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g A under a non—siggélar transformatidn, there exists a

. collection of 'n non-negative invariant functions with

3

disjoint supports. This fact is fundamental in establishin
. PR A N\
an upper bound for the number of absolutely continuous

measures invariant under a piecewise monotonic transfoimaﬁion.\\
) , .

Improved upper bounds are obtained for special subclasses of

-

2

: these transformations. In particular, for piecewise linear

Markov maps,'the numbér of absolutely continuous invariant

Tl STt e s

‘measures is equal to the dimension of an eigenspace of a _ !

certain matrix. ‘ \ ' ' .
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" conditions on a transformation which will guardnteé the

'A;Ehough;of mathematical interest by itself, this problem

- of bounded variation, N

' _CHAPTER I ‘

'INTRODUCTION o C

e N - .

. ' !

An important question in ergo&ic theofy is to find\

.
i
S
9
113
R
T
a
ke
]
&

L3

existence of absolutely continugus invariant measures. =~

has many ‘applications iq'other areas, namely in the physical.
and‘biological sciences. This question has been the.suﬁﬁect

of intensive research by/many authors and several verifiable o

. conditions on transformations have been discovered

¥
(1, 10, 11, 12, 131 . ~ he

- Once the existence problem is séttled, the next ques: ~

tion which ari§es naﬁura%dy is to determine the number of

°

" such invariant measures. In this thesis, we will primarily

be interested in flndlng upper, bounds for the number of

absolutely cont1nuous measures 1nvar1ant under a transfor-

mation. We will see. that the supports of the densities of s

these measures play a vital fole in establishing this bound. ‘

.The bound 1ts$1f is computed ea51ly from the: transformatlon.

In Chapter 'II, we- f1x notations, introduce standard \

definitions and:state without proof two existence theorems

which w}llkbé used throughout the text. We also prove a .
\ - o

property about the structure of the support of a function
' \ .

«

!
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In Chapter III we introduce invariant sets and - / 'i;

explore some properties of invariant‘funct!oﬁs under non- . ’

singular transformations. It will be seen that we can.

always assume that independent 1nvar1ant functlons are’

-

non-negative and have disjoint supports. We present this %% 4
' ’ : |

fundamental result in 3 separate chapter to stress the & |

fact that it requires only the non-singularity of the g

transformation under consideration. 4

Chapter' IV contains the main results of this disser- ' g
‘taéion. We state and prove three theorems, each of -them

giving an upper'bound'for the number of absolutely continuous i
1N

invariant measures. In the last sectiofi we show that the _ : ‘

number of{khese measures is invariant under topological:

conjugacy. f : L

In Chapter V .we focus our attention on two classes of

transformations: Reﬁyi‘transqumations and Markov maps. i

-

-Undei appropriate hypothesis, these transformations and all

v

thelr iterates are shown to have a unique 1nvar1ant function.
N

Chapter VI deals with p1ecew1se linear Markov maps. .

Following [7] we shew the existence éf lnvarlant step - )
. , |

' functions regardless of slope conditions on the transforma-

tion. The method developed in this chiapter allows us to

~

" find at least one invariant function and.in the case where

+

the map is uniformly expanding, we can obtain explicitly

all the invariant functions simply by solving a system of

Yinear 'equations. ) . . "o
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thesis that are original.  All of section 4.2 is new as :
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‘well as Theorem 5.4 and Proposition'6.3. 'There were a
' , number of erroneous stAtements in the paper of Li and
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- CHAPTER II

PRELIMINARIES

2.1. INTRODUCTION AND DEFINITIONS

, ,
Denote by !, l| . ||} the space of all integrable

. functions on the interval J = [a,b]. Let m deéenote

™~

: Lebesgue measure on J, and M the class of all measurable

subsets of J. We say 7t:J+J is a measurable transformation

if the set T-l(A) = {x€J : t(x)€A} is in M for each A€M,

and non-singular if m(T-l(A)) = 0 whenever A€M and
m(A) = 0. A measure is said to be invariant under =t
if u(a) = u(r_l(A)) for all A€EM. Also, u is absoluﬁelz

continuous with respect to m, in notation u<<m, if theref

exists an feil such that U(Q) = [fdm for all A€M. We
' A

refer to this f as the densiix of ® , .and it is unique

a.e., Notice when u is absolutely continuous and invariant

under T . its density function £ satisfies

ﬁ .
[fdm = [ fdm
A -1 a)

<

fo£ all AEM. With this in mind, we define a function
fELl to be invariant (under 1) if the above eqhality holds
for every AeM. |

We now introduce the Frobenious-Perron operator, a

very useful tool in the study of absolutely continuous



( [ invariant measures. ILet t: J+J be a measurable non- .
singular transformation, and f€L1. Defining the measufe

Mg by ) S

(-
g (A) )— {lfdm ,
T ~(A)

we see that m(A) = 0 = m(r-l(A)) =0 = uf(A) = 0 , that
is He << m. By the Radon-Nikodym theorem, there exists a
function gEL1 such that .

o

and g is unique a.e. . We define the Frobenious-Perron |,

operator PT by setting PTf = g, Thus, 'PT maps L1

\\\\\\ iﬁtqﬂLl . and S )

fp.fdm = [fdm i (2.1)
’ a’ -1, ‘
. .1t “(A) :
- for all A€M and fELl. Clearly, f is invariant under

i
T. if and only if P f=f a.e., i.e. £ is a fixed \

point of the Frobenious-Perron operator. Letting A ="[0,x]

4

' _ and differentiating both sides of (2.1), we obtain

= 4 z
L) = 3% {1 £(t)at . (2.2)
- T " [a,x]




=

It can be shown that PT"aé défined by (2.2) is equivalent:
‘ " to the definition given by (2.1). . ' o
. ¢
We now list, without proof, some well-known properties

of the operator’ P_:

- -

(1) Linearity: PT(f+g) = PTf +Pg

PT(cf)

cPTf for real c:

T

(2) Continuity: - || PTfI[

el .

1 et DAY ST ARG

(3) P is positive: £ 20 = PTf 2 0./

’ e . .
< ? . ]

(4) PT preserves integrals: ‘

L ) . f[fdm = [P fdm for every fert. o
} ,

' v J- ,' J . - ) ; 1‘

L_ “ ) (5) P n = P: where 1" = tet™ 1 is the nth ‘ : 1
- - T : : : :
L : iterate of T. .
. ; :
?
(6) Pf=f a.e. ~ the measure dp = fam is '

invariant under. T. .

*

-

If we denote by * F the set of all functioné invariant
under T , - then property (1) combined with property (6)

imply that F 1is a linear subspace of Ll.‘ However, when

-

’

" we say that 1 has n invariant funcéidhs, we will alwayé
mean n linearly independent functions. A 'set of functions

.{fl’ cheny fn] c Ll is said to be linearly independent if

$

n -
iilcifi =0 a.e. implies €y = seve = C = 0.. ﬁe shall

say that.the absolutely continuous measures Myr eeees un‘

e ——
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S , \ ,
2.2, EXISTENCE 'rm':oams: \ T
{“\ ‘A trans}]ormatioﬁ T [q\,b]-*[a‘,b] ‘will. be called
s .

-0

.xestriction of T to the open interval (a, 5, a;) isa

. any 'f€L™, the sequence %)-

g to a function £¥€L

. .
. '
.
* o
> N - LI .
* i
. /
. . ! . ' d
. [N
’
.

“In thJ.s section, we sta’b{ without proof two theorems

th.ch guarantee the exlstence of absolqtely contlnuous ;;’:

1nvariant measures for a class of transformat:.ons. See . [1].

]

First we ne dﬁdefinlt:.on.

4

jecewise C° if there exists a partition®

I v .4 ., : -, . ‘ i
\~-‘/ . @t f . “ \ ‘g .

) @ < R k ;

. a - L I ) a = :

: p 3 }

% . ! S * : ' 31

.of .la,b] such that for each integer i, 1 < i < p, the ) ¢

¥

[

T a Q - . . A f v
C2 function whic¢h can be extended to the £losed interval /

(a; - a;1 as a ¢? function. . - e

“

Theorem 2.1° [1] ; A

* Let t; [0,1]1+[0,X] be a piecewise Cz"'function such

.
A a0 I
-

thdt " infjt’] > 1, where t’(x) .is defined. Then for
1 k R ’

P f is convergent in norm R
. k=0 ! : . -

1

.IIM

1. having the following pfoperties:

tastaaere ra

e e s e b ve o s




\Theorem 2.2
J— ,

A 1A B ey 3 im0

£20 =»f*20

1, 1 v
Jfdm = [fdm
0 0 -

Ptff = f* 7 and consegg ntly the measure

dp* = f*am is invariant under. T.

the function f£* is of bounded variatjon;
moreover, there exists a conséant c indepen—

\dant of thefcﬁ§z:f of inltial £ such that
the the variati ji@ﬁéZ%e limiting - £* satisfies

the, inequality
N

®

o

£* <cllg] .

[1]
:,[0,1]+[0;1] be a pigcewise C2 function

f »
B

such that infl%%—r > 1 for a positive integer N. Then

n-1 k

for any fELl the sequence % pX PTf is convergent in

k=0

norm to a function £* which satisfies gonditions (1), (2)

and (3) of Theorem 2.1. If, in addition, inflt’| > 0

then condition (4) is also satisfied.

s




©", " 2.3. FUNCTIONS OF -BOUNDED VARIATION IN L' .

We, say gerl is a function of bounded variation in LY

if £ equals "almost everywhere some function of bounded
‘'variation. When | T: [Q,l]*[OBl] is piecewise C2 with

. ' . ‘ - Kt
inf]t’| > 1, 'Theorem 2.1 asserts that every function

invariant under 1 is a;;unctiop»of bounded variation in

Ll. The structure gf t

support of a functi bounded

variation will be ‘crucij Llin the seqﬁel. By the support of
any feal—valued.f ction f, we mean the set on which §

is non-zero. The n tatioﬁ, gpt;f ‘for this set will be used:
throughout this téxt. Notice that sptf need not be
ciosed’in éur definition. The following proposition is.

partidlly proved in [2]:, , ]

Proposition 2.1 . i C

. If. feEBV[a,b] then . . .

A Ay .

