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ABSTRACT

In this thesis, the theory of prismatic folded
plates, developed by J. E. Goldberg and H.L. Leve [1],
is extended to sandwich panels. Basically, this means that
besides deformation due to bending, the shear deformation
of the sandwich core has to be considered. This is best
accomplished using the method of partial deflections, as
explained in F.J. Plantema's book on "Sandwich Construction"
[2]. Using the elasticity method, the load deformation
relationships are established. These relationships are
used to assemble a stiffness matrix for a sandwich panel

element in a folded plate structure.

This stiffness matrix is then used in a
direct stiffness analysis for folded plates, as outlined in
a paper by A. De Fries-Skene and A.C. Scordelis [3]. This
approach is also employed in "The Experimental and
Theoretical Study of Aluminum Sandwich Elements", by

P.P. Fazio and J.B. Kennedy [4].

An existing computer program written by
P.P. Fazio [4], using the ordinary method, was modified to
accept the elasticity method as an option. Both methods were
run on the computer consecutively, using the same input,

and the results were compared with the experiment. The



conclusion is that the elasticity method gives better

correlation with the experiment than the ordinary method.
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NOMENCLATURE

A = Cross-section area of edge stiffener.
ALAL, A3)A9= Constants in general solution for displ. u.
~a,,a,,a, 4,= Constants in fixed edge force analysis.

B/,B;,Bg,5= Constants in general solution for displ.v.

b = width of sandwich panel

¢ ¢ ¢ ,C, = constants in general solution for displ.w

c = Core thickness.

D = Flexural rigidity of an isotropic sandwich panel.
£ = Modulus of elasticity of facing material.

Gc = Modulus of rigidity of core material.

He,l"aahag,l’éy- Column matrices of hyperbolic functions.

k::oj, = Stiffness coefficients.

ke , /(t = Functions of Cof‘k/.’: and é—ank[.’s respectively.

ks = Sandwich parameter.

L = Length of Panel.

m = Harmonic number of the Fourier Series expansion.

Mx,l“iy = Internal bending moments of a sandwich panel in
X and y direction.

ng, Myx = Internal twisting moments.

M,, M, = Edge moments along longitudinal edges

Ny, /V, = Normal forces in X and y direction.

/‘/xg,Nyx = Shear forces in plane of panel.

r = Parameter



%x,z“qu
%1 :Z‘}.;y
x,y,z
X

/3

A2

nun ]

Uniform pressure loading over whole panel.

Pressure loading at edge 1 and 2 uniform in
X - direction varying linearly in Y-direction.
Internal shear forces acting in cross-sections
parallel to yzx and x% plane, respectively.

Shear rigidity of an isotropic sandwich panel.

Tangential edge shear forces.

Facing thickness.

Function of Yy in expression for w
Internal displacement in x-direction.

Tangential edge displacements in x-direction.

Function of 4 1in expression for 2.
Edge shear forces normal to panels.
Internal displacement in y-direction.

Edge displacements in y-direction.
Function of Y in expression for &fgs.

Constants in general solution for the
characteristic equation for sandwich
Internal displacements in z-direction.

Edge displacements in z-direction.

Bending deflection, components of w due
to My and My respectively.

Shear deflection, components of w due to
@, and &, respectively.

Coordinates in local coordinate system of
sandwich panel.

panels.

Roots of characteristic equation for sandwich

panel.
Argument of hyperbolic functions at edges.

Denominators in the expressions for stiffness

coefficients.
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Poisson's ratio.

1

Angles of rotation at edges.

= Stresses in Xx and Yy direction, respectively.
= Shear stresses.
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FOREWORD

This investigation was carried out as an
extension of the study performed by Paul P. Fazio and
J. B. Kennedy, on the use of aluminum sandwich
elements in a folded plate structure. It was intended
to compare the experimental results with the results
of the sandwich plate theory, based on The Theory of

Elasticity.
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CHAPTER I

GENERAL INTRODUCTION



I INTRODUCTION

A prismatic folded plate structure is formed by
a number of panels or slabs rigidly joined at edges running
parallel with each other and simply supported at the ends
by diaphragms normal to the joints. An illustration of a

folded plate structure is shown in Fig. 1.

The theoretical analysis for this type of
structure was outlined in a paper by J.E. Goldberg and

(1]

H.L. Leve , which was based on the Theory of Elasticity

and the Theory of Plates.

Each joint has four degrees of freedom, two
translations and one rotation in a plane normal to the
joint, and a contraction or extension of the joint line.

Associated with each degree of freedom is a joint force.

Both joint forces and displacements are distri-
buted symmetrically, with respect to the midspan of the
joint. The theory assumes that the joint displacements

can be expanded into Fourier Series components.

Considering one panel or slab element of the
structure, each of the generalized distributed forces is
linearly dependent on the four components of displacement
at both edges of the panel. An arbitrary harmonic
(Fourier term) of one of the displacements is applied to

one edge of the panel and the resulting homogeneous bound-



FIGURE 1

TYPICAL FOLDED PLATE STRUCTURE
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ary value problem is solved for the displacements within
the panel. From these displacements, the resulting
internal forces and edge forces are derived. The purpose
of this paper is to find similar expressions relating edge

displacements and edge forces for isotropic sandwich panels.

This problem is more complicated than for
uniform blates, as deflections due to shear in the core of
the sandwich have to be added to the deflections due to
bending. Furthermore, to join sandwich panels rigidly
together, some kind of an edge member has to be employed.
These edge members add considerably to the in-plane stiff-

ness of the panel and have to be taken into consideration.

The theoretical part of this paper is considered

in two parts:

1) Out of plane displacements of the panel.

This problem is solved by introducing partial

(2]
(13

deflection, as explained by F.J. Plantema in

following the procedure of Goldberg and Leve

2) In-plane displacements of the panel.

This is basically similar to the uniform slab

(13

and is rewritten from The effect of the edge

stiffener is included.



Part IV of this paper deals with the practical
application of the theory developed in the first two parts.
Use is made here of a paper by A. DeFries-Skene, and

A.C. Scordelis [3], and of the work done by P.P. Fazio and

[4]

J.B. Kennedy , where the method of Direct Stiffness is

employed in a computer analysis of Folded Plates.

With the edge force - edge displacement relation-
ship developed in Chapt.II and III an element stiffness
matrix can be assembled in the local coordinate system for

each harmonic in turn.

After transformation into the global coordinate
system, all the element stiffness matrices of the Folded
Plate structure, can be combined into the general stiffness

matrix for the harmonic being analysed.

The fixed edge forces for pressure loading,
and the forces directly applied to the joints, are resolved
into their Fourier Series components, and listed in the

joint force vector.

The joint displacements,and from these the edge
displacements, and forces, and also the internal displace-
ment forces and stresses, can now be found by multiplying
the joint force vector by the inverse of the general stiff-
ness matrix. Taking each harmonic in turn, and adding the
calculated displacements, forces and stresses for as

many harmonics, as is sufficient for the required accuracy,



gives the final results for the Folded Plate structure.

To verify the theory, an example from the
experimental work by P.P. Fazio and J.B. Kennedy [4}, was
run on the computer at Sir George Williams University. A
program developed by P.P. Fazio and modified to include
the Elasticity Method, as derived in this paper, was used

and the computed results were compared with the experiment-

al results.

An Appendix was added to derive fixed edge

forces for linearly varying and uniform pressure loading.



CHAPTER T1I

OUT OF PLANE DISPLACEMENTS OF THE PANEL



IT OUT OF PLANE DISPLACEMENTS OF THE PANEL

General Solution

The behaviour of an isotropic sandwich panel,
Fig. 2, with arbitrary boundary conditions along the longi-
tudinal joints, can best be analyzed by the method of

[2]

partial deflections In this approach, the total

deflection W at any point of the panel is represented by

W= Wpp t Wiy = Wiy + Way (1)
W, = deflection due to bending moment, My
Wy = deflection due to shear force, Q.
Wpy =deflection due to bending moment, M,

w;,.j =deflection due to shear force , 03

The generalized stress displacement relation-

[2]

ships are (Fig.3)
M -D( DL'ur.,z M) e)l'w"d) (2)
x = 5= T o
9
- =D [y » rszw:,x.) (3)
/45 (_:T;I4_ -+ 5=
Mage =My = 152D 0% (Wiy* W) (4
I Z dx Jy
Q. - S 9w (5)
* >
Qy = S g (6)

Ty

where D and S are respectively, the bending and



FIGURES 2, 3 AND 4

2) SANDWICH PANEL GEOMETRY
3) SIGN CONVENTION OF GENERALIZED STRESSES

4) CROSS-SECTION OF A SANDWIC:I
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shear stiffness coefficients for a sandwich panel.

