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ABSTRACT
The Design and Implementation of a
Heterogeneous Distributed Database Management System
Prototype

Richard Pollock

A heterogeneous distributed database management system
(HDDBMS) presents an integrated view of multiple pre-
existing databases in order to provide the advantages of
database consolidation while avoiding, as far as possible,

violations of local autonomy.

An overall design for an HDDBMS where the new software
acts as a front-end to multiple 1local DBMSs has been
developed and a prototype has been implemented. The
prototype involves two different commercial micro-computer
based DBMSs residing on separate machines, and services
queries on an integrated view of semantically-related

databases that exhibit a range of schema and data conflicts.

An integrated schema 1is derived from relational
versions of the pre-existing database schemata using a
global query and mapping language (GQML). The global query
processing algorithm places no restriction on data

distribution or replication.

In addition to demonstrating the basic features of the
design, the prototype may act as a test-bed for possible

enhancements and extensions described in the thesis.
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CHAPTER 1 INTRODUCTION

l.1 CHARACTERIZATION OF HETEROGENEOUS DISTRIBUTED
DATABASE MANAGEMENT SYSTEMS

In the design of a distributed database management
system (DDBMS) we seek to provide the user with an external
schema that represents data which is, in fact, distributed
among multiple participating local databases. These
databases may be resident on separate machines, and each has
its own local schema. The user should be able to submit
queries and updates on the external schema as though the
DDBMS is a conventional, database management system (DBMS)
managing a single physical database. It is the

responsibility of the DDBMS to do the following:

a) convert a user's query or update on the external schema
to a plan of one or more queries or updates on local
schemata and the necessary data transfers (in the case of

queries)
b) manage the execution of these operations

c¢) for gqueries, combine the results obtained from the
separate local databases into a result which appears to have
been obtained from a single database that conforms to the

external schema.

The external schema as described here is often referred
to as a "global schema" in the literature. However, we will

continue to use the term "external schema" in order to



conform to the terminology developed in Chapter 2.

In [DEEN 87) a distinction is made between 'closed' and
‘open' DDBMSs. In a closed DDBMS, the entire system is
designed in a top-duwn fashion, with the 1local schemata
designed in accordance to the requirements of a
predetermined external schema. Typically, the same DBMS
software is installed at each site, so each local schema is
expressed using a uniform data model, which would also be
the data model used to express the external schema. 1In
contrast, an open DDBMS is designed in order to integrate

existing databases managed by existing software.

The decision to implement an open DDBMS is made in
order to satisfy a requirement to integrate semantically
related data from multiple databases, while avoiding the
upheaval that may be caused by local scheme, software, or
hardware changes. This situation may arise, for example, as
separate organizations with their own databases are merged
and it becomes necessary to answer questions related to the
new organization as a whole. Another example is when workers
within a single organization discover that data from
multiple departments, each with 1its own independently

developed database, is required to deal with new problems.

Regardless of the occasional requirement for integrated
data, the separate departments or organizations may continue
to be the most heavy users of their own databases, and have

substantial investments in training and application



programs. In this case, the maintenance of the status quo
with regards to data distribution, local schemata, software,

and hardware is highly desirable.

The essential differences between the design of a
closed DDBMS and an open DDBMS may be illustrated as

follows.

Consider a closed DDBMS which, for the sake of
discussion, uses a relational data model. The external
schema would describe a set of virtual external relations,
each of which could be divided into vertical fragments
(columnwise subdivision), or horizontal fragments (rowwise
subdivision) or a combination of both. The fragmentation
would correspond to the allocation of data among the
participating local rlatabases. Typically, the horizontal
fragments would be disjoint and the vertical fragments would
only share those attributes necessary for reconstructing the
external relations with join operations. Let us consider all
such fragments as being disjoint, even though there may be
common attributes among vertical fragments (but no more than
necessary). Alternatively, joins may be done on tuple
identifiers which are invisible to users, so the vertical
fragments would not have common attributes. Fragments may be
replicated 1in order to increase the efficiency and
reliability of the system. In such a system, any external
relation could be reconstructed by selecting copies of all

its constituent fragments and combining them with join and



union operations. The processing of queries on the external
schema would be based on this capability, combined with

certain optimizing procedures.

In comparison, consider a open DDBMS, again using a
relational data model. It cannot be assumed that data from
the pre-existing local databases will ~orrespond to disjoint
fragments of conceivable external relations, nor can it be
assumed that the data in the 1local databases will be
mutually consistent. In a closed DDBMS, processing measures
can be inciuded in the design to ensure that data
inconsistencies will never occur. Furthermore, in a open
DDBMS design no assumptions can be made about the existing
DBMS software (or operating systems and machines, for that

matter).

The distinguishing issues involved in open DDBMS design
may be classified as homogenization and database
integration. In [DEEN 87] homogenization is described as
being concerned with differences in the DBMS software which
manage the local databases (a local "database" which is to
be included in open DDBMS may be simply a set of files with
indexed fields which are directly manipulated by a set of
application programs; however, to simplify the discussion
the terms "database" and "DBMS" will be used even in this
context). The most important difference would be in the data
models used. However, even DBMSs that use the same data

model may use different data manipulation languages (DMLs)



and different file formats. The usual approach to DBMS
homogenization is to implement . mapping between the local
data model, DML, and file format and a global data model,
DML and file format. In addition to DBMS differences,
homogenization may also involve bridging operating system

and machine differences.

Database integration is concerned with data and schema
conflicts among local databases which exist even when local
schema are expressed in the same data model. These will be
referred to as ‘'database conflicts'. Examples of such
conflicts are similar entities Dbeing described with
different sets of propsrties, and the same property of the
same entity being stored as different values in separate
local databases- Database conflicts will be discussed 1in

detail .n Section 2.2.

The most imobnrtz2nl distinction between a closed and an
open DDBMS is the 1likely requirement for database
integration in the design of the latter. In the top-down
design of a DDBMS a decision may be made to use existing
software and hardware resources and, thus, deal with
homogenization ([CERI 84], but it is inconceivable that
schema and data conflicts would intentionally be included in
the design of local schemata. In this case, it may be argued
that the DDBMS is partially 'open' and that, in fact, the
concepts of ‘'open' and ‘'closed' DDBMS express two exiremes

of a continuum. However, the control over local schemata



afforded by top-down design does create a definite practical

division between the two concepts.

In the literature the term "heterogeneous distributed
DBMS" is most often used to refer to the type of DDBMS
described here as "open". This term may be somewhat
misleading since "heterogeneous" may be interpreted as
referring exclusively to the heterogeneity of local DBMSs.
However, we will assume that "heterogeneous" also refers to
the possible presence of database conflicts among pre-
existing 1local databases so that "closed DDBMS" and

"heterogeneous DDBMS" (HDDBMS) may be used interchangeably.

1.2 THESIS AIM AND OUTLINE

The aim of this thesis is to propose an overall HDDBMS

design and implement a prototype based on this design.

Chapter 2 establishes a terminology used in the rest of
the thesis, discusses issues in HDDBMS design and how
existing designs respond to them, catalogues database
conflict types, and describes the general approach taken in

our design.

Chapter 3 describes the global query and mapping
language incorporated in our BDDBMS design. This language is
based on the relational algebra and is the basic tool of

database integration and conflict resolution.

Chapter 4 discusses the application of the global query



and mapping language described in Chapter 3 to resolving the

database conflicts described in Chapter 2.

Chapter 5 describes the gquery processing algorithm
incorporated in our HDDBMS design. This is the algorithm
used to process queries submitted in the global gquery and

mapping language on the integrated database schema.

Chapter 6 describes our prototype implementation based
on the global query and mapping 1language described in
Chapter 3 and the query processing algorithm described in
Chapter 5. The prototype acts as a front-end to two
different DBMSs which are situated on two separate

microcomputers connected with a serial communication link.

Chapter 7 concludes the thesis and summarizes specific
problems in HDDBMS design which were not fully addressed

herein, and which are proposed as topics for further work.



CHAPTER 2 BACKGROUND

This Chapter discusses issues in HDDBMS design and
surveys existing responses to them. This provides a
background for the discussion of our prototype design in
Chapters 3 and 5, and proposals for further work in Chapter
7. A survey of database conflicts is also presented. This
provides a background for the discussion of conflict

resolution techniques in Chapter 4.

Specific designs and/or prototypes which address HDDBMS
issues to varying degrees and which are referred to in this
Chapter are Multibase [LAND 82, SMIT 8l1], Mermaid (TEMP 83,
TEMP 87, YU 87), PRECI* [DEEN 85a, DEEN 85b)], ADDS [BREI
86), UCLA HD-DBMS [CARD 80, CARD 87], and SIRIUS-DELTA [FERR

84].

Since the terms used in the 1literature are often
inconsistent, the terminology established in this Chapter

will be used in the rest of the thesis.

The discussion of design issues is organized into
Sections on schema architecture, query processing, update
processing, and global data models. Existing responses are
drawn from literature on specific HDDBMS prototype designs
as well as from 1literature focussing more closely on

specific issues.



This Chapter concludes with a discussion of the

direction taken in our prototype design.

2.1 SCHEMA ARCHITECTURE

Both distributed and centralized DBMSs are usually
designed with some recognition of a distinct schema
hierarchy and facilities to support the mapping between
schemata on different levels. The definitions of such schema
hierarchies have been referred to as schema architectures
[ELMA 8l1]. A well known example of a schema architecture is
the ANSI/SPARC proposal for centralize databases which
specifies three schema levels: internal {lowest),
conceptual, and external (highest) ([TSIC 77]). In general,
the highest level of a schema architecture provides a user-
oriented description of the database, while lower levels

provide increasingly storage-oriented descriptions.

2.2.1 Contributions of a Schema Architecture to HDDBMS
Design

The contributions of an explicit schema architecture to
HDDBMS design include those that apply to closed DDBMS and

centralized DBMS design and are as follows:

1) transparency

The top schema level is designed so that queries on it

may be stated simply, with minimum concern for details about
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the organization and functioning of the system. These
details are embodied in the lower schema levels and the

mappings between them.

2) data independence

A change to a given schema level may be made without
affecting the next higher schema level as long as the
mapping between the two can be modified to absorb these
changes. This imparts a degree of data independence to a
given schema level with respect to lower schema levels. This
is especially important in distributed systems where
coordination of changes at different sites may be awkward
due to the physical distance between them and a desire to

preserve local autonomy.

3) view independence

At specified schema levels, mappings to more than one
schema at the adjacent higher schema level may be permitted.
This would support the development of multiple independent
views of the database which are tailored to different users.
Also, the database designer or administrator can vary the
data which is visible to a group of users by changing the
subset of the schema at a given level which is included in

the mapping to a higher level.
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4) categorization of mapping specifications

Corresponding to the mapping between each pair of
adjacent schemata there must be a set of specifications.
These might be manually input or possibly generated with a
computer aid. The use of distinct schema levels allows the
generation and storage of specifications to be divided into
distinct and, in the case of distributed systems, possibly

location-specific components.

5) database integration

At specified schema levels, mappings to more than one
schema at the adjacent lower schema level may be permitted.
This would support the integration of separate databases in

a distributed system.

2.1.2 An HDDBMS Reference Schema Architecture

A schema architecture for closed (top-down designed)
DDBMSs is described in [CERI 84] which has the following
schema levels (from lowest to highest): 1local database,
local mapping, allocation, fragmentation, and global. A
local database schema may actually correspond to the highest
level of a centralized database schema architecture, but
this is de-emphasized in order to focus on the distributed
database issues. The types of transparency supported by this

architecture are fragmentation, 1location, replication, and
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local mapping (a relational global data model is assumed).
This frees a user from having to know how a global relation
is split wup into different vertical and horizontal
fragments, to which sites the fragments are allocated, which
fragments are replicated, and the data models used by

specific local DBMSs.

Note that in this schema architecture, only the local
and global database schema levels actually describe database
structure in terms of a data model. The other levels
correspond to different kinds of information required to map
between the global schema and the local database schemata,
thus it is questionable whether these other levels should be
called schema levels ('mapping 1levels' may be a more

appropriate term).

The use of a global data model and associated global
DML means that a DML translator is required for translating
from the global DML to each local DML rather than from each
local DML to each other local DML. In other words, with n
local DBMSs each with a different DML, n two-way translators
need to be implemented when there is a global data model, as
compared with n*(n-1) translators when direct local-to-local
DML mapping is done. For more than two different local
DBMSs, the global data model approach requires fewer
translators. Also, the use of a global data model simplifies
query processing by clearly separating DML translation and

global strategy formulation. Note that the DML translators
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would refer to a mapping between local and global data model
versions of a local database schema whenever local and

glcbal data models are not the same.

A schema architecture for a HDDBMS (designed with pre-
existing databases) would have to support all the types of
transparency mentioned above, plus conflict transparency. 1In
other words, a user should not have to concern himself with

the resolution of database conflicts.

The schema architectures used in existing designs for
HDDBMSs all include a schema level for global data model
versions of the local data model schemata, and a schema
level for an integrated, conflict-free global data model
view of the translated 1local data model schemata. 1In
addition to simplifying the implementation of the system and
query processing, as in closed DDBMSs, the use of a global
data model simplifies database integration and the addition
of further local databases to the system. These schema
levels address the basic issues of local DBMS data model
heterogeneity and database integration. However, variations
abound in terminology and number of schema levels. Some
designs ‘compress' multiple schema levels into one or simply
do not accommodate as many HDDBMS features, with respect to

other designs.

We propose a reference schema architecture for HDDBMSs
as shown in Figure 2.1, This schema architecture

accommodates the features of all the architectures
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encountered in the 1literature, is highly decomposed, and
provides a reference terminology. In contrast to the
architecture of ([CERI 84), all schema levels correspond to
database structure descriptions. The 1lines between the
schema levels in Figure 2.1 symbolize mapping levels. This
schema architecture does not imply any particular

arrangement for the physical storage of mapping information

and schema descriptions (e.qg. centralized versus
distributed); this would be an implementation-—specific
issue.

The schema levels oOf are schema architecture are

explained below:

1) local host schema

Each site participating in the system has a local host
schema that describes the local database using the data
model of the local DBMS. From the local DBMS perspective the
distributed system is simply another user with either its
own external view of the database, or one shared with other
users. There may be several local DBMS schema levels below
this one, but they are of no consequence to the design of
the HDDBMS. In fact, the local DBMS may itself be a DDBMS or

a HDDBMS.
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Site 1 Siten LEVEL
external external 6
schema schema

integrated integrated 5
schema schema
global 4
schema
local local
participant participant 3
schema schema
translated translated
local host local host 2
schema schema
local host local host 1
schema schema
Site 1 Siten
Figure 2.1 reference HDDBMS schema architecture

2) translated local host schema

This is a subset of the local host schema after

translation into a global data model schema. If the local

DBMS uses the global data model and the entire local host
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schema is involved in the DDBMS, then the local host schema
and the translated lccal host schema are the same. The local
mapping schema of [CERI 84] corresponds to the mapping level
between the local host and translated local host schema in

our architecture.

3) local participant schema

This is defined by any number of mapping operations on
the translated 1local host schema. The mapping may be
performed in order to resolve a subset of the database
conflicts. This could simplify higher level mappings (in
which the remainder of the database conflicts would be
resolved). The mapping may also be performed in order to
absorb changes to the translated 1local host schema made

after the establishment of the HDDBMS.

A local participant schema is similar to an "export
schema" as described in [MCLE 80] in that it defines the
view of the local database available to other sites. As
such, this is a critical schema level with regards to data
independence since changes to a 1local participant schema
would entail changes to information stored at one or more
other sites. This is the first level at which schemata may
be designed with some knowledge of remote databases (such

knowledge would be necessary in conflict resolution).

A local participant schema may be augmented by detailed
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authorization controls as is the "participation schema" of
PRECI* [DEEN 85]. For example, these controls may specify
which properties of an object type may be updated by a

request originating at a particular site.

A local participant schema may be the same as the
translated local host schema, in which case no database
conflict resolution mapping or authorization controls would

have been specified.

4) global schema

A global schema 1is the collection of all 1local
participant schemas from each site and represents the global
database and the maximum amount of DUBMS data available to
any one site. This 1is similar to the "unified global
conceptual model"™ of the UCLA HD-DBMS [CARD 87) and the
"global database schema" of PRECI* [DEEN 85].

A given site may actually have access to a only a
proper subset of the global schema, thereby being aware of
only part of the maximum amount of DDBMS data. This may be

used as a form of authorization control.

Any global schema entity required for the response to a
DDBMS query is materialized from data which is resident at
one site (if the data is replicated then one site is chosen
as the source of data). The mapping from the translated

local host schemata to the global schema would involve
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location information indicating from which site(s) data for
a given global database entity is available. Thus, this
mapping level corresponds to the allocation schema of ([CERI

841.

5) integrated schema

Each site has an integrated schema which is defined by
any number of mapping operations on the subset of the global
schema accessible by that site. These mapping opu«rations
resolve any remaining database conflicts and specify

integrated objects, properties and relationships.

It is possible for multiple sites to share the same
integrated schema, or different sites to have different
integrated schemata. The latter option would be useful if it
is required to design a site's integrated schema so that it
conforms as closely as possible to its translated local host
schema and appears to extend rather than replace it. This
property ie also recognized in UCLA HD-DBMS {CARD 87] and

Miltibase [LAND 82) designs.

The integrated schema of a site may be the same as the
subset of the global schema accessible by that site, in
which case no database integration operations would have

been necessary.

The integrated schema level corresponds to the global

schema level of [CERI 84], and the mapping between an
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integrated schema and a global schema corresponds to the
fragmentation schema level of [CERI 84]. Note, however, that
the fragmentation schema in a closed DDBMS would not include
operations and references to metadata for conflict

resolution.

6) external schema

When it is necessary for the global database at a given
site to be expressed in an external data model which differs
from the global data model, an external schema may be
derived from the integrated schema at that site. The
external schema level is similar to the "subschema level" of
the Mermaid system [TEMP 87] and the "virtual layer" of the
UCLA HD-DBMS [CARD 87]. If the external and the global data
models are the same then the external and integrated

schemata are the same.

Separate local participant and translated local host
schemata, or their counterparts, with in-between mapping
that resolves some database conflicts or absorbs changes to
the translated local host schema is not specifically
included in the existing designs of HDDBMSs encountered in
the 1literature. It is possible that some such ‘'early'
conflict resolution mapping capability is included in the

data model translation in some systems. For example, the
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translation of file system schemata to relational schemata
may involve the re-clustering of fields (or attributes) to
create normalized relations, and this could serve to remove
differences related solely to local performance issues (see

the discussion of data clustering conflicts in Section 2.2)

In PRECI* early conflict resolution operations are
explicitly excluded to ensure that maximum choice for
database integration and conflict resolution remains at the
"global database schema" 1level (the counterpart of the
global schema level in our architecture) ([DEEN 87). For
example, suppose that one local host database stores values
of a 'Weight' property as integer numbers of pounds and
another stores values for the same property as integer
numbers of grams. The participant schema corresponding to
the latter local host database may be developed so that the
units of the 'Weight' property are changed to pounds
(rounded to the nearest pound) in order to resolve the
conflict., In answering a HDDBMS query, the values for
'Weight' would be locally converted from grams to pounds
with considerable lost of precision. The opportunity to
simultaneously specify the alternate mapping from pounds to
grams on the other local host database, thereby avoiding a
loss of precision, would be lost since at the global schema

level only pound units would be represented.

In spite of the possible danger of premature conflict

resolution mapping as illustrated in the above example,
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early conflict resolution mapping should not be pre-empted.
In most cases it would make sense to resolve, as early as
possible, schema conflicts that are related to local
performance issues rather than to conceptual design logic.
Also, in addition to absorbing some changes to local host
databases, the capability of early conflict resolution
mapping would also be useful when adding new local host
databases to the HDDBMS. For example, suppose that a new
local host database contains a relation which is replicated
in another local host database already included in the
integrated system., Furthermore, suppose that the translated
local host schema of the new, 'to-be-integrated', relation
has a field name conflict with the participant schema of the
replica, 'already-integrated' relation. It may make sense to
specify a field name mapping for the new relation so that
its participant schema matches that of the replica, thereby
minimizing changes to the global schema (it may still be
required to add the knowledge of replicated data to the
mapping information if the HDDBMS explicitly stores such
information rather than acquiring it through intersite

dialogue).

In Multibase design, an "integration schema" is created
at the same level as the "local schemata"”, which are the
counterpart of the 1local participant schemata described
above {SMIT 81). This "integration schema" describes a
database which contains auxiliary data necessary for

database integration and which is managed by a separate
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"internal” DBMS brought in with the establishment of the
HDDBMS, rather than by a pre-existing DBMS. Auxiliary data
would be used to supplement a database that portrays fewer
properties of a given object class than another database
(LAND 82). The "integration schema" is given special status
in Multibase because it is managed by the internal DBMS.
However, in our schema architecture an auxiliary database is
not differentiated from a local host database since
conceptually it makes no difference which DBMS manages it.
In fact, in a HDDBMS of a different design, auxiliary data
could be added to a pre-existing databases without any
change to their independent operation (local users need not
even be aware of it) and, therefore, without affecting local

autonomy.

2.2 DATABASE CONFLICTS

Two databases whose schema are expressed in the same
data model can conflict in two fundamental ways: with
respect to the data they contain {data conflicts) and with
respect to their schema (schema conflicts) (DAYA 84]. These
conflicts will be discussed and further classified in this
Chapter in order to provide the basis for a discussion of

database integration techniques in Chapter 4.
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2.2.1 Data Conflicts

Data conflicts between two databases are caused by
measurement error and blunders involved in the original
procurement of the data, blunders involved in their input
into the separate databases, and corruption of the
electronically stored data. For example, the same property-
line distance can be measured simultaneously by two 1land
survey crews using the same techniques and types of
instruments, but the final quantities obtained would likely
differ within expected tolerance 1limits due to the
measurement error inherent in the techniques and
instruments. Examples of possible blunders would be the
incorrect recording of an intermediate or final quantity in
a fieldbook, and making a typographical error while manually

entering data at a terminal.

Data conflicts are fundamentally different from schema
conflicts because the occurrence of measurement errors,
blunders, and data corruption is essentially independent of
any decisions made while designing a database. Furthermore,
unless the DBMSs and supporting software are capable of
preventing all such occurrences from affecting the databases
(a practical impossibility), the 1likelihood of data

conflicts cannot be discounted.
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2.3.2 Schema Conflicts

Schema conflicts will be discussed with respect to
record formats since virtually all commercially available
DBMSs use a record-oriented data model, specifically either
the hierarchical, network, or relational data model. File
systems (which we consider to be eligible members of a
HDDBMS), of course, are also record oriented. Accordingly, a
'schema' will be assumed to refer to a record format,
including the record-type name, field names, field-types,
and key specifications [KENT 82]. However, many of the
conflicts discussed here also apply to more 'semantic' data

models.

This section organizes concepts discussed, with
considerable overlap, in [BATI 86], [BREI 86)], [DAYA 84],
[DEEN 87), [KENT 82), [SMIT 77}, [SMIT 81], [TEOR 86). No
claim is made that the conflicts discussed below are
exhaustive. They do, however, represent a comprehensive
survey of the schema conflicts reported in the literature.
Specific references will be given for terms, concepts, and

examples (possibly modified) which are unique to a source.

Schema conflicts may be organized into the following

classes:

1) name
2) wvalue scale

3) field
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4) abstraction

5) relationship

6) row/column

7) implied data

8) derived data

9) missing data

10) identifier

11) implicit/explicit truth

12) data clustering

2.2.2.1 Name Conflicts

Name conflicts pertain to record-type names, field
names, and textual (character string) data, which represent
actual objects, properties and relationships. They are due
to the occurrence of homonyms (similar names used to
identify different objects, properties, or relationships)
and synonyms (different names used to identify the same

objects, properties, or relationships).

2.2.2.2 Value Scale Conflicts

A value scale conflict occurs when the same property of
the same class of objects 1is expressed 1in different
databases using different units or different precision [DEEN
87). For example, employee salaries may be in U.S. dollars
in one database and in Canadian dollars in another. Another

example is the recording of mean daily temperature of cities
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in 10 degree intervals and 5 degree intervals, respectively,
in separate databases. Differences in units and precision
can occur simultaneously; for example, the mean daily
temperature of cities may be expressed using an integral
number of degrees centigrade in one database and the ordinal
scale units "cold", "cool", "warm", and "hot" in another

[SMIT 81].

2.2.2.3 Field Conflicts

Field conflicts consist of field-type conflicts and

single-versus-multiple field conflicts.

A field-type conflict occurs when the same property of
the same class of objects is represented by values in fields
of different types in different databases. For example, an
employee identification number may be represented by a value
in a ‘numeric' field in one database and by a wvalue in an

'alphanumeric' f£ield in another.

Another example of a field-type conflict is an employee
salary represented by 'numeric' fields accommodating eight
digits and nine digits, respectively, in different
databases. Field-type differences may be responsible for
differences 1in the computations permitted on the data
values, and in the range and precision of data values which
may be represented. Field-type differences may even lead to
naming conflicts pertaining to data:; for example, a field

that accepts the value "color™"™ but not "colour", and another
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field where the converse is true (a general concept of field
type is assumed here, where permissible value and operation
restrictions included in the type definitions may encompass
restrictions that are normally enforced by application

programs in practical systems, if at all).

A single-versus-multiple field conflict occurs when a
single field is used in one database to represent the same
information that is represented by multiple fields 1in
another database [KENT 82). Different ways that this can

happen are described below.

A single field may hold the encoded data of several
fields. For example, 'Date'could be represented by separate
‘Month', 'Day', 'Year' fields in one database and by a
single 'Date' field in another database in which the
encoding is simple concatenation (another way to regard this
is that a 'Date' field is an object created from the
aggregation of 1lower 1level 'Month', 'Day', and 'Year'
objects - see Section 3.2.5). An example of more elaborate
encoding is a personal identification number which includes

digits to indicate sex and date-of-birth.

A single field may have alternate meanings represented
by several fields in another database. For example, a record
type for representing employees may include separate fields
for 'Sales_Commission', used only for salesperson employees,
and 'Overtime', which is never used for salespersons. An

alternate record type for the same employees may be a
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'Comm/Over' field [KENT 82].

A single field may encompass the domains of multiple
fields in another database. For example, a record
representing users of company cars may have separate fields
for department names and employee names (so that cars may be
signed out to an entire department or to an individual
employee). The domains of the separate fields would be the
set of all department names and the set of all employee
names, respectively. An alternate record type may simply
accept both kinds of names into the same field, with another

field to indicate 'User_Type' [KENT 82].

2.2.2.4 Abstraction Conflicts

Abstraction conflicts occur when different databases
contain semantically related information with differences in
the generalization of —objects and ©properties, the
summarization of properties, set abstraction [DAYA 84], and

aggregation [SMIT 77].

An example of a generalization difference is exhibited
by one database using a single record type to represent all
employees, while another uses several record types to
represent employees according to Jjob speciality, e.g.
'Architect', 'Engineer', or 'Planner'. Another example is
the use of separate fields for 'Home_Phone#' and
'Work_Phone#' in an employee record in one database, and the

use of a separate record type containing 'Phone#' and
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'Emp_No' fields in another database, where no distinction is

made between different kinds of phone numbers [DAYA 84),

A difference in summarization of properties (also
called "statistical aggregation" [CODD 79)) is exhibited by
one database associating an average departmental salary with

each employee while another records the exact salary of each

employee [DEEN 87]).

A set abstraction difference is seen when one database
represents convoys of ships (essentially, sets of ships)
while another database represents individual ships. Some
properties of the convoy set abstraction may be summaries of
properties of individual ships in the cornvoy, e.q.
'Avg_Weight' to summarize the 'Weight' of member ships [DAYA
84]. Set abstraction has also been referred to as "cover

aggregation" [CODD 79].

Aggregation, as explained in [SMIT 77) occurs when
related objects are made into a single, higher level object.
In [CODD 79]) this is called "cartesian aggregation". Field
types are aggregated to create a record type (in this case,
the field types take on the role of 'property', but this
does not disqualify them from being regarded as aggregated
objects as well). Essentially, we are concerned here with
differences in the distribution of field types among record
types for semantic reasons; when such differences occur for
performance reasons and do not correspond to different

intended semantics, they are classified as data clustering
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conflicts (see Section 2 7.2.12). Single-versus—-multiple
field differences may also be considered as aggregation
differences, but these are classified under field conflicts
in order to maintain a record-oriented data model

perspective.