] , P . . p )
l ) sptf = ( U .K ) UM, 0 Ssps o
L - - n=0 ™ -

R

where the K are open disjoint intervals, M is a
L P
countable set and . . - .

e
2

4 N p
%
M0 K =
‘ '(ngo n) ¢ /(/




i Bt e amine s

Tem woea v e

" Proof:
First recall that efery open set in [a,b] is a

countable (or finite) union of disjoint intervals, ‘eaéh of

them being open relative to the topology of [a,b]. Thus,
if (sptf)° aenotes the interiort.of cspt'f ﬂ, we may write

; ) . P
: ' (sptf)° = UOKn’LOSPSQ
. n= ,

e,

1%

where the K. are open disjoint intervals in [a,b]. Let

- . o - - - . [ e L e o et ol i s S ae e T o
e L e A e R B e SRR Ak
rE MY S T

M= (sptf) - (sptf)°

and

U ' . . . 1
. . : A ‘Mn{x: | £ (x) | zﬁ-}.' ,

3 An. We claim that An is a finite set for

n=1

vC1eariy M=
every n. Suppose this is not true for some n. Then choose

i
)

!

t 14

\

b

}

' s

.
T F e ko ekt s iy . el e . P
B e 387 ST L e TR e TP S T s B R M,

‘ points ‘
; _ a<ﬁal<a2<...<aN<B,
! .
; \\ , where a €A for each 1 <i <N and N arbitrary, and
' consider a partition . 4 ,
T
a=by<by<.... <by=Db ;
s
such that a;€ (b;_y+. b;). Since a, is not in the g
. “ g
\ . }
g ]
i




b ety g o e Sonss 8w Aweras WE s wen p ol e

Ly

‘ { - . - ] 11
e -/\ v ) ’ ’ L~
interior of sptf, there exists a point c;€(b, 4, by)
such that' f£(c;) = 0. Thus |f(a)| 2 1 implies o .3
b- ' \ | ' ’
i 1 ' \ ‘ :
v £ 2 a for each i, and N ) s
bi—l - - - o N
b N Py N 1
VE = \ni vE -, ‘
. a i 1= bi"l ,;
o ' b . ,
- Since N is arbitrary, this implies that Vf = =, i 8
: \ . i

a

1] I N

Cont;adiqtioh. ‘Hence A, is finite for each n, and M is

countable., The conclusion of the proposition follows.

Q.E,D.

. @ ,
We conclude this chapter with a discussion. For =

a piecewise. C2 transformation with inf|t’| > 1, 1let F
be the space of functions invariant under t . If feil ¢
‘ ’ denote by [f] thg class of all functions which are equal
a.e.. to f£. By what we have meﬁtioned eaflie;, for each

. ‘
fEF there exists a function of bounded variation g€[£f].

Yy
: . By the preceding proposition, sptg = ( U Kn) U M where
' nz0

the Kn are disjoint intervals and M is a countable set. ;

"Letting £, =g on -UK and f.. = 0 elsewhere, we get
1 : n 1 :
. nz0 -
£.€(f] with sptf.= U K . Changing the values of £
1 ) 71 ns0 B - 1

on the end points of each K.+ if necessary, we obtain a

Sy TAER S"“""’\'M‘cﬁ’} -

" function f2 with suppdrt equal to a countable union of

disjoint closed intervals. Notice that f2 is not




2

12

A\ +

necessarily of bounded variation, but since féEIf] = [gj,
it is of bounded variation in Ll.\ Summarizing, given
f€F, there exists a function f2 equal a.e. to £ such
that spt.f2 is a'Eountabie (ox fﬁnite) union of closed
disjoint intervals. Hence we may assume, without loss of
generality, that each function invariant under 1 is of
bounded variation in y; and @ts support consists of a

union .of disjoint closed intervals.

We will make a further assumption about the support .of
L

an invariant function: any two alosed intervals in

sptf = U'I£ wiil have to be separated by a set of positive
220 ,
measure. We explain how this is possible. Let
S =gsptf = U I£ where the Iz‘s are closed disjoint
£20 "
intervals. 1f S®~la,b] then m(s®) =0 and by changing
the values of £ on S we can extend the support to the

whole interval | [a,b]. 1If m(Sc) >0, we define for xe€S8 )
\ ,
the following functions:

¢

p (x) sup{h : m([x,x+h] N S) = h}

A(x).= sup{h :m([x-h,x]'n S) h} .

[ _ ’ . _ ¢
yow,for IL = [at'bll' let KL = [aL-A(al),b£+p(b£)] and

T= U KZ . What we have done is to extend the intervals,
£20 ’ )
!

IL’S as far as we can, ignoring sets .of measure zero in

Sc, in such.a way that any pair of intervals~are separated

by a set of positive measure in S°. The KL'S are closed

RO Al

R L TN oL E. L IS W TS R e

!
3
i
¥
b
b
*
i
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.and disjoint. Furthermore, if an interval K is containea

Fd

a.e. in L' then X is completely contained in one of
' Lzo : « '

the Kl.'s' "If this were not true, then KnKn'l#cb and -

X n'xn +9% with n*'m.‘ Suppose then that Kn<Km’ i.e.
supK <infK . Take any interval [x,y] in K with

xEK and yEK . Then m([x,y] nT) <m[x,y] since K - and
Kn are disjoint and are separated by a set of pos:.tive
measure. In particular, m(KNT) <h(K) and conseguently
KgT. This is a contradictic;n. ’ 4

) Tf\us, with this represen‘tat_ion of the support, we cen

affirm that if an internal K is c¢ontained a.e. in

L' then it is contained in one of the Kz's.
Lzo ’ '

.
S AN E T S VYR 1
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, \ ', itself. We assume that dim F 21, where F is the space ,

\

CHAPTER III

INVARIANT FUNCTIONS

i

Throughout this chapter, T is any.measurable non-
singular transformation from a compact interval I into

of functions invariant under T .

3.1 INVARIANT SETS = . . - .

Let A and B be measurable subsets of I. We say that
A is included almost everywhere in B, in no}:atign Ac ﬁ,
j:f almost every element of A is in B, that is m(A-B) =0.
A\i‘so we write A ~ B e ACB and BSA. Clearly AmB if

A
and only if m(AAB) = 0, . where AAB is the symmetric

‘difference of these two sets.

.

Definition 3.1: The set A is said to be invariant
: T -
(under 1) if A is measurable and Tt(A)~A. Notice that

this de\f.c'inition does not imply r—l(A) ~#A but only
L. :

\
A N

We pow list some obvious consequences of these

AcT.
~

definitions which will be used freely in the sequel: L.
. :

f \
e (a) AcB = m(A) = m(ANB)< m(B).
! o
\ N ' .
(b) AcB = [fdm = [fdm for every fELl(I)’,
\ A ANB

~

— O AR W Tan i 3
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14
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(c)- I\f) A and B are invariant under- v , 80 is

14

o : AUB since T(AUB) = 1(A) UT(B) mAUB.

o In general, contrary to what is affirmed in {2}, the
\

sets ANB and A-B will not He invariant when A ‘and B

« . ‘are invariant, as can be seen om the following examp'lez

( —

— -
T, e — w— v - - -

Wl - - - —
YW

I
|
I
!
l.
|
f
!
[

2

I \v/ﬁ }

L Figure 3.1 ‘f
.

L. 5
’ . / \ ‘ |

Let 1: {0,31+[0,3] have the above graph. If we let . A

A= [0,2] and B = [1,3], then A and B are invariant,

but ' .

il

t(ANB) = [1.5,2] $ANB

It

’ \
and T(A-B) [0,2) ¥A-B .




v G“Mr
/\ function f,
<

ro. - ' 15

., However, in\Lemma 3.3, we show that if A is the
suppoff of some invariant func,tion‘, then ‘AnB and A;-B :
will be invariant for every invariant set - B. .

Before establishing some impt\artant properties of

f !
invariant functions, we need two preliminary results.

Lemma 3.1: ‘Suppose A is a measurable subset of I

satisfying Tt1(A) cA. Then, for every invariant

[ fdm =0
iy -a
..1(

Prof: We nofe that 1(A) € implies Ag=x

£ is invariant, we have:

4

a - =1

i
S
rh

A

]
“—
Hh
g
+
—
Hh
g

g
g

and the conclusion follows.
J Q.E'D.

N\

Lemma 3. 2: Let £ be a non—nega\tive invariant function.

If Acsptf and 1(A) <A, éhen A . is an

‘e oyl

invariant set.

A). Since .

R
4
&
¥
{
3
El
]
?j‘
]
i
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, Proof: " 1(a) cA " implies- A:r-l(r(A)) ST—]'(A) . ’

!
Let B = 1(A). Then we get the follaWwing chain of

inclusions: ;
o N - Bcact l(m) et a).
g 3
since T (B) €B, we obtain in view of the p;.:eceding
lemma -~ 4 ' \
[ £dm = Q. . .
-1 ! [
T (B) -B R
S " But . . : o
: , | _ ,
' 0= [ fdm = [ fém + [ fdm .
‘ + Y- 1l@m-a PP
9 4 i
é Therefore,
o, .. . '
\ ) . . ' I fdm =0 ’
' Coe A-B Vs i
.i o . .
‘, and since "£>0 on A, it follows that tn(‘zL-B) = 0,
i.e. AcB and A is invariant. “ ,
’ X QOE -D. ' 5
,\ / v, ! \
A% o "
"
’ - v [} . ~ '/
L .‘q' &
| A !
' ’ j
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3.2. PROPERTIES OF INVARIANT FUNCTIONS
I : s

Our objective in this section %s to prove‘twq important

- properties of invariant functions.

(1) If f is invariant, then f+ = max(£,0) and
£~ = -min(f,0) are also invariant, and sptf . is an

'

invariant set. 4

(2) Given any finite collection of linearly independent

invariant functions, it is possible to "transform” it

into a collection of non-negative invariant functions
|

i with disjoint supports.

For f any real-valued function defined on I, we
let ‘P(f), N(f) and Z(f) :denote the sets where\‘f is-
positive, ﬁegative and zerolrespectively. Notice that
sptf = P(f) UN(f). We will often write P,N and Z for
these sets when no ambiguity can arise. Also, if A is
any subset of I, thgﬁ Xa w;ll denote the characteristic

function of A, i.e., )(A(I) =1 if x€A and O

otherwise.

\

Proposition 3.1: Let f be invariant under <t . Then

~

(1) the sets P, N and spéf are invariané.

(2) £V and £ are invariant functions.

R N "‘ e o S i ot et e

o i
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Proof: L , - E
(1) Since .f is invariant, we may write: . i
. ‘ , i .
ffdm = [ fam = Qfdm + [ '£dm .-
P iy e THeym 2
1f m(x"l(P)nN) >0, then .
. . o fam <0 - E
ey nN | ‘ oo !
" , | \ @
. and we get. y é ‘
! . ', ' \’g
’ 3 A4
o [fam < f fam . . ° P
3 : ’N‘ “v . o s . P ‘ , T-l(P)np> % |
o g : S 4
- ' {
SRR . which is impossible. . Therefore we must have 3
w(t"1(P)AN) = 0 and m(x"1(P)NP) = m(P), -
N -
\ i.e. t ey cn® = Puz and Pt (D).
| \ . N s
| P - Hence . Psr"l(P)gPuz . v
j
S ) (Notice this/ implies that™ £ is a.e. zero on - ;
“ ,'t"l(P)'-P.) : Consequently, we get the following . "
inclusions:
. . -1, ., -1 . - 5
. i . TR gPct “(t(P)) gt " (P). . .
. . ; ’ . . . ] !
< a
! s 'I. .
L st oo+
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Letting A = T(P), we then have

T(A) gAchr'l(A) 51_1(5‘).
Now, by Lemma 3.1,
’ I fdm* = 0 ' '. : ' . .
‘ T -a |
and so ’ |
0's [ fdm < [ fdm = 0.
B-A 1 Lmy-a
Therefore,
s,
[ fam =0 , -
P-A .

