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ABSTRACT

The Role of Probability Density Functions in Turbulent Reacting Flows

Pierre Q. Gauthier, Ph.D.

Concordia University, 1996

Computational Fluid Dynamics, for combustion related problems in industry
today, is limited to very simple chemistry models due to the size and
complexity of the geometry’s involved. With these simple models very little
quantitative information about the details of the combustion phenomena can
be obtained, only general patterns can be found. To investigate important
problems such as lean blow-out, engine knock (auto-ignition) and pollutant
formation, the details of the chemical kinetics of each individual reaction
must be taken into account. Since virtually all combustion related problems
are turbulent, the effects of this turbulence must be introduced into the
modeling of the chemical kinetics. Probability density functions (pdf’s) are
used to model the statistical nature of the turbulence in the chemical kinetics.
The most accurate method of obtaining the pdf’s for this purpose is to solve a
modeled transpurt equation for the pdf, however, very computing intensive
Monte Carlo methods are needed for the solution of these equations. An
alternative is to assume, a priori, the shape of the pdf and proceed with the

calculations. Although this approach is computationally very simple and
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requires no extra memory, the trade off is loss in accuracy. New methods are
currently being developed to bridge the gap between these two methods.
These new methods are far more practical for industrial applications since
they require the solution of only one extra equation, whick has a very similar
form to the existing turbulence equations and can, therefore be easily solved
along with the rest of the flow equation. What is missing from the literature,
however, is a study of the effects that modifications to the pdf’s have on the
chemistry calculations under various flow conditions. In the present work a
two dimensional, axisymmetric, finite element, turbulent combustion solver
has been developed for such a numerical study. The goal of this study is to
determine the conditions under which modifications to the assumed pdf

become important and when they are not.
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CHAPTER1

INTRODUCTION

Combustion research is motivated by several practical considerations
including the quest for more efficient utilization of limited fossil fuel
reserves, the introduction of air quality standards backed up by increasingly
strict air pollution legislation and the high human and financial costs of
accidental fires and explosions. Because of these concerns automobile
manufacturers, power generation companies, those involved in the
extraction, transportation and storage of fossil fuels, legislators and many
others all require and use more or less sophisticated theoretical models of
combustion processes. While existing theoretical models have already been
found to be useful in all of these applications discerning users find inevitable
shortcomings in their performance.

Another strong motivation for the study of combustion comes from the
range and complexity of the phenomena which can occur. Practical
combustion systems almost always involve turbulent flow. Combustion
chemistry and turbulent flow each izitroduce a range of length and time
scales. The spread of these scales is typically so wide that the direct numerical
simulation (DNS) of most practical engineering problems by solution of the

complete set of equations with full spatial and temporal resolution will




remain impracticable for the foreseeable future. On the other hand DNS can
be applied to idealized problems of turbulent combustion and can provide
valuable guidance for the development of engineering models like the one
presented here.

Censequently most models of turbulent combustion for industrial application
use and must continue to use equations which are averaged in a manner
similar to that introduced by Osborne Reynolds. Combustion problems
typically involve sets of transport equations for scalar variables such as
enthalpy and species concentrations, in addition to the equations of motion.
The averaging procedure generates unknown Reynolds flux terms, which
must be modeled alongside the Reynolds stresses, and which represent the
process of turbulent transport or large scale macro-mixing due to the
entrainment in turbulent eddying motions.

Instantaneous rates of chemical reaction are highly non-linear functions of
composition and temperature and the determination of average values
presents a particular problem. Chemical reactions occur at the molecular scale
as a result of inter-molecular collisions. Consequently microscale mixing of
reactive species is a prerequisite to chemical reactions. Small scale mixing of
both composition and temperature variables occurs as a result of molecular

diffusion processes and is closely linked to the scalar dissipation terms in the



transport equations for the variance of scalar variables. These terms therefore

play an important role in most theoretical models of turbulent combustion.

1.1  Objectives and Overview of the Thesis

The objective of this thesis is the development of a finite element based
methodology applicable to the solution of turbulent fluid flows with chemical
reactions. In particular, it is intended to demonstrate and compare the effects
that two different approaches of using probability density functions have in
the calculation of the mean reaction rates of each individual reaction taking
place in the given problem. The mathematical model used to describe the
fluid flow is the compressible Navier-Stokes equations for multi-component
gases along with an energy equation, species equations and chemical kinetic
rate equations. Only hydrogen-air mixtures are considered for this
comparison study, although one test case presented uses town gas, a
derivative of natural gas. The motivation for choosing a hydrogen-air
mixture was twofold. In the search for alternatives to our limited supply of
hydrocarbon fuels hydrogen has become the most promising new fuel due to
its natural abundance and availability. Also, the present work focuses on
finite rate chemical reactions and, to date, there are no reaction mechanisms

for hydrocarbon fuels used today that are simplified, or reduced, enough to be



handled effectively by today’s computers. Two-equation turbulence models
are employed for the simulation of turbulent fluid motion in conjunction
with the Reynolds averaged Navier-Stokes equations. Another objective of
this work was to create a methodology that can be utilized in an engineering
environment yielding the most information from the flow field while
minimizing the computational time and memory. Each set of equations was
solved in a segregated fashion allowing for optimal use of computing
resources. Although this results in a slight trade off in speed, since the energy
portion of the solver was uncoupled from the Navier-Stokes solver thus
resulting in a numerical lag in the density calculations, the resulting savings
in memory and solution flexibility make up for this. Computational resource
is the most important limitation to the numerical fluid dynamicist. During
the last decade, the cost of high speed computing has dramatically decreased
since the introduction of the CRAY 1 in the late 1970’s, a computer with 10
million floating point operations per second, or 10 Mflops, and with 8
megabytes of memory which cost $15 million. Current workstations perform
at up to 25 Mflops and have a minimum 8 megabytes of memory and now
cost only $15,000. Projections over the next decade give ever increasing
performance for less cost. These cost reductions in computing will help justify
the increased use of computational fluid dynamics in designing products.

Despite the availability of such workstations



today and the glowing predictions of computing powers in the future, the
present computing need of combustion engineers in industry are still far
from being satisfied. With the complexity of combustor geometry’s and the
ever growing need to understand phenomena such as soot and pollutant
formation, efficient use of current numerical methods run on today’s
computing facilities must be a top priority.

The main objective of the present work is to perform an evaluation of a
numerical approach to combustion problems currently being developed, so
that it may be used most efficiently on industrial scale problems with today’s
computing power. It has been known for some time that probability density
functions can play a very useful role in predicting the behavior of highly
statistical phenomena, however their implementation in everyday
combustion computational fluid dynamics has yet to be established as a
working tool for large industrial problems. The goal of this thesis is to study
how different forms of probability density functions influence the resulting
calculations and over which ranges of flow conditions does the choice of
probability density functions have the most influence. Armed with this
information, numerical methods can be developed in which the most
efficient form of a probability density functions can be assumed beforehand
and used under the given flow condition. As a particular industrial

application to focus on, the formation of nitric oxides (NOx) was chosen.



This is a very important consideration given today’s concern for the
environment and the impact that pollution has on it. The formation of NOx
will be calculated as a post processing exercise, completely uncoupled from
the rest of the flow equations, since the production of thermal Nox has a
negligible effect on the rest of the chemistry of the reacting system. In this way
the effects of the probability density functions on the NOx mechanism’s
reaction rates can be studied for a wide variety of flow conditions.

The rest of chapter 1 presents a background of numerical approaches and
considerations when dealing with combustion problems.

Chapter 2 reviews the application of finite element methods to fluid flow
problems. Topics include a discussion and presentation of the form of the
equations to be solved and the methods of solving the resulting set of
algebraic equations. An overview of the averaging technique used is also
given. Details of turbulence modeling, specifically the two-equation models
used in this study, are given with a presentation of the numerical treatment
of solid walls. A list of boundary conditions as well as the wall functions used
to complete the turbulence modeling is also presented. A description of the
special transition wall logarithmic elements is also provided. The combustion
models used in the present work are then described. The very simple Eddy
break-up (EBU) model is first presented then the finite rate chemistry

equations and kinetic mechanisms are shown. Chapter 2 concludes with a



discussion on reduced kinetic mechanisms and a listing of the mechanisms
solved for in the present work and focus then given to the calculation of Nox
formation. An introduction of the problems of NOx formation is given then
the mechanism used to compare the different pdf approaches is presented.
Chapter 3 deals with all of the numerical aspects of the present work. The
nondimensionalization of the flow variables is first discussed and the
nondimensional form of the equations is presented. The Galerkin finite
element approach used to solve all of these equations is then presented. The
various types of boundary conditions used for Navier-Stokes, energy and
species equations are discussed. The boundary conditions and inlet conditions
chosen for the turbulence models is also discussed and presented. Finally,
chapter 3 concludes with a detailed discussion of the solution strategy
employed to solve the complete reacting flow problem. Numerical methods
used to insure stability and accuracy of the solutions are also presented.
Chapter 4 introduces the concept of probability density functions and
discusses the various approaches in implementing these functions in reacting
flow problems. The particular approach of assumed pdf’s is discussed in detail
along with the presentation of the algorithm used to modify the shapes of
these pdf's. Chapter four concludes with a brief discussion of some of the
numerical considerations involved in the implementation of the pdf

methods.. Chapter 5 lists the results obtained during the present



research. As the finite element flow solver progressed from a simple laminar
code to its final version as a multi-species, multi-step, turbulent reacting flow
solver, each step in the development was followed by comparison with
experimental results to insure that each new model was performing properly.
Computational benchmarks like channel flow and flow over backwards-
facings step were used to validate the turbulence models. Once the turbulence
models were working well results are shown for the simple one-step EBU
combustion model using town gas as a fuel. This step was performed to make
sure that the chemistry portion of the code was working well. Finally results
are given for the multi-step hydrogen air mechanism in which a comparison
is made between two pdf approaches used to calculate the reaction rates for
each of the steps. Then a similar comparison of pdf’sis presented for the NOx
postprocessor. Chapter 6 presents the conclusions and recommendations

drawn from this comparison study.

1.2 Combustion Regimes

Attention is restricted to the combustion of gaseous fuels which may either be

premixed with gaseous oxidizer or alternatively fuel and oxidizer may be

supplied separately to form a non-premixed, or diffusion flame.



Combustion and turbulent motion can interact with each other in various
ways. Several regimes of turbulent combustion may be identified. In low
Mach number flows these regimes are usually described in terms of two
parameters which may for example be characteristic values of turbulence
Reynolds number ‘Re’ and Damkohler number ‘Da), the latter being defined
as the ratio of a turbulence time scale to a chemical time scale. If chemical
times are long in comparison with the largest time scales of the turbulent
flow, burning takes place in a distributed reaction regime in which the flame
structure is influenced mainly by turbulent mixing and chemical reaction.
This situation is relatively common in industrial applications .

The other limit, where the longest caemical time scale is shorter than the
smallest time scale of the turbulence, leading to so called laminar flamelet
combustion, can also be achieved in many practical situations. Here burning
takes place exclusively in thin laminar flames whose structure is determined
by a balance between molecular transport and chemistry. Such laminar flames
are convected and distorted by the turbulent flow. Between these two limits
lies a transition regime where the two sets of time scales which describe
turbulence and chemistry, respectively, overlap. High and low Reynolds

number regimes may also be identified.
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1.3 Hierarchy of Approaches

We now identify, in brief outline only, a variety of different approaches to the
problem of the prediction of turbulent reacting flows, starting with the most
exact (but too computational-intensive) and ending with more approximate
but less expensive methods.