An example of an aggregation differerce, in our limited
sense, is the division of employee data into 'Personnel'
records and 'Payroll' records in one (or, possibly, two)
database, while the same data is represented by a single
'Employee’ record type in another database. Admittedly, this
difference may have performance and storage consequences;
for example, in the first database it would be possible to
store personnel data for retired or just hired employees for
whom there is no payroll data, without having to store as
many null values or blanks as would be the case in the
second database. However, the division of data would also
conform to the fact that to database users in different
departments, an employee and her payroll account represents

distinct objects.

2.2.2.5 Relationship Conflicts

The same objects may be portrayed with the same level
of abstraction in different databases, but there may be
schema conflicts due to differences in the inter-object
relationships portrayed by the schemata. For example,

consider the objects ‘'employees' and ‘'departments®' which
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have a many-to-one relationship in one database and a many-
to-many relationship in another. If the databases use the
relational model, the relationship may be implemented in the
many—-to-one case by including the department identifier
attributes as foreign keys in the 'Employees' relation and,
in the many-to-many case, by a 'WorksIn' relation containing
both the department and the employee identifier attributes.
If the databases use the CODASYL DBTG network model, then in
the many-to-one case the 'Department' record type could be
the owner of a set that has the 'Employee' record type as
its member. In the many-to-many case, both the 'Employee'
and the 'Department' record types would have to be owners of

sets which would have a common *link' member record type.

Relationships among three or more object classes may be
defined in different ways. For example, in the case of three
object classes, there may be a ternary relationship
connecting all three, or there may be two binary

relationships [TEOR 86].

2.2.2.6 Row/Column Conflicts

Row/column conflicts occur when information represented
by field values in one database are represented by field
names in another database. An example of this is a 'Sales’
record-type which has 'Month' and 'Sales' fields in one
database and separate monthly-sales fields ( 'Jan_Sales',

'‘Dec_Sales', etc.) in another database. The information
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conveyed by the wvalues of the 'Month' field in the first
database is conveyed by the names of the monthly-sales

fields in the second database [KENT 82].

2.2.2.7 Implied data Conflicts

Implied data conflicts occur when important data
implied by the context of different databases are not

accommodated by, or is omitted from, their schema.

For example, consider a record type with fields named
'Name', ‘'Owner', 'Rating', and ‘'Telephone' to describe
restaurants. Suppose that two separate files using records
of this type exist in Montreal and Toronto. When records of
either file are displayed to users in the corresponding
city, the property 'Location' would be implicit. However, if
the data from both files were simply written to one file
using lhe same scheme, location data would appear to be
missing to a user who realizes that the represented
restaurants may be located in either city [DEEN 87], or the
data would be interpreted incorrectly by a user who still

assumes that all the restaurants exist in one city.

Field names may be adequately meaningful in a
particular context, but inadequate in a global context. As
an example of this, consider separate databases which
portray a property of what we assume to be a single
employee, using a field named 'Salary' in both cases. If the

two databases are regarded globally, with no knowledge of
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Lheir specific contexts, and the value in the 'Salary' field
is not the same in both databases, then it is wuncertain
whether there is a data conflict, whether the employee works
for two departments and draws a separate salary from each,
or whether employee's salary has recently been changed and
only one database has recorded the change due to different

update schedules.

Suppose further that we are assuming that the records
in guestion represent the same employee because an 'EmpNo'
field exists, and holds the same value, in both records. 1f
the system of employee numbers in the two databases are
different we may, in fact, be looking at the salary of two

different employees.

In [DAYA 84] the possibilities of the above 'employees'
example are said to represent a data conflict where the
separate databases are mutually inconsistent but correct.
However, we do not classify this as a data conflict since
the perception of mutual inconsistency is based on the
interpretation of the schemata, rather than on measurement

errors or blunders.

Naming conflicts are distinct from implied data
conflicts in that the former may occur due to the fact that
different database designers may choose a different word for
the same object, property, or relationship even if they are
designing a database for the same purpose and in the same

operational context. In this case, knowledge of context is
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usually not useful in detecting the conflicts; they can only
be discerned by finding adequately descriptive explanations

of what the chosen words are supposed to represent.

2.2.2.8 Derived Data Conflicts

Data which is derived from stored field values in one
database might be explicitly stored in another database for
performance reasons, even though they could be derived there
too. This would result in differences in the record

structures of the two databases.

Derivable data might be explicitly stored in order to
reduce data retrieval response time by reducing the
computation involved or by reducing the number of different
records that might have to be accessed [KENT 82]. Updates
would be complicated, but this could be an acceptable trade-

off.

2.2.2.9 Missing Data Conflicts

A missing data conflict occurs when the same object
class 1is portrayed in two databases, but one database
contains data pertaining to a property of objects of that
class which does not exist in the other database.
Furthermore, the missing data cannot be derived directly
from the existing data or the database context. A simple
example are two files in separate databases each of which

represents ‘'Employees' and each of which have the same
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fields except that one file has 'HomePhone' field (and the

corresponding data) and the other does not.

The reason for the difference would be that in the
database where the data is missing, the corresponding
property is not considered relevant, the data could not be
obtained, or no one thought of including it. In the above
example, in the organization that uses the database without
the 'HomePhone' data, this data may be extracted from a
telephone book when needed. Also, even though users may wish
the data were in the database, there is not quite enough

incentive to make the improwvement.

If data 1is only portrayed differently in different
databases (e.g. row/column conflict) and is not actually

missing from one database, then a missing data conflict does

not exist.

2.2.2.10 Identifier Conflicts

An identifier conflict occurs when the same class of
objects has different wunique identifier properties in
different databases. For example, two different databases
may identify enmnployees by social insurance number and an
arbitrary employee I.D. respectively. The two corresponding
field names, say 'SIN' and 'EmpID', cannot be considered to
be homonyms since they represent different properties, apart
from their roles as identifiers - 'SIN' values represent

federal account numbers and have uses which 'EmpID' values
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do not have.

As a slightly more complex example, consider one
database which identifies employees by their social security
number and another which wuses citizenship and social
insurance/security number for the same purpose. In the first
database it is assumed that all employees are Canadian and
that all Canadians may be identified by their social
security number. In the second database, both Canadian and
U.S. employees are recorded and the possibility that a valid
U.S. social security number may match a valid Canadian
social insurance number is acknowledged (the field name
'SISN' is used for both numbers, out of convenience,
although the semantics may be "federal account number in

country of citizenship").

Identifier conflicts are special cases of missing data
conflicts or implied information conflicts since the data
used in identifying objects of a particular class in one
database is excluded from another database which also

portrays the same class of objects.

2.2.2.11 Implicit/Explicit Truth Conflicts

Normally, data is kept by recording facts which are
definitely known to be true, so the truth wvalue of the
recorded facts is implicitly 'true'. However, it is also
possible to record both true and false facts with an

associated explicit truth 1indicator. For example, the
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following two tables 'Tabl' and 'Tab2' contain the same
information (if the closed world assumption is taken for
'Tabl'), but they exhibit an implicit/explicit truth value
conflict since in 'Tabl' the truth of the facts is implicit
while in 'Tab2' the truth of the facts are explicitly given
by the 'Truth' attribute value (example from [KENT 82]). In
this example, a 'fact' is a correspondence of 'FA' and 'FB!'

values in the same tuple.

Tabl ( FA FB ) Tab2 ( FA FB TRUTH )
Al Bl Al Bl true
A2 B2 A2 Bl false

Al B2 false

A2 B2 true
Note that 1in this example there are no field name
conflicts since 'FA' and 'FB' represent the same properties

in either database.

In the explicit truth approach, the intent may be to
record all facts and their associated truth value, but it is
obvious that this would often be impractical because of the
amount of data which would have to be stored (hence the
predominance of the implicit truth approach). However, if
this can be done, the updates to the facts may be easily
validated, i.e. if a proposed fact does not exist in the

database as either 'true' or 'false' then it is not valid.

In the explicit truth approach, it may be the case that
not all facts are recorded, and so the truth value of

unrecorded facts cannot be determined from the database.



38

This is almost similar to the implicit truth approach with
the database interpreted using the open world assumption
where 'true' facts may indeed exist while not being recorded
(all we can say is that the recorded facts are definitely
true). The difference is that with the explicit truth
approach some facts may be recorded as 'false' while with
the implicit truth approach, no fact can be shown to be

definitely 'false’'.

2.2.2.12 Data Clustering Conflicts

There is no reason to believe that separate databases
which represent the same facts with the same fields with the
same level of abstraction will automatically be designed
with the same record structures. Although normalization
theory may suggest desirable record structures for avoiding
storage of redundant data, null values, and loss of
information, it can leave room for variations in overall
design [KORT 86]. In addition, one cannot assume that
different designers have the same inclination to use
normalization theory, and "denormalized" designs may even be
deliberately produced for performance reasons [SCHK 81]. For
example, a normalized relational database could have
separate 'Employee' and 'Department' relations because there
are many employees in each department. However, in a real
database where certain department and employee data are
almost always accessed together, some department data may be

included in the same records as employee data in order to
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lower response time for queries. This would, of course,
introduce considerable data redundancy, but this may be an
acceptable trade-off for the data retrieval benefits.
Another database containing the same information may be
designed with different queries in mind, and the normalized
design may be used. As a result, there would be differences
in vertical (columnwise) clustering of the data in the two
databases. Note that in the above example, denormalization

was not performed to change the conceptual object classes.

Conceivably, in a given database, a large file might be
split up horizontally into separate smaller files having the
same record structure, representing the same object classes,
and without any clear relation to the semantics of the data.
This could be necessary in environments with very primitive
memory management, and could result in differences in
horizontal (rowwise) <clustering of data in different

databases.

It may be argued that data clustering conflicts are due
to low level 'internal' schema differences and would not be
visible in the ‘'conceptual' or ‘'external' schemata of the
database. However, in a real situation we cannot assume that
a given local host database will adhere to the ANSI/SPARC
schema architecture, or any other proposed schema
architecture for that matter. In fact, this is the case for

file systems and most micro-based DBMSs.
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2.3 QUERY PROCESSING

2.3.1 Global Query Processing

A HDDBMS converts a single user query on an integrated
schema at one site into a set of subqueries to Dbe
distributed among one or more sites, and a set of data
transfers between sites. Furthermore, the HDDBMS must
coordinate the submission and execution of these subqueries
and data transfers so that ultimately a response to the
initial query is produced at the query site. This collection
of activities will be referred to as ‘'global gquery
processing'. The aspect of global query processing concerned
with decomposing a query on the integrated schema (the
'global query') into a set of subqueries will be referred to
as 'global query decomposition'. The mapping specified
between the global and integrated schemas as part of
database integration 1is essential to global query
decomposition. It is possible for query decomposition to
produce a single subquery which is, in fact, the original

query and is executable at one site.

A major concern of global query processing is producing
a strategy that minimizes response delay as far as is
practical. This is especially important when processing ad
hoc queries. This aspect of global query processing will be

referred to as 'global query optimization'.

The type of links that connect HDDBMS sites is an
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important factor from the optimization point of view when
designing a global query processing algorithm. In the
context of a long haul communications network such as
ARPANET where data communication delay dominates query
execution (or data processing) delay, elaborate strategies
for reducing the volume of data to be transferred between
sites are worthwhile. Examples are the semijoin algorithms
used in SDD-1 ([GOOD 8l1] and Mermaid [TEMP 87], and the
algorithms based on estimating the costs of different join
sequences, join methods, and join sites used in R* [DAN] 82]
and Multibase [DAYA 85]. In the context of a fast local area
network, communication delay does not overvwhelm data
processing delay and extra operations such as semijoins that
simply reduce data volume are not profitable. A global query
processing algorithm designed for this context 1is the
fragment-and-replicate algorithm used in distributed INGRES
[EBST 80) and Mermaid ([YU 87). This algorithm attempts to
make use of semantic information to distribute a global join
as multiple locally executable joins which can be executed

in parallel at different sites.

Extreme heterogeneity would include varying network
types within a single integrated system. In [TEMP 87) it is
reported that work has started on a combined
semijoin/fragment-and-replicate algorithm to deal with this

type of heterogeneity to some degree.

Global query processing might involve the complete
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generation of a plan, followed by its use (static planning)
or planning might be interspersed with execution steps
(dynamic planning), as in the Mermaid semijoin algorithm
[PEMP 87). The advantage of dynamic planning is that
est imates of intermediate result sizes upon which strategic
decisions are based can be validated by comparing them to
the actual intermediate results, and the plan can be altered
in response to a discrepancy. In static planning, estimation
errors may grow uncontrollably. However, dynamic planning

usually requires greater intersite communication.

variation in performance and capabilities of local
DBMSs is a recognized factor in global query processing.
Multibase uses a weighting factor for each site which
represents the relative performance of the local DBMS, based
on whether or not the local DBMS can perform the equivalent
of Jjoins, semijoins, and set operations using sorting and
merging [DAYA 85]. Variation in capability is important when
some local DBMSs cannot perform equivalents of all
operations specifiable in the global query language, or when
the equivalent operations are difficult to generate from
global query language expressions. In the Multibase system,
a "filter" is wused in query decomposition to pick out
operations that the current plan would send to sites that
cannot support them (the plan is then modified accordingly).
The Multibase system includes its own DBMS at one or more
sites which can compensate limitations in local DBMSs [LAND

82) . In PRECI*, a subsidiary DBMS capable of supporting all
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global query language operations is associated with each
local DBMS (besides compensating for local deficiencies, the
subsidiary DBMS also manages metadata related to schema
levels above the local host schema level) [DEEN 85b). The
Mermaid system simply requires that a local DBMS support a
minimal set of operations [TEMP 87). This issue 1is further
discussed in Section 3.4 in the context of global query

language design.

2.3.2 External Query Processing

In the case where user queries are submitted on an
external schema which is separate from the integrated
schema, the HDDBMS must also transform this 'external query'
into an equivalent set of global queries, control their
submission to the global query processor, and transform the
integrated schema response into the appropriate external
form. This will be referred to as ‘external query
processing'. This processing requires the mapping that is
specified between the integrated and external schemata (if
they are not the same), as well as an external-to-global

query language translator and a data format translator.

In many cases, an external query would simply be
translated into a single global guery, but this might not
always be so. Consider the natural language query "are there
any employees or vehicles at warehouse A?" where the

integrated schema models employees and vehicles as separate
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entities, each with a warehouse location attribute. An
external query processing strategy might be to create two
separate global queries cocresponding to "are there any
employees at warehouse A?" and "are there any vehicles at
warehouse A?", submit one of them to the global query
processor, and then only submit the second if the result to
the first one is empty. The appropriate external response
might be "Yes" or "No" while the result produced by one of
the global queries would be a table representing a result

relation, assuming a relational global model.

In most HDDBMS designs encountered in the literature,
users are expected to submit queries in an external query
language which is the same at all sites. Mermaid does
include translators for SQL, QUEL, and ARIEL external query
languages, but the external and integrated schemata are the
same [TEMP 83). Overall, only simple external query
processing has been incorporated in HDDBMS designs. but this
reflects the 1level of sophistication of most of the

available DBMS user interfaces.

2.3.3 Local Query Processing

In all HDDBMS designs encountered in the literature,
subqueries are initially expressed in a global query
language and then translated into a 1locally processable
representation, in order to minimize the number of required

query language translators (as explained in Section 2.1.2)
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and to simplify global query processing and the addition of
new local DBMSs to the system. In most HDDBMS designs, the
subqueries are also transferred between sites in the global

query language.

The translation of received subqueries into a locally
executable representation will be referred to as ‘'local
query processing'. There are several aspects to this
activity. Global gquery language subqueries sent to a remote
site refer to the local participant local schema of that
site, and so must be modified into a query on the local host
schema of that site if the two schemata are not the same.
This requires the mapping specifications between the local
participant schema and the translated local host schema, and
between the latter and the local host schema. In addition,
the local DBMS which is meant to execute the subquery may
n2t accommodate the global query language, in which case the
HDDBMS must translate the global language Qquery on the
translated 1local host schema into a language that 1is
understood by the local DBMS. This may even be necessary if
the local DEMS data model is the same as the global data
model. This language translation may be quite complicated.
For example, it may involve the generation of a data
processing program in a language such as DL/l (used by the
IMS hierarchical DBMS) from a gquery in a relational
algebraic global query language. The generation of efficient
locally executable query expressions, particularly record-

at-a-time programs from gqueries in a set-oriented global
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query language, may require a degree of intelligence. This
aspect of local query processing will be referred to as

'local query optimization'.

For example, the Multibase system, which uses the
functional data model as its global data model and DAPLEX as
its global query language, can generate a CODASYL DML
program for a limited class of global query language queries
(the DBMS included as part of Multibase would handle queries
outside of this class). The cost of each possible CODASYL
DML program is computed, based on the number of disk page
accesses involved, and the cheapest program is selected for

execution ([DAYA 85].

In PRECI* local query processing includes assigning
operations not supported by the pre-existing local DBMS to

the associated subsidiary DBMS [DEEN 85a].

The Multibase prototype described in [LAND 82)
incorporates a hierarchical and a network model local DBMS
in addition to its own functional data model DBMS. The
SIRIUS-DELTA prototype described in [FERR 82) incorporates a
relational and a network local DBMS. The Mermaid prototype
described in (TEMP 87)] incorporates only relational 1local
DBMSs but these use a variety of query languages, namely
SQL, QUEL, and IDL. The PRECI* prototype described in [DEEN
87] incorporates two relational PRECI/C local DBMSs. The
literature on other HDDBMSs does not clearly indicate which

local query languages are supported by working prototypes.
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2.3.4 Data Interchange

Local DBMSs store data in files which conform to a
certain structure and may contain ancillary information on
that structure. For example, the data files for a simrle
tabular DBMS would contain a header detailing the nanes,
order, types, lengths, and record displacements of each
field of a record. In some databases, data files may also
contain pointers to records in other files. Also, indexes
would be stored as files holding pointers to records in data

files and possibly to records in the same file.

The structure of data files and index files |is
traditionally wvery DBMS specific. This 1is important to
HDDBMS query processing because it means that a data file or
an index file from one site may not be usable by a local
DBMS at another site, even if the two DBMSs conform to the

same data model.

Conceivably, the data wvalues may be extracted from a
data file, converted to a stream of ASCII characters, and
then transfery23 to another site and converted into a local
data file. Howewver, further information would be required to

re-impose a structure on this data and make sense of it.

A uniform structured data interchange form (SDICF),
such as the one described in ([CHIA 81] may be used to
support the interchange of data in a HDDBMS. The SDICF vould

consist of two sections, comprising the data wvalues
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themselves and a description of the data. The corresponding
data file could be built directly from a SDICF file with
only the information contained in that file and an
understanding of the SDICF protocol. The SDICF would have to
be designed with regards to the data transfer protocol in
use. In many cases, this would mean that all characters in
an SDCIF file be ASCII in order to avoid confusing data and
the control characters recognized by the data transfer
protocol [CAMP 87]. Each site in the HDDBMS would require a
'data formatting' facility to translate a SDCIF file to a
local database file and vice versa (this facility might even
be part of the local DBMS). The use of a SDCIF parallels the
use of a global query language in that the number of data
formatters is minimized with this approach when more than
two different DBMSs are incorporated into the system, and

the addition of new sites is simplified.

In [GLIG 84) typical SDICFs are criticized for not
accommodating structured data with pointers, and
consequently not allowing indexes and data files with
pointers to be exchanged between sites. It is suggested that
a more powerful "structured data transfer protocol" which
would accommodate pointers is required, but it is also
stated that very little has been done in establishing such a

protocol.

The format in which queries is exchanged between sites

is also an issue, even if a global query language is used.
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For example, if a query is exchanged in a decoded, low level
form such as an operator graph (for a global query language
based on the relational algebra), processing at the
receiving site may be reduced. However, unless such a
representation is expressed exclusively with ASCI1
characters (i.e. no pointers) it would be incompatible with
many data transfer protocols. Highly encoded ASCII
representations appear to be mostly used in practice, for
example DAPLEX (queries in Multibase [LAND 82) and
Distributed Intermediate Language (DIL) queries in Mermaid
[TEMP 87]). Also, human readable representations have obvious

convenience in an experimental system.

2.4 UPDATE PROCESSING

Let us refer to the deletion and/or addition of data to
a database as updates. Users of an HDDBMS ideally should be
able to perform updates on the external schema, within the
constraints incorporated into that schema, so that the
changes are reflected in the results to subsequent queries.
The HDDBMS must accommodate these 'global updates' by making
corresponding 'local updates' to one or more individual
local host databases. This is an extremely difficult problem
in HDDBMS design and very little has been achieved towards

its solution.

Most HDDBMS designs simply do not allow global updates

(in fact, most HDDBMSs are experimental and global updates
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are usually outside of the project scope). Updates would be
performed directly through the local DBMSs as in Multibase

(LAND 82].

In [TEMP 87], it is reported that the Mermaid system
was to be enhanced to support interactive updates, but only
to local host database entities at one site at a time. Since
higher schema levels are bypassed, this would simply provide
a uniform update interface to the separate 1local DBMSs

(which are all relational in the prototype).

In [DEEN 85] it is reported that PRECI* was to be
developed to support updates on "base relations" (relations
in local host schemata) only, as in the Mermaid system, but
that base relations from different sites could be referenced
in the same transaction, unlike Mermaid. Also, if an update
is made on a replicated base relation, the system would take
care of performing updates on secondary copies after
updating the primary or "master" copy. The master copy is
guaranteed to be up to date in PRECI*, and a user can submit
a query in "Mode L" in order to guarantee that only master
copies are referenced. A query submitted in "Mode A" will
use either secondary or master copies, whichever would
result in less delay, so it is possible that a secondary
copy to which an update has not yet been propagated will be

referenced.

The update problem can be divided into two subproblems:

1) Mapping updates across schema levels, and 2) distributed
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transaction management. These will be discussed separately

below.

2.4.1 Mapping Updates Across Schema Levels

An external or integrated schema is essentially a view
derived from the local host schemata. Obstacles to deriving
equivalent updates on base database entities from those on
view database entities have 1long been recognized in
relational database design (where the database entities are

relations) [DAYA 78].

For an example of such an obstacle, consider two base
relations with the following schemata:

EMP (EMPNM ADDR DEPTNM)
DEPT (DEPTNM LOCATION MGRNM)

Now suppose that a view is defined from these base relations
as a natural join followed by a projection to obtain the
following schema:
EMPMGR (EMPNM MGRNM)

Additional information would be needed to determine whether
changing the *‘MGRNM' value of an ‘'EMPMGR' tuple should be
mapped to a change to the 'DEPTNM' attribute value of a
tuple in the 'EMP' base relation, or a change to the 'MGRNM'
attribute value of one or more tuples in the 'DEPT' base

relation,

Such obstacles to update mappings may be expected to be

more severe in a HDDBMS than in a centralized DBMS with a
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view facility, or even a conventional DDBMS, because of the
special operations that may be needed for database
integration. These operations may, for example, derive
virtual properties as functions of base relation properties,
or (if a relational global data model is used) transpose
rows and columns of attribute values. Operations for
database integration are discussed in detail in Chapters 3

and 4.

The database integration mapping may be performed in
such a way as to simplify update mapping, but the usefulness
of the integrated schema would probably be compromised. This
would not be an acceptable trade off if global queries are
made much more often than global updates, as would usually

be expected.

Any interschema mapping which occurs at a 1local site
may also present update mapping obstacles, and these might
not be encountered until local update processing is carried

Out.

At best it may only be possible or practical to map a

global update to local updates in only a few cases.

Another problem related to interschema mapping and
database integration is the possible conflict between update
constraints imposed by the local DBMSs and the global
constraints required to preserve the validity of database

integration mappings. The 1local constraints would be a
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subset of global constraints since the pre-existing
databases are the starting point for database integration.
This means that the possible updates through local DBMSs may
be restricted due to participation in an HDDBMS, thus
violating the principal of site autonomy. For example, if
the integration mapping assumes that two databases represent
disjoint populations of the same class of objects, then a
local update which causes an object from this class to occur
in both databases would invalidate the mapping. Very little
attention has been given to this problem, and at the moment
it appears that some violation of 1local update autonomy by
making local constraints more restrictive to match global
constraints is a necessary price to pay for participation in

a HDDBMS.

2.4.2 Distributed Transaction Management

Even if global updates can be mapped to local updates
(or if the HDDBMS allows location transparent transactions
on base entities as in PRECI*) distributed transaction
management, consisting of global concurrency control and

global recovery control, is a difficult problem in a HDDBMS.

2.4.2.1 Global Concurrency Control

As stated in [GLIG 84), if two global transactions, A
and B, (representing global updates) are executed

concurrently and reference shared local data, the
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distributed transaction manager (DTM) must make sure that
the results are the same as A executed before B or B
executed before A, i.e. some serial execution of the global
transactions. In [GLIG 84) two alternatives for achieving

this are considered:

l)Coordinate the concurrency control mechanisms of the local

transaction managers (LTMs).

2) Implement the DTM global concurrency control mechanism as
software existing on top of LTMs which ensures that at all
sites where subtransactions Aj; and Bj share data, either Aaj;
effectively precedes Bj, or Bj effectively precedes Aj. By
A; "effectively precedes" Bj it is meant that the two
subtransactions may in fact be running concurrently, as long
as the LTM guarantees the serialization order of Aj before

Bj.

The first alternative is considered impractical since
it would be difficult to develop a general scheme for
coordinating any combination of the many concurrency control
algorithms. Furthermore, this alternative would require
modifying the LTMs so that they recognize and respond to one
another. This would require extensive reprogramming, and
assumes that access to source code is possible in the first

place.

The second alternative is attractive because it appears

to be simpler and does not require modification of LTM
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software. If subtransaction ordering cannot be specified
through the local DBMS interface, then the DTM could simply
submit the subtransactions in the required serialization
order at that site [GLIG 86). The DTM would have to ensure
that multiple subtransactions of the same transaction,
intended for the same site, are combined and actually
submitted as a single transaction in order to prevent a
local transaction (submitted directly to the 1local DBMS,
thus bypassing the HDDBMS) from being inserted between them.
The DTM would have to be able to identify the objects
accessed by each subtransaction in order to determine
whether it 1is necessary to specify a precedence among
subtransactions at the same site. In [GLIG 86), variations
of existing algorithms €or concurrency control (e.g. two-
phase locking, timestamps, serialization graph checking) are
advocated as the basis for a DTM algorithm, as 1long as
deadlock detection rather than deadlock avoidance is used.
Deadlock avoidance 1is considered to require too much
information from the individual sites. This information

would not even exist at sites that use deadlock detection.

2.4.2.2 Global Recovery Control

For the same reasons that it 1is desirable to build
global concurrency control mechanisms above those of the
LTMs, it is desirable to build global recovery mechanisms
this way too. It would be assumed that all local DBMSs have

recovery mechanisms. The DTM must ensure that all
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subtransactions complete or abort.

In [GLIG 84), a two phase commit protocol is advocated
as the most practical global recovery approach. The DTM must
be able to view each subtransaction in one of four states:
1) active (running but no updates stored in the database),
2) aborted (terminated and all updates removed from the
database), 3) committed (terminated and all updates
permanently stored in the database), and 4) prepared (all
updates have been stored in a safe place). In the event of a
system crash, a prepared subtransaction that hasn't yet been
committed can be committed when the system recovers. The
protocol is based on preparing all subtransactions in the
first phase and committing them in the second. It is noted
that most local DBMSs do not support a prepared state, so in
fact, they would have to be modified to support this state.
This is considered an unavoidable trade-off for a practical

algorithm.

In [GLIG 86) it is noted that two-phase protocols are
"blocking", meaning that if the coordinatcr site crashes,
subtransactions remain blocked until the coordinator site
recovers. This is a threat to local autonomy, since objects
held by blocked subtransactions are not available to 1local
transactions that bypass the HDDBMS. It is noted that non-
blocking protocols such as the three-phase protocol exist,

and that these may offer a solution to this problem.
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2.5 GLOBAL DATA MODELS

The following are the basic requirements of a HDDBMS

global data model:

l) It must be possible to define an equivalent global data
model schema for any local host database schema, within the
accepted scope of local DBMS types (typically, this would
encompass hierarchical, network, and relational model based

DBMSS) .

2) The global data model must support an adequate database

integration (including conflict resolution) capability,

3) The global data model must support a data manipulation
language at least as powerful as any of those used in the

local DBMSs.
Further practical considerations are as follows:

1) How easy is global query processing and update processing

under the global data model?

2) How manageable is the database integration task under the

global data model?

3) How straightforward is the schema and operation mapping

between the global and local data models?

