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. disks' amidst pélygqng

ABSTRACT |

Algorithmic Motion -Planning .
' " in Robotics

o

. - Geetha Ramanathan

v . t
.

~ . _ 1 .
Algorithms for collision frée planar motion of ‘one or more

2

1 obstacles are given. For k circular disks-
the time complexity of our algorithm is ‘shown' to be O(nk) where

n is the number of edges composing the walls. This algorithm is"

|

conjectured to be optimal. i
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Chapter 1 . | (
Introduction
1.1 Robotic manipulation oroblem

Robotics 1is an interdisciolinary field. of stﬁdv
comprising of diverse topics such as visién, motion planning
and control, actuation {Pﬂ manipulator design. Even within
one topic such as manipulator planning anélconttol, we can
identify major issues such as dynamics, feedback control,
trajectory planning, compliance and lask planning. As
robots are demanded to verform sophisticated tasks, a great
- deal of advances in each one of the above areas is necessary
to support the expected level of sophistication. A sound
and complete svecification of the taski is an qésential
prerequisite to design the geometric structure of a robot
and develop its versatile mechanisms. *

A basic nroﬁlem common to a range of tasks in robotics
is planning motions and then controlling the motiéghto Quit
the environment. Tﬁe motions of a robot are known as
trajegtories ;onsistlnq of a [sequence of points with
velociﬁ{r; associated with these points. For a robotic
manipulator éonsistinq‘ of rigidly  linked arms, the
kinematics of motion planning requires well-known techniques
in Lagrangian and Newtonian dynam cs; Wé are not <concerned
with the mechanical @&nd control aspects of motion planning.
Our interest is in basic task planning, collision avoidance

and path finding within a robotic manipulation system. ' We
#

illystrate these aspects of robotic manipulation through the

‘
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configuration illustrated in Figure 1‘and the tanée of tasks

described Eelow : . ‘ <
\E
s
i 3
éo
) = .
M Stage 1

\ e P
M Stage 2 ' *
‘ 3
- - =
. Stage 3 )
:" ‘-:— C
¢ L] .
. B ‘P
, Stage 4 ’

1. Lift the object O and place it on P.

2. Move the object O along P Qithout hitting'opstacle B and
o then place it in the hole é.

For that purpose, we "shall consider a si&ple two }ink

manipulatoq}M where both the joints are revolute. The links

&
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can obly revolve' around the joints. 1In the :irst:ftep, the

- end-effector has to reach ‘for the object and grasp the
' object firmly without hittiﬁg it. This is shown in stage 2.

A typical robot overation begins with such grasping. The

rest of the opetations are influenced by choiceg madeAdurinq

‘the grasping. It is important to devise collision free

qfasp motions and these are independent of obstacle

avoidance methods. ‘ . )
1] ) .
Next, the positioning system must execute a trajectory

)

.80 that the obstacle B is avoided :and the object O comes

into contact with plane P, past B. This path must " be
planned~‘accurateyy by the manipulator so that the task is
completed without collision. Moreover, theé 'contact of O

2

with P must be established without hitting the plane. This

"is shown in stages 3 and 4. Final)d¥, the control system

must take into account the confl ﬁgtion of the plane and
move Ovinto the hole so that the'&éﬁtact with the plane P 18
maintained throughout the mot%#ﬁiunto the hole. !

/At the end of this motion, the object O muét be slid
into the hole. This last'two stages of motion as well és
the motion in stage 2 are known as ¢ompliant motion; that
is, ;he motion pnlanned by the manioulator when it 1is in
contact with an external surface. In stage 3, there are two
differentkﬂsoects of manipulator aétions. The first one |is
called //;rajectot§ planning which converts Fhe desir;d

motigp, given the initial and final points, to a sequence of

intermediatq configurations of the arm. The second aspect

——




¢
is avoiding ‘collision Qith the obstacle B for. which the.
maﬁipﬁlabor should compute tHe set of free posit%pns so that
ihe,mqgion can be guided thro&gm the set of free ogsitions.
'In other words, the task planner must éetermine manipulator.
'pagﬁs which avoid.collisio:é. > '
‘Collision avoidance is an important basic issue—:;\\;ii?
types of motion planning. .Given a model of the manipulator,
the geometry of obstac}es in the work ‘space and the general
topology of the. work sﬁace, finding a collision‘free path
for a moving solid among other Qbséacles,‘is a fundameﬁtal
" problem in robotic manipulation. |
1.2 Task planning : Algorithmic aspects
In order. to automate a robot application, it is
important to have an accurate specification of the tasks, an
exhaustive listing of, the tasks and a transformation or an
aigorithm to transform the task level épecification into
manipulator level sppc;fications. We assume that geometric
desqriptions of al;iobjecés_and the robot and the tovnology *
. :
of the environment are specified accuriately. ‘ ,

There are three different algorithmic approaches to

collision avoidance in task wolanning. These are grouped

N

into the following : "o

1. Hypothesize-and test methods {10,153}
.2.. Penalty function methods [5] ‘
3. CBmputing explicit free space [2,3,11,12,19,20,21,23]

Hypothesize for obstacle avoidance test is the earliest

proposal and is largely heuristic. An initial path from the

. m \




‘ ve ’/'/’. b4 .
initial to final configuration is assumed and is then tested
f&_ collisions. If collisions are detrected the informat ion

gained locally during the collision test with an objact is

]
‘ .

.
.
e .

o “ : ) ¥

used again to h§bothesize and test a’neﬁ,gath. See figure above.