“

and since £>0 on P, we must hHave m(P-A) = 0.

.’

Thus, PcA = t(P) and P is an invariant set.
A similar argument can be used, to prové that N
"is invariant. Finally, *sptf is also’invariaht“

since sptf = PUN , a union of"two invariant sets,

(2) Let B .be any measurable subset of I.. thicing that

£

£t = £xp + Wwe have T J

. '£f+dmu@= lfafxpdm = [ fdm

BNP
S ‘e = [ fdm= [ fdm A
- : - 7 leapy Tlmynd e :

S R IT s Ao '4,_?:.&/;:“-;:‘:‘ g SR AT

o

A« AR sobh SRS A TATRRIES s e et Sk Abpar el T b b
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- 5 0 . .

But, as,shown'infthe first part of this lemma,

" 2, : e

o
J Foon .
. o

pct i) cruz . -
X " , ~ 4 - - ‘
Y . ;% : * y. .
Therefore, .

- . .
. .
Ay , .

®  l(B)np

of

[y ° L]

' - Thus £% is invariant under T .- ;The proof that £
is also invariaht follows from the -relation
!
£ = £' - £ ~and the fact that invariant functions

- form a subspace, of Ll(I),. -
. . Q.E.D.

L4

o

Lemma 3.3: ' If £ is invariant and A _any invariant

set, then.. R _— o ;
(1) fo is an invariant function: s

. ] .
o LN

(2) the sets (s'pt £)NA and ‘(sptf)-A -are

0

AN " invariant. - ' N

<+
~-a
i
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ii (1) It suffices to show that f+xA and .f"_"xA are

‘;T | invariant. Let B be-any ﬁeasurablé subset of I.

Since Agt'l(A’) and £V is invariant, we get

. s l -
¢ . ‘ H . R o

(‘ < ; J£x,am = [ ffam = [ £ am .
" . B BAA Y (Bna)
, ; ]
‘¢ 4 + '
’ ' g 4 ‘ ' b = Il _1f dm
‘ (B)nT ~(A)
‘ = [ fam + £t an
1 ‘ 1 -1
] . (B)NA -, ()"t (a)-a]
6 £ . ,
. 4
: . \ = [ f+)'(Adm + 0 C
: : o Tl

{by Lemma, 3.1).

\

\/. - ' This proves the: invariance of f xA A similar
- argument holds for £ XA g d
e . S o .
. ' (2)- Since sptf = PUN, it suffices to show that PNA '
L and NNA are both invariant. Notice that P = spt £F
B - '
S . and N = sptf , -and that these sets are invariant
‘by Proposition 3.1.
D T, I' . ' ’
1 ! . : * NOW,
.o - .. - ‘ - .
ot . ‘ - v 1(PnA)Yct(P)NT(A) sPNA .
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Applying Lemma 3.2 to £t and .PNA , ‘we obtain ’,

Io
the invariance of PNA . Similarly, NNA . is an’

invariant set. Thus (spt£)NA is invariant.
To prove the inyariance of (sptf)-A, it

suffices to show that P-A and N-A are both

o ! . s
invariant sets. If we could show that T{(P-a) SP-A;
then Lemma 3.2 applied to f' and (P-A) _will ° ‘\\‘

. —

establish the invariance of P-aA. To pi:ove that

T(P-A) < P-A , first notice that ,

J £dam =0
= la)-a

)
i
{
{

/

by virtue of lLemma 3.1. Therefore,

f ftam =0+ . -
PN (r'l (A)-a)

. -

*and m[P N (r-l(A)—A)J =.0 . But

(>-a) - v (p-a) = (-t (p))-a) v [pn(x L (a)-A)] ¢
. - * _ .
and since P'g " (p) , we get nf(p-ay-t~t (P-a)] = 0. ’

e

i.e. (P-a) ¢ 'r—l(P-A) A ‘ '

or T(P-3) € P-A,
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Hence P-A ‘is invariant. It can be similarly shown

1

that N-a  is invariant.
) Q.E.D.

Lemma 3.4: -If fl and * f2 are linearly independent

functions in F , then there exist 9, and 9,
g

»

in F such that ,

() gy20,9,20 and |lgll = llgll =1

R el

(2) sptql and spt g, are disjoint.

A V-0 g

{.‘ N
(3) For each i =1,2, spt 9; .is contained in

(spt£,) U (spt £,) .
Proof: Dividing by ‘their Ll-norm if necessary, we may
.assume that || flll = ‘an,z' | = 1. If for i =1 or 2,

we have m(P(fi)) >0 and km(N(fi))v >0, we may

take ’ ' e
—-f: d ‘- fI " i ’t

and the lemma is’ proved. We have the remaiming cases

" when both f'1 ,and f2 do not change sign. We

assume. f, 2 0 for each i, replacing ‘fi by -f;

- G
PR SR IR

if necessary. . Now, if fl 2 f2 a.e., then

“ fl_fZ:“ = ” f'l ” ; “ fz ” =0 andigg.‘\fl =.f2 2.e,

—

R A 4 s et w2, o Sl e €
-

B B BRI e O T NN 5
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which contradicts their linear independence.

Similarly, we can't have f, s f, a.e.. Therefore

1
neither fl - f2 20 a.e. nor fl - f‘zﬁs 0 a.e.
- o~
is true. Consequently (fl—fz)?’ and (fl—fz) are
1 | not zero a.e... Let
C O ggEt ' (£,-£,)"
g. = 1 72 , and | 9, - 1 72

oot e, ~£:5) 7 ]

Clearly, these two fupétions satisfy the conclusigns

©
o

of the lemma. ) . ; Q.E.D.

N T e © Nl i-';ri;‘g.'{m’:l_{}‘;?. 52 "‘Eﬁé_'::};:;?'~',"';'§*-""f* Al _‘.T—i crii e S I

-
- s

Lemma 3.5: Let {f, f,, ..., fm} be a subset of F

T 1 1

‘ with disjoint supports, I fi“ & 1 amd £, 20 i
,’ for all lsism . If f€F is independent of 4
;* {fl, ""'|f1ﬁ}' there exists a set &f non-negative
: : g
functions {gl, ces Iy m+1} cF with disjoint supports F
; and J|g.]] =1 for lsism+l. 3
. h R ] g
i

Proof : Without loss of generality, we may suppdse !

£20 a.e..For if both P(f) and N(f)fhave i

. . - _ :{x

positive measure, then we claim either £  or £ i

“is linearly independent of the f i"s . Otherwise,.

Ry ]

2
AW s+ Wb b s

:
g
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and - £ is dependent on {fl, ceee ,fm} . Hence
we replace £ by £t or ,f and we obtain a non-

negdtive function in F inﬁependent of the fi’s.

/
. . m '
R . Now, let S, =sptf,, .S= US,, A=sptf
: i i . i
‘ i=1 . :
' and consider the following cases:
N y :
1 : . ' . X
(1) SNA ~ ¢: The lemma is obvious if we let g; = fi
~ . £ .
, Co for 1lsism and g = —— .
- - mrL e |
] (2) SNA# ¢ and AgS: By Lemma 3.3, the set A~-S
is invariant, and therefore the function f£* =fy, .-
is invariant. Let 'gi=fi for 1=x {sm and
) . £* '
. . g I ema————
L e
(3) SsA: Suppose for every l<ism there exists
oy - such that fxsi = aifi. Then
IQ‘
‘ m m
f=fy, = I fx. = I o.f,
R T TR T 1 N
and £ is dependent on the fi’ s. Hence there
* must exist an index 3, isj <m , such that~
JEER R . £Xg is independent of 'gfj‘. By applying

N

PR e

o 2

o et T Sk o 5 RS

Lo S TN P A ]

et e el o
.

it e P e
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(4)

£ will be dependent ¢n -all of the

Vol
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G
S

Lemma 3.4 to thése two functions, we get gj and

) with disjoint supports, each contained in Sj'

: m
hence disjoint from U s,. Take g.=f, for
. i i i
i=1 N ‘
i%j

i+j, and the lemma is proved.

m(ANnS) = m(a) <m(S): Here we have to consider two

possibilities:

(a) If A is a union of some

Lemma 3.4 to fj and £x to obtai . and

Now let gi=f. for 1i+7.

Im+1” i

(b) There exists an index k such that
AN Sk‘i‘sk?

* k= =
Let fk, kas'k-A B and £ fxsknA -

~

. . )
These two functions are invariant and have disjoin

supports included in - Sk’ Let

\
‘ .

B e

P DU e PLIE T L ST

e s



* .
gL =k o i f
ST TR v Sw T T

*

.(/)\'

and g; = fi for l<ism, i#*k ... This completes

the proof of the lemma.

Q.E.D.
Q ' . ) i

We now come to the main result of this chapter.

Proposition 3.2 . _

Let {fl,;.;,fn} be any independent set in F,

where n22 . Then there exists a set of non-negative

v Y

v

functions {gl,..;,gn} in F ., with disjoint supports

and {]g,|] =1 for each i.

The proof is py induction on n. For n =2 ,
. " this is just Lemma 3.4. Suppose the proposition’is‘
‘ true for nz22 and let‘ {fl""{f

n+l} be a linearly

independent set in F, assuming that such a set .

o

, . L exists. By the induction hypothesis applied to

R e .
T e B Vit vt A AR e e AN 5 M e, I PSS TR el & e o SR o i »«-w-«!ﬁ%«._
E ol - . - . i

'{fl,...,fn}'there exist functions hl,..'.,hn iq F

-

which are non—négative, having disjoint supports and
tl-norm equal to one. Since dim F2n+1, let’
hn+i be any function in F indgpeﬁdent of |
{hl,...,hn}. Applying Lemma 3.5 to the h.'s, .we.'
get fgi,....g;+1} which satisfies the conclusions
of the proposition.

[ - . . QQE-D.

b
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We close this chapter with a remark. 1If

dim F = n<w , then F has a basis consisting of non-

’negative functions with norm'one, and having disjoint

Y

supports. If [fl,...,fn} is such a basis, then, for

each 1, the measure dui = fj.dm is not only invariant,
A_’Q

but also ergodic. For if ui were not efgodic for some

i, there would exist a set Ac:sptfi such that

Cﬁsl(A)==A but 0<1ﬁ(A)<l. Define two new measures by
GéauiIA and n==“i](sptfiy-A . It is easy to see tha%

these measures are invariant and independent. Thus we

O

increased the number of absolutely contipuous independent

invariant measures by one, which yields a contradiction.
¥

s Also, it is worth noticing that such a basis is unique.