, E b * .
D - 7 /__L::. (C +t) see Fig.4.
S . (C+b)L GC (7)
c

The partial deflection aigcan be expressed in

the Fourier series form

oo
w;g_-_ é \A/.S/'n mZ’x (8)

mal,3,5

admitting only the m th term

el
14./;”‘: W scn m T x
b L
where W”is a function of y only.

Keeping always in mind that the following

theory deals with the m th term, we can delete the super-

script m . As a result,
W = W sin mTx (9)
by L

For an isotropic sandwich plate, the following characteris-

tic equation exists

or [/-v D(&’- + l)(mrbx—w‘;f)‘s(”bx‘%,)}o

2 x* 1
dxdy J dy (10)
This equation can be solved by substituting
3
- : T Lo, XeY
(Vo -We,) = 3in mIx 3 OW; .Y ()
Ay,

where \'\/,_ and 0(" are constants.



The roots of the characteristic equation are

°<£ = O and X, = T«
2 L 25
where o = (ﬁﬁf) +, (12)
/=)D
Now, L (7-v)
. . m T
W, ~W,, = (W,-i—M cosh ey + W, 5’"‘”‘_‘:‘)5"’ T
then (12a)
wl;x= (W-I- l'\/, -+ %605}7 Xy + l«ésinhe(g)ﬁih __r_nif_-}_
(13)

The following relationships between shear

deflections and bending deflections exist [2]

5>w (_"_3_‘*25 +))>3%5>+ 9 p O (Vo + ho)

93? 0> 9y dx D9 1y
<.‘.)w—5 D(_()_s_/‘:,_;_‘é— Y D Y Wy -f-_/____".g D as(z‘j;z"‘mg)
Iy dy?3 Dx‘a_g Z 9 x*dy (
15)

Integration of these equations after substitution of

equations (9) and (13) vyield
m A\t dlL\/

Wi = ( L)(W+ l’/)—dg& (16)
(%

2|
S

+ {5
e 2 [(P-"f)‘w— e R LA
1/(#»171’) (W cos hwy + W. Stho(fDJ Sth hv7J’.z

5 (TP

+ 15;_ (iﬁﬂ) (hécos}rdg + h@.sihhxg):]jih mrx

gy g S}(W cml;e(g—f- W, jlnho(y)} sth '777Y>f

w D [ (18)
S

L

12
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The arbitrary functions £(y) and g(x) permitted by
integration of equations(l14) and (15) have been omitted

for the reason that on substitution in Eq. (1), they have to be
zero, in order to satisfy Eg. (1). The solution for

the partial deflections now contain three constants, W,,

W, , W,

The general solution for the function W is
found by substitution of equations (9) and (13) in
governing plate bending equation (19) for zero load,

y
D, (M ¥iy) D, o
()xq szagl a,j‘r' ’ (19)

resulting in
2

d'wW Z(hﬂﬁ) d'W (mvr)"wz_(mn)“wl
da y¥ L] dy* L L (20)
l .
+l-_£;-)- %(:{1}( n coshey 1-\4/_,’.50:/70(3)

The general solution for equation (20) 1is

W-: C,anh ”‘;_"3 + Cz cosh "Z_”B + m@(Cssihh ’jLI? + €, cosh ;171’_9)

L. /.
2
=Y [m D(Wco,slqo( + W, sinhx )-W (21)
+ 2 (L775 2 b 3 Y '
¢, ,C. .l and C, are constants.
On substitution of this result into equations (9), (13),

(16),(17) and (18), it is found that the constant W,
disappears from the expressions for be Yo and wWo. It

also disappears on differentiation of w,, , with respect

sy
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to y and therefore, has no physical significance, and can

be set equal to zero.

The equations for the partial deflections then

become
. miT mT mr . 7r mx
?Jbg = [C/ sinh /_ 4 4 C, cosh _L_5_ " __L__y(Cb sinh 22713 4 C,, cosh_,z__?>

. : T
+ ‘«(5 (Wz coshe(g + Wbsmbc{y)J Sin _"_’_L__i" (22)

W, ., =—\[ C/ 5/31/)11_"1.,_ C:. cosh h":" + L"Z@(C&sfnk ""L""-;. C,’, Cosh’_”z’f%)

+(/ + L’S)(Wz Cos/m(y + % s/nlzdy)] sin ""‘ZT"

(23)

where K = 'Z;‘-) -52('1”)1 (24)

Then X = (/1-7{-6,/1_"_”; (24a)

Won =~ 252({1)1((.3 Cosh ”'Zrﬂ + C, sinh _"_‘_L"_g) (25)
+ (l + ks)(\d{zc.osho(ﬂ -1-14/35/,;/;an Sin ’”Z"

A (_‘"Lj)z(cjcosh%@_.,L C, sinh MLW (26)
+ K (W,,Coshd_q + W,s/‘n/;o(g) Sin mzfx

W = C sinh ’":r‘* + C, cosh "’:T"‘ . C:»(TZE Jénﬁ%m’._lg(fg}tosbﬁzfg)

2 .
mIy mITy D7) h ™) sin mTx
(27)

The general boundary condition



is readily satisfied by (27).

We need 3 boundary conditions on each of the
longitudinal edges, in order to determine the 6 constants

C'I) CJ. »C5,CH,W,‘and W3 .

Two boundary conditions exist for the slope and
displacements of each edge. The third one follows if we
assume the presence of edge stiffeners, i.e., no shear

deformation along the edges, then

0w,
0 x

= 0 P g——-i

|

(1)
- making use of Equation (25) and the boundary condition (i),

we can obtain the following expressions for Wj and \\/3

In the symmetric case C, = C, = W5=0

- - 2D (mn’) coshﬁ C . (28)
(/+l(’5)5 cosh ok

In the antisymmetric case ¢, =C,= k/2= o

_ (h—ﬂr) sinh/3 C (29)
37 (/,LA«)S .S‘(.h/;cxb

where ﬂ = ""n-b (30)

15
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Now the partial deflection can be expressed in terms of

C,,Cz by C.S 4 C‘/ Only

the unknown constants

W, =[C sinh ™™ C. cosh mTY (31)
by ! L 2 L

2
M L. 10( 1) ks coshp coshyf
L /*kg C-Oshii’
kb

a

Sth h/b Sih hqs_} sih _*_1’1_3.
L/ Ik .sihhgil_a L

(32)

C {mmy oy mry _ 20/MT)" cosh /> }
J;_L__ Sh/l__Ti { ) Coshy

cos h “b

+ ("é' MY eosh MMy _ L(ﬂ) senh /5 _sin/zotaﬂﬂh h.zr:x
4 L 3 SInh oAb
2
W - _]‘_L_)(__) [ ;Cosh my k-" Cosh /3 ¢os/7°<3} (33)
Yy s 14 eosheth

oy o s sy el 2

/-,l-,(' Seh b oLk
z

W, =- 3‘.2(2_792 CJ{Cosh mTy _ cosh/b CDSI‘)V(lS—g
sx L ~ cosh<b (34)

R
S;h}, m?ﬁg _ Jahhﬁ ;L,,},.,g}]sahmﬁ'x
L _S»./O"‘b L

The sandwich plate problem may now be solved

by imposing boundary conditions for the longitudinal edges

of the panel, edges 1 and 2. To facilitate the procedure,

the problem is separated into two parts.

a) Rotation of edges with no translation.

b) Translation of edges with no rotation.

Furthermore, each part of the problem will be

subdivided into a symmetric and an antisymmetric case.