4) How easily are the data model entlties exchanged between

sites over existing communication links?
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Most of the HDDBMS desigins and working prototypes
encountered in the literature use a relational global data
model. Prominent exceptions, which will be discussed later,
are the Multibase system and the UCLA HD-DBMS. The
relational model offers many advantages in as an HDDBMS
global data model. First, the relational algebra is easily
extended with new operations to make it a mapping language
with powerful conflict resolution capabilities [DEEN 87],
[EREIT 86]. An integrated schema would be defined as a set
of relational views derived from the global schema using the
extended relational algebra operations. Likewise, a 1local
participant schema would be a set of relational views
derived from a translated 1local host schema. The mapping
language and the global query language (for expressing
queries on the integrated schema) can be one and the same.
Thus a global query can be treated as an extension to the
mapping, and both can be considered together as a single
connected graph of operations. This simplifies query

decomposition [DEEN 85].

Second, considcrable work has been done on defining
relational views of hierarchical and network data model
schemata, and in translating relational algebraic operations
on those views into the DML of the underlying data model
[KAY 75), [ZAN 79], [ROSE 82). Several commercial products
have even been developed for this purpose, for example
Cullinet's IDMS/R which provides a relational interface to a

CODASYL IDMS database. Also, queries in common predicative
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query languages such as QUEL and SQL are easily translated

into relational algebra expressions [GRAY 84].

Third, relations are easily modelled as simple flat
files without pointers, conforming to a standard database

interchange format, for data transfer between sites.

Specific HIDBMS designs using a relational global data
model for which working pr.cotypes have been constructed
include PRECI* [DEEN 85b), Mermaid [TEMP 87), ADDS [BREIT
86), and SIRIUS-DELTA ([FERR 82]. All use a relational
algebra based mapping language, except for Mermaid which
uses a relational calculus based language. However, Mermaid

has by far the most limited conflict resolution capability.

The Multibase system uses the functional data model
(FDM) for its global data model and DAPLEX as both a mapping
language and@ a global query language ([SMIT 81]. In the
functional data model, "entities" represent real-word
objects and have "functions" representing properties of
these entities or relationships among them. This is roughly
equivalent to the use of tuples and attributes in the
relational model, so a relational schema is easily mapped

into a FDM schema.

In the FDM, functions may be multivalued, so a CODASYL
network schema is translated into a FDM schema in a very
straighcforward manner: record types and set types are

directly mapped into entity types and functions
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respectively, and fields of records are also maonped into
functions. Repeating £fields are mapped into multivalued
functions. The mapping of a CODASYL schema into a relational
schema (where attributes must be atomic) is not as simple
since a reccrd type with repeating fields has to be mapped
into multiple relations, and foreign key attributes have to

be derived from pointer values [ROSE 82].

It must be remembered, ucwever, that in order for local
DBMSs to perform data processing, the data must be
structured according to the local data model. Thus at a site
with a relational local DBMS in a HDDBMS using the FDM as
tne global data model, the schemata for intermediate results
and imported data must be translated from the FDM
representation to the relational representation. This task
would be as complex as generating a relational schema from a

CODASYL schema.

The DAPLEX DML used as a mapping language in Multibase
has a complex syntax where entity-at-a-time looping is mixed
with set operations. A rich set of constructs is provided,
including case statements and operators to derive new
functions from existing functions. Consequently, DAPLEX is a
more powerful tool for database integration than a basic
relational algebraic DML (examples of the use of DAPLEX in
database integration are given in ([LAND 82]). However, as
shown in ([DEEN 87), a relational algebraic language may be

extended to provide equivalent database integration
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capabilities with a simpler, more concise syntax.

In the UCLA HD-DBMS design [CARD 80, CARD 87), the
integrated schema is expressed using the entity relationship
(E-R) model, augmented with a parallel schema in an
adaptation of the Data Independent Accessing Model (DIAM)
[SENK 73]. Essentially, the use of two parallel schemata is
an attempt to separate the conceptual (E-R) aspects of the
integrated schema from the internal (DIAM) aspects. Examples
of these internal aspects are given as "network-wide access
routes, local database relationships, inter-database
relationships, etc. ... (expressed in a form) independent of

a specific implementation" [CARD 87, p. 571].

Global query decomposition in UCLA HD-DBMS requires the
internal integrated model. Also, portions of the internal
integrated model pertaining to specific sites are used in
local query processing (which is performed at the query site
- the finished, 1locally processable subqueries are
transmitted to the remote sites). In an HDDBMS design in
which database integration is defined as a sequence of
operators in a formal mapping language, query decomposition
can he based on the partitioning of that sequence into
subsequences. However, in HD-DBMS a set of formalized
operators is not provided for deriving the integrated
conceptual (E-R) schema from the conceptual local
participant schemata. In [CARD 87) is stated that graphical

tools would be used to "paint" E-R schemata and that the
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integration process would be semi-automated, but it is
unclear as to exactly how the integrated conceptual schema
would be derived (note that in [CARD 87], a working HD-DBMS
prototype is reported as not yet built). It is also unclear
how the integrated internal schema would be specified. Also,
conflict resolution is not addressed in [CARD 80] or ([CARD

87].

A predicative global query language called ER DML is
proposed for the HD-DBMS, and algorithms to translate from
SQL, DL/1 and CODASYL DML into ER DML are described as under
development in [CARD 87] (a detailed example of SQL to ER
DML translation is given). It is pointed out in [CARD 87]
that proposed "E-R algebras" are not sufficiently developed
for incorporation into the HD-DBMS and that such languages
are necessarily more difficult to define than relational
algebras since they would have to handle two distinct data
model entities as compared to the one entity of the
relational model. Besides constraining the choice of query
language, the lack of an "E-R algebra" means that database

integration cannot be specified algebraically.

Unlike implemented systems, the HD-DBMS is intended to
support global updates as well as global queries, and
perhaps this is one reason for the relatively comples global
data model arrangement. However, it is unclear exactly how

global updates would be facilitated by this arrangement.

More ‘'semantic' models than the basic relational,
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functional, and entity-relationship models are sometimes
advocated as better media for database integration. In most
cases, extended versions of the E-R model are advocated
{BATI 84], [BATI 86), [NAVA 84]). These typically include
constructs for specifying generalization and/or subset
hierarchies and constraints on the connectivity (or
cardinality) of relationships. Generally, these models have
been used as the basis of "schema integration methodologies"
rather than as global data models in specific HDDBMS
designs. The methodologies are meant to have applications in
centralized database design (where the designer starts with
desirable external user views and integrates them to arrive
at a single conceptual view) as well as in database
integration. They are informal methodologies, explained with
graphical manipulations of the extended E-R model diagrams
rather than through the application of distinct, formalized
operations. Also, very little attention is paid to conflict

resolution.

These extended E-R models and the accompanying
methodologies provide a high-level way of designing database
integration alternatives. Mapping languages, as used in
current HDDBMS prototypes, provide a 1low-level way of
implementing the integration mappings. Realistic database
integration tasks (as opposed to 'toy' examples) involving
large databases clearly cannot be managed entirely in terms
of low-level mapping operations, but the high-level

methodologies do not provide a precise basis for automated
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query processing. Therefore, the two approaches should be
regarded as complementary. The high-level methodologies
might become the basis for an interactive, semi-automated
tool for generating low-level mapping operations. Also,
specifications in a more semantic data model might also
provide information needed for global updates, but further

research is required to ascertain this.

2.6 PROTOTYPE DESIGN APPROACH

A goal of this thesis was to produce a working HDDBMS
prototype in which global queries involving at least two
local host databases, managed by different DBMSs, would be
handled. Thus the design and implementation had to consider
practical ways of offering basic functionality rather than
focus in great depth on a single difficult issue, such as

global updates or concurrency control.

The design has two basic components: a global query and
mapping lanquage, and a query processing algorithm. A
relational global data model is used, and the global query
and mapping language is based on the relational algebra with
extensions for database conflict resolution. Although this
is not a unique approach, our language is considerably
simpler than others encountered in the literature and was
designed to be easily ©processed. Nevertheless, it
accommodates all the database conflicts discussed in Section

2.2, as shown in Chapter 4.
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The query processing algorithm acts entirely as a
front-end to local DBMSs, each of which is expected to be
able to support any global query and mapping language
operation, It is designed for an environment where sites are
joined by high speed 1local links and where no database
statistics (e.g. relation size profiles) are maintained by

local DBMSs.

The current design does not support global updates and
so does not consider global concurrency and recovery

control,

In basic concepts, our design borrows from a number of
existing HDDBMS prototypes. However, in the process of
developing the design, we have addressed many specific
issues which are not discussed in the literature. Also, we
have consolidated database conflict types and conflict
resolution techniques dealt with separately in other work.
The design provides a basic framework for future extensions

discussed in Chapter 7.
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CHAPTER 3 A GLOBAL QUERY AND MAPPING
LANGUAGE

This Chapter discusses the design of an extended
relational algebraic language which may be used as a global
query and mapping language in an HDDBMS with a relational
global model. In particular, the operations supported by
this lanquage (referred to hereon as the GQML),the
relationship of GQML limitations to HDDBMS implementation,
the use of the GOML in database integration, and 1its
accommodation of the schema architecture described 1in
Section 2.1 will be discussed. The formal syntax for the
language is given in the Appendix. Specific examples of the
application of the GQML to database integration will be

given in Chapter 4.

A subset of this language has been implemented as part

of the HDDBMS prototype described in Chapter 6.

3.1 OPERATORS

The GQML has the following operators (keywords in bold

type):

union

2. int intersection

3. dif : difference

4. div : division

5. 1lim : 1limit

6. 1nj : limited natural join

7. ren : rename attributes

8. onj : outer natural join

9. alt : alteration

10. grp : grouping

ll. trc : transpose row to column

12. ter : transpose column to row
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The first six operators (u to 1lnj) provide relational
completeness in the sense of [CODD 72]}. They are basic and
do not provide capabilities beyond those provided by a
typical relational query language. Further capabilities are
required for the purposes of database integration, in other
words to provide an adequate 'mapping' capability. The ren
(attribute renaming) onj (outer natural join), alt(eration),
grp (grouping), trc (transpose row to column) and ter

(transpose column to row) operators are provided for this

reason,

3.1.1 Basic Relational Operators

The u{nion), int(ersection), dif(ference), and
div(ision) operators have the same meaning as the basic
relaticnal algebra operators of the same name described in
[DATE 86]). However, the notion of union-cempatibility which
is adopted 1in this design differs slightly from the
definition given in [DATE 86], which says that two relations
are union-compatible if there is a one to one correspondence
of attributes between the relations, and corresponding
attributes are defined on the same domain. In this
definition, the corresponding attributes do not have to have
the same name. However, in the GQML design, the attributes
are also required to have the same name for the relations to
be considered union-compatible and, therefore, to be legal
operands of the same u, int, or dif operation. This matches

the definition of union-compatibility used in the ASTRID
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relational algebra language |[GRAY 84] and makes it
unnecessary to implement an arbitrary rule (which users
would have to remember) for assigning names to attributes of
the result of a u, int, or dif operation. This also
eliminates any ambiguity with regards to determining the
correspondence of operand attributes. The GQML can be used
to rename attributes (this is described 1later) and this
capability overcomes limitations which would be imposed by

the more restrictive definition of union-compatibility.

In the description of the divide operation in [DATE 86]
the attributes of the divisor relation need only be defined
on the same domains as the corresponding attributes of the
dividend relation; matching names are not required. However,
the div operation requires a match on attribute names as
well as domains. This requirement, together with the
restriction that no two attributes in a single GOML operand
can have the same name, simplifies implementation
considerably since it eliminates any ambiguity in

determining the correspondence among operand attributes.

Many references, including [ULLM 82], [PIRO 82], and
(CODD 72], state that result of a division operation
involving an empty dividend relation is itself an empty
relation. However, no reference was found which proposes one
'‘correct' way of handling the case of an non-empty dividend
relation divided by an empty divisor relation. In [PIRO 82]

two ‘"sensible" alternatives are proposed: (1) that the
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result be the projection of the dividend relation on the
non-divisor attributes, and (2) that the divide operation be
defined only when the divisor is non-empty. The first
alternative is assumed in the GQML design since the second
alternative would allow the occurrence of errors depending
only upon the contents of the local host databases. Such
occurrences would be practically unpredictable and
unnecessarily disruptive. Also, the semantics of the first
alternative are reasonable. For example, it is not
necessarily wrong if the query "list customers who have a
tab at every branch in the north end of the city" produces a
list of all the customers if there are no stores in the
north end of the city (this query might be implemented by
the division of a projection of a 'TAB' relation by a
projection of a 'BRANCHES' relation restricted to branches
with a "NORTH" Location - the GQML syntax will be given
later). It would be desirable for the user to also know that
there are no banks in the north end. However, the GQML as
currently designed would not automatically provide this

information.

The u, int, dif, and div have a simple syntax - the
operator keyword followed by the two operands. For example,
the union of relations 'REL1l' and 'REL2' is indicated by

u REL1l, REL2;

Further examples will be given later.
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The order of operands is significant in the dif and div
operations, In the dif operation the second operand is
subtracted from the first. In the div operation, the first

operation is divided by the second.

The 1lim(it) operation can be used to specify a
selection or a projection or both. In the case of both, the
operation behaves as though the projection is made on the
result of the selection., For example, consider the following

relation:

TAB (CustName, Branch, Balance)

A list of the names of customers with a balance greater than

10000 cents would be obtained with the following:

lim TAB where Balance > 10000 attrs CustName;

The same selection or projection can be specified separately

as follows:

lim TAB where Balance > 10000; (selection)

lim TAB attrs CustName; (projection)

L GOML operation can either be a relation name or
another operation. Operations may be nested to any depth and
unnecessary spaces, tabs, and newline characters are

ignored. The following example of a nested query correspond«



to the division example discussed earlier:

div
lim TAB attrs CustName, Branch;,
lim BRANCHES where Location = "NORTH" attrs Branch;

Assume that the relation 'BRANCHES' has attributes {Branch,
Location} where the attribute 'Branch' in relation 'TAB' is

defined on the same domain.

The 1nj (limit on natural join) operator is used to
specify a natural join and, if desired, the equivalent of a
lim operation on the result, all in the same operation, For
the natural join, the operation defines a correspondence
between attributes having the same name and defined on the
same domain in the separate operands, Tuples having the same
values on the corresponding attributes are joined. If there
are no corresponding attributes, then the operation behaves
as a cartesian product. Duplicate attributes are
automatically eliminated from the result, as happens with
the natural join operation defined in [DATE 86] and many
other sources. A natural 3join is not allowed between
relations containing attributes with the same name but
defined on different domains. This restriction pre-empts the
occurrence of a result relation with duplicate attribute
names. If we want to join relations on attributes with
different names or join relations containing similarly named
attributes defined on different domains, we can first use
the renaming capability of the GQML which will be described

later. This is similar to the approach used in the ASTRID
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language [GRAY 84].

A natural join between the 'TAB' and 'BRANCHES'

relations described earlier would be specified as follows:

1nj TAB, BRANCHES;
The join attribute would be 'Branch'. The same join followed
by a selection on 'Balance' and a projection on the
'CustName' and 'Location' attributes could be specified in
one operation as follows:
1nj TAB, BRANCHES where Balance > 10000
attrs CustName, Location;

A theta join operation [DATE 86]) may be emulated Ly
specifying a 1lnj operation on operands that have no common
attributes, and including a where clause. For example,
consider the following two relations:

BOAT (BoatNm, Wt)
TRUCK (TruckNm, Weight)

A  (TruckNm, BoatNm) relation where £for each tuple the
corresponding truck weighs more than the corresponding boat
can be obtained with the following operation:
1nj TRUCK, BCAT where Weight > Wt
attrs TruckNm, BoatNm;

3.1.2 Rename Attributes Operator

The ren operator is used to rename one or more
attributes of a relation. Renaming does not change the
domain of an attribute or the values associated with it. As
an example, consider the relations with schemes

Empl(ID, Name, DeptID) and Emp2(EmpNo, Name, DeptNo).
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Suppose that there is a requirement to take the union of the
two relations and that attributes 'ID' and 'EmpNo' have the
same domain, as do attributes 'DeptID' and 'DeptNo'. The
corresponding attributes in one or both relations would have
to be renamed to the same name before the union. One way of
specifying the renaming and the union would be as follows:

u

ren Empl ID to EmpNo, DeptID to Deptdo;,
Emp2;

The result relation weuld have the same schema as Emp2.

3.1.3 Outer Natural Join Operator

The onj operator is basically similer to the outer
natural join as defined in [CODD 79]. Informally, the result
of an outer natural join of two relations is the union of
the natural join of the relations with the set of tuples
from both relations that do not participate in the natural
join (call these the 'non-join tuples'). Non-join tuples
which are not union compatible with the join result are made
so by the addition of attributes having null values. These
null values would signify 'value at present unknown' if the
open world assumption (OWA) is chosen for the database, or
'property inapplicable' if the closed world assumption (CWA)
is chosen. The CWA states that the database contains data
representing all true facts [GRAY 84), while the OWA allows

facts which are not in the database to be true.

In the GQML the onj operator differs from the outer
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natural join as described above in two ways. First, the
values used to 'pad' tuples in order to make them union
compatible with the join result are not necessarily 'null’,
or distinct €from 'real world' values in a database. This is
so0 because an onj operation may actually be performed by a
local DBMS, as might be the case for any GQML operation in a
given HDDBMS implementation, and many DBMSs do not support

null values.

The second difference is that the onj operation allows
the specification of an additional 'origin' attribute in the
result relation. For non-join tuples, this attribute is
automal.ically evaluated to contain the name of the operand
relation from which each tuple was taken. For the other
tuples the single origin attribute gets a null value or a
default value different from either relation name. The user
specifies the name of the origin attribute and the system
gives it a default domain related to the system's

restriction on relation name length.

The outer natural join is an important tool in database
integration when the local host databases portray
overlapping populations of objects (see Section 4.1).
However, in database integration it 1is often necessary to
determine the origin of tuples in an outer join result. In
the PRECI Algebraic Language (PAL) used in the PRECI* HDDBMS
implementation [DEEN 87] such tuples are identified as

originating from a particular operand by the presence of a
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null value in an attribute that is not in the schema of that
operand. In a HDDBMS where default values may occur instead
of null values, the only reliable way of determining the
origin of tuples in an onj operation result is to examine

the value of the origin attribute.

For an example of the application of onj, consider the
following relations where attribute 'ID' is defined ou the
same domain in both:

Rl (A ID ) R2 ( B ID )

al i3 bl il
a2 i5 b2 i2
a3 i2 b3 i3
a4 i6 b4 igq

The outer natural join of 'Rl1' and 'R2' with origin
attribute 'SOURCE' (indicated as such with the ‘'ori'
keyword) would be specified as follows:

onj R1l, R2 ori SOURCE;
The result relation would have the following extension (*
represents the default value):

( SOURCE A B ID )
*

al b3 i3
* a3 b2 1i2
Rl a2z * i5
Rl a4 +* i6
R2 * bl il
R3 * b4 1i4

(

4.1.4. Alteration Operator

The alt(teration) operator is a synthesis of the
EXT(end) and REP(lace) operators of PAL [DEEN 87]. This

operator is wused to drop attributes from the operand
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relation and add new attributes to it. The drop clause
functions as a complementary projection operation; the
listed attributes are removed rather than retained. The add
clause allows the name and domain of one or more new
attributes to be specified, and allows the user to specify
the value of each new attribute in each tuple either as a

constant or as a function of the data in the operand.

For an example of the application of the alt operator,
suppose that it is required to generate a new relation from
the 'TAB' relation described earlier where the 'Balance’
attribute is replaced by a "balance in U.S. funds" ('USBal')
attribute and a "balance in Canadian funds" ('CanBal')
attribute. Suppose also that the current 'Balance' attribute
is evaluated in Canadian funds and that 1 cent Canadian is
worth 0.8 cents American. This new relation can be generated
with an alt operation as follows:

alt TAB
drop Balance
add

USBal numeric 8 = Balance * 0.8,
CanBal numeric 8 = Balance

In this example ‘'numeric 8' defines the domain of the new
attributes (domains, expressions and predicates will be
discussed in more detail in Section 3.2). Note that if the
domain of ‘'Balance' was also 'numeric 8', then 'CanBal'

would essentially be a renaming of the 'Balance' attribute.

A function for evaluating a new attribute may be based on a

number of alternatives, depending on the values of one or
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more attributes in the operand relation. As an example of
this, suppose that it is required to generate a new relation
from the 'BRANCHES' relation where the value for the
'Location' attribute is changed to "NORTHEND" or "SOUTHEND"
depending on whether the wvalue is "NORTH" or "SOUTH",
respectively, in the 'BRANCHES' relation, otherwise the
value is the same. The new relation can be defined with an
alt operation as fcllows:
alt BRANCHES
drop Location
add Location char 15 =
"NORTHEND" if Location

"SOUTHEND" if Location
Location

"NORTH" else
"SOUTH" else

Note that the 'Location' attribute referred to in the
function and in the drop clause belongs to the operand
relation 'BRANCHES' while the 'Location' attribute referred

to in the add clause belongs to the result relation.

The user can add a new attribute without specifying an
evaluation function. In this case, the attribute would be
evaluated to null or a system default value in each tuple,
depending on the implementation. If, for a given tuple, none
of the conditions in an evaluation function are met, and if
no default wvalue is specified (the value of attribute
'Location' in the previous example is a specified default)
then the value of the new attribute in that tuple will be
set to null or a system default value. For example, the
following operation will set the value of the new "Location"

attribute to null or a system default if the old "location"
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attribute value is ne‘ther "NORTHEND" nor "“SOUTHEND."

alt BRANCHES
drop Location
add Location char 15 =
"NORTHEND" if Location = "NORTH" else
"SOUTHEND" if Location = "SOQUTH"

-e

3.1.5 Grouping Operator

The grp operator is similar to the "group_by" operator
of the ASTRID language [GRAY 84] in that it behaves as a
projection operator combined with extension. Consider the
following relation schema and the grp operation on the
corresponding relation:

EMP ( EMPNO EMPNAME DEPTNM DEPTLOC SALARY )

grp EMP by DEPTNM, DEPTLOC

add AVGSAL numeric 9

MINSAL numeric 9
MAXSAL numeric 9

agg_avg( SALARY),
agg_min(SALARY),
agg_max( SALARY)

;
The result of the operation is a relation with attributes
'DEPTNM', 'DEPTLOC', 'AVGSAL', 'MINSAL', and 'MAXSAL' where
the last three attributes hold values for the average,
maximum, and minimum salary values in tuples with the same

'DEPTNM' and 'DEPTLOC' values.

The projection attribute list (consisting of, in this
case, 'DEPTNM' and 'DEPTLOC') specifies that tuples having
the same values in those attributes are to be part of the
same ‘group'. If no add clause is included in the operation,
then the result is simply a projection on the 1listed

attributes.
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New attributes may be specified as in the alt operation
and their values specified as 1) constants, 2) vser defined
or system defined non-aggregate functions of the projection
list attribute values, or 3) system defined aggregate
functions. In the result there is one tuple for each 'group’
as defined by the projection attribute 1list, and new
attributes are evaluated separately for each such tuple. If
no projection attribute list is given (i.e. if the by clause
is omitted) then the result relation has only the new

attributes and one tuple. »

Acgregate functions consider together all tuples of a
group. The aggregate functions included in the GQML depends
on the implementation, but a useful minimum collection would
probably be agg_avg, agg_min, agg_max, agg_sum, agg_count,
agg_any, and agg_all. The first four have obvious meanings.
The agg_count function would not take an argument and would
return the number of tuples in the group. The agg_any and
agg_all functions would have a logical argument (see Section
3.2) and would return TRUE if the arguuent was true for any
or all tuples in the group, respectively, otheryise they

would return FALSE [GRAY 84].

The use of grp with no projection attribute 1list and
new attributes defined with aggregate functions is a way of
obtaining summary statistics of a relation as a whole. For
example, if in the previous example the grp operation had no

by clause, the result relation would only have one tuple
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with attribntes 'AVGSAL', 'MINSAL', and 'MAXSAL' holding
average, minimum, and maximum salary values for the entire

'EMP' relation.

3.1.6 Transpose Operators

The trc (transpose row to column) and tecr (transpose
column to row) are basically similar to the operators in PAL
having the same name. A trc operation transforms a relatic..
of the form

R ( al, a2, «.., am, ¢cl, ¢c2, ..., €N )
into a relation of the form
R (al, a2, .e., am, b, c )

by changing values for 'cl' to 'cn' into values for 'c' and
adding attribute 'b' which has integer values to indicate
sequencing. Attributes 'cl' to 'cn' must be defined on the
same domain, which automatically becomes the domain for 'c’'.
A tcr operation performs the inverse transformation. It is
permissibIe for there to be any number of ‘'a' attributes,
including zero. In the PAL version of these operations, only

one 'a' attribute is allowed [DEEN 87]}.
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For an example of the application of the trc and ter

operators, consider the following relations:

SALES1 ( EmpID EmpNm PlSales P2Sales P3Sales )

100 "Smith" 53 49 51
200 “Jones" 60 52 55
SALES2 ( EmpID EmpNm Period Sales )
100 "Smith" 1 53
100 “Smith" 2 49
100 "Smith" 3 51
200 "Jones" 1 60
200 "Jones" 2 52
200 "Jones" 3 55

The 'SALES2' relation can be generated from the 'SALESl

relation using ‘

trc SALES] row PlSales, P2Sales, P3Sales
to_col Sales
seq Period;
The 'SALES1' relation can be generated from the 'SALES2'
relation using
tcr SALES2 col Sales
to_row PlSales, P2Sales, P3Sa'es
seq Period;

In the trc operation, the order in which attributes are
listed in the row <clause 1is important because this
determines the result relation correspondence of values for
the attributes specified in the to_col and seq clauses.
Similarly, the order in which attributes are listed in the
to row clause of the tcr operation is associated with the
operand relation values of the attributes specified in the

seq clause.

In the trc operation the attribute specified in the seq

clause is given a domain with a numeric type by the system
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and is evaluated to successive integer values, starting with
1, in the result relation. Similarly, the ter operation
requires that the attribute specified in the seq clause has
a numeric type domain in the operand relation. In order for
ter to produce a valid result, the values of this attribute
must be restricted to range from 1 to the number of
attributes specified in the to_row clause. Additional
requirements for valid results are that the attributes in a
trc operand which are not listed in the row clause (i.e. the
'a' attributes) must constitute a key of the relation (if
there are no ‘'a‘' attributes then there must only be one
tuple in the operand), and that the sequencing attribute in

a tcr operand must be a prime attribute.

In the operand of a tcr operation we might normally
expect each set of values for the 'a' attributes to° be
associated with each permissible value of the sequencing
('b') attribute, For example, in 'SALES2' 'a' attribute
values <100, "Smith"> are associated with all permissible
'Period' values. Suppose that this is not the case and that
one or more combinations of values for the 'a' attributes
which occur at least once in the operand relation are not
associated with each permissible walue of the sequencing
attribute. For example, consider a tcr operand equal to
'SALES2' with the first tuple missing, so that 'a' attribute
values <100, "Smith"> are not associated with the
permissible sequencing attribute value of 1 ({'EMPID',

'EMPNUM')} are the 'a' attributes and ‘'Period' is the
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sequencing attribute). In the result relation, the tuple in
which such a combination of ‘'a' attribute values appears
will have a null or default value (depending on the
implementation) for the row (or 'c') attributes
corresponding to the sequencing attribute values that do not
occur in the same operand tuple as those 'a' attribute
values. So, the earlier tcr operation on our modified
version of the 'SALES2' relation will produce a result
similar to 'SALES1l' except that the 'P1SALES' attribute will
have a null or default value in the result relation tuple in
which values <100, "Smith"> occur for attributes <'EMPID',

'EMPNM' >,

If a potential tcr operand has a sequencing attribute
that is not defined on a numeric domain or does not have the
required integer values (e.g. the attribute has date
values), then it would be necessary to perform an alt
operation on this relatinn to change to sequencing attribute
before the ter operation. Likewise, the sequencing attribute
in a trec operation result relation could be replaced by a
new, more appropriate sequencing attribute with an alt

operation.

3.2 DOMAINS, EXPRESSIONS AND PREDICATES

Each attribute in a global relation must be defined on
a domain, which is an identifiable set of data values. The

concept of domain used here is similar to the concept of
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data type in programming languages, but the word 'domain'®
will be used for consistency with relational data model
terminology. For the purposes ¢f discussion we will consider
three basic domain types: character strings, numbers, and a
domain containing ‘'true' or ‘'false'. Factors limiting the
domains which can be included in the GOML will be discussed
in Section 3.3. A character string domain is indicated with
the char keyword followed by a 1length integer of 1 or
greater. A number domain is indicated with the numeric
keyword followed by a length integer of value 1 or greater
and, optionally, a scale integer separated from the length
integer by a period, as in 'numeric 10.2'. To specity an
integer number domain accommodating n digits and a sign the
numeric keyword would be used with a length value of n, as
in 'numeric 10'. To specify a 'real' domain accommodating n
digits of which m are fractional, and a sign, the numeric
keyword would be used with a length value of n+l (the extra
place is for the decimal point) and scale value of m. A

true/false domain is indicated with the logical keyword.