.The main dﬁvantagevof thi's approach is its simplicity

“ . \ -
because "the entire set of operation .is the repetition of one

4 .
basic operation. This method has severe drawbacks. The

information 'gathered during a colligsion is purely local. and

3

will in general provide little guidance on how ‘a path 'may

LS
. ] 2 . . L) . .
have to be modified to avoid a.collision. Moreover, it is
)

impossible to deal with multiple collisions; for the

,complexity of path modification subsumes the overall

- v ke -

*
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‘complexity of path finding. Even if we are lucky enough to
find a path there is no guarantee~that gpis is Ehe ahértest
path. During the formative Stagezlof our res;arch worh& we

attempted similar appgoaches bu abandoned them because an

v

explosive number of situations were  to .be examined in ;
densely cluttered‘engirdnment. g v
\,Eﬁé second approach based on penalty fhnctionsvgomputes
a path based'ugbn the'}ocal minimum of a vpefalty function.
The pefialty function itself /is computed . by adding some
preassiqned penaltieg for obstaclé;'and adding qk‘term for
deviating from the best possible path. This methbd, lend§
itself to analytic teghhﬁdGZE and provides attractive
solutions to simplistic modeis. However, there is no
obvious way to assign penaltiég to obstacles. One approach
to get around tﬁis difficulty is to define the potential of

the robot in a field and" the obstacles be replaced by

repelling forces. The motion is determined by solving a set
N » »

of kinematic equations. The main "'drawback of such an .

approach is that-the/method relfés-onlv on local information
~»
/
and hence a ¢épnsiderable amount of backtracking is necessary

4

to choose, test and try alternate confiqqtatiéns. This
'éuggests that more global informaTton,on the scattered set

of obstacles be .gathered first(to determine an error free
. ~ ' i .
and collision free path for the object.

~

The third approach is to an lyzé the entire work space

i

» :
of the robot ahd computé the sét| of free positions so that a

path can be defined as a sequende of free positions. The

e T —rh s < o a4 = . e - - + NI - e e
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methods used to compute this free space and its ‘

™

/ representation to determine the existence of a paih vary
_ widely. ‘Eveﬁ for simplistic robotic models and obstacles,#

N the comelexity, of such computations remains high. However,
th@ _main advantage 1in this approach is the cet&ainty with
v which a path can be fouq? when one exists. Moreover, it is
. entirely feasibke to search and find best paths, rather than

Just finq.the firsty safe path. /Efficibnt. S ac££~avoidance

> algorfthhs for robots of géneral geometric st ; ture are not
known;vhowever, a theoretical formulation has b;en recently
-\ -"given by Schwartz and Sharir [20].

.: 1.3 @n overview of thesis
This thesis  discusses efficiéntl algorithms for
comput ing the free spéce forl collision free motion XOf
simplified :obot{F models %n a plane. Details of~th;ir'
;mpiementatién are not‘given in. the thesis although it is
7 straightforward. R | ~
. s

'A; mentioned above and to be discussed further in
chapter :2, the cost of computing all the connected
céhpgnents of free‘ space is expénsive. Howe;et, it is
extremely important to capture such a global information for,
D acguratgly determining a collision freekéoti;n. With this
’ )spirit in mina, the(thgéis m&tivates in chaote: ‘3 ‘through
known complexity results on motion planning, the necessity

\

to investigate simple models.

~

S

Chapter'4 outlines methods to determine collision free

motion of a single disk (a sgtmple' robot) among po}.yqonal)or

- ' Sk St Y St




‘generalizétion for k ( >-2) disks is given i?_chapter 5

\ oo .

B .
x
«
{
1

. | : e
circular obstacles. o0

] . i‘ - ' N ! N ’ | 4
‘ We consider in Chapter 5, coordinated motion of twd
[ C '
independert.edisks moving amidst poljlonal barriers. A

e 2NY

Cpap;ei}?‘presenté"i'éummary of the methods discussed
, a o8 >

o

in - the -.thesis, discusses ohttmality of our algorithms anél

" suggests. generalization of our approach to objects of other X
shape. . =~ . . : . :
. . . - ] ‘.
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Chépter 2
Compléxity of motion plannfngvin robotics
?.I,Introduction,to complexity issues '

There is considerable progress in the development of
mechanical devices autonomously controlled by micro and mini
computers ' énd . there is a steep increase in their
computational ‘power. MecHaniéal | devices" for robotic
;anipulation and computer controlled .arms have ' been
discussed by.Paul [15]. Udupa ' [24] and Lozano-Perez and
Wesley [12], have discussed general methods for collision
detection and avoidance in computer controlled roSotic
manipulgtors.J' However, none of these algorithms are
guaranteed to run in.polynomial time. Moreover, they “are
only abproximate ’élqorithms and. this led ‘Reif {181 to
examine the,computational'complexity issues in robotics.

. Reif [Iﬁ] _considered abstractions of. «coiliaion
avoidanée problem' call;d the classical moverg' problem and

-

the generalized 'hove:s'< problem. The classical movers’

problem was posed as a‘decisioh\problem in the following

N ¥

way :

-Instance : Given a ‘set of ,obstacles O, two disginquished

"positions I '(initial) and F (findly fixed in Euclidean

'

n-space and ﬁ, a figid body (a robot). -

. Question : Can B be moved by a sequence of translations and

rotations from I to F without colliding with any obstacle in

)
the set 0 2.

1

In qeneral,'#robot's motion must be a sequence of




continuous  motions. The set of obstacles in O are
' polyhedrons. In a discrege version of the above problem,
the polyhedrons can " be replaced by a svystem of linear
inequalities (within a fixed accuracyf*and the motion ifself
wheﬁ it exists will be given by a seq&enée‘bf points and the
:motiop is céntinuous between every successive “pairs ’of
points. Reif [lé], also considered a generalized version of
the mover's .problem in which the polyhedra are linked
‘éoqgthe: at some distinguished vertices. A oparticular
instance of E?is beiﬁq, a robot arm with multiple Jjoints.
We will gqive the ﬁain result - of Reif after’ btiefly
mentioning some definitions in comout%tional complexity.
In the study of coﬁputational complexity, it is dsLal
to denote bf P, the class of pfoblems fo} whicﬁ polvnomial‘
. time algorithms  are known and by NP, ‘the class of all
proBléms which can be solvgd by non-deterministic pol&nomial
.time algorithms. It is strongly believed that:P # NP, All
problems in 'NP - P'(a;;uminq that the conjecturé P } NP is
true} are int;actable, and are ‘known asl NP-complete '
probléms. - In other ' words, if P A NP theﬁ an NP-cqmpletéu
problem is in ﬁP - P, | ' | ‘ L
In do0lving a Qroblem; tﬁe amount of!Stéraqe or ‘computer
memory required . by ;hé- comoutatioﬂ, is knowp »Ss space
complexity. A problem solvable in ﬁplynomi@i time~‘§sﬁ‘§1éo )
solvable  in poiynomiql;’snéce; 'ﬁoweQer, it is \sgiil“
;nresplveﬁ wheéher there exis;s problems solvkblel in’
pdlynomial” sﬁace that cghnbt be solved in,polyﬁomia; time.
. : , .

