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Abstract

The Hedging Effectiveness of DAX Futures

Martin Powalla

Recent hedging literature reveals that the performance of dynamic hedging strategies over
constant ones tends to differ across various financial markets in terms of the percentage
reduction in portfolio variance attainable. This paper analyzes the hedging effectiveness of
DAX index futures on the underlying index. This study builds on previous work on
futures hedging of stock risk by zllowing for time-varying correlations and
cointegrativeness, and by assessing hedging effectiveness from a welfare standpoint. It is
found that while the dynamic models proposed are statistically superior to the static

models, they do not yield greater risk reduction.
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1. Introduction

Ever since the launching of the first foreign currency futures contracts on May 16,
1972 at the Chicago Mercantile Exchange, futures contracts have emerged at various
exchanges around the world. The number of exchanges trading financial futures has
grown from two to sixty. Stock index futures made their debut in 1982 with the
introduction of the Value Line and Standard and Poor’s 500 index futures contracts, and
others soon followed. The focus of this study, the German stock index DAX, started
trading in August, 1990, and its futures and other derivative products were introduced in
July, 1991. The volume of DAX derivative products in general has increased by 13% in
the first quarter of 1995 compared to last year's quarterly results.! The DAX makes a
relevant subject for study not only because it is an emerging market but because global
risk management strategies are becoming increasingly popular amongst financial

institutions.

Our attention in this study is directed to the hedging effectiveness of futures on the
DAX, that is, the degree of reduction of German market rish that may be obtained by
applying various hedging strategies involving futures on the DAX. The hedging strategics
compared here differ according to the underlying model or assumptions made regarding
the stochastic evolution of the basis. The main distinction made is between modeis that
assume constant joint distributions of spot and futures price changes and those that admit

distributional time variability. Constant distribution models include the Naive and OLS.

1 Die Frankfurter Aligemeine Zeitung, June 25, 1995, F-1.




Under the Naive approach the hedge ratio. or the number of units of the cash asset to sell
via futures relative to the number of units held spot, is always one. The Naive approach is
optimal only when spot and futures price changes are perfectly correlated and variances
are equal. A relaxation of the assumption of perfect correlation and equal variance

acknowledges the existence of basis risk and results in the OLS approach described belov.

Basis risk may be caused by any or all factors discussed by Figlewski (1984).
These include market imperfections such as transactions costs and the asymmetric tax
treatment of gains and losses from stock and futures transactions. exchange-imposed
regulations such as short sale rules, daily price limits and circuii breakers, dividend
uncertainty. inefficient cash positions, and the stochastic evolution of interest rates. All of
these factors contribute to loosening up the equilibrium links between cash and futures

prices and inhibit arbitrage activity aimed at bringing cash and futures prices back into line.

A method of basis-rish minimization is implicit in Markowitz’s (1952) portfolio
selection theory. In the mean-variance framework, the efficiency of portfolios accounts
for the joint return distributions of their constituent assets. Hedging becomes the
minimization of the unconditional variance of changes in portfolio value; when the
portfolio consists of a cash position and its corresponding futures, the optimal hedge ratio
is estimated by simple linear regression of spot price changes on futures price changes.

Ederington (1979), Johnson (1960), and Stein (1961) demonstrate that basis-risk is



minimized by, what will be referred to herein as, the OLS approach. The effectiveness of
the OLS hedge has been demonstrated by Hill and Schneeweiss (1981). Figlewshi (1984,
1985), Junkus and Lee (1985). Kamara and Siegei (1687). Lee. Bubnys. and Lin (1987),

Myers and Thompson (1989), and Castelino (1989, 1992) to name a few.

When distributional time variability is admitted. one can model the first and second
moments conditional on the supposed nature of the stochastic evolution of the basis. We
adopt an error correction to model the first moments based on Engle and Grangers'
(1987) notion of cointegrated series, and the GARCH model of Engle and Kioner (1994)
to model the second moments.