Expressions and predicates are required in add clauses
of alt and grp operations, and predicates are required in
where clauses of lim and 1lnj operations. In the context of
the arithmetic and logical operations required to build
expressions and predicates, atomic operands are either
literals or attribute values (represented by attribute
names). The common arithmetic operations (addition,

subtraction, multiplication, division, exponentiation) may
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be performed with numeric operands. Operands of numeric
domains may be compared with one another using >, <, >=, =<,
=,and <> to yield a truth value, as can operands of char
domains (in the latter case lexical ordering is the basis of
comparison). Operanus of the logical domain, including
predicates, may be compared with each other using '='. The
logical operators and, or and not may be used to construct
predicates. The GQML provides FALSE and TRUE logical

constants.

The definition of attributes on domains prevents
meaningless comparisons; for example the comparison of a
numeric value with a char value. It also provides
information required to build data structures for storing
intermediate and result relations when evaluating a GQML

query.

3.3 GQML LIMITATIONS RELATED TO HDDBMS IMPLEMENTATION

The implementation of a GQML for a HDDBMS differs from
the implementation of a query language for a centralized
DBMS. In the centralized case, the features of the query
language are matched with a single set of data processing
capabilities. In the case of a HDDBMS, the pre-existing
local DBMSs may have different data processing capabilities
and may vary in the kinds of queries that they can
accommodate. Furthermore, they may not all support certain

GOML operations on relations and data values which are
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required for the purposes of database integration. For
example, a special-purpose file management system may not
support the equivalent of a join between global relations or
the DML of a simple local DBMS may not have function for
converting a wvalue from a numeric representation to a
character string representation. These differences arc more
important for HDDBMSs designed to delegate greater amounts

of data processing to the local DBMSs.

Support for an operation implies support for the
domains of the data values involved in the operation. lor
example, if a selection predicate involves a comparison of
an attribute and a literal from a non-atomic 'date' domain
then the 1local DBMS that processes the corresponding lim
cperation would have to correctly model a 'date' domain and
comparisons involving 'date' domains. Simply converting date
values to character strings and using lexical ordering as
the basis of comparison would not be correct and therefore
would not constitute support of the 'date’ domain
("05/11/86" precedes "15/11/76" if these wvalues are
interpreted as character strings, but the reverse is true it
they are interpreted as dates with a day/month/year format).
A character string representation of wvalues from a non-
character string domain is useful only for the purposes of

data storage and display.

In one extreme, the HDDBMS may be designed as a purely

‘front-end' system so that all data processing is actually
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performed by local DBMSs. If the HDDBMS does not consider
differences in local DBMS capabilities in planning a global
processing strategy then any local DBMS must be capable of
supporting, in some way, any GOML operétion. This means that
the GQML operations which may be implemented would be

limited to those that are supported by all local DBMSs.

In an HDDBMS of the type described above, any data
processing capabilities which are not shared by all local
DBMSs could still be exploited locally. For example suppose
that the same property is modelled with a single ‘'Date’
attribute in database A (managed by DBMS A) and with
separate 'Day', 'Month' and ‘'Year' attributes in database B
(managed by DBMS B). A function for creating a single 'Date’
value from separate 'Day', 'Month', and 'Year' values, and
functions for extracting 'Day', 'Month', and 'Year' values
from a single 'Date' value would be a useful part of the
GOML. Suppose further that such functions are supported by
DBMS A only so that they must be excluded from the GOML. The
transformations that such functions perform could simply be
neglected, thus compromising the quality of the integrated
schema. Alternatively, the 'Date' field decomposition could
be performed locally as part of the mapping of the database
A schema from the local host versinn to the translated local
host version. Thus, in the translated schema version of
database A, the property in question would be represented as
separate ‘'Day', 'Month', and 'Year' attributes and would

therefore be union compatible with the same property in the
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translated schema version of database B. The disadvantages
of this approach as compared to having the date functions in
the GOML is that the database integration task |is
distributed to one more mapping level and the ways of
expressing an integrated schema are limited. In the above
example, an integrated schema where there is a single 'Date’
attribute might be preferable from the database A user's
viewpoint. A further level of mapping to a separate site A
external schema in which DBMS A capabilities are again
applied locally would be required, this time to combine the
'Day’', ‘'Month', and 'Year' attributes of the integrated

schema into a single 'Date' attribute.

The problews of a 'front-end' system as described above
could be lessened if the HDDBMS was designed to assign an
operation only to those local DBMSs capable of supporting it
when planning a global processing strategy, thus using the
strengths of some 1local DBMSs to compensate for the
weaknesses of others. This would, on average, entail more
data movement than in a system with equally capable local
DBMSs since data would have to be transferred from a site
with an inadequate local DBMS to a site where a more capable
DBMS resides. However, the GQML operations which could be
implemented would be the union of those supported by all

local DBMSs.

At the other extreme of HDDBMS design, there would be a

'super DBMS' at each site that would accommodate all domains
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and operations of any local DBMS as well as those required
for database integration. These 'super DBMSs' would take
over all data processing. At each site there would be local
DBMS-gspecific modules for mapping between local host and
translated local host schemata and, if required, for
providing a user interface similar to that of the local
DBMS. The capability of the 'super DBMS' to subsume any
local DBMS would be enhanced if it could be extended with
user defined domains and operations, perhaps in the manner
described in [LINN 88)]. The only difference between this
design and that of a conventional closed DDBMS is that the
local host schemas have been designed independently and the
local host databases may be stored in different data

structures.

Designing an HDDBMS with 'super DBMSs' as described
above 1is probably the most conceptually simple approach
since local DBMS heterogeneity is made irrelevant as early
as possible and the necessary interfaces to 1local DBMSs
would be basic. However, implementing such a system would
mean implementing many functions that already exist in the
local DBMSs. Even if a library of suitable DBMS software
tools is available to facilitate implementation, the size of
the HDDBMS would be larger than one implemented as a front-
end. This would be of special concern in microcomputer
environments with relatively limited primary and secondary
memory. The ‘'super DBMS' could completely replace the

original local DBMS, and this would be desirable if the
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HDDBMS is expected to manage concurrent global and 1local
transactions. However, it would then be necessary to provide
a local interface to the 'super DBMS' that mimics the
original local DBMS and accommodates old application

programs and users who wish to bypass the HDDBMS.

In cases where no local DBMS can support a required
database integration operation, it would be necessary to
augment the aggregated processing power of the local DBMSs
at least for this operation. A 'middle-of-the-~road' approach
somewhere between the extremes described above may be
sufficient and most practical. For example, a 'super DBMS'
may be connected to the system at one or more sites but
would be used only when necessary, or when it 1is morec
efficient to do so. This is the approach taken in the design
of the Multibase system ([LAND 82). However, the added
processing power may not have to be as comprehensive as
this. For example, a special system may be implemented for
decomposing non-atomic attributes into multiple separate
attributes (or, conversely synthesizing multiple attributes
into a single attribute), for computing mathematical
functions such as mean and square root, for converting
values from one domain to another (e.g. numeric to character
string), and for computing aggregate functions (e.g. the
average of an entire column of values). Such a system might

run directly on global format data.
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3.4 DATABASE INTEGRATION WITH THE GQML

Database integration with the relational model, for the
purposes of read-only requests, may be regarded as
consisting of two Dbasic steps: (1) resolving schema
conflicts among a collection of base relations, if
necessary, and (2) merging multiple conflict-free relations
into single relations, if necessary, while resolving data
conflicts in t"e process. The use of "“if necessary" here
refers to the fact that a collection of base relations as is
may be a satisfactory database. Structural schema conflict
resolution and relation merging may be performed differently
at different sites to arrive at different integrated
schemas. Examples of these activities, as performed with the

GOML, will be presented in Chapter 4.

As implied above, the starting point of database
integration at a given site in a HDDBMS using a relational
global model is the knowledge that there are base relations
accessible from that site whose semantics allow them to be
considered as building blocks of a single database. Datab=aze
integration need not be concerned with how or from where
these base relations are obtained. The design of the GQOML
recognizes this by requiring a simple declaration of each

base relation.

A base relation declaration in the GQML specifies a
relation schema and is an assertion that in the integrated

system the extension of the corresponding relation exists.
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For example, the base relation 'TAB' could be declared as

follows:
base TAB
key CustName char 15,
Branch char 10,
Balance numeric 6;
In this example, 'CustName' is identified as a key
attribute.

In the HDDBMS prototype implementation, base relation
declaration also includes data location information;
however, this was done as a implementation shortcut and is
not an essential aspect of the GQML. This 1isg discussed

further in Chapter 6.

With the GQML, database integration is performed by
specifying a mapping from base relations to higher level
views or virtual relations which represent the integrated
database. This mapping consists of a series of GQML
operations. User queries can be posed on these virtual
relations with the GQML. Any GQML operation can be used for

either view mapping or for queries.

To distinguish between a virtual relation and a query
result relation, "==" 1is wused in the former case 1o
associate a relation name with an operation (or a series of
nested operations), and ":=" is used in the latter case. 1In
the following example, 'RESULT' is the result of a query on

virtual relations ‘*R1' and 'R2‘':



93

Rl == 1lim TAB attrs CustName, Branch;

R2 == 1lim BRANCHES
where Location = "NORTH" attrs Branch;

RESULT := div R2, R1l;

Note that the same query can be expressed as follows:
RESULT := div
lim TAB attrs CustName, Branch;,
lim BRANCHES where Location = '"NORTH"
attrs Branch;

Any relation name or attribute name used in a GQML
operation may be prefixed by a special symbol in order to
avoid conflicts with GQML keywords. This is useful since
base relation schemata represent pre-existing data and will
not have been designed with the GQML syntax in mind.
Consider the following operation where an underscore is used

as the prefix symbol:

alt _lim drop _add add new char 5;

The operand is assumed to be a relation named "lim"; the
leading underscore would be stripped from the name after it
has been recognized. If the name "lim" is used without an
underscore, then the interpreter or compiler would attempt
to parse a nested lim(it) operation and eventually recognize
a syntax error., Similarly, the underscore before "add"
specifies an attribute named "add" rather than the add

keyword.

The essential difference between the GQML and other
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relational DMLs with a view definition capability, (e.g.
some implementations of SQL), is that some GQML operators
are included primarily for the purposes of integrating
multiple pre-existing databases, namely onj, ren, alt, trc
and tcr. The GQML could be used for conventional single

database view definition in a centralized DBMS.

3.5 THE GQOML AND THE REFERENCE HDDBMS SCHEMA ARCHITECTURE

The schema levels of the reference HDDBMS scheima
architecture described in Chapter 2 can be accommodated by
the GOML by creating corresponding sets of virtual relation
definitions and base relation declarations. Note, howeve!,
that the GQOML cannot support a distinct external schema
level unless the external schema is relational or tabular.
If not, a separate relational/external mapping facility
would be required. Similarly, a local host schema cannot be
described with GQOML local base relation declarations unless
the local database model is relational or tabular. If not, a
separate relational/local model mapping facility would be
required. The development of such mapping facilities is
beyond the scope of this thesis and is a topic for further

work (see Chapter 7).

Figures 3.1 to 3.5 1illustrates a simple database
integration example, using the GQML, for two hypothetical
databases at sites 1 and 2. Figure 3.6 shows the virtual

relations belonging to each schema level. Local host and
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external schema levels are not shown; however, if we assume
that the databases at both sites are relational, then the
translated local host schemata (Fiqure 3.1) match the local
host schemata, and the integrated schema (Figure 3.5) can

also serve as the external schema.

Both databases represent employees and departments. At
site 1 the 'WORKS' relation represents a many-to—-many
relationship between employees and departments, while at
site 2 the relationship is one-to-many and is implemented by
including the department key as a foreign key in the
employee relation. In the mapping from the translated local
host schemata to the 1local participant schemata (Figure
3.2), attribute name conflicts are resolved and a 'CITY!
attribute with a constant value ("MONTREAL" or “TORONTO",
depending on the site) is added to each of the two relations
representing departments in order to resolve an implied data
conflict. The global schema consists of the collection of
local participant relation schemata from each site (Figure
3.3). In the mapping £from the global schema to the
integrated schema (Figure 3.4), an employee relation is
defined in which employees who are represented at both sites
have a total salary which is the sum of their two individual
salaries. Other employee data is taken from site 2 where
possible. The relationship conflict is resolved by defining
a many-to-many relationship between departments and
employees via the 'WORKSIN' relation. Conflict resolution

techniques are discussed in more detail in Chapter 4.
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For the sake of brevity both sites have the same

integrated schema in the

example. However, difterent

integrated schemata may have been created by using a

different mapping from the global schema at each site.

Site 1l:

base EMP
key ID char 5,
LNAME char 12,
FNAME char 10,
SAL numeric 6;

base WORKS
key DID char 5,
key ID char 5,
START date;

Site 2:
base EMPS
key EMPNO char 5,
DNO char 5,

SNM char 15,

CNM char 15,
BIRTHDATE date,
SALARY numeric 8;

base DEPT
key DID char 5,
NAME char 15,
BLDG char 15;

base DEPTS
key DNO char 5,
DNM char 15,
LOC char 15;

FPigure 3.1 translated local host schemata



Site 1:

EMP1 == ren EMP attrs
ID to EMPID,
LNAME to R1LSTNM,
FNAME to R1FSTNM,
SAL to R1SALARY:

DEPT1 == alt DEPT
drop DID, NAME, BLDG
add
key DEPTID char 5 = DID,
DEPTNM char 15 = NAME,
STREET char 15 = BLDG,
CITY char 15 = "MONTREAL";

WORKS1 == ren WORKS attrs
ID to EMPID,
DID to DEPTID;

Site 2:

EMP2 == ren EMPS attrs
EMPNO to EMPID,
SNM to R2LSTNM,
LNM to R2FSTNM,
SALARY to R2SALARY,
DNO to DEPTID;

DEPT2 == alt DEPTS
drop DNO, DNM, LOC,
add
key DEPTID char 5 = DNO,
DEPTNM char 15 = DNM,
STREET char 15 = LOC,
CITY char 15 = "TORONTO";

Figure 3.2 mapping from translated local host schemata

to local participant schemata
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(Site 1 local participant schema)
base EMP1 base DEPT1
key EMPID char 5, key DEPTID char 5,
R1LSTNM char 15, DEPTNM char 15,
R1FSTNM char 15, STREET char 15,
R1SALARY numeric 8; CITY char 15;
base WORKS1
key EMPID char 5,
key DEPTID char 5,
START date;
(Ssite 2 local participant schema)
base EMP2 base DEPT2
key EMPID char 4, key DEPTID char 5,
DEPTID char 5, DEPTNM char 15,
R2LSTNM char 15, STREET char 15,
R2FSTNM char 15, CITY char 15;

R2SALARY numeric 8,
DEPTID char 5,
BIRTHDATE date:

Figure 3.3 global schema



Figure 3.4

Figure 3.5
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TEMP == alt EMP2 dvop DEPTID;
EMPLOYEE == alt
onj EMPl, TEMPl ori ORIG ;
drop RIFSTNM, R2FSTNM, RI1LSTNM,
R2LSTNM, R1SALARY, R2SALARY,
ORIG
add
FIRSTNAME char 15 =
R2FSTNM if ORIG = "TEMP1l" else
R1FSTNM,
LASTNAME char 15 =
R2LSTNM if ORIG = 'TEMP1l" else
R1LSTNM,
TOTSALARY numeric 10 =
R1SALARY if ORIG = "EMP1l" else
R2SALARY if ORIG= "TEMP1l" else
R1SALARY + R2SALARY;
WORKSIN == u
lim EMP2 attrs DEPTID,EMPID;,
WORKS1
DEPTMNT == u DEPTl, DEPT2;
mapping from global schema to integrated

schema (used at both sites)

base EMPLOYEE
key EMPID char 5,
FIRSTNAME char 15,
LASTNAME char 15,
TOTSALARY numeric 10,
BIRTHDATE date;

base WORKSIN
key EMPID char 5,
key DEPTID char 5,
START date;

integrated schema

base DEPTMNT
key DEPTID char 15
DEPTNM char 15,
STREET char 15
CITY char 15;



100
Site 1 Site 2
EMPLOYEE EMPLOYEE Integrated Schenata
DEPTMNT DEPTMNT
WORKSIN WORKSIN
| |
]
EMP1 EMP2 Global Schema
DEPT1 DEPT2
WORKS1
] {
| ]
EMP1 EMP2 Local Participant
DEPT1 DEPT2 Schemata
WORKS1
EMP EMPS Translated Local
DEPT DEPTS Host Schemata
WORKS
Site 1 Site 2

Figure 3.6 virtual relations and schema levels

Note that at a given site, each base relation
declaration corresponds to a virtual relation definition
unless that base relation in the translated 1local host
schema (in which case it corresponds tc stored data at that
site), or in the global schema and not in the local
participant schema (in which case it corresponds to remote
data). Let wus refer to a base relation without a
corresponding virtual relation definition at a given site as

a 'terminal relation' with respect to that site.

Base relation declarations for non-terminal relations

are superfluous since the relation scheme of a non-terminal
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relation can be derived from the corresponding mapping to
terminal relations. In Figures 3.1, 3.3, and 3.5 a set of
base relation declarations is given for each schema level
simply to  make the schema levels plain, rather than to
illustrate how a user would actually input mapping
specifications. An implementation for mapping specification

is described in Section 6.2.3.
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CHAPTER 4 CONFLICT RESOLUTION AND
RELATION MERGING TECHNIQUES

In this Chapter basic GQOML relation merging and
conflict resolution possibilities are explained and
illustrated with examples. The techniques discussed here
require considerable user interaction, just as conventional
database design does. The development of database
integration design aids is a topic for further work (see

Chapter 7).

Relation merging is addressed first in order to provide

a context for the discussion of conflict resolution.

4.1 RELATION MERGING

In this Section, the conflict-free relations will be
referred to as base relations for convenience. As an
alternative to discriminating between ‘entity' relations and
'relationship' relations, the word ‘'object' will be used to

refer to anything that is represented by a relation.

In the simplest caste, two base relations represent the
same class of objects, and are disjoint. An integrated
schema relation can be created simply through the uaion of
the base relations (necessary joins between global relations
would have already been performed to resolve aggregation and
data clustering conflicts). The effect of relation merging

in this case is not to create a new object class, but to
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consolidate the distributed population of the same object

class, as is typically done in closed DDBMSs [CERI 84].

In many cases, two base relations representing the same
class of objects may not be disjoint and consequently there
is a possibility of data conflict among intersecting tuples.
In these cases, it is necessary to identify the intersecting
tuples in order to resolve the data conflict. The onj
operation provides a way of doing this in the process of
merging the base relations (this 1is why data conflict
resolution is paired with relation merging in this

discussion). Consider the following base relations:

EMPl ( EMPID SAL1l ) EMP2 ( EMPID SALZ )
100 53 100 53
200 46 200 50
300 50 400 49
500 42 600 47

Suppose that it is known that the same EMPID value in the
two relations means that the corresponding tuples actually
refer to the same employee and that the SALY and SAL2
attributes, which represent employee salary, should have
identical values for those tuples. As is readily seen, the
SAL1 and SAL2 attributes do not always have the same wvalue
for tuples with the same EMPID value, so there is a data

conflict,
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The operation 'onj EMPl, EMP2 ori ORIG;' would produce

the following result:

( ORIG EMPID SAL1 SALZ )
*

100 53 53
* 200 46 50
EMP1 300 50 *
EMP2 400 * 49
EMP1 500 42 *
EMP2 600 47 *

In this result, the data conflicts are confined to the
tuples in which the value of the ORIG attribute is neither
'EMP1' nor °‘'EMP2'. Call these the 'Jjoin tuples'. Note that
if both EMP1 and EMP2 used 'SALARY' as an attribute nane
instead of 'SALl* and 'SAL2' respectively, it would have
been necessary to rename the *'SALARY' attribute in the two
relations to different names before the onj operatiomn,
thereby deliberately introducing a naming conflict

(synonym).

One way of resolving the data conflict would be to use
the value from the more credible source, if it can be
determined. Suppose that the 'EMP1' relation is deemed to be
the more credible source, the following series of operations
would produce the required result from 'EMPl' and 'EMP2'
assuming that a useable 'SALARY' domain is 'numeric 8':

alt
onj EMP1, EMP2 ori ORIG:
drop ORIG, SAL1, SAL2

add SALARY numeric 8 =
SAL2 i1if ORIG = EMP2 else SALl
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the result relation would be

({ EMPID SALARY )

100 53
200 46
300 50
400 49
500 42
600 47

Note that the use of "SAL1" and "“SAL2" synonyms 1is not

vigsible in the integrated schema.

The same approach can be applied in a more elaborate
manner. For example, the average of the conflicting values
may be used for the join tuples (this would Dbe more
appropriate when dealing with measurement error in a
attribute such as 'Distance'), or the maximum or minimum
value may be used. These solutions would be more
conveniently specified using built-in functions such as
‘avg', 'min', and 'max' 1if these are included in the GQOML

implementation.

An example of another approach would be to use the
value from 'EMP1' where possible for a tuple with an 'EMPID'
value within a certain range. However, it becomes hard to

imagine the rationale for such a computation.

In many cases it may be impossible to determine the
most credible source with satisfactory confidence, devise a
satisfactory function of the conflicting values, or base a
decision on non-conflicting attribute values. In such cases,
the best approach may simply be to keep the conflicting

value attributes ('SALl' and 'SAL2' in the above example)
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and let the user make the decision as to how to use the

data.

In [DAYA 84) it 1is observed that recorded facts which
are expected to be the same in different databases may be
different because one database is simply more up-to-date
than the other. For example, the salary of the same employece
recorded in two databases may vary because the employee has
received a raise and only one database has been updated
accordingly, This is classified as a data conflict in [DAYA
841, but it is more correctly classified as an implied data
conflict because both salary values are correct with respect

to the moment in time that each database is supposed to

represent.

The associated time data may be implied by the
operational context of each database, but is not actually
recorded (of course, time data could be recorded, but we
assume the presently more common situation where they are
not, and where old data is simply discarded). However, with
respect to resolution, this type of discrepancy is most
practically treated as a data conflict where the value ftor
the integrated schema relation would simply be extracted
from the most up-to-date database in the same way that
another value may be extracted from the most credible (with
respect to error) database. At different times either of the
two databases may be most up-to-date (just as reliability

may vary). In such cases other rules would have to be
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followed such as picking the 1largest value (probably
reasonable in the salary case), or both values would have to

be used.

In the cases described so far, mergeable base relations
represented the same object classes. It is also possible for
base relations to represent subclasses of a common generic
object class. As with the previous cases, multiple base
relations may represent either disjoint sets of objects or
intersecting sets. For example, separate base relations
representing managers, secretaries, and technicians, all of
whom are employees, would probably be disjoint while those
representing employees who are students and employees who
are politicians are easily imagined to be intersecting [TEOR
86). However, unlike the previous cases, the separate bLase
relations may have different attributes without implying
unresolved missing data conflicts since they represent
ditferent object classes each of which is justified 1in
having 1its own properties in addition to the common
properties. For example, "typing speed" might be an
applicable secretary property, but is unlikely to be a

manager property.

The subclass base relations could simply be used in the
integrated schema without merging, or it may be desirable to
create a relation representing the generic class ('Employee!’
in the above example). Only the properties common to all

subclasses are applicable to the generic class. Therefore,
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for disjoint subclasses a generic class relation may be
created by taking the union of the subclass base relations
after they have been projected on the common attributes. For
non-disjoint subclasses, the possibility of data conflicts
on common attribute values exists, and a similar approach to
that described earlier for merging non-disjoint relatious
representing the same object class is required to merge the
subclass base relations, projected on common attributes,

into a generic class relation.

4.2 SCHEMA CONFLICT RESOLUTION

The GQOML can be used to resolve the structural schema
conflicts discussed in Chapter 3. The discussion of conflict
resolution techniques will be organized by categories ot
transforms (sequences of one or more GOML operations) rather
than by coaflict type since the same type of transform may
be used to resolve different conflicts. The transform

categories are as follows:

1) attribute add/drop/modify
2) fragmentation redefinition
3) transposition
4) tuple grouping

5) true/false

4.2.1 Attribute Add/Drop/Modify

This type of transform involves any combination of



109

adding, dropping, and modifying the attributes of a single
relation without changes to other relations. Also, the
relation before and after the transformation has the same
number of tuples, unless attribute dropping results in
duplicate tuples (which are eliminated). Attribute
add/drop/modify transformations may be used to resolve name
(field and data), field, value scale, implied data, derived

data, and missing data conflicts.

4.2.1.1 Name Conflict Resolution

A name conflict between two attributes (the relational
version of a field-name conflict) can be directly resolved
with the ren operator. For a homonym-type conflict, one or
both attributes are renamed so that both have the same name,
for a synonym-type conflict one or both attributes are
renamed so that the two have different names. The ren
operator is basically a convenience since attribute renaming
may also be performed with the alt operator by replacing one
attribute by another having the same domain but a different
name and giving the added attribute the values of the

dropped attribute.

To resolve a data-name conflict between the values of
two attributes with a character string domain, one or both
of the attributes would be replaced by an attribute having
the same name and domain but evaluated so that the misnamed
data items are replaced by those with correct names. The alt

operator is capable of renaming attributes and data
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simultaneously.

4.2.1.2 PField Conflict Resolution

To resolve a field-type (or domain) conflict, the alt
operator would be used to replace an attribute with another
attribute having the same name but a different domain, and
then to assign the values of the o0ld attribute to the new,
For example, suppose that two relations 'EMP1' and 'EMP2°
representing employees have a 'SALARY' attribute, but that
in *EMPl*' this attribute has a ‘'numeric 8' domain {(an 8
digit integer), while in EMP2' it has a 'numeric 10' domain
(a 10 digit integer). This difference in domain alone
prevents the two relations from being union compatible. Thig
conflict could be resolved by changing the 'numeric 8°

domain to 'numeric 10' as follows:
alt EMPl drop SALARY add SALARY numeric 10 = SALARY;

In many cases data-type conversion would be necessary,
for example in order to assign values from a numeric domain
to a character string domain. This may be implemented by
making type conversion functions available to the user, or
with a more sophisticated implementation it may be done
automatically. A value from one domain may not be
representable in another domain in which case a mnmull,
default or special error value would be assigned to the new

attribute.
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In order to resolve single-versus-multiple field
conflicts where a single field in one database holds the
encoded data of several fields in another database, the GOML
would have to include special functions of data values. For
example, there might be a 'make_date()' function that would
convert three numbers into a date domain value or a
'get _year()' function that would extract a number

representing the year from a date value.

An alt operation would be useful in cases where a
single attribute of a relation has alternate meanings which
are represented by multiple attributes of another relation
(the definition of an attribute with alternate meanings may
be a questionable practice in relational database design,
but nevertheless it may occur). Consider the following
relations:

EMP1 ( EMPID JOBTYPE COMMIS OVERTM )

100 SALES 52 *
200 OFFICE * 15
300 SALES * 20
400 OFFICE 60 *
EMP2 ( EMPID JOBTYPE COMMOVER )

100 SALES 52

200 OFFICE 15

300 SALES 20

400 OFFICE 60

Both relations contain the same information - the commission
or overtime earned by four employees. It is assumed that if
an employee has an 'OFFICE' type job then she cannot earn a
commission, and that if she has a 'SALES' type job then she
cannot earn any overtime. The only difference between the

two relations is that 'EMP2' uses one attribute, 'COMMOVER'
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to represent the same data as 'COMMIS' (commissions) and

'OVERTM' in 'EMP1'.

A relation similar to 'EMP2' can be made from 'LMDP}!
using the following operation:

alt EMP1
drop COMMIS, OVERTM
add COMMOVER numeric 3 =
COMMIS if JOBTYPE "SALES" else
OVERTM if JOBTYPE "OFFICE"

A relation similar to 'EMPl' can be made from 'EMP2’
using the following operation:

alt EMP2
drop COMMOVER
add
COMMIS =
COMMOVER numeric 3 if JOBTYPE
OVERTM =
COMMOVER numeric 3 if JOBTYPE

“SALES",

"OFFICE"

-

Note that in these examples, attribute "JOBTYPE" is
required to determine whether commission or overtime is
applicable to a particular employee. A similar case can bhe
imagined where the same information is encoded in another
attribute. For example, odd employee identifier values may
be used for sales personnel while even values may be used
for office personnel. Special functions would have to bhe
present in the GQML implementation to directly interpret
such attribute values. Alternatively, auxiliary data may be
added to the system to map the values to their encoded
meanings. Suppose that in the above example the 'EMPx'

relations have no 'JOBTYPE' attribute and that instead job-
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type is encoded in the employee identifier. An auxiliary
relation with attributes {JOBTYPE, EMPID} containing tuples
that match each employee identifier with the corresponding
job-t.ype could be joined with the 'EMPx' relations to

provide the necessary information for the alt operations.

