ¢ Rq . where . N :
s ) o : _; ‘o LN
L=K** -m ., R=(p'Xp)" . i
o / \‘ . \ | A . R ) -~ §
. ' - [tp is defined in (3.6.7) and' q is as defined in (‘Ksm]., ;
\ - L - - N
7 THEOREM (3.6.8): ©  The moment to the order T~ of the estimator u* |
S ‘ i$ given by + . - ¥ ‘ . i
. . ¢
(3.5.23)  E(Re-m(hr owr = o o) -
‘ i
+ [A tr RC # 2L6'q tr RCy + 2L8'C,RqIH + oR © R
. , . . l i + -
' where A = o + 28'q, ’
"‘ .
i{u&fﬂ'&“n~ ' “*" - "

o
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A\ ‘ . 1' - Py
) "(3.6.24) o H = (XX)T - pRe TN ' ’ }
, « . . l‘ \ o
0= (A% - 20)¢, ~Lac, - 2LC.6'g ‘
- . 1 2 2
and ‘ NS R | ' .
oo . o, =5 E {v'v) T‘E‘(Vzé + u) (Yzé + u)j,
=6'Cd+al+ 25'q
T YL i.e. qs . 1s the reduced form disturbance variance. [Recall thét

from (3.6.8) vEVL56 4 uj.

v

The first two terms on the (R.H.S.) of (6.3.23) correspond tp the
asymptotic covariance hatrix of o and the remaining terms together
make up the correction to the order 12 for small samples. If (6.3.1)
:11\exact1y identified Ehen L=0 and ¢ is a square nohsingu1ar

matrix (thus H vanishes), so the moment matrix in (3.6.23) bécomes

.v '& v
(3.6.25) CE( w9 = of (o)
. ' . . ‘
- which is the covariance matrix of the (URF) estimator of mn*,
] ’ . "
Y .
: .
¢ , . » ‘ )
» ’ fod 7

o € s mp————

.. o
e
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7

. , ' f

7. If we use n* , then the (PRRF) forecast value of y, 1is given by
: \ * '
A \
(3.7.1) Yo = X) W* where
(3.7.2) Ya = Xy + VL6 4, )
' ! .. /)

&

- {s the true’value o% the left hand jointly dependent variable in the

period of prediction (thg aste;‘isk denotes the time period for which the

“forecasts are made). ’

In (3.7.1) and (3.7.2) we have

(3.7.3) BT Xesd o

. s a yector of observations in the period of prediction t = * on the

K pned,etemfinedl variables and ‘

(3.7.4) oy

-

As before, we assume that the distribution of the disturbince term for
the forecast period is the same as that for the period of observation.
The following results have been derived by Kakwani and Court (1972).

Thé mean forecast ‘error to order T~' fis given
. . .
(3.7.5) E(yy - ¥e) = Lxy @ Rq : R

and the mean square forecast error to order: T'2 is given'. )

-

ER R A LT MART IR CE VN R RS
\ 4+ [ tr RC + 2L67q tr RCy + 2L6'C,Ralx, Hx, + x4 @ R O R 9'X, .

When equation {3.6.1) is. exactly ident;ifiéd, the mean forecast error

. ¥
vanishes to the order T ' and the mean square forecast error to the

x

S e s i D % 4

s B ekiab® Ve Ns e
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order 2. becon;és e . )
' , 5 ﬁqm . L v
' A 1 V "]
B, - v2) =08 (1 4 (X'X)7'x)

. {
which is the variance of the (URF) error of- forecast.

A .
+ B -
.

8. ﬁagar and Sahay (1978) obtained the bias and‘mean squared error

"of fc;recasts from the Partially Restricted Reduced Form (‘PRRF) 1n“'the' -
. special case when there are only two endogenous variables present in ®
, (3.6..1), i.e. for the case m =1, Kn‘iéht (1977) proved the existe:}i .
" ' of finite moments -n.ﬁ@e (PRﬁF) estimatoré. ‘He formulated his existence

proof firstly for the special case when two included endogenog; variables

are present in‘(/_%iﬁj) and then extended the ressdt for any number of

<%

included endogenous variables.. 5 ‘ -

. For the case .m = 1 , we rewrite (3.6.1) as M"
. (3.8.1) Y= y8 +-X{Y tu (we replace Y _ by y.ll,‘

where N is a column vector (Tx1) and B is a scalar coefficient.

\x“‘ The cor"responding reduced:,form of y and N may l';; written as -
.}‘ (3.8.2) . y=Xn* +v = Xn¥+ X0} +v , l R
' . 1 272
A
= X +v
n%‘ .
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(3.8.3) yy ® Xmo+ vy = Xng + in2 + Yy
AN
y -« M '
. £ .4 = x "2 + v]

Following Nagar and Sahay (1978) and Knight (1977), we add to‘gur

list of assumptions the following:

{3.8.4)  The elements of X% [X]' » Xz] age non-stéchastic and the
‘
columns are orthonormal , 1.e| -

X'X =1

i KxK
. 2
KXy = Tgaags
: v )(1')(2 =0 /
E , a * ‘-\ r ~
! & ryy =Ty - iy YTy »
) ; ‘ : and . N3 XXX X x](x]x]) )(1I
oy ' . _= x2x2
’ [Recall X {4s TxK , X ds TxKé X, is TxKe, fie., Ké = K - K¢
< - | :
(3.8.5) “The reduced-form dusturbancgs are assumed to be normally
b \ \ disfrjibuted with zero mean and covariance matrix equal to unity.

, . In.view of assumption (3.8.4) we have the (PRRF) estimator *

written as

v Mé‘

AT AL en T »

LR RN N

. ol A
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'(3.8.6) "
[ae] I 8l
A ¢ , ] ‘ \_1 l
m = = (XXX SR N
*x 2
g I o 1Y .
s
L} « \\\ .
" | S
=Xy e 3
~ ! o | ¢ \ P
;
1 . i [X"Y 1 a
- A
X2Y 0 Y .
! A A e
[ xvd.4 N
% ¢ " A
|. XZY B
{
. X ’ ) C S
, 1t should be recalled that in (3.6.12) and (3.6.13) ‘
B-rrnvilyny 0 and |
9 * ! \ ~ :
C %) iy - o) , i
1M, . ‘ [
o \ / :
Now in the case of equation (3.8.1), whare m =1 and Y . 1{s replaced by
¥y . we have ‘ . -,
-A“ .Y'N.Y :
(3.8.7) j D and ;}
4 .y] .V‘ .
[ ) »
(3.8.8) Py yB) stnce  XjX; =1 .
fTherefo're ’from (3.8.8) we have
¢ . " .
\
. .‘: ‘\
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- A {
(3.8.9) LA (N
and ; t :
G; = hB
‘ y Ay oy Ny ) yiNy )
e., = " T + Y - NNy -
M " iy, (LG W, ) ;
[ 4 . ‘n"
= Xy« -
‘ /
, Also ”
Ay AL
m =B Xy
L
. 0Ny ) y]‘XZXéyx N )

. TNy WX Koy, 2% .
. i
: 9 ' g
k 1) = '

; , Using ’ N ) XX, .

& \

N Define - ~ g .ot
4 L

, (3.8.10) Z=Xy -, I =Xy, »  then ,

: g , Y

v . u 1. : r.
. . . ‘

: (381]) R & ' i]T—r] Z]' . \

?; ) ! '
- . Wwhere z ‘and z, are K**x1 vectors; . -Therefore ' - o
i H
f —
5 . . , i

ot g £ s i e
R ) x
:ﬁ B mhameape e -t ' , .
Y L .y
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From assumptions (3.8.5) we have
y [ , . , .
§3.8.13) ¥ =Ely) = o+ in“z | -
_— _ ‘ o
(3.?.14) ‘y.l E(y.') : X]n] thom, —
. Therefore, we have ' ' ‘ o ~
¢ &
(38‘]5) . yn~ N(.y y IT) H y] ~ N(y" 2 IT) . . .
o , -
and y and y, aremutually independent since
v (3.8.16) Elly - ¥) (yy -9)] =0
. ~Y -
It should be noted that the elements of 2z and ‘9] are independently
normally distributed with
\:,“;‘_ . 1 _ 1 — _ . ]' . . B -
(3.8.17) b= E(z) = X5 Ely) =Xy y = Xy(X;n¥ + Xpm3) = % and
(3.8.18) Z, = E(Z]) = Xé E(yl) = Xé Y - Xé(x]u] + inz) =, )
' (Yote that XX, = 0). ‘
Also T ‘;' ’ ) ~ [
v . ’ -
(3:8.19) . 1 E(z-Iz - =z <Gy T e
% . ' ' N . . , :’ i s
‘ and . ' |
~
, | S 7
(3.8.20) E(Z- 21z -Z)= 0 o,
Cwheré 1 4s the K** x K¥* unft matrix and' O s the Ks x K¥*
; | ‘ n)l matrix. ° . i " -
' ° '\;

Tt

T
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TN

n

“t’*t‘) " From (3.8.9) . .

[}

(3.8.21) . E('G;) E(x1y) = ) E(y) = Xp(X ¥ + X,n%) = md

-

t' _ “ ) ' w. - s
, since )(])(1 =1 and )((i)(2 0.

\ ne . '

\

. _ Let z” and x; denote the i-th element of Z and z

respectively, then the k-th element o( the vector .

\":/‘\\

+

| S Bt s
- ) o 3 (Z]' Zl} Z, “ is gwen‘by

(3.8.22) A
. . “* .
, . 2(k)

*

1

e

Now the r-th moment of %“‘) is given by : ‘ z
B o "‘ B -
: o i A : g . o ‘ |
—-‘ . . . R t . . ' . (KZ ' )r . -
: L 7./ . - 1
(3.8.23) £ [fs ] -« i 1 oy | - ‘
- 17 2(K) K, 1{k)

. . 2 \r ’
- ' - - z‘ z 3 !
. ‘ . . (i=~l' ]1} . T »

-

. (Note that we h?ve s$implified the notation by writing‘ Kz for -K**)

W

o P 2w mpos
~

I - .
* . [See Knight (1977) for an existence proof of (3.8.23)].

-~

Following Nagar and Sahay {1978) we have from (3.8.22)

, . ' .
- - -
- - -
. . .
N " . ..

~—
;:
i
{
;
R
[ 4
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(3.8.28) ‘ E(Z z]kw ) = 7 Z]iz1k‘

K, o
T () - sl )
¥ k2,
+ X E (Zlizl(k) 151 Z]i EZ,
i+k=1 ‘ ‘

Now since the elements of Z, are independently normal ite. AR
3 “ )

and VzH =1, |

are independenply normal and E(z]i) = ifi =7y,

i = l,..,.K2 then

-~
K

(3.8.25) W= X z] !
j=1 !

a
L

is disﬁribufed according to non-central chi-square distribution with K2

degrees of freedom and non-centrality parameter> CoL .
K, ' ’ -
(3.8.26) % 3 Zo. :

(3.8.27) E(2, W ) 7 €Lz, +)fg

RS

. »

where W and e -are given in (3.8. 25) and (3 8.26) respective1y.

\
Nagar and Sahay (1978) used. the- results outlined ih (3.8.2N and {3. 8 28)

[See Appendix of Nagar and Sahay (1978) for deta115] to show that - - «
. R
. ‘e 1A \— " 1 ‘ ] .
(3.8.29) ?\. E(ng) = e (eflsz-é for)73 BRI
vhere ‘ - '
S

El s il stais. St N N,




A 2 ¢ ) - ] _ _ _ ] _ , -
’ (3.8.30) 0= 7 y]N =3 XZXZ y -
[since N = szz‘ and . Y = E(y])] is a certain non-centrality
) pdrameter. . coL .
& ‘ .
=7 = LT
+ From ‘3.8.18) E(Z]) Z1 XZ 2
. 4
- where Zj isa (K**x1) ‘or (KZX'I) (we use K2 for K**) vector. 1
s ] _ ® .
' = -y
Therefore 2} Yﬁ_ .(Xz y]) (X2 yl)
R R
- MR ]
o P = y; N ¥y .
~ A ’ _
' ' Also since 7, _has elements TH] Ty Dig,, then
_ »
f‘ L, ]
o Iy, <
[} -
44 [ Lpe- Z]KZ} E
u-i . ' 4
, |1 ]
<« .
¢
s 2272 S .
) 0 . R e L B , |
. , . ; . ’\~ »
. ‘ Therefore, from (3.8.30) * © = -12—7 N 7]
; \ , i p 2o, .
’ ' "E' Ly - :
{ : i=1

T (3. 8}/ (3.8.28) and (3.8.29) , fl2 and fo;‘ have been

obtained from

134
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(.2 \ ‘
3.8.31 £ et (L2 2 )
e e (e B
TRy
by setting a=1, ¢=2, and a=0, ¢ =1 respec%ivel} and
'F‘ (.) is.a confluent hypergeometric function. ;
DEFINITION:* . |
( , T{p+j .
(3.8.32) . P | §) i -
(Fy (P> asx) = — '§T
~J=0 I(qt
I‘q

= —H": q+ﬁ %

*[See Chapter 4 of V.L. Luke, Vol.-T, (1969) or L.J. Slater (1960) .

for details on confluent hypergeometric functions].
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9, In this section we look at the (PRRF) forecast errors for the

special case m =1, i.e., for (3.8.1); o

( y =B+ Xy tu Co
. -

where B is a scalar and the reduced form corresponding to y and y\

given by (3.8.2) and (3.8.3) respectively. As in (3.7.3) let

X) = [x1* b Xog veen xK*]

¥

-

denote,a vector of observations for the forecast period t = * on the

" K predetermined variables. Then the forecast value of the left-hand

endogenous variable in (3.8.1) is denoted by

L]

(3.9.1) A K

*
o Yo = Xq ! where
he -
g | 2 | : :
| K ' :
(3.9.2) AL S A A ]
v n

]

is the true value of the lefthand endogenous (jointly dependent) varfable

»

in the period of forecast and its estimated counterpart is given. by

3

: LAY S
.93 R R R
B i - ’ _ .

&

From (3.9.\) and-}3.9.3) we have




e i A gy

U

(3.9.4) Ye = Yo = - Vi
A . .
4 _ ¢ "f - u]*
- X* . - V*
Mo _ ok
»
Therefore
o A \ \ ﬁ"]‘ "‘!‘]* /
(3.9.5) Ve T Ve Xy |,
n* wk
v L2 2
i . ‘)‘ ' 1 3
Partition . . \
X4(1) ‘ L
| Xy = . . .
*x(2) | | .

so that x,(7) #s the column vector of obséﬁvations on variables 1in
. . »
X] in the forecast periqd specified and x*(z) fs the column vector
of observatfons on variables in x2 for }he specified forecast pefiod.
Theg'ihe followin§ results have been obtafined by Nagar and
Sahay (1978):

(3.9.6) C o E(Ya - v = - E(V,) . " from (3.9.4)
. - N v A . .
. “* "* R
= E {x; ! ! } since E(v,) =.0
* Ay’ *
2 T2

[i.e. we assume that the distribution of the disturgance term for the

forecast period is the same as that for the period of obsenvat{on].

T ——— e gl

Syt
a

o T TR e e e o KR ATy Wi e W o 1

PR
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Jhexefore . p ' o
'Y . ' 4 ! A .
- n¥ .- n* . .

A . .
E(y* -.y*)u= E {[X*(” X*(Z)] . . "* ..'.
1 | 2 2 .
= E {X;(]) ﬁ_'* - X*(])“.T + X*(zﬁg - X*(?)WE ]
. x*(z)wE(GE - w3)

since E(mH) fron (3.8.21)

it
=
—

or ' ) T

-0 1 . )
(@ f5 + 3 f5 - 1) Xs(2) "3

A

where G‘« and faC‘ have been defineld previously (3.9.7) for o large . -

E(S\r*»- Yi) = e of

La ey
-

and positive an asymptotic approximation to the bias of the (PRRF)

forecast is given by

1

-

'
' . 1K ‘

A
E(y, - ¥,) = 5 2 % x;(z) ng vy > 1

where terms of ‘lower order than % have been omitted. . \

Also the exact mear squared error of the (PRRF) forecast of the
lefthaid jointly dependent variable fn (3.8.1) is given by
I R g . R : "
. (3.2.8). E(Y* - Yi)

>

=) 4+ x;“)x*(]) + x;(z)Dx*(z)
s 2 ‘-

where Xe(1) and Xu(z) @areas defined in (3.9.5) and .
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= A-’* A*._*]
D E(n; nz)(nz nz)

fe e — a v

L 202 LT T
] (E'G +B8°0°) 1 + (1 4+ 7 +t708 f£2 m

+B80 T ﬂ§ + B8O wz né ]

‘ 3
2 ' -0 . «

*(29*36)" "2 T , §
5 ‘ ‘
¢ K !
2 ] 1 g -8 . i
i ?e-e © f1p M ¥ - &7 iy s mpx 4 wl "é*" | - |

~ / | S

[From (3.8.17), E(z) =7 = n5 and . © .

from (3.8.18 -E(z]) = i} =, ]

and © and fac 2re as defined previously. .

For large values of © and K2 > 2, the asymptotic abprbximation r,
to the (M.S.E.) of forecast 1s/given’by ’

A 2 ' 2 . ,"
(3.9.9) | E(y, - y*) o1+ Xx(3) Xa(y) * B Xx(2) Xx(2)

. 2 S i
148 2 ' ‘
+ [(T "k ® )"*(2) *x(2) |

2
' 1-ﬂ ' 1 1
=TT R(2) T2 M(2) ] )

have been neglected.

where terms of lower order thatn

-~

\ ol

U

g BT
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~ CHAPTER &
DISTURBANCE-VARIANCE ESTIMATION
B
1. Once more-we consider the system of M structural equations in M

Jointly dependent variables and K predetermined variables. Sufipose we

denote the equation (3.6.1) as

(4.1.12 . y=Y¥Y8 + Xy +u ' - T

. x , e
and write the reduced-form corresponding to the explanatory jointly

dependent variable as

(4.1.2) Y=Xn+V

The (OLS) estimate of V in (4.1.2) ?;‘given by

(4.1.3) - ¥y - xten Ty ,

and using this, the k-class estimator proposed by Theil is given by 2.

: ’ A A '
(4.].4) YtY - kvlv ' le] 0 g(k) —Yi - on
t ’ t A‘ N t y
XIY X]X] Y(k) -XI

where k is an arbitrary scalar..

- r

~ The structural disturbances” of the entire system are assumed to be

normally distributed with mean zero and independent over time. Thus, we

A4

write

(4.1.8)

v ——————

s e e Yo ot et 18 A A e
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as in (3.6.17). We estimate the disturbance vector u in((4.1.1) by

[

9

| 8(k)
(4.1.6) ' . ue =Yy- [Y s X]] )

(k)

"

In addition we assume that k\\¥s nonstochastic and differ from 1 to the

-order of O(T, ). This assumption implies

! * = !I.
(4.1.7) k 1.+T ’

h being nonstochastic and independent of T [see Nagar (1959)].

. " MNagar (1961) obtained the bias to the order O(T™') fin probability

of the disturbance-variance estimator,

: ' A2 1
(3.1.8) ) 'ok = TUe'.l

Y

The bias of the estimator (4.1.8) to the order 0(T"1) in probability

hY

fs given by
(4.1.9)  B(cA) = o [(2n - 2L + 3)teqc, + trqc, - 1 (n + Kz)]

where™ K2'= K¥*  ° L = Kz - m, C] and Cé)a’re as defined in

'(3.6'.20) and (3.6.21) respectively and

(€100 - T e’ iy 17

1 ] th
x‘xn ‘ X]X] |

’

Srivastava (197]) claimed that bias alone is not bnough to judge'

the apprnpriateness of the estimator (4 1 8) unless it is analysed th

: i P " L
B T .
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« conjunction with the mean squared error (MSE). Thus, he proceeded tq '

. compute the (MSE) of the estimator (4.1.8) to the same order of

v

approximation, i.e., 9(T'1). ﬂdenoted the (MSE) by'

o A2, & 1 .
. {4.1.17) .,M(Gk) = 20 [2 tr QC1+T] :

3

"1

Dwymes (1969) proposed a modification of the estimator (4.1.8)

|

a 2

\rsrivastava (1971) cor;iputed the.bias and (MSE) of the estimator Ekz. i

and denoted the modifi@ﬂstimator by ‘
d : ) ‘ .
| (#.1:%2) | g2 - 1y Ex(x'-x)"x'j‘u .
R k L e~ e ° .

-~ . . n ! ' ]

. ’ o Vs _ N -
(;‘; (4.1:12) to the order 0O(T 1) in probability and denated them by

~ ;,“,\«”{'_
- i lﬁf ' {" 2 l
e - -2 2 2
M (80.3) 8o, ) =5 B - LT+ L) tr g ,
and n .
© t . ‘ 4 ‘” . ~
: 52y . 20 L

, < (4.1.14) M(ok ) = y - 2(t-1)tr chl . i

In his comparison of the two estimators gi and '6'3}( , Srivastava ' I
> : f(l_971) observed that the estimator Ekzt yields a smaller (MSE) than the -

‘ . estimator éﬁ if . a - \
’ 1 9 ~ i
D ' (4.1.15) | tr QC, > (-3
-/ | Voot T
4 and that the (MSE) of '6'(2 decreases as L fincreases. This implies ¢
that the larger the number of' pv;edetéﬁnined (exo'genous variables! excluded
: )
(from the equation under estimation) over the number -of explanatoq
Ca .
. o

By

o teamerne i 3 " L -
- 'WL.Wm, Sty - - bty o Lt dar L

- me .



e

143

>

jointly dependent variables, the smaller f§s the (MSE) of the

disturbance-variance estimator Ef

o el kg

—

-

2. Later, Srivastava and Tiwari (1976) developed a similar estimator

" AN 1e s o

.

" for the covqriance of the disturbances and computed the bias and Mean
Squared Error (MSE) with reference to (25LS) and (35LS) methods of o

estimation.

S ARRAATE IR R Y~ b

We denote the complete system of M structural equitions by

~
he 4 R y

ErLW IR NV PR
.

(4.21) CYB' o+ XT' = U

with reduced-faorm given

o —— 1A e

‘(8.2.2) - v~= Xt o+y- e ~

3

i

U fs.a (TxM) matrix of structural disturbances assumed to be

independent over time and normally distrituted with zero and dispersion

matrix.