To see this, suppose {fl,...,fn} and {gl,..l;gn} are L

two bases, each of them consisting of non-negative invariant

v

functions with norm one and having disjoint supports. If

one of the gi’s, say 9. is not equal a.e. to any of the

’ P b :
fi s, then we must have 9 a1f1+...+anfn with at least

- A —
two non-zero scalars, say gi and ak. L?t 9, = glx

.

sptfi
and g9, = glxsptfk' By Lemma 3.3, these two functions are
invariant and consequently the set of functions

{61(31'92,...,gnj have disjoint supports and/ﬁgxé/are

independent. - This is 'a contradiction since . dimf =n.
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CHAPTER IV
UPPER BOUNDS FOR THE NUMBER
OF INVARIANT FUNCTIONS T

i

4.1. 'THE LI AND YORKE THEOREM

Throughout this section, = ié a piece&ise sz
Eransformation mapping the interval into itself, with
inf}r’!>l ~where the derivative exists. We also denote by
F the space of functions invarianf under T. As'mentioned
at the end of Chapter II, we will assume that the_support'of
each f€F consists of a countable union of disjoint closed
intervals. Let {xl,...,xk} be those points in (0,1) where

r

the defivétive T does not exist. We will ref'er to these

v

points as discontinuities of t. Our objective is to show
that the number of independent invariant functions is
bounded above by the number of discontinuities of 1, that

is dimF<k. This is the main result in [2]. First we need

an important lemma.

Lemma 4:1

: : P
Let f €F *be non-negative with sptf = U I
k=0

l<ps= , where the Ik’s‘are disjoint closed intervals.

kl

Then
(1) There exists an index £ such that 1} contains

\

at least one discontinuity xj *in its interior.

(2) p<e. I

- e e PR B
By gl e SRt et el 2 i g S R R L
B RERR, o D e e S S

B L
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Proof:

(1) Suppose for each 4%, I, does not contain any

discontinuity X in its interior. This means that 1t is

i
4

strictly monotonic and continuous on the interior of each

-~

I,, and since inf|t’|>1, 1t 4is uniformly expanding.
Therefore for each 0<Z<p, T(Iz) is an interval with
length greate&'than m(Il). Recalling that sptf is

invariant undey 1T, we have -
‘ (spt€) = T( U I, = b (B » U1
T(sp =71 = () = .
2=0 ¢ 2=0 £ =0 ¢

Now let kl be any index;-'r(Ik } is an interval

1
P
contained a.e. in U IL and since these are disjoint and
: ’ £=0
v - m(t(I, ))>m(I, ), there must exist k. *k such that
: k k 2 1
1 1 , Y
I, VeI, and m(I, ) >m(I, ). Repeating the same

1 2 2 1 e

- N .
'argument, we may construct a sequence of intervals {Ik i=0
. . ' i ;

with strictly increasing measures which are bounded below

by m(Ik ). This is a contradiction since the Ik's are
' 1 : i

disjoinf and contained in'-a finite interval. Therefore, at

B3

least one of the I

r

K § muast contain an x, in its interior.

g

I
(2) et D= {0<ks<p : I contains a didcontinuity of .

1t in its interior}. 'By the first part of this lemma, D

is not empty and is finite since there are only finitely

Gt gionn ama § wre w  T -

many discontinnities. Notice that when k€D, T(Ik)

!

o«

. S . . e v e e <t
e - - -
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H
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b
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B
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i
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4

. implies that T(Ik) cI,

consists of a finite union of intervals. Let J be the

shortest interval in the collection of intervals

| T kep ¥ T e “

i .

and let S be the union of those intervals I£ such that’

' m(I,) 2m(J). Clearly S is a finite union of closed®

disjoint intervals and I, <S when kE€D.

k
kc S. \Y
If k€D, then T(’Ik) is an interval contained in I )

k
1.
for some k; *k and m(Ikl)Zm(T(Ik))>m(Ik) 2m(J), which

We claim that 71(S)<S. To see this, let I

cs. If k€D, T(Ik) consists

1
n &
of a finite union of intervals, say u Ji’ with .
: i=1

m(Ji) 2m{J) ‘forf each 1sis<m. Also each Ji is contained

in some I Therefore ‘m(Ik)z m(Ji) and I. « 8§ for _'

ki ) i ki J
each i, and '
m , m '
T(Ik) = ~21Ji c iglI‘kic s .
This rpro es our claim. | ‘

. ‘if sptf =8, then p<‘°° and the lemma is
proved. Otherwise, (sptf)-S is a union of disjoint
intervals and if we let X denote the largest interval in
this collection, T(K) is an interval with length greater

than m(K). Hence T(K)# (sptf)-S, thus TI(K),CS ‘and

1

Kct ~(S). By Lemma 3.1, N ;

E
3
X
o
;
3
8
&
i
1
-
i
b3
B

S Akl s bt D

g

R

‘e
-

R, e

Tihgms,

N

)
PARSAY
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f fdm = 0.
Tﬁl (s)-s
“and since K;T”:L,(Sj—s , we get
ffdm =0 .
K .
This is a contradictivn since f ' is non-negative and
Kcsptf. Thus spt£=S and §<m.
) . Q.E.D.
\
Theorem 4.1
With the above assumptions on 1T, there exists a
finite collection of sets Ml""'Mn and a set of non-
negative functions {fl, ...,fn} cF such that , .
H ! :

(1) Each M, is a finite union of closed intervals.

(2) M; MM, contains at most a finite number of points

when 1i#3j.

(3) Each My contains at least one. discontinuity

X in its interior, ‘gnd hence n <k.
Co. : [ - -

(4) £,(x)=0 for x¢M, and f,(x)>0 for almost

all x in _Mi'

(5) f fidm =1 for each l1<is<n.. . - :
M. . Fi
i .

(6) If g€F satisfies (4) and (5) for some 1lsisn,.
. then g=fi a.e. .

L . n.

(7) Every f€F can be writtenas f = ¥ a.f,

, ~i;—-l 1 1
with suitably chosen {ai}. '

3

L

P

v e

o

S e
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PrbOf: i N ’ -
Most of the work has already been done. We~know that

dimF 21 by Theorem 2.1. Let {gl,...ng.be any independent I

set in ‘F. By Proposition 3.2, there exist {fl’f"fj} in

F Witﬁ disjoint supports and, in view of the precedingw

. lemma, the support cﬁ_éggh fi has to contain at least one

discontinuity xj. Thus . j <k , i.e. each independent set

T}

in F contains at most k elements. Hence ‘F 1is finite-

3

dimensional with dimension nsk. o .

]

’ Let {fl,...fn} pe a basis for F consisting of
non-negative functions with norm oné, and having disjoint
supports. If we let Mi = sé;fi_, then cgnclusiqns (1).to
(5) and conclPéion (7) follow. ° | J

It remains to prove (6). If g€F satisfies (4)‘and
(5) for some i and g 1is not equal a.e.ht? fi’ ihen
the functions (g4fi)+ and (g—fi)- are invariant with
disjoint supports. Also both are not.zero ;.e.q(see a
similgi argument in the proof of Lemma 3.4). Therefore; we -

get n+l lihearly independent functions in F, which is.

impossible. ' Thus. gw=f£ a.e. .
' Q.E.D.

P
£} 9

Definition 4.1: By'a maximal set of disijoint (probability)

* density functions for T we mean a set of non-negative

functions {fl”:'fﬁ} which satisfy the conclusions of

Theorem 4.1. - L,

~ ’ D

o e T+ h ket e Son bt T

2
AR U
!

W&- S e L l,-"«:-»‘:'::"“"“."\\ & R LaadblArEN

LS s A

.

[EN

f

N
pew ol oo,



Rl T

; * t?or x€ 0,11, consider the orblt {xn}n 0' where
o , Co
; x;l,j:—‘«_. r,’(x) r Xy = Xyl and denote by A(%) the ‘set 6f its
i limit égiflts, that is . C . .
- ; . ] '3 . L4 *
; R v : . . ' ' » .
P oo [/\(x) = n {1 (x)} . ,
H h
-, . 5
: . N , ) .

We.'will show that forvalmost a{l x .in [0, l], A(x} is-

P . one of Mi's. -Notice~+that if y€~~A(x) and .t is

~

. continuous at this point, then-for éome\ subsequenc¢e

R . '_ _ We close this’ sectlon by proving an J.nterest:mg result.

[

b > - .
:’ Co m{"nk}kzo converging to 'y, we have ‘ ey v
‘g 4 N , - o
| ' , ,
Lo : T(y) = lim 1¢(x_ ) -= lim X .
be ‘ , kv P kaw 1D
[ ’v . - ‘ . \ 4 . /'
. . e Therefo'res T(y) €EA(x) and we conclude that 7t (A(x))cA(x).
J . . - . "
f o ,.,, . Proposition 4.1 Lo, : Y
- ,Q): ~ R N ' ) . . ) ' +
L . S, 7 ~FPor almost every x in [0,1], A(*)w M, for some:
. PR | <isn. -~ :
- ¢ ! N \ ' . ! - ’
Lo & ¢ Proof: ‘ ' .
Y T ——— pos ' -k . ) ‘ _o. .
Let. L, = U (M ) for “1s<sisn , where "1 "(M,) =M '
) i , . R 1
: k—O g , )
e ; ‘We first prove that U Li S [0 1] . Suppose t_l'{is is' not the
e LS - : ' < 1‘-‘1 N , - a
.o ,,?" case. Then there exists a set B with m(B) >0 in .
. [0,1] - U L, Let f = Xg+ By Theorem 2.1, the function
) . o i=1 1 . ‘
1 m"'l k 1 ° -
- = X P f converges to'a function g+ 0 in the L -norm
Y . IR k_o
« . (:\"Ir
. . ‘ , <
. P ° 5(- "‘
a M ~ a (4 o
T, o— - SRR .
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‘ | and g" is invariant under Tt. Let Lo ;"sptg . Without .
loss of gener,alltj we may suépoée g>0 in Lo' We claim
that m(Lo nM,) =0 for each i. To ,see this, -let AcM,
‘fo'r some i€ {1, . ,n};_ Then %~k(A) C.Li for all k.

Hence, since' L. Nsptf =¢, T
i

dm = [ P fdm = [ fdm = O,
A F “Kiay :
) © - (A) -

L for all k. Therefore Jgdm =0 and m(L N M,) = 0. This
. A .

-

contradicts conclusion (7) of Theorem 4.1. Thus,

’ n
. [0,1]~ U L.
= : |

.
¢ 1

« Now for almost all x in Mi' by applying the

“\ Bﬂrkhoff Ergodic Theorem [3], we have

o

. co ' A; p m-1 k. [ :
- . lim = £ x, (th(x) = £, dm =1 . .
mee Wx=0 Mj M, L '
<« 1 ’
e .
¢ [w] o

_ Hence A(x) S M, =spk fi . 'k"since (A (x) chA(x), Lemma 3.2

'Y

N -
j’ implies the linvariance of A(x). We claim that | AxX)w Mi'
, ' If this were not true, then by Lemma 3.3, ° fi restricted

to A(x) would be an in\}ariant function which could not be )

o

written 'a:s a linear combination of .{fl"-'"fn}' and this
-gontradicts conclusion (7) of Theorem 4.1.

-
‘
[l L4 - [ - s

Q.E.D.
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4.2, IMPROVED UPPER BOUND3 (New results)

- Again, ‘let T ‘be a piecewise ‘Cz function with

inf|t’| >1. In the preceding section, we considered the

points {xl,...xk} in (0,1) where 1’- did not exist and
. o~ i

we found that k . constituted an upper bound for n, the
dimension of F. It is actually possible in some cases to
improve this bound.