The following relations provide an example where a
single attribute in one relation ('USER' in 'CARS2')
encompasses the domains of multiple attributes in another
relation ('DEPTNM‘ and 'EMPNO' in 'CARS1'). Assume that
'USER' and 'DEPTNM' are char 8 and ‘'EMPNO' is char 3. The
'USER' attribute encompasses identifiers for department or
individual employee users, while the 'DEPTNM' and 'EMPNO'
attributes are limited to department identifiers and
employee identifiers respectively (these restrictions might
be enforced by the host DBMS).

CARS1 ( CARNUM USERTYPE DEPTNM EMPNO )

100 DEPT BLDGINSP *
200 EMP * 412
300 DEPT ASSMNT *
400 EMP * 320
500 DEPT SERVICES *
600 EMP * 215
CARS2 ( CARNUM USER )

100 BLDGINSP

200 412

300 ASSMNT

400 320

500 SERVICES

600 215

A straightforward alt operation can create a relation

similar to 'CARS2' from °‘CARS1':
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alt CARS1 drop USERTYPE, DEPTNM, EMPNO
add USER char 8 =
EMPNO if USERTYPE = "EMP" else DEPTNM;

The reverse transformation (from 'CAR$2' to 'CARSLl' is
not as easy since there has to be some way of determining
whether the value of the 'USER' attribute for a particular
tuple represents a department identifier or an employce
identifier. The solution would be simple 1if the GQML
implementation had functions for directly testing a value
for domain membership (e.g. 'is_a dept_id()'). However, a
solution may be possible even without such functiouns.
Suppose that relations 'EMPS ( USER )' and 'DEPTS ( USER )'
exist or can be derived from existing data, where 'EMPS'
contain all employee identifiers and 'DEPTS' contain all
department identifiers (assume that 'USER' in both cases is
char 8). Then the natural join of 'CARS2' with 'EMPS' and
with 'DEPTS' would isolate iie 'CARS2' tuples where users
are individual employees and departments respectively. This

suggests the following solution:
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alt
1nj CARS2, EMPS;
drop USER
add
USERTYPE char 4 = "“"EMPY,
EMPNO char 3 = USER,
DEPTNM char 8
r’
alt
1nj CARS2, DEPTS;
drop USER
add
USERTYPE char 4 = "DEPT",
EMPNO char 3,
DEPTNM char 8 = USER

-

-e

4.2.1.3 Value Scale Conflict Resolution

A value scale conflict involving a given property can
be resolved with the alt operator by replacing or augmenting
the corresponding attribute in one or both of the
conflicting relations with a new attribute whose values are
the original attribute's values transformed to a new value
scale. Consider the following relations exhibiting a wvalue

scale conflict:

MT ( CITY MEANTEMP ) CL ( CITY CLIMATE )
Montreal 6 Boston cold
Winnipeg 5 Norfolk moderate
Vancouver 15 Miami hot

The attributes 'MEANTEMP' and 'CLIMATE' represent the same
property, but their value scales have different units and
precision. The 'MT' relation can be transformed into another
relation which is wunion compatible with 'CL' with the

following operation:
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alt MT drop MEANTEMP add CLIMATE char 4 =

“"cold" if MEANTEMP < 9 else

"moderate" if MEANTEMP >= 9 and MEANTEMP < 16 else

"warm" if MEANTEMP >= 16 and MEANTEMP < 23 else

"hOt";
This operation is based on the assumptions that the 'CITY'
attribute is defined on the same domain in both relations,
the 'CLIMATE' attribute is defined on a char 4 domain in
'CL', the CLIMATE' attribute value scale 1is the least
precise of the .wo, and there is previous knowledge of the

required evaluation function.

In general, values on a more precise scale can be
directly transformed into values on a less precise scale,
but the reverse is not true. In the above example it would
not have been possible to transform 'CLIMATE' values to
exact 'MEANTEMP' values. Note that in the transformation
used in the example, information is actually lost. All
information may have been retained if the 'MEANTEMP'
attribute was kept in the new relation and a blank
'MEANTEMP' attribute was added to 'CL' (using alt). However,
this could lead to confusing query results if a default
value such as 0 is used for a blank 'MEANTEMP' attribute
instead of a distinct ‘null' value because the default value

could be interpreted as a valid 'MEANTEMP' value.

In many examples of wvalue scale conflict where the
separate value scales have the same precision (ocr
practically so) such as U.S. dollars versus Canadian dollars

or grams versus ounces (where both are represented as real
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numbers) loss of precision on a value scale transformation
is not important and, in fact, a solution may be achieved by
doing the transformation both ways so that both value scales

are represented.

An alternative to transforming one conflicting
attribute's values to the value scale of the other would be
to transform both attributes' values to a separate, common
value scale. The following example (adapted from [SMIT 81}),
which refers to the 'MT' and 'CL' relations from the
previous example and assumes the addition of auxiliary data
in the form of relations 'AUX1' and 'AUX2' illustrates this
approach:

AUX1 ( CLIMATE LOWTEMP HIGHTEMP RANGEPROB )

o o o ¢ o 0 LI ] LI ]

cold ~-15 0 0.35
cold 0 15 0.25
cold 15 30 0.15

o o LK 2N ] LI " e

AUX2 ( MEANTEMP LOWTEMP HIGHTEMP RANGEPROB )

5 -15 0 0.12

5 0 15 0.35

5 15 30 0.15
RP1 == alt

1nj MT, AUX1;
drop CLIMATE

-
’

RP2 == alt
l1nj CL, AUX2;
drop MEANTEMP

.
’

In the above example, the common scale consists of a

temperature range and the probability that it occurs in a
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given year in a city having the indicated 'CLIMATE' or
'MEANTEMP' value. The relations 'RP1' and ‘'RP2' are

mergeable.

4.2.1.4 Implied Data Conflict Resolution

Many implied data conflicts can be simply solved by
using alt to add an attribute to each conflicting relation
and to evaluate that attribute to a different context-
related constant wvalue for each relation. For example,
consider two relations 'MTLRES' and ‘TORRES' corresponding
to the restaurant example in Section 2.2.2.7 (they represent
restaurants in Montreal and Toronto respectively, each has
the same attributes, and neither has an attribute to
indicate city location since this information is taken for
granted when the relations are used separately in the
corresponding cities). The conflict may be solved with the
following operations:

alt MTLRES add key CITY char 8 = "Montreal";

alt TORRES add key CITY char 8 = “Toronto";

Note that the new attributes are added to the primary keys
of their respective relations. This recognizes the fact the
same tuple may exist in 'MTLRES' and 'TORRES' and represent

a different restaurant in each case.

Implied information conflicts become mcre complex when
the meaning of attributes depends on context. Consider the

following relations representing parts of hypothetical
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playing schedules for the Montreal Canadiens (HABS) and
Toronto Maple Leafs (LEAFS) hockey clubs (example adapted
from [DEEN 87]):

HABS ( DATE  OPPONENTS VENUE )

Janl0 Rangers NewYork
Janl4 Flyers Philadelphia
Janl7 Leafs Montreal
Jan2l Jets Montreal

Jan25 Nordiques Quebec

LEAFS ( DATE OPPONENTS HOMEAWAY )
Janl0 Oilers
Janl3 Whalers
Janl7 Canadiens
Jan20 Kings
Jan24 Canucks

> > i

FPor each relation, the name of one participating team
in each game is known implicitly to local users. In the
'HABS' relation 'OPPONENTS' means "Opponents of the Montreal
Canadiens", while in the 'LEAFS' relation it means
"Opponents of the Toronto Maple Leafs." Suppose that an
integrated schedule relation with the following schema is
required:

SCHEDULE { DATE HOMETEAM AWAYTEAM )
The strategy would be to resolve conflicts by creating
relations of the same schema from the "HABS" and the "LEAFS"
relations, and then to merge by forming the union of the new
relations. The conflict resolution and merging can be

specified by the following nested operations:
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alt HABS
drop VENUE, OPPONENTS
add
key HOMETEAM char 10 =
"Canadiens" if VENUE = "Montreal” else OPPONENTS,
key AWAYTEAM char 10
OPPONENTS if VENUE = "Montreal" else "Canadiens"

2N 4
alt LEAFS
drop HOMEAWAY, OPPONENTS
add
key HOMETEAM char 10 =
"Leafs" if HOMEAWAY = "H" else OPPONENTS,
key AWAYTEAM char 10 =
OPPONENTS if HOMEAWAY = "H" else "Leafs"

“e

;

The derivation of the 'HOMETEAM' and 'AWAYTEAM' attributes
is different for the 'HABS' and the 'LEAFS' relations, but
in each case it depends on an awareness of the context of
the relation. In the case of the 'HABS' relation, the
knowledge that the Canadiens are the home team for any game
played in Montreal is required. In the case of the 'LEAFS'
relation, there is an attribute that directly indicates
whether or not the Leafs are the home team. Even so, the
meaning of 'HOMEAWAY' as "game in Toronto where the Leats
are the home team, or game elsewhere where the opponents are
the home team" must be understood. If the 'HABS' relation
had a 'HOMEAWAY' attribute, its meaning would be different

due to the different context.

4.2.1.5 Derived—-data Conflict Resolution

There are two fundamental ways to handle a derived data

conflict between two relations A and B, where relation A has
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an attribute containing values derived from other data and
relation B lacks this attribute: 1) drop the derived data
attribute from relation A, and 2) add a similar derived data
attribute to relation B and compute values for it with an
evaluation function. Note that in the second approach, if
relation B does not contain the required base data for
deriving the new attribute values, then it would have to be
combined with cne or more other relations before applying

alt.

The first approach 1is the simplest and does not
actually result in & loss of data since the value for the
attribute being dropped is derived. However, for a user to
see this data, the derivation would either have to be
expressed in the query or in the integrated-to-external view
mapping. The second approach would provide a more expressive
integrated schema, but the GQOML may not support the

necessary functions for deriving the data.

4.2.1.6 Missing Data Conflict Resolution

The following schemata illustrate a missing data
conflict:

from database 1:
EMP1 ( EMPNO EMPNAME DEPT OPHONE )

from database 2:
EMP2 ( EMPNO EMPNAME DEPT OPHONE HPHONE )
In this example, home phone number data which is included in

database 2 (attribute 'HPHONE') is simply excluded £from
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database 1. A missing data conflict actually exists from the
database 2 user's viewpoint. If the 'HPHONE' attribute were
dropped from 'EMP2' to create a relation that was then
merged with 'EMPl', the resulting integrated schema would
not appear to be missing any data from a database 1 user's

viewpoint.

The obvious alternative resolution technique would be
to add to the system a relation with attributes ({EMPNO,
HPHONE} that records the home phone numbers of employees
represented by 'EMP1'. Then the natural join of 'EMP1' and
the new relation could be merged with 'EMP2', and the
integrated schema would not appear to be missing data trom

the database 2 user's point of view.

If 'EMP1' and 'EMP2' overlap in terms of the employees
that they represent, then the auxiliary data relation would
only have to record home phone numbers for employees
represented by 'EMP1l' only and an outer natural join would
be used to create the mergeable relation. However, in this
case, the relation merging technique would have to specify
that 'HPHONE' values are to be drawn from 'EMP2' for the

intersecting tuples.

4.2.2 Fragmentation Redefinition

This type of transform involves the redistribution of
attributes and tuples among multiple relations and is used

to resolve the generalization and aggregation forms of
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abstraction conflict, data clustering —conflicts and

relationship conflicts.

4.2.2.1 Generalization Conflict Resolution

In the relational model, a generalization conflict
occurs when one relation represents objects at a higher
level of generalization than similarly classed objects
represented by one or more other relations. A generalization
conflict exists among the following global schema relations,
assuming that 'EMP1l' represents employees of all kinds and
the other relations represent employees segregated according
to job type:

from database 1:
EMP1 ( EMPNO ADDRESS SALARY )

from database 2:

MANAGER2 ( EMPNO ADDRESS SALARY )
TECHNICIANZ ( EMPNO ADDRESS SALARY )
SECRETARY2 ( EMPNO ADDRESS SALARY )

Actually, the conflict only exists within the context
of a requirement to create an 'EMPLOYEE' relation
representing the entire population of employee objects in
both databases, or a requirement to create specialized
employee relations such as 'MANAGER', 'TECHNICIAN' and
'SECRETARY' that represent the entire population of the
corresponding subclass objects from both databases. If any
one of the database 2 relations are merged with 'EMPl' the

result would not represent the entire population of

employees. Also, if 'EMPl' represents employees from more
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than one job type then the contents of the result would not
be limited to employces of the job type corresponding to the

database 2 relation.

One approach to resolving this conflict would be to
merge the three database 2 relations into one relation, say
'EMP2', with two u operations. The 'EMP2' relation could
then be merged with 'EMP1l' to <create an integrated
'EMPLOYEE' relation. This may be satisfactory from the
viewpoint of the database 1 user who does not expect to see
job-type data, but from the database 2 user's viewpoint

there would appear to be a loss of job-type data.

An alternative approach, which would yield a more
satisfactory result from the database 2 user's viewpoint,
would be to divide the 'EMPl' relation into multiple
relations each of which represents employees of a different
job type. However, this would require auxiliary data,
assuming that database 1 does not contain job type
information. If this auxiliary data takes the form of a
relation with the schema 'EMPJOB ( EMPNO JOBTYPE )' then,
for example, a relation of database 1 manager employees
could be defined as follows:

MANAGER1 == 1nj

EMP1,
lim EMPJOB where JOBTYPE = "MANAGER";

The 'MANAGER1', 'TECHNICIANl', and 'SECRETARYl' relations

defined in this manner could then be merged with 'MANAGER2',
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'"TECHNICIAN2', and 'SECRETARY2'. Note that if 'EMP1'
represents job types in addition to manager, technician, and
secretary the corresponding subclass relation (e.qg.
'ENGINEER') would not be merged with a database 2 relation
and so would automatically be an integrated schema relation.

The database 2 user would regard this as an addition to

database 2.

The objects involved in a generalization conflict may
be modelled as attributes (or properties). Consider the
following relations (example adapted from [DAYA 84]):

from database 1:
EMP1 ( EMPNO NAME )
PHONE1 ( PHONENO EMPNO )

from database 2:
EMP2 ( EMPNO NAME HPHONE OPHONE )

In database 2, specialized phone numbers are used (home and
office numbers) while in database 1 no distinction is made

between different types of phone numbers.

The relations 'EMPl1' and 'EMP2' could be made union
compatible and, hence, mergeable by padding ‘'EMP1' with
blank (i.e. null or system default wvalued) 'HPHONE' and
'OPHONE' attributes. However, this might not be sound
because one cannot automatically conclude that home and
office phone numbers do not apply to, or are not known for,
the employees represented in database 1. Further knowledge
that the phone numbers in 'PHONEl' are neither home nor

office numbers would be required to draw this conclusion.
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The basic approaches to resolving the generalization
conflict in this example parallels those of the previous
example: depending on the desired integrated schema, the
phone data in database 2 could be made more general or the
phone data in database 1 could be made more specific
(assuming that the required auxiliary data is available).
The distinction between properties and objects having
properties 1is only of consequence in the details of the

conflict resolution operations.

The phone data in database 2 could be put into a more

general form with the following operations:

PHONE2 == u

ren
lim EMP2 attrs EMPNO, HPHONE;
attrs HPHONE to PHONE;,
ren
lim EMP2 attrs EMPNO, OPHONE;
attrs OPHONE to PHONE;

-
’

EMP2b == 1lim EMP2 attrs EMPNO, NAME;

The 'PHONE2' and 'PHONEl' relations could be merged into an
integrated ‘'PHONE' relation and the ‘'EMPl' and ‘'EMP2bL'

relations could be merged into an integrated 'EMP' relation.

Suppose that a comprehensive list of office phone
numbers has been compiled into a relation with schema
'OPHONE ( PHONENO )' and that in 'PHONEl' only office and
home phone numbers are recorded. Then the following
operations could be used to put the phone number data in

database 1 into a more specific form:
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OPHONE1 == 1lnj PHONEl, OPHONE;

HPHONE1l == 4dif PHONEl, OPHONE]l;
EMPlb == onj
onj
EMP1,

ren OPHONELl attrs PHONENO to OPHONE;

ir
ren HPHONE1l attrs PHONENO to HPHONE;

The onj (outer natural join) operator allows an 'EMPl' tuple
to be included in 'EMPlb' even if the corresponding employee

lacks one or both phone numbers.

4.2.2.2 Aggregation Conflict Resolution

The following relation schemata illustrate an
aggregation conflict:

from database 1:
EMP1 ( EMPNO NAME ADDRESS OVERTM SALARY )

from database 2:

EMP2 ( EMPNO NAME ADDRESS )

PAY2 ( EMPNO OVERTM SALARY )
Properties which are aggregated into a single employee
object in the first database are distributed among two
objects - employee and payroll - in the second database. The
second database represents a more limited conception of what
constitutes properties of an employee than does the first
database but, at the same time, it recognizes an additional

payroll object type.

The rescliution of aggregation conflicts is

straightforward and generally consist of wusing 1lim to
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'split' a relation vertically into two or more other
relations and using lnj or onj to join two or more relations
into one. For the above example, a solution which contorms
to the database 2 viewpoint would be as follows:

EMP1b == 1lim EMP1l attrs EMPNO, NAME, ADDRESS;

PAY1l == 1lim EMPl attrs EMPNO, OVERTM, SALARY;

Relation 'EMPlb' could then be merged with 'EMP2' and 'PAY2'

with 'PAY1l',

A solution which conforms to the database 1 point ot
view would be as follows:
EMP2b == onj EMP2, PAY2;
Relation 'EMP2b' could then be merged with 'EMPl'. The onj
operation would ensure that any employees who dc not have a
payroll record (perhaps new employees) would still be
recorded in 'EMP2b' (it would also retain payroll data where

there is personnel data).

4.2.2.3 Data Clustering Conflict Resolution

The basic difference between data clustering conflicts
and generalization and aggregation conflicts is that the
former occur because of different performance requirements
(and optimizing capabilities) at different sites, and the
latter occur because of different approaches to modelling
the same reality. However, data clustering conflicts have
the same physical appearance  as generalization and

aggregation conflicts so the same basic techniques can be
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applied in resolving them.

4.2.2.4 Relationship Conflict Resolution

The capability of the relational model to portray
relationships with different connectivities between the
same two entities can give rise to relationship conflicts.
The following schemata illustrate a relationship conflict:

database 1:

EMP1 ( EMPID EMPNAME SALARY DEPTID )

DEPT1 { DEPTID DEPTNAME )

database 2:

EMP2 ( EMPID EMPNAME SALARY )

DEPT2 ( DEPTID DEPTNAME )

WORKS2 ( EMPID DEPTID )
Assume that all of the above relations are in Boyce-Codd
Normal Form (BCNF), that 'EMPID' is the only candidate key
of 'EMPl' and 'EMP2*', that 'DEPTID' is the only candidate
key of 'DEPT1' and 'DEPT2', and that (EMPID, DEPTID} is the
candidate key of ‘'WORKS2'. If we interpret the 'EMPx'
relations as representing employee entities and the 'DEPTx'
relations as representing department entities, then it is
clear that database 1 implies a many-to-one relationship
between employees and departments (many employees can belong
to the same department but any employee can belong to at
most one department), while database 2 implies a many-to-

many relationship (many employees can belong to the same

department and any employee can belong to many departments).

If a single relationship is to exist between employees

and departments in the integrated schema, it must be many-
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to-many since only such a relationship can include all
relationship instances from both databases. A solution
consists of transforming the database 1 schema into a form
similar to the database 2 schema since the latter already
accommodates a many-to-many relationship. This would be done
as follows:

WORKS1 == lim EMPl attrs EMPID, DEPTID;

EMP1b == alt EMPl drop DEPTID;
Relation 'WORKS1l' can then be merged with 'WORKS2' to create
an integrated 'WORKS' relation which represents the global
many-to-many relationship. Also, 'EMPlb' can be merged with
'EMP2'. Note that the 1lim operator may have been used to
derive 'EMPlb', but not as conveniently as with the use ot
the 2lt operator since 1lim would have required all

attributes except 'DEPTID' to be listed.

When the same n entity types are portrayed in two
databases, where n > 2, it is possible that in one database
a ternary or higher order relationship may be portrayed
while in the other database two or more binary relationships
may be portrayed between the same entity types. The higher
degree relationship would be used to more closely control
the simultaneous relationship of three or more entities. The
following schemata, adapted from [TEOR 86] give an example

of this:
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database 1:
INSTRUCTOR1 ( IID INAME OFFICE )
CLASS1 ( IID SID )
STUDENT1 ( SID SNAME  HOMERM )
TEAM1 ( SID PID )
PROJECT1 ( PID PNAME )
database 2:
INSTRUCTOR2 ( IID INAME OFFICE )
STUDENT2 (SID SNAME HOMERM )
PROJECT2 ( PID PNAME )
GROUP2 ( SID PID IID )
Assume that all these relations are in BCNF and that in all
relations except 'GROUP' the 'xID' attributes are the only
candidate key attributes., For 'GROUP' we will consider two
alternative assumptions: 1) where {SID, PID, IID} are the
attributes of the one candidate key, and 2) where {SID, PID}

are the attributes of the one candidate key.

Database 1 portrays separate binary many-to-many
relationships between instructors and students, and between
students and projects. Database 2 portrays a single ternary
relationship between instructors, students and projects. If
we interpret 'GROUP' using the first assumption then for
each related <student, project> pair in database there may
be any number of related instructors, as in database 1.
However, unlike database 1, A relationship cannot occur
between students and projects unless it also includes at
least one instructor (this 1is so because primary key
attributes cannot be null). If we interpret 'GROUP' using
the second assumption, then a student and a project can be
related in database 2 without a coincident relationship to

an instructor, as in database 1. However, unlike database 2,
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at most one instructor can be related to a related <student,

project> pair.

With either assumption, database 2 has more
restrictions on how the three entity types are
simultaneously related to each other. Therefore, a solution
to the conflict consists of transforming the database 2
schema into a form similar to that of the database 1 schena,
with 2 separate binary relations. This would be done as
follows:

CLASS2 == lim GROUP attrs IID, SID;

TEAM2 == 1lim GROUP attrs SID, PID;
Relation 'CLASS2' would be merged with 'CLASS1', and 'TEAM2'
with 'TEAM1' so that in the integrated schema the less
restrictive combination of two binary relations would be

used.

4.2.3 Transposition

This kind of transform is based on the application of
the trc and tecr operations to replace attribute names by
attribute values and vice versa. Transpasition
transformations are used to resolve row/column conflicts. An
example of a transposition transformation which resolved a
simple row/column conflict was given in Section 3.1.6. A
more complex and general example of a row/column conflict is
exhibited by the following relations (example adapted from

[KENT 82]):
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from database 1:
EMP1 ( EMPNO EMPNAME SALARY )

123 John 25

124 Mary 30

125 Greg 27

from database 2:
EMP2 ( EMPNO FACT TYPE VALUE )

123 NAME STRING John
123 SALARY INTEGER 25
124 NAME STRING Mary
124 SALARY INTEGER 30
125 NAME STRING Greg
125 SALARY INTEGER 27

Relation 'EMP2' simulates a binary relational approach
to modelling employee data. Though perhaps slightly £far-
fetched, this schema might be used in order to facilitate
the addition of new employee properties. The 'VALUE'
attribute is defined on a character string domain with a
large width so that it would likely accommodate character
string representations of applicable property wvalues (say
char 30). The 'FACT' and 'TYPE' attributes provide the
information required to correctly use the property values.
Relation 'EMP1' has a more conventional schema where the
'EMPNAME' and ‘'SALARY' attributes are defined on different
domains (say char 10 and numeric 3 respectively). Although
the 'EMPl' schema is clearer than that of 'EMP2', it does

not accommodate the addition of new properties.

The 'EMPl1' relation may be transformed into a form
similar to that of 'EMP2', thus enabling a integrated schema
that is preferable from the database 2 user's viewpoint, by

the following operations:
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EMPlb == alt EMPl
drop EMPNAME, SALARY
add
EMPNAME char 30 = EMPNAME,
SALARY char 30 = numeric_to_char (SALARY)

EMPlc == trc EMPlb row EMPNAME, SALARY
to_col VALUE seq SEQ:

EMP14d == alt EMPlc
drop SEQ
add
TYPE char 10

[}

YSTRING" if SEQ = 1
else "NUMERIC,
"EMPNAME" if SEQ = 1
else "SALARY"

FACT char 10

Assuming that the 'TYPE' and 'FACT' attributes in
'EMP2' are defined on ‘'char 10' domains, 'EMPld‘' is
mergeable with 'EMP2'. The first operation to define 'EMP1Db'
from 'EMPl' replaces 'EMPNAME' and 'SALARY' with new
attributes defined on a common domain so that both of the
new attributes can be specified in the same 'row' clause.
Furthermore, the common domain is that of the 'VALUE'
attribute in 'EMP2', The second operation to define 'EMPlc'
from 'EMPlb' is the actual transposition in which 'EMPNAME'
and 'SALARY' wvalues are combined in a single 'VALUE'
attribute. Because of the order of specification in the
‘row' clause, values originating from 'EMPNAME' are related
to a 'SEQ' value of 1, and those originating from 'SALARY'
are related to a 'SEQ' value of 2. The final operation to
define 'EMP1ld' from 'EMPlc' converts the 'SEQ' values to

corresponding 'FACT' and 'TYPE' values.

The reverse transformation to put 'EMPZ' into a form
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similar to that of 'EMPl' would be specified as follows:

EMP2b ::= alt EMP2
drop FACT, TYPE
add SEQ numeric 1 = 1 if FACT = "EMPNAME"
else 2

.
r

EMP2c ::= tcr EMP2b col VALUE to_row EMPNAME, SALARY;

EMP2d4 ::= alt EMP2c
drop EMPNAME, SALARY
add EMPNAME char 10 = EMPNAME,
SALARY numeric 3 =
char_to_numeric(SALARY)

i

Note that for this mapping to remain valid, tuples with
a new 'TYPE' attribute cannot be added to 'EMP2'. This would
impose a possibly unacceptable global constraint on database

2.

4.2.4 Tuple Grouping

This type of transform is based on the application of
the grp operator and is used to resolve the set abstraction
and summarization of properties forms of abstraction

conflict.

4.2.4.1 Set Abstraction Conflict Resolution

The following schemata illustrate a set abstraction
conflict (example adapted from [DAYA 84]):
from database 1:
SHIP1 ( SHIPID WEIGHT LOCATION CAPTAIN )
SHIPCONV1 ( SHIPID CONVOYID )

from database 2:
CONVOY2 ( CONVOYID, AVGWT, LOCATION )
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Individual ships are represented in database 1 while a
higher-level set abstraction of ships, the convoy, is
represented in database 2. In order to devise a strategy to
handle the set abstraction conflict, it is necessary to know
which convoys the individual ships in 'SHIPS1l' belong to. In
the example, this data resides in the existing relation
'SHIPCONV1', but it could also be auxiliary data. The
following derivation is then possible:

SHIPlb == 1lnj SHIP1l, SHIPCONV1;
CONVOY1l == grp SHIPlb by CONVOYID, LOCATION
add AVGWT numeric 3 = avg(WEIGHT)

This transformation assumes that 'SHIP1l' represents all
ships in a given convoy. Relation 'CONVOY1l' is mergeable
with 'CONVOY2' (assume that 'LOCATION' is functionally
dependent on 'CONVOYID' in 'CONVOYl' and 'CONVOY2'). Also,
'SHIP1b' may be retained in the integrated schema so that
both detailed and abstracted ship data is available. Note,
however, that if 'CONVOYl' and 'CONVOY2' are not disjoint
and there is a «conflict in the ‘'AVGWT' wvalues of
intersecting tuples then the individual ship data for the
corresponding convoys is usable only if the intersecting
'CONVOY2' tuples are used and the intersecting ‘'CONVOY1®

tuples are rejected.

If 'CONVOY2' represents ships that are not represented
by 'SHIP1l' then in order to conform to the database 1 user's

viewpoint it would be necessary to convert convoy data to
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individual ship data. However, this would essentially entail

augmenting the database with further individual ship data.