5)

6)

FIGURES 5 AND 6

SYMMETRIC EDGE ROTATIONS

ANTISYMMETRIC EDGE ROTATIONS

17
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F16, 5 SYMMETRIC EDGE ROTATIONS

Vas,
\Z Mze,

F16.6 ANTISYMMETRIC EDGE ROTATIONS
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(an) Rotation of edges 1 and 2

Boundary Conditions:

Assume <_—-—ﬂ-DDw—b ) = G sin ZTX

2
29 9:—
Symmetric Case (Fig.5)

<Dur,,‘,> =<ow.,)
29  Jyst Dy /y=-t

(iii)

»y- li
~

For symmetry W must be an even function of y ; C,<¢(, =0
we |C cosh ™9, C ( T sinh 2y _ 20(m CDSA_J)]IW’?’””"
" 2 L L 5 Y

From B.C. (ii) » it follows that

C C Lanh/?~ 2D mﬁ)z\
and from equation (31)

W = C [_mm, cinh mrxy 20 -h'—ﬂ)l ks Cosh/3 Cos};dj
by = 7> L B I+ k axhdb

L S

(/5 64»5/5— ‘ZD (h—vﬂ') ) Cosh m 2 J -Slh ""'_ ™=
P) h)bg = CJ (%”)[ T’ cosh -’:—I‘? + Sinh ’”7‘1 M”.)ka l ‘cosh /3 Jm‘vc(ﬂ
) .
- (/glra.nhp —LJD(%)jSIhA "':r ] Sin mTx

IS

For the symmetrical case, the rotations along

the edges Y= I-% are taken from B.C. (iidi)

Y . mR
95 = 85 Schm n
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Then

<, - (Mﬁ)[/s sech/3 + {/+ 7;9( (/— QL&AP;)}ﬁ“"/J—;;

Ioé-a.hh/‘_)

where sub.s indicates symmetry and a bar denotes maximum
amplitude of harmonic m. The expression for C3 can be

written as follows

L -
C,y = (27?) 1, 8,
where

-/

3, -[fp s {1 22 ()l /:‘:L::'A/;’"]m/,pj (35)

and pP= (/+}/~)//1 , /5/o=

Antisymmetric Case (Fig.6)

(owg Dw—bg
dy )11=‘_’ .y )9-——*;

For antisymmetry 4 must be an odd functioa of y:! (,=C,-0

W = [C, Stnh _’_"_27_"2 + C-9 (”‘7@ Cosk”"_zri — LD(”’” /'»"'r’)JSm mrx

C L L
.. . - 2D /mir)*
From B.C. (ii) . G =—C,(/>coth> - __5_(__[_))
mry mﬁ’g I-D(*"” s S=h cinhw
w;’ﬂ= < [T cosh - )/+k Ay ELS oy

—_ [/SCoéAﬁ - ZD(”'”) ) JihA __7]5:.#- mTx
Qi+ Y[ < sinh 2% - cosh =72~ 2L GRS cosh

Jlnhelb
=z

_ (freoths - 22(2D)%) cosh mTy [ sin




For the antisymmetrical case, the rotations along the

edges Y =11% are taken as

I
L)
o
3
3
iR

B.C. (iii): e, ,

C‘i =- £ [/b esch 35— {l+ -ZD("'") // cothpr )} eosl»ﬁ] —;’

Paﬁhﬁ

where subscript A indicates antisymmetry, the expression

for €, can be written as follows

(=) A

[ csc/;ﬂ 2(/ 20(_*1@)[/ ;«i‘éi:’)} <055/5J ) (36)

Substituting the expressions for the constants C

<, C‘g # C,,, into equation (27) and combining

where

/)

symmetric and antisymmetric cases by substitution of

I, = z (6, -'92) for symmetric case
and 9:4 -7 (9_/ +é1) for antisymmetric case,

the following expression for the total deflection due
to edge rotation is obtained, and is expressed in matrix

notation.

W - EL(;,L?) Sin _“”T".'i‘.[é, éz}[Wg] [H‘J}

(37a)

where [WBJ = l, - ’.{: kt "21 ’21 k.
-1, Ak -1, Ak

21
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/(t' =/5['ahh/3)
/{< - ﬂ cal—ﬁ/b
mTy

MY cinh 7Y
L L

{H‘j} — COSA h"Zr‘j

My siph 2Ty
L L

Sihh mTY

L

Similarly from equations (33) and (34)

e 2 (2D s mrz | & G115, ({h,] - {hu) (370)

Wy, = ——(———) sinmTx ] g 6,13, ]( h i-;ﬁ { ag}) (37¢c)

where
[56 = [— % )2}
] A,

A

{hg} ) {COSL ”:Z"_‘g?

sinh =Ty
L
5_2_5_{’____/_5_ Cosivdﬁ
{}1’13}: Cosh />R

.S'Lh/lﬁé Ju—:/w(y
JLh/)/‘S/o

Furthermore,

W, - W=y = f(;é{) sinmTx |6, 6, ] X (374)

(Wl - 2 1510l ()
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Woy = W=y, =+ L)sinmrx |6 6] X (37e)

(1] - 222 10 ]

To obtain expressions for the generalized stresses, the
equations for the partial displacements are substituted into

eequations (2) to (6), giving the following results:

My - 22 o(z2)sivmz= Lo ad (013 (55 - 3 (T Tl ]
2 s )

My= - 122 D(2T) sinmnx 8 QJ([W,J{H }-(3 + 2 (2B fi)
+ —“ h”r) [5 ]{5«99

(38b)
ny = -ng = 1_;_)1 D(-'—Z—I)Cos '-"—Er—i Lé: éz_}([wgJ{H;}

SO IC ) R ITARE JCHIASD N ()

(38¢c)

Qx_—. D(—’%I)zc.o.s Zg’i[é, §zJ[ss]({l"g§_ {;B(gl) (38d)

03 = D(—‘:—E)Z“"*’ *_"5_'24_[_67, %J[Se]({",‘f}_;f{h/dgg) (38e)

m Ty Cas;l nmy

i . mMy
{H } _ sinh -

Ty ik Y

where

cosh =T




L}

' Stnh MY
{h‘j} {C_osh L:Iiz
L
, Cogh cosh <y
-2 )

ca.sh/b[o
SEhnh /3 uink <y
Forces along edges 1 and

Jihbﬂp
2 due to edge rotations

/o'="v1 .= h'” SM-;_’:'J[’ELQ 6_, X (39a)
ﬁw/:
Cosh /> - [SE] {Cash/bz )
ﬂr:osi,/b sinh (3
Sta.h/b
Mo = (Ms . b= VD(MW)”*""”" Ls, 6,1 x (39b)
/bjbhh/b
Coshyd | - [ ]{CDSA/SK)
-/5 cosh/> ~Smh/f3
—_ Sth/b
,9-(0 %*’—) ”"’7“"'””%'9 6,1 x
Ca.sh/b + /+v zD »»77/[5][;%1,/52 (390)
Sinh/3 Cosh/>
Eanh
ﬂ”’v‘ﬂ + -BQ("'”) [sg]j/oéqhh'/; "m"/jj)
Co.sl,/b —_ﬁ_c/:::éb; Cosh/ﬁ
Vi == (@, + ) oo D(*”’T) m7x |6 6, [X
1/3 asb/al +Y _
= s [{-smhr3
([We} - Sinh /5 ( ( )}[a]{@sbﬂ}(?’gd)

/Bsinh /5 2 banhppp cnh/3
cosh/3/ t 2_'5—D (b‘r—n’) [Se} [ Zﬁ“;@h P ioshﬂ g)

24



7)

8)

FIGURES 7 AND 8

SYMMETRIC NORMAL EDGE TRANSLATIONS

ANTISYMMETRIC NORMAL EDGE TRANSLATIONS
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b/z_ b/Z Vzw;
T Mgz
r ‘\ A
////:’:_;;——/J / Wy
3 -
V/'Wi //
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V2 ar
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(B) Translation of edges 1 and 2 (Normal to Panel)

27

Boundary Conditions

_.__.ﬂg/l;rb =0 for Yy== _:Zk?_ (iv)
w = "!A.}, S/ m X
( )ﬂ=%, T
(v)
w- - J . T
( )(,::—._i. - w;. Seh ML

Symmetrical Case (Fig. 7)

(“7 b = @djy=—%

9= 3

For symmetry av  must be an even function of Y

Dgw.,,, =(3Z1r)[cl sink T4 4 €y (118 och T3 ¢ im0
Yy

w2(mn ) cosh/3 i) ﬂmrﬂrx
s Y

jocosh b

From B.C. (iv)

- =G {Beupri- 4 (””)%ﬁ

Substituting for the constants &, , €s in equation (27),
(]

W= C, [———) hh*"""'i {ﬂ@é/r/bflf- LD/’”")( '{"“‘h/b")J cas/;”'"":].rm'"’rx

otanh L



For the symmetric case, the normal displacements along the

edges ‘j=1'% are taken as

w, = W, SLh’.:I_x
L

From B.C. (v) , it follows that

(et e R Exth o]

where /)3=[ﬂcsc/;/5 +[/+ i——D(LZ_I)’Z :::’:/:;)}ws } (40)