Methods which resolve turbulent fluctuations include:

(i) Direct Numerical Simulation (DNS)

All length and time scales associated with both the turbulent flow and the
chemical reactions are fully resolved. However the computing requirements
are so severe that problems which can at present be solved involve simplified
geometry’s and chemical reactions schemes. In order to reduce the range of
length and time scales, solt.lions are now restricted to very low values of Re

and Da numbers.

(ii) Large Eddy Simulations (LES)

Spatial filtering is applied to the governing equations in such a way that large
scale eddying motions are retained while smaller scales are averaged. Sub-grid
scale turbulence must therefore be modeled. Chemical reaction occurs at the

molecular scale so mean reaction rates must be modeled as well.
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(iii) Random Vortex Methods

This is a Lagrangian approach in which turbulence is represented by a
random distribution of discrete vortices of finite strength. The cores of these
vortices are described empirically. A simple application is to the propagation
of reaction sheets in turbulent flows.

Other methods involve the solution of averaged equations in which the

effects of turbulent fluctuations are treated in a statistical manner:

(iv) Probability Density Function (PDF) Methods

Using the usual set of conservation equations an exact transport equation
may be derived for the joint pdf for a set of scalars such as species mass
fractions. The chemical reaction terms in this equation can be evaluated
without approximation. However, the equation contains no scale
information, so terms describing transport in scalar space due to molecular
diffusion require modeling. If velocity components are included as
arguments to the joint pdf, turbulent transport is described without

modeling, but pressure fluctuation terms must then be modeled.

(v) Second Moment Closure Methods

In these methods the averaged transport equations are solved for first

moment mean quantities such as density p, velocities u; and mass fractions
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Y,. The unknown Reynolds stresses and Reynolds fluxes are then obtained
froin their own transport equations. Models are required for some ierms in

these equations and for mean chemical source terms.

1.4 Application of the PDF formalism to Jet Diffusion Flames

In moment closures averaging leads to a loss of information with the
consequence that various unknown terms, dependent on the fluctuating
turbulence field, appear and closure approximations are needed to represent
them. In turbulent flames the processes for which closure approximations are
required include turbulent transport (diffusion) of heat, mass and
momentum and turbulence-chemistry interactions. For turbulent transport, a
turbulence model is required but it is the turbulence-chemistry interactions
which represent the central difficulty in turbulent flames. More specifically,
in moment closures a means must be available to evaluate the average net
formation rates which appear in the transport equations for the mass fraction
of each chemical species present. If the assumption of 'fast' (Da >>I) reaction
can be invoked, then the thermo-chemical state can often be determined
uniquely in terms of a single independent scalar variable. In these
circumstances it is possible to presume a suitable shape for the pdf in terms of

the means and variance of the appropriate scalar with the mean and variance
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being obtained from solutions of their respective transport equations. While
this approach yields good results in most cases, it is sometimes lacking where
chemical reaction rates exert an important influence, for example in the
emission of unburned hvdrocarbons and formation and emissions of
pollutants. In order to reproduce finite rate effects more independent scalars
need to be incorporated and a multi-dimensional joint pdf is needed. In this
circumstance the presumed shape approach and all of its advantages becomes
essentially intractable and the only viable method appears to be the pdf
transport equation approach. PDF transport equation modeling is presently
being investigated by many researchers and has the potential of becoming a
tool for engineering calculations in the future. Due to the large number of
variables in a typical joint pdf Monte Carlo type methods must be used to
solve their transport equations. In these methods a parallel Lagrangian
approach must be developed to simulate the random motion ot the fluid
particles. To make this method statistically valid many thousands of particles
must be used, thus limiting the size and complexity of problems it can
handle. The present work offers an alternative in which stochastic methods
are used to simulate the effects of turbulent fluctuations while still using

assumed pdf’s.
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1.5  Reduction of Reaction Kinetics for Hydrogen and Hydrocarbon

Flames.

The general idea of reducing complex kinetic schemes by the introduction of
steady state assumptions has been known to chemists for a long time.
However, it has become fruitful for combustion applications only very
recently. Steady state approximations for intermediate species can be justified
in many different ways. They first were derived for zero dimensional
homogeneous systems that depend only on time, and the term 'steady state’
was introduced because the time derivative of these species is set to zero. The
justification for this approximation is generally provided in physical terms by
stating tha! the rate at which species 'i' is consumed is much faster than the
rate by which it is produced. Therefore its concentration always stays much
smaller than those of the initial reactants and the final products. Since the
concentration always stays small, its time derivative also stays small
compared to the time derivatives of the other species. As an example, one
may look at the well-known Zoldovich mechanism for thermal production of
NO which will be used later in this work. The steady state assumption for
species 'i' leads to an algebraic equation between reaction rates. Therefore
each of these equations can be used to eliminate rates in the remaining

balance equations for the non-steady state species. The stoichiometry of the
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resulting balance equations defines the global mechanism between the non-
steaay state species. Therefore the global mechanism depends on the choice of
the reaction rates that were eliminated. The rule is that one should choose for
each species the fastest rate by which it is consumed. Although this choice
may be arbitrary sometimes, it has no consequences as far as the balance
equations for the non-steady state species are concerned. The present work
will use such a reduced mechanism for the case of a hydrogen-oxygen
mechanism involving only the first 7 reactions. For hydrocarbon flames
typically hundreds of elementary reactions are necessary to reproduce the
burning velocity over the whole range of equivalence ratios and pressures
upto 50 atm with reasonable accuracy. For lean-to-stoichiometric methane
flames 'skeletal’ mechanism of 25 elementary reactions have shown to yield

good results.
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CHAPTER 2
EQUATIONS AND MODELS

This chapter reviews the development and the application of the finite
element method to the solution of compressible, turbulent fluid flows with
chemical reactions. The finite element method is first described as a method
for the numerical approximation of partial differential equations. The
equations used in the present work are then introduced, including the flow
equations, the energy equation, as well as the species equations and the
turbulence equations. Details associated with the application of the finite
element method to these equations will be discussed in chapter 3.

Combustion models and Nox modeling are also discussed.

2.1 Finite Element Method for Fluid Flows

Historically the finite element method was first applied to linear elasticity
problems and it has since expanded into many other fields including fluid
mechanics. The finite element method when applied to a specific problem
can be broken down into the following components: discretization of the
domain into elements and selection of interpolating or shape functions to

represent the primary unknowns. Next, application of a method for



17

describing the finite element approximation, such as Ritz method, direct
methods or Galerkin weighted residual methods. Assembly of the local
elements into a global approximation and application of boundary conditions
and, finally, the solution of the resulting system of linearized algebraic
equations for the primary unknowns.

The method of weighted residuals is the basis for a large class of
approximation techniques used to solve partial differential equations. The
method consists of assuming the general functional behavior of the
dependent variable in some way so that the given partial differential equation
and its boundary conditions are closely satisfied. The use of this method will
introduce an error between the exact solution and the solution obtained by
using this approximation. This error is commonly called the residual and it is
desirable for this residual to vanish in some average sense over the entire
domain of the problem. The method of weighted residuals provides a
number of ways for choosing the weight functions and each choice of weight
function provides a different error distribution principle for the
approximation. In the present work, the choice of weighting function is the
Galerkin method. This method consists of choosing the weighting functions
to be the same as the approximating or shape functions. It may be shown that
the Galerkin method produces the same set of integral equations as the

application of a variational statement to a set of partial differential equations.
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The Navier-Stokes equations in primitive variable form, however, do not
have a variational statement. Therefore, the Galerkin method must be
employed to derive a set of approximating equations.

The partial differential equations that are of interest in this work are the
equations which describe the conservation of mass, momentum and energy.
Also needed are the equations conserving the mass fraction of each species
participating in a reaction and an extra equation describing the enthalpy

variance of the flow field is also presented.

2.2  Equations

2.21 Conservation of Mass and the Navier-Stokes Equations

The velocity and pressure fields are governed by the full Navier-Stokes
equations which, on their own, are sufficient to describe the entire physics of
fluid flow. The conservation of mass or continuity for a general compressible,

steady, fluid in axisymmetric form is given by:

dlpu) 1 Arpv) _
x T ar 2.1)
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The conservation of momentum or Navier-Stokes equations, expressed in
terms of stress tensors, for a general compressible fluid also in axisymmetric
form, are given by:

Q(_p_uﬂ + lﬁ(fp_‘i‘_’_)= -QB.,. HTxx) +1 {rTrx)
ox r or ox odx I or 22)

d(puv) +1 a(rpvz) = jaz + (Txr) + 1 o(rty) _Tep
ax r or or ox r or r (2.3)

dpuw) 1 Arpvw)  pVW _ Hte) . 1 BrTee)
ax r' Jr r ox 2 or 2.4)

where, based on the usual constitutive assumptions for the isotropic case, we

have:
Tax =2 ug—;l -%—H(div v) 2.5)
Trr =2} %% -F R (divy) (2.6)
Top =21 ¥ -2p(divy) (2.7)
Tx =T = M (%L;l + %}) (2.8)
)

2.9)

Txo = Tox = H-a; 2.10)



If isotropy is not assumed, we must then use different values of the above

tensors for the different directions under consideration
2.2.2 Energy Equation

To describe how energy is treated in combustion problems, consider the
following conservation of energy equation for multi-component fluids,

expressed in terms of the total enthalpy, H, which will include the enthalpy

of formation, AL, of each species participating in the reaction:

d ! aHo 1 d aHo -
a—QPUHO = Hesr Fx—) + TS;{"[P VH,, - Hegy -J'r_]f =0

This is a very convenient way of expressing the energy equation for reacting

(2.11)

flows since, in this form, combustion does not add energy to the fluid, it
simply converts energy stored chemically in the reactants into sensible heat.
The total stagnation enthalpy, H, is then defined as:

N
H,= %(u2+v2+w2) +3 Y

i=1

T
ARl + f Cpi dT
(2.12)

where, Ahf and C, denote the enthalpy of formation at T, °K and the specific

heat at constant pressure, respectively, of each species. The values of C, for

different species will be represented by a polynomial of degree three as:
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C,=a+bT +cT? +dT° (2.13)
where a, b, c and d are constants for each species which may be determined
from tabulated data. If the mixture is assumed to consist of ideal gases, then

we may obtain the mixture density through the following equation of state:

3 X
P=pR,T)
CEM (2.15)

where R, is the universal gas constant and N is the total number of species in
the mixture; Y, and M, denote the mass fraction and molar mass of species i,

respectively.
2.2.3 Species Mass Fraction Equation

The bulk motion of the fluid is modeled using a single velocity, pressure,
temperature and turbulence fields. The influence of the multiple species
involved, is felt only through property variations for the various
components. Of primary importance is the variation of density, which will
affect conservation of mass which, in average form, can also be expressed in

the general form as:

Apiw) 1 Arpiv) _ dlix) 1 otfir)
ox * r or - ox I or 0 (2.16)
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where p, represents the density of fluid component i in the mixture, i.e. the
mass of the component per unit volume. J, and J_ are the relative mass fluxes
and, @, ’s th chemical reaction rate of component i. Note that if we sum the

above equation over every species, the result is the standard continuity

equation (2.1). Since we must have:

Mz

;=0
i=1 (2.17)