] , N . c]‘ 012 Il'..o}Mn

TEWD) = 5= o, oyl -

. : N N i
; _ ‘ J ' . . - 3
~ .. ~ . 1 . °w ] //

Vel ‘ N \ )

As was done previously, we denote the ,i:th structural equation

A (4.2.3)

" a . ) .

by’ : | ' : -

L]

« . - it e s

-

-l ® L e et
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(4.2.4) yi4 = V.8, ¢ x‘.yi tu,
) I
. =2161,+"'i /« ‘ C (i =1,2,.....M) .
Thet the {2SLS) estimatqp of Qi can be expressed as
(4.2.5) e (2 P2z ‘ ®
-2 i(ZSLS) ’ "zpy,
. J
" where N P= x(x'x)“
Tht_z disturban;:e vector ﬁ1 is then estimated by L .
(0.2.6 - baqg = "Jza ‘ R
S “i(as1s) T4 T e ' : -
’ - ) . (Y Lt & B ’ ‘ 'l“ ' )
A consistent estimator of c'x,ij based on the (25LS) method is given by v
SU where R ‘ . : ‘. .
, - AT ’ , o
e (r; - 280" (o - 28)) . ~
(4.2.7) 8y T = - . -
; 1577 o . : ,
. . P o . . oS .
¢ - M v, \.\ X oY
TP AR |
o __gl"lQSLwS)‘ #.1(2§LS)W, g R,
. "’ - e T, . ,’; R R CEE '
Let , ‘6“‘; be the estimaton of pij . the coe ﬁcient of corre'latrion
betveen the disturbances ‘of the i- th and j th equation where v e
N " ;.i‘ ! 1
(#:2.8). - AL TN c
.2.8) . S0P s — - . -
o . S '~(sﬁ<sjj) / : .o
. . ’ ’ ‘a-
. In. 2 similar manner let .
o T S _ :: e
(4.2.9) Vs ¢ Y- Thgg) v -
. ; N ‘
. ¢ .
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! 5
, \ \
where ' ' i
. : ‘ ] ;
(4.2.16) y =76+ u
-~ , )
oy - : ‘
| 1 { Z-l 00.. 0 6]
[
. L y = Y215 1=|1% 1 . &= | % ;
‘ | ] o 0 g K

\ o
I P h , ' = §
N U = u2 ‘ N N
N : ;
; L
! . . ‘ -
b " and the (3SLS) estimatsr of & {s given by ,
§ : . v G' - : -
i . ‘ . -1
. ‘ A R L vre=1 .
@z By = [T enmeni| 2T en ey, g
where
Lt (a202) | S M2 S T | -
:: e - - s <=‘ ) 52-‘ - 522 cos e 5‘2” +
<44‘ ) ;;a‘ . . ‘ . L $"~( ’SMZ cene Sm J.
;'%? 7 ».'_ and 8 denotes the Kronecker Product. - M\
- ] S A consistent ‘estimator of og4 based on the 35LS method 1s given
by ~ o s T }
. ¢ ° ’ - ) }
C(.2.03) gij - JA(3sts) Tjasts) o ‘
v T r )
i : cN
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A ) A ' ¢ . '
where Ui(‘SSLS) and Uj(BSLS) are th:a i-th and j-th subvef:tors

: . \ N ; ’
of U3SLS respez‘ct1ve1y. Denote‘the (3SLS) espmator of Pi; by

8, \
{4.2.74) ‘ 6” = __“_1)_____
. : , oAy A \1)2
® - v(oﬁ ij)
“ We can write the reduced-form corresponding to the (RHS) =~ °°

(expRanatory) jointly dependent variables in equation (4.2.4) by

m

Pl

(4.?.15) v = Xﬂi + V_i

[ 4

“

i

~re,

wher:e/ni and \'i are K)?rni. and th“‘f respectively; .IT1 and 'V

L AN
»

are submatrices of T and V respectivety.‘

7

k4

. . -
Using the relation . V = U(B'])‘ we can write’ B
(4.2.16) v, 0l = we, . ,
5{(_.,\,

wﬁére“v1 and- 0 are Txm, ' and TXKf{ respevctively and Gi"ﬂs

+Mxn, ‘1 n = (mi +‘K;’) , a matrix of éonstants. Then we can write
» . . E T . ‘

“ *

(.237) Z, = [v, . X1 = [xni xi‘} + UG = A+ UGy,

@

~
R

where : ; , . a
’ {4.2.18) YRR A

o :

.qu Let

LRY

1

/

e

-




\

., \ t
P (4.2.1?)
“ A
and .
(8.2.20)
G
then
(a.2.21) . < 7

s

If we define

(4.2.22) .

e

'and 1ntrodgce

(4.2.23)

P E
o = (A} A)

i

n

" ,
~ s
r
A0 0]
|0 Ay .0
_
6 0 .0 | /.
¢
0. G [
2 0 -
b :
= i
. ’?
A+ (18 Uj6 | o .

(at(s 9 1A

SA(E e )

87 (=1 oD - (=7 8 Dasar(s! 81)

\

L4

[ 9 >
"1 %4 the 1i-th column of f ..
Ou4 J ’ h .&{
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-PN*wtj;V,,~—"b(r") in probability of the (3SLS) estinator 5y, defined by (4.2.13)

148 -
and
. dij 2 Gj %3 | (i,j = 1,2,.....M)

Then. the following results have been derived by Srivastava and Tiwari

(1976). . S o ‘ N L

THEOREM 4.2.4. The bias and mean squared error, to the order

O(T™") in probability of the (25tS) estimator s, . defined in (4.2.7)

*

are given by

~ LT Y
(4.2.24)‘ E(Sij - “ij) =7 [tr QiAiAijAin) - ("i + nj)}cij
- (K - ng - l)d%ioidij - (Klnj—l)dsjqjdji

4+ tr GjZGijAlA.Qi)oij

3 .
2 ) 2 A
. . . -1 . " '
(4.2.25) E(sij - oij) T(oiiojj + oij) + ?iidijQiQij
.dt.Q.d.}
-t %5500
, oL i) . ' 'c
_ + 20,05, 0A A Qydy g
THEOREM 4.2.B, The bias and mean squared error, to fhe order

are given by

.n s A = l ' \ ' - -

1 .'IJ
” " " - i ’ 15 4
- B (95500 + diipn)dan * LB 6%i054)

at

S IR
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{

(4.2.27) . E(5 2

570l T 005y + ahg) ¢ i * 45855854
b '
»-6 - +2d31¢11 i
where s
(4.2.28) g = (E7 Ath)¢£m - 20,0+ ezn(ﬁnQﬁ - e&m) (; =11,J)

] /5—
and ¢£m is the (£ m)-th .submatrix, of ordep L of % be%{
partitioned as ' ’

AN ' { . .
\\ -
(4.‘2.2‘9) ¢]T:--- ¢1M' e
$ = _
By Oy ‘

The matrices '[\nn and eb“’ are similarly defined with refegences. to
A and ¢ respectively. ‘

The change in the mean squared error is given by .

=
Yy F - 2 - A 2 -l
(4.2.30) . E(s).j oij) E(°15’°ij) = d”(ovﬁnl)1 -¢ﬁ)dii

L,‘{j'i“’jj“j eTlel

R T T ¢j1

[using (4.2.25) and (4.2.27)]. - ‘
3 . - .

Now we connder the estimation of variance oﬁ From Theoregu

4.3, A and Theoren 2.2.8 we have to order O(T Yy -4 probability.




J——_
D . 150
¥ ' 3 |
, ",
(4.2.31) E(sii - oﬁ)‘= -5 0 11 2k - ng -l)d Qi i
“ : + (tr G%}:qul.)oﬁ
Vo ' 2 2 2 \
(4.2.32) E(Sij - o”) =3 9t 4cﬁdﬁqid” |
(4.2.33) E(6,, -0,) = - % (tr QY 4..) - 2d}.Q.d ;
e : i1 i T i 7 §9%441 i
o _— 23 i
, , . , . - , !
b . ' . mnd11H1mn mn (tr GEG ¢H) !
P A2 2
(4.2.34) BBy o) = F ol + sappeggagg
Jhe gain in eff‘iciency is given by : *
o ? N ‘o '
(4.2,35) Else - 0cc) = E(B., - 02)7 = 4d! (0,0, - 65}, i
- i 11 i ii ii LA AN R i’
g which is non-negative since the matrix °11Qi - ¢“ is non-negative ‘
‘ f BN .+ definite. [See Appendix of S‘rilvastava\'and Tiwari for proof.] -
; " Srivastava and Tiwari (19765 also compui:éd the bias and mean

squared error, both to order .O(T']) in probability of the (2§LS)

estimator ?ij and the (35LS) estimator 3” defined in (4.2.8) and
L -

TR

(4.2.14) respectively.
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3. In this section we utilize the small-disturbance asymptotic
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approach introduced by Kadang (1970, 1971) to investigate the aisturbance~
variance estimators. Brown, Ramage and Srivastava (1972) and later |
Kadane and Ramage (1974) summarized Kadane's approach as folT;ws: |

*The random variables corresponding to a particular statistical
procedure (here, disturbance-variance estimating technique) are
approximated by other random variables close to the original variables
in’gfgzabi]ity. The approximating random variables are derived from a -

Taylor-series expansion in-powers of a (small) scalar multiple o of the

-system of structural disturbagces. The properties of the approximating

. ¥ .
random variables, such as their distribution, mean, and second-moment

matrix, are‘ekamined in order to investigate properties of the original

procedure. No claim is made that the moments of the approximating

" random variables are close to the moments of the approximated random

variables. The clain is rather that when o (where o Ns a scalar
multiple of the system of structural dfsturbances) is small, the first
two asymptotic moments will give useful measures of location and
dispersion of the approximated distribution."

We can write the complete structural form of the model as

0(4'3.].) N YB‘ + xr' = OU
where a 1is a scalar-assumed to aEproach zero; thé'rowsaof Y are
assumed to be mutually independent with zero means aﬁq covariance

matrix I . The reduced-form of the models is

+

< e AT AN Y e 2

i, +Sovas s A S AR AL o

A

i bt Y A s

-




e

et g

T 3 S TTI Lt -

.o AL /J
= ar ) + oy | y

. e .
xn' + Uv vl

(4.3.2)

-
]

The covariance matrix Q of the reduced-form disturbances is given by

(4.3.3) a=(8"%z @)

/
' , . § &
We cOnsider the first structural equation of the system (4.3.1)

£

given by !
(4.3.4) y=Y8 + X]‘r + ou . A
« = [Y1 . XL]6 + qu
. -
where " 8
6 = [ ] s (mp x k) x1; . v
. _ X

{y . Y]] is Tx(1 X‘m]) are the included endogenous variables;and

X is the (TXK]) are the included exogenous variables; u 1s a

.T x 1 vector of disturbances with finite variance ¢ . With no loss of

generality, ;he equations (4.3.1) are taken®to be so arranged that " Y
and X can be partitioned according to the variables included and

excluded from (4.3.4) i.e.

'

(4.3.5) Yely, 937%) s Tx (1+m +m)

X = [X]', X2] s T x (K* + K**)

/

The variance parameter to be estﬁmgie't] in equation (4.3.4) is

02 ¥, where ¥ f{s'the leading diagonal element of X . The general

/
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similarly setting k] =1-h" and k
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douqble-k-class estimators of the parameters & in (4.3.4) 1is given by

(4'.3.5) ' ‘ | ‘

}-1 {vl ,x\]](x-kzix)y R

1
k, k ={,[Y]. X]]’(I-kﬁ){v] xﬁ]

\ L4

‘where ﬁx = [I - Px] =1 - X(X'X)JX] is the matrix of the projection

orthogonal to the subspace M(X) spanned by the columns of X. If in

A
(4.3.6) k] = k2 = k we have the k-class astimator ‘6k of & and

2 e !
? 1-h leads to the \[{\.-class

estimator of & . The most frequently encountered estimators are

" members of the k-class: k = 0 gives the (OLS) estimator, k =1 gives

the (25LS) and a random value of k given by
,L

i
i

(4.3.7) LA L. . »

s = min {
L Be || PylysYy 28, )
IPLyon B |
IRy 3B

~

Teads to the (LIM) estimator of &  (where II° " fs the Euclidean
Nor). ' |

It is well known that all the proposed estimators of 62 w are
based on the residuals from k-class estimation. Brown,' Ramage and
érivaslava (1972) suggested that previously proposed estimators o.zw

can be treated as special cases of the following:

(3.3.8) (1) N 2y -ty x8, ||2

-
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£ |
B \ i

~ which is simply the sum of the squared residuals, 'i.e,
. _ A
. uk = [y "(Y-I s x])ék] '1

normalized by a non-random scalar & . Srivastava {1972) first studied
this estimator in its general form, using small disturbance asymptotic

met hods. ' '

\ ' Y
(4.3.8) (i1) % }Fx(y - 1Yy xi]3k “
s LY

Y
which is motivated as follows: h
% , . ‘ , . N . | |
: ' From (4.3.3) I=BQB' , and from (4.3.4), the First o
: - . column of B s writterras. - ,, N
| ' Ny S
[ -1 : . B e
© ’ : ’ \Jr ."’. s
E Lo 4‘ 0

; where B is m, X150 fis my x 1. Since § {is leading diagonal"
‘ K Y . Y -
! . element of £, ' L
; | a? - .
Py =l | ool B
oo 0
= ozmn - Zczmi B + B az'ﬂnﬂ
where <
(4.3.9). ' ‘ PR *
‘ 4
Q = ()
1y is (1 +m1’+m2J)x(l+m]+m2).
- * N * :
' N
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i

The estimator (4.3.8) (3i) of the parameter o?u; results from

. A ;
estimating B by its k-class estimator Bk and -0252 by the function

*

of the reduced-form residuals, %-Y’F*Y , 1.e.,

, ' | A2 A2 2 a2
~ (4.3.102 0w =0 Wy - 28 w + Bka 4 By .
\ - . «

1 “;— “._ s
a [Y‘ Py = 2¥'P Y B+ B Y18

»

Ve
"

" 2
] )
A LATERCHTNCST ,
+ . R . v
- Special cases of thé estimitor (4.3.8) (ki) Were dealt with by Basmann
. $1959) for k =1 (25LS) and a=T-K (f being the number of

observations).and by Bq§ﬁann and Richardson (1969) for k=1, a=T. I..

L e L

_“\ .(4.3.8) (111) %- ” P;((y — [&Y]l N x]]ék.) “2

- o

which’ is a spécial case of the estimator proposed by Dhy

J S NS

f.e. for k=1 (25LS) and a =1L = (K** - m1) = (K2 - m\

! Co .
CEL ] . degree of overidentification of (4.3.4). (As before we use for
‘ K**.) . \¥ .
[ . . 'Y ' . . f
- . . " ¢ ’ A N
ERN - i
M v .
¥
- '-4
, .
*.
- ,’ L ')‘
’ »é"& L] 4?'
o
~ . 40
e e
v A “
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“

4, In order tb treat the problem of disturbances-variance estimation

in a systematic manner and to make comparisons among competing estimators,

Brown, Ramage and Srivastava (1972) constructed the (S], ﬁé) and R- class

" of disturbance-variance estimators. , s

i

The (S], 52):c1ass estimators of 502 Y is formed a§ follows:

where a is a scalar (non-random) and -
(442

and S

AA
u'u

(4.4.1) b =

_QI'-‘

A A

and S, are specified (TxT) symmetric matrices. In additjon,

ye

1
S; and S, should be so chosen that

]
N

(4.4.3) (s, - Sy)A =0 ,
l \

where

(4.4.8) «’ Ay =Ty, X ‘

is T x (m1 + K*) and m, s defined implicitly by
, | .
me= [“6 » Thos né] ' is kKx (1 + m] + mz)' )
o

Two spec1a1 cases of the (S], ) c1ass which satlsfy the

' cond1tion (4.4.3) have been examined by Brown Srivastava and Ramage:  ~

b N
- +
(4.{.6) (a) o | S} =S, = va .
(41&.5) (b) | ' y $ =5, ’ c
. iy v
s ‘ »
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P

The motivation for (4.4.6) (a) is tHP% the columns of P, spanthe

syb‘space orthoganal to M(X), the column space of  X. K

A pérticu}ar convenient specilization of (4.4.) {(a) -has beén- '

specified as: - ‘ ‘ B .
v ‘ ‘ ‘ ’ N
(4.4.7) B ) 4 S] - 52 = ?x s ’ . ' , ’
: . - . " - -
S"2 = (cP,x +c Px)‘ o oy

where ¢. is a scalar’and € = (V-¢). The second subcl‘aés’s' "(4':4.6) {b)
- ‘ i . ' s

-

leads to the R~c])a;s estimator: , Let

s

(4.4.8) R a "
S opilg? ' '
. R - GS] i . ’
‘ . (O SN ) “«
The general R-class estimator is given by .
- '1 ) “t h' . . " . A 4
(4.4.9) . YT u Ry - : . S )
. ‘ , N L 29 .
where u 1s the k-class residuals, i,e. ‘
. ) . | , \ . ‘ N
. » °
a10) Ty sy B
(4.4.0) AR B B L

‘ [}

" In order to. 'faci]ipaie’ compariﬁbqs among thé estimators (4.3.8) (§)-(4i1).

a further speciaHzatio_n‘ of the R-class gitimator Kas been de’veioped:

1
' 5

oy P TR
'(%4.”) P (R=3(ch-c o

-
s

" where. ¢ 1is a scalar.and T= (1-¢) .. This two parameter case inc(ﬁ.l‘des
) the estimators (4.3.8)(i) - (i#1):.
] 1 * - _’ ) v .
v v

ry O R Sty Wit s ' <

o et

PRSP
.
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~

For c = ¢, we have (4.3.8) (i); for c= 0, we have (4.3.8’('”) ’ ¢

and for ¢ = 1_ we have (4.3,8) (iif). "
\ aner : : .

1] ‘ . . v
s N o ‘ B D
5. . Before stating thesprincipal result, we introduce the following .
definitions: - ' B
, &t . - « A
(4.8 ‘Yl.’_xfh +ovVy ) ]
. . . - . , . . - ~ *- N
1 t R . X Al. [Xr"t x‘] ’ . is \T X (m] + K )
‘ . \
“ ' Vo=, 0] - s Tx (my +%%) |
‘ ’ Q = (AA) o As (myp + KR x (my 4 KR)
- ‘ oo - . s . )
. ‘ My = P~Al‘ - kP, “ : -
o Y e =t =T K . = .
. < .’-_" ) ; . - y - \ (' ‘ N »

; | | o L= (Re¥ m]) or ‘(Kz .mI) o
- o IR q = x,'z'lH- Ea'(V'u)] ~ s (m] +K*) x 1

;, i ’ ‘ _ . .' - o N ¢ [ 'h . ,
“- ‘,,\, . G-‘-QﬁQ" “-“ . - o - - "’-"
:}:J ‘ .v ~ o i ¢ _ :n* = “:l-] [;‘f E (vlﬂ] ‘. '15 -(m.] +.K%). x (‘] + K*)

¥ . ‘ . . a . ‘, ,‘ . - bil

C v D =qav-6 . I 3
) ~. . , v > e ! . ! [ | .
‘ , ﬁrqwn. Ramage and.Sr'ivasta“v.a (1972) also used the following . -

-conventions:

.o e . - » . ,‘.
¢ - - . [ - e . *
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'Ei (4.5.2) For any square matrix 4 ., -
f % ' '. b oe . < A> =t A+ A
t . ‘ o, _
For any rix Z of full column rank,
i' | " P 5 Z(zlz)‘lzl
i 4 ) 2\ .
L o = C P (1-p) | L S
N | ' ‘ - “ NETEY ! ' 4 }
A 'w‘ The -following relations have been used extensively:
» k] - ‘ | / *
(4.5.3) . . Py = 0 ) . .;
Lo | - # - - s e 1 ® .
‘ » P)tPA - Px:= PA Px
P 1 1 ]
y . a
‘THEOREM 4.5.A. When .o is small, the general (.S], SZ)-c'lass
disturbance-variance estimator ¥ defined in (4.4.1) is approximated
. ' J .5 ‘ *
‘slose1y'by ﬂak(_.')u i.e. Yy - wk('), = Op(g ).
~In order to approximate ¥, defined in (4.4.1), a serfes
' ’ N . t. ‘ — o
expansion in powers of the sca‘lar mult«‘lplé‘ g of the system of / ot

disturbances s first developed for:. U pefined in (4.4.2). Brown,
) Ramage and Srivastava (372) utilized the smaH disturbance approximation
to the k- cla/ss estima.tipn errors, = (6 -6) > deve'loped by Koda’

(1971) i b | “f';
N . ‘Substitutihg for y from (4 3. 4) and for [¥, X 1 leads to '
®.5.4) '.';(3 ey e
CON - S e *
N P o
§ :.{-L\) “'.a" = «,& r " 3
N _’ st T I'o l“ -
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i.e. ,
, e, = {[v]. xJ'(1 -'k?x)[v].x]]}-][v‘, X3 (1- kP, )y &
= {(I\.| +oV)\’f(I‘- k?x)‘(X’r o'V')}_] (A + ov)' ({1 - kP, Jo u
= oe (1) + %, (2) + o (3) ?o;(a“)
RN S ‘ |
wbere;'“ C . ‘ _ T ‘.‘ / \7 *
¢ | 'A.“ ek(1?‘=;}A]’u', T ‘ ‘ e

(2 = QWML < 0AjTQALu

”
5

* - e, (3) ‘s . Q< A]'V > qV'nku 1
- - QUM A u +loa; (?QA;)Z u ’

Using this approximation for e

in (4.4.2) leads to

. . s A ' A _“
v “'5', ) U= (S, -, Sz)y +S, {y - [Yr, x]]ak‘} -

=Sy - Sy - SZ{UJ’ )(]]Lek - ou} .
o ”,,@ o J ..,
' = (51 :‘Sz),{(A] + aVv)é + ou} ) d
- . v ) ) \‘ v N .o . .
R - C - Sz"{(A] + o¥)e, - ou} L , | )
. . N A . n N ' CLe \§ ¢
= U(0) + ou(1) + v°u(2) + o”u(3)
L' ' ' . T ~,
‘ , 2 Ajas 6y LT
REECALY SR
,4/‘ ) ' R v ' ’ - t
. ) Y '
N 3 . ‘_
i [ - sl » /."
' ’ . > . . .t N
' ’ ' 7o e
» ) oy 0 .
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_ where L | , ‘
A , ) ) ‘
<,U(°) = (8 - S,)A8 -
5 , i L |
‘ V(1) = ($; = S,)(u + V) + S,u - S4A QAU
= .(51 ‘- 52)(u +Vs) + SZFA]'" i |
. B ) .
U(2) = - s,V0Aju - S,A V' My .
N . - N -
+ SZA]Q)\]'VQA]'U
' = - S,[A, Q7'M u + PAlvr)A,"uJ

G(;%)hS[WV'Mu-(VQA')Zu' T
NG A M ‘

- A< AV s qukau B

- A Q7'M VA"

' 1 ' 2
/(.\/ + moyaana]

Then ° o | | -

A A - ’ RN \ R
U, _ | /

(4.5.6) . wk =

. R

| ‘, ]
= ¥ (o) +oy (1) + o? ¥ (2) + o wk(3') A : .

+q? wk_(-‘é) + Op(ws)

¢
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where'& N, -
: (o)-lsA,(]-s)Aa ; - e
ol t
" b (1) = L [aenis, - 5,)5;P, u
; , SRR A 2 A] b
’ v 28'M (s, - 5, + Vo) | -
) v (2) = 1L 26'a (s, - 5,054, Q7'M 0 T | L
; k(20 = 3 17 28°A7(5; = 5,05 A, QN - o *
f . Cn
i } N , . T
- | 26' M (5, SZ)SZPA]VQA]'u ‘ ‘
& J
+ 200 + Vo)'(s, - S, )s Py
.1 v .
+(u+ve)‘ (s, -s)2 (u+¥6) +uB 2T }
See Brown, ﬁamage and Srivastava (1972) for further details.
-
) ) ‘ . :
¢  COROLLARY 4.5.A. 2 . -
h The bias and mean;-squarEd error of theh‘approx'imaﬁon xbk(-) are
given by . ‘ A S ~ ”
] 2 oa 22 o6
| _ (4.5.7) E[wk(-) -'? V] d + o d, + o‘d4 + 0{c")
} . . : ; ) )
i v and Coe , ' :
: ’ - ‘ 2 2 _n 2 4 6y
(4.5.8) . E[wk(-) . o‘ v]® = D, +'o QZ,J' oDy + 0(c™)
where _ A ) K
. "’ \ ’ - ' C s : -
I3 \ ’ 5
}
, \ .
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d = Ep (o) = L 6'AI(s, - 5,)2A.8
e Tk o 171 27
o2
DO ,dO’
- 2
b, = 2y + EY (NI

-

Dy = 2d,dy + 2604, (1) ¥, (3)] + ELy, (2) - v)°

[See Appendix 2, page 56 of‘Brown,,Rémage and Srivastava (1972) for
details], ﬂ ‘

Y

It follows from Theorem {4.5.A.) and Corollary (4.5 ) that any

.estimator for which u(0) (S] - SZ)A]6 ‘vanishes has.a smaller

asymptotic mean-squared error than any estimator for which ﬁ(o) # 0.