Antisymmetric Case (Fig. 8)

(W)F% = ‘(”*’) -k

For antisymmetry W must be an odd function of y

Cl — Cs = 0
3_1{‘31’_ = ﬂ[C,Coshﬂ-’-C.{{mw hmm’+605/r”'T7ry
> : : |
’ iD ’"W) senhfs casﬁdyjfih mAx
P.m,hﬂ/o L
From B.C. (iv)
=74 {/3 L‘anﬁfb + /- “’('"”) cobhfBp
Pcoéh/s
iy Ty _ " LD cobh L -
W= C[ )cosh {[5('4 ‘)/5 + 1+ £& ("' ( ,«:ch-bég) Sinhm Jsm ».Zr

For the antisymmetric case, the normal displacements along

the edges ‘j=:t% are taken as

Wy = W, sin "2IX

28
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From B.C. (v) , it followé that
-1
2
- 2D (mT _ cothrpe } : J -
C, = [/6 sech /> {/+ = (T) (/ ;57”75) sin b3,

or C9= RI’Z‘J—A—

where ’21,— [ﬂ’ﬂ’-chfb {”_ LD(mn;)(/_aeh P};,,,;,/'él /41)

pcoth /5

Superposition of symmetric and antisymmetric

cases, after the following substitution

Symmetric case: = T (’wf *’Wi)

S
Antisymmetric Case: 4 = —zi('l:):" *74/2)

yields in matrix notation

We £ sin Wrz[_w W‘J[ {H } lD(@T%]({A,}—{hbs}) (42a)

where [W]._. _A5 /13 (k‘”) )‘/ _’1‘/(’6“"'/)
e A ) -2y Ak

[Su] ’[)5 ").,,J ) {ht_’gr {;:&—:?%Cos/;”’#&g

A, A, cobhfe sinh 79

rocobhsd
The partial deflections are

W, - %(——)m m T |y /W”J[%]( {hy} - {"«9}) (42b)

W, - g(.‘%’ifnh”_’{il';f, @J[SM]({M}—;IL{M}) (42¢c)
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W< L sin mrx [, @J[[Ww]f”eg"%(%)L[Sw]({hesl"{"w})]

* * C (424d)

wy - 4 son mme |7 a7 L 1A 222 T (o4 {;M,})]

by

Substitution of these into equations (2) to (6)

give the generalized stress equations.

M /))D(W'TT) m?fxl_zw* ;| X

x= —

[{ww J{H,} +:22 [su]{h,} - 2B( mn)TSW]({L’H {’1«9})]

(43a)
My= - 12 D ﬂ)iih»ﬁm ] X
Fud{i)- 2 B hd- 22(2 T Yk} -}
(43b)

o Mye = 1Y D(5) con 2z, g | X

g h)- 20 o) -4 08

(43c)

G - D(=) eos =rxi a7 15w] ([h,} - he)
(434)

m f ‘o mImTx W, - ar L ;’o(
¢ - DT 1 sl )

cobhBp  cosh ’"m’
pcobh /s

where ﬁﬁ:ﬁZﬂi $cnh MMy
L\I P Eanhps L
éc.’ =



Reactions along edges 1 and 2, due to

translation normal to the panel
L - -
~y (T, mTx |ag 4
MM=-(M9)9.2=TD(L)““—T Lo, 24 X
2

(o) (- 2z

cosh Senh/b

(44a)
/5605")/5 7T l‘anh )=
sinh b - 2D (m =) s, E,oém,;,/b‘“"ﬂg
coth -4
pcoél,/bswh/s

< (M), ==Y D () sin = i 7] X

* /5 sinh 2 D/ w7} cosh/>
([Ww] ;shﬂl— (B - &5(%_))[5”]{4“5/3}
':/‘i:ﬁ"//:) 2 tanhDSp (44b)

_ _&g@(ﬂ) [5 ] _Z:_/;/) cosh/> )

_cothpp
th b sehhfd

- =Y D(m?r) :m*ﬂf"['w' w; | X
L

Viw s (Qurillsy)
(] {25241 a:&J{;:f@) "

P
Y3 L WK
Vzw = —(0x+%ﬁﬁya~e = /;VD(—ZZE) St _L”_l_'wj 'W,;.J X
-3 coshys .
([_WN'] - Sehh/d | /__. [ ’w] —‘S“’h/?’} (444)
/3 scnh/3 1=¥ Cosh/?
Cosh/:}

Combined forces along edges 1 and 2 are ob-
tained by adding equations (39) and (44).
M,'—‘- M,e -+ M)u.r

ML’ MM + ML"W"

31



VI = Vle"fvlmr
Vz' Vza+Vzw

M,= D scn ""‘fx [ "Z”(),@shﬂ — A, _Q'hhﬂ) 8,
- Q%T(),coshﬂ; + A, _n'h/;ﬂ) <9—1
(Z2H (A costy = Ay sinhf3)-(10) 5,
”(’%77723 oshd + A, si0h/3) ﬂffJ (45a)
My=D sin W'L”" [~LHZZT_ (2, coshm + A, 5&»1/;/5) =]
+ 2T (A, coshps = Ay sinkf3) 6,
+(_'zz_7_7)2(23 cosh/>+ A, sin h/b) , (
(BT et = Ay simt -t ]

V, = =D sin r_p{ic[ (_,:,:7,)1{(2/5/},},/5 —/?zcasb/?—(/—)y}é_’;
_("-Z—”)Z(,I, ScnhsB + 21 m;l»/é) 19_1
~(ZD A sinkys = Aycoshps) i
_("—’}_Zr}"( 23 scnhy/3 + Q,, Cas/;/j) /)471]

Vi=-Dsin "'Zrz [ (t’zl\')z(/z,s&hﬁ/b-f- /21 cash/b)é’;
- (-’%I)z{((/?, Sinh/d— /21 Cosh/ﬁ)—(/"y]ég
— ('—"Zl’-r)’ [/2355;7/7/5+ A, Cash/i) 7
- (%71)3(/?,, Sc'hbﬁ~),,Cosh[5)/h7‘1] (46b)
Note that /2_3 CosLﬁ = /2, Stnh/3
Ay sinh (3 = A, cosh/3

45b)

(46a)
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CHAPTER III

IN-PLANE DISPLACEMENTS OF THE PANEL
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ITTI IN-PLANE DISPLACEMENTS OF THE PANEL

”m
Let us take u™. Uwy) cos —_—-—”"‘er
m
V- V(a) sch mITx (47)
L
Remembering that the following analysis is

for an in“‘harmonic, the superscripts are dropped.

The stresses in panel are given by [1]

O = E(a“— y&v)

=Y\ Dx Qy
(48a)
- /._yl-( mTrU*_}) V)s:.h h Tx
G‘;= £ (97/* L du
—Yi oy 2%, (48Db)
E ¢
- 7= vl( V — U)s:,ht”_’fi‘
A @(
x4y = (48¢)

- £ _[(()4 =T
T 2(1+Y) (U+ L V} cos X

where V= V(g) ) \./= .;K‘i) B} U= U(y) B 0= d(/(g)
9 dy

Substitution of these stresses into the

equilibrium equations,

3G . 3Ty - o (492)
Jx oy
26y z
T (iob
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yields two simultaneous differential equations [1]

£E ' 2 /+V -7 m
[U-% (30 V] cos == 50

2(1+v) =2
E_|_1+Y miT ¢ 2 v/ _(mm? ] L omTx
z(/w)[ — . Yt IS V“(z.) Vjsin L (50D)

[j = JZU@) \:/' _— sz(fﬂ
dg" ’ 0192.
[1] that a solution to

Wh ere

It can be verified
these differential equations is given by
Us=A cosh =84 + A sinh 27y
+ A, 2Ty cosh mTy 4 A, Ty sinh 274

(51a)

L L

V: B COSL) +B 5‘”}’_[_'1

B, mmy h_fd B, Ty sppl mTy
+ P = cos + Z s (51b)

where B, = A ’4
B, = A, ¥ Ay
7+V (51c)
By - A,
B, = ,4
A, B, /2.3 y) are constants which
J) L

can be obtained by making the displacements satisfy the

boundary conditions.



9)
10)

FIGURES 9 AND 10

IN-PLANE SYMMETRIC EDGE TRANSLATION

IN-PLANE ANTISYMMETRIC EDGE TRANSLATION
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As in Chapter II of this thesis, the
deflections will be imposed one at a time, keeping the
other one zero; furthermore, symmetric and antisymmetric
parts of each deflection component will be considered

separately.