The terms ], and ], account for any differential motion of the individual
components. This term may be modeled in a number of ways, to include
effects of concentration gradients, a pressure gradient or any external forces
that the reacting flow might be subjected to. Of all these p -ssible sources of
relative motion among the mixture components, the primary effect is that of
concentration gradients. Using Fick's Law, the model for ], and ], gives rise to

a diffusion-like terms:

d
Jix = -p Fi‘a—z‘
dp
Jl - Fi_
AL (2.18)

The diffusion coefficient, ri, must be obtained from experimental data over

the range of physical conditions of interest. In fact, this term is commonly
expressed in terms of a diffusivity, D, whereT, = p D, Now, the mass fraction

of component i is defined to be:
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Pi
Pmix (2.19)

Yi=

Substituting all of the above assumptions and models into (2.14) we obtain:
d

—(puY;)+ - —(TPVY )=- ‘-( err-—) ‘(‘[Feff—]) + ;

ox (2.20)

where:

Heff
FCegg=T; +
eff =1i+ S c (2.21)

Here S, is the turbulent Schmidt number and we have used the usual eddy
viscosity type assumption for the fluctuating terms that result from

averaging, which will be discussed in more details later.
2.2.4 Enthalpy Variance Equation

The $-probability density function used in the present work, and introduced

later, requires knowledge of the mean temperature, T, as well as the variance

——

of this temperature, T'T". The mean temperature is supplied by solving the
Navier-Stokes equations along with the energy equation. We now introduce
another partial differential equation for the enthalpy variance, from which
the needed temperature variance may be calculated. The temperature

variance is obtained from the enthalpy variance by noting that:
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T
H= f CpdT +H,
Tret (2.22)
We may now write H = 6,; T + H, where:
T
f Cp dT
6" o= I Trel
P T (2.23)
And, assuming that H” = C, T” we may write:
c2
P (2.24)

An equation for the enthalpy variance, I?ﬁ, can be derived in a manner
similar to the derivation of Reynold's stresses. As with the Reynolds stress
equations, the enthalpy variance equation is complicated and involves extra
terms which must be accounted for by models. As a result, various terms in
the equation are grouped together according to the type of physical behavior

they share and are thus modeled as a unit. The modeled equation has a form
very similar to the turbulent kinetic energy equation encountered in the k-¢

turbulence model, which will be discussed in some detail later. The resulting

modeled equation has the following form:

) 19 € d ag lar[ ag) oh12 ahz)_
a—(pug)+;;(rpvg)+ 2Cqe ‘&(r‘eﬂﬁ)’ ’a—r( Fetrs=|| - 2P X] +[—] =0

X or

(2.25)
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where the viscous coefficient this time is given by:

" Pr, (2.26)
where Prt represents the turbulent Prandtl number.
Equations (2.23) and (2.22) were implemented into the present work and
solved as an integral part of the baseline flow field calculation. Modified
reaction rate coefficients for each participating reaction are then calculated
based on the B-probability density function constructed from these equations,
completing the turbulent combustion model which will be described in a later

chapter.

23  Second Order Solution Method of The Navier-Stokes Equations

The numerical solution of the compressible Navier-Stokes equations in
primitive variable form requires the use of some form of upwinding or
artificial viscosity. If a first order accurate method is used then too much
numerical diffusion will follow resulting in a solution for a much lower
effective Reynolds number. The present work uses a finite element approach
for second order accuracy, developed by Baruzzi (1995). Global szcond order
accuracy is achieved by introducing fourth order operators to replace the
Laplacian operators used in a more standard pressure dissipation type

artificial viscosity formulation.
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For example, a pressure dissipation term may be introduced into the

continuity equation as follows:

Aow) | 1 Arov) _ o2
™ + 5 ” =gV'P

(2.27)

Tiis new fourth order operator is recast as the difference of two Laplacian
operators and balancing terms are introduced to guarantee that fourth order
artificial dissipation is maintained. Thus the continuity equation would now

take on the following form:

apw) | 19rPV) _ o (vp.
R (vp-F) 2.28)

Where F is the balancing term and it may be shown that, in discretized form:

(VP-F) = =L v*
v (vP-F L v'p 2.29

The second order accuracy of this scheme has been formally demonstrated by
comparison with an exact solution and its robustness has been proven

through many applications in the present work.
24  Solution Algorithm

The final step in the application of the finite element method is the solution
of a large system of algebraic equations. When explicit methods are used to

solve these large systems the problem becomes one of reducing the number of
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matrix manipulations. There are many very well understood direct and
iterative methods that could be implemented at this stage. A brief discussion
on both approaches will be given, however the present work implements a
direct solver.

For direct methods the number of matrix operations required scales as the
number of equations solved for, therefore any advantage given by the
matrix’s structure must be taken into account to reduce computing time.
There are two main ways of taking advantage of the structure of & matrix in
storage and solution procedure. The first scheme uses the size of the
maximum bandwidth of the matrix and stores only the maximum, nonzero
length of the column or row for all equations. The second approach, called
the skyline method, stores only the nonzero length of the column or row for
each equation. In this scheme only the nonzero elements of the matrix are
stored with pointers providing the location of the entry in the expanded
matrix.

Iterative methods for general nonsymmetric matrices have enjoyed limited
success. Currently, however, there is an algorithm growing in popularity for
use in symmetric finite element matrices and is known as the conjugate
gradient method (CGM). This method leads to convergence problems for any
type of application whera the matrix is ill-conditioned, such as the primitive

variable formulation of the finite element fluid flow analysis. Some of these
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convergence problems were overcome with the introduction of the
generalized minimum residual algorithm (GMRES). This method has been
applied to large, nonsymmetric and nonlinear problems with good success.
An advantage to using iterative methods for solving nonlinear problems is
that the solution to these problems often require multiple iterations
themselves. Hence, by using an iterative solver, optimal convergence may be
achieved by using only approximate solutions at each global iteration of the
solution scheme and as the nonlinear scheme starts to converge more and

more accurate solutions can be obtained from the matrix solver.

25  Turbulence Modeling

It is generally accepted that the Navier-Stokes equations are sufficient to
describe the motion of a viscous, compressible fluid under all flow conditions
ranging from laminar to fully ia bulent. However, analytical solutions to
these highly non-linear equations a. > not possible and there are only a few
analytical solutions to special cases of the Reynolds-averaged version of the
equations. The development of turbulence modeling is an engineering
attempt to approximate the effects of turbulence on the fluid flow without
having to resolve all of the spatial and temporal time scales associated with

the instantaneous Navier-Stokes equations. This section will provide a brief
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overview of turbulence modeling, with special attention given to the two
equation models used in the present work. Also, a special treatment of the
wall conditions within the finite element method is presented.

In general, the turbulent equations of fluid flow cannot be solved numerically
in their exact form due to the difficulties of resolving all of the various scales
involved in the motion. These limitations are especially felt when flows
from nature or industry are being considered. in order to proceed with the
analysis of flow with real engineering interests, it becomes necessary to
simplify the set of goverrung equations, as was described in chapter 2, and
introduce models to handle the extra terms that appear after the equations
have been modified. Turbulence modeling can, in general, be put into three
distinct categories. The first category includes models that are based on the
Bossinesq assumption for the eddy viscosity, hence they are usually referred
to as eddy viscosity models. Eddy viscosity models are further sub-classified
based on the number of extra equations that are used to obtain this turbulent
viscosity. So far, there are zero-equation, one-equation and two-equation
models. Zero equation models add no extra partial differential equations to
the problem and are thus referred to as algebraic models. One-equation
models add one partial differential equation for the turbulence kinetic energy
of the flow. Two-equation models also solves an equation for the turbulence

kinetic energy and adds a second transport equation which models the



dissipation of this energy. It is these two-equation models which have
enjoyed the most success resolving flows of industrial interest and are the
main subject of this chapter. The second category of turbulence models do not
assume an eddy viscosity but rather attempts to solve the extra Reynolds
stress terms, that appear in the averaged Navier-Stokes equations, directly.
These models are generally referred to as second moment closures and have
not enjoyed the popularity of eddy viscosity based models. Second moment
models use transport equations to describe the evolution of each of the
Reynolds stress and, although theoretically more accurate than eddy viscosity
approaches, are thus too prohibitive to use for large scale industrial flows.
The third category includes all models that do not rely on solving the
Reynolds averaged Navier-Stokes equations. Most common in this category
are large eddy simulations and direct numerical simulations. Since these
models solve the instantaneous version of the governing equations they
remain, as yet, impractical for industrial applications as the same problem of
capturing all time and length scales returns and very fine numerical grids are

required.
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25.1 Reynolds Averaging

The conservation equations for mass, momentum and energy are the basis
for the formation of the mean flow equations. Using Reynolds averaging, a
statistical approach is used to recast the instantaneous values of velocity,
pressure and temperature, as well as any other scalar quantity, as a mean

value plus a fluctuating value:

u=u+4+u
P=P+P
T=T+T
db=0¢+¢ (2.30)

The mean or average quantities are obtained by integrating the instantaneous
values over a very long length of time, much larger that the time scales of the
turbulent motion:

o= m Lf o) dt

At—reo At (2.31)

When this form of the instantaneous quantities are substituted back into the
governing equations we recover basically the same equations as before but for
the mean values and we also obtain some extra terms or correlation’s which

must be accounted for by models. These additional terms introduced by the

averaging process, appear as products of fluctuating velocities uu’ and velocity



and scalar values, for example: uT. The first attempt at modeling these

fluctuating velocity terms was given by Boussinesq in his eddy viscosity

—~—

concept for the so called Reynolds stress tensor u'v’.

252 Eddy Viscosity

The concept of eddy viscosity is based on the analogy between the molecular
motion in laminar flows and the eddying motion seen in turbulent flows.
Stoke's viscosity law, for laminar fluid flows, relates viscosity to the average
velocity gradients of the molecules and the mean free paths between
collisions of the fluid moiecules. The Boussinesq assumption is to likewise
characterize a turbulent viscosity based on the length scales of the eddies in
the flow. Zero-equation models are based on a mixing length used to
characterize the turbulent viscosity. Here it is assumed that turbulence
quantities are not transported by the flow and that turbulence is always in
local equilibrium, i.e. turbulence energy is dissipated at the same rate that it is
being produced. The Prandtl mixing length scale was the first of these zero-

equation models and it yield a familiar form of the turbulent viscosity:

o = pi [
™lor (2.32)
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This relationship only introduces a single unknown parameter, the Prandtl
mixing length 1, Although this approach has enjoyed some success in
industrial applications, the need to recalibrate the mixing length every time
the geometry changes and the limited validity of the equilibrium condition,
have made this a poor engineering tool.