OLS hedges are not optimal if the cash-futures covariance matrix is time-varying
This has been demonstrated for stock return distributions by Baillie and DeGennaro
(1990), Bollerslev (1987), French, Schwert. and Stambaugh (1987), Pindych (1984), and
Poterba and Summers (1986). Since the OLS hedge ratio is the unconditional covariance
of cash and futures price changes divided by the mnconc:nional variance of futures price
changes. it does not capture time-variability of the joint distribution which may display
dynamic variances, covariances or correlation, and implying a changing hedge ratio. Early
evidence of instability in hedge ratios appears in Grammatikos and Saunders (1983) and
Lypny (1988) for foreign currencies; Ceccetti, Cumby and Figlewski (1988) for long-term
debt; Figlewski (1984, 1985) and Lee, Bubnys and Lin (1987) for stock index futures; and
Castelino (1992) for wheat, corn, Treasury Bills, and Eurodollar time deposit futures. The

presence of distributional time variability implies that hedges may be



improved by accounting for relevant conditioning information [Myers and Thompson
(1989)], with the the autoregressive conditional heteroscedasticity (ARCH) model. a
popular modcling approach. introduced by Engle (1982) and generalized by Bollerslev
(1986).2 Baillie and Myers (1991), Myers (1991), Kroner and Sultan (1993), Park and
Switzer (1994), Gagnon, Lypny, and McCurdy (1995) and Gagnon and Lypny (1995)
report substantial time variation in hedge ratios for various agricultural co:nmodities,
currencies, stock indices, and interest rates. Dynamic hedging strategies based on the
GARCH framework can improve hedging performance over OLS where risk is measured
as unconditional portfolio variance.

With respect to the first moments, it is possible that cash and futures prices follow
a long-run stochastic relationship, both being affected similarly by a common “news”
variable, and consequently cointegrated in the sense of Engle and Granger. The first two
moments or mean equations may be modeled with an error correction term equal to an
estimated coefficient multipying the lagged value of the basis.

In this paper we propose hedging models which intemalize the time-varying nature
of retum distributions of a cash stock index and its futures contract by imposing an
autoregressive structure on the covariance matrix, specifically, a GARCH (1,1) process,
and by correcting means for the possibility that the series are cointegrated. It is found that
while the dynamic models possess greater explanatory power, they do not yield better
hedges. and, consequently, it must be concluded that the static OLS hedge is preferred for

the DAX.

2 See Bollerslev, Chou and Kroner (1992) for a review of the ARCH hterature.



2. Dynamic Hedging

The random retum of a portfolio consisting of a one unit cash position and hedged

by b units of corresponding futures is given by:

e—bt-|f1* (1)

where

* by isthe hedge ratio to be used in period ,

« S,=InS-Ins , is the change over the previous period in the natual

logarithm of cash price S
. fo=InF —InF,_ isthe change in futures price F.

The covariance matrix of spot and futures price changes is given by

I’ 2
0" a:l

zlo,, = LU,, afJ’ (2)

where Q,_, is the information set at r-1.
An investor with quadratic tastes chooses b,.1 to maximize end-of-period utility:
a - yVar(r|Q 3
max E(fa,.,)- yvar(rfa..,), (3)
where y>0 is the investor’s risk aversion parameter. The assumption of time additivity
permits a multiperiod objective to be expressed as a sequence of one period choices which

is inherent in the conditional hedging strategy described here. The solution to (3) yields

the optimal conditional demand for futures contracts as



_ cov(s, /122,.,) 1 E(f)2.,)

4)

e var(f|Q,_,) _}'—var(f|Q,_,)'
The hedge ratio may change over time with changing information pertaining to the
covariance structure of returns and mean futures prices. The first term is the risk-
minimizing hedge ratio -vhich will obtain if futures prices follow a martingale,

E( f,lQ,_,): 0, causing the second term or speculative demand for futures to equal zero.

Equation (4) then represents the mean-variance trade-off. Martingale futures prices are
sufficient for risk minimization to be consistent with welfare maximization; if not,
knowledge of investor preferences is required to make comparisons among alternative
hedging strategies. It should also be noted that (4) nests the OLS model if we ignore
conditioning information and futures prices follow a martingale. and the Naive model if it

cov (s, f)
var(f)

is assumed, additionally that

3. The Bivariate GARCH Model

The GARCH model employed here specifies the time-varying covariance mati.x in

(6) based on the mean equations in (5) below.
ye=H + £, (5)

!

where ¢,[Q, 71 (0,H,).

H,=CC+A¢_g, ,A+GH, G (6)



y=(s f)is a vector of observations of cash and futures log-differenced prices,

’ ’

#=(u, p,)is a vector of means to be estimated, and ¢ = (¢, &,) is a vector of

residuals. It is assumed that the residuals are distributed, conditional on past information,
Qt-1, as bivariate t with v degrees of freedom and with A the conditional covariance
matrix. Equation (5) implies a constant risk premium on cash and futures and includes the

martingale model for futures contracts for the special case of a zero risk premium.