'

.-'10 -




Thisfconjecture‘is quite plausible, [Garey and Johnson]

e

since all problems in NP and all problems in % P (the clags

. of hard counting problems) can be\'sdlvea n' polynomial

. ‘ ™~ _
space. Hence, it appears that there are problems that can

be solved'in polynomial space which are harder than the
‘prpblems in NP - P and‘#‘P. 'PSPACE is tge class-of problems
sclvaSIe by polynomial space andx'PSéACE-coﬁplete contains
the hardest problems in the sense that their solutions are
much harder than\the problems inm #P and ﬂP-cqmolgte classes.
: ﬁence,.'if a problem is shown to be PS?ACé—complete then it
is a str?nq indication that it is ‘more intractable than an
NP-complete problem. . |
In the  light‘ of. these notions of complexity, we
rsummarize below the resdlts due to Reif tlBT, Hopcroft(
Schﬁartz, Sharif [5], and Hopcroft, Joseph and Whit;sides
(77, . ,
2.2 Complexitf'results on movers' problem
Result 1 [Reif]
The generalized povers"problem is PSPACE hard.
Result 2 [Reif] "
,Théré'exists polynomial time algorithms for so;ving Ehe
classical movers' problem in two and three dimensions.
In a cléssical movers' problem, the object to be moved
is a rigid object and the region can be described by
inequalities. In ‘the generalized 'movers'_ problem, the

object X has joints and hence is non-rigid. Reif's result

asserts that the 'gnotion of arbitrarily hinged objects even

S - 11 =




in 3-dimensions is PSPACE complete.
Result 3'[Hopcroft, Udﬁeph! Whitesides]

Suppose n, ks I, 15, ... , 15 are positive integers.

Lo

Consider a - caroenter'; ruler consisting of n links. L
2 g oere Ln that are hinged together at their end points

L

witﬂ length of Lﬁ = ﬁj' The probley of determining whether
this ruler can be folded (each pair of - consecutive ' links
forming either 0 or 180 angle at the joints) sc that the
folded length is utmost k, is NP-complete.
It is fairly '‘easy to see that 'by a reéu?tion from
PART‘ITI(SN, the well‘-knov.m NP—compvlete problem {4}, the &ove
’ . \

result can be proved to be NP-complete. Moreover, the ruler:

folding is analogous to moving a hinged arm in a bounded

2-dimensional region. Hénce, it turns out that it |is

NP-hard to decide whether the end of an arm with n links’gf
.arbitrary lengths (with one end fixed) can be moved from one

position to another while staying within a two dimensional

i

A A J

Figure 2.1 :

- 12 -




region. See ﬁiqure.
Result 4 g[Hopcroft, Joseph, Whitesides]

Th:re is a ool om;al time algorithm for moving the arm
with n link;rYZTgﬁ”one end fixed) from one configuration to
another‘ihsidé.a circular region.

This re;ﬁlt does not apply when the arm 1is conéfraineh
to move to avoid sp cified obstacles during its motion. It

is not vyet known whethe;)the problem of determinlng such

mouigixis polynomia \\E”NP ~hard.
Tabove two Eeso}ks show particular instances of

goheralized movers"proolzk\ip two dimensions. One of them
turns out to be NP-complete and the other is polynomial.
Ono can inquire about similar resultf for objects that are
not hinged but are free to move Thﬂependently. The
followinq As the first known instance of a "hard"” problem

for the motion of independent objects in two dlmen31ons.

-

=,
Result 5 [Hoocroft, Schwartz, Sharir] s

The coordinated motion planning for: arbitrarily many

redtaﬁqles in two dimensions amidst polygona; obstacles is

PSPACE hard.

- This is a significant Vresul;' because the motion
planning problem 1nvolvinq_moving systomo whoee ngmgtry is
simple to geso}ibe is still a ﬁard‘problem‘to solve. This
leads us to exami;e simple ggometric moving modelé in two
dimensions and investigate the complexity of‘ their motion:
plannlng. When theh‘number. of ‘deqrees of freedom of .the

moving bodies is held fiked %Pd the entire ' systam of objects
4 . , . / "

u

-13 -
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and obstacles are described algebraically, it is shown,by

. Schwartz and Sharir [20] that the motion planning problem -

\

can be solved in polypomial time. R g

x

- 14 -
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Algorithms for collision free motion p%anning : A brief

|
review . L

Chapter 3

3.1 Introduction

1

The class of obstacle avoidance élgorithmé which

" construct explicit subset. confiquratioms for objects that

. 1%
are free of collisions is known as free space computation

algorithms. Once the free space 1is computed through a

‘global analysis of the region, the subsets of free space can

be represented in a suitable manner and the path finding

-

problem is then reduced to a search in this lower

dimensional .free space. A connectivity grap is then

g -_—
defined and the existence of a collision free motion ii/”"

related to the existence of a path in this graph.

‘ Udupa [24], is one of the first to develop this free
space method; fowever, his work is special to Stanford arm.
Lozano-Perez and Wesley {12] is.the first general algorithm
applied to derive the motion of a polyhydron moving in an
arbitrary tovology of polyhedral obstacles in a bounded
space. We describe this method firstj Next wet review two
methods related to circular disks moving among pdlygonal
barriers. One of these applies to the motion of a single
disk ,and tﬁe other éfigcusse céotdinated motion of two
disks. These two specific algqorithms are chosen because

they are\the best known algorithms and our algorithms to be

discussed in chapters 4, 5 and 5 achieve both generality and

efficiency over these methods.

\ - 15 -
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.For the sake of simplicity, consider a single point

e

ovind’ among polygonal obstacles in a bounded two
dimensional region. In this case, the forbidéen regions are
the-interior of the polygons which the moQing point should
avoid in its continuous motion. Now a safe path is found by
defining a graph whose vertices includé the vertices of the
polygonél regions and” fiédipg a path through this graph

connecting vertices of the forbidden regions.