In this section, we will consider} the partition

'

O=bo<bl<...<bm< bm+1=1 ,

where 1 is continuous and monotonic on each interval

i1’ bi) . Clearly ms k.

| a

Theorem 4.2: With the abo& notations; dimFsm’.~

v

Proof:
Let = {f,,...,f} ‘and‘ Myreo-Mo 'be as in Theorem,
4.1. We claim that for each i=1,2,..,n, Mi contains

some’ bj' l<j<m, in its interior. Suppose this is not

" -true for some i,” and let [a,b] be the largest interval

J.n Ml Then T is monotonic and continuous on (a,b) and
since inf|t’|>1 , t(a,b) is an interval with lengt’im )
.strictl'y greater than [a,b]. But Mi is invarial'ft under,
T: ,Thus T(a,b) CT(Mi) ~Mi and Mi contains ’an
interval larger (than [a,b]. This contradicts our c;hoice
of the interval [a,b], and the ¢claim is proved. Since

the Mi's have disjoint interiors, we see that n canrot
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be greater than m.
' Q.E.D.

Y

- Remark: Roughly speaking, this theorem says that the

number of independent invariant functions{(underir) is at
most ene 1ese than the number o0f continuous monotonic pieces
in‘the graph of 1t . In-the special case where 7t is |
continuous on {[0,1], the ﬁotal number of peaks and valleys

in the graph of Tt constitutes an upper bound for- dimfF.

In section 3 of [4] an ubper bound for the number of

absolutely continuous invariant measures is given in terms

-of the number of "independent pairs." With the same

partition ‘as above, let u, = 1(b,) and v, = T(b+) for
b k k k | SO

each l1lsksm. The pair <uy vy 2 will then denote the

open interval (uk,vk) or (vk,uk). If U =V then

<up, v > ={ult. Two pairs <u;,v,>, < uy.vy > are said -

to be independent if the corresponding intervals have no end

points in common, that is either they are completely disjoint

or one lies strictly inside the other., If NT - denotes the

maximal number of independent pairs, then Theorem 2 [4]

affirms that the number of independent invariant functions

is bounded above by Nr' This is actually not correct and

we furnish a counter-example:.

|
s;
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Consider the map whose éraph is given in

!

Figufe 4.1.

- e v ane o
- e Sl e - —

11! ('
Z | | A :
| | | |
- ! I | N
b ( l i
' | T i .
' | ' |
! | 1 L
1 1 3 g
\ T 2z 3 1
‘ Figure 4.1
. 1 1 ' l
There are three pairs <§’0>'<'2' 1> and <-2-,l>

and, according to the above definition, they are all depen-
dent. Hence NT==i and consequently there exists a unique

invariant function. But if we let

o ) E f

1% Xpo,1/21 ¢ *2 T X[1/2,11

and dui=fidm, then clearly By and u2 are both

invariant and independent. Hence Nr is not an upper bound.
We suggest'an alternative bound based upon a modified :

definition of "dependence". With the above assumptions on

T and its partition, let D = {bl'bz”"'bm}' We shall

say that b, and bj are dependent if
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'T(bi_g'bi+s) nT(bj—E,bj+€)

has positive measure for every ¢ > 0. This implies, but

is not equivalent to

- + - +
-f‘l’{(bi) ' 'l'(bi)} n {‘c.(t,>j) ’ T(bj)} 6,

o

This definition of dependence €9r a pair of discontinuities
in 7 is reflexive, symmetric but not transitive. A
collection Sc?D is said to be dependent if every pair of
points in this collection is dependent, and maximal if S
is not a proper subset of any dependent collection. Notice
that two distinct maximal dependent collections may have

non-empty intersection, and such a collection may consist

of a single point. Thus.given tﬁ €ED there exists at

least one and at most two/maximal dependent collections
containing bj' In particular, when T is continuous at
bj; there exists only one maximal$gependent collection
containing this'point.

Let NT be the number of distinct maximal dependent

" collections. We have the following result: ~

Theorem 4.3 : ,

The number of independent invariant functions for 1

is bounded above by N_.

N

i
1
7
{
{
2
:
!
3
¥
z
i
;
1

e AR, AR ar o P by FOs e

ot
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Proof:

i
l

We show first that if fl and £, are invariant with

disjoint supports, then to each. fi corresponds one maximal

dependent collection Si and Sl * 52' Letting Mi = gpt fi ,
we know from the proof of Theorem 4.2 that intM; has to
contain at least one p'oint.qf D, say bi. Let 18, and

S. be any maximal dependent collections containing bi

2
and b} respectively, and suppose §,=S,. Then b] and

’
b,

for some € >0, their dependence implies

‘are dependent and since T(Mi) SMi and (bi—e,b£+e) CMi

-

i [ ’ r_ [ W
m(MlnMZ) zm[r(bl €, bl+e) n-r(b2 €, b2+e)] >0, /

\ ).
This is a contradictioh. Therefore S, and 5, must be

distinct. - —

\ h ! v
Now let {fl,. ..,fn} be a maximal set of disjoint
density functidns for T. By the preceding argument, we' .
see that there exists a one-to-one mapping from {fl, .o .fn}

o
into  {S;,...,5;}. Thus nsN_
T Q.E.D.

Example 1:

Consider the foliowing transformation:

SR




>

B L

. g s

e e T IR 3 et

ot

We see that {bl,bé,b3} is the unique collection which

41,

is dependent and maximal. Thus NT==1 and there exists

a unique absolutely continuous invariant measure.

A

et T h

-

‘ .
ave the following graph:

Figure 4.3
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dependent collection(s): o

42

R
<

For each disconﬁinuity, we give the corresponding maximal

o
v !

b.: rfpl rby, b} and {b) , by}

. 1
by: {b,,b,, b |
b,: {bl ,£3, bs} |
b,: {b1 ,b4} and {b2 » by 'bS}
bS: {bl',b3, bs} and {b2 'bd' bs}
b: {bé} .

{

We see that Nr==4 and therefore there exist at most four

invariant functions. Notice that the bounds given by

_Theorems 4.1 and 4.2 are 7 and 6 respectively.

-

"/1;3. TOPOLOGICALLY CONJUGATE TRANSFORMATIONS

" Dpefinition:

Let T be a piecewise monotonic transformation
mapping the interval J= [a,b] into itself. If-h:J-+J
is a homeomorphism then o==h_1o‘ro,h is a transformation

"from J into ;L and T and o are said to be

topologically cghjugate. '

T T e st s R S Ry ety i it et A ki B s PR, S
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Theorem 4.4 . ’ _ .

‘Let T be a piecewise monotonic transformation
having invariant functions. Assume that the homeomorphism
h:J3+J is differentiable. Let o= h-l s Toh. Then

\f.
v
) . a
,

(1) If f is invariant under T, then the function

f(h(x))%% is invariantsunder o.

(ii) t and o have the same number of absolutely

continuous invariant measures.

Proof:
(i)~ If £ is invariant under’ 1, then for any measurable

AcJd
f fdm = [fdm .

T-l (A) A 1

Without loss of generality we shall assume that h is

strictly increasing. It follows -that for every x,

h(x) X '
[ fdm = [ fam,= [ £(h(u))9R0) 4n s
hla,x] a ' a u

°

by a change of variable. Define f(u)==f(h(u))§gégl .

Ve

. Then for every interval B-= [a,x] we have

[ fam = [Fdm. (1)

Crem

- ., - 2 ¢ T ot . .
> ke ol S L A R R A s SR

R
'
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for all measurable sets B of [a,b].  In particular for
S W o

B=0o " [a,x] we get

1 Jofam = [ Fam . E !
alo" a,x1) ota,xl . \

r

Since h(o 1(a)) =t 1(h(a)) for any set A, it follows

that

' ‘ J fam. J fam = [ fam
. / hla,x]

yh(o-l[a,x‘]) T_l(h[arx])

[N

fdm .

L]
VY

<
> .

where the last equ:ality follows from (l1). Therefore, for

i

B AN e e RS s B s, TR T AR R T CT O RN SRR Cacui i Skt e e
- B _
«

b every x, ! e
’ X . 3
Jfamn = [ fdm
o‘-l [a,x] a i

o

and T is invariant under “o.

(ii) Suppose 1 has exactly n independent invariant

’r-xv-z-«-%:i:_..‘ o - AT Sy o

functions. Let {fl"""'fri} be a set of invariant
|
¢ functions ' (under t) with disjoint supports. Then, for )
4 L ' dh :
: ' ‘ each i, the function fi(x) = fi (h(x))a',; is invariant . E
: “ ) o ©
under o. If f£.(x)+0 then £ (h(x))+0 and §
1 N 1 :
- - -, !
u x€h “(sptf;) . Thus spt fi ch (sg:t £.) and the fi s‘ ;
' will \allso have disjoint supports. Therefore ¢ has at
least n indepen&ent invariant functions. If we apply 3

\e
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N A

' B} the same argument to o and its topologically conjugate
. ‘ T=h o0o h'l, we see that both must have the same number

! of invariant functions. . "
N Q.E.D-
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CHAPTER V
I ©
TWO CLASSES OF TRANSFORMATIONS

WITH UNIQUE INVARIANT. MEASURE

\ ’ \

'5.1. RENYI TRANSFORMATIONS . )
!

In (5] .Renyi has shown that the transformation

T(x) = Ax{mod 1) from the unit interval into itself has a

unique non-negative invariant function with norm cone for
A>1, In this section, we generalize this result by
réplaéing Ax by any C2 function p(x) with slope
greater than one. The discontinuities of T will then

be all those x’s in (0,1) where p(x) is an integer. .
Thus <t is a piecewise increasing (or decpéasing) function
with only a finite‘numbeg of jump discontinuities, each of

these jumps having magnitude equal to one.

Theorem 5.1 ‘ ‘

“
“ ° -

Let p(x) be a’ C2 function with |p’(x)|>1 for
x € [0,1]. Then the map T(x) =p.(x) (mod. 1) has'arjmique

non-negative invariant function ‘£ with |[[f{[=1.

Proof:

Notice that -the continuity of p’(x) over the compact

set” [0,1] -implies . ianp’(x)i >1, so T is a piecewise

c? funétiqp with inf|t’] > 1 " where the derivative exists.

i

Existence of an invariant function for =t 1is guaranteed

by, Theorem 2.1. If aj,....ap - denote the discontinuities

2
%
5%
"t

Lt L

o e,

-
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of T, it is easy to.see that {al,..’.,ak} 'is the unique

i3 ..
maximal dependent collection of discontinuities. Therefore,

°

by Theorem 4.3, there exists a unique absolutely continuous

3
1

nvariant measure for <. . .
i - ) Q.E.D.

]

Next we show that if |p’(x)]|> 2, then every iterate
of 1 -will have a unique invariant fuunc.tion. Before
proceeding with the proof, we need a few lemmas. First,

_we reg::all two ~defihitions pertinent to square matrices:
An nx.n matrix A= (aij) is stochastic J.f aij 20

n
and b aij =1 for each 1sisn. It is well known that
i=1

a* will also be stochastic for every k2 1. ,We say that

"a matrix B is a permutation matrix if B is obtained

“*

from the identity matrix by permutations of rows.