(A) Translation Normal to Edges 1 and 2.

Boundary Conditions

w = =tée i
o , Y 7 (vi)
(h’)y_b = A Sen MmTx
z Z }
- . (vii)
(V):,:_Q = Y, Sin P_nzﬂit
F 3

Symmetric Case (Fig. 9)

w) = ),
9= % 2

In view of symmetry and definition (51lc),
B,=B, = A, <A, =0
From B.C. (vi) : A, =-A, /2tanhs3
B, = ~Ay (pl-anlv/i +%}
And therefore, we have from (47) and (51),

- miy My _ o mir os T X
u AH( T 5th——z_ﬁ ﬂfan/)/ﬁc SH_LJ)cb 7

Ty mly —(Blanhs + 222 ) 500 22TY| 504 mT
V- = A‘/[T cos,T_y (/5an/5 i) St =] sen Lx

38
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~/
From B.C. (vii): A‘,, = (/3' sech/> - 3-¥ _sa'h/;ﬂ) fl/T‘s = /2,;— v,

’/+y

-/
where A 5 = (/5 sech/3 — % 54"""ﬂ) (52)

“y

]

25. 7/__; cos MM TX ("_‘_"_71_‘2 sihh ,"’"_715-/(‘_ cosﬁ_‘i”lﬂ)
L L £ e

I

ye . mTy T 3-)/ y m7r)
Vie X; Uy sin mmx( 29 cosh mTy (k3 2) sink T

where k{_: ﬂfa»/:ﬂ as in Chapter II, and subscripts s

indicates as before, a symmetric case.

Antisymmetric Case (Fig.l1l0)

(’V.)9=Z_b = (q”')y =- _22_

From antisymmetry and definition (51c),

B, By =/ =Ay=0 .
From B.C. (vi) : /4)_ = “Asﬂ) Caé'/)/b

= —A (ﬁ>cal‘h/f>+ /—:i-—_)/-

And therefore, we have from (47} and (51)

T b T wh My mTx
W, = As( L Y cosh_l:__'i —/:’:o caé/p/s senh > )Cas -

Vv, = 3 ( *nzrg sinh mLTy _(ﬂwé‘b/s +§:¥)(osh_’gg_y.ﬂh '11_7"3
From B.C. (vii) : A3= (/5“‘/’ +/ivy Cosh/s) = Aé O

where A (/bcsch/ﬁ+ __—_.. coséﬁ)

(53)
W, = /?6 /V' Cas""7"=C (___’2 cash .._—_3—k sinh ’”79)
7T
. m cosh 7Y
Vy = )6/1/55/;«_————””{1(—[_—5 Sthh ‘Lﬂ" (‘éc'*/-rv)o )
where ﬁ =ﬂ“ﬂ’ﬂ as before and subscript A

denotes antisymmetric case.
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symmetric part

_ _ = -
Substituting, YV, = - (v;-—l&
( antisymmetric part

Superimposing,

The internal deformations are

o« ==L IO RS

N
It
i~

where [U,u,_.,_—_ 15_ _ls_ kb —,Zé Aél(c
")5- /.?Fké— ""2(, /26 kc

{Hez as in Bg. 37a

v g sinmt=|ar g [[V, ] {Hy]

(54b)

—2 &‘+HV

where (Vv]: - 2"
-4, ,) (/(4-3 ) As (kp+ 322

Making use of equations (48) and (54) the

in-plane generalized stresses are defined as follows
/3Q+Valf'

_ 20 ¢t AEE
N /—V‘(Dl 99

( £= facing thickness)

_ - £t (:r:l__l)szw%ﬁ[@ 31 [V =] {Ha

/+
(55a)
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where [Nﬂp[zs —/?5((@-,—2;;,’) A A (k ,+,,J
)

~As As (h A -4, f?e(/‘c -4y
P
Ny 20t = 2EL (ST 1 v 9c)

= (;"7)5 h ””"*[@’ arj[A@y]j’ z

/+ Y (55b)

wneze [y, ]- [45 A (ke t) A Al ]
—-,?5 /?f("t*LZ;) ‘_’26 ’2 (k /+y

Nyx = 2 Lyat < £E 7— 2

2 £l T cos B2TX| 9 @j[N,xy]{H,’}(SSC)

—_—

/% -

where [NVH=]= -4 d. (,,W k) ds -As /+v+ éJ
e MlEE k) A A7k

(B) Tangential Translations along Edges 1 and 2

Boundary Conditions

v > Y== 2 (viii)
(W,.o = &, cos mm=
9=z L }
c T (ix)
(“)9__5 = u' oS Y



11)

12)

FIGURES 11 AND 12

SYMMETRIC TANGENTIAL EDGE TRANSLATION

ANTISYMMETRIC TANGENTIAL EDGE TRANSLATION
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Symmetrical Case (Fig.11l)

S [u_)y:_%

since (/ is an even function of ¢ : A, = Ay=0 ;

and from eguation (51c), 5, = 59 =0 .

From B.C.(viii) : 51 =-5 /§ Caéé/b

A=Ay (ﬂw[%/b /+v
g - A‘,[ DY g 2T~ (rcothys = ;)cmé%l’ﬁ]cosfg:i

. X
Vv = Aq[”"_:[‘d cosh h:ry . /Pcobh)B sahe’m_zrﬁ]ﬂn 2=

— -
From B.C. (ix) : Ayz_(ﬂ)CScAﬂ— %ccsh/& 7 :-—'/27 U

3y =/
where 7— (/5‘:56;’/3’ 7+_'v Ca’s}’/b) (56)
= -/2 wy cos ”"Tx [’”"Tys hhﬂ (/ ':)Coshfz_’fy}

- : m T
Ve R, o s e[ = ]
Antisymmetrical Case (Fig.l1l2)

(w) (W)
Y= Y —g:

since U is an odd function of y 4,: 'A'L/ =0 ;

by

it then follows from equation (51lc), 54=5.3=‘9-

From B.C.(viii) : B, = —Bq/é tanh/>

by= Ay ([tanhyp = 22)

U, = As J cosh _“"’_77_5 - (/Sfah/;/b —_3_"}./).51."1/: »LTJ cos ilzf_:z
v, = A [""’ TY sinh 2Ty ﬂéanéﬂ cosh _9] Sinm -ﬂi‘

From B.C. (ix) : A4, = (/bscc/;/j+ %Sinh/b) Uy = Ag i,
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.3_)) . A )-/
where Zg =(75.5666/6 + == Sem /3 -
— trnT(d pix _ _3Y ; -
= /257 ky ces /’:_Ll__x[—z—- Cosh '."_"L__U (kt /3—;—)) sinh MLHJ

— . T .
Ve« g st mTE[ETO Stk Ty, cosh porry ]

Substituting, “‘_5 = f (“«/ + u’z) for the symmetric part,
-— ha _ 1;: . R
W, = ZL(U-—, 1) for the antisymmetric part
and superimposing, W = g+ &,

V= Vs +-'U"A

results in internal deformations

wet cos x| &, G [ U] (4] (58a)

where [Uw]= [—. A7 /)7 /A" /+)1) 478 —/?3 (k 73;3}}
~A, A (ke-32) <Ay AslleE)

Ve :ZL Sth ”,321:7_7'34[64—, in[Vw]{HfaE (58b)

where [V“] _ ;lg "/7,? ‘(’t. —/27 /?7 ,(’c }
‘/?8 /?Yké - ’27 /17 k.

Substitution of equations (58) into equations (48) yield

the generalized stresses

- mﬂ’);,_n mrx L""I &, | ENu.z]{;/ g (59a)

+

Where [ k-22) g Ag (k-2 J
—2 (k—;’*:;’ de  -Ag Ck-322Y

=_f_é("’7r)“” T | a ][ ‘ﬂ{h’ﬂ (59b)

Sy

Where [A/utj] = ["27 /27 (c "//7_5' /?8 —/‘28 (" “//_*-—;;j]

A, A le- 1) s s (kL



Ny - 7%(.*%1/5,5 (3, wy ] [Wey JfH,] 500

Where [N,w,‘]: [ 29 - ,25; (h‘;z; _27 ’27 (/“"EZT/)
e plh-E) -4, A, (k-7E)

The edge forces are obtained by adding N N
4 2 "Vyac

from equations (54) and (59) for y=1t k

N, = (N'j)y=.z/=z )

Nz = (A/’j)y =’§

s, ="(/Vgx)9= . (60)
S2 - (”52)y:§

The sign convention for forces and displacements is shown
in Fig. 14.