‘ THEOREM (4 5.B),

R 4

For ‘the . special case of Thenrem (4.5.8) and Corollary {4.5.A) where

(S]'* SZ)AI =0, the bias and mean-squared error of he approximation

wk(')‘ to the (S‘ . 52)-class estimator ¢, defined in (4.4.1) are as
v \ )

© follows:

(4.5.9 Elo, (-} - o 9] = o%d; + 0(c*)

(a5.00) "~ H%L)-wa=o%4+mf) Lo
, FE

by ~

‘(Seepage 56 of Appendix\? of Brown, Ramage and Srivastava (1972) for

proof).

~ [P
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6. THEOREM 4,6.A (The General R>class)

The the special case of Theorem 0\;5 A\d Coragyry 4.5.A where

S] =S2

R =

\ ' ° L8 : \

_the bias and"r_naw-squared error approximatfon d:k(-) to the R-class

(-
[ 7¢]
- N

estimator y, defined in (4.4.9), f.e., 'wk = uRu, , are as follows:

165

‘ 2
! —
(4.6.)°  El, () - 6% y] = o’h, + o®n,(k) + 0(c®)
'and . ,
(4.6.2)  Ely ()= o ¥17 = oty + ol + 0(o®)
) ) where ’
. h2 ='1p‘a° .
! 2 ' C
ng = ¥ {a) (K)(tr Q 6) + a,(K) (tr 0 D)
+ a3(k)(tr q A R A1Q]G) <’ . .
+ a4(k)(tr Q A‘ R A Q D)}
\
and. (seharating non-stochastic k and (LIML) cases) .
' . ' . ; - . o o
. 0. - . 23‘. - ’ ‘ ’ 4
LA
. . i >
»
o
£} ‘:'i—',v- .
S m—— TR, AR ;
s eI

’




R-1]

. a. =.[trP
- 1

A

ay(k) = [-(2 tr M+ 1)(tr FA]R’) + 4k{tr P R)]

| a (I.]) = [3(tr FAIR)] -
™ i
az(k) = [-(tr 3"R) + 2k(tr 5'R)]
2(£ ) [-(tr P R) +2(1 + L/a)(tr P R)]
a3(k) = [(tr Mk) +2 tr Mk] *
a3(11) =0
ag(k) = [tr W]
at) =[La+L)/(a-2)] ., .,
[see\(4 5 1) and (4,3.7)].

Also - .
H = tpz {az + 2 tr ('5 R)2 } A

g =6 a0 tr(os) gl ®)

+ By(k)(tr OA; RAIQG) + B, (k) (tr QA RA, QD)

+B(k)(tr P AR A QAR) |

+:BG(‘I£) (tr 7y R AQD QAR
oo +By(K) (tr F,;R a6 Qi\]’R)\

LR + Bglk) (tr PR A,Q D Q.AR) }
N l’ &

u}er'e (separating the non'-stochastic\ k and LIML cases).




i . l' ' - . —_ — -
| B](k) = 2[aoal(k) - 2(tr PA]R - 2k tr PXR)(tr PA]R{
— 2 - - '|
\ . - 2(2 tr Mk + 3)tr(PA]R) + 16k tr(PA]R PxR)j
B(£)=2raa(£)+2(tr3 R)2+10tr(5 R)2
L [Te71¥ A A

£

By(k) = 2 [aga,(K) - 2 tr(-ﬁA]R)z 4k tr(P ¢ 7]

az(z%= 2 [aoaz(t]) + 2y Pp,R = (140L/(a2)) tr BR] tr Bk

- 2tr(P, R)Z + 4(1+ (L+2/a)tr (P, R P,R)
1 X

1
- (8/2)01 + L/(a + 2))er(PR)?] o -

-

- dk(tr M+ 2(2 - K)(tr ﬁxR)']

o

B,(¢,) =

[]

By (k) Z[aoa;(ky + 2(tr .'FA]R) - 2k(2- k)(tr.FxR)] )

By (4,) - 21‘0“3”’1) + 2(a +2/(‘+ 2)/(a-2)(tr FA]R)

- 2(1+ (L;Z)”/(Z + L}a)(a -2)(tr 'P"XR)}f

>

B5(k) = o[ (er m(er m + 4)'s 267w 4 5] | |

85(51) =0 | . - : (
s afee

Bg(k) = 4[tr ”k + 2]

Blg) = 4L +2) (asi 2)/-2)]

1

- B (k) = 2[5°a3(H+mF~-Mk~%%3ATH—— —




"37'(;(.) v= -16k[tr M+ 2(2 - k)
B,(¢,) = © |
. i Bylk) = - k(2 - k)
_— g[{+(g +2)(2% L/a)a - 2)] )

Bg(2;)

[See (4.5.1) for definitionof a, L, G, Mo Ay, and DI,

V4 .

; ‘COROLLARY 4.6.A. ” (A parameter special case) B "
Whtn R = (cp +TP,) [see (4.4.11)]
: '(4‘.6.7‘3) - E[v)k‘(.)"—"&'a v] =’Qa{2d2 + o4d4(k) f.o(,crs)
(4.4 Ev,(-) - 0" 4% = o'y wofogti) + 0(o®)
Jwhéce ’ d2 = —3—{&0(6) ‘-' a } a . |

2 . -
=)
d, = a](c,k)(tr'QG) + az(c,k)(gr QD);.
- and (separating the non-stpi:ha#iié k and LIML cases)

alc) =(ra+cl)

ay(c,k) = [-(2tr M+ 1 T d +ceL) +4kca

vl m)Pe 2(er nﬁ))]‘

168
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az(c,k) = [-(ca+cl)y+2kca+ c'(tr Mi)_]

“ayleuy) = [-(Ea +c L) + (a+L)(2 T+al/(a-2))]

\

Also s
D * —;Lz {(ao(C)-o )2+ 2(c2a + CZL)}
6k} = 5 {8, (c.k)(tr 0 6) + By(¢,k)(2r @ D)) .
— . - o . .
o ' . ’
where (separating non-stochastic k from LIML) )
By(c,k) = 2 [ab(c.)-a)ai(c,k)-Z(Ea + e )2
: +a(c(trm +2) +Tk a))(Ca+cl)
L . T - 2(2tr m+ 3)(T%a + L)
Y !
) . ‘ P
| , . sk Ta {(4 T cltr M+ 2(2 - k))}]
; . Bylesk) = 2 [ag(e) -aday (enty) +2(2a + et
f , . +10(c%a ch)] -~
4 ) ‘;j ) .
' ‘?:&f“‘» -

.

B, (c.k) ‘=u2ﬁi'o(c) - a)ayle,k) + 2€ f-;(E}(k'- 1) +c(1 -k)z] :

BZ(C;‘CI) ‘= 2[(a0(c) - az(cﬁt")

+ 220 + clav2L+2)/(a-2) (T a cl)

.

T L il A -2 zs(‘a+(t.+z)(za+u/(a?2)]

The asymptotic moment results for"tuhe_estimai':ors (4.3.8)(1) - (1i1)

.are obtained by choosing’ ¢ =T , c = 0, and c =1, respectively,

-
’

) e v
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"in Corollary (4.6.A). Based on the lead%hg term D4 of the mean-
squared error result in Corollary (4.6.A), the best o for each case
Jo . and the corresponding mean-squared error are as follows:
. TABLE (4.6.A)
c  ESTIMATOR L BEST a ASYMPTOTIC MSE
— T] ’ A 2 - N 42 ) 6 \.
c=¢ o ” y -[% ’x2]5k|| (T-K+L+2)| 2079 /T-K+L+2) +0(a") \
{l - ¢ ’ ' -
;
Ji S LA 1" a2 6
: I EE N Y LR S ) (T-k+2) | 26%%/(1-k+2) + 0(c®)
- .
g . 1 .
h s 1 2 4.2 6
| ¢ =1 : " P (y- Yy ,x133k)| S (Le2) | = J(L+2) + 0(c®)
; A |
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CHAPTER 5
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FINITE SAMPLE PROPERTIES -

—

f

The properties of consistency and asymptotic normality are common]y'

shared by all the limited 1nfonmation”as well as full information

estimators. Although ‘the asymptotic properties of various estimators

have been studled extensively, Hney do not prov1de a basis for choosing °
the estimation method when dealing with f1n1te samp]es Due to mathema-
tical 1ntractab111ty there are as yet few exact results on the small
sample propert1es of the various es§1mators

Basmann [19§l 1963] and Kabe [1963, 1964] were among the pioneers
in the theoretical investigation of the exact finite - sample properties
of various estimation mthods in a system of simultannousdequations.
Specifically, they,denived the exact finite-sample probanility density
function of the (2SLS) and (OLS) estimators. for tertain specfal systems
composed. of at most three equations. Bergstrom [1962] de;ived the eiacé
dens1ty funct1on of the (OLS) and (ZSLS) estimators for the simple '
Keyne51an mode] ' -

In particular, when the predetermined variables are exogenous, two

endogenous variables occur, in the relevant equation, and the coefficient

. L L. .
of one endogenous variable is specified to be one, the exact distribution

of the coeff1cient of one endogenous variable has been obtained by -

Richardson [1968] and Sawa [1969] in the case of (25LS) and by Mariano
and Sawa (1972) in the case of limited information max1hqm/11kellhood

(LIML). Takeuchi [19765 and gawa (o), using the sane.situation,

derived the exact sampling moments . (first and second) of the (OLS) and

(2SLS) estimator, and the exact finite-sample moments of Theil's k-class.

v
\
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K2 =M+ 1, and that even moments' of the (0L§) estimator exist ifrand

b \
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estimators for o<k<l, respectively. Nagar and Ullah [i974] computed the

mean of the.(25LS) estimator in the case where there are three endogenous ™"

- variables in the equation ypder est}mation.

Following the apprZ?éﬁ of Kabe [1963], Richardson’[IQéa] an&;Sawa‘
[lb69] derived the exact distributién of the (OLS) and (QSLS) estimator ’
by making a change of variable in the non~centrq1 Wishart distribution.
This method of derivation involves the Gumbersome task of integrating’

2 non-cnetral Wishart distribution, and the results obtained are usua11x'
too complicated for making any meaningful comparisog between the -
properties of various esfimators.

| , Under the assumption that all the éredet;rmined variables are
exogeﬁous and the-eqhation to be estimated gdmfts an arbitraryinumber‘

of endogenous variables, Mariana [1972] proved that even moments of the

(2SLS) estimator estimator exist if and-only if the order is less than

*

only if the order s less than T - Ky = M + 1. (¥ +1 is the number

‘of included endogenous variables, K1 and K2 indicate the number of
included and excluded exogenous variabtes respectively. T denotes "

the sample sfize.)

1

1. THE CASE OF TyB‘INCLUDED ENDOGENOUS VARIABLES.

wt

The séa]ar paramter B.in the structural equatioq

(5.1.1) ¥y = By, + X]Y] + U is to be estimated.

Here 2 and yy are (column) vectors of T observations on two

endogenous variables, X)*is a T x K; matrix of observations on K,

+

an

e o g e s e i S
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included endogenbus variables, U'is a T x 1 vector of: dlsturbances and
Y\ is a column vector of Kb parameters

The two reduced - form equations are:
(5;1.2) ¥y = Xmy o+ LR LR PN, )

Equatvons (5.1. 2) and {5, .3) can be expressed. compactIy as
(5. 1 A) Y= t,v . where

R N I R (A
[x],xz]“_‘, S

is a TxK mqtrix <1\\observations on 311‘:;;\2xogenous variab\es in ‘the

system. XZ fs'a.T x Ky matrix of observations on K, ex09enous varfables .

which have been exc1uded a pr?ori “from equation (5. ] 1) m and n,

are K x 1 vectors of reduced - form coefficients, vl and v2 are T x1

: vectors of disturbances.

In addition/fo the conventional assumptions. we, add the fb?lowing

-
Pl L3

,~,Assumption!l- Each row of Lvy. v2] is’ 1ndependently #nd 1dent1ca11y

“distributed two- dimensional normal variate with mean vector 0 and positive

LY

definite variance - covariance matrix

(55 e Y2 TR
~ " Q“: ,. .
U U o | o

> ! ‘ ’

® - . - . . . - .
. Assumption 2: Ihe T‘§ K-matrix X c&nsistibof known numbens, is of rank

K, and.T>K. To.relate (5.1.1) to‘($.1.4);,we par ftion T into K and

»
&
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5 L .
& - -3 ] . e Lo
' ‘:v: / ‘(5 ._] .6) “]‘ n]z \
] 0
. ",21 "22 ‘
;g - . by Coo
. F If we multipIP<(5.1 4) on the right by [¥, -8]', we obtain (5.1.1) where
E‘ s, Y=y - Br,, and U= vy - BV\- In order that (511.1) be properly =
bo . N ‘ . N ‘
(7 poas L. weitied with %, omitted{ o Y
\{: ’ . . PO ~ ,' . . !
Y e (50.7) . ony, = Br . I
o t" . . -
N o ez T X
R ' . Assumption 3: The matrix [ﬁZI n22] is of rank one and Y has at leastA.
“'{' one non-zeﬁ% component , | " ' : \\‘\
H 0 .
J/ The CQmpoﬂents of U in {(5.1.1) are 1ndependent1y ‘normally °
. . - . . 3

T
~
IS

Y ~‘distributed with mean ® and variances

R R

’ [N ' v \ ! e

‘q'. > - o { 4 . ‘

d ) . T f o oL o

J ¢ . ~ . 2 v “ . LX 2 . \ . ) - .
" “l 3 P .

. ) // n this section ue state some exact finite sample properties of

‘\,, .-.qff the k-clgss. estimator fof 0<k<1, [See Sawa (1971) for details_of proofs],

and for double k- ckass estimators wpen k] Ties betueen -1 and 1 but-k,
" is unrestricted [See Dwivedi and Srivastava (1980)]

CIn additjon to “our as%umptions we adopt the following conventlon

1/ o : '
* (5 2 1) X~'X2 . B % b RN N

L

Under the-assumptions' and the convention stated in (592. 1). the
{

. k—clas;/gstimatpr Bk of in’(5.l.l) is g1veh by the .first component of
‘ . VN ’ " N .

d . ' o ' N ,
: /-’\ . o o vt - »
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5.2.2 : 1A .
(5.2.2) 737 ""92"2 yoX, Ya¥y - ",Véyl e
1 )
Y2 L ¥y
-~ ' . ’ ’

where 02 is the projection of 2 into the space spanned by X, namely

(5.2.3) 02 = My, where . ' ’
}! R . P . - .
(5.2.4) M=1_- x(x ' B
Lo xS 00 P, -
| LI A T D B AL 2R I
. ) 3 S
After a little ‘manipulatTon, we can write ] e

(5.2.5) o : ,
C . g -T2 kK7 where -

S By s e—— : |
/ Yo P Yo~ 0T o

(8:2.6) 7= (1= KM+ 1000 Ty,

”,

for k=0, k=1, the (OLS) and, (ZSLS) estimates of B are obtained

\To simphfy proofs of theorems, ‘we perform the fo'llowing Hnear

transformatmn on ‘the two endogenous variab)es [J’]’ _yZ] -
* [ \ ' A
(5.2.7) [V]: .V?_]f [Y]:YZ] @ T L, S

© \_tg-feduce the variance - .covanance matrix, @, to an identity matrix, -
. ﬁ ) - :
. i.e.,.0 =1, is added to our assumptions. =~

‘The 2 x 2 matrix f is ~def1‘ned as;

(5.2.8) - 4fe - 0o

£= ] . where f fs_, \'
bd b R ' ’

\X)
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(5.20) b=voo; d=92; a= B oz
. ~ 22 “’22' . 1 __I.E.

»

¥ .
As pointed out by Sawa (1971), d is a regression coefficient of Vlt’ah

V2t and a2 is the Eonditione] variance of V]t given v2t’ t=1....... T..

In terms of the transformed variables, 'we have an equivalent

éxpresinn for the structural equation (5.1.1):

¥ /
] (-] o o ’
(5.2.1?) <3 = ﬂyz + X]Y] +u, 1 where
(5.2.12) ° 8° =. b(p-d), : r L
. a . : . oo
° B A S B !
;= a0y, ' ‘and ulo=a e My |
| < ‘ ’ [ [ . ~5 ¢
Also ' .
. A AO A A .
(5.2.]3) B =d + %’Bk where By and B; \
— / ! . s i
are the k-class estimators of B in {5.1. )&and'ﬂ in (5.2.11)
respectively. . . : o . SN

Sawa (1971) used the fo]]ohing LEMMA as a basis for deriving exact
moments. of -the k-class extimator, 0<k<l: : ("
u * x [N

LEMMA (5.2.A):

Y

LefZ1 be an'almost%everywhere;positive random variable apd Z2 be

an arbitrary random variable. Suppose there exists a joint moment

genefating function of 7, and %: L e T '
2 ’) , .
(5.2.18)  ¢ley, 0,) = Elexp (042 + o)l L
for 0, < ¢ and".]ezi <e where ¢ >0 (e is a constant). Then the_ °
¥ ' " ) |
mth order ‘%%ent of Z,/Z; is given by .. . s

(5.2,19) ‘F‘HM g(_ely‘“;lﬁ[am:(er,ez)} . del'

\

-

.
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provided it either exists or is infinite, where m is a positive integer.

PRODE: By assumption, ‘i{ is permiésibl&a to reverse the order of - :

)

integration with respect to 0, and 9'2. Thué,
9 2

(5.2.15) s written as
-, - ¢

. > _ m ' :
(5.2.16) gy [ (o)™ gégfﬁ [Eexp (0,2, + 0,2,)] ®
B -7 e

LI (-Qm;p; exp.9,1,)
I'(m ‘ aez . )

_ o m-1
- o Lo en, o7, dG]]

0=
1 o il -z : .
\ "y § BT ey | | ,
s where y=-0, dy = - do,
. -
2 m I'(m _ Z
o s €| 2 4%] ¢ 2w
f e \ 1 1 , kb
~ Z' o - ' 1
§ .. K = E[ (7{)"' X]' - . - , _
\ LS :
‘ . - (
since in general, fox m.> £, and p >0 ) v
* - e p-1 _-at,. _I(p) T -
. . tP~ e dt =
]O ap ' / '
o To apply the preceding broi:eciur:e to eval uate the exact moments of the-
QJ;
, k-class estxmator Bk 1n (5.2, 5), the quadratic form y2 A7) in (5.2.5)

is reered to be non-nega”ﬂ‘ve defimte
. 124 \' \ i
LEMMA (5.2.B): The T x T matrix P, is non- negativé defmite if and only
;
. if k <1 [See sawa (1971) for, prqof]. -
\ .

“.oo .,
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s
a ' T-K
) (5.2.‘7) g] = T -
‘ 7-K R
(5.218) g, fw 5
~ T ' Lo (KX, )n a.
(5.2.19) =22 ZZ 22 A
“2 o
A . . i

' L)
if X1 X570, the definition of\9 should be changed as

2ol 1S Bl 5Dy,

the noncentra]ity or concentrat‘wn parameter)

A, . \

»
2~ . c
(5.2.20) glx; k, p, q) = . . exp. [-c’+ T3x ] .
\ SR (1-2x)P-9[1-2(1-k)x]9 2
| ' I - !
[ ' o
B where c>0‘p>q>l'0<k<1
(5.2.2]) 6k, ¢; p, q) = I a(x; k) p, qidx :
- \} ' ’ d A ’;'i
' .+ The\ function G has the following powere $eries represent}gion:‘
¢ lemma (5.2.C) for “0<k<1, P
! '(s'ézz) G = °£()k”" ) cp (pel; prit C) i p >
A9.c. { je0 \9 T(pHi) 1N p-1i pHis P )
o, otherwise . ‘ .
or equivalenﬂy
- , i ’
/ = e—c igﬂ ET_AP_'ﬂiU_ ZF] (1,, q:&p"'i, k) if p > 1
{ i"ripe) ‘ R
‘ . o, othérwise. ‘ -
. R . ' Q .
: . . and for k=1 ‘ .
:qf] iv,Flfp-/q-lz quf-C) 1f p-q > 1

(

(5.2.24) G é{e'F'g
o, othérv/ise

r " S whé‘x the symbol- (c;)1 denctes the quantity
. N . . g.-* .
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(@) = 1, (a); = rl(,“;" = n(uﬂ):...(an-}) i=1,2...

s oot

s qFy and ,F, denote the hypengeometric functions

. {rdn  n
~ (5.2.25) ]F](r;s;x) = hzo W X, 8 >0, |x] <.

L)

s

(r)p(t) ' |
(5.2.26)  ,F (r,tissx) = &) —T)%(_s_)_gxh' x>0, [x] <1 C / f

{See Sawa [1971], Appendix B, for a proof of Lemma 2C.). -~

- it

THEOREM 5.2.(A): .

TP The first order moment of the k-class estimator of 8° in equation

(5.2.11) for 0 < k <1 exists; it is given by s

‘ . o (s.2.21) E(BY) = 8° o6 (k.eigytl,gp)
- THEOREM 5.2, (B): ' ,
. . . £ .
b S The second-order moment of k-class estimator of B° in equation :
7* A (5.2.11) for 0 < k < 1 exists, provided when 0 < k < 1 we jhave T- K 23
b ,‘N « ‘ <, L8 o‘&
i 1 and when k=1 we have K, > 3. The second-order moment of B) 1s given by:
{ ’ . -
" (5.2.28)  E(BY) = [c+28°2c?T W (kucsgitlig,) . ‘
el k = B (o J H ( »C :9] ]’gz) R o i . . "
+ (g-9,%8°%C) H (Kicsgpogy) . 7 .
o f ’ 4 . ~ ' | v * ’
€ S ~ + (l-k)zgz H {k,C3g719,%1) \‘}
1;‘ . ' : ¢ L4 1 A
where . * “ o
. 1 93 rikcen o ’ '
3 (5.2.29)  H(k,c;p,q) = - 5 EG(k,c;p,q{)\ ~ L N
1 1 ., A )
3 L ' A
3 o = ‘2’ [G(k,C;PsQ).:‘G(k.C;PH $Q)] .
v N . . s . » i R
It'should be notedthat for k=0 or k=1, the function G can be _
'sinplffied to the qonfluent hxpé_pgeomtric function (5.2.25). Then L .

- inﬂmentﬂ are repr;esentéd in terms of confluent hypergeometric fungtions.
3 J-‘ L. . . ! e ! .
v % - i‘)’ . j .