Lemma 5.1

.Let A be an nxn stochastic matrix. If AN= I

(the identity matrix) for some "N>1, then Ak is a

permutation matrix for each 1 <k<N.

N

Proof: Lo . o

<

We claim that for any matrix B= (bij) , the
inequality n

Max (AB).. € Max b,. - -
1<isn iJ " jgisn 13

-

holds for each ‘1 s'j <n. To see tl'.fis, let M. = Max bk' .
. ) lsksn

1

~

FB Bl 0 S Ak KRR AMSIS o s

e F A
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Ty

n

(AB) ;4 = kii Ay Pg— o

0

n n
. < za.M..=M.(-2a“)=M'.
. : ” k=1 ik J IN\g=1 ik 3

Therefore Max (AB) 39 5 M5 ' for each fixed 4§, and the
» - . lsisn ¥ J S

-claim is proved. As a consequence, we have that for each

-

j- and.any k,

' . k+1l, "~ _ k k
. .. -Max (A );:°= Max (A.A7),. < Max (A"),. .
/ l<isn 13 1gisn S PTE

A - ,
Now the assumption that AN = I cgkmbined with the last

inequality“imply that al-1

1

has an entry equal to one in

e . -géch colum Since AN. is also stochastic, it must be

a permu¥ation matrix. Repeating the same argument, we see

N-2 2

that a and A are all permutation matrices.

' A ) Q-E.D-

’

S -\

a
!

For the next lemma, we let -P , denote the Efobenious-
Perron operator corresponding to T . Notice thaf},.'if- £ is

N k

invariant under 1%, then so is P"f for each kg T since

P“ is -the operator corresponding to ™ and

o BN (p*g) = pk(pr)/= p¥e .
"\ /-—
Lemma 5.2
- . Let 'fl,...fn be a maximal set of disjoint»éensity

R

. -
- functions for ‘tN. Then for every lsisgn, Pi:‘i = _fj for

P \ &»

L o-

s R e ettt s A @ e B e sl

-
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© invariant under TV , WwWe may write

A" =I, and Lemma 5.1 implies that A is a permutation

. e
( . .

P

1

for some l<jsn. . "
Proof: ) ) ‘ . .

Ve

P I VRV T P

Invoking Theorem 4.1 and the fact that I)Dfia is
i

! N to. , v ] " ‘
n
Pf, = I a,.f.
( j=1 +3 3

&

for some matrix A= (ai'j) . The Frobenious-Perron operator
is known to be positive and to preserve integrals. There-

fote, for each i,

(=
]
Ay
h
[}
b
v
la]
]
HM3
e
El NN
]
[
.
O
Hh
Cde
S~—”’
it
|
U e =
[
fu
Wit
L)
- 4

and . ai;’ 20 for each j (If a4 < 0 for some j, then

Pf i would be negative on spt fJ , Which contradicts the

Y

°
3 \ k
. © - .
o
e ¥ Bt e s Rre o e i b Kttt B Lt s A o i A2 Lt T

positivity of P). Hence A is a stochastic matrix.

Since PNfi=fi for all i, it is easy to see that

et

N

&

ALl 5 %

°

matrix. Thus P:{fl,..,fn}*{fl,..,fn} is a permutation.

'

- , f . , ;. Q.E.D.

Lemma 5.3 , ' ' o

¢

For {fl""fn} as in Lemma 5.2, let M, =sptf,

and [a,b]’ be the largest interval in all of the Mi's. ’

Then .

(1) [a,b] .-contains at least two discontinuities of <

L]

ot R o i T R MR N

.« -

bowh, a0

in its interior.

-

A
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a

.
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B e e e
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Proof:

(1)

(2)

C1r Bl wwa p AREETIR VIS, I O A g MR (6 | et *@ -

L4

There exists an interval (x,y) < (a,b) such tﬁat

A} . .
TN(x,y)=(0,l) and T is continuous on (x,y).

We have (a,b) cMi= spf fi for some i. L By the
preceding lemma, Pfi=i;'j for some l1l<js<n, and.

consequently

1=)f,dm = fPf,dm = f £,dm .
M., 3 M, - -1,
J J T T(M.)
This implies that Mist-l (Mj)',/ ie. T(M,) <My
Therefore - 1(a,b) cspt fj= MJ Notice that (a,b)

has to contain at least one discontinuity of T,

e * *

otherwise <t (a,b) would be an interval in Mj with
length greater than [a,b] -and this contradicts our

choice of [a,b]. Suppose that {(a,b) contains

exactly one disc?ont\inuvigy‘of T, say z.. There is

" no loss of generality in assuming that z-a 2z b-z.

4
Since T is continuous on {a,z) and inf|t’|>2 ,

we see that Tt(a,z) is an interval in Mj with

length strictly greater than 2(z-a), 4i.e. greater

" than b-a. This is a contradiction. Hence,; [a,b]

. has to contain at least two discontinuities in its

interior.

Let x and y be two consecative discontinuities

in (a,b). Clearly, =z.(x) and t(y) are integers

1

50
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-

(zer6 or one) and since T 1is continuoug and mono-
tonic on (x,y), it must be that 1t(x,y) = {0,1)..
Thus TN(x,y) = (0,1) and the lemma is'proved.

\ Q.E.D. -

Theoxrem 5.2 .

13

Let p(x) be a c? function with [gf(x)}S 2 on the

interval [0,1]. Let 7(x) =.p(x) (mod 1). Then for any

positive integer N, TN has a unique invariant function.

uProof:\

For any fixed N, the existence of an invariant
function is ensured by Theorem 2.1, since TN is a piecewise

N
c? map with Igi-!‘ZZ where the derivative exists.
. : , tists,

Let {fl....,fn} be as in Lemma 5.2. By the
preceding|iemma, the support of one of these functions, say

contains an interval (x,y) with the propert§ tha£

;?(x,y) = (0,1). Since'\sptf]_ is invariant under' TN ’

fl'

we have

o«

(0,1) = TN(x,y) c TN(Spt fl) S sptf, .

The £.,’s having disjoint supports and sptfl being equal ~ 

i
almost everywhere to [0,1], we conclude that n=1, i.e.

TN..has,a unique invariant function.

'Q.E.D.
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5.2 MARKOV MAPS . .

Let J° be any compact interval of the feai line.

We say that 1:J+J takes partition points into partition

poinfs if there exists a partition

P= {(ao,al),(al,az),...,(aN_l,aN)} of J such that

7(Q) =@ where Q. are the partition points of P. If =<

‘is discontinuous at some aiE(J , we shall require that

both t(a;) and r(a;) 'be in , Q. Without loss of

generality, we shall always assume that Tt is either left

- or right continuous at each point of Q. In the case where

T 1is piecewise C2 with respect to P, this means that
each interval of P is mapped onto a finite number of
adﬁoining or contiguous intervalg of P. Notice that

1(Q) «Q is equivalent to the statement that partition
points are eventually periodic. The point x€J is an
eventually periodic point of Tt if there exists an p=n(x)
such that Tn(x) is periodic.

A map which takes partition points into partition

points is often called a Markov map. We will study these

maps under an additional condition: the partition P must

have the communication property under t. This means given

any Ii,IjE P there exist integers n and m such that
A\

n m
IjC:'r (Ii) and Iicr (Ij).

e

. M s s
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J=Jd~- U 1 (Q) where TO(Q)EQ. Notice that m(J)=m(J) .

Definition: ' j
_~ A point transformétion T:J+J 1is in class C 1if

there exists a partition P such that:

(1) T 1is piecewise’ C2 with respect to P and

inf|t’| > 1.

v

(2) 1(Q)c<Q where Q are the partition points of P
(3) P has the communication property under T.

We will show that each T in class C. has a uniqué
ébsolutely continuous invariant measure. Our first objec-
tive-will be to prove the existence of a dense orbit in J.
Using symbolic dynam:fcs, we associate with each of the
intervals (ao,al) , (al,a2) feooys (aN_l,aN) of P a symbol ?

such as «a,B,Y,.... and code the orbit of x by an infinite

N
sequence
<x> = .aBy...

to mean that x€I(a), T(x) € I(B), Tz(x) €I1(y),... where
'e
I(ae) is the interval in P whose symbol is «a. Note

that this coding is uniquely defined except for possibly the
[¥3

points eventually entering the partition points Q. To

avoid this difficulty, we will code the orbit of only those

x’s which never enter in Q, i.e. all x in
’

@ -k
=0

-~
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Lemma 5.4
Let 1 satisfies condition (1) defining class C.
If x,y€J are such that <x>=<y> then/ x=y.
Proot: /
Suppose <x>=<y> but |x-yl|>o0, and. let
d=inf|t’| >1. By hypothesis, rn(a;) and t"(y) belong

to the same open interval of P fér each n=z0. Thus

(]

‘ ' ’ |tn(x) -T#(y)l It(‘rn-l(x)) - T(Tn-l(Y))l

alt™ L - "y |

LI I AN \'

v

dnlx-ﬂzl +® as n-+o

Contradiction. Hence x=y.
- Q.E.D.

Lemma 5.5

het t be as in Lemma 5.4, 1If o=.ala2a3... is a

B i LSl N

sequence with the property that T(I(uk)) :I(ak+1) for
each kz1, then there exists a unique x€J .with
'~ <x>=o0. ’
,,:\ : Proof: For n>1, - let
A - : :
' _/, . 1 ’ 3
¢ - . n- !
~ Jn—{er .x€I(a1),r(7}€I(a2),...,r (x)GI(an)} ;
| . ,
e = I(a,) nr'l(i(u )) N At 10 )
\-\A - 1 2 ®anye 1' . .an -

We claim that In is a non-empty closed interval for each

-



e e o e i =

\ ! Y]

n. To see this, notice that 1t is monotonic and continuous

.on each interval of the partition and t(I(e _;))>I(a ).

This implies that T-l(I(an)) n I(an__l)_ is a non-empty closed

" 'call it B . Similarly

interval in. I(dp'_l). n-1
T(I(a__,)) >I(a ;) dimplies t 1(B__,)NI(a__,) isa

closed interval in I(e_ _,), say B, _,- ‘Continuing this

way, we obtain a sequence of non-empty closed intervals

B .1Bp-gr---sBy; with B c:I(a

X X’

In particular, 1-1(32) NI(e;) 4is an interval in I(o,).

7

But

1;2(33) nto (I(uz)) nI(a

_1 )
T (Bz)ﬂlI(al) 1)

]

]
[*]

and the claim is proved.

\

"{*Iow Jn:»Jm_l-v nﬁlJ $¢. If x is in this inter- .

‘sectli then <x>=0¢ and Lmea 5.4 implies that this x

is ungque in J.

% . . Q.E.D.
| , .

\

T satisfy conditions (1) and (2) defining class

i
!
{
l

‘»
i
é. L'e‘t EcP be a collection of intervals satisfying the

. :
communication property: if 11,1265 , there exist n

1—3(34)01'2(I(a3))ﬂr-l(I(QZ{)nI(a

=1
and B, ;=T (Bk) NI(ay _4).