Edge forces for edge deformations in plane
of panel

e - REE () sin (A coshpo- Ao k)

s (Ascoshpr A; sinhy3)7,
-+£317Co&@6~é% SAhA/;L.0+¥@l;;
+ {’27 505/7/5 + 235:'»/75) ‘;z]

(6la)
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Vi (Y i g (1 e 1A
+(/?5.Casﬁf5 +/?é Sohb/ﬁ)ﬂ/{
[, costypdp sonbp) o]
+ (A, cosh/>+dgsint3) ‘:‘“2] (61b)

S, = ;%éz (@TH) cos ““I"[[(/?s sinh/3 -A, %Aﬂ)-r(/nl)}/v—;
+(,?5 :L‘;,/,ﬁ+/géca5,,ﬂ) i
+ (A, sinbys ~Ag coshys)
b (2, sinhys+ A cosh3) ]
(62c)
s —(/357&" /2:—79 COS@ZTB [(25 sinh/d+Ag Cos/)/j) 7
"{(25’54‘ h3-Ag CosAﬁ)+(/+v} T
+ (2, sin b3+ Ageosh/d) &,
+ (27 Sinh (> “‘28605}7/}) ;,z]

(624)

Note: /lg Stnh(3 = 27 cosh(>
2(,‘, coshﬂ: /?9 Séhlvfs

(C) Edge stiffener Deformation (Fig. 13)

Let us consider the free body of the stiffener

shown in Figure 13, and let us assume that the axial dis-



13)

14)

FIGURES 13 AND 14

EDGE STIFFENER AXIAL DEFORMATION

SIGN CONVENTION OF EDGE FORCES AND
DISPLACEMENTS

48
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FI1G. 13 EDGE STIFFENER AXIAL DEFORMATION

F16.14  SIGN CONVENTION OF EDGE FORCES &
DISPLACEMENTS



LL-:(:{: Cos M=
L

Stress in edge stiffener

a’u.___ [T T x
G;=E;[—x_£%{L/SIhT

The force transmitted across any arbitrary

cross-section of area A, is F;==0: A . Then, the shear

stress resultant 5 per unit length is given by

S. dFi
dz 12
_ ~£Aa,(”’7.) cos “_oLZ/izc

Substituting the appropriate values for 25
we obtain the following expressions for the shear stress

resultants at the edges 1 and 2

2.
S, = —£A &, (L:I) cos mIx

- Z o (63)
S, = —£A &, (”:W) cos _Z:ff

These 2 expressions can be added to the edge force-edge

displacement relationships for the whole panel.

Considering the bending stiffness is negligible
in this analysis, we only consider the axial deformation

of the stiffener.
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CHAPTER IV

DIRECT STIFFNESS ANALYSIS
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Iv DIRECT STIFFNESS ANALYSIS

From the previous theory the stiffness matrix
for an isotropic sandwich element of a folded plate
structure can now be assembled, using the sign convention

for edge forces, and displacements shown in Fig. 14.

The element stiffness matrix can be written

[3] as ) .

(M, ) K ki ks Ko, 5,
My kyy Kiz Kin Koy zEeOs &,
Vi Koy Ksa Ksy ks w,
Va = |Ky, Kyp Kus Kuy W,

i S, f key Ks, key Ksp ﬁ w,
S, ) 2Epo's ke Koo key Kig w,
N, Kys Kyo k,, Kz v,

L‘A/z ) I Kps  Kge *97 k38 1 M2 |

(64)
It should be noted that the sign convention for
the displacements «,, 7, , W, fand forces V, and 5,,/ﬂ

/

are opposite to the one used in the theory.

Making use of the following definitions:

D - E, /E_-yt’- (C+[‘}Z
S = (C+é)z Gc ) ks= =Y D (ML
< 2 S L

’/3.: o Th , b= (}+.L)A-

2 L Ks
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1, <[5 seens {1+ 22 (2= tantise i |

Pé‘dhﬁ

1| peschpm 1o 22(m - st cons]

s cobhsB

1, [3esehse fiv 22027, fa”h_@p)}m/,ﬂ]
A, /3 sechps-f1+22(mm)Y; ot )};M/s]

4 o colh D
The m*harmonic element stiffness coefficients

consisting of bending and plate stiffness coefficients

are given as follows:

Bending stiffness coefficients for a sandwich panel:
Ky =Kyz= D (“!’:T) (,2,«:5’7/5 - ),_ .St'nla/‘b)
Kia=ke, = =D (mT)(, cosh/>+A, Sinh(3)
Kis = ko= P2y coshpp= Ay sinhf2)=(-)}
Ky oKy, = — D(—”—Z—’?z(/?s cosh/> + 29 St'h/?ﬂ)
/(2.'5= /'(’32_= ’<’/y
kU/ = k‘rz = 433 3
K.BS - kl/‘/ = D (4‘2‘7"'-) [/73 54"7/7/5 "/21/ 605;7/5)
k.34/= Kyn= =D (":'2-77)3(/?3 Senh/3 +2¢, ca.s/rfﬁ)

Plate stiffness coefficients :
Kes= Kee= — ;f;,jz (’{—”}(27 Sinhs> ~Ag 605/7/5) + AE({J)Z
Ks¢ = Kes = = —%_5‘:— (Z2)(2 5 sinhps +Ag cosh/3)

Ks7= Kps o = ZEC (=2 {(R, coshf> = A g sinhsY + (42}
Ks®=kps = - (/2’5)‘; 7)) (27&»55/5 +/?J7“'""ﬁ’)

Ké7=‘k = ksg
kég':/(}’é = k;;

Ky = Kgg = — &.EI (:er)(,zs.Co.slvfb —/?6 J'l"'v/'ﬂ)

(1+¥v)*

K78 kg7 = - 2£ & (”%71)(/?5 Ca.s/)/:')+/?é Jw/)ﬂj Y

+>J*

3

L (65)




wher e

-1

Ay [psechp= 3V sihp]

/4 -,
Ag = [/5csenp + 2 C«osbﬂ]
/?7 = [ﬂ csch/d ~ 73;;\5 Ca;/,/b]_/

Ag=[ /o sechp+ 222 simpp]
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FIGURE 15

FOLDED PLATE MODEL
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COMPUTER PROGRAMME

The programme as written by Dr. P.P. Fazio
and described in [4] was rewritten to include the analysis

by the Elasticity Method, as an additional option.

The original programme used the analysis by
the ordinary method to find the theoretical stresses and

deflections of folded sandwich plate structures.

Experimental results are available for the
19 ft. folded plate model (Fig. 15) in [4] . 1In order to
compare the theory with the experiment,numerical results

were obtained for both methods.

A flow chart of the programme is shown in

Figure 16.

The computed vertical displacements and longitudin-
al stresses at midspan of the model for all the ridges, are
plotted in Figures 17 to 30. These plots were compared with

the corresponding plots from the experiment.

The plotted experimental stresses are average
values of measured stresses in upper and lower facings at

the ridges.
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2. Read: Card 1, Option*,
Card 2, number of structures
]

3. (ﬁtart cycle for a new structure)
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4, ‘Read cards 3 to 8 incl.
Geometrical data
'
5. {Read card 9, number of
loading conditions
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6. ( Start cycle for new load:>
condition
¥

condition, joint load or

7. ‘Read card 10, type of load'
surface load
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~

FIGURE 16  FLOWCHART
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FIGURE 16  FLOWCHART  (CONTINUED)
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1
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FIGURE 1€  FLOWCHART (CONTINUED)
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FIG, 1/ THEORETICAL AND EXPERIMENTAL VERTICAL DISPLACEMENTS
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FIG, 19 THEORETICAL AND EXPERIMENTAL VERTICAL DISPLACEMENTS
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FIG, 20 THEORETICAL AND EXPERIMENTAL VERTICAL DISPLACEMENTS
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FIG.2] THEORETICAL AND EXPERIMENTAL VERTICAL DISPLACEMENTS
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FIG., 27 THEORETICAL AND EXPERIMENTAL VERTICAL DISPLACEMENTS
AT MIDSPAN OF THE 19 FT. FOLDED PLATE MODEL LOADED
WITH A UNIFORM PRESSURE
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FIG, 25 THEORETICAL AND EXPERIMENTAL VERTICAL DISPLACEMENTS
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FIG. 24 THEORETICAL AND EXPERIMENTAL LONGITUDINAL
STRESSES AT MIDSPAN OF THE 19 FT. FOLDED
PLATE MODEL LOADED WITH A UNIFORM PRESSURE