“
« v A
‘. .
. . . . » . ot . -
.
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From Theorems 5.2.(A) and 5.2.(B) and the relation'

ﬁk= "’g‘ﬁ; and
J 2 D
qz_ o ° ' e Y

we define the fonowi'ng results: & C
.-":."L'c“: | . :

+";COROLLARY 572.(A):

The first- order moment of the k-c'l?ss estimator of B in (5.1.1) /
l‘ for 0 < k < ex1sts, it is given by ‘ : . 3
. '(5 2.30) d + (p- d)c G (k, c.g1+1,gz) e - . |
- which is obtained from

a -] c» ’ . v ‘. !
d + 5 @) 7 :

+ %-[—91§1glJC'G (kyc3;+1,9,)

(\
(5.2.31)  E(f)

"

using (5.2.12).

8 ' , \ L - . ﬂ
COROLLARY 5.2.(B).: . > , o5

The second-order moment of the k-class estimator of 8 in (5.1.1)

exists, provided when 0 <k < 1 wé have T - K, > 3-and for k=1 we have

T K > 3; N -

,‘~ ° | ' o ' . )
: (5.2.32) E(B) =d’+2a3 E(ﬁ)+a 2 o | -
P (5.2.33) . d2 +2d L h 2’ h ' ‘ A

A -2. * b R ;Z 2 : - -

where h] and. hZ are respectively the right hand side of (5.2.27) and
,'(5 2. z\))amq b (g-d) replac1ng B ' v 7 ..

N *
i . ‘ +
COROLLARY 5.2, (C) i I | EERY

The fo'llowing statements hold - cn‘ncerning the bias of the k-c,lass
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estimator B, of B in (5.1.1) for 0 < k <1 ..
. P4 v
- (1) B, is unbiased if and only if p=d.
(2) 1f B#d; Qk is biased in the same direction -
for al1 0 < k <« 1 which is opposite to the
J
> . sign of (B-d). ' ' . o
B Sawa (1971) also established the result that for k>1, the k-class
’ . estimator of B in (5.1.1) does not possess finite moments of any order. . :
© q.e., ' , - t . |
\ ,,\ . ' - ., b " . B . .
(5.2.34) E [IBkI] F oo T v
The double k-class estimator, proposed by Nagar (1962) of B and g
; ’ in (5.1.1) is given by Co ; . ‘
? (5.2.35) ' ‘ -
H ’ L ’ - “ : --] ~ -
[ 8 ; 1 - ] 1
. ](ch') yZ(IT - k]M)yz .YZX] .V?_(‘IT - kzM)y] :
. N , ! e , e
- 1 1 1 ™
L T-'(DkC) | L X]yz X]X] ] ] X]y] |
where k, and k, are scalars characterizing the estimator and M 1is as -
defined in (5.2.4). “
Following Dwivedi and Sriva@tav'a (1980) the doub]e k-class
.
, estimator of g in (5.1.1) can be written as » . \
' ' > ,/] ' . ) 1 I . ) b - P ‘
h Y2 ] ) 2N ‘ Lo . .
(5.2.36)  B(Dkc) = Tt f ) )
: Yo RY2 — Yo A Y2 - ‘
1 . : : N
’ y M y “ = -,
. ".ﬁ(k)ﬂ’ (k] - kz) }f_——l ) .
;4/’ . oL : ' ! ) .Yz A y2 , - . ‘ .
' . s t * ‘..'J - ) ( ‘ \' “. )
where B(k) dgnotes the k-class estimator of B with ky as the charpcter-. -
. e ] - . .

. N fos
4 4
- l ' . ' -~ +
. 5 . .
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izing scalar and B - : .

A= Tk I - X (%) TR0 T+ kK (06X,) 7Ty

: Dwiveddi and Srivastava (1980) analysed the properteries to the
. double k-class estimators when k; lies between -1 and 1 but k, is
unrestricted. Utilizing the fact that the first two mements of double-* '

k-class estimators are continuous functions of both the characterizing

scalars Ky and ky, they found tRat it is possible to -choose k, given k] ’ . !

such that the estimator specified by them is unbiased and that there

a1ways\_gxists a value of k2 given k] ‘which will provide’a double k-class

n e ik i

estimator with k,fk, having smaller mean squared error than that of -
k-class estimator with ’k] as the characterizing scalar.

. Before presenting their main results, we introduce the foi]owin ,
A 4 v \ . : " \/;}

' " function: ' (g Hitp-1) P(92+G+Q) j
(5.2.37) lpx(p;q;r) = ¢ ¢! EO jfuaﬂ)k I"r]+:|+a+r‘) I’(gz) J' '

‘s

|
™ , s ,
R ©_ Where p, q, r and x are non- negatlve integers and -1 <k<1, and 9 f:z' .
| and ¢ are as defined in (5.2.17), (5.2.18) and (5.2.19). ,
s N ‘ . .
THEOREM (5.2.C): . )
~ The mean of the doubJé k-class estimator of 8 in %%’I 'I) with

v

-1}< k.l <1, is given by CC . . < .

‘ ‘ ~ 92 “12 ?
\ l\(s.Z,sa) ‘:E[B(Dk.c)] ol (8 - o 12y yo (5001) : ) 3

§ Y

; v . ‘3‘2 . -
,’J“‘. +(kl2)°’2wo(]]1) n »

- - »

provided T- K _>_.1. { ‘ N
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Theorem (5.2.D):
Assuming'T - Ky > 3 the Secdnd moment of .the double-k-class |

! -

~ estimator of B in (§.1.1) for -1~'5 k < 1’1‘5
- - o N |
(5.2.%9) s[ez(okc)] (mzz)2 [142(ky -k, )up(15151) 4
+ (ky-k)%9 (152:2)] N |

¢ L2 (10k,) 2 (03131) + gy -, 04 (03051).

7 o . M
“ o + oy (13052)] B
* 506 - 22 I 0:031) + 2 ¢ 103201
- . v ) \
. | BT )2 | ’
' : + 2 =8 - —=) [Yy(1;0;7) + (ky-k, ), (15152)]
, / :.)22 Wop 0 172N
y (l/"/where from Anderson and Sawa (1973) \g -
| w12 - - "
, —= {s the regression of a component of vpyont corresponding
component of v‘. and oo = - is fhe varv‘.:ance of the residual
; . 2 N2t T e, , ”
" . of the component of V]K‘from the regression of the correspopding )
o component of v,.
i 4 . 3
g. * A
~ THEOREM (5.2.E): )

*= Jhe expressions for first and second‘moment of -the double-k-class

estimator of B 1n‘(5.1.fl with k]=31 are; )
‘ ~ . . @

(5.2.40)  E[B(Dkc)] = 32y 4001

(6:2:40)  ECDe] m22+(a mz)‘CM )

t .
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and

o (5.2.41) E[ﬁz(ch)] (“”z 2 [142g,(1-k,)6(130)

2f
\
-
T e tm s b

+ 92(92+1)(}-k2) ¢(2;0)]

“1.2 o | , l
+ ——= [g,(1-kN%(2;0) + ¢(1;0)]
, “e2 22
D | |
o v (- B2 p0an) 4 2ie(0:2)] -
P ’ ‘ ‘»; | m] | 4 : ’ g
22 (s - 2) [6(0:1) + g,(1-k,)0{0:1)]
S - ‘. N
where (g]-gz) > -g— and for non-negative infegers p and q 1
] : I
j C I'ég,-g9,+j-p) c.h\“
5.2, = e™®
| (5.2.42)  ¢(p,q) = e 20 Tlg,-g, 7377 °
e a ! &~

\ Setting ky=k, in (5.2 38) (5.2.39), (5.2.40) and (5.2.41), we

i ‘ - get the corrasponding results for ‘the. k-class estimator with k] as the

LY

charackfrizf scalar. It is 1ntere§t1ng to note that the corresponding

L ————

expressions thus obtai ed, i.e., E[B(k)] and E[aZ(k)] agree ' with those ?

given ir:/(5.2.30) and (5.2.32) for ol_z_ k <1 if the following / BN
equival.ente for G(-) and H(-) is noted:

. | , 4
+ Sawa's Notation § Aijv;(n‘ and Srivastava's Notation
o : , B /0<k]<1 “ k=1 e .
T Blkgicig g wo(leV1) sos1) -
‘ L o . : "I | LN
| § . . A ' H(k] ;C;g] 992) oo ‘Z-\P]“ :0;2) 7‘1’(0;2) ‘)1 )
. = | 1. (a.0. 1o
. . H(k\] < |g‘ 992) . §‘¢1 (090’] )‘ ’ 'é'¢(]:] ) )
: e ' T .  J L
Yoo CBlkpsigngd) o ai(0s0) ,?(2;0)' y -
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along with the result

(5.2.43)  c(0;2) + _(g]-'g£)¢(l;1) = ¢(1;0) SR 4

|
|
Utilizing the evaluation of H;]n ]F](u,B;Y;z) for real (a-B-v)>0

. 2> - ' )
as developed in—LEBEDEV (1965, pp. 243-246), they found that E[f(Dkc)] |
f is a continuous fungtion of k, and ko similarly E[ﬁz(ch)]dé also a | A |
l

¥
! , " continuous functifn of k; and k, providgd (g]-gz)zg'{ ,
) / From
v . .
(5.2.44)  _lim  yy(15051) = ¢(0;1) ¥
k]+l- .
_ Climo yg(13151) = g,0(130) o '
(\(: ' R ' k]“’]'- 0 l 2 , . /\) N ° he ) o
N they found the biqsﬁf‘t doublek-class estimator of B 1;; given by ° *
. Q _ 92
(5.2.45) E[B(Dkc) - 8] = (B ~“"2 ) [CWO(T 031)-1] .
! - ,'. .u"_
’ - \_ o A } 4
" - ’ y 2 . ’ B ' '
- . + (krh@LZ—%“fU).
- 2
if-1<k< .
' ;nd |
z[ﬁ(nkc) ~ 8l - (5 - ”’2) Cetgl0i1)- y
|
- ~ . : . \
y Y2
. + g, (1-k,) 6(130)  if k=1 .
“ ‘ 2 2 “’2 B ,
f 2 Now (5 2. 45) vamshes when for -1 < k1 <1 f_\\ Lo ! . ' |
M ‘7’ . » . ) e !
& . ” ' N . .
¥ : Y : ' to.‘ . IS R . .o
b4 . 2 . L \
5 \  (5.2.46) ky = k and @ = — : : ‘
| \ | | 12 - Y2 .. . A
.,g \ . or , ' ( ) 1., \"4 B B
b TN : evn(13051)-1 | : . -
3 ..(5.2.4‘7)’ ) kz = k.. “’22 (B - :)]—g- ) ' q‘o(].]"y s o ' ) ‘. . x ‘
: ! "’12 - Y22 | ¥oll3T3 \} " N sl
. ~ R . LI
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and T-x K, matrices with columns as the orthorgonal characteristic vectors: i
¢ - ae i,
corresponding to the root 1 of idempotent matrices'xl(x;xl)'1X} and §
XZ(XéXZ)-]Xé respectivély, and Q3 is a T x (T-K) matrix orthogonal to ¢
?
and Q, with 0305 = Iy g- ‘ ‘ \\ . . g ﬁ
Further, we deffne
(5.3.20) - QY.=A, qy=a
Q@Y =B, qy=b
0; a3
‘By construction of Q and the ‘definition of P, 1t fo[lows'that
. ) - ‘
(5.3.21) 0 0 o 1, .
Q'Pg=1{0 I, 0
K2 1 ;
0 0 (I-k)lT K J N
L *
Thus we have t :
- v ! !
(5.3.22) _ Y'PY = ¥'Q-Q'PQ.Q'Y ' ' ‘ " "

’

A'A + (1-k)BB

re-Q'PeQ'y L.
A'a + (1-k)B’b |

(5.3.23) Y!'Py

~ ) N -

so that from {5.3.18) the k-c1a§s estimator of B can hoﬁ be written as
(5.3.28)  B(k) = [A'A+(1-k)B'b]"' [A'a+(1-k)B'D] |

Utilizing the gormality of the disturbances, 1t can be shown that
a, b ‘A and B are .independently distPrbuted w1th a and b fol]owing

1

mult1yar1ate normal dxstr1but1ons.

(5.3.25)  a ~ MND (a,I ?
2
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(5:3.26) b ~ MND(0,1;_,)

Also A‘A follows a non-central Wishart dist ibﬁtipg while B'B follows a
central w1shart dlstrrbut1on

a}f p is any arbitrary m-d1mensiona1 vector with positive elements
and k is nonstochast1c cons1der the first absolute moment of p B(k)
For this purp?je let 2 denofe the vector obta1ned from [A a+(1 k)g' b]
by replacing each element.in it by its absolute element.

Thus, we have .

5321 BB = Elpra)

where

(5.3.28)  p* ;~p'fA'A+'(1—k)B'B]”]

. ' ,
Since the conditional distribution of p'f(k) = p*'[§'5+([-k)8'b]
‘ A

given A and B is ﬂnﬂyariqte,normal with mean p*'A'u(=u;‘say) and ‘'variance ~

‘p*'[A‘A+(1-k)ZB‘B]pf(=02;say),\ue observe that [see Sawa (1971), equation

v

6.1171 - L.
, ’ -ul /252
(5.3.29) €, ,(1p"80)1[5.8) > By o &7/%0

From [Rao (1955), (1F. 1 1), p- 48] we have

2
(5 3. 30) Sup gg*'A ak
A*p p*"A'Ap

u
Q.
=3

so that . , S .

*’ 2 paepa? - E S
(5.3.31) }‘*zﬁf,g*AAAgl. e R .

Q
IA

using (5.3.31) along wigp/the result.

(5.3.32)  o’u (1-k) /PF'BBRF

- we find from (5.3.29)

;<



(5.3.33) . £, ,(1p'8001]a.8) > Gat0:k) BB PO

AY

and thys \

(5.3.34) E(lp B k)[|B) EA{E b((p B(Kk)|A,8) |8}

B (%)5<1-k)e-*°'“ EA(/—p*'““B Bp% |B)

N -

Now reca]ling that: A'A follows a noncentral Wishart distribution and

is independent’ of B' B, we have - o §~
(5.3.35) 'E Al p*'h'ap*la)
= E,({p'[A" A+(1 k)B 817! B'B[A'A+{1-k)8'B] 'p}? |B)

= [{p'[A*A- (k 1)B" B]“ B*B[AA-(k-1)B" e]“p}*f(A AJdA'A

A
*

wh1ch is lnfiiite for k>1. see also {Sawa (1971) Footnote 12, p. 666]
Here f(A AY denotes the noncentra1 Wishart) densuty function.
Combining (5. 3 34) and (5.3.35), it folldws that the conditlonal
expectat1on of |p' ﬁ(k)] given B does not exist for k>1 and hence the
expectat1on of |p' ﬁ(k)l for k>1 does not exist. Thls implies the -

expectation of p‘ﬁ(k } for k>1 is not finite, but p is any arbitrary vector

so that expectat1on of B(k) and s1m11ar1y expectat1on of Y(k) are infinite
for k>1. Th1s establishes the nonex1stence of moments of k- class est1mator
when k 1; nonstochastic and k>1.

- The characterizing scalar k in the case of the (LIML) is stochastic

and is given by [see Kadane equation 4, p; 726].
(5.3.36) k = ko »

where
(y-v8)* Py, (y-Y8)

ko = min
(y-YB)"'(y Yg)




where
- ’ i’
.—-« - ' -] ] . v :
Pa = T - O g ) - o
(6.3.37) P, = Iy - X(x'X)7x"
From the relations 5;], [ ﬁ
L]
. Yoy
(y-¥8)" X, (X5X,) "X+ (y~¥B)
 (5.3.38)  kp =1 +min 2 EL 12 sl
- - B (.Y'm Px(y-YB) .
ot
=1 +¢e (say)
where € is a non-negative scalar.: , ‘. v ‘é?

Thus we observe that t?e characterizing scalar in the case of
. ' ’
(LIML) assumes a‘valde Targer than 1 and therefore the associated

estimator will not posses% finite momends. )

R B B

» \]
! \

4, " A B \

. Carter (1976) derived the exact distribution of the Iﬁstrumental

sy A .

P

Yariables (I1.V.) estimator when tﬁe instruments are non~stochastic. Once !
again we consider equation-(5.1.1) 1i.e., " ;
¥1.5 Byy + Xyrp t U ' ‘ E s %
Le; [W.X;] be. the set of non-stqchastic_instruments'where W ig‘a Txl1 f‘ ‘; 2
veciar which is a non-stochastic Yiﬁear combinatﬁoﬁ of the columns of X; -
W=2x,, where n is a K x 1 {non-stochastic) vector chosen sd.that the -
"mat;ix . o j}/’
[N,X]]' {y,.%1 is non-singular. - I

The Instrumental Variables (I.V.) estimator of the structural

coefficients in {5.1.1) is given by - : ) SR

~
-



‘ * ' ] [} ) ‘l -
(5.4.6) Wy =Wy W 0K Xy - UK (0% 7Ty, B

P
5
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G.4.1) - KT By BT BT v

‘i.e., o ) n

5.4.2) | [8 [wy, aw'x] Ty, |

M 0"1'5’2 N&| B
The ins'trumentai Variables (I-V.) nortlﬂ equations are' -

| (5.4.3) Wy, B+ v;'xﬁ] = W'y, - ) & '/{”,
| (5.3'.4)‘ X'y, B+ 008 = 0y,

Subsituting,. | oo

(5.4.5) ?] = (x]')’(])'Tx]y,r- (xy;x,)h'fﬁi{yzﬁ )

[usi‘ng (5,'4.4)] | N ' | .

into (5.4.3) yiélds
1t

o i.e.,

Wy - WHOG) Ty, = By, K (0K Xy, | C

There fore, [ (x )_1 ]
W LL-X (X1 %, )7 X2 1y
(5:4.7) g= . T 1I ] - 1471, 1 . .
o -~ 1 '
WMy 'z ' . ¢ e
_ 71 _ 71
WMy, %2 (say) . : '
. 12 o .
where ’ < ' ..

_ g ey
M= U - GgA)Tx)

The elements of W-and M are by assumption non-stochastic. Thus,

we have




. N i ‘ /_2_ -1 ug 20‘1-‘ u]
(5.4.11) f(B) = =— {o,0,/ 1-p exp. [ 3" N 7
LTl 12 - 2

‘ oo . 201-). B\
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{5.4.8) .E(Z]) ™ WM, Xny = My (say)

1

-

E(.ZZ) = NM]XH2 = 1y “(say)

)
and

(USE the reduced forms of y, and ¥a-)

2 1
(5.4.9)  (E(Z;-up)? = oy WMH = 0,7 (say . —
. . ‘ . . v
2 o2 o
(Zpmug)” = wyy WMN = 6)"  (say) (
r E(ZI-U])( "UZ) 2 N M]w = 2 ' (SGY)

From the normality assumption (Assumption 1|, Section I, Chapter 5) we

find that Z, and Z, are from the bivariate hormal population -
101 ' 1 S R e
(5.4.10) f(z42,) = - exp. { [(
o SV oo, A2 2(1-02) ~\ 9
L, (ll'“l.) ), [T o
"\ % %2 1 .
with p = —1—2— and T = 3.1415..... (It has no relation to the g‘;educed
A% . ' '

A

form coefficients.)

-
1

From Feller _(1932) the density function folr the ratios of normal

2 ’."
=

variables Vike (5.4.7) is givenby:

R

b
g 2 . Ulona(]"p: .
'73' e’(p [ 2 ] Io T

4

1,2
e?«p. -5 t71dt}

where

2 2 .
- 260y, - B0, -




ym ol AL AT -

- W

T - Ky - 1 and Ky - 1 respectively.

2 .
b = (u1012~,u201 ) + (1120]2'11]022)6 ™

“éﬁfr\ v . |
M - .
: .
.

' » '11]'1126
T hA

and
A S

Ay - poyy ¥ (""1“2"’2“1)é - “2‘5’262 ' )

’ &

°1~£("92)_ ~

o+
i

It should be noted that for My =y T 0, 012 = 022 =1and p =

'63.4 1) reduces to the Cauchy distribution.

Fel]er (1932) pointed out that the .distribution given by (5.4.11)
P

has no f1n1te moments of any order. Thus, the exact distribution of the

<'Instrumenta1 Variab]es (I.V,) estimator using non-stochastic instruments , e

to estimate an equation of the form (5.1.11 has finite moments for any o
degree of overidenfification. Sawg (19692 shé:;jn;hat the (OLS) and ~
(25L5) estimator of 8 W (5.1.1) posses finite moments p to ordjr -
Hence the (2SLS) estimator is
‘ﬁérferabie over the 1%, estimator in the case of (5.1.1). ‘< ,
Geary (1930) approx1mated the distr1but1on given in.(5.4. 1]) by one
Carter (1976), using Geary's approximat1on,

N
pointed out that in the special case where a multipie of 2 has a

which does have moments.

standard deviation less than one-third as large as its mean (for any
sample 51ze or degree of over- identification) the distribution of the
I.V. estimator is closely approximdted by a distripution whose- moments

~

exist and whose mean is nearly equal to B.

Rep e s e W LT
B
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3 . T
5. THE EXACT MEAN OF (25LS) ESTIMATOR. .

The Case of three Endogenous Variables:

Let the equation of interest be denoted by )

(5-5-1) y = B].Y] + Bzyz + x]T} +U,

where y , ’y] and Yy, are T x 1 vectars of observations on the—joinﬂ'y ¢

dependent (endogenous) variables, X 1s the T x Ky matrix of bbs?’ervations
' ' ¢

on the predeteMined (exog.enous) variables, B, and Bz‘are scal‘ar

parameters, Y is a vector parameter;jnd UisaTx l‘vector of

- s

disturbances. ) ' .

The feduced form corresponding to yy y, pf.id ¥, can be Q&ritten as :

E

(5.5.2) y £Xn+ vy

‘(5;.3) Yy = Xm o4y

an + 7]

“3.5.4) ¥p

n

where X = [X] ,X2] n,. W and m, are K x 1 vectors of reduced from parameters;

*

‘v, Y and v, are T x 1 vectors of reduced form disturbances.
. , )

{ . , R . - \ .
" Assumption: - N ' ' .
The random vector [v'., \‘ri, vé] is distributed a$ multivariate normal

2

with zero mean and positive definite covariance matrix

, w1 9f oy
{5.5.5) e lT where Q = 0&21 Voo lyg .
vy vz O |
. -~ f
and ® denotés the Kronecker product. ’

-

Aams e e




7Y

o
Id ' '\/

From the above assumption, it can be deduced that the random vector

(y', yy» yé] is also distributed as multivariate normal with mean [y,
~—
7} » ¥y ] and covariance matrix & ® I, where

(5.5.6) y = EQy) = Xnm;

(5.5.7) y

p = EGy) =
(5.5.8) ¥, = Ely,) = ¥n, ’
e

The two-stage least squares estimators of By and B, in (5.5.1j,f
denoted by ﬁ] and QZ respectively, are given by
-1

(5.5.7) B ¥ YiNy, yiNy

L} 1) t '
.62 .VzNy] \T)( yZN'YZ yZNy

where '

$5.5.8) N=x(xe0x - x1(x;x,)“xi

isaTxT symmet;?c tdempotent matrix, and
(5.5.9) rank N = trace N = K,

* Nagar and Ullah (1974) sh%red that the mean value of the (25LS) ° .
estimaté;’depends bn the variénce-covariahce.structuré of the endogenous
~variables 1in the case where the eqLation to be estimated has three ',

endogeénous pariables. Sawa’(1969) pointed out that i;simifar;situation
" holds- in ™e case of the equ;tion having two ehd09énou§ variables.