The parameterization of the conditional covariance matrix in (6) is adopted from
Engle and Kroner (1994) and presented below for the bivariate case. C is a matrix of
constants; A is a matrix of coefficients pertaining to lagged. uncentered second moments
and cross-moments: and G is a matrix of coefficients pertaining to lagged. centered second

moments and Cross-moments.
' i ' 2 . .
H = Ch S ||t G a, aj €11 Erabaua | A0 4y
[ + . 2
Cy € J{Cn €y (T2 A || €248 0144 €344 a, 4ayp
- ' 2
En g12:| o P |:gn gnz:I
* 2
(82 82 |Musy M,y 8 8

This parameterization is economical, ensures under mild restrictions that / is positive

definite. and is general in that it permits representation of a wide variety of models.

In this study, C, A, and G are restricted to be symmetric. This dynamic model will

be referred to as the GARCH model herein.



4. The Error Correction Model

The concept behind the error correction model is that there exists a long-run
relationship between the two variables. Although they may deviate from each other in the
short run, market forces will bring them back together in the long run. Engle and Granger
(1987) show that cointegrated series have an error correction representation stating that a
proportion of the disequilibrium in one period should be corrected in the next period.

Ever since the introduction of this model, financial researchers have in\ sstigated
various markets to shed light on the significance of the cointegration model in the financial
world. Anderson, Granger, and Hall (1990), for example, analyzed the term structure of
US Treasury bills within the framework of cointegration and developed an error correction
representation.  Szakmary (1991) found that the spot and forward exchange rates are
cointegrated and modeled the appropriate error correction. Only marginal support {or the
error correction hypothesis was given by Bessler and Covey { 1991) while investigating the
futures commodity market (live cattle). Copeland (1991) looking at cointegration
between leading European currencies against the US dollar found that there exists no
cointegration between the variables.

Applying an error correction to the mean equations in (5) results in the modified

model of

3= A+ Wl (F)=In (S) + v (5a)



where we make the same distributional assumption for y, as &, . The model which

includes the error correction in the mean equations is referred to as EC. We also
estimated a dynamic model with an error correction and a GARCH covariance matrix
referred to as GARCH + EC. The GARCH + EC is the most general model and it nests

the EC, GARCH, and OLS models.

5. Data

Daily closing spot prices of the German stock index (DAX) and near time delivery
of futures were collected for the time period from July 1991 through December 1994,
The data series were obtained from the Deutsche Bank, Frankfurt and contain a total of
207 observations. The sample essentially starts with the introduction of the DAX index
futures in 1991. The standard contract size is DM 100 per index point (current exchange
rate ~ 1:1). Dax futures contracts are quoted in index points per DM 100 of the contract’s
value to one decimal place, e.g. 1,505.0. The minimum price movement - referred to as
the “tick” - is 0.5. One tick corresponds to a value of DM 50.00 (0.5 x DM100).
Wednesday-to-Wednesday percentage changes are collected by computing differences in
the natural logarithm of the prices, multiplied by 100. The first 157 observations arc used
for the estimation period, and the remaining 50 comprise the forecast period Of the three
outstanding futuies contracts, the price of the nearest futures rontract is used. To avoid
expiration days and thin markets we will roll over to the next nearest contract one week

before expiry.




6. Preliminary Analysis

The time series are first tested for the existence of unit roots by applying severai tests.
The spot and futures prices are analyzed by using the following augmented Dickey-Fuller

test:
Ayl=a°+a|yl—l+i;la'Ay:.;+gl

where enough lagged variables are added to ensure that the error term becomes white
noise. However, one of the shortcomings of the ADF test is that if P becomes sufficiently
large, it reduces the power of the test. In this case, an alternative test, due to Phillips and
Perron (1988) is used, which utilizes a non-parametric correction for serial correlation for
the presence of unit roots.

Yoca +py. 0,

where n = is the white noise.
1

Table 1a and 1b report the Phillips and Perron (1988) and Dickey-Fuller tests for a
truncation of lag of four. The null hypothesis that unit roots exist in both price series the
spot and futures prices cannot be rejected. Figures 1a and 1b exhibit the nonstationary
behavior of the spot and futures prices. However, when the spot and futures prices are
first-differenced, the null-hypothesis of nonstationarity is rejected. This leads to the

conclusion that the differenced series are stationary and integrated in order of 1 which is

10




necessary for testing the existence of cointegration. Table 2 reveals the significance of the
cointegration test by using the Phillips and Perron test, the augmented Dickey-Fuller test.
and the Durbin-Watson test. The results of Table 2 indicate that both the spot and the
futures prices are cointegrated with a cointegration coefficient close to one.