T F

= —

/F AN
\ 7’ //
& =7 /!
r/
\\‘ ; )
. i
I
|

Figure 3.1.1
The example in figure 3.1.1 shows the forbidden polygonal

regions, the graph and the collision free path for a point:
.Note that there is an edge between two vertices in the graph

if and only if each is visible from thHe other, That i§, the

edge does not intersect any forbidden region. The graph is.

known as the visibility graph of the glven configuration and
the shortest path in the graph from the initial point to the
destination is the best possible solution to this problem.<

The above method provides a first approximate solution




"

)
to problems when the object size is gnificant to Jhe
size of the obstacles. However, 'it is important to take
into account the dimensions of the robot to obtain an exact -
solution, For ' example, consider the objeci to be a circle
of radius r. Since the visibility graph (VGRAPH) algorithm
requires’ - 'that tﬁ§i moving opject be a point, we should
tgansform-the‘qivéizsitdation ko one wherein the object is a

single point with a new set of obstacles. These new

" obstacles are the forbidden reqions for the point.

The new set of obstacles, also known as the rfown-up
obstacle set, 1is computed by moving each vertex Qway from
the obstacle to be at a distance at least r £rog the sides.
See figure 3.1.2 and observe that the collision free path
obtained is different from figure 3.1.1. Note thq;éfthe

. | :
grown-up obstacles are only approximations to forbidden

regions. ¢
" N
s
L b
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The ﬁrSBléﬁ'of cé@ﬁuiinq._tﬁgx,qrowﬁ-up obstacles is
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slightly more complifated for polvgonal objects, for it
depends on the orientation and the choice of reference point
of the? object. 1In the case of a-circle, the'cegter of the
circle is a reference point in the sense that t:e original
éroblem is reduced go moving this refereggg point among the
grown-up obstaclés. When we consider a polygonal dobject,
lack’ of symmetry suggests choice of any point° on the
boundary of the poiyqon as the reference point. Fiqure
371'3 and 3.1.4 show two choi;és of refeiencé po@;E§ with
different orientations of the object and the corresponding
grown-up obstacles. We explain below the method of growing
up obstacles, taking into account the orientation of the
object and a given reference po@dt. l

Each side of an:;bstaq}g ié grown ;owardg Ehe set of
free positions and this grown-up sidg is obtained as the
locus of the reference . point: while keeginq the object in
cq&}act with the obstacle and preserving the orientations.
Because ﬁyo "objects shoyld touch before they can‘collide,
every position outside this traced out boundary must be a
collision free position for theé objeét with' the given

’

orientation fixed. However, when the orientation need to be

"

éﬁéﬂged at specified Dleﬁes, then a rotation of the object

at those positions should be computed to produce'/zie

-grown-up boundary. When two grown-up obstacles have a

common interior then the set of vertices of the resulting

forbidden region cannot contribute to edgeé in the VGRAPH.

: { .
We remark that the progess of growing up obstacfés is
L] * *
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sensitive to the oriemtations.

Suppose tﬁe ofientation of the iject in its initial
position is o and is different from the orientation B in its
final position. 1f there is a position wherein the object
can be moved with the orientation fixed at o and a r;tation
is applied to change the orientation ‘from o« to g at this

point then the method can be applied with B8 fixed. The main

o




drawback of this avproach is that the path in the graph may

Y .
not exist although there might be a motion involving a

ot

continuous change of oiientation.\ Hence, this is only an

‘approximate algorithm.

~ . 3.2 Motion plafning for a disk

1

A collision free motion planning method based on a
continuous- maéw éah"ﬁ ~retraction has been given by
O'Dunlaing, Sharir and Y;p [L4] . Informally, tr s method
tries to move a body by trying to keep it equidiktant from
all the obstacles at all times during its motion. In
practice, this may not be possible to achiqu. S0, a
generalized Voronoi diagra; is defined as the subset of the

configuration space of free positions such that a placement

- at a Voronoi vertex would be nearest to two or more

«

obstacles. ,When the\object,is a disk, the image map of the
gﬁﬁm;Lyfmm> " set of free positions.onto the Voronoi diagram is continuous
. and 1ig called retraction. For any placement X of the disk,

this retraction map pushes thé object away from the obstacle

‘

closest (to the disk at X until the object . reaches a

‘placement\on the Voronoi diagram.
. ~, .5 -~

> ' For each point P{/from a giben set of n points, a convex

-~

- pglyqon Cgi) called a Voronoi polygon can be associated with

the property that P; i5 the closest of the given points to

A any X in C(i). , The collection of Joronoi polygons form

- -Voronoi diagram. Aﬁ’example of a Voronoi diagram for points

5

'is given beglow. .
¢ a

Shamos and Hoey have given an O(n logn) algorithm to

L ~ 20 -_
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Figure 3.".1
;ghstruct the Voronoi diagram of  n §oints_ in the plane’.

This notion .has. been generalized to compute the Voronoi

\ .
diagram of other geometrical  (figqures. In particular,

a

Kirkpatrick [8} has given an O(n loan) algorithm to éompute

the Voronoi diagram of n points and line segments. Figqure

3.2.2 shows the Voronoi diagram for two closed line

segments. ' N

L
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- Let O be the set of polygonal obstacles. Given two -

voints® X and-Y, let us denote the Euclidean distance between
\
them as Ed(x,y); 1f § is a non-empty set of points, the

Hausdorff distance dH(x,S) is defined as':
J ' [
. min | Eg(x,y) / y is in 8§ }.