1)
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and m such that Ilcrm(Ié) and'Izcrn(Il), Assume £

contains at least two intervals andlet V=1y I. Then.
I1€E

there exists an x €y such that (Ti(x)} is dense in V.
(Notice that if T €C, theré exists a dense orbit in all

of J).

Proof:
Consider the set of all possible finite sequences

cQyUqee.y where.I(al) and I(ak)EE, and

+]_) r ls3s<k-1. Such sequences exist by

condition (2),and the set of all such sequences is countable.

T(I(aj)) :I(aj

Let sl,sz,s3,... be an enumeration, and form the sequence

i

= , {
<x> 'SlTlszTZ“"

i

wher‘e_the Ti's are finite sequences joining the last symbol
of Si to the first symbol of Si+1‘ That thisl can be

,done follows from the communication property of -in-tervals; in
E. Thus, by the preceding lemma, a real x exists corres-

ponding to the coding <x> .

i ' .
Now given y€V and € >0, we claim there exists an .
integer n such that |t™(x)-y|<e. Choose m such that

2M/d" <e where M = max T(x) and d=inf|t’!>1. Consider
x€J

the orbit «<y> = .818283.... and let S = °8182""Bm+1'

‘This S occurs in the coding of x, therefore for some n,

-

'tn+k(x) . and 'r].c(y) belong to the same intervals for

B R - - B o g e -y

j
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0D<ksm . But )
. ' [t (x)-y, s len+l x) - t(y)| 0
< _z_l,rn+2l - TZ(Y)!
b 1 | _n+m m o
s =l R - T |
4 .
2M
S a‘ﬁ < E. ’ .
]
Thus the orbit of x 1is denée in V.
QoEaDp

Theorem 5.3

A\

Let TEC. Then t has a unique absolutely

continuous invariant measure. =

Proof:

From Theorem 2.1 we know there exists an absolutely

I ,

continuous measure invariant under T. Suppose there .. -

exist two such measures with densities £, and £,. We~
may assume that these densities are non-negative with
disjoint supports Sl and S,, and i f1[[= 1 f2|l =1.
Also each Sy is a finite union of closed intervals. -

@ Let x€J Dbe a point which has a dense orbit in J,
such a point exists by the precec_iing lemma. . If we let
xr; = t%(x), then xnlq for any n>0 (othefwise X

would be an eventually periodic point of° Tt), where Q

i < o e,
v

.

R T S RS A v L r
o et s bt

.
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\

*are the partition points of P. Thus, cbrrespondir;g to
n there exi®$ts an open ball 0n centered at X such
that 1 is continuous and monotonic on 0, - Clearly, T(On)

will contain an open ball centered at x and consequently

n+l
Tk(()n) contains also some Qpren interval around X4k for I

any kz21. ’

-

Now ’thle denseness of {xn} implies the "existence of

Points Xy and Xy such that xk€ int S1 ’ xLE int 52 and

£>k, where int denotes interior. By the preceding *
argument, we can' find an open interval 6k such that

x, €0, cint s and rl-k(o

K Xk 1 contains some 6pen interval

k)

0, around x, included in int S, . Thus X

/
1

) £-k . .
m(t (Ok) N int Sz) > 0.

But S

1 is invariant under 1'(,, therefore

T’C‘k(ok) c TZ-}F (Sl) ~'Sl.

Conseguently m(S; NS,) >0 which is a contradiction. Hence

there exists only one absolutely continuous invariant measure.
Q.E.D.

3

i

. Corollary 5.1

O —

Let T be a piecewise c? map with . inf|t’| >0, .

- I1f t* is in class ¢ for some integer £, then T has

a unique absolutely continuous invariant measure. \
j v .

Iy

/
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’ Proof:

The existence of ‘an invariant function for 1

follows from Theorem 2.2. Since, TL has a unique

_ invariant function and every function invariant under T
. . . L .
is also invariant under 7t , the conclusion follows.

. \ ‘ - Q.E.D.

We would like to generalize the result of Thebrem

5.3 to the iterates of t . If 1 is ih class C then,

‘ ’ . for every n, t? will satisfy conditiohs (1) and (2)

defining this class ‘(see next theorem). ., However, in

we cannot conclude that t"€cC. Here is an example:

- in - — - m——

o
s - o o

. general, ™ will fail to satisfy conditipn (3) and thus

o emn A wn e e S @ W= e W

ot

-
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Let 1 have 'the above graph. Clearly this is a Markov

map: and’ it is easy to see that starting with the interval
(d,l) we can go to any(other interval and come back to
(0,1). Thus the partition {0,1, 2.2, 3, 4} has the
communication, property under T. However 2 does not
share this propeﬁty Qith respect to its partition: this is
immeéiate since the intervals (0, 2.2) and (2.2, 4) are
both invariant under' 12. Actually, using the method
éeveloped in bhapter VI, it can be seen that 12 has‘two
independent invariant %unctions. Thus, | in general, the
conclusion of Theorem 5.3 ié not valid for the iterates of
a T €C. However, if we replace condition (3) of this

class By the stronéer condition:
{

o

(3’) For every Ij_EF’ there exists an integer n,

! ni
such that = (Ii) =J "

then every iterate of T will have a unique invariant

function. - This is proved in the next theorem. .

v .

THeorem 5.4 (New result) ) .

. Let T be plecewise C2 with respect to partition
I

PI. 1f
. [ vd'l'£
(1) inf|t’ | >0 and inf;ag—la-l for some integer 2,

(2) - T is Markov with respect to Pyr

(3) For every I; €P, there exists n; such that
; o

s LY P g, T R e T

. e
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By condition (3’) there exists an integer m such tihat : ) .

' ~ i

n

T l(Ii) =J, «®

\

.n ) . . . . .
then T has a unique invariant function for each n=21.
1

Proof: . -

n

We claim first that for any. n21, 1 will satisfy

conditions (2) and (3’) with respect to its partition Pn;_

If Qn are the partition points of Pn' then

. -1 -2 ~n+l
Qp = QU@ VTR UL v TRy,

This implies

]

-n+2, Lo

r(Qn) C§1 v 'c'l(Ql) V... U7 (Ql)

= Onar- o )

Therefore

n n-1
T (Qn)cr> (Q,. 1)

for every n, and so .

n
[ ' . - § |

n

S CREL e I R CH NI PR L

«

This.proves that T is a Markov map. Notice that
f °

n N

-:n(Qn) c_Ql means that 1 "~ maps each interval of Pn onto

contiguous intervals of P,. Let p=t". If I is any

interval of Pn' p(I) contains some interval I’ €P,. -

> -

rm(I')xJ. - Therefore . N < ' . |

™) = oM@ 2™ =T | 4
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e and the claim is proved. N .
v T ' PR , nl
! ) . In particular, for each n21, themap T is
‘. N - . . N ‘ , .
. in class C and, by Theorem 5.3, it has a unique invariant
* ’, o™
J . k
function. If for some ‘k, 7t ' has more than one invariant
oLt . : Lk . )
- function, so . does T+ and this leads to a contradiction.
. Therefore ™ has a unique invariant function for Iach
. n>1l. . T . ' ‘ ' ‘N
. ' ’ : . Q.E.D.
. i ¢ . ) . .
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CHAPTER VI

( PIECEWISE LINEAR MARROV MAPS - - o,

k)

C, . ° ‘X,
*Even if it is known that a transformation pas a unique

invariant -function, finding it may be a formidable task.
However, there is a class of trafsformations Por which it

'is relatively easy to exhibit invariant functions simply by

sblvingva,system of linear équationé,; This is the class of -

piecewigse linear Markov maps. '
Let I=[a,b] and T:I¥I be a (non-singular)

" piecewise linear Markov map with respect to the partition

P={a=a0<a1<.u<au=bh g i

For each i, lgt Ii = (ai_l,éi) and denote by T,

¢ i
i the}

restriction ofy T to the'interéal °I;‘ Then Ty is a
homeomorphlsm from Ii onto some %nterval (aj(ii’ak(i))’
having 1;} as inverse. Let S be the class of all

functions which are piecewise cbnstant on the above
partition, ;hai is, ) ) e oy

-

. N
fES e £ = T o.X '
] : , i=1 lIi ’ s

[ 4

« 7 . for gome'constants ci,.;{,cN . «Such an £ will also be

1 »

represented by the column vector (cl,...,pﬁ)t’ WheﬁF t

. denotes transpose. s
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64

With. the foregoing aésmnption’s, there exists an

NxN matrix. M‘r such that PTf =

Proof:

MTf for every f€8S.

PN

A simple computation shows that the Frobenious-

Perron operator for T is given
N
z f(t.l(x))l
i=1  *

Pif(x)

- N
= = £;T )
i=]1

T

Suppose first that f = X1
: ¢ Tk

N

. ' -1 '
= . -1 7 i
Prf(x) iil ka(ril(x){lTil, xTi(Ii)(X) '

3 ! -/1 e
and since Ti has range Ii' XI

for ,a.il' is*k. Thias °

.
!

P E(x) = !Ii-

N -
z ckxI

Now let "£€S, i.e., f =
‘ : k=1- k

P_ is a 'linear.opérq.tor, we have

T.

s

art,

for some 1 sk <N.

-1-

by ({[1]:

1.~
(x); -
, Ti4hy

-1

ilox (x) ,
i Ti(Ii) ‘

Then

y

‘('r'.'l(x) will ‘be . zero .
kK * . ,

ka(Ik) (x) . - - ,

= _(cl,...,cN)t . - Since
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N
PEf= XcP_ (x,) ’
T k=1 -k' T Ik . .
= N -1 : ‘
! = z c T' T~ (6.1)
ke KTk T ()

LI

. ' ' - t
This proves that PTf €S. Let us wr.’.tte Ptf (dl, . ..dN)

When xEIj, Ptf(x) = dj’ Now, the kth term in the

right hand side of (6.1) eqﬁéls ckl'l'l'(l":l iff x€ 'rk(Ik),
; \ ,

that is chrk(Ik). Let Ajk =1 if Ithk(Ik) and

' . ‘ » -1
4 E—1 ’
zero otherwise, and define the matrix M, (mjk) Ajkltkl

Then .. - —

N

a, = Icom.
o 93T oy KTk

- and ‘ ‘ o A

Q
=

o
=

zo evee
ZD”“:
/

Q.EfD.

The matrix M defined in the .above proposition is

called the matri{( induced by T. . This matrix is non-

. negative and, for each j.e {1,2,...,N}, the non-zero entries
in the jth columd are .contiguous and’ equal to l'cSl -1
‘tice that t is>not the only map which induces M . For,

. on any segmenf I,, the function T i can be replaced by a

linear function with the same domain and range, with slope

L)

eqhal to -1 i » and the matyix induced by this new maﬁ
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will also be M‘t . Thus, there exists 2N piecewise

linear Markov n;aps which induce the same matrix.

< . v n

Proposition 6.2

The matri:g 0M=MT has- 1 as the eigenvalﬁe of

maximum modulus.