Following Nagar and Ullah (1974), we make the fo]lgwing linear
transformatida: — N~

(5'5.10) LV*’ .Y~T‘ YE]T' = [.V»v y]» 32]

»

$
- L

e S ]

[EPRUUSURVAE ORI SO O




%

202

where T is given by the nonsingular upper triangular matrix such that

Q= T N r _ ‘ I \
ot ths
‘ . rd “
(5:5.11) T—4 0 thy b i,
LP 0 0ty
i
where _
: — “23 ‘ . '
(5.5.]2% t &t » t -
- “33 33 23 —
, Wag . \
- tia t
_/ 7 . _ 12 %13 te3 ’
Lo = Mg T b3 3 Yy Ve
. Woz ~ %23 :
th = ‘/“n Yot Y3 :
0 . i . 1§j|
\ Undér the transformation (5.5.8) identifiability restrictions are :
¥ ' ' - ,
- preserved and the elements of y*, yf and yg’are independently normally §
{
distributed with means ‘ i
C(5.5.13) 9%, v8. V81 = [F. By, TR0
N " ,
{
and -covariance matrices ' 7
: !
(5.5.18)  Ely*-y*) (y*-7*)'= E(yd-F3)y-7) " ;
’ _ o
= E(y5-¥3)(y5-%,")
= 1 -
E(y*-7*) (y1-7§)"= Ey§-F7) (v3-73)’
: [
= Ety*-y*)(y5-¥3)
=0
. ~ b
, . . X
4 :')’~v - . A .;*
" - - . h_‘y_:‘ g . " " , » JA_'
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Let the transformed structural equation be denoted Ly
(5.5.15)  y* = BYyy + BIy*, + Xyy7 + U*,
where
(5.5.16) BT = (Byty .

-

and the (2SLS) est1mators pf”B] and 52, denoteg by Q{ and 85 respectivé]y,

. B
B3 (B1t23 * Bytys - gty

sare given. by

‘ -1
(5.5.17) | B1 W vy vy Ny

]

B v§'fyg y*'Ny*
whére N is the same as in (5.5.8).
The (ZSLSl estimators ﬁf and ﬁg'are Tinearly related to ﬁ] and 92

5 as follows:
ﬁ*

_ X -1
‘(5.5.18) 3= (ﬁlt22 - tlz)t]] or

T A A -1
By = [Bit) + 50ty

"

) - T -}-
(5.5.19) B3 = [B tyy + Bytyy - t13]F11 .

‘ el
By = [(Bstyy # tr3) - g (Bityy * i)t ‘

- Since rank N = trace N = KZ’ there exists a Tx K, matrix R of K,

orthonormal vectors such that*

{5.5.20) N' = RR' and R'R = 1.

Then we can rewrite 1he (25SLS) estimators ﬁ* and ﬁ; in (5.5: 17) as:

*

* See page 13 of "An Introduction to Linear Statistical Mode]s by
Graybill, N.Y.,

L

L ~-73~v—~—- g o e e

R R

G B ki 5 menn

McGraw-Hill, 1961, )

e

ndmentaningll de sd . o iy ¥ g
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B | BRUGD - ()N I52) .
(5.5.21) -3 o
B | G- ()
N
where
= ' ] y t 2
(5.5.22) D= (lel)(ZZZZ),—‘sg]ZZ)
(5.5.23) Z=R'y; I, =R'y; ., I, =R'y,

It should be noted that the elements, of Z, 21'and 22 beiﬁg linear‘
functions of y, 2 and ¥y respectively, are independently normally
distributed with means given by 7, 7& and 7é, and covariance matrices I, 1
respectjyé1y. (See Nagar and Ullah, 1974).
” Let Z;» Z;; and ZZi”be the {th element of Z, Z] and 2, respectivelys f

Similarly, Tet Z,, Z,; and Z,. be the i*" element of 7, Z,, and Z,

1i
respectively. (i = 1,2,..., Kz)‘« Then

(5.5.24) E(Zi) i Z‘ s‘ E‘Zi) =1 +Zi - . P ~

_‘“l e Y = "2
E(Zy4)= 215 5 E(z%i) 1+ 7y

=7 . 2y _ 1.5 . .

E(Zyy) = Ipy 5 E(Ly;) =1 + T, ’ !

" ‘ . :

The means of ﬁ? and 35'[as obtained by Nagar and Ullah (1974)] using v

(5.5.21) are given by ‘ ' o . §

[}

| (2)2,)2; (22,)2, |

(5.5.25)  E(BY) - E ——Zﬁi-ljs(z) - £}—22le(2) :

§

' F(z'z )z 1
) 14742
E(By) = E|—5—=

&




Let the elements of Z, Z; and Z, are stochastically independent,
(5.5.25) can be written as:

¢

" : 4

2
K 5. 2. . K Ja
(5.5.26)  E(f*) = 52 s(—ii—ll)ix -5 E(—ll—gl—gi)i
: Ly D g D 3

and : . « , '

N
™

. ‘ Ko 2,:2,.2
(s.501) () - (___J. 2 (uihi)y
1] ffJ )
Using the relations (5.5.18) and (5.5.]9): we can write the mean
value of the (ZSLS) estimators ﬁ? and ﬁg as:

(5.5.28)  E(B)) = [tj, EBE # £,0t5 R

and '

(5.5.29)  E(By) = [tq E(BF + tq) - t,q E(B )15

ot ' ‘\
}he relations (5.5.28) gnd (5.5.29) demonstrate that the mean value of
the (2SLS) estimator depends on‘thé variance - covariance strucfﬁre of
the endoéenous variables.
As pointed out by Nagar and Ullah (1974)*, the expression
D= (H2)(Zy2,) - (Z2,)% in (5.5.22) is the determinarit of the matrix

(generalized variance) given by

(5.5.30) | 2z

)
1th - 4L
) [}

where the elements of (5.5. 30) are distributed- accord1ng to the non-
central Wishart d1str1butlon With the matrix of noncentra11ty parameter§

given by
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|

1 %R
(5.5.31) q*=1{ " '
: 29
where *,
! . '
Ko K2
o T £ 7T,
S T Ml T
QWD Ly T 9 2
. i=1 ,
and means sigma matrix I and K, degrees of freedom.
Recall that
I : Iy
Z] =1 and Z2 = )
. z 1,
' -]sz 2K2 “

are Kz'x 1 column vectgrs.

.
[

After computiné;the'expestatiod of the‘generalized variance

-~ (see 5.5.30) and its part:a%s dErivatives with respect to the noncentra1ity

parameters, the following resu]ts are obtained

(5.5.32) E(ﬁf ) = 4p} h, Ag +i7 [(kz m\] + 2h, Az]
. | Ce ‘
. . X . ‘ N . .
(5'.5.33) E{(ﬁ;)'— ap3 hy Ay 4 T 2‘2[(K2~]“)/«\] + 2h, AT
where : ‘ ' e
A N S
M=Ph2 M2 PlohPle
) ‘ ‘ oL N N
(5.5.3“) ) ¢ . PO .. ,n ’ .
. S R " N - . » *
= & - i R w e t 1
R =MPEa - P27 B0 haflo

e
L N ™

3
1
g .
206 |
}
) t
\
\
¥
r
S
§
[N
¥
g
r
;
i
{
‘; .
i
§
R .
i
A - 4
+ :'
», ~"
.
: B
O ¢ 1

[ 4

"+ See~Appendix A and B of Nagar-and Ullah {1974).
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A = * - h p* + h p* - i p* ’
3°P0,3” MMzt P2 T T P
(-h,) '
A 2 )
* = 1
(5.5.35) H Ay Uai 5
and . i ' . . g v ‘ I T
. ) R , 'zh-l 2 . , W
o= (Kpjp =1 tr 1) (Kyp=1) (1) @ ,
r+#i,3 ‘v ; . ‘
s Ky LK ;
tw{es ]F](—.—2--1+r+1+3i ——2-+2(r+i)+3; h]) ;
. . {
§
and _ o Mp
NG L Y o '
1T = ;
- ¥
= 1 ’ ik b1k 2 512 2 ¢ ",
" = 7 L0 (5T,) - (7)) ,
also (a), = a(a#1},.... (a+n-1).
. 3 LY £
- ‘n‘ .,t "’ ' n:
, - i .
£ - SR
.‘: H 13
v 3
* | 2 1
- ol
\ t
~ ) , -~ ‘ 1 !
o~ -,
# v )




'CHAPTER 6

. PROPERTIES OF ESTIMATORS' THROUGH ASYMPTOTIC EXPANSIONS
BT '
1. LARGE-SAMPLE APPROXIMATIONS

In this section wé consider the approach pioneered mainly hy

Nagar []959, 19627 in wh1ch the. samp11ng error of an estimator 15

expressed as the sum of an infinite series of random variab1es, successive

terms of which are of decreasing order”ongamp]e si;s in probability. The
‘claim 1s then made that Jarge sample pfopértigf‘?f the estimator under
consideration can be approximated. (to the desired order of sample size)
by the properties of the first few terms of the infinite series.

As in éﬁapter 4, let the structural equation of interest be

' (6.1.1) y =YB + X]Y +u ‘ ; v

where y is a column vector of T observations on the.jointly dependent
variable, Y is a T x m,.matrix of observations on the my explanatory

Jointly dependent variables, Xy isaTx Ky matrix of observations on the

@Kj epranatoFy predeterﬁined variables, ¥ is the T x 1 disturbance vector ‘

.‘and B and y are unknown vector parameters.

(81.2) K= Dyk]

is a T x K matrix of all the predetermined variables in the system, while

X, is a T x Ky matrix of -predetermined varaibles which occur in-the system

/“but “do not appear in (6.1.1). ’
: From_(6.1.li the reduced form correspondingsto’ the Y's on the right-

v

) o
hand side (R.H.S) is given by
(6.1.3) ,’Y = M+ Vo= X+ XN, + v

v

é - SR I % wniss - > -
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Yanﬁ the (OLS) estimate of V is given by

(6.1.4) =y - x(xX'x)7'x'y = poy (say)

b

The general k-class estimator of [$} is given by

_ = g y
] | #) 5

(6.1.5) vy - ] [ 8] [ vl

]
X]'*Y . X

[For k=0, k=1, we obtain the (OLS) and (2SLS) estimators of B and vy -
respectively.] k

We reintroduce some of the notations used in chapter 4 before

- stating the results . (/

(6.1.6) V=ur +4 ' T
where r is a column vector of m; constants and W is a matri4/;;th elements
distributed normally bﬂf indepentently of u and with mean zero.

(6.[.7) ,ué =u -~ [Y, x]] e, .

where Ug is the estimated disturbance vector, and ekkis the sampling

error, ,
RO R
k (k) Y
ie., .
(6:1.8) e = [ Y'Yk vx 7T [ (vkd)
]
Xy ol Lox

S{miiar1y, the sampling efror of the (25LS) estimator is given by

. /
€ where e, i; given by |

- e

P R T




(6.1.9) " | yy - {0 Y'X,

QY- X5

=

Theorem 6.1.(A)

-

The bias to the order T’] (T denotes sample size) of the estimator
) \‘—_4' -

B(k) 8,

. BF
| k) Y
of (6.1.1) is given by

(6.1.10)  E(e,) = [-h + L - 1]0g
Y

where

u

' " h
(6.].1:') k 1 +-.i.-

where h is a nonstochastic number irdependent of“z) [See Nagar, (1959)]

(6.1.2)  q =3 | E(vu) o . .=
=-’0'
‘ 0° 0
02 being the variance of the disturbance of (6.1.1) Coe Y
. T B
(6.1.13) Q=}vYY Y X]
! =(AIA
) ' 171 .
X]Y JI x]X] L]

where ¥ is as defined fn»(6.1.3) and

(6,.14) A = [V,x1.= [xm,x,] ¢ . o

ot
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Corollary 6.4 .A ‘ . ) ‘

The bias of the (2SLS) estimator of [g] to be order T'] is given by

-

(6.1.15)  E(e;) = (L-1)0 , {

- s R .
0y | J
- »

.Corollary 6.1.8

The bias vanishes for

(6.1.16)  k-=1 +f:% )
\ P

<

which provides, to the order T'1 , an unbiased estimator of [$] .

N

" From63].6) we have | £ ,
AN 1 E 2 1.1 ‘ /
%6.1.17) ¥ E(V'V) = o rr o E(W'W) v r

For convenience, we reintroduce ’once more the notation uses -in=chapter 4.

R 3

. (6.1.18)  wx = x(xx) ' : \ ‘

(6.1.19)  d = (Y M, 7)! VM, . vhere P T

-' -1 |
M= - X 0687 X

(6.1.20) B = A QA = A(AA A

w

(6.1.21) v, = [V,0) : | \ .
(6.1.22) C. = [ 2 r'p 0 |’ . /2/
Vol g ‘ , K | ’
L m ) ‘ . . , N
(6.1.22) - Leww) o ;oo
c.=| 1 | VA
- 2 L 0 0 IJ N
(6.1.23) -}—‘E(V'v) Y% 1 ,
‘ C. = =C,+C ) .
, 17 2 \
o0 o) J‘ o
~ \1 ' . H ‘
f) .
" o ’ “
R e W ool o=




Y

-
N
~,
.
K4
L]
&
kY
B
kY
I—
@‘ .

“
¢ 3 -

i
Theorem 6.1.8

The moment matrix, to the order T'z, of the estimator [2§k;] around
kM

' .

‘the paramater vector Ig] is given by:- : ' 4

¢
S . b -
(6.1.24/E(eke;() = & q[1+r¥] i

where R* is a matrix of order T']:

{6.1.25)"@5:Rﬁ&$ [(2h-2L+3)tr(C]Q) + tr(CZQ) v 1
Ivr‘fj} K
' + {(h-142)% + 2(h+1)} €,Q + (20-L42) C)Q

’

Corollary (6.3.C):

. ' _ " .
The moment matrix, EP the order T 2, of the (2SLS) estimator [g]
‘ . . M

vectar [5] is given by (6.1.24) where R* is now defined as:

(6.1.26) . R*r= f-(2L-3)ér(C Q) + tr(C Q)]" I‘ b
| 1 277 e

+ {(L-2)242) €0 - (L-2) €0

+

minimize

2 Ql.

(6.1.27) * [E(eep)| = of |G]:|1+R*| = o [Q] * (1+trR¥)
A 4 . |
to the order T'Z, for variations in k or h. The h-value which minimizes

the determinant Va]uéyof the moment matrix (6.1.24)‘is given by

- : t )
(6.1.23) " h = K- 2(M3,) -3 - g%gf <7
- '_ ] ‘ *

‘ a

AS pointed out by ﬁagaﬁ (1959), fgr the choice of the "best k" we

-
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The proofs of Theorems (6.1:A\)—'ar)d (6.1.B) utilize the following

progedure: . \‘,‘ M .
~¥sing the relations (6.1.3), (6.7214), (641.18) and (6.1.21) we can
‘ N
write g""'
(6.1.29) e = [Q7" #'AV, + VLA, + (1-k)VL + kViwe, T
¢ ~
; times < TAp # (1-K)v, + kVIMFTU | | .
= 1+ QLAY + ViAy + (1-K0ViY, + kv, 10T A
» , l‘ L3
. © times ‘ [A]'U + (1-k)Viu + kv Mx] ,
‘ i
¥ ] ' ] * * ]
= Q[Aju + (3-K)V,u + kv, M*u]
# - Q[A]'V,, + v;A] + (I:W* + leM*_V*]Q ® =
times [Ayu + (1-K)Vau + kViM*uT+ ...\, | ’ |
/; .
, , ’ . < o
N Using 'the relation k = 1 + !l'l and neglecting Qims of higher order of g
“~ smallness then T'1, we obtain . . , : . - i
(6.1.30) e = QlAw - 1 LT A C
] ! ] 3 3 e ' i P
- QA} V*QA]U -' _QV*A'I QA]U.‘ " ‘ , . j
o~ ™ Tné preceding derivation assumes the validity of the expansion .
(i et
E where L ‘
. . , ‘ . oL LI ' , ‘
L , (6.1.32) .»% = AV + ViAp + (1-K)VaV, + k(V,M*V,)
F) . ) ‘v . 3 .

" -(As QV is of or*df:r"T"i in ‘brob.ab'ﬂity,',we find that the successive terms .

o~ P “
¢
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-approach can be misleading in that (a) it can yléld an estimate for finite

2 -~

-
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_
of the expansion are of decreasing order in T,) [For details of proofs
: . ! .
of Theorems (6.1.A) ang (6.1.B), see Nagar (1959).] .
. : b
Srinivasan (1970) questioned the validity of Nagar's approach,

As

and through a series of contrived examp¥®Ss demonstrated that this §

m——

sample bias (to the specified -order of sample size) that differs from the

true finite-sampTe bias; (b} it may suggest that the bias is infinite

P AL Touy o

while the-true value is finite; (c) it may result in finite valued
expressions for bias while moments of the exact sampling distribution

are infinitec;,{?is does not suggest that thé reéfults obtained by Nagar’

.
2"t SR

are nessarily invalid, only that further investigation is needed to

establish the validity of the procedure.

Mikhail (19723‘05 the findings of the Monte Carlo experiments
argued that Nargér‘s approximation of the bias of the 2SLS estimator >

would be better approximated to the order 772 instead of to the order T°\.

=z
L]

8 ) - ) , ’ [} - .
The tSLS bias to the order T 2 , : L

‘

(”?From (6.1.9) e could be expressed as ™

(6.2.1) ey = [ + AV, + Vi, + Vany, 17T
© times [Au + VM)
. , ! .
T4 QA + Vi + V)T
times , - Q[A]u t.V*M*q]
- 7 1
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= [1-QV + quv% QUauau+ ... .. ]

. ' . %
‘times Q[Au + VM*ul, -

¢
»
. » -

wherf'/ws as defined in (6.1.32) with k = 1 and V is the symmetric

matrix of O(T'i). \ ‘ :

Y

- v 1t

Taking expectations, and°1ea£{;g out terms which involve odd C;;,,

monients, we get: ' L

| \ A L] ] ‘ ] [] ) k
o (6.2.2)  E(ey) = E [QAju + QUM*U - QAV.LQAJU - QVaA 000u] . o

. N s "
- QULMAVLQULM*U + QALY QVMAVL0A Y ‘
% .
+ QU A QVMAVLOA U + QUYL 0A V. QA u.

+ QUMMLQVA QAL + QA}V*QA;V,Q'\!;M*u | %
+ QA'V;QVLAi QVIMAY + qv;AQA'v;gv;M*u ‘ . i
: - © 4 QWA QV,A] QVy M - QA]V*QA] *QA V.0Ahu / . i
T f

- QA]'V*Qv;A]QV.},A]QA]'u - Qv;A]QA{V,fQA]'V,QAiu . : | ;

T - QUAAOAIVLQVA AU ~\OVSA, QY4R) QAT VA0A U

o ‘ v %a - s
! . .. Qv*Alov A QV A,QA]u} +0(T7%), Y | ,

» ‘ ]
After tak1ng the expected values of all -the terms, lin (6.22) [see Mikha11

Y

© (1972] for details], we obtain -
- (6.2.3) . E(ey) = (L-1)0q + {[L(4-L)-1] (tr Q C})T
. S o .
. [+ (L-1) (tr @ €)1 - 206,

v e

| ¢ - & ‘l
& ' 4 ;
. A y ’ »
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+ [L(3-1)-2]q C,)0q

¢

)
where the sfirst term on the (R.H.S.) of (6.2.3) is Nagar's expression

for the expectation of the first four terms in®square brackets of the

" expression (6.2.2). L is the same as defined in (6.1.10)..

From the relations C = C; + C,, {6.1.234 arid (6.1.23)

QC0q = QC;0q # QC,Q

1 , '
— 0q9'Qq + QC,Qq .
o ¥

n

tr(QCy)Qq + QC,0q

Thus, the expression (6.2.3) Simplifies to

1

(6.2.4)  Efe;) = (L-1)Qq + (L-1)tr(QC)Qq

a

1

(L-1)(L-2)QCQq

or

n

(6.2.5)  Ele))

(L)1 + £r{QC)T - -(L-2)2C]0g
. el -2

As stated in chapter 2, the double-k-class estimator d = [g}' of

-8 ="A[$] of (6.1.1) is given by

. }(6.2-6) \ ! 1 s ’ 'l| ¥
\ N A A N j-kTO by
(e 7 y=1 , | d
‘ ‘x-' . ’ X"Y i X]X-l
. .N\

where k] and k2 are two arbitary real numbers

Following Nagar (1962), thé scalars k]«and‘ kZ are non-stochastic

2 &

‘and they differ from 1 to the order T'1 .

T 2 i




R s 4 -

That is, we can write . T

b

' R | S a2
(6.2.7) Ky =1+gh, k=143

(neglecting terms of higher order of smaliness of 71.) Both h, and h
. ; . 1 2

— ~ Pt

are non-stochastic real numbers, independent of T

If we rewrite equation (6.1.1) as

*‘q ' - ;
+(6.2.8) ye (Y- 320+ Xy + u*
L 12k, 1

ky-ky o

(Y _T(’\X)"” *
']_2 -'G u

1]

/
/s

’ -

, o

. [In (6.2.8), the case k, = 1 is treated as the limit for k, - 1.].

¢

3

Vs

A k-k A

| I8 S
(6.2.9) where: § = [Y] sy WX = out T, VB
kq-k .
1 20
=u+ 1%, p V.S

] A N 3
where p°, ¥ ave defined in (6.1.4) and V, is defined in (6.1.21).

Then cénmining (6.2.8) Q}Fh'(G.Z.G), we get the sampling error of

the double-k-class estimator denoted by e, where |

62100 e=d-s=| vy wx [T k0
' L
. ’ — . u* ,
ol . [ ) ' ‘
XY X)X, ! ~

1

As was shown in (6.1.29), Qe can obtajn a similar expansion of e

[ SR O OPRES SPTI WP ¥ S
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3 »
A
1.6., \
(6.2.11) e = [Q" AL+ VA + (KLY, + k]v;M*v*}]"
times [A) + (1-kp )V + Ky VyMeJu '
(\ .
S TL+Q AV, VAL + (kg VAV, + kg VaMeY, 1 0.
times [A;u* + (1-kyJVaU* + ko VuM*U*]
‘ " Neglecting terms of higher order of smallness than T'1 and using the
relation’(6.2.7), we ‘got ' ' , ' -
! h2|**' 1‘ ik )l‘Al*‘ ) .
(6.2.12) e = QIAU* - —F ViMAU* = AV, QAJU* = VLA, O U¥] ‘
b 3 N . - 2
where it should be noted that ATUX = A'U, VAMAU* = ViM, 3
To obtain E(e) from (6.2.12), write
h,=h hy~h
p =g+ -2y, - 2Ly s S
h *. 2h
> 2 2 . '
Theorem 6.2,4 \ - I | /
The /hias fo the order T-‘ of the double-k-class e$timator d of the ' ;

‘paramerer vector § in (6.1.1) is given by

3
¥
?

(6. .is) E(e) = (-hy*#L-1)0q - (hy-h,)QCS

here-e is the sampling error e =d - &, Yo P

?