Because we consider a bounded region enclosed by a closed

®polygon with all its obstacles in its interior, - the

Hausdorff distance dH(x,O') is welithfined where O' also
AY
denotes the union of all the obstacles and the outer
boundary. This distance dH(x,O') is calLed clearance (x) and
A

this distance is attained at some point P on the boundary of

some obstacle. For each point x, define near(x) to be the

4

set of points in the boundaries of O' attaininq*the distance,

*klegﬁance(xL. Now, the Voronoi diagram VOR(0'), for o', |is
) the sgt | » g )
{ x / near(x) céntains more than one voint }. i
If r 1is the radius of'the‘aiven disk, the set of free
positions is idenéical to the set of points x :foru which
clearahce(x)l > r. Hence, VOR{O') is a subset of the se£ of

positions for a given disk. ‘

: . The retraction map M 'si¢efinéd as follows :

For any poinE % in VOR(O'}, define M(x) = x. For any x not
on, the Voronoi diagram, near(x) must contain a unique
element y. ,NEY' jéin K3 ané d%nsidep the firét point z
where the ' half line from y to x meété the Voronoi diaqraﬁ.
Now, defineJﬁax) = 1z, It can be shown that M is a

continuous retraction of the set of points within the outer

e



o

boundary onto the Voronoi diagram. Moreover, the value of
2
clearance(t) increases as t moves along the line joining x

and M(x) . |

’ Suppose x and y are two free ,nositions, then the
following algorithm determines thé‘path if there is one.
Step 1. Using Voronoi diagram Gonstruction given in [9] and
the definition near(x), determine VOR(O'). 'In this diagram,
the edges along the volygonal boundaries determine
Voronoi cells., Each cell’consigts of points closest to a
specific polygon;} edge or a corner. Because there are‘Q(n)
edges overall, the‘miqimum clgarénqe along the edges can be
compuﬂed in time O(nf.
Step 2. For any two vpoints x and y, determine M(x) and
M(y). Note that a search of the Voronoci diagram can be done
to\ find the cell containing x if it is not already on the
diagram.” Then, M(x) can he found by taking the point of

intersection. Similarly, we can do fo? y. This step can be

doné in O(n) time. . /

' Step 3. If M(x) and M(y) are on the same Voronoi edge then

it is sufficient to determine the minimum clearance along

that edge. If it is greatér than r then there is a motion

;

frofh M(x) to M(y). ,bﬁhérwise there is no motion from M(x)

‘s

to M(y). If M(x) and M(y) belong to two different Voronoi

'edges then' we examine whether an ' end-point of the edge

S .
containing M(x) can be reached .from an end-point of the edge
containing ¢ M(y) while maintaining a minimum clearance of r.
If the answer is no, then there ‘is no motion. Otherwise,

»
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there is a path between two Voronoi verticés;
Stgp 5. 'The existence of a o§th between M(x) and M(y)
asserts the existence of é motion hetween x gnd y; because
if there 1is a ﬁath from x ton y then this path can be
proﬁected b§ the retraction map M to yield a nath from M(x)
to M(y) along the Voronoi boundary. Conversely, any path
from M(x) to M{y) along the Voronoi boundary assures tﬁe
existénce of motion from x to y because the cleafance
functién strictly increases along the 1line . joining x and
M(x). |

. The Vorénoi éiaqram 'é;n' be constructed in time O{n
logn) . 'For points x and v, locating the Voronoi éells and
computing their clearances can be done in linear éimé. The _
image points M(x) and M(y) can be obtained in linéar‘ time,
The Voronoi qraph“ can De searched to fisd the edqeé with

minimal clearance in linear time. Thus, the overall cost of.
Vs .

ot

the algorithm is O(n logn).
3.3 Coordinated motion of two disks

Schwartz and Shar}r [19) gave the first exact,algorithm
for determining the existence of the eoordinated motion of
two disks amomg pcl}gonal obstacles. The approach. is based
on studying the set of free pasitions for the disks and
,obtainiﬁq a‘ndecomnosiﬁion of it ivto connected comnoﬁénts.
Since the two disk;‘cén move indegendently ' of each other
without collision,( the motion involves four deqrees of

EreedﬂM(

Figqures 3.2.1 and 3.3.2 show two instances of a pair of

S
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1%itcles} initial and final conf igurations. In the first
figure, a motion is shown by a dotted path.

In the second
figure, there is no motion.

=

—-—-

Suppose D; and D, are two circular bodies with centers

C) and C2 and radii r1, r2 respectively. Assume r1 > r2 and
the

.

region R in which the disks are to be moved freelv is a

two dimensional open region bounded by a set of mnolygonal
A

B

s - *




walls. ?hat is, R has a polygonal exterior boundary W,:ang -

encloses a number of polygonal shaped obstacles ol, 02, eee

Op_l. Let’ Wj denote the boundary of the obstacle O0j. A

pq}nt X in R is called admissible for D, if when (o} is
piaced at X, D1 does not penetrate any wall. Clearly, any
point X is admissible for D, if and only if X is at least at
distance ry from every wall. A line segment at distance ry
from a wall is called a rl-displaced wall. The‘displacement\{
6f a wall 1is effected towards the set of admissible

o

positions of a disk. A circular arc of radiﬁs R from a
convex corner of a polygonal wall is calleqwa displaced
corner. Note that, if the interior angle at a vertex of the
outer polygon 1is obtuse then the vertex is convex; for an
inner polygonal bqunda}Q, a vertex with acute interior angle
is convex. The displaced walls and the displaced corners
are formed for each obstacle with respect to each disk. The
enlarged boundary of an obstacle is one whpse edges are the
displaced edges and displaced corners of that obstacle and
whose vertices aré the mutual intersectiéns of their'edges.
Figure 3.3.3 explaiﬁs thgse concepts for -one disk.

The first step in their algorithm is to obtain the
ry-boundary and r,-boundary of the boundaries W,, 0 < i <
p-l. The collection of boundaries enlarged by tge amount r,

. is called rlzﬁoundary. Similarly, rz—boundary is defined.
A point X is c;lled critical if [12(X), the circle center X
and radius £, + 1, either passes through the point of

intersection of two r,-displaced walls (two r,-displaced

14
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Figure 3.3.3.
corners) or is. tangent to a rz-displaced wall (rz-displaced

corner). A eritical curve is 'a collection of «critical
points and for a given set of critical points their exists
several critical curves.

The set of critical points can be classified into three
kinds of curves. These are.'
1. straight line segments diyolaced‘by,the amount ry + r,

from ré-boundary.

2. circular arcs at distance £, +r, from the rz—displaced

corner.

4 . i

3. circglag, arcs whicp lie at distance r, +r, from a
convex corner at which two r,-displaced walls or
r,-displaced corners meet. 'rhes! curves fail into two
tvpes.

Type 1. For eaéh edge, the locus of all the points at
distance r; + 2r, form type 1 critical curves.

Tyve 2, For evéry vertex v of the rz—boundaty, consider the




circle flz(v). The collection

2 critical curves.