SPAN ~ KS1

LONGITUDINAL STRESS AT MID

RIDGE NO, 1
~-14 ///
-12 ///////
-10 ////
/ 4
. /
-3 / /
. /
/
_6 /
. /
/ /
. /
-4 / // AVERAGE
. EXPERIMENTAL
/// ////' — - —"— ORDINARY THEORY
S e ELASTIC THEORY
-2 //
/' Yz
W4
0
0 10 20 30 40 50

UNIFORM PRESSURE ~ PSF



69

FIG, 25 THEORETICAL AND EXPERIMENTAL LONGITUDINAL

STRESSES AT MIDSPAN OF THE 19 FT. FOLDED
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RIDGE NO. Z

14

’ /

~ KS1
=
AN

4 /// / __ AVERAGE
' // EXPERIMENTAL
///;// ‘‘‘‘‘ ORDINARY THEORY

————— ELASTIC THEORY

LONGITUDINAL STRESS AT MID SPAN
[@))

0 g 10 20 30 40 50

UNTFORM PRESSURE ~ PSF



LONGITUDINAL STRESS AT MID SPAN ~~ KSI

70

FIG, 20 THEORETICAL AND EXPERIMENTAL LONGITUDINAL

STRESSES AT MIDSPAN OF THE ]9 FT. FOLDED

PLATE MODEL LOADED WITH A UNIFORM PRESSURE
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Fic. 28 THEORETICAL AND EXPERIMENTAL LONGITUDINAL
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\Y CONCLUSION

The results of the ordinary theory and elasticity
theory are compared with the experiment in Figures 17 to 30.
The comparison of vertical displacement at the midspan of
the screw ridges is shown in Figures 17 to 23; on the other
hand, in Figures 24 to 30, the comparison of longitudinal

stresses at midspan is shown for ridges 1 to 7.

It is seen from the plotted results that the
vertical displacements and longitudinal stresses vary linear-
ly with the uniform pressure loading, which conforms to the

basic assumptions.

Discrepancies arise due to the following imper-

fections in the model.

1) Initial waviness of the surface.
2) Compressibility of the core.

3) Imperfect bonding.

4) Joints between panels not rigid.

Unstable behaviour at the compression ridges of
the experimental model can also be observed. See Figures

13, 5 and 7.

Instability is manifested in the displacement
plots by an increasing slope of the experimental curve,

together with a decreasing slope in the stress plot.
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From the figures, it can be observed that
symmetrically located ridges or joints show similar behaviour

in both theoretical and experimental results.

Except for ridges 1, 7 and 4, the results of
the elasticity theory gives better correlation with the

experiment.

The apparent discrepancies in ridge 1, 7 and 4, can
be explained as follows. For ridge 1 and 7 this was due to
the fact that the free edge displacements before relaxation
were not calculated in the computer program, however, the stresses
show reasonable agreement with the experiment. 1In the case of
ridge 4, comparison of Figures 20 and 27 shows that the
experimental results may have been influenced by some local

phenomenon.
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APPENDIX

FIXED EDGE FORCES DUE TO DISTRIBUTED LOAD

General Theory

Governing equation

‘)91‘77:::(_ + 97(&/—;’5 .,,ZJ;’) + )VZ:/—;" - Z’
oxY 2x*Dy* dy? Yo,

(Al)

The loading ¢-is uniform in x direction
and can vary in y direction. We will concern ourselves

only with a linear variation.

The loading can be represented by
1 o T x
y 5
g = 2 94) Zm S L (A2)

= /. 5, 5‘-" .....

Taking as before the m* term

m T

In the following, the superscripts will be

deleted. Splitting the partial deflections in X andy

direction, as follows

—_— — N
Wi = Wi+ Wex W = UWoy+ Wiy

J S$a3¢

(A4)

~

Wpy = Wiy + Way

N

y- Wiy + Wig

>

where %Zz,lg’are solutions of the governing differential

—~

eguation for zero load (equation (19) ). %J;:; is the



solution of 4th order D.E.

Wex ~ 4 qu) ., mTx
ox mIT D L

and W,, follows from

~ 3 .
0w, __ D 0,
ox S Dx.
Th e — 4 _L T=x
ehn w—bx — s q,(g)(mn_ Sim ML
”: 4 —= m T
and Wy = S q/(gj(m ﬂ') Stn X

(A5)

(26)

(A7)

(A8)

The second part of the solution is similar as

that shown in Chapt.II of this paper. See equations (22),

(23),(25),(26) for W, , Wp, , Wsx and Wiy

From equation (l12a) and from

x

it follows that dﬁ;a - Wbz
~ —~
Wiy = Wex

Both Edges Fixed

,respectively.
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Now all the components of the partial deflections

can be added and the unknown constants derived for the

following boundary conditions for fixed edges at y= 1%

o x
o = O
O Wpy o
0y =

t+ b
2

(Aa)

(Ab)
(Ac)
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We will again find a solution by separation of

the loading into a symmetric and an antisymmetric case.

Symmetric Load

g )= 9

for symmetry C, = C"r - W3 - O
.i.[—- _%_. C cosh h—:Tg + C_; »—.7"9 Stnh __‘1 ‘/ W 605/70(3‘15»\ mAx
— 5 = =~ T . - .
= _‘Ll_%[—é (ﬁ) + C, Cp.s/!f'zﬂ + Cy QLJ:thﬂ‘__@+(/+k‘)%Coshd5]Jznh_-?

— L\> 2D e ] ; anz
Wiy = Saa[L () BP2(27)°C; cosh 1y — 4 W, coshuty [sin

- 3 2 = - T
Wy o 315[3/ LY 2D(#T)E, cosh Ty (s k)W, coshuy | sen 2T

W:%%[{El(bﬂr (m)}-#C cas/r’”’_'il.;.

+ 53(2[_@ rh _._? ‘ZD('”TCash””Tj}mme

The first B.C. (Aa) gives

3 2 = y b
g/(m—l;r) - %_D('_Zl') C. cash/b --(H/(,)Vl{z ca.v/;‘l;_. =0

- L \3 2
W, = (i _ () sy o
S(/+4 ast‘z’i (/-/- k_,,) Cc:sh°—‘2-.E 3

Then
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The second B.C. (Ab) gives

- i s 3 ~
C,=- D5 )+ 2(z5)" (/3&“/,/5-_2-59(;2/)) Z,

cos h/’;

now Cosh 22X Y 1 k5 )SQsAoly

Wi (L
wb‘i"‘z/—[ (»-w) {D =) T, C-,,/,/b * S sk, o casheie
+C3 | 2T sinh XY ~(ﬁ> Eanhys = 22(2T)) coshmy

Z.D(mﬂ') CosL/b @55&9}] P ﬂgx

/+ é‘ Coshsb
Z

From the last B.C. (Ac), we obtain
=~ AL N 3} " _1/ L)L h 'f]
CS:/ZI[{B[MW)+S 7o) 3 b }755(;_7?)/’&“/5

where /?,, is as previously defined (Ref. Egquation (35) ),

G & GLy] i £ (20 e i
defining A, =4, {/+ 2(=7) (- %,%)} ant/5 (a9
then 55 = 5/— (;l:;) s-/]/

Antisymmetric Part

- 2y
Y= 9 7

for antisymmetry E,=Cy =W, =0

";—b5= g%[ ( )vj + c 5;»/;11'3 +C. __?Casfl"‘”rv
b/ ud
+f W, Jmho(9J.rm X

/w,,z _L{ (».w)" + C, wa__y+c ’"’9 casb_y
'f‘(/-l-é_s) W_3 .Scn/7°(9] seh x

L _1D(mrx
Ws:j = ‘f%‘[é‘(ﬁ_) y = (T) Cz/ scnh —Zﬁ "‘k.; u/_, smktxjj.lm'_n?(
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Wy, = 3%[ (m”) - 2D (21 Cy sinh Ty
= (/+k5) M73 Sth bo(g]Jz.'n '22752
R S PR

2 .
= T 20/ r b h Yy mTx
+ &y (T9 <osh '"-l_—”y“:s—(r@”"/' Z‘j"" =

The first B.C. (Aa) gives
- e 3 D z :
w, - _* (i) _ 22(ED sahs c
25 (1+kg hm“b /+ kg Sin hAb
2

The second B.C. (Ab) gives

B SN, e

ZSth/5

oy [ ()9 2o 2 ) 2

(hﬂr) 1+1( w + & ;____'7 cos MY MT (ﬂ“’é’/"ﬂ‘ Zp(pﬂ?)