One-equation models are rarely encountered and were primarily a stepping
stone to the very popular two-equation models. Two-equation models are
presently the furihest refinement of the eddy viscosity concept. In these
models, two partial differential equations are introduced, one is to calculate
the turbulent kinetic energy of the flow and the second is used to obtain
information about the length scale along which the dissipation of this
turbulent kinetic energy takes place. To this day the general working form of

the two-equation model is based on the work introduced by Launder and

Spalding in 1974. In general, it is this k-€ form of the two-equation model that
is used, where k represents the turbulent kinetic energy and ¢ the dissipative
length scale. Another, more recent, approach is to replace the g-equation with

an equation for the specific rate of dissipation w resulting in the k- ® form of

the two-equation model. Both of these models have been implemented in the

present work.
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2.53 The k-e Turbulence Model
The k- € model employs the following eddy viscosity concept:
K2

which relates the eddy viscosity to k and e. The kinetic energy transport

equation is used to determine k:

ai(pum+ vk = M) fé'HmakD

O 0X Ok Or (2.34)

and the kinetic energy dissipation rate transport equation is used to find €:

2
—{pus)+ —(rpve) - 9 (I aﬁ) 1 g_H“taa )+ C|tlz(Pk i CZEE

Ox \Ge0x r\ [ Or

(2.35)

where P, represents the production of turbulent kinetic energy, and is given

by

s oG

and C, and C, are model constants.

au av) _{M )]

(2.36)
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254 The k- Turbulence Model

Using dimensional analysis combined with physical reasoning Kolmogorov
was the first researcher to postulate using a specific dissipation rate, ®, to
describe how turbulence kinetic energy is dissipated. Recognizing the key role
played by large eddies and the relative unimportance of viscosity, at least
explicitly, Kolmogorov combined this knowledge to postulate and equation
for . The dimensions of eddy viscosity, v,, are (length)’/(time) while the

2

dimensions of k are (length) ?/(time) ?, consequently v, /k must have

dimensions (time). Turbulence dissipation, €, has dimensions (length) %/

(time) ?, therefore, € /k has di-rension 1/ (time) We may, therefore, close

both the constitutive relation and the equation for k by introducing a variable
with dimensions 1/(time), or (time). The variable representing this time scale
must be representative of large eddy motions. Kolmogorov call C, the "rate of
dissipation of energy in unit volume and time", and tied it to both dissipative

and diffusive processes. In the present work, the most thoroughly tested
version of the k-0 model is used, the Wilcox version of the model introduced

in 1988.
In this model we must solve a slightly modified version of the turbulence

energy equation and introduce a new partial differential equation for the new
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time scale, w, to obtain the eddy viscosity for the flow field. The following is

basically the same equation for k given by (3.3) but with ® introduced into it:

d L9 _ Of{mok), 1 9 u.ak} *
é—x-(puk)+ - 5;(rpvk)_ . &*—ax)+ - a-rHG* 3 )+Pk- B pko

(2.37)
and the new equation needed to obtain w also has a very similar form:
P2 1 0 d KL 00 1 ([ H dw *
uw) + - —{rpvw) = —-(———) + —{r[—“ +a@P -B pw?
;(—(p r or ox Gma)( r or Ow or k K P (2.38)

These equations are solved segregated from the Navier-Stokes equations to
obtain the eddy viscosity which is, in turn, fed back into the other flow and

combustion equations.

255 Logarithmic Wall Elements

The above described two-equation turbulence models are the classical high
Reynolds number k¢ and k-0 models, That is, they are only physically valid

when the flow Reynolds number is high, or when the effects of molecular
viscosity are very low. For best accuracy a low Reynolds number turbulence
model should be used in the near wall region where viscous effects are more
important, but this approach would require an additional 10 to 20 grid points
to resolve the high flow gradients and turbulence quantities in that region.

This would be very costly in terms of speed and memory on any computer,
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making a Navier-Stokes code a less practical tool. The wall function
approximation therefore excludes the high gradient region near walls and,
instead, imposes a linear behavior in the vicinity of the wall:

u+ = y+ ; O<y+<6 (2.39)
and a logarithmic behavior near the first grid point away from the wall:

+-__-_1_ + . +>
u lcIny +C ; y*220 (2.40)

with smoothing between these two regions. The constants and variables in

(2.38) are defined as:

k=04184 ; C=5.1

+ = Ur ! U= Tw
y py” =4/ o Re (.41)

To obtain the boundary conditions imposed on the k-¢ or k-w models, the

production and dissipation of the turbulence energy at the wall are assumed

to be equal. The turbulent shear stress at the wall: 1, is obtained from the wall

function assumption and is used to compute new values for k and £ or .

The wall function approach is known to be inaccurate for three-dimensional
and separated flows and a considerably more accurate approach, yet far
cheaper than implementing a low-Reynolds number turbulence model, is
used in the present work. As proposed by Manouzi and Fortin as well as

Haroutunian and Engelman, th » near-wall element incorporates into its
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shape function the partially logarithmic behavior of the velocity in the
direction normal to the wall, while retaining the strictly linear behavior in
the direction tangent to the wall, as shown in figure 1. Thus, for the elements
adjacent to a wall, the velocity shape function reflects the flow behavior in
this region, characterized by a viscous sublayer, a transition layer and a

logarithmic outer layer. For example, the element shown in figure 1,
assuming that the bottom face to lie on a wall, the shape function F,(n) for
nodes off the wall is re-expressed as F, (y'/y'w,) to reflect the assumed
behavior.

Due to the large gradients associated with F, (y*/y”.q,.) the velocity variation in
the near-wall element cannot be integrated accurately using a standard two-
point Gauss quadrature as the elements in the rest of the flowfield. Through
numerical experimentation, it has been found that nine Gaussian points are

needed in the direction normal to the wall to adequately integrate the

behavior, including the logarithmic part.
As the k-€ or k-0 equations are integrated up to one grid point away from the

wall, the turbulent viscosity in the near wall region is interpolated as follows:
a linear behavior starting at the edge of the near-wall region, where y* is

assumed to be less than 300, to a y* value of 30, and a quadratic variation
between y* = 30 and the wall, i.e. y* = 0. The k-¢ or k- w equations are solved in

a segregated manner from the rest of the flow equations and the turbulent
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viscosity is then updated. Furthermore, the highly non-linear source terms

that appear in the k-€ equations are loaded into the solution progressively to

allow for better overall convergence. The source terms in the k-® equations

on the other hand do not require such a loading procedure and may be fully

solved for without adverse effects on overall convergence.

26  Combustion Modeling

In this section the combustion models used in the present work are
presented. The first model shown assumes equilibrium chemistry and gives
no details of the individual kinetics involved in the combustion process. This
model is used as a numerical stepping stone toward solving the more

complicated finite rate model shown later in this section.

26.1 The Eddy Breakup Model

The eddy breakup model is based on the concept that chemical reaction is fast
relative to the transport processes in the flow. When reactants mix at the
molecular level, they instantaneously form products. The model assumes
that the reaction rate may be directly related to the time required to mix the

reactants at the molecular level. In turbulent flows, i.e. all industrial flows,
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the mixing time is dominated by the turbulence properties, and therefore, the

reaction rate is proportional to a mixing time define by the turbulence kinetic

energy: k and its dissipation: e (or the specific dissipation : ).

rate = or rate = @

€

k (2.42)
This concept of mixing dominated reaction control is applicable to a wide
range of industrial problems, where the flame temperatures and reaction
rates are fast when compared to the reactants mixing rates.

The model, as it is implemented in the present work, is based on a single
reaction in which fuel and oxidant react together to form products and release
heat. The chemistry of the combustion reaction may be represented on a
molar basis by:

V; fuel + v,oxidant --> v, products (2.43)
where Vf represents the number of moles of fuel, vO represents the number
of moles of oxidant required to combust the Vf moles of fuel and vp is the
number of moles of products generated in the reaction. The fuel, oxidant and
products mass fractions are scalar variables that are obtain through solving
the species transport equations presented earlier. Equation (243) is therefore
expressed on a mass basis to coincide with the treatment of multi-component
fluids in term of mass fractions:

fuel + r,oxidant --> (1+1;) products (2.44)
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where r, is now the stoichiometry, i.e. the mass of oxidant required to
combust a unit mass of fuel.

The species transport equations presented above require the knowledge of the
reaction rates for each species. This reaction rate appears as scurce terms wi
which, in a first instance, will be calculated using an eddy breakup model. The
model requires that fuel, oxidant and products all be available at a given grid
point before any reaction will occur. The fuel and oxidant are needed as
components of the forward reaction. products are not necessary as part of the
forward reaction but their presence implies that there is heat available due to
reaction. Therefore, since any one of these components may limit the reaction

rate at a given grid point, the minimum concentraticn of fuel, oxidant or
products is used to calculate the reaction rate. The reaction rate for the fuel, w,

is obtained from the product of the minimum concentration of the species

and a turbulent mixing rate according to:

Yy
1+r¢ (2.45)

Or=-Achy P %Min Y, Yr_: » Bebu

where A, and B, are model constants. The corresponding source terms for

ebu

the oxidant and product mass fraction transport equations are given by:

Wo=rr@ and ;= (l+rp) Wy (2.46)
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26.2 Finite Rate Chemistry and Kinetic Modeling

The eddy breakup model for nbtaining the reaction rates for each species
participating in the reaction is well suited for most industrial applications
when details of the individual reactions taking place in forming the
'‘products’ are not necessary. That is, if you are only interested in global values
of product concentrations an eddy breakup model will work well under most
conditions. If, however, one is interested in the details of the chemical
kinetics taking place during the reaction, the simple model described above
gives no such details. In many industrial applications it becomes necessary to
know about the intermediate steps and species participating in a reaction. In
the study of soot formation or engine knock, the individual chemical steps
must be know in order to predict or correct these conditions. One uf the most
important applications today is in pollution coritrol and, in particular the
formation of NOx [NO, NO,]

The instantaneous production rate of a species i due to n chemical reactions
involving N different scalar species can be represented, from the law of mass
action, in the following most general form [Kuo}:

N N N
o =M; Y, (vi; - v {kgp™ [T [C.) - keipm [T 1€
i=1 s=1 s=1 (2.47)
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where:

N
m; = 2 Vg and nj= 21 Vsj 2.48)
§= .

In the above equations, the number of molecules of the scalar s involved in

the j-th forward reaction is v'y; and the corresponding backward reaction is

]
v";- The forward and backward rate constants of the reaction j are given by k;
and ki, respectively. Typically the forward reaction rates are functions of the

temperature based on an Arrhenius expression of the form:

ke=Cp TV e;z—'fr' (2.49)
How this rate coefficient is treated numerically is one of the central themes of
the present work. The role that probability density functions will play in the
calculation of these rate coefficient will be discussed in more detail later in

Chapter 4.
2.6.3 Reduced Mechanisms

The general idea of reducing complex kinetic schemes by the introduction of
steady state assumptions has been known to chemists for a long time.
However, it has become fruitful for combustion applications only very
recently. Interestingly enough, it was the application to hydrocarbon flames

rather than to the much simpler hydrogen flames that first showed the full



potential of the methodology. Steady state approximations for intermediate
species can be justified in many different ways. They were first derived for
zero dimensional homogeneous systems that depend only on time, and the
term 'steady state’ was introduced because the time derivative of these specics
is set to zero:
N
El%(fi—] = 2 vijw; = 0
j=1 (2.50)

Here, t denotes the time, and w, the reaction rate. The justification for this
approximation is generally provided in physical terms by stating that the rate
at which species i is consumed is much faster than the rate by which it is
produced. Therefore its concentration always stays much smaller than those
of the initial reactants and the final products. Since this concentration, C,
stays small, its time derivative also stays small compared to the time
derivatives of the other species, as (2.50) implies.
The reduced mechanism for the Hj-air reaction set utilized in the present
work has been calibrated by comparison to a more complex H,-air mechanism
involving 9 species and 19 reactions. The calibration has been performed
using a perfectly stirred reactor code. The code computes equilibrium static
temperatures at various residence times and equivalence ratios, at given static
pressures, assuming instantaneous mixing of the reactants. The extended 19

reaction mechanism used in the calibration is listed below:
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H,0, +0
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O+ OH
H + OH
H + H,0
OH + OH
HO, + M
OH + OH
H, + 0,
H,0 + O,
HO, + M
H,+ M
H,0+M
Oo,+M
O,+ OH
H,0,+ 0O,
H,O0,+ M
HO,+ H,
H,0 + OH
HO, + OH
H,0 + HO,