Proof:

We recall that the eigenvalues of a matrix are

invariant under similarity transformations and under

transposition. Let us define

N | ‘ »

Sm .-a.-
jzl(al a]'l) .
and ) i .
8 N (
§; = —— oI (a,~a._4).
i

Define the diagonal matrix D to have entries dii = Gi,

i=1,2,...,N. .Then ‘E=D %

is & diagonal matrix yith
entries ey = sl  for each i.

- ] l ‘.

U...UI

Suppose T maps Ii onto IjUI.

j+1 j+k

Ther'1 lril = ('.':tj+k - aj‘-l)/(ai -a;_,). It follows that the

ith column of M has entries (ai-ai-l)/(aj-i-k- aj-l) in

rows 'j to j+k, and zero in all the remaining rows. Let

lMQ . Then brs:‘=6-1m 8§_ . We claim that B is

B=D r rs s .

’

column gtochas,tic. Consider {:he column sum of the ith

column for B )
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. “bound for the number of functions invariant under Tt , i.e.

Thus Bt is row stochastic. Invoking Theorem 9.5.1 ..

in [8], the matrix. B has one as the eigenvalue of
" maximum modulus. The conclusion of the proposition now
" "follows.

‘ Q.E.D.

It follows from Proposition 6.2 that the system of

: linear equations MTw==u always has a'non-ffivial solu£ion,
and this is equivalent té the statement that there always
exists a step function invariant under t. Notice that we

" have tacitly proved the existence of invariant functions
f&?kény,piecéwise linear Markov map t with inf|7*]|>0 .
If t is known to have a unique invariant function, thi;
function has to be piecewise constant on the same partition

for T. Also, the dimension of the (right) eigenspace of

the éigenvalue 1 of the matrix M_. constitutes a lower

. 4




‘the ‘fixed points of M_ are fixed pointé of P.. In the . 3 i

special case where /|t’| >1, the next proposition ensure ‘ |

space of invaria t functions is precisely the eigenspace |

. of eigenvalue of the matrix MT.
' / / S .
O Proposition €.3 , (New result) )

If inf|1’}=0>1 then every invariant function is

- . .piecewise constant on the partition defined by .

+ Proof:
Let f be invari 7; under t. By Theorem 2.1 we

; ' ‘ A -
§ know that f is of bounded variation on [a,bl. Moreover,

we have - o
: , i
N (x) = £ ;
X o P f(x) = I f(r,7(x))—— X x) = £(x) .~ :
T ams E T ey T - ;
A

Notice that f -has~to be identically zero outside the
@ \\\ ) .
range of 1. Let Ikc:T(I%\\be any interval of the

.
Legate

. ~
partition and let x, yeiﬁc bé\digfinct and fixed. Then

o : ) = “for all i. Thus

L X (1, X,z W) \\
: g‘ ¢
2N | |
- £(x) - £(y) = P_£(x) - P £(y) i
- _ o® ]
| N .-
| - = e o=t o |x x
. ‘ . i=1 'Till i i Ti(Ii)
“ - ' ='x 1 [f(r;l(x))-f(rzl(y))] ;
' i ITi | 1 1 : '
. 1
e 2
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where, t avoid heavy notations, the index il vary over

. . some appropriate non-empty subset of {1,2,...,N}.

Similérly, for each il' -

-
4

f(TEivx))-ij (y)) = = Il' ‘[f(r iy
i T

{ N 2

o . 2 < .

Lyy-£1] r 1(y))]
1 l )

‘and so on. Therefore

L

1 -1 -1
|£(x)-£(y)] s = £ lf(r. (x)) - £(1, (y))[
] [+ ] i .‘Ll ll

=

-1 -1 -1_-1 |
f(rizr-l(x)) - f(TizTil(y))!

A

I . ]f(Tgl...rgl(xx)—f(rgl...rgl(y))'
o i, i n 1 . n 1

[

Now it is easy to see that

o 3 it tptn l(y) ) 3,

2 l 1n 12 l '12'.-0'1

n
is a finite collection of at most N" non-overlapping’

intervals. cOnsequently, the summation in (1) is bounded

1

above by the .total variation of £ and hence L
1P -
[f(x)—f(y)l s—-—-Vf <€
a a

for large‘ n. Therefore f(x)==f(y)’ and f is constant

w

on Ik', ) ( '

Q.E.D.
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L It is worth notiné that the slope condition in

!

,Proposifion 6.3 is essential.  For if inf|t’| <1 , there

may exist invariant functions in BVla,b] which are not,

piecewise constant-on the partition of Tt . Consider for

'inséance the map t: [0,1] +[0,1] defined by

2x , 'Osks%

T(X)= . ’ K

. x4 3 3
x+7, 2<xs1

h 7

1

Then the corresponding Frobenious-Perron operator is given

by , N . . . .-
(3 . 0sx<3
v Pff(x) =
1. % 3 1 !
if(5)+f(§_x) ’ --Z_SXSI

Lebl f be any function of bounded variation which is zero

on (0,%) and symmetric with respect to the lire x==% on.

the interval (%,l). Clearly, this function will’satisfy

P f=f and hence will be invariant under "t. Thus,
invariant functions need not be piecewise constant. \\f

We summarize allhthese results in a theorem.

Theorem 6.1

If 1 is a.non-singular piecewise linear Markov'mapI
with respect to a partition P, then there exists a piece-

wise constant function on P which is invariant under. T.

. , \
"If, in addition, inf)t’|>1, then every invariant function

 is piecewise constant on P and the space of invariant -

LIE ALY ¥ SN
o, M
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functions is prec}sely the eigenspace of eigényalue one,
© of the matrix MT. ‘
Example 1
et t: (0,11~ {0,1] be defined by ’
.1 "
242, x€I; =0, ¢ '
5 - _ 1
‘ < ~X+7Z X€I2_.[7l-'_2—] C
T(x) = . -
7 _k3
-;2x +r'4-, . X €I3 = [214
" R (S B x €I, = [3,1]

o We see that’ t-‘is Markov with respect to {11,12,13,14}

. ana thp =7fr,) =c3ry) =171 = 10,11, The lime
segments in the graph of 1 have‘slopes -1, t2; however, .
the third'iterate of Tt has slopes >1 in absolute value
for all segmenﬁs.l Thus, by Theorem 5.4, Tt and ;11 its
iterates have a‘unique invariant function.

Now the matrix induced by Tt is given by

~

k 0o -0 o0 1
) \ , " R /f 1
. 0 0 > 0
M=
. 1 .1
7 0 7 0
b ' i ] '
5 1 0 0

,
s . ¢
' h - o

' - t :
and the vector w=(2,1,2,2) is an eigenvector of eigen-
value one. Thus the unique- invariant density for =

(and all EP) is ! - 4
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é .
. - 1
— E(x) = ' |
11 . . N
l .on (,I'-f) . )
- \ v
Example 2 -
\ _ Let h: [0,1] ~[0,1] be the homeomorphism defined'by ;
+h(x)=VX . For 1 as in Example 1, let ‘l'l=h‘1 oToh .
Then <t and T, are topologically conjugate transforma-
.tions and :
) 2vg +1? x € 10,1
EN 27 ' '16 -
| .
5,2 1 1
(-vx +3}° , x € [3g.7]
T,(x) = :
1 ' 7,2 1 9
(-2v% + Z‘) . x € '[I'TS_]
‘ .2 9
. . . ("'Vi-. + l) 2 X e [—-l 1]
~ . 16 Sy
By the results of seection 4.3, T has a unique i%variant
function £, given by £, =(f , h)h’ where £ is the s
unique invariant density for t. Explicitly, we have
2, x€(0,5u(G D)
\ 'y vVx ! ,
’ £,(x) = ’
. -—l"" ’. Xe€ (1]:6'1%') . \ . ~ \ g
: 2V . . ' \ )
RSP To close this chapter we will discuss briefly an

application to functional equations. Suppose we are given

" a functional equation on some interval, to be solved in Ll

/,

» J
0




!
- ‘ ]

! and, somewhow, we are able to recognize a map Tt such
- that the original equation reduces to Prf =f, where

P,t is the Frobenjous-Perron operator corresponding to the

transformation, 'then, using. the results of Chapter IV, we C \ ‘
f:an get an upper bound for the number of  independent

o

solutions. If it happens that 1 is piecewise linear and

L9 ) Markov with slope greater than one, then we know that all
jf Tp——————— !, L v .
) / solutions of Prf =f are piecewise ‘constant on some fixed
& " partition and they can all be obtained by solving a system of = =~ .}
! - linear ‘equations, namely Mr=7. We illustrate this method
I by some examples.’ v : ' h L
2 :
z Example 3 _
© L . Let a be in' [0,1/2) and consider the functional '
- equation v ' o
| ; 1l -
| f(x) = 1 . (6.1)
I i X _
: W -if(i)+cf(—2—+c\:(l,x)) asxsl

-

’ a . !
i where c=1/2(1-a). If we define 1t : [0,1]~ [0,1] by

.

| 2x - Osx§-§- ’
] T(x) = 1
- © Ll (2=a)-2(1l-a)x F<xsl ,

AT

then a simple computation shows that the Frobenious-Perron

' operator of T is given by the right hand side of (6.1).

Thus. the original problem reduces to finding fixed poi'hts pe T
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" for -PT. InvckingﬁTheorems 2.1 and 4.1, we know th?t a

il

solution exists and is unique. Therefore, the functional

equation (6.1) must have a unique solution in Ll.
.In the special case where a=1/2" for some integer
nx2 {n we see that: 1 is a piecewiée linear Markov map

\

with réspect to the partitidn

1. 1. 1., o Cy
{0<-£5- <2n— <...<3el}.
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hsing the results of this chapterf‘fhe unique solution is

pietewise constant on’ P and the solution of the equation
M T where- M is the matrix induced by . Simple

compu»tations w111 show that the unique solution (up to :

L

constant multlples) is gJ.ven R
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. n+l ., )
£(x) = % (2“"1 - 2" "*2)x1 (x) . |
k=2 x

-

-

' _ Cq
where k (1/2n ~k+2 ' 1/2n .k+l) for 2<sksn+1.

y b

Example 4, ‘ ‘. "

g on the interval [0,1] consider the functional

~

]
-
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equation .,

. ‘ f'(x)’=-,1;[f(-)+f(ﬁ>+....+f(____"+g'1)]

where n=22 is a fixed integer. For lsks<n , let

e

"lk = ((k-1)/n, k/n) and define 7, : I ~[0,1] by |
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T (X) = nx+l-k . Finally let t: [0,1] +'[0,1] be such

i

‘that TII =Ty . Clearly =T is a'piecewise linear
Tk

Markov map and also a Renyi transformation. Hence there

exists a unique function invariant under 1 . Now for
every fE€ L} we have :
k4 i 3 - ~
’ n-1l )
| | Pf0) =1 3z p&K)
k=0 -

“ . - E .
and hence f is invariant under 1:T iff it is a solution
| of the functional equation. Also the matrix induced by =
.has a;ll entrieg equal to 1/n and ﬁbe vector . (Z‘l‘,l,..‘.,l)t
is the unique fixed point of this matrix. Consequently
every solution to the origi’nal equation has to be a - i

constant function on [0,1].

1
kd ' - ‘ i .
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