Cosider Dé touching, an

pbsitioe/of C2‘ The closest

of these curves is the. tyve

'

edge and let X denote the

point for Cl for a s?fe

placement of Dl is on type 1 curve. See figure 3.3.4. When

D, is placed touéhing two adjacent edges, the closest safe

placement for C1 to avoid a collision'ﬁith D2 is on type 2"

critical curve. See figure 3.3.5."‘

. rl+?r7
D? .
. Figure 3.3.4
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Figure 3.3.5
Based on these concepts;'we describe briefly, the motion
vlanning algorithm of- Schwartz and Sharir.
Algorithm TCSS ‘

1. The edges- of the boundaries Wo, Wy one W

_28- . ‘|




' respectively.

\

Lo AN

enlarged by thie amounts r,, r, and r; + Zf%. This forms

rz-boundary, ! rl-boundary and type 1 critigal curves

,

2. All intersections of edges in rz-boundary are computed

and the circular tyve 2 critical curves at each corner is-

generated.

.3. All pairs of intersections of éurves in the collection C

of rl—boundary; rz—boundary, type 1 critical curves and tyvpe

2 critical curves are computed. That is, the intersections
v

of all 4rown-up boundaries are computed systematically.

-

4. For each curve B8 in C, we sort the points of

intersection on B (the sorting is done fixing one direction

in B ). This gives a set of open seqments on the curve 8 .

-

]

See the figure below. ’ ¢

(R iAy) r (BysAq), (Ag,A,), (A,,Ag) and (Ag,A;) are oven
segments on f,.

5. Let [ derote the collection of all open segments

\

computed in step 4. For each 8 ' in [ , a direction |is

associated and r{ B') and 1{:B') designate t?e non-critical
regions lying imgediately to the right and to the left of

B ' respectively. ,Then directed segment 8', r( 8'), 1( 8')

‘
-
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are to be stored. In addition,’ for each points of

‘intersection Ai computed on £, segments passing through Ai

are sorted in counte?ﬁclokaise order in which they enter or
exit Ai' '

5. All non-critical regions are computed. In order to do’
this, a segment B8' in I is considered and it‘ is follgwed
in one direction. Since B' is already directed, it can
either be followed in that direction (forward) or .in the
opposite (backward) direction. For eacg‘ g ﬁ%n I,

region( 8" denotes r( B') if the direction is forward or

1( 8') 1if the direction is backward. Suppose, A, is the

. end-point of R' in the chosan direction. Consider the

collection \ of segments of L incident at.Al. Choose 8"

from this collection, which is next to_~8' in the sorted
list. Then continue to follow B:’::tthe direction away
from A,. We repeat until we encounter B' again and at this
stage we have a non-critical region. This procedure is
repeated until all’ directed seqment; n L have beén
traversed.

7. A connectivity graph is defined in this tep and is done
in several stages. |

7.1 For an arbitrary pq@nt X in a non-critical region R, the

set

P(X = { Y in R/ Y is a free position for D, when D, is

‘képt at X }.

This Ts simply the set of all points on or outside F12(X)

common to the regiod R. ‘ o

- (\ . .
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g (X) = { boundaries of connected %6‘90nént§zéff?(X) }.
o (X is invariant for ‘all X in R add hence it can be

denoted as o{R). Moreover, this can be computed similar

~ b .
to steps 1 to 5. o (R) is genéﬁ%ted for all non-critical
regions that are comvputed. .

7.2 Define G, tHe cohnectivity graph as G = (V,E) where .the
vertex V of the gréph'isldefi ed as follows :

v { (RS} / R is a non-critical region, S in in g (R) }.
using-the following criterfa :

o

nd (Rz,Sz) are joined by an edge if

Jwo vertices
Rl is adjacent to R2 and S S, = S is in U(Rl) n o(Rz).
Call tbig type 1 edge.
Rl and R2 are adjacent and Sl is in O(Rl) - o(Rz) and S2
is in o (R,)) - 0(R,). Call this tyve 2 edge.
2 1
3. Given (Il'IZ) and (Fl’FQ)' the initial :kﬁ final
‘¥

confiqugations, the non-critical regions R and R' containing
Il and Fl are found. Next; the connected components S (S')
in o(Ry ( ¢ {R"Y) containing 12.(F2) are found. (R,S) and
(R*',S') are vertices in the connectivity grapn.

9. If there is a vath between (R,S) and {R',S') in G,  then

there 1is a continuous motion betweeh ;Il,I2

1™ and (Fl'Fz)',
Otherwise, there is no motion. The motion, if it exists, is
é sequence of iterative motions determined by the edges in
the path.

b il

~——__ Informally, we explain whvy the existence of a vpath

hetween (Il,IZ) and (Fl'FZ) in G assures a cdllision free
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motion fo£~zhe~gisks from‘(Il,Iz) to (Fl'Fz) in the given

region. Suppose there is a path in G from (I to

112)
(Fl'Fz)' Consider an edge in this path. TIf this is a type
1 edge <(Ry,8), (R,,5)>, where S is iﬁ 0(Ry) N O(R,),
then disk D, of radius r, can be fixed at ajposition inside
the region S while disk D1 of radius r, ¢an be moved freely
(Yithout collision) from any position in Rl to any position
in R2. This 1is a direct consequenée o% the définitions.
Further this is an iterative motion. On the other Pjand if
the ~€9ge undir consideration is a type 2 edge <(Rl,sl),
(R2,52)>, where Sl ig jn o(Rli- 0(R2) and 82 is in o

(R)) - o (Ry), the disk D, of radius r; placed anywhere

within erand the disk D2 of radius r placed anywhere

2

within Sl can be. freely moved simultaneously to arbitrary

positions within Rz and a?Z respectively. This is a

'simultaneous motion. Arquing 1like this for every edge in

. the path and obiserving that edge definition insists on the

adjacency of non-critical regions Ri' we conclude that there

is a collision free motion for the two disks from (il,Iz) to

(Fl,Fz).' Conversely, when there is a collision ftee mmtioﬁ
N

for the disks from (11,12) to (FI’FZ)' we can show that

there is a path iQWG between (Il,Iz)mand (Fl,Fz). Towards

uprovihg this, Ffirst observe that a motion for Dl should be a

sequence df continuous motions through adjacent non-g;itical

regions. Next, we remark ph§t~for any placement X of the

2 -
center Cl of Dl’ the centej C2 of D2 must be at least at a

~, distance r,+r, from<C; and must be within one of the

L]