In general, cash and futures series cannot be cointegrated since the basis
degenerates to zero at the expiration of the futures contract. However, if both spot and
futures prices show a long-run equilibrium relationship, an error correction term should be
added to the econometric model to account for the long-run behavior of spot and futures
price changes.

While the results of unit-root tests suggest that both return series are stationary.
they are characterized by heavy tails and sharp peaks, according to the skewness and
kurtosis results in Table 3. The large excess kurtosis is consistent with the time-varying
conditional heteroscedasticity model of Bollerslev (1986) and Engle (1982). Ljung-Box
(1978) tests for up to 24th order serial correlation in the residuals of each series and is
computed as simple deviations from the mean. The Q-Statistics are significant, indicating
the presence of serial correlation in the cash and futures return. The ARCH test
investigates (Lagrange multiplier tests) for serial correlation in the squared residuals and
evidenced serial correlation for the first lag which is consistent with time-varying

conditional heteroscedasticity.



7. Results of the Model Estimation

Table 4a and 4b report the maximum likelihood estimates of the conditional means
and covariance matrix of cash and futures returns, where N denotes the number of
observations, df denotes the degrees of freedom and logl denotes the log-likelihood value.
The estimation was conducted by using the algorithm of Broyden, Fletcher, Goldfarb, and
Shanno (BFGS). The tables reveal that the unrestricted GARCH + EC, describes well the
joint distribution of spot and futures retumns. The spot and futures prices series show
significant ARCH and GARCH effects. and the error correction coefficients are significant
for spot and futures at the 10% and 1% levels, respectively. Noteworthy is the fact of the
significant mean futures return (u2) which violates the martingale assumption and justifies
the introduction: of the welfare analysis.

The estimated residuals are assumed distributed as bivariate t with v degrees of
freedom. The use of the t distribution is justified given the small estimatcd degrees of
freedom, 6.330 for the GARCH + EC model, 5.795 for the Garch model and 5.163 for the
OLS model. The nesting of both Tables, 4a and 4b, is undertaken in order to find the
most parsimonious model.

The likelihood ratio tests in Table $ reports that the dynamic models have a
significantly greater explanatory power than OLS (tests III and IV). However, the

explanatory power seems to reside in the error correction adjustment more so than the

12



GARCH adjustment since removing the GARCH adjustment from GARCH + EC does not
significantly reduce explanatory power (test 11). whereas removal of the error correction
does (test I). Therefore, the most parsimonious model is the EC model.

The next section reports the results of an analysis of hedging eflectiveness,

employing both risk-minimization and welfare maximization criteria.

8. Hedging Effectiveness

In Table 6a and 6b the different hedging strategies are compared to determine if
the anticipated superior result of the dynamic hedge, due to the dynamic specification of
the covariance matrix and mean equations, does increase the efficiency of the hedge ratio
estimates. The parameters are estimated for each model and then applied to calculate the
individual hedge ratios. Portfolio veturn over a 156-week estimation period and a 50-
week forecast period are computed according to equation (1). The tables show portfolio
mean return, variance and the percentage change in variance relative to the OLS model.
Figure 2 shows the considerable volatility of the hedge ratios for the dynamic models. The
hedge ratios are computed as follows:

Risk-Minimization

y = L9V forthe OLS and EC model
VAR(S)

_CoVs./ 19:-1)  for the GARCH Models
VFAR(S |Q¢-1)

13




Welfare-Maximization

) COlres, /) 1 ECS)  fortheOLS
VAR(S) y Var ( /)

_COrG.) 1 E S, Qi) forthe ECM

VAR(S) y  Var ( f,)

L CorG.s |2~ 1 E (/, |2 for the GARCH
FARCS Q- 1) Y Tar Cf, |Q.0)

It is assumed that Y =3.

Table 6a and 6b report the percentage variance reduction of the dynamic models
over OLS for the estimation and forecast periods. For the within-sample period we can
not detect risk reduction of the dynamic models over the OLS. This is inconsistent with
the statistical analysis where we demonstrated that the dynamic model has a significantly
greater explanatory power than the OLS model, and may be attributed to overfitting of the
model. In the out-of-sample comparisons, the dynamic models outperform OLS with the
exception of the GARCH model under a risk-minimization criteria. The efficiency analysis
is inconsistent with the statistical analysis for the in-sample period, and the more

favourable performance of the dynamic models out-of-sample leads to greater ambiguity.