Sin ho(b
Slhé Ty ZD(h.vr) s Seh/3 J"’“hdfj}] Sim P2TX
Z rrhks s...,l\cxb &~

From the last B.C. (Ac) we obtain .
_ A Ly
Cy= /?1 [L_ID /,”'—L;r)‘— 1&_;_{51 (MLT) _L{ T}}@Ha/b-ﬁ (;'—7-,,) PCoc‘/;/sp]

where ,zLis as previously defined equation (36)

o Ey o Aub ()| A {10 2 () (it st
defining 2 [/5 I+ = D (”'77 (/ Coé‘ﬁ/’ }0/4/5] (Al0)

Pco
- L Y5 J
tmen &, = 7% (55 A,

Combining now symmetric and antisymmetric loads

by substitution of

symmetric load 9, =

antisymmetric load ¢,

%/ "'%v_
2
Yt 9
2
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= sin mTx | ;94 ] x (Alla)
2 g 3 ™ .
I+ 73 N A, 21} —{5 senh —”:_—m’ a, a, cos/:""_L’r?
/-2 ,:l, ~:'l,_ My cosh My a, ~az|l simh=lY
b T L i
JRE
T
A,-2 sinh m7Ty S\ /P lay-q, sinhoty
Fs

- s
Wy = _L(.A) sin 27% | g0 g, ] x (211b)
/v 2] [, )2] FEEsmhErd| &y 2x | [cosh M
/=2y A, -4, Y cosh Ty a, = ay(sinh 2
. b ‘
e -
+ %D("_w[}, /IZJ{COS"D ’%7[‘5}-* __D_('_’_"_W)l a4 ﬂ-‘, (ps;p(y
-— i S L
A, A Lsinn ’_"_Ll‘d Ay —a,)|sinhay
_ 2 L 3 i A T
s = 55 () S P Ly %l X

/+ % 3 11 Az CoShL"L_T% | a, a-q} {COSAqu)
/—2Y A A S/'hh*r_}':’ P A=Ay sinhey
™)

S

) 2

5 (A 1lc)
Wy, = (L) sin 2= 9 9] X
/- 24 A, A sink mmy)  [aqy —ay] (sthhotY
= - (a 11d)
. 2 _af‘;‘-,. mrz | |
= pL z Y Yl X (A 1lle)
2 2} S ~ . "
{r2(=7)] ’*£E+ T, 2, ][z simhmm
/-2y A, = mmy coshmmy
B - Z

a; a,1 (cosh M7y
L
a, -a, | sinh Ty

L
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\

Y 2
where a, = /2 /B3sinhss —('%-’-r)
cosh/3
mA
ay- 1 dy peosiss + 2 ()
Slnh/5
Ay~ 1= 24, cosh/3 > (a12)
cosh/3
ay o 1= 22, sink/3 J
Sthﬂ/o

Substitution of equations (All) into equations

(2) to (6) yield the internal forces
. le‘bx BLAA}LQ
x = -D dx* + 2y*

2 (1)) sem mrx | ge gif x

Y 3 ) Y mx

L(2) [ A f-[“' az] )

1 + |4 A ) | 3

=y /- 2Y /}:~11 ”ﬂQCosAﬂV a, —A, SL”hM"Ly
b

” z,]_, jl Caskmﬂ"a; Dfm [“s a.,:] mskd,}
{ ZD( 79[2-, ‘i} Sinh mTYy ( ’) ) St;\kuty

(Al3a)

i

L3
- = 2((a5) s 2= Ly ] X
,,{g +[A_, AJ{""’:”@{‘%
=Y (129§ LA ALY cosh

e
2L A g

{éosh __j
Scnh **-7'9

2
79 ay 2y
a4 -4‘,

(A13b)

Coshx
sih Aa(_c,

A=A, ) (sinh kil

" _ n _ /_)} D az(’l«}bx -+ ,Z‘)——":L)
z Jx 39

3 m
= %(-v)(_ﬁ) cos__i_lr_é | #, 4/;_/ X A130)
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mmy cosh mTy a, a, Stnh 7y
L L. _
c:.osh _,5

-a,

20/ ]
+ {”“ ?(T")}[—
/zl —22 /7-’:,:759
QWsx o 2 [ LV (g mmx
ox L (m77 [ 9, 4a] x (A13d)
!+ % %_ Z c,oshi"‘__ﬂ'ﬁ _ a, a {Coshe(y}
/= % 2 /2 Senh mmy ay -a, Sehhoty
sintmx | g g, | x
) 2 Lo, 9.1 A130)

/?/?ca

The fixed edge forces can now be calculated

9
L[é} A A $inh mly _‘,[.«43 a,,]{.:m/\_a,
_El o) 7Y FPla,-a, co.sho(gg
L

)Ju-. """'xlq/ q/jx

= Z
L
- i [3senh/3 a, a, cosh/a
]{ﬂwsk/ﬁg [“—; - ‘z]{sdhhfﬁj

> %(*:*)?[R 2, [z I
2 a "4, Jmh[b/;

Jlmhﬂ
i (b—:—';r)s-sih "_"'T—’Er[(/?’ coslr/b—l-jl 51.'11/)/)—/)%
4 (j, cas/;ﬂ*j;_ Jw/)/b)%J (Alda)

(Al4b)

/‘72= (M-‘d)y:-i;’-
- _Z’_ mrr) Sim T [(,1 cosh/3 - /? Sth;/s)q/,
4(),cash/5+/?z uh/:/b—) J
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For uniform load Ye=%2 = 9
1 _ M = 4¢.l° o ) -
M =-M, = mksn s nLh_LH(ZZ,coskﬁ /)
(Al15)
V, = “(J"' DMﬂljyzé = 1(};"-‘-)&:4’11 *L”'_’xl% 51/:._"\'

- ) cosh + m
(Z-V){/:J’L(/‘y) //; 2 ]( /Bsin ”2 (/-: e 791/“/5})
- (/-.\)) a, a, Ionhﬁi y D/mn /43 J}J‘ﬂll‘/sp
[a, —a,]{Cos}v/i (/} ( ) ay ~a, |/ eoshdp
ol L Lo
23 2( L sinnpp e, eos3) 9]
(Al6a)
e - 45 o[ [402(oodb
N T R

(Al6Db)

\——-r\J

For uniform load 7~ =92 =9
\7:_\7 - 8% Sin ""Zrz /2, Sénﬁﬁ
/ 2 mrrt (A17)

One Edge Fixed the Other Edge Free,
Uniform Load

This problem can be solved from the results

of the previous section for uniform load equations(Al5) and

—

(a17) M, o= My < lgl i mmx (2] cosh3-1)

3T
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The element stiffness matrix for deformations

normal to the panel is, (See equations (64) and (65)).

(M) Tk &, k, k., (&)
Ml kz./ /(LL kzs k:.“/ 61

< > = P >
V, K3y Ksz kyy ksy (2
VQJ __kb/ Kyz kys qug ( We )

Now for edge 2 fixed and edge 1 free

62 = w;:@
/ : ] . L) -
M/ Tt M/ = {,%3 (1,2, Casﬁp-/)-/- /(,,ﬁ, 7"4‘,3 Zd,’} Scm :r:c _0§(AIS)
IZ + V = zé;%r—f’(/?; fﬁh/”/f))‘* ks, &, +/e33""’;}5°h 'LZ:} =0

The fixed edge forces at edge 2 are

Mll =/{1—2 t kg_/ 9, +k15w;
(Al19)

l —
V, = V, + Kk, 96, +Kys W,
Solving the simultaneous equations Al8 for &,
and W, , yield after substitution in equations (Al9)
Kiys— Kas k
M Yg L { (Z/? @shﬂﬁ)(/-f Ky ” )
(”'”) Kn Ksy = k3 ks,

Ph"ﬂl
+ 2/2 Sm/-,ﬂ, kzs k/, -—-‘(/11 k/j)} SU" MW'X
k// k}; - ,(’,3 /(3/

V.. Yok (L )(2 R, coshpp- /)(;,’;5:/;5,()

it
P Kus K~ KarKia (A20)
- h (/+ Rl ), LY
24, siah/3 K Kyy - s s,

L