¢
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connected components of the set of free positions available
to Cz. ~This shows as to why we need to consider edges
betwéen the ve;t;ces (Rl,sl) and (Rz,szg\where §1°ana,R2 ére
éajacent and S, and S, are as defined hin sten 7 af the
algorithm. Once. a mapping between a local motion and edge
is established, global motion between (1,,1,) and (Fi'Fi) in
the given region cprresponds to a sequence of edges and the
_continuity of motion forces this.sequence to be a path in G.
Finally, we remark on the generality, complexity and

a

disadvantages @ of this algor.ithm. The algorithm is .a

o2

particular instance of the techniques put forward by the

. "~ same authors in [20]  on computing the tdpolongEixogoperties

of algebraic ‘maaifﬁlds. Here, the manifold of free
configurakio%s of the system is four dimensional. However,
a decomposition strategy separates the concerhs with the
original four dimensional problem into two 2-dimensional

suboroblems. These subproblems once agaiﬁ belong to a

-

continuous space but a careful study ‘of - the geométric

properties of the critical curves reduces it to a’

combinatorial issue based on a g¥aph model. Thus - the

algorithm is general, applicable to obstacles of [ any shape

in any dimension but requires different geometric properties

to be examined.

» The construction of the graoh, althoygh makes a
gemains‘hiqh. A detailed complexity analysis/is not given
in  [19] and our investigation reveals that the overall

. ' Vg, s
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complexity is O(n5) and rot O(n3) as claimed. A} élep by
. step cost analysis folllows =«

Clearly rz-boundary, rl-boundary, type 1 and type 2

K 'crltlcalfburves can all be constructed -in D(n) time. We

7

.

assume,ggor example, the prlmltlve geometrlc operations_ such
’aé.tggnslation of a line segment can be done in constant
time. Thus cost-of step 1 is O(n).

. The iﬁterséction ~of adjacent mairs of enlarged edges
gan\onée again be computednin a constant_ time. Thus the

-vertices of 411 enlarged boundaries in step 2 can be

_computed in t1me O(n).

)
,Next in step 3, all pairs of 1nter§ections of curves in

, S
4V the eﬁf}ﬁf 6011ect10n C are computed. Since there.are O(n)
edges 1g:C and all mutual palrs must be examined for
1ntersect10n, the-cost of this step is O(n ).

The next three steps are most ‘crucial ‘and requlres good
data strucqbres to lower the time complexlty. In step 47-
tAere is a cost-for sortina the p01nts of 1ntersect10ns on a
curvenbelqﬁgihg to C. Assume that the curves teither line

! s .
/ segments or circular arcs) can be stored so as to permit

acé;;ging of "

a. all curves through a<given point of intersection and

b, - all points of intersections lying on a curve L

in an efficient manner. Tﬁ%nqthe‘ points” of intersections
can},oe found in a sorted order while traver51nq the edge in
a prescribed direction and findinq .irs point of

ipterséctions with other curves. In other words, sorting is

»
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inherent in the way we accumulate the poirts. Thus we do
. ' * .

4 _
not have a separate cost for step 4. L

Next we consider steps 5 and 5 together. ;Thége are two

: £ . . Ve
most important steps in the algorithm, for it enables the

definition of G and hence its gize. Throuéh each point, a
number of. segqments pass. Bectause thére are 0(n2)°points of
intersections and through eag¢h point of intersecfion a
maximum of n segments can paggg the number of seqmenﬁg/rls
0(53). All these segments are examined to determine all
non-critical regftons. Since, e%ch segment is associated
with two directions (forward and backward3 and must be
traversed hoth ways in comolete determination of the regions
having this segment as a common boundary and each region can
have'utmost O(n) béundarieg\ the cost of determining all
non-critical regions is 0(n%)"." However, note that there are
énly O(nz) n;n-critical regqidéns. Moreover, associated with
each non~critical, region 'R, wé ’must find the set of all

'connected~cgpnon;nts ¢ (RY. For é‘reqion R, one connected
comuoneng 6f  o(R camt be ‘determined in O(n) time. Since
there can be utmost O0(n) connected compohents, thé cost of
détermininq éll the connecyed components of o(R) is O(nzf.
Howevert, tHere ére O(nz) nbn—?riﬁical regions and he&ce all

the conﬁected‘comnonénts Sf ali the non-cr}tical regions can
be found. in O(n4); )/

Next we examine the size of éh the connectivity graoh.
Cleariy theré are 0(n3) vertiées, since there are O(nz)

. ' ) ' /
non-critical regions and egch region can have 0(n) connected
. n . .
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components in .0(R) . Iﬁ order to estimate the number of
edées, we must determine the number of ;djacent paiis of
non-critical regions and the number of edges between (Rl,Sl)
ana (RZ,SZ) when Rl and Ré are adjacent.

For a péir of adjacent non-critical tegions Rl and Rz,b
;he’ edge set of type l is A n B and the edée set of type 2
is (A-B) and (B-A) where A = o(Rl), B = o(Rz). One can
prove thgt |A-B| and |B-A| is utmost 1 and |A N B| is utmost
a(n) . Hence, given vone pair (Rl,Rz) of adjacent
non-critical regions, the total number of edges is lﬁ n Bl2
+ |a~-B| |B-A| = D(nz).

Now considér one non-critical region Rl‘ Since R1 is
closed, its bound;;y can have utmost O(n) edges. Every edge
can be common to two teqioﬁb of which one 25 Rl. Hence Rl
can be adjacent to O(n) non-critical'reqions.' Sincg there
are O(nz) non-critical regions, there are O(na) mutually
adjacent %pairs of non-critical regions and we have shown
that each one of them can contribute to O(n2) edges in G«
Thus the number of edges in G is O(ns).

Finally, the path finding algorithm of Tarjan [23] can

find a path in G Dbetweéen (Il,Iz) and (Fl,Fz) in time

o(|V|+|E|) = o). ,

We also remark that a straightforward generalization of
this algorithp to three disks has comélgxity O{nl3)’ and
generalization to k > 4 disks is not possible. .