14



It is notable that the GARCH + EC model yielded a higher mean retumn than OLS in-
sample, under risk-minimization and welfare maximization.

To address the risk-return trade-off problem, we analyze hedging performance

from an utility standpoint.3

9. Utility Comparison

In order to determine whether the statistically superior results of the GARCH 1
EC model over the OLS model are also economically significant, one has to take the
investor’s preferences into account. According to Kroner and Sultan (1993), the
superiority of the dynamic hedge model over the constant model is only valid if the
outcomes of the dynamic hedge result in higher expected utility, net of transaction costs,
than the static models.

Investors® preferences are assumed to be quadratic and the optimal hedge ratio is

chosen to maximize the investors” end-of-period utility:
MAX [E (r |Qu2)-7 VAR (r |@0)]
where y is the risk aversion parameter.

Therefore the optimal conditional demand for futures contracts can be written as:

_COV(s,f Q-1 1 _E(, |Q/-1)
VAR(S |Qi-1) ¥ Var ( f, |Qu1)

3 As proposed by Ceccett: et al (1988), Kroner and Sultan (1993), and Sephton (1993)




Given the assumption of a martingale, the second term of the right hand side of the
equation, the speculative demand for futures, is equal to zero.

It is assumed that investors engaged in dynamic hedging are rebalancing their
portfolios in each period and incur transaction costs, € , each time when the hedge ratio is

altered. Therefore, the difference in average utility over any hedging period for an

investor undertaking dynamic hedging is the difference in portfolio variance times the

degree of risk-aversion minus the round-trip transaction cost, ¢, for each period of
rebalancing. If 0 stands for the OLS hedge and d for the dynamic (GARCH + ECM)
hedging, we can state that an investor is better off performing the dynamic hedge as
opposed to the constant hedge if:

—~yvo(r))=rvo(r)

under risk minimization.
Note, that the only difference in the above stated utility equation is that transaction costs
are incurred by periodically rebalancing the investor’s portfolio.

The equation can be changed to:

_o_'f(_rd) 1 ) c
0'2( ro) }/0'2( ro)

16



This equation shows that an investor would prefer the dynamic hedging to the OLS hedge
ifthe percentage reduction in variance, demonstrated by the left-hand side of the equation,
is greater than the ratio of the transaction costs to expected utility under the constant
hedge, exhibited by the right-hand side of the equation. To clarify equation (6.4). one

could state that, with the investor’s risk preference parameter Y = 3 and o*(re) = 0.5 and

¢=.01% ($20 for a contract with an underlying value of $100*DAX-Index ~ $200000), a
reduction in variance of only .666% is necessary to justify pursuing the dynamic hedging
strategy as opposed to the constant hedging strategy.

However, in the real world, market participants face much more attractive round-
trip transaction costs. At the German Exchange, round-trip transaction costs for one
DAX futures contract is $3 for the floor traders. $10 for institutional investors, bui around
$150 for retaii customers.4

Table 7 sliows average utility under the relevant hedging period for the OLS and
GARCH + EC models as a function of the degree of risk aversion. The table shows that
the dynamic model cannot yield higher utility: the higher mean return does not compensate
for the higher variance in the absence of transactions costs, and, therefore, cannot yicld

higher utility in the presence of transactions costs.

4 According to figures handed out by the Dresdner Bank, Frankfurt, Germany.



10. Conclusion

This study demonstrates that two dynamic models of the joint distribution of spot
and futures prices for the DAX index, an error correction model of the means and a
GARCH model of the covariance matrix, possess significantly greater explanatory power
than the OLS model. However, in-sample efficiency and welfare analyses indicate that
both dynamic models perform worse than simple OLS in reducing portfolio variance or
increasing utility when applying hedging strategies. This contradicts the statistical
superiority of the former and may be attributed to overfitting of the data.