4.2.4.2 Summarization of Properties Conflict Resolution

For an example of a summarization of properties
conflict, consider the following relation schemata:

from database 1:
EMP1 ( EMPNO EMPNAME DEPTNAME SALARY )

from database 2:
EMP2 ( EMPNO EMPNAME DEPTNAME )
DEPTSAL2 ( DEPTNAME AVGSALARY )
In database 1 the salary of each individual employee is
recorded while in database 2 only the average salary of all
employees in each department is recorded (the natural join
of 'EMP2' and 'DEPTSAL2' would create a relation where
average departmental salary is directly modelled as a
property of each employee). One conflict resolution approach
would be as follows:
EMPlb == alt EMP1 drop SALARY;
EMPSAL1 == 1lim EMP1l attrs EMPNO, SALARY;

DEPTSALl == grp EMP1 by DEPTNAME
add AVGSALARY numeric 6 = agg_avg(SALARY)

This transformation assumes that 'EMPl' represents all
employees in the departments whose names are recorded in
'EMP1', The definition of 'EMPlb' and 'EMPSALl’' resolves a
data clustering conflict while avoiding the loss of detailed
salary data ('EMPlb' may be merged with 'EMP2' and 'EMPSAL1

would be included in the integrated schema). Relation
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'DEPTSALYl' may be merged with 'DEPTSAL2'. In the ewvent of a
data conflict between 'DEPSALL' and 'DEPSAL2', ‘EMPSAL1'
would only ke usable if the intersecting ‘'DEPSAL1' tuples

are used and the intersecting 'DEPSAL2' tuples are rejected.

4.2.5 True/False Transform

This type of transform, described in [KENT 82},
consists of changing a relation in which the truth of a tact
is implied by the presence of corresponding tuple in that
relation to one where both truths and falsehoods are
represented by tuples (which are marked accordingly), and
vice-versa. The true/false transform is used to resolve

implicit/explicit truth conflicts.

The following relations provide an example of an
implicit/explicit truth conflict:

from database 1:

FLDACCSL ( TEAM FIELD TRUTH )
North TRUE
South TRUE
North FALSE
South TRUE
North TRUE
South FALSE

oD y» >

from database 2:
FLDACCS2 ( TEAM FIELD )
D North
Relation 'FLDACCS1' considers teams 'A', 'B', and 'C’',
fields 'North' and 'South' and shows which team has access

to which field by 1listing all combinations of teams and

fields and indicating for each combination whether it is
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true or false that the team has access to the £field.
Relation *'FLDACCS2' shows that team 'D' has access to the

'North' field (the truth of this fact is implicit).

the above conflict may be resolved from the database 2
user's viewpoint with this simple operation:
FLDACCS1lb == lim FLDACCS1 where TRUTH = TRUE
attrs TEAM, FIELD;

Relation 'FLDACCS1b' may then be merged with 'FLDACCS2'.

The opposite transformation for resolving the conflict
from the database 1 user's point of view is not so simple.
One approach consists of the following steps. First, all the
applicable *TEAM' and 'FIELD' wvalues for relation 'FLDACCS2'
are be identified (these values are actually the domains of
'"TEAM' and ‘'FIELD', but the if the implemented domains are
specified as character strings of certain lengths, for
example, then the actual domains cannot be deduced from the
specifications). Secondly, an auxiliary data relation must
be created which is the cartesian product of the 'TEAM',
'FIELD' and truth values with a FALSE ‘'TRUTH' value appended
to each tuple, for example:

AUX ( TEAM FIELD TRUTH )
D North FALSE

D South FALSE
E North FALSE
E South FALSE

Essentially this indicates field access, with respect to

database 2, in the case where 'FLDACSS2' is an empty
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relation,

Thirdly, the auxiliary data is combined with *'FLDACCS2®
so that facts portrayed by 'FLDACCS2' have precedence. This
may be done with the following operations:

AUXb == dif

AUX,
1nj FLDACCS2, AUX;

FLDACCS2b == u

alt FLDACCS2 add TRUTH = TRUE;,
AUXb

The first operation defines relation 'AUXb' which contains
tuples from 'AUX' that do not contradict the facts in
'FPLDACCS2', The second operation defines relation
'FLDACCS2b' which is wunion compatible with 'AUXb' and
'FLDACCS1' and that contains the facts from 'AUXb' and

'FLDACCS2'. Relation 'FLDACCS2b' can be merged with
'FLDACCS1"®.

Note that in the above example, we assume that the
domains of the 'TEAM', 'TRUTH', and 'FIELD' attributes are
the saine in all relations, and that the 'TEAM' and 'FIELD'
attribute domains are specified as fixed length character
strings. Furthermore, we assume that in both databases, only
“"North" and "South" fields are relevant. If database 2 had
included 'FIELD' values other than these, then it would have
been necessary to include a ‘'negative fact' tuple for each

database 1 team and each such 'FIELD' value in 'AUX'.
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CHAPTER % A QUERY PROCESSING ALGORITHM

This Chapter describes the design of a query processing
algorithm used 1in the HDDBMS prototype implementation
described in Chapter 6 is based. The algorithm processes ad
hoc queries in the GQML described in Chapter 3. It |is
intended to be appropriate for an HDDBMS that would act as a
front-end to simple, micro-computer based 1local DBMSs.

Specific assumptions used in its design are as follows:

1) The HDDBMS sites would be connected by fast short haul
links, so intersite communication delay would not dominate

data processing delay.

2) Lach local DBMS would be capable of supporting any GQOML
operation, so no local DBMS would have to compensate for
limitations of another local DBMS, nor would the HDDBMS have

Lo include any data processing capabilities of its own.

3) Local DBMSs would not maintain statistics on the sizes of
their database entities which could be used to es“imate the

size of mapping and query operation result relations.

Our query processing algorithm decomposes a global
query into a set of subqueries each of which is executed
entirely at exactly one site in the HDDBMS. Multiple
subqueries are executed in parallel, their results are
collected at the query site, and a final subquery on the

intermediate results is executed at the gquery site to
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produce the query result.

With our algorithm, a join on relations residing at
different sites would always be executed at the query site.
However, scliecmes for optimizing these 3joins such as the
semijoin algorithms wused in SDD-1 {GOOD 81] and Mermaid
(TEMP 87), and the enumeration of join sequences, join
sites, and join methods as in R* [DANI 82] and Multibase
[DAYA 85], require database statistics which we assume would
not be available to our algorithm. Also, semijoin algorithms
are usually only worthwhile when the sites are joined by
slow long-haul links where communication costs dominate data
processing costs. The fragment-and-replicate algorithm
mentioned in Section 2.3 is designed for sites joined by a
fast local area network, but it assumes either entirely
replicated or disjoint global relations. This is a
guestionable assumption in a HDDBMS. Our algorithm places no
conditions on data distribution or the degree of ddta

overlap between different sites.

5.1 OVERALL ALGORITHM DESIGN

The overall gquery processing algorithm (gproc) is
outlined in Figure 5.1. Each site in the HDDBMS would have
its own unique site designator and its own process runniug
this algorithm. A GQML query submitted to the gproc process
running at a particular site consists of a result relation

name and an GQML operation, or hierarchy of nested GQML
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operations, on terminal and/or non-terminal relations
specitied at that site with GQML wvirtual relation
definitions and base relation declarations. The 1local site
is the site where the gproc process is running, and the
query site is the site where the query originates from, and

where the results are required.

If the query site designator is the same as the local
site designator, then the query is local, otherwise it is
remote. Local and remote queries are handled in exactly the
same way, except that the result of a local query remains at
the local site, in a file having the format used by the
local DBMS, while the result of a remote query is written to

a global format file which is sent to the query site.

The basic feature of gproc is that a query on virtual
relations at a given site (the qu:rv site) is decomposed
into zero or more subqueries that are entirely satisfied by
local data (local subqueries), zero or more subqueries on
virtual relations which, according to the locally stored
mapping specifications, are not derived from 1local data
(remote subqueries), and a final subquery on the results of
the local and remote subqueries and/or translated local host
schema relations. The query decomposition algorithm will be
explained in Section 5.3. The important thing to note at
this point, however, is that local and remote subgueries can

be further processed and executed in parallel.
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algorithm gproc
/* query processing */

input: (1) GOML query
(2) local site id
{3) query site id

output: at query site, file containing query result
or an error indicator
{

decompose query into final subguery, local subqueries
and remote subqueries;
{algorithm decomp_qry)

if (no errors in decomp_gry) {
dispatch remote subqueries, if any, to remote sites
for further processing and execution;

transform local subqueries, if any, and submit to
local DBMS for parallel execution with any remote
subqueries;

wait until results of all remote subgueries have
been received or until at least one error indicator
has been received:;

if (no errors in rprrocessing remote and local
subqueries )
transform final subquery and submit to local DBMS
for execution, producing, on success, a local
format file if query is local, or a global format
file if query is remote;

}

if ( query is remote )
if (no errors in decomposition or subquery
processing)
transfer results to query site;
else
send error indicator to query site;

if ( gquery is local and error encountered )
output error indicator locally;

erase intermediate result files;

}

Figure 5.1 que:y processing algorithm
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Local and final subqueries are translated into a form
that can be executed by the local DBMS. When a translated
subquery is submitted to the local DBMS the gproc process no
longer has any involvement in it except to determine whether
or not the execution was successful., The translated final
subguery may be augmented with instructions to the 1local
DBMS to present the user with options for activities such as
viewing the final result, and erasing the result file. If
data reformatting capabilities are an integral part of the
local DBMS, it might make sense to also include, in the
transformed final subquery, instructions to convert received
global format remote data (the results of remote subqgueries)
to local format, rather than to perform the reformatting

immediately on receipt of the data.

If there are no remote subgqueries, then there will be
no local subqueries, and the entire query will be executed
as the final subquery. If there are no local subgueries and
only one remote subquery then the result of that remote
subguery would contain the query result data. In this case,
the final subquery would be 'null' and would result in the
activities that would be appended to any other final
subquery upon translation, such as data reformatting and

results display.

When a remote subquery is dispatched to a remote site,
it is submitted as an ordinary query to the gproc process at

that site (i.e. the receiving gproc process does not need to




4—

146

know that the query is actually a subquery at another site),
which then processes it and returns the results to the
dispatching gproc process site. When processing a remote
query which happens to be a subquery at another site, the
gproc process may icself dispatch remote subqueries it the

local DBMS is, in fact, a separate HDDBMS.

The subqueries returned by decomp qry would be
described by an internal representation of a directed
acyclic graph of GQML operations, which is described in
Section 5.2. Such a representation would be the starting
point of the transformation of a subquery into any other
DBMS specific representation, or in to a representation
suitable for transmission to a remote site. Subqueries are
intended to be transmitted in text files as GQML text in a
typical HDDBMS implementation. The translation from the
internal representation to GQML text, described in Section

5.7.1, would be part of the dispatching function.

It may be desirable for one site to send multaiple
subqueries to another site as a group in order to minimize
communication setup cost and delay. It would then also be
desirable for the results of each subquery in such a group
to be returned as a group. In this case, there would be an
intermediate module to individually submit each subquery
received in a group to the query processor, and then collect
the results for transfer after the final result ftile is

created.
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5.2 DAG REPRESENTATION OF A QUERY

If we replace the non-terminal operands of a GQML guery
with their GQML definitions, the result is essentially the
same qguery (terminal operands are defined in Section 3.5).
The repetition of this substitution until all operands of
the query are terminal relations modifies a GQML query on
terminal and/or non-terminal relations into the same Qquery
on terminal relations only. Query modification is
exemplified in Figure 5.2 which is based on the integrated
schema of Figures 3.1 to 3.5. For clarity, only the operand
list of each operation is shown. The terminal relations
involved in the query (assuming that site 1 is the query
site) are 'DEPT2', 'EMP2', 'WORKS', and 'EMP'. The first two
terminal relations are global relations which correspond to
site 2 local participant relations, and which map to
translated 1local host schema relations (and, ultimately,
data) at site 2. The 1last two terminal relations are
translated local host schema relations at site 1 and,

therefore, correspond to data stored at site 1.
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unmodified query (submitted at site 1):

RESULT := 1lnj WORKSIN, EMPLOYEE;

modified gquery:
RESULT := 1nj
u

lim EMP2 ...;,
ren WORKS1 ...;
"t
alt
onj
ren EMP ...;,
alt EMP2 ...;

-e

-e

-
14

Figure 5.2 GQML query modification example

The modified query can be represented as a operation
DAG by transforming each operation and each terminal
relation into a node and directing edges from an operation
to its operand(s). Therefore, the successor node{(s) of a
pa.ticular operation node (there may be either one or Lwo)
represent the operand(s) of that operation. The DAG
corresponding to Figure 5.2 is illustrated in Figure 5.3.
The terminal relations are indicated as ‘'term(inal)' nodes
and the names of operation result relations are indicated in
parenthesis where such names are given in the mapping

specifications and the query.
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lnf (RESULT)

)
{ v
u (WORKSIN) alt (EMPLOYEE)
¥,
onf
I l ]
{ + + {
ren (WORKS1) lim alt (TEMP1) ren (EMP1)
term (WORKS) term (EMP2) term (EMP)

Figure 5.3 operation DAG example

In an operation DAG, terminal nodes cannot have
outgoing edges. Also, there is one node with no incoming
edges. This is called the result node since it represents
the final operation that must be executed in order to
materialize the query result relation. A DAG consisting of
only a terminal node does not represent a query; at least
one operation is required. The simplest operation, which
returns a copy of a base relation, is lim without a where or

an attrs clause.,

In the PRECI* system, queries are also represented as
graphs of extended relational algebra operations, but only
trees are built [DEEN 85b). This means that if the same
virtual or terminal relation is referred to multiple times
in the user query, or in the mapping operations for virtual
relations referred to in the user dquery, then the same

subtree will occur multiple times in the query operation
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tree. Such duplicate subtrees would lead to duplicate
processing and, possibly, duplicate subqueries, but this
problem is not considered in [DEEN 85b). Our DAG generation
algorithm (Section 5.4) automatically merges multiple
references to the same virtual or terminal relation into a

single subgraph.

5.3 QUERY DECOMPOSITION

The query decomposition algorithm (decomp qry),
outlined in Figure 5.4, is based on the decomposition of a
directed acyclic graph (DAG) of operations representing the
query into separate subgraphs representing the subqueries.

An explanation of this algorithm follows.

In decomp_gry as well as in gproc, the query and
subqueries are represented by operation DAGs, and, tor
convenience, the query or a specific subquery is referencced
by the result node of the corresponding DAG. Algorithm
decomp_qry initially obtains the operation DAG for the query

using algorithm gen_DAG, discussed in Section 5.4.

In addition to creating the query operation DAG,
gen_DAG assigns to each node a set of site id's, called a
'site set'. The site set of a terminal node represents all
the sites where the corresponding relation is in either the
local participant schema or translated local host schema.
There is one exception to this: if the relation is in the

local site's 1local participant schema then the terminal
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node's site set will be assigned only the local site id. The

reason for this will be explained later.

The site set of a non-terminal (or operation) node is
normally the intersection of the site sets of its adjacent
successor nodes, as in the PRECI* query decomposition
algorithm [DEEN 85a] (adjacent successor nodes will be
referred to simply as 'successor nodes' from here on). A
node with a non-empty site set is classified as 'single-
site' since the corresponding relation may be entirely
materialized through the DBMS at any of the sites in its
site set. To materialize the relation corresponding to a
non-single-site ope _ion node, DBMSs at more than one site
need to be accessed. The site set of a operation node may be
set to empty even if the intersection of the site sets of
its successors is non-empty if it is decided (in gen_DAG)
that the operation should not be executed remotely. This is
discussed in more detail in Section 5.4. Algorithm gen_DAG
is also required to produce a list of all the nodes in the

query DAG,

A node with a site set containing only the local site
designator will be referred to as 'local', any other node

with a non-empty site set will be referred to as 'remote’.
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algorithm decomp_gry
/* query decomposition */

input: (1) GOML query
(2) local site id

output: final subquery result node
set of local subquery result nodes

(1
(2
(3) set of remote subquery result nodes

— N

initialize local and remote subquery sets to NIL;
initialize node list to NIL;
initialize final subquery to null;

generate query operation DAG;
(algorithm gen_DAG)
if (error in gen_DAG)

return with error indicator;

apply improvement transformations to query DAG;
(algorithm improve_DAG)

if (result node of query operation DAG is single
-site)
if (node is not local)
add query result node to remote subquery set;

else {

set final subquery result node to query result
node;

return;

}

else {

set final subquery result node to query result
node;

for (each node on node list)
if (current node is not single-site)
for (each successor node)
if (current successor node is
l) single-site and
2) not marked as a subquery result node)
{
mark current successor node as a subquery
result node;

if (current successor node
l) is terminal and
2) is not local)
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create a 1lim node with empty where and
attrs clauses, make the current successor
node its successor node, and assign it a
copy of the current successor node's

site set;

set the current successor node to the
new lim node;

}

if (current successor node is local)
add to local subquery set;

else
add to remote subquery set;

}
}

select remote subquery sites;
(algorithm sel_sites)
if (error in sel_sites)

return with error indicator;

)

Figure 5.4 query decomposition algorithm

Before the actual query decomposition is performed,
algorithm improve DAG is used to transform the final
subquery DAG (which at this peoint is also the query DAG)
into an equivalent DAG which represents a more efficient
query expression. By 'equivalent' we mean that if the query
were to be fully processed twice, once with and once without
the transformation, the two result relations would contain
exactly the same data. This transformation may result in
nodes being removed from and/or added to the DAG, in which
case algorithm improve DAG would change the node 1list
accordingly. Algorithm improve_DAG has not been designed in
detail, but aspects pertinent to it are discussed in Section

5.5.
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If the query result node is single-site, then this
means that the entire query can be executed using the DBMS
of one site. If the query result node 1is 1local, then
decomp_qry will make the final subquery equivalent to the
query, which would cause the entire query to be executed
using the local DBMS. This will mean no data transfer cost,
although there will not be any parallel dJdata processing

either.

If the query result node is remote, then the entire
query will be executed at a remote site, and the final
subquery will remain null. Data transfer cost will be
incurred for the final results only, and again there will be
no parallel data processing. If the site set contains
multiple site designators then some processing is required
to select a single subquery site from the set. This
processing, performed by algorithm sel_sites, will be
discussed in Section 5.6. For the moment the query result

node is simply inserted into the remote subquery set.

If the query result node is not single-site then the
gquery can be decomposed into a collection of remote and
local subqueries and a non-null final subquery. To do this,
each node on the node list is inspected to determine whether
it is non-single-site. If for a particular node this is
true, then the successor(s) of that node are inspected. If a
successor is single-site, has not already been marked as a

subquery result node, then it represents either a new
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subquery result node, or a terminal node in a new subquery.
1n the latter case, a lim operation node needs to be created
with the terminal node as its successor (since a terminal
node alone does not constitute an operation DAG) and this
becomes the subquery result node. The Llim operation would
have empty where and attrs clauses, making the subquery
simply a request for a copy of an entire relation. All Local
and non-local (or remote) subguery result nodes are added to
the local and remote subquery sets respectively. Finally a
submission site is selected for each remote subquery using

algorithm sel_sites.

Marking a node as a subquery result node serves two
purposes. First, it prevents the creation of redundant
subqueries. This might otherwise occur because it is
conceivable that the same single-site node can be the
successor of multiple non-single-site nodes. Secondly, it

marks the node as a terminal node of the final subquery.

The policy of excluding remote site designators from
the site set of a local terminal node would cause decomp_DAG
to favour local processing. This in turn would help minimize
the transfer of data to the local site. In many cases it
also has the effect of reducing parallelism since an
operation that could be executed remotely or locally would
always be executed locally. The extreme case of this is seen
when the query node turns out to be 1local or remote.

However, without good estimates of the relative costs of
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executing specific operations on specific data at specific
sites, it is not possible to determine an allocation ot

operations that would maximize parallelism.

It is possible that a subgraph which is part of a
particular local subquery DAG may also be part of another
local subguery DAG, in other words, local subquery DAGs may
intersect. An example of this is illustrated in Figure b%.bY;
the operation node Jjust preceding the ‘'local term2' node
belongs to both subquery A and subquery B. The intersectling
subguery DAGs would not be considered as one subquery DAG

since there are two result nodes.

The intersection subgraph could be considered as a
separate local subquery, but this is not done in order to
avoid the extra processing needed to ensure correct subquery
execution sequencing. For example, if the intersection
subgraph in Figure 5.5 is interpreted as a separate local
subquery, then that subquery would have to be executed
before subqueries A and B. Alternatively, the result
relation corresponding to the intersection subgraph could be
materialized twice, once for each of the intersecting

subgueries, but this is clearly wasted effort.
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(nss fsq)

$ $
(sq B 1local) {nss f£fsq)

[

(local sq A)

$
(sq B 1local) (sq B local sq A) (sq C remote)
local term 1 local term 2 remote term 1
nss : non-single-site operation node

local : local operation node
remote : remote operation node

term : terminal node (remote or local)
fsq : final subquery node
sq X : operation node in subquery X (remote or local)

Figure 5.5 example of overlapping subqueries

What is done is that when a 1local subquery is
transformed and executed, the intermediate result relations
corresponding to each operation node (not just the result
node) are not erased until after the final subquery is
executed. Furthermore, the operation nodes of the DAG are
marked to indicate that the corresponding result relations
have been materialized. Therefore, when a local subguery
whose DAG intersects with that of an already executed local
subguery is processed, the translation routine can see that
the result node of the intersection subgraph is now a
terminal node of the current local subquery, and the DBMS

can be instructed to use the corresponding intermediate
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result relation as a base relation. The order of execution
of intersecting subqueries clearly does not matter with this

method.

For example, suppose that subquery A of Figure 5.5 is
executed before subquery B. Then the operation node
belonging to both subqueries (intersection operation node)
would be marked in the translation of subquery A, and atte:
the execution of subquery A the corresjending result
relation would be materialized. When subquery B iy
translated, then the intersection operation node would be
treated as a terminal node. If subquery B happened to be
executed first, then the intersection subquery node would he

treated as a terminal node for subquery A.

Note that it 1is possible for one subquery to be a
subset of another. For example, consider Figure 5.5 without
the ‘'local sq A' node directly above the intersection
operation node. In this case the subgquery A DAG would be a
entirely included within the subquery B DAG, so subquery A
would be a subset of subquery B. If subquery B were to be
translated and executed first, then the subsequent altempt
to translate and execute subgquery A would simply return
without doing anything. Of course, the formation of local
subqueries which are subsets of other local subqueries could
be avoided 1in the first place by checking whether a
potential local subqguery result node has a local predecessor

node; if so then the local subquery would not be created.
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However, this would require maintaining pointers from a node
to all its predecessors, or examining the successors of many

nodes each time a new local subquery is considered.

Remote subquery DAGs may also intersect. However, the
global gquery processing does not ensure that the relations
corresponding to the operation nodes of the intersection DAG
are materialized only once. This, in fact, 1is not
necessarily desirable because parallelism may be increased
and overall delay decreased by the assignment of remote
subgueries having intersecting DAGs to different sites, even
though some intermediate results would be computed more than

once.

Remote and local subquery DAGs <cannot possibly
intersect since it is impossible for any node in a remote
subguery DAG to contain the local site id in its site set,
and all nodes in a local subguery DAG contain only the local

site id in their site sets.

In the case where multiple remote subgqueries are
received as a group from the same site, it would be useful
to ensure that common intermediate results are computed
only once. However, this would require changes to the
current algorithms which currently generate subqueries
independently of one another and consider each incoming
subquery individually. These changes constitute a topic for

further work (see Chapter 7).
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5.4 DAG GENERATION

This Section describes an algorithm for constructing
the query operation DAG directly from the query text and the
mapping text at the local site. This algorithm is based on
recursive descent parsing involving mutual recursion between
algorithms gen_DAG (Figure 5.6) and gen_from text (Figure

5.7), where gen_DAG is initially called from decomp qry.

Algorithm gen_DAG returns with an error indicator if it
sees that a cycle will be introduced in the operator yraph.
A cycle would correspond to a modified query with an operand
having the same name as the result relation name. The cycle
check 1is made possible through the use of a node list.
Algorithm gen_DAG puts a 'placeholder' node on the node list
containing the result relation name before the subgraph
corresponding to that result relation is actually
constructed. If a subsequent recursive execution of gen DAG
finds a placeholder node on the global node 1list which
matches its result relation name input, then a cycle iy
discovered (recall that the result relation name is part of
the query input). When the subgraph is constructed without a
cycle being discovered, the placeholder node is replaced by
the result node. If gen_DAG finds a non-placeholder node on
the global node list which matches its result relation name
input, then the algorithm simply returns with that node.
Such a node represents a virtual or a base relation which is

an operand in multiple GQML expressions. At the erd of DLAG
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construction, every operator node will be on the node list.

algorithm gen_DAG
/* generate DAG corresponding to a GQML query */

input: (1) GOML query (result relation name and
query text)
(2) local site id
({3) node list

output: result node of directed acyclic graph (DAG)
of operations representing the input query

{
search node list for a listed_node corresponding to
result relation name, return NIL if node not found;

if (listed_node not NIL)
if (listed_node is a placeholder)
/* result relation_name has been referred to in
another subquery, but the corresponding
subgraph has not been constructed

*/
return with error indicator;
else
return with listed node;
else {

add placeholder node containing result relation
name to node list;

using operation text generate result node (and
associated DAG);
. {(algorithm gen_from text)

if (error in gen_from_text)
return with error indicator;

replace placeholder node by result_node;
return with result node;
}

)

Figure 5.6 algorithm for generating query operation DAG

When gen_DAG successfully completes the cycle test it
calls gen_from_text to actually process the GQML text, which

could either be an operation (or hierarchy of nested
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operations) or a base relation declaration. Algorithm
gen_from_text recursively parses the GQML text and converts
it to the internal operator DAG representation. When the
successor nodes of the current node have been created,
gen_from_text adds information to the current node required
for subsequent query processing while checking the validity
of the text (this would involve separate parsing routines).
This information includes the schema of the corresponding
relation. In the case of an operation, this is the result
relation schema and it is inferred from the operation and
the relation schemata associated with the successor nodes
(i.e. the schemata of the operation result relations). In
the case of a base relation declaration, the schema is
directly given by the operation text. Algorithm
gen_from_text generates its own unique result relation name
for the current node if the input result relation name is
null, This would be the case for a recursive call from
gen_from_text. A further algorithm (comp_site set) describes

the computation of the site set of the current node.

When the GOML text input is a relation name rather than
operation or base relation declaration text, gen from text
gets the GOML mapping text corresponding to the relation
name (either operation or base relation declaration text)
and creates a query from it, which it submits to gen DAG
along with the node list. If the GQML text input is a base
relation declaration, gen_from_text does not need to call

either itself or gen_DAG.
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Algorithm comp_site_set (Figure 5.8) is straightforward
except for two aspects: 1) obtaining the site id's of all
sites containing a particular relation in their 1local
participant schema, and 2) determining permissible remote

operations.

The most direct way of handling the site id problem
would be to keep lists at each site which hold the names of
the relations in each of the other sites' local participant
schema. Algorithm comp_site_set would then simply refer to
these lists. This would be practical as long as additions
and deletions to local participant schemata are infrequent,
because each such change would mean a change to a relation

name list at one or more other sites.
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algorithm gen_from_text
/* generate DAG corresponding to GQML text */

input: (1) GOML text (operation, base relation
declaration, or relation name)

local site id

node list

result relation name (null if call is
recursive)

2
3
4

output: result node of non-decomposed DAG
corresponding to the operation text

{

if (operation text represents a terminal relation) |{
create corresponding terminal node;

compute site set of terminal node;
(algorithm comp_site_set)

return with terminal node;
}

else {
create an empty operation node;

for (each operand indicated in text) (
if (current operand is an operation) {
generate operand result node;
(algorithm gen_from_text)
if (error in gen_from_text)
return with error indicator;

put operand result node on global node list;
}

else /* operand is a relatior name */
gyet corresponding mapping text:;

if (corresponding mapping text does not exist)
return with error indicator;

generate operand result node;
(algorithm gen_DAG)
if (error in gen_DAG)

return with error indicator;

create edge from operation node to
operand result node;

3

fill in operation node details, referring to
successor nodes to determine validity of

operation specifications and infer result relation
schema;



if {error found while £illing in operation node)
return with error indicator;

compute site set of operation node
(algorithm comp_site_set)
if (error in comp_site_set)

return with error indicator;

}

return with operation node;

}

Ifigure $.7 algorithm for generating DAG from operation
text

comp site_set
/* compute the site set of a DAG node */

input: (1) DAG node
(2) local site id;

output: DAG node with site set evaluated

{

initialize site set to NIL:;

if (node is terminal)
if (node corresponds to a relation in local
site's translated local host schema) {
add local site id to site set;
return with node;
}

else {
get site id's of all sites containing
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corresponding relation in their local participant

schema and add to site set;

if (no such sites)
return with error indicator;

else

if (node represents a permissible remote operation)

compute intersection of successor nodes' site
sets and add these sites to site set;
}

Figure 5.8 algorithm to compute site set of a DAG node
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The alternative to maintaining relation name lists is
to acquire this information from the remote sites during
query processing. At the outset of processing a query on the
integrated schema (a global query), the site id's
corresponding to each global schema relation that does ot
map to a local participant schema relation (at the query
site) could be compiled all at once. This would mean that
each remote site would be asked for information only once,
but one or more remote sites may be unnecessarily asked
since not all global relations are necessarily involved in a
given global query. In this case, unnecessary delay could be
incurred if such a remote site is particularly slow 1n
responding. Note that if the query 1is on the 1local
participant schema then remote site information would not be
required at all (this would be the case if the query is

itself a subquery from a remote site).