G

3.73E+17
1.80E+10
1.08E+09
4.58E+09
2.00E+18
1.69E+14
6.63E+13
1.45E+16
5.75E+l11
9.70E+16
2.16E+22
LOOE+17
1.81E+13
1.OOE+13
1.30E+22
1.70E+12
1.OOE+13
9.55E+06
7.00E+12

45

K;

17500.0
8900.0
3650.0
17100.0
0.0
874.0
2130.0
0.0
57000.0
0.0

0.0

0.0
-3970
1000.0
0.0
3750.0
3590.0
3970.0
1430.0

This mechanism is itself a reduced mechanism which results from truncation

of the complete 28 reaction hydrogen oxidation kinetic mechanism. The

criteria for eliminating reactions was whether a given reaction contributes

less than 1% to the species mass fraction being computed. For consistency, the

units used are expressed in cm?, g-mol and seconds, in the computation for
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the given chemical equation. The final, reduced, combustion model used in
the present work is the following 7-species, 8-reaction mechanism. The rate

equations, coefficients and activation energies used are given below:

Reaction C n, K
OH+O <--> H+H,0 1.80E+13 0.0  960.0
OH+H <--> H,+0 840E+O9 1.0 7000
OH + OH <--> H,0+0 6.00E+12 0.0  1100.0
OH + H, <--> H,0+H 2.10E+11 0.0 5180.0
H+H+M <--> H,+M 1.80E+06 -1.0 0.0
H+O+M <--> OH+M 6.00E+06  -1.0 0.0
O0+0+M <--> O,+M 1.80E-10 0.0 -1800.0
H+OH+M <--> HOo+M 6.00E-02 20 00

In this model, atmospheric nitrogen, N,, is considered inert with no
dissociation even at high temperatures. Computationally, its mass fraction is
held constant during the chemistry calculations. NOx modeling is discussed
in greater detail later in this chapter.

The H,-air mechanism represented above is a significantly reduced
mechanism, the extended mechanism is considered to be more accurate,
capable in principle of predicting the details of combustion from cold to hot
portions of the flame. This reduced mechanism may result in a decreased
ignition delay relative to that predicted by the extended model. A primary

reason for this is the absence of important species in the reduced mechanism
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including the hydrogen peroxides H,0, and HO, which are considered
important for low temperature calculations. In the present work, however,
the incoming air is at a temperature of 810 °K which is well below the auto-
ignition temperature of between 1000 °K and 1200 °K required by the extended

mechanism.

26.4 NOx Modeling

Simplified models for predicting the rate of production of NOx in combustors
are presented. These models are based on chemical reactor modeling and are
strongly influenced by the nitrous oxide mechanism, which is an important
source. of NOx. The later have been developed for use in an NOx
postprocessor for CFD codes. Whatever model for chemical reactions and for
nitric oxide in diffusion flames is employed, two facts are always going to be
true. Only a small percentage of the combustor volume ( or computing grid
points) produces almost all of the total amount of NOx. The typical length
scale associated with Nox formation is far below the smallest possible
numerical grid size.

The calculation of NO is a two step process in the current formulation. One
first calculates a fully converged flow field solution for the aerodynamics and

the H,-air reaction set, including solution of the enthalpy and temperature



48

variances needed for the standard 88 - probability density function approach.
Flow field variables are then 'frozen', including velocity components,
density, pressure, temperature, mass-£.action of species in the H,-air reaction
set, and the enthalpy and temperature variances. Next, the three equation
NOx reaction set, described in the next section below, is calculated, with
iterations performed until convergence is achieved for the NO and N
variables. This procedure is a reasonable approximation in terms of the
enthalpy release into the flow field and for calculation of 'thermal' NOx. For
increased accuracy, however, the two-step procedure must eventually be
integrated into a single step in which the H,-air and the NOx kinetics
mechanisms are coupled during the baseline flowfield calculation in order
compute the additional production mechanisms for NOx, including ‘prompt’
and 'fuel' NOx. These forms of NOx production currently cannot be
calculated due to the decoupling of the three mechanisms.

For thermal NOx, the principle reactions are recognized to be those proposed

by the following three extended Zel'dovich mechanisms:

Reaction G n, K,

O +N, <> NO+N 7.00E+13 0.0 76000.0
N +0, <-> NO+0 6.40E+09 -1.0  6300.0
N + OH <-> NO+H 6.30E+11 0.5 00
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Despite being linked to the H,-air mechanism, discussed in chapter 4, through
the provision of oxygen atoms in the first two reactions, it is possible to
decouple the calculation of NO formation rate from that of the combustion
rate because the oxygen atom consumption during the formation of NO is
much less than that consumed during the combustion reaction. In addition,
the heat of reaction associated with nitric oxide formation may be neglected in

the calculation of the temperature and concentration fields.
2.6.5 PDF Comparison Mechanism

An analytical study of the forward rate coefficient is undertaken to evaluate
the net effects on the flow field due to the modeling of turbulence/chemistry
interactions. To this end, an amplification factor is introduced to quantify the
net effect of the probability density function on the rate coefficients. The
reaction rate coefficient is first calculated from the Arrhenius expression
described above, then stored before being modified, or integrated, by a pdf.
The amplification factor is the ratio of the modified reaction rate to the

unmodified one and is given by:

T2
f k¢ P(T) dT
T

kg (2.51)
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This is done by examining the reaction rate amplification factor over a rang.
of different 'thermal intensities' or temperature fluctuation levels expected in
the flow field and over the temperature limits imposed on ite probability
density function, as described in chapter 4. We refer to the numerator as the
'turbulent' reaction coefficient and the denominator as the 'laminar rate
coefficient. The term laminar here means that turbulent fluctuations are not
being taken into account when computing the reaction rate coefficient. It does
not mean that the flow is laminar. It will be shown in chapter 4 that the
probability density function is completely specified by the mean temperature
and its variance, or intensity. Amplification factors depend largely on the
local curvature of the rate coefficient curve, which we have seen are
primarily functions of the exponential and power terms in the Arrhenius
expression (2.49). Rate coefficients wh' n vary strongly with temperature tend
to have amplification, or suppression, of larger magnitudes than rate
coefficients which are only weak functions of temperature. This is because
integration of the 'turbulent' reaction rate over a symmetric or nearly
symmetric functional variation with temperature resualts in negligible
modifications to the laminar rate coefficients. Amplification or suppression is
determined by the sign of the slope of the rate coefficient curve, i.e., convex or
concave. Typically, in the present work, amplification or suppression occur

near the low and high extremes of the temperature range, with an
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amplification factor close to one over much of the range. The magnitude of
the amplification is greatest at high temperature variances, a result which
held true at all mean temperature values. Further results are discussed in

chapter 5.



CHAPTER 3

NUMERICAL METHODS

This chapter deals with the development of the finite element numerical
model used to approximate the Navier-Stokes equations, energy equation,
species equations and turbulence models, allowing for the solution of reacting
flow problems. First the nondimensionalization of the variables is presented.
The second section demonstrates the use of the Galerkin finite element form
of the method of weighted residuals used to obtain an algebraic
approximation to the governing partial differential equations. Also discussed
in this section is the choice of interpolating functions used within each
element of the discretized domain. The third section discusses the boundary
conditions applied to the governing equations at the time of solution. The
final section presents the solution methods used to obtain the results to be

discussed in chapter 5.
3.1 Nondimensionalization
In order to provide the correct scaling of all the equations, it is required to

recast the variables in a nondimensional form. For the present work there is a

well defined characteristic velocity and length scale which are used to
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establish the flow Reynolds number. We may introduce these characteristic
scales: the characteristic velocity U, length L, and reference temperature T,

and the following nondimensionalizations can be made:

* «_ Y * u * v * P * p
x*= X = L W= yvi=X P =" =
Lo y L, U, U, on2 P Pref (3.1)
and,
T = T - Teer
AT (3.2)

Nondimensionalization will also be introduced to the turbulence modeling

as follows:

ok ot oLy e W
U,? U3 Uo W (3.3)

This leads to the following nondimensional form of the governing equations,
continuity:

a(p*l;lt +l'a(rl-pl:v» =0
ox r or (3_4)

and the u,v and w momentum equations:

a(p*u42) + 1 a(r’p*u"v‘) = oP* + __]_(a('txx*) + 1 a(1'*'l7rxm))
ox" ' ox* Rel ox* * or (3.5)

), ) i)y #)
ox" r*  or or* Rel ox* r* o r* (3.6)



54

a(p*u w ) 1 a(r"'p v'w ) p v'w' - (a(»r ATy ) ) a(l‘q‘l', t))
> v PRI R R

and the energy equation:

__***_ll:foH_:_]_*.*,_u:“.gﬂé_
ox* puH, Re Pr, ax*)-}-r‘= (r[puHo Re Pry ¢ =0 (3.8)

The k-¢ turbulence model is also shown in nondimensional form. The other

turbulence model, the k- model, follows this nondimensional form very

closely and will not be presented. The nondimensional turbulent kinetic

energy transport equation is given by:

* % * K X ak a *akt * * _*
_(puk)+1—(rpvk)— ﬁ(‘(:(*ax) o ;(r[%g;‘—])+Pk )-pe

(3.9)

The nondimensional dissipation transport equation is given by:
* * * * - * *2
e | syt 1 d Hi o¢’ ) 1 d },[“l 3 :|) Cie Py Cp e
——4 e —‘r = o + -
p ) ) Re a‘x(o_k* ax l' al' ckt art k-t kt

(3.10)

In addition, the turbulent eddy viscosity and turbulent Reynolds number

then become:

x . *2 *2
B, = Cup Re—l%- and Re =Re K
€ e (3.11)

The following dimensionless groups are introduced through this process. The

ratio of the inertial forces to the visccus forces give rise to the Reynolds



number Re. It determines the behavior and characteristics of viscous flows in
general. Its value indicates whether the flow is laminar or turbulent. This
ratio may be expressed as follows:

e= pLoUo
H (3.12)

R

The ratio of the diffusivity of momentum to the diffusivity of heat is referred
to as the Prandtl number Pr. The value of the Prandtl number indicates the
behavior of the thermal diffusion relative to the momentum diffusion.
When Pr < 1, the thermal boundary layer is thicker than the viscous velocity
boundary layer and develops more quickly. For values of Pr > 1 the thermal
boundary layer is thinner than the velocity boundary layer and develops
more slowly. We may express the Prandtl number as follows:

_Crp

Pr==¢ (3.13)

For the combustion model the species mass fraction equations may be

expressed in the following nondimensional form:

0+ u 1 0 (a * 4 a{ Mest aY') 1 9 [ Mesi aY‘] *
y)+ L L y)=- 2] Hert OXi) 1 Of o Heit OXill,
a—x‘-(p wYi) rt E)r*{r Py l) ax*\Re Sciax* | r* "[Re Scior* o

(3.14)

The ratio ¢{ the rate of momentum transport to the rate of mass transport is
referred to as the Schmidt number Sc, and may be defined for each pair of

species in a multicomponent mixture.
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3.2  Galerkin Finite Element Approximations

Now that the equations of interest have been introduced and properly scaled
the Galerkin method will be applied in order to obtain a set of approximating
algebraic expressions. The first step in the finite element method is to
approximate each variable over each of the elements using interpolating

shape functions, for example:

4

u(x,y) = E;Ni uj 619
4

Vo = Z{Ni " (3.16)
4

w(xy) = E;Ni Wi a1
4

P = E’Ni i (3.18)
4

Ho(xy) = ENi Hoi -

These expressions for the dependent variables are substituted into the
governing equations and the application of the Galerkin method with
weighting functions being the same as the above interpolating functions,

leads to the following set of integral equations, for continuity:
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d
f“ N,.{ u) 1 a(rpv)}dA 0

£ (3.20)
and the momentum equations:
[ {a(puz) 1 drpuv) 3P _dnw) | a(n,x)} dA = 0
N i\"ox T or Tox ox T o (3:21)
2
[yt 2. A s
(3.22)

Aow) 1 Arovw) pvw sl 1 Aall 4 - g
ox TY or r ox 2

e

A similar set of integral equations are obtained for the energy equation and

(3.23)

the turbulence and combustion equations. Note that the nondimensional “*
notation has been omitted for clarity of presentation, although all of the
above equations refer to nondimensional quantities.