While more favorable out-of sample results are obtained, these cannot override the
in-sample results, and it is concluded that static hedging remains the preferred strategy for

the DAX.
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Figure 2
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Table 1a
Unit Root Tests

July 1991 - December 1994

Prices Differences

and 4 lags with 4lags | and 4lags : with 4 lags

S -2.163 -1.327 -14.997 15103
F 12250 1,385 15346 15346
Criteatvaies | AT ST e T Baes”

S = Spot, F = Futures, and PPT stands for Phillips and Perron Test with a time trend. PP
is the corresponding statistic without a time trend. The critical values are exhibited in

Engle and Granger (1987) and can also be found in Phillips and Ouliaris (1990).
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Table 1b

Unit Root Tests

July 1991 - December 1994

Prices Differences
DFT DF DFT DF
and 4 lags with 4 lags and 4 lags | with 4 lags
s -2.072 -1.356 -6.952 -6.955
" F -2.088 -1.345 -6.967 -6.975
Critical values | -3.410 -2.860 -3.410 ".2.860

8 = Spot, F = Futures, and DFT stands for Dickey Fuller Test with a time trend. DF is the

corresponding statistic without & time trend. The critical values are exhibited in Engle and

Granger (1987) and can also be found in Phillips and Ouliaris (1990).
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Table 2
Cointegration Tests

Log Spot= A +§ log Futures + ¢

July 1991 - December 1994

DW PP(4) ADF(4) o

95 % c.v

wevereen

1.118995 -9.14454 -6.23610 1.007358424

0.86 -3.37 -3.37 0.003740793

A

0.064883341

0.023740793

The DW statistic is the Durbin Watson statistic of the above stated cointegration cquation

between the logcash and logfutures prices. PP stands for the Phillips and Perron t-statistic

and ADF is the forth order augmented Dickey-Fuller test. The critical values can be found

in Engle and Granger (1987).
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Table 3

Descriptive Statistics

Log-differenced Spot and Futures prices

July 1991 - December 1994

Skewness Kurtosis Q(24) ARCH(Q)
s -0.114 0.366 20.481 37.968
T A et i e p—
S T Ee—— ssi | » o666

where, S = Spot, F = Futures.
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Table §

Log-Likelihood Estimation

and Tests of Parameter Restrictions

Test Likelihood ratio df 95% c.v.
I 22.34 2 5.99
I 7.96 6 12.59
m 29.06 2 5.99
v 14.68 6 12.59

Test I compares the unrestricted dynamic model (GARCH + EC) with the GARCH model
(removing ECM). Test Il compares the GARCH + EC with the EC (removing GARCH).
Test III compares EC with the OLS model. Test IV compares the GARCH model with

the OLS model.
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Table 6a
Hedging Effectiveness

In-Sample Comparison

a) Risk-Minimization b) Welfare-Maximization

Mean Variance % AVariance Mean Variance % AVariance

oLs B P e
EC | 0130 | 0319 0.136 0.132 0.327 2.541

" GARCH 0.126 | 0.330 3.488 0.126 0.332 4.077

carchrec 1o |osset o b s | asse P e

where. % AVariance = % change in variance of OLS.
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Table 6b
Hedging Effectiveness

Out-of-Sample Comparison

a) Risk-Minimization b) Welfare-Maximization

Mean Variance % AVariance Mean Variance % AVariance

EC 0.066 0.518 -508 0066 | 0492 | -4.793
GARCH 0.068 0.539 0.070 0068 | 0532 | -0.066

where., % AVariance = % change in variance of OLS.
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Table 7

Utility Comparison

The table exhibits the in-sample utility comparisons

between the GARCH + EC and the OLS hedge strategies.

——yo(r) ro(r)

1.) Risk-Minimization

Y U(r,) - U(ra) OLS Dynamic

U(r.) U(re)

1 0.001519 -0.319 -0.321

2 0.003039 -0.638 -0.641

3 0.004558 -0.958 -0.962

4 0.006078 1.277 -1.283

5 0.007597 -1.597 -1.604

6 0.009116 -1.916 -1.925

7 0.010636 -2.236 -2.246

8 0.012155 -2.555 -2.567

9 0.013675 -2.875 -2.888

10 0.015194 -3.194 -3.209

2.) Welfarc-Maximization
/4 U(r,) - U(ra) OLS Dynamic

U(r,) U(ra)

1 0.0008 -0.1891 -0.1971

2 0.0215 -0.5086 -0.5301

3 0.0034 -0.0828 -0.8631

4 0.0483 -1.1478 -1.1961

5 0.0618 -1.4673 -1.5291

6 0.0752 -1.7869 -1.8621

7 0.0886 -2.1065 -2.1951

8 0.1021 -2.4260 -2.5281

9 0.1155 -2.7456 -2.8611

10 0.1289 -3.0652 -3.1941
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