This approach of acquiring the location information at
the outset of query processing could be improved if the
global schema relations associated with each integrated
schema relation (through the integration mapping) werc
indicated. Then, the global schema relations relevant to a
particular global query could be readily determined, and

site information for only those relations would be sought.

Whether an operation should be a permissible remote
operation depends on the effect that operation would have on

the volume of data to be transferred from the remote site to



167

the guery site. In many cases, if a remote subquery is made
to contain as many operations as possible, the volume of
data that will have to be transferred from the remote site
to the query site will be minimized, which is clearly
desirable. This would certainly be the case if the remote
subquery consists of u, int, dif, div, and lim operations
only. However, some operations, if performed remotely, may
increase the volume of data to be transferred. For example,
Lthe cartesian p.oduct of two relations , performed remotely,
will certainly result in a greater amount of data transfer
compared to transferring the original relations and
per forming the cartesian product at the query site (this
assumes that at least one operand relation contains more
than one tuple). A cartesian product is equivalent to an 1nj
or onj operation where the operands do not have common
attributes. However, a 1lnj or onj operation between
relations with common attributes can be as large as the
cartesian product, though in many cases it may reduce the

data volume.

The remote execution of an alt or grp operation could
either decrease, increase, or not affect the data transfer
volume. In most cases, grp would be expected to decrease the
data transfer volume, and alt would be expected to increase
it only marginally, if at all., The trc operation would also
increase the data transfer wolume (the amount depending on
the size of the key attribute values in the operand relation

since these values are repeated in the result) and the ter
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operation would decrease it.

Suppose that a set of non-permissible remote operation
types is predetermined; for example, all 1lnj and onj
operations equivalent to a cartesian product, trce
operations, and alt operations with an add clause and no
drop clause. Algorithm comp_site_set could simply force any
operation ncde that has an operation matching any element ot
this set to have a NIL site set, and heuce be performed as
part of the final subquery at the query site. However, this
strategy would not be optimal if a subsequent operation
(corresponding to an adjacent or non-adjacent predecesso-
node) has a data volume reduction effect that more than
offsets the data volume expansion effect of the non

permissible remote operation.

An algorithm that attempts to consider subsequent
operations when deciding whether the site set of particular
operation node should be set to NIL would be much more
complicated than the one presented here. Also, it must be
remembered that data volume reduction/expansion effects are
being predicted in a very coarse manner, without the use of
relation profiles and estimates of actual result relation
size. Therefore, the refinement of considering subsequent
operations would probably not  offer a consistent

improvement.

A reasonable approach would be to include in the non-

permissible remote operation set only those operation types
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with a dramatic data volume expansion effect. These would
clearly include the cartesian product. The other members
would be other onj and 1nj operations with a demonstrated

high data expansion effect.

Determining these latter members would require keeping
track of past results. For example, each time an onj or 1lnj
operation specified in the database integration mapping is
performed locally, the size of the result relation could be
compared to the sum of the size of each operand, and jif the
result relation size is not larger, then the operation could
be added to a permissible remote operation set (the
operation could be identified by its operands and the join
attributes). Of course, this assumes that operations are

devised to calculate relation sizes.

Initially, all onj and 1lnj operations would be non-
permissible (for remote execution) by default, but some
would become permissiblc as the permissible remote operation
st grows. Of course, changes in database contents could
make past observations irrelevant, so global query delay
times snould be monitored for trends of increasing delays in
order to determine whether all or some of the members should
be removed from the permissible remote operation set. The
tull development of these ideas constitutes a further

research topic (see Chapter 7).
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5.5 DAG EQUIVALENCE TRANSFORMS

This Section discusses Dbackground considerations
pertinent to the design of the improve DAG algorithm
mentioned in Section 5.3. Two types of DAG equivalence
transform which appear to offer practical ways of optimizing
queries within the framework of our query processiing
algorithm are 1) generating early projection and selection
operations and 2) eliminating duplicate subexpressions.
These transforms will be discussed separately below,
followed by a discussion of how they might be incorporated

into an improve DAG algorithm.

5.5.1 fenerating Early Projection and Selection
Operations

The idea of generating early projection and selvction
operations is related to the technique of optimizing
relational aléebraic queries in a centralized DBMS by
deriving selection and projection operations on the operands
of expensive binary operations from those specified on the
results [ULLM 82]. This will be referred to as 'pushing’
selections and projections (which may be «collectively
referred to as lim operations in our GQML syntax) past other
operations. This type of transform is intended to result in
a reduction of the size of binary operation operands and,
therefore, the query execution delay. In a DDBMS this type
of transform could also result in a reduction in the volume

of data transfer if the operands are located at remote sites
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[CER1 84],

Let us call the operation which we are attempting to
push a lim operation past as the 'barrier operation'. Also,
let us call the 1lim operation originally specified on the
barrier operation's result relation as the 'original 1lim
operation', and the new operations produced on the barrier
operation's operand relations as the 'new lim operations'. A
pushing operation is performed on a <buarrier operation,
original lim operation> pair. For the sake of the following
discussions, we will allow a barrier operation to be either
a binary or unary GQML operation which is not a 1lim
operation., If the barrier operation is binary, a new 1lim
operation could be defined on one or both of its operands by
a pushing operation. Also, we will assume that the selection
predicate of an original 1lim operation is in, or has been
converted to, conjunctive normal form. A predicate in this
torm consists of the conjunction of predicates (called

conjuncts) none of which contain conjunctions.

It a barrier operation's parameters (apart from the
operand list) are changed by the pushing operation or if it
is replaced by another non-lim operation by the pushing
operation, then the barrier operation will have been
'modified'. The barrier operation will have been 'removed!'
if the result of the pushing operation does not include a
non-lim operation. If the original 1lim operation is made

redundant by the new lim operation(s) then the original 1lim
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operation will have been 'removed'. On the other hand, a lim
operation on the barrier operation result which is not
identical to the original 1lim operation may be required
after the pushing operation. In this case, the original lim
operation will have peen ‘'modified' by the pushing

operation.

If the barrier operation is a 1lnj operation with a
where and/or an attrs clause, then the original lim
operation is represented by those clauses. A lim operation
is not pushed past another immediately preceding (in
execution order) 1lim operation. Instead, the two 1lim
operations are merged into one whose predicate (where
clause) 1is the conjunction of the two predicates, whose
projection list (attrs clause) is that of the lim operation
which would be the last executed (closest to the result node
in a DAG representation), and whose operand is the operand
of the lim operation which would be the first executed. The
lim operation resulting from such a merge may then bhe

original with respect to a non-lim barrier operation.

I1f after a pushing operation there are no new lim
operations, and neither the original lim operation nor the
barrier operation has been modified or removed, then that

pushing operation will have 'failed'.

A pushing operation involving a u, int, or dif barriecr
operation will always remove the original lim operation and

produce two new lim operations both of which are identical
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to the original. A pushing operation involving a lnj or onj
barrier operation may remove the original 1lim operation, if
the original 1lim projection 1list includes the join
attributes, and each conjunct of the selection can be
applied to an operand relation (a predicate can be applied
to a relation if all attributes referred to in the predicate

are in the relation's schema).

1f neither of these conditions are met, a non-failure
pushing operation on a 1lnj or onj barrier operation may
still be possible. However, the criginal lim operation would
be modified rather than removed, i.e. only some of the
restrictions of the original lim operation may be passed to
the new 1lim operations. Specifically, if the original 1lim
operation projects out join attributes, then a modified
original lim operation would be required to do so after the
transformation since join attributes cannot be projected out
by the new lim operations. Alsc, suppose that an original
lim operation predicate conjunct cannot be applied to either
join operand. Then that conjunct must be included in the

modified original 1lim operation predicate.

The generation of new lim operations in terms of a DAG
equivalence transformation would involve the addition of new
operation nodes and the replacement or removal of others.
Consider Figure 5.9. The original 1lim operation node is
removed, the 1lnj operation node is modified and becomes the

query result node, and two new lim operation nodes are added
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which become subguery result nodes. It is required that the
addition and removal of nodes from an operation DAG be
accompanied by their addition and removal from the node list

as well.

terminal relation schemata:
EMP( EMPID CITY EMPNM SAL DEPTID ) Site 1

DEPT ( DEPTID DEPTNM LOCATION ) Site 2
original DAG transformed DAG
lim . <A> Inj ., . <B>»
1nj } | |
n]-'o ] 1
I : 4
— 1 lim . <C> lim . <D~
{
term (EMP) term (DEPT) term (EMP) term (DEP'T)

<A> ::= where SAL < 100 and CITY <> LOCATION
attrs EMPID, EMPNM;

<B> ::= where CITY <> LOCATION attrs EMPID, LEMPNM:;
<C> ::= where SAL < 100 attrs EMPID, DEPTID;
<D> ::= attrs DEPTID;

Figure 5.9 example of a DAG equivalence transform

The only unary operators in the basic relational
algebra are projection and selection. However, the GQML hags
other unary operators (ren, alt, grp, trc, and tcr). 1t any
of these appear in a final subquery DAG as successors of a
lim operation node it would be useful to involve them as
barriers in pushing operations so that new lim operations
are added to remote subguery DAGs, or at least so that sizes

of the operands of expensive operations are reduced.
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A lim operation on a ren operation result relation can
he replaced by a lim operation on the operand relation. The
new lim operation is identical to the original except that
the inverse of the ren operation must be applied to the
names of attributes in the projection 1list and the
predicate. However, a lim operation is not as readily pushed
through alt, grp, trc, or tecr operations. These cases are

discussed separately below

Y.5.1.1 Pushirg With an alt Barrier Operation

A new lim operation on the operand of an alt operation
cannot project out any attributes whose values are used in
the alt operation to evaluate new (added) attributes. If
such attributes are not dropped in the alt operation and are
projected out by the original lim operation, the best that

can be done is to add them to the alt operation drop list.

An original lim operation predicate conjunct can be
moved unchanged to the new lim operation only if it does not
incorporate attributes which are added in the alt operation.
An original lim operation predicate conjunct which includes
one or more added attributes may be moved as a transformed
predicate by substituting the corresponding evaluation

function for the attribute. For example, consider the
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following operation:

lim
alt EMP drop SAL1l, SAL2 add SAL numeric 3 =
max(SALl, SAL2);
where SAL = 100

An equivalent operation would be

alt
lim EMP where max(SALL, SAL2) = 100;
drop SAL1, SAL2 add SAL numeric 3 = max(SALl, SAL2):

Typically 1in integration mapping, an alt operation
would be specified on the results of an onj operation on
global relations (see Section 4.1). In these cases it 14
likely that a subquery would be defined for each of the onj
operands (i.e. they would 1likely represent data from
different sites). Therefore, it would be especially valuable
to be able to derive new lim operations on the onj operands
from any lim operation on the alt operation result relation.
This would involve two pushing operations: one on the alt
operation followed by one on the onj operation. However, it
may be difficult to determine valid selection predicates tor

the lim operations on the onj operands.

For example, consider Figure 5.10 in which this Lype of
transformation has been performed. Let us call the
comparison operation in the original lim operation opl ,'='
in this example, and those in the new lim operations op2 and
op3, both of which are '>=' in this example. The use of '='
for opl and op2 might appear to be a better choice since the

new lim operations would be more restrictive, but this would
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be incorrect. To see this, suppose that two tuples exist in
"EMP1' and 'EMP2' respectively with the same 'EMPID' value
and the 'EMP1' tuple has a value of 100 for 'SALl1l' while
'EMP2' has a value of 150 for 'SAL2', Then the result
relation tuple with that 'EMPID' value would have a 'SAL'

value of 100 instead of 150 if '=' is used for opl and op2.

Note that the original lim operation is required in the
transformed expression. In [DAYA 85]) new selections that do
not replace the original selection are referred to as

"partial" while those that do are referred to as "full."




Figure 5.10

because

terminal relation schemata:

EMP1 ( EMPID SALl )
EMP2 ( EMPID SAL2 )

original expression:

lim
alt
onj EMPl, EMP2 ori ORIG;
drop SALl, SAL2
add SAL numeric 3 =
SALl if ORIG = EMP] else
SAL2 if ORIG = EMP2 else
max(SALl, SAL2);
where SAL = 100

]

transformed expression:

lim
alt
onj
lim EMP1 where SAL1 >= 100;,
lim EMP2 where SAL2 >= 100;
ori ORIG;
drop SALl, SAL2
add SAL numeric 3 =
SAL1 if ORIG = EMP1l else
SAL2 if ORIG = EMP2 else
mas: ( SAL1, SAL2):
where SAL = 100
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example of two pushing operations involving an

onj barrier operation followed by an alt

barrier operation

Although the issue here is how to perform a successtul

pushing operation where the onj operation

operation.

is the barrie:

(rather than the alt operation) the Jdifficulty arises
a selection is predicated on an attribute added in
the alt operation. In other words, the difficulty is a side-

effect of the previous pushing operation involving the alt
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It is possible to predetermine whether an op2 and op3
ex1sts which allows this transformation given a particular
function (max in the Example) and a particular opl, and
whather the new selections (incorporated in the new 1lim
operations) are full or partial [DAYA 83, DAYA 85]. For
cxample, given an opl of >, an op2 and op3 of > would permit
the transformation. Furthermore, the original lim operation
(with respect to the alt operation) can be removed. Thus the
new selections are full. Note that if the functions sum or
avg were used instead of max in the above example the second
pushing operation (involving the onj operation as the

barrier) would fail.

%.5.1.2 Pushing With a grp Barrier Operation

Three conditions limit the generation of a new lim
operation on the operand of a grp operation, such that the
new lim ouperation does not affect the result of the grp

operation:

1) The new 1lim operation cannot project out attribute

specified in the grp operation projection 1list,

2) The new 1lim operation cannot project out attributes
referred to by added attribute evaluation functions in the

grp operation,

3}y If aggregate functions are used to evaluate added

attributes in the grp operation, the exclusion of tuples
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from the operand is not permitted. This means that the new
lim operation cannot project out prime attributes, nor can
it include a selection predicate that is not true tor all

tuples.

In a pushing operation involving a grp  barricr
operation a more restricting (in terms of projection and

selection) new lim operation may be defined.

Suppose that the origirial 1lim operation projects out
attributes added in the grp operation which are not reterred
to in its selection predicate. Then, the new lim operation
may drop attributes wused in evaluating these added
attributes as long as this doesn't affect the evaluation ot
other added attributes. The grp operation would have to be
modified to exclude the evaluation of the added atiributes

projected out by the original lim operation.

Suppose that the original 1lim operation projects out
attributes included in the projection 1list of the gqrp
operation, and does not refer to these in its selection
predicate. Then, the new 1lim operation may project these
attributes out too, as 1long as it doesn't affect the
evaluation of added attributes which not projected out by
the original 1lim operation or referred to in its selection

predicate.

Conjuncts from the original 1lim operation predicate

cannot be moved to the new lim operation if one or more
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added attributes are evaluated with an aggregate function,
and that added attribute is referred to in the original lim
operation predicate or is not projected out by the original

lim operation.

%.5.1.3 Pushing With a Transpose Operation Barrier

A selection predicate from an original lim operation on
a trc or tcr result relation may only be added to a new lim
operation on the ter or trec operand if it incorporates only
those attributes which must exist in both the operand and
result relations (i.e. the 'a' attributes as described in
Section 3.1.6). Also, these attributes may not be projected

out by the new lim operation.

If the original lim operation on a ter result relation
projects out a row attribute created by the ter operation,
then the tcr operation may be modified to exclude that
attribute in its row clause. In this case the new 1lim
operation would have to include a selection predicate to
exclude those tuples from which that row attribute gets its
values. Conversely, if the original 1lim operation on a trc
result relation rejects all tuples whose sequencing
attribute values are included in a particular set of values
then the corresponding attributes may be excluded from the
trc operation row clause. Also, the new lim operation would

have to project out those attributes.
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To 1illustrate these points consider the following

relations:

SALES1 ( EmpID EmpNm PlSales P2Sales P3Sales )

100 "Smith" 53 49 51
200 "Jones" 60 52 55
SALES2 ( EmpID EmpNm Period Sales )
100 "Smith" 1 53
100 "Smith" 2 49
100 "Smith" 3 51
200 "Jones" 1 60
200 "Jones" 2 52
200 "Jones" 3 55

As shown in Section 3.1.6 'SALES1' can be created by a tecr
operation on 'SALES2', and 'SALES2' can be created by a Lrc
operation on 'SALES1'. The following sequence of operalions
is equivalent to the lim operation on 'SALES1l':

lim
trc SALES2 col Sales
to_row PlSales, P2Sales, P3Sales
seq Period;
attrs PlSales, P2Sales

An equivalent sequence of operations in which the lim

operation is executed before the trc operation is ag

follows:

ter
1lim SALES?2 where Period = 1 or Period = 2;
col Sales
to_row PlSales, P2Sales
seq Period;

Now consider the following sequence of operations which is
equivalent to the lim operation on 'SALES2':

lim
trc SALES]1 row PlSales, P2Sales, P3Sales
to_col Sales
seq Period;
where Period = 3

-
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An equivalent sequence of operations in which the projection
is executed before the trc operation is as follows (alt is
used instead of lim for brevity):
trc
alt SALES] drop P3Sales;
row PlSales, P2Sales

to_col Sales
seq Period;

5.5.2 Eliminating Duplicate Subexpressions

In a query DAG, duplicate subexpressions may be
exhibited as 1) duplicate subgraphs of separate subquery
DAGs, 2) duplicate subquery DAGs, or 3) duplicate subgraphs
of the query DAG. Eliminating duplicate subexpressions would
consist of merging duplicate subgraphs. In the first case,
eliminating duplicate subexpressions may not be useful since
the subqueries themselves may end up being executed at
different sites. In the second case, eliminating duplicate
subexpressions would be very useful since this would
eliminate unnecessary data processing and, if one or more
remote subqueries are elimirated. inter site communications.
In the third case, eliminating duplicate subexpressions
would be definitely useful only if they encompass non-final

subqueries and/or parts of the final subquery.

Finding all duplicate subgraphs in a query DAG i
potentially very time consuming and most likely impractical
in most cases. A practical algorithm might be restricted to

finding duplicate subgraphs that encompass non-final



184

subqueries since these must have identical terminal nodes
Thus, the search may be narrowed down considerably at the

start.

%.5.3 DAG Improvement Algorithm Design Issues

Suppose that a query DAG is a tree with no duplicate
subexpressions. DAG improvement would include pushing 1lim
operations as far as possible towards the terminal nodes,
into the subqueries. The overall algorithm, shown in Figure
5.11, is simple, and the observations made in Section 5.5.1
show how the pushing operation could be applied to specific
barrier operations. In this algorithm, the where and attrs
clauses of a 1lnj operation are treated as though they were
in a preceding lim operation node. As part of the pushing
operation the current node becomes either the barrier

operation node (possibly modified) or its replacement node.
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algorithm push_to_terms
/* pushes lim operationz to terminal nodes of
gquery operation trees */

input : result node of operation tree
output : result node of modified operation tree

{
if (current node is a lim operation) {
while (successor node is a lim operation) {
merge current and successor node and make this
the new current node;
if (successor node is non-terminal)
perform pushing operation on current and
successor node (barrier operation node),
re—assigning the current node in the process;

}

for (each successor node of current node)
call push_to_terms with successor node;
}

Figure 5.11 algorithm to push lim operations towards

terminal nodes of query operation trees
Suppose that the query DAG is not a tree, and that a
barrier operation node exists which has multiple 1lim
operation predecessor nodes, possibly generated by pushing
lim operations towards, but not beyond, this operation node.
It would be incorrect to perform a pushing operation
independently involving the barrier node and a single
predecessor node. For example, consider Figure 5.12 wvhere
'B' represents the barrier operation node. A single original
lim operation may be inferred from the multiple predecessor
lim operation nodes whose projection list is the union ot
the multiple projection 1lists (an empty attrs clause is
egquivalent to a projection 1list containing all operand

attributes), and whose predicate is the disjunction of the
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multiple predicates (the predicate would then be converted
to conjunctive normal form). The pushing operation could
then be performed using this inferred original 1lim
operation. Note that any of the multiple predecessor 1lim
operation nodes may be modified or removed by the pushing
operation, The inferred original 1lim operation can be no
more restrictive than any of the 1lim operations it |is
derived from, and it is possible that it would be much less
restrictive than any of them even to the point of being
equivalent to a lim operation with no attrs or where clause.

lim . where A > 100 lim . where B > 100
attrs A, B: attrs B, C;

+ 3
B

inferred original lim operation:

lim <B> where A > 100 or B > 100 attrs A, B, C;
IFigure 5.12 example of multiple predecessor lim operation

nodes in pushing operation

If the query DAG has duplicate subgraphs, then a
decision has to be made whether to merge the duplicate
subgraphs before or after the pushing operations. If the
pushing operations are performed first, then the subgraphs
may be made different and, therefore, non-mergeable. If the
pushing operations are performed last, then it may be that
the generated new lim operations are so unrestrictive that

it would have been better to use the separately transformed,
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non-mergeable subexpressions. Without database statistics,
it would not be possible to derive delay estimates upon
which to base a choice, so the decision would have to be
arbitrary or based on the observation of delays during

actual use.

The above discussion shows that a thorough improve DBAG
algorithm based on 1lim operation pushing and duplicate
subexpression elimination would be very complex, and, in the
context of fast local communication 1links, probably
impractical. Further research 1is required to determince
whether a simplified and worthwhile algorithm based on these

principles can be devised.

5.6 SELECTION OF REMOTE SUBQUERY SITES

In the case where the site set of a remote subguery
result node contains more than one site id, the query
processor must select one of those sites to further process
and execute the subquery. In the remainder of this Section,
multiple possible subquery sites for the same remote
subquery will be referred to as 'candidate remote subquery

sites' and the selected one as the 'remote subquery site'.

The goal of remote subquery site selection is to
minimize the delay between the start of dispatching the
remote subqueries and the end of receiving the subquery
result data, so that the time during which the query site is

waiting idle is eliminated or at least minimized. Thus query
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and result data communication delay., the relative
performance level of the DBMSs at the remote sites, and the
nature of the remote subqueries themselves are pertinent to

remote subquery site selection.

Suppose that the same data may be transferred between
any two sites with the same delay (including communication
session set-up delay). If all remote subqueries are sent as
a group to a single site and the results are sent back as a
group, then the communication <ession set-up delay will be
minimized. It the remote sul T ries are distributed among
the maximum possible number of sites, then the set-up delay
will be maximized. The total time required to actually

transmit the data will be the same in both cases.

If we assume that all remote subgueries will involve
the same processing and execution delay, regardless of the
remote subguery sites, then the fully distributed approach
will have the greatest degree of parallelism and the
smallest maximum remote subquery processing and execution
delay. If communication session set-up delay is
insignificant compared to remote subquery processing and
execution delay, then overall the fully distributed approach
would be best. Otherwise, a less fully distributed or even a
single remote site approach could be best if this means that
sites with exceptionally slow DBMSs are avoided as remote

subquery sites.

If we do not assume that communication delay between
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each pair of sites is uniform and that all remote subqueries
will involve the same processing and execution delay, then
remote subquery site selection becomes very complex.
Moreover, if local database statistics are unavailable, as
we assume 1is the case, then it would not be possible to
estimate the size of GQML operation operand relations and
therefore, directly estimate remote subgquery execution
delay. Even if local database statistics were available, the
query site would have to acquire knowledge of the remote
operations required to materialize remote site local
participant schema relations and the amount of local
optimization which would be done at each candidate remotce

subquery site.

FPor the purposes of this thesis, an initial simple
approach to remote subquery site selection which conforms to
our initial assumptions is proposed. The development of more

elaborate approaches is a future research topic.

Suppose that communication session set-up costs are
insignificant, then the remote subquery site selection
problem becomes one of distributing subqueries such thalt the
maximum processing and execution delay among all subguery
sites is minimized. Suppose further that given a particular
subquery Qi and a particular site Sj, a function yielding a
relative delay value RD(Qji., Sj) may be computed at the query
site. If Q; is assigned to Sj, then RD(Q;, Sj) is greater

than zero, otherwise it is zero. A simplified RD function
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may, for example, use an approximate relative performance
factor assigned to each <site, operation> pair and an
relative cost factor assigned to each type of operation,
which would also be very approximate since operand sizes
would be assumed to be similar for each subquery. However,
the relative operation cost factor would serve to
discriminate between almost always relatively expensive
operations such as cartesian product, tuple grouping, and
transposition, and almost always relatively cheap operations

such as projection.

The best distribution would be the one where

MAX ( £ RD(Qq, Sg) )
all s all q

is ¢ vinimum. All possible distributions can be computed
using a variant of the algorithm for finding a minimum sized
set of subquery sites described in [TEMP 83], in the context
of the Mermaid system (in this version of the Mermaid
system, communication costs are assumed to be dominant, and
d minimum number of subquery sites is desired to minimize
communication delay during execution of a semijoin reduction
strategy). This algorithm will be explained through an

example.

Suppose that candidate remote subquery sites have been

computed as follows:

remote subguery candidate sites
a {81}
b {82, S3)

c {S3, sS4}
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Each candidate site set can be interpreted as a disjunction
of remote subquery sites (e.g. subquery b can be sent to 82
or S3), and the conjunction of all the disjunctions
represents all possible subquery distributions. For the
example, we get the following expression:
(Sl3) and (S2p or S3p) and (S3c or S4.)
The subscripts on the site id's indicate remote subquery
site assignment. The above expression can be converted into
the following disjunctive normal form expression:
(Sla and S2p and S3.) or (Sl and S2p and S4.) or
(Sl and S3pe) or (Sl and S3p and S4)

The symbol 'S3pe' is derived from 'S3p and S3.'. kach
conjuinction of subscripted site numbers represents
possible distribution of subgueries. The algorithm fo1
converting the initial expression into disjunctive normal
form runs in exponential time, but this is not serious since
the number of subqueries and the size of candidate site scty
would normally be quite small for ad hoc queries. [Minally,
the maximum relative delay for each distribution would i
computed and the distribution associated with the minimum
value would be selected. In the event of a tie, one of the

best distributions would be selected arbitrarily.

This site selection algorithm is summarized in Fiqgure.

5.13.
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algorithm site_sel
/* select remote subquery sites */

input: set of remote subquery DAG result nodes with
site sets evaluated

output: set of remote subguery DAG result nodes, each
one assigned to a remote subquery site

{

assemble initial conjunctive normal form distribution
expression using site set contents of all nodes;

convert distribution expression to disjunctive normal
form;

min rel _delay = high_value;
for (each conjunctive term in distribution
cxpression) {
compute maximum relative delay (max_rel_delay);

if (max rel_delay < min_rel_delay) (
select current conjunctive term to represent the
distribution;

min rel_delay = max_rel_delay;
}

assign subqueries to sites according to final
selected distribution;

}
}

IFigure 5.13 remote subquery site selection algorithm

5.7 QUERY TRANSLATION

A subguery DAG must be translated back into GQML text
it the subquery is remote, or into a representation that can

be used by the local DBMS if the subquery is final or local.
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5.7.1 DAG to GQML Text Translation

A remote subquery in GQML form consists of a result
relation name and a single GQOML operation or a single nested
hierarchy of GQML operations, as does a user query. The
result relation name can be obtained from the subquery DAG
result node. The translation from a DAG to GQMI, text iu
easily implemented as a postorder traversal of the DAG whoere
text is generated for each node, as shown in Figure %.14.

algorithm DAG_to_GQML

/* translate DAG to GQML operation text */

input: 1) DAG result node or terminal node
2) pointer to text file

output: GQML text in text file

if (input node is terminal) {
write relation name corresponding to node;
return;

}

write operator name corresponding to node (u, dif,
int, lim, etc.):

for (each successor node of input node) {
translate corresponding subgraph;
(algorithm DAG_to_GQML)

if (all successors not yet considered) write ',';

}

write remaining operation clauses associated with
input node, if any (e.y. where clause, attrs clause);

write ';';

}
Figqure 5.14 DAG to GQML text translation algorithm
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%.7.2 DAG to Local Representation Translation

The HDDBMS is just another user to the local DBMS, so
the interface(s) made available to any user by the local
PBMS influences the method for translating a final or local

subgquery DAG into an equivalent local representation.

lFor example, suppose that the local DBMS interprets
command programs written to a text file, and that it is
possible to generate a command program segment equivalent to
any GQOML operation. Then the translation may be implemented
a5 a postorder traversal of the DAG, with a program segment
generated for each node that refers to entities in the local
host schema. I1f the local DBMS is not relational or tabular,
then a mapping between the translated local host and the
local host schemata would be required in program generation
(such mapping and program generation is a future research
topic, as mentioned in Chapter 7). All program segments
would be written to the same file to create a single command
program which could then be submitted to the local DBMS
interpreter. Algorithm DAG_to_local_com_prog (Figure 5.15)

11lustrates this approach.