Integration by parts is then applied to these integrals thus reducing the
constraints on the shape functions and introducing the natural boundary
conditions via a boundary integral. Since the constraints have been weakened
on the interpolating functions, this approach is often referred to as the weak-

Galerkin method. The resulting set of algebraic equations are then solved for,



58

once boundary conditions have been applied. Each entry in the matrix is thus
obtain by integrating the equations, multiplied by the appropriate weights,
over each element. Gaussian quadrature is used to perform this integration

and to accomplish this each element is transformed into a standard element
over which the integration may be carried out. In this standard element the

shape functions have the following form:

Ny =1(1-E) (1-n)
L{i+€)(1-m)
Ny =1(1+&)(14n)

Ny =L (1) (14n)

N,

(3.24)

These are linear interpolating functions for four node quadrilateral elements.

3.3  Boundary Conditions

The boundary conditions possible for fluid flow problems include inlet,
outlet, solid wall and symmetry conditions. The boundary conditions for each
of these possibilities is described for each of the flow variables. Inlet boundary
conditions for velocity usually consists of an imposed value or Dirichlet
boundary condition. The outflow or outlet boundary conditions are specified
by applying a normal derivative value or Neumann boundary condition. For

solid walls, the no-slip condition is applied to the velocity variables. For
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symmetry conditions the radial velocity component is set to zero and the
other velocities are left free. Pressure boundary conditions are applied
through the contour or boundary integrals obtained through the weak-
Galerkin formulation at the exit of the domain. The boundary conditions on
temperature consist of Dirichlet conditions on all walls and inlets.

The level of turbulence at the inlets is established by Dirichlet conditions
based on the intensity of the turbulence and the length scale of the dissipation

of this turbulence:

kin =T u}, (3.25)
and
ki
Ein=1—
LyD (3.26)

and o,, = ¢ /k;,. Here I represents the turbulence intensity at the inlet, where

0.01 < I < 0.1 with a value I = 0,03 yielding the best results for most cases. L,
represents the length scale of the energy containing eddies in the flow and D
is the hydraulic diameter of the apparatus. A vatue of 0.005 worked best for L.
Wall functions are used to specify the turbulent quantities at the solid walls as
Dirichiet boundary conditions. The turbulent kinetic energy at a solid wall is

zero, due to the no-slip condition for the velocities. The boundary condition
for the dissipation¢ is set to a finite value using the wall functions discussed

above.
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The values for the combustion model were all set as Dirichlet boundary
conditions at the inlets. Here the appropriate mass fraction of each species was

set to specific values. 34 Solution Strategy

The solution strategy consists of the details of steps followed in obtaining a
converged solution for each case that was run. Strategies for solving laminar
and turbulent flows differ. The strategy must address what is used as an initial
guess for each of the variables, linearization methods and any relaxation
applied. The initial guess of the unknowns must be within the radius of
convergence of the linearization scheme. Often a zero velocity, or Stoke’s
flow, condition is used as an initial starting point. This usually provides a
good starting point for subsequent iterations. Another approach which is very
useful in obtaining solutions to high Reynolds number problems is to start
the solution at a lower Reynolds number as the initial guess. In this fashion,
the solution is advanced from a low Reynolds number to the final desired
level by a finite number of steps. In general laminar flow solutions are easy to
obtain using this approach when using a Newton linearization scheme.
Turbulent flows, however, are not so well behaved. Turbulent flows requires
additional steps not needed in laminar flows due to the added nonlinearities.

In the present work a segregate solution strategy has been adopted to reduce
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the amount of core memory needed in solving the full problem. This strategy
is especially useful in the present work since, not only are turbulence
equations added to the system but combustion and enthalpy variance
equations are also need. A segregated solution strategy uncouples the Navier-
Stokes and energy equations and turbulence model equations and solves
them separately. The combustion model equations and the enthalpy variance
equation, needed for the pdf calculations are also solved separately. This
approach increases the number of overall iterations to .all convergence of the
solution, but the added flexibility in getting converged solutions more than
makes up for this loss in efficiency. The first step for any test case was to
obtain a laminar non-reacting solution for as high a Reynolds number as
possible and use this solution as a first best guess for a turbulent non-reacting
solution for the desired flow Reynolds number. Once these two steps were
accomplished and a turbulent flow field was established a simple chemistry
model, the EBU model discussed in chapter 2, was used to obtain a rough first
solution for the temperature and density fields. Once that the Navier-Stokes
and energy equations have converged a few orders of magnitude the full
finite rate chemistry model is turned on. Underrelaxation is used on the
density calculations until steady convergence has been re-established. When
all of the equations are converging steadily the probability density function

model starts working. As this work is intended to compare modified and un-
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modified assumed pdf’s, the flow field solution is frozen at this point and
stored in a restart file. Once the flow field has been saved, calculations may
proceed with either an un-modified pdf or a modified pdf. The reason thatthe
flow field is stored prior to any pdf applications is that a one to one
comparison is to be made between the effects of both kinds of pdf's, so it is
desired that each case start from exactly the same initial flow field. The
convergence criterion on each of the flow variables makes use of a standard
relative error norm. This relative error norm is simply the Euclidean norm
and is verified as follows:

S le-ar]”

i=]

g

where ¢; represents any one of the flow variables at node I at the end of the

Error =

(3.27)

nth iteration.
A Newton linearization method is used on the variables. Using this method
the desired solution is a combination of the previous iteration value and the

change in this value:

1
0" = ¢" + A" (3.28)
In the present work it is this change in the variables value that is actually

solved for. The above solution »‘rategy is shown schematically in figure 2.
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Additional difficulties associated with the turbulence equations are centered
around the nonlinear source terms that appear in these equations. One main
requirement is that the turbulence variables remain positive throughout
thecalculations. During the iterative process, it may become possible that
negative turbulence quantities appear. If such negative values occur they
cannot be used in subsequent calculations as divergence of the whole system
will follow within a few short iterations. In order to maintain positive valued

turbulence quantities, a clipping method may be used when the values
become negative. In this approach the values of k, ¢ and @ are set to

predetermined minimum values whenever they become negative. This
method works if there are only a few nodal values which become negative,
however, clipping often distorts the solution and leads to erroneous values
for the turbulent viscosity. A much better approach, that is adopted in the
present work, is a linearization of the source terms in the turbulence
equations. Following suggestions by Patankar (1980) for what he calls always-
positive variables, the source term in the k transport equation is linearized as
follows:

en kn+1
k" (3.29)

mPx-pe = WwP-p

The source term in the € transport equation is linearized as follows:
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2 non+l

Cie £P-Cp pE = € Cy k" Py - C, ¢, p KIEM
lmk k 2Pk 1 ¢ k-C20p i (3.30)

The @ transport equation source term is also liniarized in a similar fachion:
Ciie Pg-Cyp @k = CCy pPy-Cap e @™ (3.31)

Note that the definition of the turbulent eddy viscosity for the given

turbulence model has been used in the linearizations shown above.
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CHAPTER4

PROBABILITY DENSITY FUNCTIONS

Probability density function (pdf) methods provide an alternative approach to
turbulence and turbulent combustion modeling that requires fewer modeling
assumptions and, hence, in principle, should be more accurate and general.
The most attractive feature of pdf methods in particular, are their ability to
overcome the chemistry closure problem in turbulent reacting flow
computations. Much progress has been made in both pdf theory and
application during the past decade, however, the development of such
models as quantitative, predictive tools for engine design and analysis, and
other industrial applications, remains an important task. In the first part of
this chapter the basic definitions of pdf’s are given and some examples are
presented. The various numerical approaches being developed for pdf’s is
then briefly discussed, then particular attention is given to the focus of the
present work: assumed pdf methods and variations of this approach.
Numerical methods used in performing calculations with the pdf’s used in

the present work are then addressed.
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4.1. Definitions

Consider some fluctuating quantity, © We can define a function, P(0), called

the probability density function, such P(6)A® is the fraction of time that © is

in the interval A® during a time interval AT, i.e.,

AT 4.1)

Then:

N
' Y A,
P(o) = lim | gl

AB—0 A6 AT (4.2)

This function can be used to determine the probability that, at any particular

time the value of ®will be between two given values, a and b:

Prob(a<0<b) =J p(0) do
] (4.3)

Note that we also have the following property:

f p0)dd =1
- (4.4)

The probability density function can also be used to determine the average of

any function of the variable ©. If we have F = F(©), then:
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F= f F(0) P(6) d6
. (4.5)

It will be this feature of probability density functions that we will exploit the
most. In particular, we may obtain the average forward rate coefficient for a
reaction, which is a function of temperature, by integrating it with respect to a
probability density function in temperature:

T2

kr= [ ke P(T) dT

T (4.6)
In the present work, the backward rate coefficient, k,, becomes amplified (or
suppressed) by the same factor as the forward rate coefficient.
There are several forms of pdf’s that have been used in turbulent combustion

calculations. The most commonly used ones are the Gaussian distribution:

gl

e , 0=0

2
P(0) = ! exp[i(gj—l) 0<0<1
o(2n)/? 12\ o ’
i 2
1 exp[i(-e.—u) do , 0=1
o(2n)!’2 2\c
1

4.7)
It should be noted that the standard Gaussian distribufion has infinite tails

which would represent serious numerical problems, which is why the above
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clipped version of the distribution is used. This distribution is then
represented by the standard Gaussian function for 0 < @ < 1, but the tails have
been clipped and are represented by §-functions at both ©=0 and 6=1. Another
commonly used pdf is the rectangular-wave distribution which is constructed
from two 8-functions located at the predetermined values 8" and 6
P@®) = ad8-0")+(1-a)d6-€) 4.8)

This form of pdf, however, has been shown to be unsatisfactory for turbulent
diffusion flames. An alternate to the Gaussian probability density function is

the B-probability density function. The B8-distribution is defined in terms of

gamma functions as follows:

Bi-1 B2-1
=8 U7 ey
I'(B1) T'(B2) (4.9)

P(6)

where I'(8)) is the gamma function and:

Bi = 9[9(;‘—;-9—)4]

08 (4.10)

By = (1) [9.@- }

00 (4.11)

This function is defined for 0 < e < 1.
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The B-probability density function, while more complicated than the
Gaussian distribution, is much more flexible. It has the ability to handle
fluctuations which are not symmetric about a mean value, as well as allowing

for bi-modal behavior. Bi-modal behavior occurs in the early stages of mixing.
As the stages of mixing progress, this bi-modal behavior disappears. The B-

probability density function has one other main advantage over the Gaussian
distribution in that it already has definite integratiow limits and no artificial
clipping is required. In the vresent work, the B-distribution is assumed for the

temperature field

4.2. ransport Models, Assumed pdf's and Modified pdf’s

The most accurate pdf calculations are based on the Monte Carlo solution of a
modeled transport equation for the pdf. In Monte Carlo approaches,
Lagrangian solution procedures are used in contrast to the Eulerian
formulation that is the basis for irst alternative methods. These
applications, however, have been limited to relatively simple flow
configurations due to the large demands on memory and computing time
brought on by the Lagrangian particle tracking needed for these methods.
The statistical error involved in using Monte Carlo methods is of the order N

"%, where N represents the number of particles used to represent the flow
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field, so it can be readily verified that, for use in industrial combustor design,
the number of particles needed to effectively model the fluid dynamics would
be too prohibitive.