Theorem 6.2.B

The moment hatrix, to thevorder T‘z, of the double-k-class estimator
N -~

d around the parameter vector § is given by

"y




. "In the proofs of Theorems (6.2.A) and (6.2.B) v defined in (6.1.32) 1s

{
‘now defined with k = k., .

| ‘ ’ 219
(6.2.14)  E(ee') = oz[(1+ao)qv+ §;06,Q + a,QC,Q + 63(Qqn' + nq'Q)
+ é4nn']*
where 7 - . | e
“ 1 . I
(6.2.15)  aj = -2(h;-h,) §§3 - [-h, + 213 + 2(h]-h2).§§3 ] times
* trace €,Q + trace CZQ'. —
a, = 2(hy+1) + [{n -éx )15-'ﬂ h +.l,.-‘232v '
1 1 1700 2T T Ty
~ . '
. hy=h
A P8
33 =7 Lly=hy) 57 - hy 3 L:2]
) (o] . ¢
hy-h, ‘
P Y
34 ("—2"' ) B
‘0'
n =\.QC26 .

~

1

, For Theorem (6.2.8), the expression ee' is given by

(

(6.2.16) . ee' = {1+ qv]"T g5q [1 + qv]""
where l .o o - o -

(6.2.17) S = MU + (1-kVaU* + k,Viwwu] -

times ® o [U'A) + (1-kp)(UX)'V, 4 ko UTHA,]

[See Nagar, (1962) for_details of proofs.]

%
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(6.2.20) K
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e - . ) ) \
From the double-k-class estimator we can derive the h-cYass estimators

of (6.1.1) by setting

(6.2.18) K, = 1-%2, k, = 1o

It shou1d be noted that the h used in (6.2. 18) has no re1ationsh1p to the
h used in (6.1.1) and (6.2.7). - . ,

N

Further, as for k] and k2’ we assume that h {s non- -stochastic

and that it d1ffers from 0, to the ordef T -1 , 1le.,

(6.2.19) w2, @ ' -

being non-stpchasiic real number independent of T. Therefore, from

-«

- Q*Z’

=1 -h R
T2

"
—t
+
—413"
.

2

a

\ *2
we obta1n hl R§T- which is, zero to Nagar's order of approximation, and

~
. from \\\ ® : =
ky =1+ —%-‘=\Tx- h=1 ,iﬁ% o ' |
‘. .
we have - R - y 7
| h, = -a* ‘ -

Using the velations obtained in (6.2.20) and Theorem (6.2.A), we
?

obta1n ége bigs, to the order T ], of the h- class estimator, 1.e.,\ v

(6.2.21)  E(e) = (a*+ L-Ngq + arqe . .

. * ! ‘ .
where e, is the sampling error of the h-class gstimator; ‘ ' .
\J 4 . N
The moment matrix, to the order T 2, of the h-class estimator is

: b} -
given by . ‘ . o
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| ,
(6.2.22)  Efe,e/] = 02[(1+b0)Qr+ by 0,0 + b,QC,0]
. vz ‘
+ ba(Qan'+nq' Q)+ bynn']
. : p
. | .
where C ro "
(6.2.23) by = FLLM (350421 3e20% 89 trace ¢,
. d ‘ . o '
4
N

(+ ‘tra‘ce CZQ

by = 2 + (a*—s—;—g+a*+.L42)z
ag .
N - y

. b, = L(L-Z)

by = & (ar £8 4 gx 4 1-2)

3 t
g [of
S
472 |
n = QC,é. ’ '

°

In this section we Jook at the small-disturbance asymptotic moment
matrix of k-class estimates of pérameters in different equaﬁiops. Know-

tedge of the cross-section moment matrices is useful for pr\cﬁbhms in'

-

. ’ ’ )
,wpich the properties of linear combinations of. parameters in different -

g

equations of the system are of interpst, €.g., when studying the signi- .

ficance of a 1inear combination (sum or differénce, say) of coefficients

in different equations.

The results given in‘this section will be mainly those obtained by

¢

F

e e it

e M S 8 o

.
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G.F. Brown {1974). The results obtained by Théil {1970) who computed the :

large-sample limiting covariance matrix of the (ZSLS‘) estimates of
coeffiﬁcignts in two different equati'on§, and of Naga'r and Gupta (1970),
who derived the large-sample asymptotic moment matrix to the order T'z,
are derivéd as_the limit a5 T+ of the smallzdisturbange expressions
,obtained be G.F. Brown (19“74) and Kadane (1971). ‘0 1
‘The procedure used in deriving the cross-section moment matrix«
is base:lp upon the small-disturbance methods employed by Kadane (1971).
A discussi;)n of Kadane's methods was outlined in chapter 4. The
approximating random variables employed ‘her_e are derived from a Taylor
series expansion‘ir{'the powers of-a (small) scalar multiple o of the
structural disturbances"xlof the system.
- bje reintroduce the structural model of the complete sysAte‘:m of T
observations on M linear structrual equations inh M current endogenous’

variables and K exogenous (predetermined) variables. Let the model bé

denoted by

N

(6.3.1{) YB' + XI' = ol,

where o is a small positive scalar. As was stated previously, the

reduced form of (6.3.1) is given by

v -

(6.3.2) Y= X' + oV,

h

Then 1EQS denote the i structural equatiof\ of the system in

¢

' (6.3.1) by

(6,.3.3) ¥y = YiYi + xiYi + oug

where i . o

yyand u, are (Tx1) -

*

222.
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v is (mi) P X B8 (Txg)
B is (Miﬂ) and Y; is (Kix1)
It follows. from (6.3.3) that Y, and X, are submatrices of Y aﬁd X,
- H ¥

respectively. Following Nagar and Gupta (1970), we write

where P,. is (MxMi) and P,. is (KxK‘.). The e]ement§ of Py, and P?_1 are

either zero or one, a\md are given by the structure of the model.

- v

" It should be noted that e

&

(6.3.5) [Yi’le = [YP]i’XP21]“

»

[XIT'Py 40 XPy 1+ ou‘[(s'r)‘pn,o] o
B IR out(a"):pl‘i,oj
%5 xc, + ovo, -
B AT
where ‘ '
(6.3.6) ¢, =[NP 5aPyyds Dy = [(B™Y)'Py;,0]
S I I
[from 6.3.1 a'nd:"‘s.s.z m o= (8 H), v = uE)']

.. As in Nagar and Gupta (1970), for arbitrary 1 and j define:

T - 4
fq” =0y Ce

i




e A
. .

W

(6.3.11) - ej(+) = oQCiX'Uy + o (Q;D}U" (15K P, Ju
) 1,8 LIS
- 4y < Cpr'UDy > Cx" )

+oa{qi<c‘;x'uoi>di<c;x'l'mi>qic;x'u'i B e

R

224
© where
. 1
{6.3.8) Le=g E(q'u) = [07,055...,0y]
r 0]] 012 ’ U]M -
, T 3w %
| oM Owe =" o
Denote the k-class estimator of the parameters {gi in (6.3.3) 'by [ﬁi]
' i ) : i k1
where B
(6.2.9) P = o T kB DY T Sy
ot Y Ik Ll T iTxfH 0
i | ‘ .
3 . ’ ' - . &?
t1me(s - [Y_i’xi] (1-k;P, vy —
where ' . ‘ .
e T )
| Py = 1= X(x X7 x
. \ L 0' ?r
AN . <
The ‘sampling error of the k-class estimator of (6.3.3) is given.by
. . &
(6.3.10) . e =PIt - |5 |
RN | Tile, ™ Y g ’ ‘ '
are .'closely approximated in probability by the random variables ei(-)‘.
" From Kadane (1971) .
- .
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tyt Vot - -
- Qu<C;X'UD,>Q, D" (1-k,F Ju; )
h R e 4
- Q;D;U" (I-k;P,)UD,Q, C X Ut Op(o ) .
In (6.3.11), 0p denotes order in probability,
RPN Iy en 11
(6.3.12) Q; = tzizi) :‘(cix X, )
I |
(6.3.13) <A>=A+ A . ‘g,

for any squareCTatrix A.

BefQ{e stating the results we introduce the following notation:
' A
X'xey ' | .

1

FAY C,i

j iy

]

(6.3.14) Q;
(6.3.15) - Nij = qidq‘:}i + djjgij fasp 6.3.7)

(6.3.16) Ly = (R-K{)- My = K- [Mi+K1],

(the degree of éyeridentificatioq in the ith equation)

A

r

-~

(6.3.07)  Sp; = (1gk )T-K) + L1 ,

’ [

Theorem 6.3.A

If the ith and jth equations are estimated by k-class estimators

with fixed parameters k,i and kj, respectively, then the small-disturbance

. . !
asymptotic cross-section matrix is given by

(6.3.18)  E(e;(-)e;(-)'"] e
5 ) .
= 0103300, 31+ ooy 4tr(0,0;50,9;5)

13

- Ski triQjayyep)

1

) ‘7 N P B ’ R » .
v - . "

R P

o S B S Tt




" of other specific cases in literature:

- skj tr(QJqJJqJ1)] Q,O,JQ [tr(Q,0; jQ Q )

s, +5
BURR :
1 . “
- (T'kik (T K))] Q w]:] J [Sk k ] Q qi7qJ1QJ
I's
RS S RN UR g e sk 1 0;0;503M550,

+QuM50,50550,Q550; + 030450;95194594 9450
+ Q;0;50;0;50;50;1 + 0 (o)

The result givaﬁ in {6.3.18) can be considered as a .general case

&

2 '
(1) The o order term oiijQiij is the large symple

asymptotic covariance matrix given by fhéi]’(]Q?O).
3

(2) If i= j in (6.3.18) we obtain the resuﬂt gmveq in ‘

Theorem 2 of Kadane (1971). R ‘ . Al

(3) Substituting ks =’kj =1 in (6.3.18) gives the result
of Nagar 'a*\ﬁfta (1970) found as o= for (25LS) -

4

estimators.

(4) Lettin§ k= 1+3 hT , kj =1+ E%x for fixed h{ and\hj
and retaining terms to order T2 extends the1r Targe- \
" sample regults to all k-class members wfth parameters of
tha form considered %n Thegrem 6.3.A. ", |
[See Brown, Kadane anddRamage (1974) for the der1vat1on of the small-
disturbance asymptotic bias and mean squared error of all double~k~class

e;tlmators with parameters either‘(arbitrar11y) fixed or random.]
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Theorem (6.3)(B)

tion Maximum Likelihood (LIML),

ot If the ith equation is estimated by the k-class estimatof with

fixed parameters k; and the jth equation is estimated by Limited Informa-

-3

en the asymptotic cross-equation
IS N

moment matrix is given by

(6.3.19) - Ele;(-) e;(+)'] = o”lo; 0,0, 40

J
tg {[0 {fr(Q,Q”QJQJ]) N

- Ski,tr(qiqiiq%j)

: + tr(0y05054)7 Q404505 + [r(0,0; 0,0 )+ kL
A §
- ()20 Qg0+ IS Joi&“qgjoj
. ¢ [-5 ]Q,W,,Q,Q,JQJ 0,0, 507%50;
‘ . Q'l fJQJQIQQiJQJ Qx‘QijQquaniQiQiij
‘ > r
x o QtoijQJQIJulwiaQJ
. e z-'—}ii [+ (k)= Lotr(0,04 40,05 50
f.imes ‘ QiquJJQJ ‘ S
, L . L J
+ [ 2] Q, QiJQ Q.qu q]ququ +0 (0 )
J ,
. .
- | . )
Vheorem 6 gj(C)_ , . ‘“

o
1f both the ith and Jth equation are-estimated by LIML, then the

-

J
Fi\N

Vi
3
§
H
¥
§'
i
{
i
|
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o
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_asmptotic cross-equation moment matrix is given
1Y B

- 1
(6.3.2?) Ele; () e5(-)' ] =0 {onQ,QIJOJ}

> +‘c4{ (QQ

v

U

- + tr{Q.q.

: Jqu,)JQ Q;:0

1

+

Ql“i’fqi 1ij t
+ Qi°1j°jQ%J°waa°J

+2 —LJ-[1 L +(M +K,
%5

“ +2——l[1L+(M+K
944 .

‘tnnes S Q, q"qNQJ

—31-0 Q,JQJQ1JQ

e o,

1 %) [ .
) 2'6‘; quiquiogbijQiQiSQ'

it
. . 5
+G(i,j)1 + Op(c- ).

where

Ty

(Ks2) % Ly + L 20;Wy 4

by}:

J J'l) + tr(Qiqﬁqu)

34 [er(00y JQiJ)
Y

QiJQJ JJQj

+0;Q

13%%1%5% U 5%
\ﬁ

)“ tr(q1QijQJQ;j)]Qiqiquij
B g

§- e, 50 oij)

iqquJJQJ

A

o

J .
R - &

-

-
Ao T e
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FaaN .
times
. E
>
4 113

(6.3.21)  z6(#,1) = [’%:E??"

andforifJo R

(6.3.22)

1131'

6(i J) =

*

Ly (L) ’
SR
¢ L (L2 m( 2 s
*2) - 494854
%féA*O' ,
9 qiquJ J[L Lyl -2l 3 ) J_L_Lg_.u.
Og30:.:2 c.o‘~.l..
+ i;j.]) + ii ZJUN.H}
+ 26tr 0,0;,0,0),)- (T-K)) \
I o 1y s °11°u°jlj o ]
- +-:—- + - + H}
. T-K A‘2 A2 , A.
» 3 02 9
. 0’1 o SR cii i
Q;95495104LL oz —5 L H
2. ’
%% 4% AL
T A2 T
T 5 .
+2(troo 0.0} ) (1K) {—J—
LR N R K o A
2 2.
0. .0.. T, ,0: o~
R 3 N PR
- oﬂcf 0. ‘ 0405 L
‘[LiLJ {- __._.-g_.ll + -..___J_.J.J_H + (—Li—-\li) _..__.}
A A .
. 4 -
Ay (200 - {(r-x)) -—J—+ day

w

7

¥
R
¢
J
;
i
¥
!
Al
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%9 1 e B
+_.__?l_.u )]QqﬁquQ[LL{le e

2
o, .0..

~N

2
- .‘] JJ H - 0‘11'01‘ '0-- ‘—l—-
2 -

SN Ca 2 T
v 5 2 S

6 o
+'2(tr(_oioijoo )2 (1) (CHy -

ij B o - A
RN A H.
i;, g

—

e
PREN

2

C,.C, . :
__iiTtj a
N Az ]+ Q. QiJQ [H{Ul.‘ ijiEj . .

+ 207, tr(0,0;,0,0} - 20 Tak)}]‘

N T ’ .0 ) .
where H is given by , _ ‘ ‘.

6.3.28) H=3—1 — ¥

- ' . . ' ‘ [
[See Appendix A, of G.F. Brown (1974) for proofs of Theorems (6.3.A), )

| o’ cL i
. -

(6.3.8) and (6.3.C)7)

4. ASYMPTOTIC EXPANSIONS.OF DISTRIBUTION FUNCTIONS. . g

. . . ) s
. In chapter 5 we looked at the exact distributions of estimators jin

e vy s

\
the special case where the structural equation of interest contains two - - "

‘endogenous variables. Unfortunately, the expressions derjved for the exact

e

® ‘ .
distributions are usually too complicated to interpret mearm gfully. .
+Mariano (1973)§)working with the case of two endogenous variakles, derived - %
! A

-approximations to the distribution functions of k-class (k non-stochas®ic)

- 4

estimators. These approximations have been obtained by expressing the
{ . R

k-class 'estimators in terms of mutually indepenéent bivariate ‘normal ran&om ~




~ the distributions of k-class -estimators. Mariano (1973)\holds the sample

¢

(6.4.1) y1 = B+ XY +u , ' , o .
: AN . |

6.4.2) Y

2

vectors and then applying Taylor Series expansions to-the derived . .
expressions. A similar approach was used by Anderson (1974) and Sargan
and Mikhail (1971): Anderson obtained an approximation to the
distribution funtion of (LIML) estimators, while Sargan and Mikhail
obtained approx1mations .to the distributions of Instrumental Var1ab1es
(I V.) estimates. |

Anderson and Sawa (1973) .used an approach based on the asymptotic
expanstns of characteristic function to obtain asymptotic expansions for ;

size fixed ds the noncentrality parameter increases:, while for Anderson

: -

and Sawa (1973), the sample size increases with the noncentrality

parameter. ‘ ' ‘ : ;

{4

Following Mariano (1973), we characterize the k-class estimators )

as functions of noncentral Wishart matrices.” Let the equation of 3

interest be noted by: <

with [y, %] the Tx(m+1) matrix of inc]uded'endoéenous variables, X1'

is ‘the TxK1 matrix of included predeterm1ned variables, U is the {Tx1) S

vector of d1strubances, and p and y are vectors of the unknown parameters
The reduced ‘form' of the m, 1 enddgenous‘variables in (6.4.1) is  ~ .

given by : ' o o

i \

n

X1+ Y = Xy + X0, + v o

‘@
where Y = [y1, Y]] X = ], XZ] is. the TxK matrix of all the predetermined
variables, X, is the TxK2 matrix of predetermlned var1ab1es excluded. from

(6.4, l), n is K]X(m1+1) and T, is K +(m]+1) derived from T, the Kx(m]+l)

r




matrix of reduced form ceefficients.
“ In addition ¥o the usual assumptions we consider the rows of
V to be mutually independent and identically distributed as normal
réndom ;ectors with zero méan and positive definite (m‘+1) X (m]+1)
covaraiance matrix, Q. ‘ R
Under these a§sumptions, the K:class estimator of B in (6.4.1)

simplifies to

(6.4:3)  Brk) = My T (M)
where
(6.4.4) M = (1-k) [I—x](x;x;)"x{] o | -

A0 - gy

Let
(6.4 5) A= [Y'MY] = 4 [I-k (X %)7TXT [yqs Yyl
e 0 Lv; 1'"MA47 Al s Ny ;
D’ " L‘ ‘ :
R R0 4 il oy A
] 3 =
WMo Mo [P R
Let
: «..‘ ' ' T . a
(6.4.6) BelrmYl = InMyy o onm by By
M MY By By
and let , .
. v
(6.4.7)  C-=

KB+ (1-k)A = feqy v C0
L N

e




ALY Ny s 3 e N e ARBR e o

of B in (6.4.1) are given by:
(6.4.8) = (Ay) iy, | . Q
(6.4.9) B = (8,,)7'8,, /.

and-

(6.4.10) | Btk) =’c5;c2],

respectively, .

’
’

—_—

mutually independent random vectors with common covariance matrix Q.

Also, Mo and M] are symmetric’ indempotent matrices with ramks T-K] and K

respectivley. ;o

\

mﬂﬁmpmm

(6.4.11) A= [Y'MOY] ~HW
(6.4.12) B = [¥'MY] ~wm1+,(t<2,mn)
i

where P

ot .e NPTV I

and for W = A-B, W is independent of B,

v
(6.4.08) W~ ¥ 4, (1-K.050)

and in terms of W and B,

(6/4.15) . € =B+ (1-k)W.

- To achieve a reduction to canonical form, partition Q@ and D as

&

Fo?lowing Mariano (1972, 1973) we have the results:

233

¥
*From (6.4.5) (6.4.6) and (6.4.7) the)(OLS), (2SLS) and k-class estimators -

From our assumptions, it should be noted that the rows of Y are -

2

-

.
s a _._1_._4__‘

B
A
5
h
D
]
i
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follows:
1 B2
(6.4.17) D.= d]1 012
) D D22 R '

21

where Q,, and 222 are both myxm,. Llet ¢ be a myxm, non-sin?u1ar matrix

such that
(6.4.18) W' = I,
. -
and %
. e '
(6.3.19) W,y =Q (say), " L.t
, 22 . N .

where Qlis a myxm, diagonal matrix whose main diagonal elements are the

characteristic roots of‘QE;DZZ arranged in increasing order, Also let

()

2

7 (6.4.20) | ‘o =g - 28'Qy * B'0Q,HB

g and

o= ¥ (oo
(6.4.21) - p = ¥ (2,,-0,,8).
Then from Mar{ano (1973)
h = ' N -1
(6.4.22)  B(k) =g+ V'cs ey

where

i

O

ERRRVSERR

¥ e, R

D o 0 -




(6.4.23)  * = B* + (1-K)W¥ =

J
.(6.4.24‘1—:'* m]ﬂ (Kz,fz*;D*)
(6.4.25) W* ~ w‘“1“~ (T-K,a*;0)
L
where i
o (6.4.26) g*= [1 o
[ p 1
. (6.4.27)  p*= [0 o
0 q
: e
g t
'
l{‘
$

e

<21

“

o

C

12

*




5

. endagénous vériable and the disturbance term in'the equation being

" . 23
‘ ‘ " | &

5.. Fnr\xhe case of two included endogenous gariab]es B, - the
coefficienRs vector, is now a scalar. Hence, the k-class estimator of

B s now e&pressed as

——————

| A YoMy R
I Tl \
- 2'k%2

\ \ ' /
Following (6.4.22), the k-class estimator in canonical form is given by

.
‘ 3

A A '
(6.5.2) 8(k) = g + —>— B*{k) wheré :
— , . 'S
®22 .
? * | :
. c
S e 1. a*(k) = c*2]
; 22

Making ‘the corresponding change in notatfon (for the casé of two included

endogenous variables) we have

L

S ‘ . ’ | -
: \ w W '
(6.5.3) at{ ;
. : ¥
w. . 1
21. 22 : ‘ ' ) ;
(6.5.4) R - mz.‘ - B(I)z? - 2
P g ® \
. 22 ‘

which is the coefficient of correlation between the right hand-side

éstimated, i.e,

AL AR L I o

- from the relatfons (6.4.23), (6.4.23) and (6.4.25), we write 3*{k)
- : 3 C
defined in (6.5.2) as
» . . .

| ' . i
{ .
‘,
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v )
r ( ) S
' L ox* y* + (1-k) £ u* v*
. (6.5.5) Ax(k) = 12 YoV e vy 3 o
r r
| - £y + (k) 5 v
‘ \ L ‘i=} j(=1

i r = K, and s =T - K where the (xf , y;)‘s and (”3 , v})'s

are mutually independent bivariate normal‘with'common,bovarianée matrix.

N
1Y p
(6.5.6) Q* 3{ ]
. o1

and zero mean vectors except for (x; . y;) where .

n

{(0’0) 2 1 = 1)2;-0-031--1 4

(6:5.7) "~ Eflx} ., y})
(Ou) 5 1=r,

p Let 4¢(x) and &{x) denote the standard norﬁa\ density and” -

distribution functions evaluated at x and, let the variables

xi, Yi» uj and vj be.such that |

N

© (5.6.8) 'x; = \/1”-92 X + Py, "-J i=1,2,...r
(6.5.9) y ; {;i; | i= 1;2,..;.r ;e ", ? o
. . Yy tu i.=r
(6.5.10) s \/1’-92 uj'l’pvj’ J=12,s
L‘(G.S.II) - v; = vy o j = 1,2,1.:.5

The *i’ Yi» Y5 and § ‘are mutually-independent standard normal

J

v, o~ " .
- 3 .
.
. .
’ .
“




4

variables and uz is the concentration or noncentrality parameter given

| -

by

(6.5.12)

where LOVE is the vector of coefficients of excluded endogenous variables

in ;hé re&ﬁced-form equation for the right-hand side endogenous variable.’

a

b U

1 [] 3 "] 1
a2 X [T - X (X7 XGIX, wy,

©22

In terms of the variables Xis Yio yj and v, .

Mariano (1973) defines ﬁ*(k) as

(6.5.13)

a

\

(6.5.14)

(6.5,15)
* where

_ (6.5.186)

A n r
B*(k) = ——"2- {bz
w M=

2.

"

PP

s f
2
+ (1 -'F)jfl vj (V1-p uj'+ pvj)}

a4

=p

\ t

s
+(1-k) £ u,v ]

P

N pu}yr + u)}‘

+ Vi-p znf

oly, + u)nf

un2 , L

N\ pz

r‘ﬁ"

2
z . ys
i=1

A

+(y+w)? e 0=k

»

S
v

§=1

13

2.