Rather than submit each local subquery command program
separately to the 1local DBMS interpreter, it might be
possible to concatenate them in the order in which they were
generated to create a single command program representing
all local subqueries. This command program would be

submitted once to the interpreter. This could reduce delay
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if the interpreter does not reside in main memory between

uses.

Algorithm DAG_to_local_com_prog is made specific to a
particular (command program driven) local DBMS by the DBMS-
specific code generation module included in the inputs. This
module is used to generate the actual program segment from
the current operation node contents, and it would refer to
succeeding nodes in the DAG for operand relation names. An
operand relation would be a remote subguery result relation,
a local subquery result relation, a translated local host
schema relation, or an intermediate relation created by a
local subguery (this would occur when the subquery being
translated is also local and has a common subgraph with

another local subquery).

After the code corresponding to an operation node is
generated, the node is marked as 'visited', as discussed in
Section 5.3. To recapitulate, if such a node is encountered
when traversing the DAG, it is assumed that Lhe
corresponding relation has been materialized at the local
site and is in local DBMS format. Let us define duplicate
code as code which results in the materialization of the
same relation. Then marking nodes as visited prevents the
generation of code which is a duplicate of that existing
earlier in the command program, or in the command programs

for other local subqueries.
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algorithm DAG_to_local_com_prog
/* translate DAG to local DBMS command program */

input: 1) DAG result nodr. or terminal node
2) DBMS-specific code generation module
3) local site id
4) query site id
5) pointer to text file

cutput: local DBMS command code in text file

{
if ( input node
1) not terminal and
2) not a subgquery result node and
3) not marked as visited )
{
for { each successor node of input node )
translate corresponding subgraph;
(algorithm DAG_to_local_com_prgq)

write local language command program segment
corresponding to input node operation using
the DBMS-specific code generation module

(if input node is result node of a final subquery
and local site id not the same as query site id
include reformatting of results to global format)

.
’

mark input node as visited;

}

if (input node is the result node of a remote subquery
and node not marked as visited)
{
write commands to reformat the received global format
data file to local format using the DBMS-specific
code generation module;

mark input node as visited;

)

if (input node is the result node of a final subquery
and local site id same as query site id)
write ancillary commands for results presentation,
etc. using the DBMS-speciiic code generation module;

}

Figure 5.15 DAG to local command program translation
algorithm
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In the design of DAG_to_local_com_prg, it is assumed
that the local DBMS has the necessary data reformatting
capabilities. The convers.on of the current subquery results
from local to global format is incorporated in the code
segment which represents the last operation of a tinal
subguery for a query submitted from a remote site (for a
given local DBMS this may save a pass through the result
data). Also, code is generated to convert remote subquery

results from global to local format if this has not already

been done.

Finally, if the subquery being translated is the final
subguery of a locally submitted query, ancillary code tor
data presentation, presenting options to erase or move the
result file, etc. are written. This would be done even for u

null final subquery.

In cases where the 1local DBMS does not provide o
command program interpreter, the DBMS-specific code
generation module might have to generate code in a general
purpose language with embedded local DML commands, and then
have this program compiled and 1linked. A library of
procedures and functions may be developed to simplify thig
task. This program would then be executed at the appropriatec
time. Some GQML operations might correspond to a singlc
local DML command and these could still be handled by a

local DBMS single-command interpreter.

Algorithm DAG_to_local_com_prg would produce a result
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relation corresponding to each DAG node. Certainly the
subquery result relation is required, as is any intermediate
result relation which 1is positioned as an operand for
another subquery (in the case of subqueries with overlapping
DAGs). However, if the materialization of other intermediate
result relations can be avoided by combining the operations
represented by multiple nodes into a single operation,
considerable time may be saved. In particular, a 1lim
operation occurring before or after another operation can be
combined with that operation in some DMLs since the
additional processing simply consists of checking a record
on input or output against a projection list and selection

predicate.

This type of local optimization may be implemented by a
local DBMS-specific pre-translation scan of a subgquery DAG
which would merge adjacent nodes into a single node where
possible. The scan would have to locate nodes whose result
relation would be an operand of another subquery and avoid
merging such nodes with their predecessor nodes in the
subquery DAG. Such nodes, however, may be merged with their

successor nodes.
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CHAPTER 6 HDDBMS PROTOTYPE IMPLEMENTATION

An HDDBMS prototype, called the Multiple Database
Access System (MDAS), has been implemented in order to
demonstrate the approach to database integration and query
processing discussed in previous Chapters. In the remainder
of this thesis, 'MDAS' will refer specifically to the
current version of the system. Further development of the
system beyond the limitations mentioned in this Chapter is

discussed in Chapter 7.

The MDAS integrates two sites, represented by two PCs
connected by an RS-232C null modem cable. One site has dBase
ITI as its host DBMS, and the other site uses KnowledgeMan
(KMan) . All data processing, including data file
reformatting, 1is performed by these DBMSs wunder the

direction of the MDAS.

The MDAS accommodates the schema architecture described
in Section 2.1. The global model is relational and a subset
of the GQML described in Chapter 3 has been implemented as

part of the system.

The MDAS ©provides 2ach site with a relational
integrated schema of the local host databases. The support
of non-relational external schemata has not been
implemented, so the integrated schema also functions as the
external schema. Users can submit ad hoc¢ global queries

consisting of a result relation name and a single GQML
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operation or hierarchy of GQML operations. The result of a
global query is a file in the local host DBMS database file

tormat.

Both KMan and dBase III store data in tables and, as
such, may be considered relational from a structural point
ot view. Therefore, at both sites the translated local host
schema and the local host schema are the same. The support
for non-relational or non-tabular 1local host schemata has

not been implemented.

6.1 PROTOTYPE ARCHITECTURE

The overall prototype architecture is illustrated in
Figure 6.1. Overall, the MDAS may be considered as being
composed of a remote request server, a terminal monitor, a
global query processor, and a command program generator at
vach site. A file transfer module (not included in Figure
6.1) based on a multiple-file transfer version of the XMODEM
protocol [CAMP 87]) was implemented in order to support
inter-site communication. All MDAS modules and the file
transfer module were written in the 'C' programming

language.

The user executes a terminal monitor process which
requests the result relation name and the GQML query text.
The GQOML implementation is described in Section 6.2. The
query text may either be entered directly at the terminal or

submitted from a text file. The user must also ensure that
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the remote request server process is executing on the other
machine when a query is submitted. The global Qquery
processor transmits all remote subqueries in a single
communication session with the remote request server process
at the other site (the remote request server process busy

waits for remote subqueries). The multiple file transter
protocol allows each remote subquery to be transferred as a
GOML query in its own ASCII text file. This simplifies the
implementation of the remote request server since it does

not have to extract separate subqueries from the same tile.

The terminal monitor writes the user query to a tile 1n
a designated directory and passes the global query processor
the name of the query file and the local site id (a
character string). Similarly, when a remote reguest scrver
has received the text of a remote data request from the
opposite site , it executes a local instance of the global
query processor and passes it the name of the tile
containing the text and the opposite site's id. A global
query processor accesses initialized data which includes its
own site id, so by comparing the received site designadator
with its own, it can determine whether or not the query has

originated at the same site.
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Figure 6.1 MDAS architecture

The result to a user's query is ultimately assembled in
a file in the local host DBMS database file format having
the result relation name and residing in a predetermined
directory. The global query processor instructs the 1local
host DBMS to offer to display the results at the terminal
when the data processing is complete. In contrast, the
result to remote request is ultimately assembled in a global
format ASCII text file (by the local host DBMS under the

instruction of the global query processor) and is then sent



203

back to the query site by the remote request server. The
results of all remote subqueries which were received as a

set are set back in the same multiple file transfer session.

Since all communication between sites consists of ASCl!
text file transfer, the MDAS may be adapted to a commercial
local area network connection by replacing the file transfer

module by an appropriate network interface.

At Dboth sites, the 1local host DBMS performs data
processing by running command programs written by the
command program generator. The local DBMS kernel is loaded
and run as a child process (with the command program file as
a parameter) by the global query processor. For each query,
the DBMS kernel needs to be loaded at least once to executce
the final subquery. If a given query also has local
subqueries, the kernel needs to be loaded once to execcute
these before receiving the remote subquery results and
executing the final subguery (all 1local subquery command

programs are written to the same file).

The file transfer module is also loaded into memory and
run as a child process when required by either the remot«
request server or the global query processor. Admittedly,
loading both the DBMS kernel and the file transfer module
twice at the query site for one query (required if there are
remote subqueries) adds significantly to the response tirme,
Keeping the DBMS kernel and the file transfer module in main

memory between uses would have been preferable, but not
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possible with current resources. First, neither dBase III
nor KMan (or at least the wversions of these systems in our
possession) provides the required interface, nor did we have
access to the source code to create the required interface.
Secondly, the operating system wused (PC-DOS) manages a
maximum of 640 K of main memory, which is also the size of
main memory on available machines. This is too limited to
simultaneously accommodate the MDAS, the file transfer

module, and eith:r local DBMS.

6.2 GQML IMPLEMENTATION
6.2.1 Implementation Scope

There are four domain types in the MDAS designated by
the keywords char, numeric, logical, and date. Domain
specitications involving the first three domain types are as
Jdescribed in Section 3.2, The date keyword directly
specifies a domain without any added parameters, as is the

case with the logical keyword.

Arithmetic and logical operators, and comparators have
been included in the GQML implementation, as described in
Section 3.2. Operations other than comparisons on date and
char values are not included. No built-in functions are
provided so, for example, operations such as domain
conversion, wvalue decomposition, and aggregate statistics

computation are not supported. All of the relational
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operat.ons except ren and grp are impiemented. Attribute
renaming can be handled with alt, and without aggregate
functions, there was little point in supporting grp.
Although many string, date, domain conversion, and aggregatv
operations are supported by both KMan and dBase III, and so
could have been included in the GQML, they were excluded

because of time limitations.

The domain types available in the MDAS clearly retlcct
the field types of the local host DBMSs, KMan and dBase 111.
Both have direct counterparts of the char, numeric, and
logical types, dBase III has a direct counterpart ot the
date type, and KMan has functions to convert between u
numeric Julian date and a character string representation

having a format similar to the date type.

Both dBase III and KMan use default values rather than
distinct null values for attributes which have not bhecn
formally assigned a value. Specifically, both use zero tor
numeric fields, a string of length zero for char fields and
FALSE for logical fields. Thus the ori clause of the onj]
operator is an essential feature in the MDAS. In dBase 111l
the date default value consists of blank day, month and year
subfields and as such does not correspond to any ‘'real' datc
value, but this is the only case where the default value can

function as a distinct null wvalue.
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6.2.2 Base Relation Declaration

Since the MDAS currently handles only two sites, base
relation location information 1is incorporated simply by
declaring base relations as either 'local' or 'remote'. A
local hase relation is one where the corresponding data is
contained in the local host database, while a remote base
relation is one where the corresponding data 1is only
avaijilable from the remote host database. Consequently, the
implemented syntax for base relation declarations uses the
keywords 1local and remote where base is wused 1in the

description in Section 3.4.

In a system that handles more than two sites, location
information would be independent of base relation
declaration, and would be obtained either from a directory
or through intersite dialogue, as discussed in Section 5.4.
The incorporation of more than cwo sites is o topic for
further work and would be accompanied by the implementation

ot a site selection algorithm.

In the MDAS, each base relation declaration must reside
in its own text file in a designated subdirectory. The name
of the text file must match the name of the declared
relation. For example, the following local declaration would
reside in a file named "TAB":

local TAB
key CustName char 15,

Branch char 10,
Balance numeric 6;
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A remote base relation declaration has the same syntax,
except that the keyword remote is used instead of local. As
is the case with GQML text, the system ignores unnecessary
spaces, tabs and newlines when parsing a base relation
declaration. Relation and attribute names may be a maximum
of 8 alphanumeric characters long, and the first characten

must be alphabetic.

The MDAS allows the specification of one or more
primary key attributes in a base relation declaration with
the key keyword. In the above example, the 'CustName’
attribute is specified as the primary key of the TAH
relation. The MDAS infers the primary key attribute(s) of
the result of GQML operations from the primary key
attributes of the operand(s). In an alt operation the use:
may specify a new attribute with key status. With knowledge
of key attributes the code generation functions can otten
generate more efficient local processing instructions than

without.

6.2.3 Virtual Relation Definitions

A virtual relation definition consists of a text file
containing GQML operation text for one GQML operation or one
hierarchy of nested GQML operations. The name of the text
file is the name of the virtual relation, so the virtua:
relation name and the '==' symbol is not included in the

GOML text.
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For operands, GQML operations can use relation names
corresponding to text files containing either the text of
other GOML operations or base relation declarations. In the
tollowing example, the virtual relation defined by the text

in file R4 is the same as that defined by the text in file

R3.
file R4:
div
lim TAB attrs CustName, Branch;,
1im BRANCHES where Location = "NORTH" attrs Branch;
file R3:
div R2, R1l:
file R2:
lim TAB attrs CustName, Branch;
file Rl:

lim BRANCHES where Location = "NORTH" attrs Branch;

Base relation declaration and virtual relation
definition text files for a given site reside in the same
designated directery. The total collection of these files
correspond to the 'mapping information' module in Figure

6.1.

6.2.4 Database Integration in the MDAS

Database integration is accomplished through the
creation of an appropriate set of base relation declaration
and virtual relation definition text files. Consider Figure
b.2 which corresponds to a subset of Figure 3.1 to 3.5 and

involves only two translated local host schema relations
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('DEPT' and 'DEPTS').

At each site, there 1is a local base relation
declaration file representing the local participant schema,
and a virtual relation definitica file representing the
mapping from the translated local host schema to the local
participant schema. At Site 1, the global schema is
represented by the 'DEPT1' virtual relation definition tile
and the 'DEPT2' non-local base relation declaration file. At
Site 2, the global schema is represented by the ‘DL
virtual relation definition file and the 'DEPT1' non- local

base relation declaration file.

In a more elaborate system, each site would have direc!
access to a base relation declaration, in some form, f{or
each global relation. This would provide a means of checking
the wvalidity of changes to mappings from translated local
host schemas to local participant schemas, and provide uan

independeut basis for higher level mappings.



translated local host schemata:

file DEPT (Site 1): file DEPTS (Site 2):
local DEPT local DEPTS
key DID char 5, key DNO char 5,
NAME char 15, DNM char 15,
BLDG char 15; LOC char 15;

mapping from translated local host schemata to local
participant schemata:

tile DEPT1 (Site 1):

alt DEPT
drop DID, NAME, BLDG
add
key DEPTID char 5 = DID,
DEPTNM char 15 = NAME,
STREET char 15 = BLDG,
CITY char 15 = "MONTREAL";

file DEPT2 (Site 2):

alt DEPTS
drop DNO, DNM, LOC
add
key DEPTID char 5 = DNO,
DEPTNM char 15 = DNM,
STREET char 15 = LOC,
CITY char 15 = "TORONTO";

global schemata base relation declarations:

file DEPT2 (Site 1l): file DEPT1 (Site 2):
remote DEPT2 remote DEPT1
key DEPTID char 5, key DEPTID char 5,
DEPTNM char 15, DEPTNM char 15,
STREET char 15, STREET char 15,
CITY char 15; CITY char 15;

mapping from global to integrated schema:
tile DEPTMNT (Site 1 and Site 2)

u DEPT1, DEPT2;

Figqure 6.2 MDAS base relation declaration and virtual

relation definition mapping files for a simple

integration example

210
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The global schema to integrated schema mapping as well
as the integrated schema itself at each site are represented
by a copy of the same 'DEPTMNT' virtual relation detinition
file. Since the integrated schema is also the extcernal
schema in the MDAS, declarations for integrated schenma
relations are not required as an independent basis fol

higher level mappings.

6.3 MDAS QUERY PROCESSING

The global gquery processor and the command program
generator together represent a limited implementation of the

query processing algorithm described in Chapter 5.

As an initial effort, this implementation accommodates
only two sites and as such does not include a remote
subquery site selection algorithm (remote subqueries can
only be dispatched to the one femote site). In query DAG
generation, the terminal node declaration types (local or
remote) are used to determine subquery DAG result nodes. An
operation node is declared local (remote) if all of its
successor nodes are all local (remote), otherwise it s
declared non-single-site. Also, the current system does not
differentiate permissible and non-permissible remot ¢
operations (see Section 65.4), nor does it perform DAG
improvement equivalence transformations (see Section 5.5.).
The implementation of these capabilities are topics for

further work. However, since the program follows the
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framework described in Chapter 5, these capabilities will be
simply added as further 'C' functions, with very little

change to the existing software.

The DBMSs perform all data file reformatting. In the
global data file format all data is expressed as ASCII
characters, attribute values are delimited with commas,
tuples are delimited with a carriage return and a line feed,
char and date values are enclosed by double gquotes, and
logical values are expressed as TRUE or FALSE. The order of
the attributes in received data must match the order of the
attributes in the corresponding base relation declaration.
Thus knowledge of the operations that materialize a global
relation and their effect on attribute ordering is currently
required in specifying the corresponding base relation
declaration. The accommodation of a standard data
interchange format in which the order of attributes is
indicated as part of the transmitted data would require the

implementation of an independent formatting module.

The command program generator module follows algorithm
DAG _to_com_prog (Figure 5.15) closely. The same top-level
program for traversing the input subquery DAG is used at
both sites. However, this program calls a site-specific code
generation function which writes a segment of code
corresponding to the operation node passed to it. Site-
specific functions are also provided for generating code for

tile reformatting and the display of query results. Local
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optimization in the form of node-merging to avoid producing
unnecessary intermediate result relations (as described in
Section 5.7) has not been implemented. Although very similar
in principle and overall capability, the dBase III and KMan
command programming langquages differ considerably in syntax,
and the basic DML commands do not correspond in a one-to onc
fashion. Therefore, the site-specific code generation

functions are quite different.
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CHAPTER 7 CONCLUSION AND FURTHER WORK

This thesis has shown that a global query and mapping
language based on the relational algebra (the GQML) is a
powerful tool for integrating pre-existing databases.
Furthermore, algorithms have been designed and demonstration
versions have been implemented to process GQML queries and
provide some HDDBMS capabilities in the MDAS prototype

front-end system.

These algorithms exploit the fact that a GQML query on
virtual relations defined by GQML operations, and on
declared terminal relations, is readily converted into an
operation DAG. This operation DAG may then be decomposed
into subgraphs representing remote, local, and final
subgueries, on the basis of the site location of data for
the terminal relations. The remote and local subqueries may
be executed in parallel to produce intermediate results, and
the final subquery on these intermediate results may then be

executed to produce the final result relation.

Since the MDAS processes a remotely submitted query on
a local participant schema with much of the same software
that it uses to process a locally submitted query on an
integrated schema, a 1local participant schema is readily
supported as a view of the local host schema, defined by
GOML operations on the 1local host schema relations. This

mapping level 1is not supported in other HDDBMS designs
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encountered in the literature, but it is included in our
design primarily because we feel that it may be useful 1in
absorbing some changes to local host schemata, thereby
insulating the global schema and higher mapping levels from

those changes.

The current design emphasizes practicality over
optimization. In particular, the global query proces:sing
algorithm does not attempt to optimize the degree ot
parallelism in local query processing and execution. In
fact, a query that can be executed at a single site
(entirely as a 'final subquery') will be executed this way,
with no parallel processing at all. Parallelism optimization
would require estimates and comparisons of the delay
involved in individual operations and global knowledge of
the additional mapping operations required to materialize
remote global schema relations. This in turn would increase
the complexity and size of the system considerably.
Furthermore, simple local DBMSs of the type that we assumed
in our design and incorporated in our implementation do not
maintain the database statistics required for operation

execution delay estimation.

However, a number of ideas for delay reduction measures
which do not require database statistics or global knowledge
of local low-level mappings have been discussed in this
thesis, namely the determination of permissible versus non-

permissible remote operations (Section 5.6), generating
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carly projection and selection operations (Sections 5.5.1,
5.5.3), and eliminating duplicate subexpressions (Sections
5.5.2, 5.5.3). These ideas could be developed and
implemented as natural extensions to the existing MDAS, and
their usefulness in terms of reduced query execution delay
as compared to increased program size and increased query

processing delay could then be assessed.

The current design and MDAS implementation can function
as a test bed for further work in other areas, including the

following:

- The 1ncorporation of non-relational/non-tabular local
DBMSs, particularly those conforming to the hierarchical and
network data models. This would go beyond existing work in
the area of supporting relational views over such DBMSs in
that the GQML includes operations which are not part of the

basic relational algebra.

- The support of non-relational external schemata and query
languages, as well as relational external query languages
other than the GQML, One immediate possibility is the
support of a natural 1language interface developed in a
previous project that refers to an entity-relationship type
database description and produces queries in a predicate

calculus based language [DESA 88].

- The efficient processing of multiple subqueries submitted

as a group from the same remote site. As mentioned in
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Section 5.3, such subqueries may have common subexpressions
which should preferably be executed only once. The
subqueries could be generated such that the comnon
subexpressions are separate subgueries, and a front-end at
the remote site would then have to submit the subqueries in
the correct order, and request that results for common
subexpressions be retained so that they may be used us
operands for the remaining subgqueries. Alternatively, thu
query processing algorithm could generate the DAGs for all
subqueries from the group before executing any of them. 'This
would allow the algorithm to consider already generated DAGs
when generating the DAGs for the remaining subqueries so
that intersection DAGs are created only once. The algorithm

would then have to execute multiple final subqueries.

- The development of local optimization techniques, possibly
including the approach based on merging adjacent DAG nodes

into a single operation as discussed in Section 5.7.2.

- The support of more than two sites. This would entail the
development of a site selection algorithm, possibly the onc
outlined in Section 5.6, as well as the development of an
approach to acquiring data location information as discussed
in Section 5.4. Also, the existing file transfer module

would have to be replaced by a local area network interface.

- The development of a structured data interchange format
(SDICF) or incorporation of an existing SDCIF. This would

probably necessitate the implementation of data reformatting
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modules.

The support of global updates. This task would consist of
two parts:
|} Determining when and how updates may be mapped across
schema levels (this problem was introduced in Section
2.4.1). Perhaps the extension of the relational global data
model with further constructs will be useful. This problem
is complicated by the fact that an update which is mapped to
a remote global schema relation still has to be mapped to

the local host schema at the remote site.

2) Developing methods of global concurrency and recovery
control, perhaps following the research presented in ([GLIG
84] and (GLIG 86) as summarized in Sections 2.4.2.1 and
2.4.2.2. Note that for these ideas to be implemented, local
DBMSs with transaction managers need to be incorporated into
the system (the current local DBM5s are single—user with no
transaction managers), and some source code access may be

necessary for global recovery control implementation.

An update on a replicated global schema relation would have
to be propagated to all copies of that relation. The
potential conflict between local updates and maintaining the
validity of integration mappings is a related problem for
which the only practical solution appears to be the
assertion of additional integrity constraints on local

updates, at the expense of reduced local autonomy.
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- The development of computer aids for translating local
host schemata into the global data model and generating
database integration operations. Such aids would  be
necessary for integrating realistically complex databases,
as opposed to integrating small, example dat.abases
representing only a few entities. Some work has been done in
this area, as exemplified by the Schema Integration System
(SIS) project. A prototype for this system is described in
[SOUZ 86] as providing interactive tools for deriving
schemata in a common data model from pre-existing database
schemata, and then quantifying the similarity between the
structures and names used in the common model schemata in
order to find semantic overlap. The common data model is
quite similar to the relational model with some added
constructs, including one for capturing generalization
hierarchies. Much more work is required to develop a4 systen
that will progress beyond finding schema similarities and
differences to pinpointing specific conflict types and

generating mapping operations.
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APPENDIX
GLOBAL QUERY AND MAPPING LANGUAGE SYNTAX

The metalanguage symbols used here have the following

meanings:

shall be defined to be

the non-terminal x

alternatively

end of definition

0 or 1 instance of x

0 or more instances of x

select exactly one of the enclosed
alternatives

x
v

A~ e —= [\ e
. XX

.

s Ad mnd

Terminal symbols are indicated in bold type.

Note that the built-in functions and domains may vary
between implementations

<virtual_rel_def> ::= <rel_nm> == <rel_op>.

<query> ::= <rel_nm> == ,rel_op>.

<rel_decl> ::= base <rel_nm> attrs <attr_decl_lst>;.

<rel_op> ::=

lim <rel_opnd> [where <predicate>) [attrs

<attr_nm_lst>];

! 1nj <rel_opnd>, <rel_opnd> [where <predicate>]
[attrs <attr_nm_lst>]);

! onj <rel_opnd>, <rel_opnd> [ori <attr_nm>];

! u <rel_opnd>, <rel_opnd>;

! int <rel_opnd>, <rel_opnd>;

! dif <rel_opnd>, <rel_opnd>;

! div <rel_opnd>, <rel_opnd>;

! ren <rel_opnd> attrs <attr_nm> to <attr_ nm>
{, <attr_nm> to <attr_nm>};

' alt <rel_opnd> [drop <attr_nm_lst>]
[add <attr_eval_lst>];

! grp <rel_opnd> by <attr_nm lst>
(add <attr_eval_lst>];

! trc <rel_opnd> row <attr_nm_lst> to_col <attr nm-
seq <attr_nm>;

! ter <rel_opnd> col <attr_nm> to_row <attr_nm lst>
seq <attr_nm>;.

<rel_opnd> :.:= <rel_op> | <rel_nm>,

<attr_nm_1lst> ::= <attr_nm> {, <attr_nm>}.
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<attr eval lst> ::= <attr_eval> {, <attr_eval>}.

<attr eval> ::=
<attr_decl>
! <attr_decl> = <function>,

<function> :=
<expression>
) <altern _lst>
| <altern_lst> else <expression>.

<altern lst> ::= <altern> (else <altern>}.

<altern> ::= <expression> if <predicate>.

<attr_ decl_1lst> ::= <attr_decl> {, <attr_decl>}.

<attr decl> ::= <attr_nm> <domain> ! key <attr_nm> <domain>.

<domain> ::=
numeric <length> [.<scale>]
i char <length>
¢ logical.

<expression> ::=
<arith_expr>
| <string_expr>

<arith expr> :=

(<arith_expr>)

<num_1lit>

<attr nm>

<arith_expr> <bin_ar_op> <arith_expr>
- <arith_expr>

<arith_fun>

<arith_aggr_fun>

<arith fun> ::=
! (min | max | avg) (<arith_expr>)
! char_to num (<string_expr>).
<arith_aggr_fun> ::=
(agg_avg | agg_sum | agg_max | agg_min)
(<arith_expr>)
! count ().

<string expr> ::=
(<string_expr>)
<string_lit>
<string_fun>
<attr_nm>,

<string fun> ::= num_to_char (<arith_expr>).
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<predicate> ::=

(<predicate>)

TRUE

FALSE

<expression> <comparator> <expression>
<predicate> <bin_log_op> <predicate>
not <predicate>

<logical_aggr_fun>,

<logical_aggr_fun> ::= (agg_any | agg_all) (<predicate>).
<comparator> ::= < | > ! >= ! =< | <>,

<bin_ar_op> ::=+ | = | * 1 /1t 7,
<bin_log_op> ::= and | or.
<num_lit> := <digit_string>[.<digit_string>}.
<string _lit> ::= "<char_string>" }| "",
<digit_string> ::= <digit>(<digit>}.

<digit> := 0 ! 2} 2! 3} 4'!'!S5S!6}7) 809,
<char_string> ::= <char>{<char>}.

<char> ::= <any character; " and * are prefixed by *>