Instead of solving a transport equation for the probability density function for
temperature, it is convenient to assume a form for the probability density
function shape. Gaussian distributions are sometimes used to describe the
mixiryg and transport of scalar flow variables. In the present work, however,
the Gaussian distribution was rejected for two main reasons: the Gaussian
probability density function has 'tails' which extend to plus and minus
infinity, which is physically incompatible with the requirement that
temperatur? must be limited to finite positive values. The distribution would
then have to be 'clipped' arbitrarily, resulting in a violation of the
fundamental property given by (4.4). The second reason is that Gaussian
distributions assume that all fluctuations of the quantity arc symmetric about
its mean value, which is not always true for temperature fluctuations. At
lowes temperatures, for example, positive temperature fluctuations will be
much larger than the negative fluctuations, o avoid arriving at negative
temperatures. Therefore, the physics of the problem dictates that the
probability density function should be asymmetric or skewed, which is not
the case for Gaussian distributions. Since B- pdf's are much more flexible and

there shape may be altered to become asymmetric, they present a much more
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attractive choice for turbulent combustion problems. When a static pdf shape
is assumed, however, we necessarily introduce errors into the calculations,
therefore, in order to minimize this error methods are being developed to
bridge the gap between Monte Carlo methods and assumed pdf methods. In
the present work one such method is implemented for the purposes of
quantifying the benefits and drawbacks of these new methods. The idea is to
have the shape of the assumed pdf evolve with the flow calculations without

solving transport equations for the pdf’s. The method implemented here
modifies the shape of the B-pdf using the fluctuating enthalpy of the flow

field. An extra equation is required to obtain this fluctuating enthalpy term at
each computational grid point, but it has a very similar form to the turbulent
kinetic energy equation and may, therefore be solved using standard Eulerian
approaches and the segregated solver approach used in the present work
means that no extra memory is needed for this equation. This fluctuating
enthalpy equation is fully described in chapter 2.

Since the above definitions of the B-pdf are for values between zero and one, a
change of variables is used to normalize the «-~-.verature T to the variable e:

0= T - Twin
Tmax - Tmin (4.12)

which yields the desired condition 0 < @ < 1. Also, we must define the

following correlation:
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__TF
(Timax - Tmin) (4.13)

Therefore, knowing the temperatures: T, T,,, and T, and the fluctuating

——

temperature correlation: T'T , obtained from the solution of the fluctuating
enthalpy equation, we may calculate the constants 8, and 8, and the new

shape of the pdf is then determined.
Once the B-probability density function is fully defined, the integrated,

probability density function weighted reaction rate coefficient can be

computed:

ke = [ ks P(0) dO
A (4.14)

where:
ki =ki(T(9)) (4.15)
One difficulty with applying the B-pdf to temperature, is the determination of

the maximum and minimum temperatures allowable in the calculations:
T s and T, These are the absolute limits of the temperature fluctuations. In
other words, T_,, = mean temperature + maximum possible fluctuation and
T,= mean temperature + maximum negative fluctuations. These extrema
are not always known with absolute certainty. One method iz to select the

maximum and minimum temperatures in the field. The potential problem
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with this approach, however, is that the global maxima and minima may
have nothing to do with the local maxima and minima. In the present work

the following method is used to obtain these limits:
Tmin = MaX {T -0 v T"T" . T]ow}
Tmax = Min ‘T +oVT'T Thigh} (4.16)

Note that by setting T, and T, in this way, we have assumed that the
fluctuations are symmetric about the mean when the temperature becomes
sufficiently far from T, and T, . When the temperature approaches T,,,, or
Thigne however, the fluctuations become skewed. In the present work T,,, was
selected to be 540°R which is the injection temperature of the gaseous

hydrogen, and T,,,,, was selected to be slightly higher than the adiabatic flame
temperature, or 4500 °R, of hydrogen in air. The value of the parameter o was

chosen to be 4.6 based on numerical experimentation so that:
Tmax
f P@©) d&@ = 1
Tmin (4.1 7)
4.3. Numerical Considerations

An important numerical consideration occurs when the statistical variance

approaches zero. When this occurs, the pdf behaves very much like a 8-



function and, in theory this is to be expected, however, when this expression
is integrated numerically, a singularity results. The present work, which does
integrate this term numerically, avoids this problem by computing a
fluctuation intensity to monitor for such occurrences. This intensity is

defined as follows:

[= VTT

T (4.18)
The pdf is then only used to compute the reaction rates when the intensity 1 is
greater than 1%. If the intensity is below this value, the reaction rates are
computed straight from the Arrhennius expression using only the local

temperature T.
As mentioned above the B-pdf must be integrated numerically at each

computational grid point to obtain the average reaction rates for each reaction

in the mechanism, this reaction rate is in turn used to establish the source

terms in the transport equations for each species participating in the reaction.

Fortunately this integral may be evaluated analytically to obtain:
N N

@ = M; (V;'V})E[P"' (H Cj'vl) Iy - P"z(n CJ'V;) Ih-l

j=! j=1 (4.19)
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where
N v ‘
I (Bi +vi-J)
_ =l )=l
If = o
[I1B+n-j
j=l (4.20)
and
N Vv, )
H H (Bl +V,- .])
i=1 j=1
I, = ™
(B +n3 - j)
j=1 4.21)
with the following values given by:
N N N
nl=zvi s n2=ZVi and B=ZBi
i=1 i=1 i=1 (4.22)

This analytical form of the integrals avoids the use of costly numerical
integration schemes and thus speeds up considerably the whole soluticn

process.
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CHAPTER 5

RESULTS

The results of several test-cases are discussed in this chapter. The test have
been chosen to demonstrate the accuracy of the flow solver itself, the
turbulence models, the basic combustion modeling added to the flow solver
and, finally, the effects of modifying the shapes of probability density

functions have on the chemistry model.

5.1 Validation of the Turbulence Models

The first step in the development of this finite element turbulent reacting
flow solver was to include the effects of turbulenze. This was done hy
including the two separate two-equation models described, in detail, in
chapter 2. To 'adjust’ all of the model constants involved, two separate tests
cases were run: the first was a simple developing pipe flow with known
experimental values. This test case was chosen to make sure that the
turbulence models were well calibrated as to predict well known velocity
profiles. Results comparing the computed developing radial velocity profiles
with experimental values can be seen, for various stations along the pipe, in

Figures 3, 4 and 5. Having compared very well on this test case a backward
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facing step geometry was chosen next. This test case was used to further
calibrate the turbulence models for cases involving recirculation and, since
the ultimate goal was to model combustor geometry’s, backward facing steps
are good models of simple dump combustors. The inlet conditions for the

turbulence models were also established at this point. Both k and € were set as

discussed in chapter 2, so as to obtain the best comparison with experimental
values for this type of geometry. The backward facing step chosen for che
present work has a well known reattachment length. The computed values,
for both turbulence models, of this length are tabulated against experimental

values in Figure 6. Figure 7 shows the streamlines and reattachment point for
the k-w model. Excellent result were obtained for both the k-€ and k- models.

Some turbulence quantities are then shown: Figure 8. shows the contours of

turbulence kinetic energy (k), Figure 9. shows contours of the dissipation of

this turbulence kinetic energy (¢) and finally Figure 10. shows contours of the

specific dissipation of turbulence kinetic energy (®).

5.2  Validation of the Combustion Model

Once it was established that the turbulence models were working well on the

backward facing step-type geometry, a multi-component capability and
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combustion model were added to the code. Two separate test cases were used
to validate the chemistry model used in the present work, one for swirling
flames and another “or nonswirling flames. It is often difficult to compare the
mass fractions of individual species for a given flame since there is no precise
definition for the limits of this flame. As is usually done, a mixture fraction is
defined to compare with available experimental results. The mixture fraction
was defined as t'he mass fraction of fuel and fuel related products in the
mixture divided by the total mass. Since 29% of the mass of the products

originates from the fuel, the mixture fraction at any location was given by:

_ I
1 + (air/fuel mass ratio) (5.1)

521 Eddy Breakup Model for a Non-Swirling Jet Flame

A test case, which is well documented in the literature was used to insure that
the basic multi-component combustion model, which was added to the
turbulent flow solver, was working properly. The cylindrical combustion
chamber consists of a tube with a 0.21: internal diameter by 1.9m in length,
as shcwn in Figure 11. A double concentric tube jet burner is axially aligned to
one end of the chamber. A fairly fine 80X120 finite element grid was used for

all cases involving this geometry. This grid allowed for a sufficiently fine
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spacing of the nodes near the nozzle and walls where gradients are highest,
thus insuring the accuracy of the solution proceedure. The first case run was
for a nonswirling town-gas flame. Fuel and air mixed rapidly downstream of
the inlet and products began forming at about 0.27m, as can be seen in Figure
13. At about 1.0m downstream the products mass fraction reaches a peak. This
peak corresponds to the stoichiometric fuel-air ratio and peak flame
temperature as can be seen in Figure 12. At this position, the calculated flame
temperature was 2350 K and was within 4% of the adiabatic flame
temperature. The close agreement between predicted and measured flame
temperature demonstrates that the effects of combustion on gas temperature
was properly modeled. Data was available to compare the computed results
with experimental values of mixture fraction, as defined above. The overall
agreement between measured and predicted mixture fraction along the

centerline was good as can bee seen in Figure 14.

5.22 Eddy Breakup Model for a Swirling Jet Flame

Results for the geometry described above were also available for swirling
flames. A swirl angle of 45° was chosen for the present analysis. The results of
the computations demonstrate the influence of swirl on flame properties.

There was a substantially faster rise in products mass fraction along the
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centerline which started almost immediately after the inlet. In this case the
flame was predicted as stabilized at about 0.22m downstream of the inlet,
Zigure 16., as compared with 1.0m for the nonswirling case. This rapid
combustion is largely due to the extra mixing induced by the added
turbulence imparted onto the flow by the swirling air. The temperature also
rose rapidly near the inlet. reaching a maximum value of 2510 K, which also
compares very well with the predicted adiabatic flame temperature Figure 15.
Comparison of the mixture fraction along the centerline was also reasonable
Figure 17. Although the decrease in mixture fraction near the fuel pipe was
overpredicted, results compare very well over the rest of the channel. This
discrepancy can be attributed to the coarseness of the computational grid in
that region. The general features of both the swirling and nonswirling test
cases were in general realistic, thus validating the chemistry portion of the
flow solver. Experimental values where obtained from Lockwood and

Naguib.