J

~
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2 2 ,
(6.5.17) n, = H : r__ .
: 2l . :
. I y1+(y +u)+(l-k) I vy
i=] J=1

PoL el

and. Z is a standard normal random variable indeperident of

R V]"YZ’ ..... sV - It should be noted that from. our

2

assumptions and, the definition of ¥~ f{n (6.5.12) thét

e s o e o

2 ' . | ot
Hr- constant as T+ , * Also from (6.5.13) and (6.5.17) and our

’

Ay
T -~

assumptions ®bout the fx%'s and the yi's, it follows that as T is
" kept fixed and y = thq}" . ‘ : P

(6.5.18) plim (u B* - ﬁ’.?xr ~oy)fo .

et v

>
*

Since (V1 ”B X, = PY, } is a standar& normal random variate, th1s ,

1mp11es ‘that B*(k) Qas a lim1ting standard normal distribution

iae ’ US'fng (6 5 2)-1 : " ! /" ) [

‘LEMMA (6.5.A): For fixed T, thgxﬁimiting distribution.of

& |
; is a standard normal'distribution as u > o, }/fyi/’ - -
Before presentlng the main results, we introduce the fbllowing
~defin1t1ons. )
' \
. My a
© (6.5.19) N* = !"—2 (=) +oly tu)} .
’ 2 *n . 4
Vi-¢ ' 1 o “ . ‘
. e .
. .- !
. P

) . R - e .
A o A A i A am e him wa T et s ek At | TR F e R
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. . . N . ;
: g r-1 s
(§.5.20) - { 5{ 3 yf +(1-k) = vi ]
’ /1.2 i=] 1
V-0 ]
a ) L
+(;—p)y,+a} T
. ) ?
where a s any arbitrary real number. . "
/ .
) . :
Let el 20,2
. . B 2 .
‘ H
5 . ’ ' . ‘
Then from (6.5.15), (6.5.17) and (6.5.19); (using pr to denote v v
probability): S LT
(6.5.21). priy B*(k) sa) = prizsh*) - T R
- (6.5:22) = pr {“z < N* + 0(1—2) Las wre SN
L. . : '
' ' ‘. : E: "'-] ‘ . ,
(6.5.23) ) = pr {z' cae -E|x y +(1-—k) z v } o
: " H = 1 = j .
I | ) =1’ 3=1 L
’ ] i
- +0() a5 u~e 1
o . |
(6.5.24) - P PE( £ o2+ (1-k) e vj) |
o H M §=1
B} ) M R . ! ' ‘A ;
\ - . PR
. s 1 ;
) . ) + 0(7) as y + o ‘ :
: ‘ M o ¥
S . R o] o :
(6.5.25) X = ¢(a) +45 $ta){as-r+1+(1- k)s_]:fo(i-lf) - /,4
‘\/' ] ¥ ' a N ) %‘ . \ ‘
, . . . \ ‘ o as Y e,




et A 0 2

v.reg‘;ion {y : lyrl s (T-nul for fixed” 0<n<1.

y : ¢ “ - .o~ " 241

r

It should be noted that for the equation (6u5.22),‘the>functi6n N* .

4

' may ‘be obtained from N*- in succeedingyéteps. First, delete the term

" ‘with the factor -5 from the factor of N* in the braces in (6.5.19).

. H N .

Then approximéte\\nl by using Ta}]or—Sefies theorem, by restricting the

~

In-(6.5.23) 7' ;:%standard normal -variable independent of
. L~
Ypreees Yoy, s Vysroavg and equation (6.5.23) is obtained by a straight-

forward manipulation of the inequality Z < N* . Equation (6.5.24)

. -

follows immediately from (6.5.23) and (6.5.25) is obtained by using a
Taylor series expansion to expand the leading term  (6:5.24) about -a as

well as to expand the expression e aboyt ynity. (See Mariano (1972,

’ M “

1973) for further details.) - g g “

l

P

THEOREM 6.5.A: " In the tase of two included endagenous variables in

- [ . 1 .
the equation being estimated, let the sample size T be fixed. Then an

-

approximation to the distribqtion function of the;k-cTass‘gstﬁmafor,jy

giyen by’ C G ')P; ) i .

e BN ST
(6.5.26) prd(Blk) - 8) < = o(a) + R o(d)
prl{ (B - 8 u'm;;} o(a) + £ 4(d
. -..;,/ R
e ! v ‘ ‘ ]

i

times [ae, - K+ 1+ (1-k) T—f(')],f‘o(li)h 'as y >

A

whére a is an arbitrary real'numbgr, I N
. ‘ ¥
A e 5521;8“’22’ =
—— oV o § ‘
. 22 . >
31
- )

o
R oo,
M .

P




(6.5.28) pr{( - 8] k'—'fé—“’——}stb(a)' + £ 4(a)

« 2 \ o 2 -
‘ . 0 =g - 28&2] +B Woo pnd ,
‘ 2 - J__ i 1Ty ‘ t -1 1 : g 1. - )
o M oy {“22 XpLL- Xy (XX) 1 %, “22} :
v . - . ‘
v ¥+

" THEOREM 6.2.8: ., In the case of (two‘inc]udeci endagenous variables in

- ”
the equation to be estimated, an approximation to the 2SLS distribution

fu'hqton is -given by . o’
(6.5.27) o pr{(B-ﬁ) < 42 } = ofa) + %g(a).(az- Ky +1)
' , o
: 22 .
- ' | . ] + 0(—]-2-) as | o>
THEQOREM 6.5.C: In the case of two-'endogengus variables present in '

the equation to be estimated, let B be the OLS e_stimatdr of B and
“I"e‘t the 'sample size T be fixed. Then ,

"' , — .
v
- . ~

113% 0)22' .

-

times '[az STk 1] 0‘(;]7) )

<

as Y » o

v

K
IS

with a, p, uz and ¢ defing previousty.

»

It has been shown in (6,5.18) and (6.5.19) that for non-stochastic

ks with T. fixed, that uﬁ*(k) converges in probability to a standard

unit normal and random variable as uz + o . Marfano (1975) has ‘shown

that: the preceeding ‘statement implies that B*(k) converdes in probability

.
~
o
.
} -

~

B

Cn b ke mbont

v i

Py




”
B

. . ' | . 3
L | -0 S .
~ ” . to zero and hence, as uz + o with fixed T, all members ofzbe non-: }
P
' . " tochastic k class of EStimators converge in probabihty to“the true ;
parameter vaide by virtue of (6.5.2), ‘ , ‘,
L 4 .
- ) ' ‘ " ’ A ¢ A - »
3 . \&n B{k) =B + L B*(ﬂ . ' (
N o . ' r V% oy

3 4 ) H -

Mariano (1975) obtained a sufficient condition under which similar

.- .+ conclusions hold for phe stochastic k-€1ass estimators. His results on

T ., asymptotic behaviour are derived for uz + o while T (the sample ‘ i
) . ¢ ' L N s i
size) either stays fixed or increases indefinitely. More precisely his ~ 4
results®are expressed by the foiiowjng proposition, N
Ly - - .
a§ N , ) TS , Tt . . v N . Y
r " PRDPOSITIQN (6:.5. A)
{‘ o Let '%uz +» by having either T+ = or L + o or both. If e
. R ' . - ) . ) 14
Poe piim (\/f(l 2k)l/Z’,) o, then I ( ’ ~
\,‘; ’ l ) i} K
{ .'i & A
i \ ~
. _ converges in distribution to a standard unit normal and 8 converges in
i -
oo probabﬂity to 8. ° A N -
o M . . /
o/ . (6.5.29)' . p o= T;’ ., l.e., | @ : ;]
' . ‘ . e Yoz o8
o L my, XL [I-X (x'x) M) Xy C%
¢ . ' 2 .22 72 L D 2"22 v - .
) L = - o Ty .
T 023 .= . -
4 . A\ ‘ ‘l b .
(L is the‘éoncentration parameter or nongentrali’cy parameter normali z;d
. for sample size) _— T Lee C e v




H cari be defined more dompactly as

B

-
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An outline of the proof of Proposition 6.5.A. as given by
AN N , ) '

-

Mariano (19?5) is as follows:

From (6.5.13) and (6.5.16), Tlet . A
’ Ax o - Lo
5. -4
(5\ 30) L B(k) % where
\ ¢ f ‘ ‘ N ' .o° .Q

» r . ‘
(6.5.31) * H = 121 y;(V1- oz)x1'+ py;) + u(v 1- b?) X

. . s
+ pyr)'*(]- k) ji:] vj( 1~pz) ny + pvj)

-

. r-1 : N 3 o .
(6.532) N 6= £ f 4y +wbe (1o = vz ;
’ i=1 . j=1 /
From (6.5.30), we write M '
(6.5.33) b Bx(k) = ﬂfl‘-f where
- ! ' ) B ‘. u

4

- —ge

(6.5.38) CoHE e gre (12 KR

where P*, uQ* and [() - k)R‘. correspond, respectively, to the
first, second and thivd terms in (6.5.31), so that

14

(6.5.35) 0* ~ N(g,1) (see. 6.5.18)
6.5.36) ° i . d’ 1-0%) o
(6.5.36) . RT ~J§1 ry rj.ii o, 1-p%) o ;
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and Q* and R, are independent. ‘ .
. o
» ]
-+ .- From (6.5.31) and-(6.5.35), we have
(6.5.37) %(P* + uQ*) a.e‘ Q* wgs‘ o>

) .
where a.e, findicates converges almost everywhere, °

and by the Central Limit Theorem (CLT),

(6.5.38) s —i‘au(o 1) as . T+w

i )

where _d_ indicates cov‘erges in distribution.

i

Now Tet p2 + 4w  with T stayin} f1xed then f,rom (6.5. 34)
and (§.5. 37), H/n converges in probabﬂity to Q* if

. ¢

(6.5.39) plim [(1 - k)/p] =0 as py -+« (with T ﬁxed)

~

( In the case where uz\-; w while T + oo simultaneously, we write

”

(6.5.00)  (1-KRy J’ﬂ“) Y37 A T
| ' ‘ .u { ' W[-pz,lfl-pz)}

~

[From (6.5.29) . £=+— 1.
g T

’

Then from (6.5. 37) and (6 5. 38) 1t ‘fol qws that H/u converges in
distributwn to Q* if

h

0




into

(6.5.42) PUm[VT (1- k)/21=0  as.ylse

f.e., as efther T+= or £ 5w or both.

For the denominator in (6.5.33), we have

(6.5.43) plim (6/u?)

1+ (plim - k)R

. 3 2
ti Tim ¥ T
u mes (p }jj=] Vj/ ])

1+ aplin [(1 - k)42

where a(s\uhityif T+o and

f

13 2 2
(6.5.44) Ca=Ez Loy if T is fixedas p° + = .
T 5. : g a ‘

It folléws from (6.5.38) that if condition (6.5.41) holds, then

X \ . '

: .
- 2 2 ‘
(6.5.45) plim (6/°) =1 as p° 4w, e

Further, Mariano (1975) showed that the conclusions of Proposition
6.5.A. hold for the~(LIML) estimator of B

¢
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\

N
\

(6.6.1) v = by, + X]Y] +0 with reduced form
) o
(6.6.2) Y =Xm+V , where Y = [y, ,yZ]

Let R denote the nonsingular matrix (X'X); i.e.

6. : (X ]
(6.6.3) R = (xlx) - 1 [x , x ]
x| ] 2
] R
R I S L I 1.7 Rit . Ry
| N KL Ryt Ry

- The usual regression.estimate of 1 1in (6.6.2) is given by

' ' S S
(6.6.4) s=x) ey sy |V 12
| Sa S

A “ N .
Let 01 denoté-an estimate for Q as defined in (6.1.5) 1.e.

*

A 1
(6.6.5) s ¢} c (orl -]-.—_—R-C) . where

-

B

-
v

(6.6.6) L

Y'Y - S'RS

[}

° . b
YYo= v oex) (ex) Yy

-

YOIn - X(0X) Xy

n

" The (2SLS) method of estimation uses {5.1.7), f.e.,. °

Mgy = Bnyy i.n terms of the estimates S, and S, . wet

|

247

6. MWe consider the equation (5.1.1) and for convenience denote it by
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" ' r
(6.6.7) - Rapp = Ryp = Ry Ryp Ry
= Yy -yt Y -1 l‘ »
= XXy - X (KGR, ‘

' ' -1 [ I
Xz [1 - X](X]X]) )(1])(2

4

which is the second-order moment matrix of the residuals of the excluded
exogenous variables from their regression on the included endogenous

variables. The covariance m?trix\of (521 - BSZZ) . is

(6.6.8) UZ(RZZ ) (02 is defined in (5.1.8)).

o

As pointed out by Anderson and Rubin {1949), the (LIML) estimate of
B, denotfj/by' gLIML’ is the Qa1ue of B that minimizes the quadratic

form,

*'(6.6.9) - (1 - BSpp)""Ryp 1 (Spy - BSy,)

relative to the estimate of o? , i.e., the viaue of of B that

minimizes the rates of the quadratic forms,

!y
(6.6.10) (Sz7 = BSy3)" Ryp ¢ S5y - 8Sy,)
' ° A A A
wyq = 28ay, + Bay, o .

where 8;] s 852 are G?Z are corresponding estimates of aﬁ] ’ w]?‘

and Woo (seg 5.1.8).

.

The (25LS) estimate of the parameter B , denoted by ﬁ » 15 the

value of B that minimizes the numerator of (6.6.10). Thus

L)
' a

[ ————

ettt o A, 4 i 4
[y




L ] '
~(6.6.17) a2 e Sa

R S22 Raz1 S22
¥

A general class of estimates that include both the (0LS) and \

(25LS) estimates can be denoted by

Sl

2 R

22.1 322 * %2
s

(6.6.12)

. S2 Raa.q Spp + 0cy,

where 0O<acl, t:1j is the (i,j)%the element of C as defined in

b n e

(6.6.6). It should bé noted that with « (eplaced by ('1 -k), the
. resulting k-class ;stimates \are obtained. (OLS) and {(2SLS) estimates
correspond to the case where o = 41 and a=40, respectively.z
We look at the asymptotic expgnsions of the distributions of the
(LML) and (ZSLS? es*tiﬁates obtained by Anderson and Sawa (1973) and by b
Andegson (192‘5‘)‘. fhe expansions are g"ivep’ in terms of the nonceptrality

parameter which increases as the sample size, T, increases.

" The noncentrality parameter uz can now be expresses as

(6.6.13) - 2 "3 Rap .y Tpp
W= @ \ o :
22 * ¢ ]
Follo,wing‘Anderson (1974), the distribution of the matrix [SZ’I s Szé]
is multivariate normal with expected value [nﬂ s "22'1 and covariances.®

¥

(6.6l14) - E(

R A e . -
St a1 Sy~ Mgg) = gy Rypq 5 [, 31,21 -

L4 i




-

L
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: 3(253_5) is, in terms of this noncentrality parameter, ‘increasing. The

S 280

B T o

The matrix
: | N
(6.6.35) ~ <« [y
< - 1 R D515 53

. ' | . :
| S22

ts a non-central Wishart distribution with K2 degrees of freedom, —

covariance matrix Q , and means sigma matrix

1

"
) ¢
(6-6.16) R22.1 [“2] » “22] )
,nl » »
22 |
. ' -
« [nyg 51" Ry finyp01 " > 7
from the relation, u Moy 5“22 .
o~ We can further write (6.6.16) as
s g : ® %
naaRop g T, .
203221 22 [ 5 1 ] .

: : ~
Thf;:trix C defined in (6.6.6) has a central Wishart distributfon ' i,
with T-K degrees of freedom and covariance matrix. @ . The , - )
distributions and asymptotic -expansions ;fldistr%buﬁons are 'o'bta‘ined‘
from the distributions of 2 and C .

~The distribution of a(ZSLS) depends on the sample size.t T, only
through ‘néz R22.'| LY since the distribution of ¥ depends on the

samplé-s’ize only th?ough néz R22 1 Mop - The asymptotic expansion of

cumulative distribution of the 25LS estimate a(ZSLS) is given by ‘
: v : ‘ .

) e T ' . ’ ~




: R
(6.607) o { 2 221 2§, -8) < w} o (W)
cr.2
ST T (K, - 1lotw)
1 { 2_2
t—= [k, - 1 - (K, - 1)%c“Iw
22 112 2
#(2e% - 1w - AL i) + ol
4
and approximate density is ' .

46.6.18) {1 +§[u3;(|<2+1)w] +;2? (Ky-1) - ky- 1)

e

LIRS+ 4K, + 1) - (k, + )W

+[1 - (fé’Kz + 5)':2]\'44 + czwﬁ} diw)

"?6.6.19) v‘lhcre o( ) and- o) are the dgnsify function and

the cumulative distribution function of the standard normal dist

L ]
- 2
‘(6.6..20) 9 =, RZZ.] L —'—g—!-
and
Bwn, = ©
(6.6.21). c=—2L_ 12 5
i n I ’
r

.The cumulative distribution of g(LIMLj as obtained by Anderson

(](:9%4) is given by "y

-

2

?

riButio;h
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- . (6.6.22) | Vo2 Raz 1 T2z @ - 8 < wle= ol
. A LU o LINL " i
e+ ik - . o
+{-qy +2q2[(xz 1w o ,
~ _ o+ (2c? - 1w 2 A . ) ;

c 2 2 4
+'6—(']'§ [3(Kz - 1)W - (6('. | + 3K2 - ]2)“

.4 .(7c3 - 3)w5 - czwsl} +o{w) + 0(q"4) .
\ -
The approximate density from (6.6.23) is
2 o

(6.6.23) | {1 + % (w3- 2w) + i;—f ‘[-(I'(Z - 1‘) ’+--JK2-4 +6c2)u o

2,4 264y, ¢ o
+ (1-7¢)w +cw]+—-—-3-[6(l(‘-1)w~

) - (24c2+15K2-51)w3 + (48c2+3l<2-30)w5

. | : . _ ("5@2 . 3)w7 +‘c2wg]} ¢(W) . i | 'ﬁv .

; .
S , [

-In the cumulative distribution of aLIML , Anderson:(1974) assumes’

T2 Rozy ™22

that
Tuy,

-
!
5
v
5

, SRR
is bounded. This assumption implies that T

"22 2 1 "2, -

fncreases as fast as the noncentrality parameter " "
) oo 22

In both the (2SLS) and (LIML) estimates, the léading term is the
sta.ndard normal distribution, and t’ﬁe other terms are products of the

.standard norma! density and polynomials in W. In the case of K, = 1 .

-
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(i.e. the case of exact identification) the asymptotic expansions of
" the two éstimates are equivalent. .
— ~ N i
’
1
i ) ’
\ .
' ;
. . | . /
] e v
’
\ .
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CHAPTER 7
. A REVIEYW OF SOME MONTE CARLO STUDIES ,
1. Since the sahples with which we deal in practice are’rather small,

it would be of great interest to inquire into the small-sample properties,
of various estimators. We have seen that (2SLS) and (LIML) estimators
are asymptotically equivalent - the same is true with respect to (35LS)

and (FIML) estimators. The Theorems oh these asymptotic;prOpe;ties do

~

not shed too much Jight on how these estimators will behavg when the

l‘*spmple size is of small or modgrate size. Then, there is the question "

+of the efficiency of estimators. From‘the.literatﬁre, it is clear that
(35L8) and'kFIML) are both asymptqtica]ly more efficient re1ative to the
(ZSLSfﬁgha (LIML) -estimates, respectively. Again we are not ép sure
. that this condltion preva11s when dea11ng with small- samp]es

In any limited information technxque e.9q, ZSLS) or (LIML), we
focus attention on the exp71c1t spec1f1cat1on of the equation being
estimated. On the other hand, in the full information methods,-we haVe
to rely on the spec1f1cat10n of every equat1on in the System under study.
" With this fact in view, we ;ould 11ke to know how the various estimators’
behave when misspecification errors are‘ﬁresent. In addjtion._we would

!

like to Know whether XOLS) is, in small samples, sufficiently inferior
\ . d R . ; ' L]
to other simultaneous equation methods so as to justify its exclusion

[3

as an est1mat1ng procedure for structural coeff1cients

Apart from the problems mentioned above, typical d1fficu1ties are

L4

“faced in estimat1on when imp]icat1ons such as auto¢orre]ated disturbances, .

missing observat1ons and. emrors -in observations are present., They posa

,/

e

~ T e o r

P b s nrme
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:
|

a var1ety of problems that are as yet unsolved The~problém becomes much

‘ simultaneous]yt Further, vie may be interested in similar questions about

2. In general, a Monte_Cario experiment is essentially an empirical

“statist1c. A nuniber of researchers have used Monte Carlo experiments to

, parameters.

'(t ,e....T) with known parameters Br and T . ,fne probability

255 .

[ -
a . .o &

more comp11cated when two or fore of these comp11cat1ons affect the system’

. -W» N , )
reduced form coefficients and in the area of forecasting and testing-of

hypotheses. ) o . "

2

These questions are of great practical §ignificance. to ‘which, in

e o L . ot s S Dot
v

general no pretise analytical answer can be furnished. Nevertheless, 2
some tentative results can be derived through direct or modified Monte T

Carlo experiments.

¢

¢
A
.

~
-

”\M«La»':’ e
. - 5 . R

”~

method for gaining insight about the probabil1ty d1str1but10n of a

determine the sma1]-samp1e prOperties of different e'unators. Although, ,

still in its infancy, this branch of econometrics has grown concurrently .
with the capability of h{gh speed compu%ing machines to permig numerous

replitations at-low cost. The Monte Carle method a1lows for' a large

.

number of samp]es to be drawn from a known propu?at1on, sample statistics

can then“be computed in Mar1ous ways and compared with the true popu1ation
S 5 . o ) S | - 1

" The direct Monte Carlo experiment is‘ usuatly conducted altong the
- ‘ e . i S

following lines: An artificial/structune is Qet up, consisting of’modelz

Byt +Txg = 4y (say) with reduced form' yt;z'"B-ITxé +_B']ut " and .

distribut1on of the disturbance vector, Uy o is specified. A set of

an

3 ¢
U '
o . B

L . (
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.

" obtain a large,number of art1f1c1al samples of data for Y. and Xg

" for each‘samﬁle, we can then compane\the samp11ing distributin of each 4

- could decide which of fhe{z:timation methods will be given preference

MR T ) Pty S Ao )
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e

values ok exogenous var1ab1es are chosen The known structure and the

[]
T AT s Tt L s, e S

" known values of exogenous var1ables, together w1th random drawings from -

the specxfied disturbance probab11\ty distr1but1on are used to generate ]
2 samp]e of observatlons Var1ous estwmat1ng teghn1ques are used to ‘ .
obtain sample estimates of the population parameters '

The procedure is repeated to abtain a number of samples of 512e -
I (say) Fur each dT these samples the reduced form equatvons are used -

to generate a set of values of the Jo1nt1y dependent variables yt and

the predetermined varlables for t=J,..... N In this way, we

(for t = 1,....,7), that have been generated by the artificial structure” . _ y

o

v

set-up 1n1t1a11y '
The art1fic1a1 sampie data for ° yt and Xy are used to estimate
the parametérs B and r - by each method in question When the

estimated values‘of the.parameters have beenfcomputed by each method

estimation method with the va]ue of the parameters. In this way, we {

- S

for that parameter with a 'mp]e's{?e' T. :. i -

! . - . * * ] ]

. .
s ' r
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L -""“ - 3. Im this section wé look at the results of :so'me direct Monte Carlo .
\ | ' studies. Johnston '(1972)'reviewed, in some detail, the direct Monte Carlc;
Y ﬁ; studies cor;\ducﬂt‘ed by Ladd (1956) , Wagner (1958), Basmann (1958), "
: ‘L Heiswagner and Yancey (1959), :.Kh'en (1960), Naé‘ar (1960), Qu%;ldt (1965),
) : ) s:mme}s (1965), Cragg (1966, 1967) and Simister (1969). .,
) Johnston s review revealed that there is a fairly gene: agreement
, on the fo]l(minq points:
. Eh 5 A (a) The (OLS) estimates generally display the gfeatest finite
k C . samplé bias’ of all the estimators considered; fthe consistent
;6 § 'f - ', “estimators WSLS BLS, FIML] show finite sample bias and the
. variation o/F the bias among consistent estimators is not- sigmf‘icant
enough to favour one estimator over another. Cragg (1967).
{ Q:ons.idered 5ix degrees’of mg]tichﬂinearity in the exogenous
T ‘ ’ . "d;ariables. His results showed that even in‘this case, (OLS) has
: _3 6“_‘ a.larger bfas relative t6 that of the consistent estimators. His
- results also indjcated that multicollinearity produced a substantial
’ increae in the bias of .c"onsiste”n-t estimators.N
: {b) Among the estimators. (oLS) frequently has the smallest
e variance - (measured around the mean) )
ﬁ fc) When the (OLS) method is used there is ‘always the er]‘ihood
‘ ‘ , of making incorrect inferenc‘es about the true values of structural

cogfficients. (See Summers: (1965) and Cragg (1965) for detaﬂs )

L - -
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-4, Here we review some of the results obtained by Summers (1965).

hypothetical model used by Summers (1965) was the same as that used by

Neiswagner “and Yancey (1959). The model considered is given by
0 ' :
(7.44) (a) wp =By vy t ’fn Y Yy Xpp FYyp t Uy

(b)  wpy = Bpy Yyp * o3 Xz * You Xy * Yog t Upy

The two equation mode) considered in (7.4.1) consists of two over-

identified equations and could readily admit several economic inter-

‘pretations.

N
'
There are, however, a few shortcomings in the model (7.4.1).

258

The

i
Firstly, the (2sLs) applied to this model produces zero bias to the order

1 -2

T and T (T, being the number of observations) secondly, Basmann

(1958), using the model (7.4.1), derived the exact samp1e frequency

functlgns of Genera!iggd Classical Linear (GCL) estimators and found that//

@be means exnst while moments of hlgher order than the first do ndt.
" In the case of Sum@érs'f1965) the y's and x's in (7.4.1)

reﬁres%nt jointly dependent and predetermined variables respectively.

Thq,error;vectors [(u]t, u ) it =] .,T] are specified to be |

mutually independent and identically 1istr1buted as N(0; z) where

~ . Taoo, 200 v )
(7.4.2) . = [ ' . 400 { L2 ‘
" 1200, 400 ' L
’ ., l 2 s . Yt
The reduced form model of (7.4.1) is given by ' e
. &
(% “.—. . -
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(7.4.3) e T Mot ™ Mt M Ko Yz Kt Mg Xae t i (\
Yot T Ta0 * Moy *ir f Moo Xop t Moz X3¢t Mog Xar * Vot

\

where'the n's are functions of the B's and thé y's, and the v's

. . ]
are linear combinations of the u's.

Y , .
Summers (1965} conducted 12 experiments using the model or variants

‘of the model in (7.4.1). Fifty samples of size 20 or size 40 were used.

FiveRQiffere sets of parameters were used; four were used with a single
sample of sixe 20, but the fifth was used with two sample sizés.

T= §0, T =40, It f§ difficult to summarize such a conprehensive study.

As such, only.some of the features of this study will be outlined.

Summers (1965) compared (OLS) , (LIML), Least Squares, No Restrictjons’
(LSNR), (25LS) and (FIML) structural estimates. Reduced forp estimates
were also computed and conditional forecasts of the two endogqpous .
variables based on the five sets of reduced form egtimagzs [i.é;-(QLS),
(LIML) (LSNR), (2SLS) and (FIML)] were compared.

For some compariéonslhe used the mean squére.errorv{MSE) as a
criterion of quality of €he estimators, and for some comparisons’the
Root Mean Square Error (RMSE) was used. These two criteria gave similar
results except in a few cases where the kLIML) estimate§ were involved.

The (FIML) estimator’usually stood out as the best structural estimator

1

except in the misspecification experiments where (LIML) and'(FIML)

estimators /were worse than the (2SLS) estimators. In fact, the {25LS)

\

estimators were the least affected by multicollinearity and misspedi?i*)
cation. In the case of conditignal forecasts of endogenous variables

: . 1
(0LS) was almost always substnatially worse, and the other four methods

\

-
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of reduced form estimation yielded forecasts of,Jéry similar quality.
\

(7.4.4) Least Squares, No Restrictions (LSNR): In this method (OLS)
is applied to each reduced-form equation separately. Consistent estimates
of the geduced-form coefficients are obtained, but the estjmates are.not

efficient because the method ignores any a,priori information specified
' 7

.in the model. The (LSNR) method is computationally simple and is

relatively 1nszn§%tive g;‘stfuctural specification error. b
' ' A
(7.4.5) 'Mean Square Error (MSE): If B is the estimate of 8,
tﬁen o A 9 E
. Mse = E[(8 - 8)"]
. \ .

-ef(B- )2 + (B op)f] .

= variance plus square of bias.

4 -

The square root of the (MSE) is called the ro0t mean square error (RMSE).

In Summers (1965) we consider the experiment (4A). Let

V )
. ‘ 4 y
(7.4.6) [ 8y, Bay ] .
. Y Yon
6 = 10 and 6, = 20
1 %2 .
™ N - Y23 %
| N2 | | Yo |
r ' o
(see 7.4.1). o “ 5'

In experiment (4A), the sample size T =20 and the number of
samples .N = 50, The predetermined variables were almost uncorrelated;

their correlation matrix is speéified by'
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(7.4.7) ' R L sy
X 078 .16 .38 '
X, 1 .07 -0.057
Egﬁ[illﬁiif;rglgm——-~~— ‘ ! -3 -
X (1 '
In the experiment (4A), - ’
(7.8.8) - C a1 04
y | -149.5 . -149.6
6 = 0.8 and & = 0.6
0.7 ‘ ‘ | -04
- N o R //, o
o

A genergi summary of his results for Experiment (4A) is outlined in the

following taBIe:

»)'




-
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" | TABLE 7.4 (A)

e,
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The Bias and RMSf of Estimators (far model correctly specified) '

)

RN

- :
b{5, ) RMSE (5.) b(8.) RMSE (5.,)
1 1 2 2
LIML .0276 132 .0118 .182
".2019 22.3 o -4.032 75.000
¢ : .,
-0,0279 173 .oob@ 669.
-0,0022 105 \ong .06
25LS .0326 133 -0.0005 75
v .3508 22.3 -3.190 75.1
-0.0322 173 I .0078 .668
-0.0040 .105 ! .0078 \ .061
%
) \ . \
. FIML .0280 .3 0099 - 181
. .3871 . 22.0 -8.484 71.8
--0,0279 164 0488 .628
~-0:0038 103 .0045 .062
oL 1051 A0 -0.1249 218
' 2.565 - 22,2 . 1.876 72.7
N -0.098 197 -0.0174 .640 .
-0.0290- 2110 s -0.0410 072
a .
C.

3 .
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From the{bréceding results we find that both (25LS) and (LIML)
estimators do not have too much significant difference between them. It

would seem that the (FIML) estimators are slightly more efficient in the

sense that their (RMSE) are slightly smaller than those of the (2815) or

(LIML) estimators. The (QLS) estimators seem to be fnferior to the

others.

- L. . N

We consider Experiment (SA) where Summers. (1965) attempted to test
the sensitivity of the varfous estimators to misspecification errors.

Here he used T =20 and N = 50, and

(7.4.9) 4~ - 1 0 [ 0.4
-149.5 . B -149.6
6] = ~and 62 =
0.8 . 0.6
3
o | . 0.7 | : A R &
' ®

In this misspecification experiment the data on ) and Yo in (7.4.1)

were generated by the model defined by (7.4.1) (a) and

y Yie ¥ Bz Yor * Yoy Xae Yoz %3t t o4 *ar * Yoo 7 Vpe -
In this misspecification model, the second equation is just—idéntifiab]e

instead of\being overidentjfied.

The results of Exper ment'(ﬁA) are given in the following table:
v ‘B .

4

-
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TABLE 7.4 (B) | . n t
Bias and RMSE of Estimators (model misspecified) L_,
AL AL A
b(3,} RMSE (8,) b(8,) RMSE (8,,)
] 1 2 2
LML 0081 | .078 2871 368 Jr
\ 5413 23,2 3.1 1.2
- -0.0164 - 176 1154 ) .659
06 082 - 0.0632 .108
25 0126 ..078 1669 241
] J452 . 23.2 42.22 77,7
- .0204 176 .0643 .609 )
.0092 082 - 0.0188 _ .071 .
FIML .0 ' Jo - -3396 S A
' 13.09 31.10 30.17 Coo9.7 :
~ 0.1443 . .288 1027 . 183 . T
0186 600 - 0.0823 . 164
oLs 0704 . .09 0325 oM
. . 3,680 2.9 54,58 - 8.5
) - 0.0742 .183 © . .0099 582
o027, 083 0307 664
, LY
. .. »
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~ to be the least affected by misspecification. This is to be expected,

- (7.8.1) Wt By Yp Yy Xyt Xty =0

265

.

As expected, Table 7.4 (B) shows that the FIML is considerably

more sensitive to misspecification errors, " The (25LS) estimators seemed

since the specification of equations other than the one under study is
of Tittle consequence jn Limited Information Methods. On the other hand,’

in the Full Information Methods the structure of every equation is

.
e p——— ot < o b

explicitly utilized in the estimation of every other equation. Thus, .
misspecification in any of the equations will affect the estimators of

1 ] . .
every parameter of the system. ¥ - x

s

5. In general, Monte Carlo studies attempting to simulate small- -sample
properties of s1mu1taneous equation estimators have traditionally assumed
that the disturbances are independent drawings from a multivariate normal
distribution. Raj (1980), in his Monte Carlo study of small-sample

e—— ,
properties of simultaneous equation'e§tfmators employed the "direct

simulation technique" (meaning that no réfinement is exercised in the

choice and use of random numbers) and considered four alternative forms . y

. of two-parameter error distributions: (a) normal (b} uniform
! )

(c) 109norma1, énd (d) Laplace or double exponential.

L

Specifically, Raj's two experimefits employed two sets of 1000

‘generated samples of 20 observations each on an overidentified model

cons1st1ng of two\structural equations and an identity. The hypothetical -

used is g1ven by
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(7.5.2)  Byp 9y - ¥p + Byg ¥3 + Ypp Xy *¥3p X3 ¥ ¥pp Xg tup = 0

(7.5.3) ° Yy~ ¥t Yyt Xyt Xg X F d oy,

where the y's are endogenou§ variables, the x's are exogenous .

variables, and tﬁe u's are random tisturbances. As pointed out by

Raj (198Q), this model ii basically a modification of the oveqidentifiéd

model used by Summers (1965). [Sge 7.4.1.] )
~*Raj (1980) studied four estimators: (a) OLS, . (b) 2SLS ,

(c) 35LS, and (d) FIML.* His simulation experi&ents were conducted with

a view to Hétermining (a) whether the Small-s?mp]e rankings of '

econometric estimators of both structural parameters and forecasts of

endogenous variables, attoraing to the eriteriaof bias and dispersion,

are different for different forms of error distributions and

(b) whether the small-sample rankings éorrespénd to the well-known

. asymptotic properties of structural estimators.

Although the conclusions of the Monte Carlo study will strictly
apply to the pérficular model used, genera]izsﬁions c;ﬁ ;; made to other
models. Raj's sfudy is of spe;ia1‘importdnce gincé hardly any analytical
'results Pegarding the existence of moments are availablewhen the &is-'
turbances are nonnormally distr%futed. Altﬁough.some kno@iedge of the
existence of moments‘oﬁ econometric estimators is important for a well-

formulated Monte Carlo study, neverthejéss,‘;gferéhces based on some

basic measures, such as median and quartile deviation of the sampling

_ distribution, can provide useful information even when moments of the

. corresponding estimatofﬂdo not exist.

. R .
\ ]
. . “ 5 \
vl (4
.
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v ' TABLE 7.5.A e 7
Parameter Combinations Used In The Two Sampling Experiments
. ' ‘ : %
Structural Parameters ‘ o
Experiment P21 Yy Y1 By By Yo Yy Y
' -9 2,00 .50 2.50 1.90 2.80 -2.20 -.60
no -.90° -2.00 .50 2.50 1.90 2.80 -2.20 -.60

a

»

Elements of Moment Matrix

Experiment ‘11 Oy %22
. ‘ ) =
1 1.81 -1.79 27.77 .
n 8.84, -1.79 24.46 S ]
% . m{f ;T R —

~

Table (7.5.A) shows the }:v;o sets of numerical values of structdraf
parameters and the elements in the moment matrix of strdctura® distur-

bances. The moment matrices of the reduced-form-disturbances in the

two experiménts had the following values.

) (7.5.4) . - -
1 0 .1
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(7.5.5) o : | -
' 2.20 .97 : .23 N
o 19 3.8 .85 | - 0 3
.23 -1.85 2.08 | o f
e -
As pointed out earlie}, Raj's Monte Carlo experiments utilized '

two sets of 1,000 generated samplee of 20 observatio#g)each. The ’
observations on the six exogenous variables used tn the simulations were
independent random drawings from‘the uniform distribution in the range j
-17.321 to 17.321 .  The set of 20 observations on the 6 exogenous

variables were kept fixed in repeatell samples.

_ parametric measures of bias, dispersion, and dispersion including bias

The variance covariance matrix.of the exogenous variables was °
given by
. . . :/""""’ - ) ' .o .
(7.5.6) 100.30 - |
- ©.039°  99.62% . . A
- 1096 - 743 9.893
. var (X) ! ‘ . , )
- 3.264 ~1.646 °© 3.220 102.388
427 - 25 123 603 100.354
.346 .006 . 142 3.775 - .373 100.39

1

' . i . y
\ , R
i L
+
.

[see Raj (i980) for the method employed for the generation/df reduced-

, /
form disturbances.] A /

The main findings of Raj's Monte Carlo experiments can be summarized,
as follows. The sma]l -sample rankings of (OLS, (ZSLS) (3sLs) and (FIML)

estimators of structural coefficients according to parametric and non-

'

L M~y




conditional predictors of the mean valuos of endogenous variab]es.

are, except ;n a feW'1nstances\\invar1ant to the form of the error
distribution. (FIML), except for the mean squared error criterlon, is
fhe most efficient, whereas (OLS) is the 1east efficient of the four
estimators of strucfura] coefficients for all four error distributions.
Also, (0LS) has the‘1argést bias, whi1;~LFIML5 has the smallest oias
among the four estimators of the ﬁtr ctural coefficients for al] four
error d1str1bq@nons. Thg most bigsed (OLS) estimator- of the structyral
coefficients retainsvthe/bauss Markov property of minimum variancé. The
lqr&% bias of {OLS), howeoer, more than offset the small variance, so
that (OLS) has the largest mean squared errors of the four structural
estimators.

In the case.woere the four estimators was judged acccrdingito
their ability to pred1ct the mean values of each endogenous: varfable

p

conditional on the exogenous variables, it was found that FIML,;. with -

a few exceptions, is the most efficient, and (OLS) is the most biased

[See Raj 1980 for more details;] ' o - .o

.
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6. °MODIFIED MONTE CARLO -METHODS L. ]
v‘ : o - qd ~

As pointed out‘by Mikhail- (1972) direct Monte Carlo studies ' f

cooductedqto simu[ate the ema]];samp1e properties of estimators of

simultaneods equafiook’often 1eao to iodetérmioa;e ano sometimes ‘ -

contradictory results.‘ These;&jecrepanctes aee perhaps due mainly to' ;

sam%]{ng ertors inhe%ent'in the simulation process usé&; . ‘
Makhail (1972)'a;;1ied Antithetic and “Control Variates to obtain

a modifxed Monte Carlo techn1Que for simu]at1ng small sample properties

-

P i il T

of s1mu1taneous equation estimators. =~ .
The. dlrect Monte Carlo method (for a particu\ar case) can be A

’ summar1zed as follows suppose we wish-to determ1ne ¢} which represents ‘

the bias of an est1maton. ‘Then” © is a populat arameter and . ‘

= '

through our experiments wéggeek to determine accorate'estimates of it

v(e g. in a minimum mean square errbr sense). Each replication of the LBt

o

experiment y1est one observatwoﬂ and frequent]y. the chosen parameter

ir

is the mean value of a large number of random rep]ications (N, sgy)

The sample.mean is unbiased, with a variance wh1ch deCreases as a - . i

function of %? and ﬁn the absence of other information<>uou1d be the~

“minimum mean sQuare error 6f ©.. This, however. is’ not 3 va]id argument‘ ,
‘for computer simulated experiments since the basic random'numbers are. -

. known and ¢an be reused as antithetic vﬁrieties [see Hammersley and )

Hadscomb (1964) and Henry and Trevedi (lQ?ZXi{or further details]
P> °
- For example, in the case. where §, (say)'is ‘N(0,. ¢ %), one ]

possible\antithetwc ‘pair is provided by [Et, -5 T since they are ‘~
perfectIy negativeTy correlated and hence exact};\pffset each other 3

variabi]wty without affecting the unbiasedness”of the outcome. Every

[
— . < ' A
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trial is thus performed twice, once using [E], Eos-e

. ,ET] and once

’i - S ’.""“

o . A A
with ['El’ -8, .....-&:T] , and the resulting estimates O, and O,
4 o (say) are averaged to yield 4 Y
e | b b »
. i + L.
. ' . ) = ! 2 .
y | '67.'6.2‘() 0 5 -
. R 0 ',,.? g B >
' /Since . )
A ' ' ‘ ' 1. A A’ - A A
(7.6.3) \ Var (e) 7 [var 9y + var ez.k 2 cov (G] A 762)].
" ! A '
Voo . & : : e . T
& y Hymform ng the covariance to be anegat;ve through our choice of ervor
- V . t ., o, 4
T ., terms, var (6) is reduced below, the random sampling outcome.
2 N . '\_
( L, s “Recall that in the direct Monte- Car1<>\e\£eriments we usually
. A k .,

* cdnfine oug‘se'lves to random numbers u1~(§ay) uniformly distributed -
hetweenZero and one. ‘In the 'broced‘ure descrihed above, we can Eow use
. ‘the set - a{= 1-q to get afn antithetic estimator '8" (say) which is

negatively correlated\with o' (sa‘y), ‘the initial Monte Carlo estimator

s ¢

of ,e (say) . . . . v

' Thus, -the numbers a;

. {0, 'I) and the random normal deviates corre;}onding to the number ‘a’i*
’ \ ¥ ~

. wﬂl hafe the same mean and ghe same varfance as the random number

win agafn be distributed in the range

deviates correspondmg to the number o,

Th.e information obtained from the m mutuaHy antithetic estimates

s t@n combinedlto\gwe a. better knowl edge of the parameters\r\f the,

a
'

: dis?tri

‘-

Vi

ion. o
“Mikhail (197&)

alteréd the‘ equatiop J,

>

8.1 (a), (b) by adding two ‘.'

papm—ox £ PP o H ey

L o WK

/
more exogenous variables. one in each equation in order to counteract
Ihe problem of zero bias and the nonexistence of fim'te«second moments

’ [y ;.

for the (ZSLS) estimatmy

« .
B ' [ . e . L/
B -

SR IR, a1t g -
n-v-..-....;z-‘.n.wﬁ R Y - .t . LKA
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.’ The new model is denoted by - , S
. (7.5:4) Yye " Byg¥ar * ¥y t Yi2%2t *Ms¥se * V0 * e
’ . ° ) +
. ) \ -~ 3
— Yot "Bt Yaaar * Yoa¥ar * Yo¥et * Yoo * V2t :
w -4
g ' -The exogenous variables -used in the simulation process were all random o

drawings from the uniform distribution

bi'ai i

wh / ‘ ' "\ s
. S (1.88) dR(x) = g dx,

r\"“‘
KM

- . .o,

- in the ranges 5 to 10,/ S to 5; 15 to 30, 2 to 8, '8 to 22 and
1} (‘ ! . e .
10 to 14. A sample of 20 apservations generated in this fashion was

kept tixed in repeated samples. [See Mikhail (1972) for a table of the
¢ -
means and covariance matrix of the exogenous variables.] -
‘ -
In his comparison between dire?:lt simulation and the two-antithetic

o

x

f J g method, where E‘cmparisons are made of the bias, variance, mean square
- error and mean abSdlute error. ,[S:e Tables ’I,’JZ, 3 and 4 6f Mikhail, {
, 1972.1° Thems listed in his tables indicate the two-antithetic
method pérfofmed better thin the direct simulation method in the'
i ) L estimation of the bias. In estimating the"vaw:iance and the mean absolute
l . error, the two-antithe}'ic method was not signlificgnﬂy better than the
g direct simulation method. Mikhail (1‘972)valso ap"p}iéd\con};ol Variates
(CV) for two- and three-stage least ('_sﬁuare's %nq FIMU for static models)+ S
P as opposed’ to ;iynamic models, ‘[séé Hendry and Harrison (1974) }or . .-

4

. W . ’ ‘4 .
details nd obtained significant efficiency gaing for es'timating both

-

* fthe means and variances.

8. A
* -
- e
. [
N . »
. <
= | .
y a4 ,
P { =
N pm——cx e L T '
e ; s
e e
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The principle underlying Control Variates is as follows: The

basic idea is to find an auxiliary statistic 0* (say) such that o*
and 6 (the'origin/al Monte Carlo estimator of ) are p051t1ve1y
c;rrﬂated but the distribution (at least for the first few moments)
of 0% should be obtained analytically. Then instead of 1nvest1gatmg

A 1 .
®, the direct simulation or Monte Carlo estimator of © , we use

A ,
Q% = (3'— 0* + E(0%) .
) . L
) A
by simulating both 6 and P* and computing 0** by subtraction. It
should be noted that “ ‘ ‘ - . )
il p— A ) Y
E(e**) = E(0) , ' s
. ' B )
which is what we wis\to‘estimate. However, \
‘ " A e VA o
| Var (0**) = var (0) +Jar (€% - 2 Cov (€, 6%)
. - t
A Lo ' . Voo
which will Be less than var (6) if ° ) " e
{ e ey 3
A 1
Cov (0,0*) > 3 Var (e*). -
) . : A ‘
. ~— ’
The major problem here is 1in 1ocat1ng n a@propriate °* . Table 1
of Makhaﬂ (1972) showed that the contro] var\ te method is-: better than \
the antithetlc method for estimating ;he variance, mean square error and ‘
absolute mean square error. . ‘
In the case where comblned control/antithehc varla’ces wehe usél, (

i

they were found to be superior in est1mat1ng dlsperswns but give \

exactly the same results on-the bias as that obtained by the two-

«

antithetic method. ' . N e, O ,

Y
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