5.3  Hydrogen-Air Reaction Rates for Modified and Unmodified PDF’s

The purpose of this section is to perform comparison tests between computed

results, at various temperatures, with and without modifications being made
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to an assumed probability density functions being applied to the hydrogen-air
reaction mechanism described in chapter 2. The geometry used was the same
cylindrical combustor used above. Realistic inlet conditions, including air and
hydrogen temperatures and pressures were obtained from similar work done

by the author at Pratt & Whitney Canada, where various nozzle designs, for
hydrogen-air reactions in cylindrical combustors, were to be tested. In order to
quantify the comparisons between calculations an amplification function,
described in Chapter 4 was developed. The following results will show the
effects of two pdf approaches on the 7 reaction rates for the hydrogen-air
calculations through plots of this amplification (or suppression) factor over a
wide range of temperatures. In all plots the solid line represents pdf’s that
have been modified using the enthalpy variance method described in
chapters 2 and 4 and the dashed lines represent a pdf that remains
unmodified throughout the calculations. Figures 18. through 24. show the
comparison of the reaction rates for each step of the hydrogen-air mechanism.
It can be observed in all of these results that the influence of modifying the
pdf is negligible over a fairly wide range of operating temperatures, however,
a strong influence at the extreme temperatures, especially at the higher
temperatures, is felt by the reaction rates. It can also be seen that the influence
felt by the modification to the pdf at higher temperatures varies for each

reaction. In some of the cases, reactions 3, 5 and 7 or Figures 20., 22. and 24.,
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this influence is not as pronounced as it is for the other steps in the
mechanism. For these reactions the difference in amplification factors is less
than 20%, whereas this difference can be as much as 109% for the other

reactions, Figure 18.

54 Nitrogen Oxide Reaction Rates for Modified and Unmodified PDF's

Figures 25. to 27. shows the amplificaticn and suppression of the reaction rate
coefficient for the NOx mechanism presented in chapter 2. Once again the
shape of the pdf has a strong influence the extreme temperatures. However, it
can clearly be seen that this effect is no entirely limited to these extreme
temperatures as it is for the hydrogen-air results shown above. In this case, it
can be seen that the production of NOx is much more sensitive to the shape
of the assumed pdf. This sensitivity is more pronounced in the first two steps
of the NOx mechanism, Figure 25. and 26. whereas the third step in the
reaction shows similar results as seen for the hydrogen-air reactions, Figure
27., that is there is no marked effect over a wide range of temperatures with a
large difference being felt at very high or very low temperatures. For these
calculations the effect that pdf shape has on the results cannot be neglected at

any temperature.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

A study of the use of probability density functions, in a finite element
turbulent reacting flow solver has been completed. An overview of the role
that probability density function play in turbulent reacting flows has been
presented.

The eqt.ations of fluid motion as well as the thermochemical equations need
to describe a muti-component reacting flow field were outlined in Chapter 2.
A finite element descritization of these equations was implemented into a
two-dimensional, axisymmetric flow solver. The finite element code started

from a very accurate, second order, laminar flow solver. The first step was to

include the effects of turbulence through the addition of, firsi, a standard k-¢

model and then a k-® model. These models were calibrated and tested on two

basic geometry’s: developing flow in a straight pipe and flow over a backward
facing step. The developing pipe flow was chosen to insure that the turbulent
flow solver could reproduce well known flow characteristics such as

maximum centerline velocities and development lengths. The backward
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facing step was chosen since it has all of the basic characteristics of a typical
dump combustor geometry. Also, a well known test for flow solvers is to
reproduce accurate reattachment lengths for the separated region. The next
major step was to add a multi-component capability to the code. Here, the gas
is broken down into its constitutive components, each of which is transported
by its own equation of continuity. The treatment of the thermodynamic
properties was also modified to that of a mixture thermochemistry. The code
was now ready for its first combustion model: the one-step, equilibrium
chemistry, eddy breakup model. This model was chosen for two main
reasons: firstly, this is the most common model used in industry today and,
although it does not give any details of the combustion process itself, the
model does a good job of predicting overall temperature fields. The second
reason for choosing this combustion model is a purely numerical one. The
ultimate goal of solving for the individual chemical kinetics involved in the
combustion process, is a computationally very stiff one and much relaxation
is need to coax the code to converge at a steady rate. Here the eddy breakup
model plays the role of a first approximation to the thermochemical
properties, of the given reactions, before implementing the full kinetic
mechanism. In this way one is able to achieve satisfactory overall
convergence faster and with less under-relaxation of the main variables. To

test the eddy breakup model, a well known dump combustor test case was
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chosen that has results for both swirling and non-swirling inlet conditions.
Once the eddy breakup model was working well for this test case the next step
was to include a kinetic model for the reactions as well as the probability
density function treatment of the rate coefficients. Here a hydrogen-air
reaction mechanism was chosen as the focus of this study. This scheme was
chosen because of the relative simplicity of its reaction mechanism and for
the growing popularity of this gas as a fuel for automotive and aeronautical
applications due to its abundance. The final siep in building the finite
element code was to add a NOx post-processor. The Nox reactions were also
used to judge the effects of different shapes of probability density. Since
hydrogen burn at very high temperatures it is feared that, if not properly
controlled, these high temperatures would lead to a significant about of
atmospheric nitrogen to be converted into nitric oxides. It is therefore
necessary to have analytical tools at our disposition to be able to design
nozzles and combustors that will burn hydrogen in such a way as to
minimize the impact on the environment. And the proper use of pdf's in
these applications is of fundamental importance in achieving realistic
numerical results. Most of the theoretical development of the turbulent
combustion model here has centered around the use of the H,/Air reaction
mechanism presented in Chapter 2. Of concern to gas turbine combustor

designers also, however, is applicability of turbulent combustion and NOx
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emissions models in particular, to hydrocarbon fuels used in laboratory
research combustors and in commercial and military engines. These fuels
include methane and propane, and jet fuels such as Jet-A, P-8, etc. Progress in
developing these reduced reaction sets has been slow due to the complexity of
these fuels and the extended sets of elementary reactions (greater than 300
reactions for propane alone) needed to describe their behavior over the range
of temperatures and pressures and equivalence ratios observed over the
entire combustion process. The difficult feature of this process is to rigorously
analyze each reaction in the mechanism, and systematically eliminate those
reactions and species not contributing significantly to the final enthalpy and
species concentration values.

The prospects for computation of thermal NOx emissions for hydrocarbon
fuels, however, are good, ;/vith the post-processing approach described in the
present work. Since the NOx reaction mechanism is more closely coupled to
the hydrocarbon’s reaction mechanism. For example, a reduced reaction
mechanism to compute propane/Air combustion with NOx is currently
available involving approximately 16 species, and 30 reactions. the CPU
requirements for such a large reaction set are formidable. With expected
short-term advances in parallel workstation technology and in
supercomputing speeds, however, such calculations should prove feasible for

use in CFD codes for certain high priority tasks. Clearly, much progress is
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needed in several disciplines before finite rate based emissions calculations
become a standard analytical tool for combustion designers. As a bridging
technology, and a way of obtaining a first good approximation, a good two-
dimensional axisymmetric model, using a postprocessor with probability
density functions, for NOx emission calculations can be used as a fast

engineering tool.

6.2 Conclusions

The first conclusion to be drawn from this work is that using the finite
element method to solve turbulent combustion problems by segregating the
various models from the main flow solver is a very practical and efficient
approach to handling such problems. Although there is always going to be a
trade off when equations are solved for in an uncoupled manner, the benefits
of added flexibility to the solution strategies far outweigh any extra time
needed to converge the problem. Having the energy equation uncoupled
from the Navier-Stokes equations allowed for relaxation strategies to be
applied to the density calculations. This proved invaluable when a chemistry
model was added to the code. The sudden changes in density due to the
combustion process were easily handled by allowing the effects of the

chemical reactions to be progressively loaded into the density updates. This



88

approach was especially useful in the early stages of convergence when the
changes in density were very large. As the solution began to converge steadily
this relaxation could be slowly removed wuntil final convergence was
achieved. Also, having the turbulence and species equations solved separately
meant that both models could share the same memory allocation and
different relaxation strategy could be used on each model to achieve
maximum stability. This approach, therefore, removes one of the conceived
disadvantages to the finite element method for fluid flow problems,
especially with turbulence and combustion, that is of the high impact it has
on computer resources.

Both the test cases for validating the turbulence and the simple chemistry
models gave good results and agreed well with experimental values. This laid
a good foundation for the purpose of this study: to compare reaction rate
calculations using modified and unmodified probability density functions.
When applied to a reduced hydrogen-air reaction mechanism, the main
conclusion to be drawn is that there is little benefit in modifying the shape of
an assumed pdf for a wide range of operating conditions. For most of the 7
reactions used there is no significant difference between the reaction rates
obtained with modified or unmodified pdf’s between temperatures of 555 K
and 2200 K. At the extreme temperatures, however some of the reactions in

the mechanism showed significant difference for both types of pdf’s.
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Although some of the reactions showed more sensitivity than others to the
change in pdf’s, all showed change. This information shows that the type of
pdf used to calculate the reaction rates becomes quite important for low
temperature phenomena such as engine blow-outs and for very high
temperature problems such as autoignition. From a practical and numerical
point of view these results suggest that for general calculations of medium
and regular operating condition temperatures the extra expense of modifying
the shape of an assumed pdf is not needed, very similar results would be
obtained if either method were used. However, when specialized problems
are being analyzed, where the flow temperatures are at their extremes
modifying the shapes of the pdf’s as the flow evolves will have a large impact
on the results. This can be seen even more clearly for the results obtain for
the NOx reactions. The production of NOx is seen to be sensitive to the shape
of the pdf used over most temperatures, not only at the extreme values. This
sensitivity implies that pdf’s used to calculate such reactions must be made to
reflect the local flow conditions and that simply using an assumed shape for a
pdf will lead to great under or over prediction of the NOx formed, depending

on the temperatures involved.
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6.3 Recommendations

The present work showed that need to calculate the shape of a pdf only
became important, for the hydrogen-air mechanism, when certain
temperature ranges are encountered. This work should be extended to
hydrocarbon fuels as soon as reduced mechanisms become available which
can be handle without difficulty on today’s computers. The range of
temperatures over which the shape of the pdf has negligible impact on the
reaction rates might not be as large and the idea of unmodified assumed pdf’s
might have to be abandoned all together for these problems. The main
recommendation to come out of the present study is to continue research in
numerical methods aimed at modeling the evolution of pdf’s in problems of
pollutant formation, Nox formation in particular. The sensitivity of these
phenomena to local temperature fluctuations means that a single assumed
pdf could never capture the ever-changing character of the local temperature
field. The use of enthalpy variance is one method of modifying the shape of
the pdf to suit the local flow conditions. Other methods should be
investigated and developed, including the use of fractals and strange
attractors from chaos theory. The stretching and folding behavior of such

mathematical tools has long been observed in turbulent flows, it remains,
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however, to find a suitable way of introducing these concepts into a practical

numerical method for solving turbulent reacting flows.
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Figure5.  Experimental comparison of radial velocity profiles in a
developing pipe flow at axial station x= 40.5.
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Model Reference Attachment -
Length
k-g Launder (1974) 5.20
k-m Wilcox (1988) 6.40
k-g Present Work 6.11
k- Present Work 6.32
Measured Driver-Seegmiller 6.20
(1985)

Figure 6.  Experimental comparison of reattachment length for turbulent
flow over a backward facing step.
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Figure 7.

Streamlines (¥) showing the location of the reattachment point
at¥ =0: (¥, =-0.192, A¥ = 0.05)
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Figure 8.

Turbulence Kinetic Energy (k) contours for the backward facing
step: (k... = 0.0, Ak = 0.001)
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Figure 9. Dissipation of Turbulence Kinetic Energy (g) contours for the
backward facing step: (€ i = 0.005, A £ = 0.0001)
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