Yap ([l14] gives a method based on the principle of

retraction for the coordinated motion of two and three

'
<
-~
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disks} The time comp;::ZZI of h;is algorithm is 0(n2) for
two  diskg and 0(n31 ‘for threé ‘disks. However, ' this
algorithm, as described in the report, considers only
restricted situations for the placement of the obstacles,
- In addition to such‘a restriction, it‘l&cks generality in
the sense that for k > 3 disks, this alggfithm is ﬁot‘
applicable.

In the néxt three chapters, we give algorithms for the

coordinated motion of’k > 1 disks of time cohplexity O(nki.




Chapter 4 ‘
Motion planning for a single disk
4.1 Inttodﬁétion '
~ We first present an algorithm with time ¢omplexity
Ojnz) which requires simple list manipulation in a practical
programming environment. When all the obstacles lie in a
- '%ounded r;gion of constant width, we propose an algorithm
with time complexity of O(n) . | >
4.2 An O(nz) algorithm. . for the motion of a single disk
Let Wo denote the. boundary of the outer wall. The
polygonal shape of this boundary is represented as a set of-
K vertices Vl, V2 o Vk in thg Euclidean plane, We assume
\that the vertices are given in ﬁounter-clockwise direction
so that when the boundary is travergﬁd, the set of free
positions for the disk is to the left of the boundary. \For
each inner beundary, the vertices are takep in clockwise
direction so that the set of free positibns is to the left
of the boundary. Further, the boundaries are assumed to ‘be
closed. Let r be the radius of the disk,‘I be the given
‘initial position of the disk, F, the final position to which
the disk 1is to be moved and let there be J obstacles whose
boundaries are to be avoided in a motion.
Dutinq the motion of ﬁhe disk D amidst the barriers, D
/F -can  touch 'but should not collide with any of the boundary.
Henée, the minimum distance between the center C of the disk

and an arbitrary point on any of the boundary must at least

be r. Hence, we find the set of free vositions FP for C in



4 1

the configuraEion where the boundaries are enlarged by r.
The rules for creating the grown—u§ configuration ére :

1. Straight edges are displaced by r so that an edge AB
would be replaced by a parallel edge A'B' at a distance r.
The displac?ments are effected toQards the free positions of

the disk.

\\.Al

N e e e e i _ e

A , Figure 4.1
2. Convex corners are replaced by circular arcs of radius

-

The set of vertices for 6 any enlarqeé\ boundary 1is

determined by the above two rules. To be more specific, if

an original vertex is not convex, it 1is replaced by the

§
point of intersection oflﬁgimabi;espopdinq displaced edges.
For each convex vertex of a boundary, atéircular arc and two
new vertices are introduced in the enlarged boundary. It is
clear that the positions for the center of the disk is the
union of the closed connected components of the region®
bounded by the diSplaéed edges and corners. For .example,

suppose Q is a convex vertex and El = (7, @ and E2 = (Py,

~. Q) are the two edges incident at Q. Let El‘ = (pl', Ql'j

~
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and Eyt = (Py', 02') are the displaced edges of Eq and E;.
Then Ql' and QZ: are the new vertices. The circular arc
center at Q, radius r and bounded\by the radius vectors Qol'
and QQZ', taken in the qlockﬁise direction from Qz' to Ql'
is the new edge. The other edges and vertices in figure 4.1
are obtained in a similar fashion.

Next, we shall discuss a method to partition the set of
. free positidns of C into connected components.

Some of the grown-up obstacles might intersect the
enlarged outer boundary. When‘this happen: they ﬁéve to be
ideﬁtified and g\ﬁnifi?d to get a new oute;;gzundary.‘ This
can /be accomplished by checking whether any of the edges of
the inner 'boqndaries intersect the outer boundary. Points

)
of intersection, if any, can be introduced as new vertices

in the corresponding edges of both boundaries. Once this -.

computation is done for the. edges of the outer and an inner
boundary, the unification methéd to be described below is
effected :
L - . ’ v

A vertex of outer boundary which does not 1lie inside
the inner obstacle is chosen. From that vertex, the outer
boundary is traversed in the counter clockwi;e direction
until a new vertex, say Pl' is encountered. This sequence
of vertices will become part of the new outer boundary.
Since the new vertex is a point of intersection, tﬂgg has
already been introduced in the corresvonding edge of the

inner obstacle. Consider ‘the vertex Q next to Pl on the
H

inner boundary. If Q does not belong to FP of C then the
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outer boundary is traversed from P1 in the counter=-clockwise
sense and the above method is repeated. However, if 0Q
belongs to FP of C, we traverse the inner boundary in the
clockwise direction until the next new vertex is
encountered. This sequence of new vertices and edges is
appended to the partially formed outer boundary. This
method 1is repeated until the original vertex with which we
startgd, ié reached. On termiqgtion, we have a connected
component bounded by the o:ter boundary. It is possible
that the reglon bounded by the outer boundary gets dyvidmf
into sevgral components by an inner boundaty.4 Henhce, in
order .to capture all connected components, the above method’
must ba repeated until all the vettices- of the outer
boundary that belong to FP occur among the components.

The unification method must be repéated for every inner
boundary interséctiﬁg tﬁe new outer boundaryf On comnle&ion

of this process, we would have formed all connected

components of the region enclosed by the outer boundary.

The example in fiqure -~ 4.2 illustrates this unification’

method :

Those inner boundaries which do nof intersect the outer
boundar&'shquld be tested for possible intergection among
themselves. In 'case, any two of them intersect, the same
" unification procedure can be used to get unified inner
boundaries.. Thus, the set of free Dositioné for center C
gets divided into different components where each component

is a multiply connected region. Figure 4.3 shows-the
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Figure 4.7 —

Quter w;th Ol: V1P1P2V2{3V4V1 ; Inner with Ol:OllP.lO12
. ' P.0, 0O

) 013014%1572%16%11
New Outer: V P107,0130;,401cP,V,V3Y,Vy
New Outér with O,: V;P10;,01301014071504P;V5032,VY4V;
Inner O, :/%;710,7010,30540,5950307694051

New-outer 1l: V1P1012013Q102302402SQ?V3V4Vl

New-outer 2: Q,P,V5030,¢Q; ; New-outer 3: R,Q,R,R,

New-outer 1 with 03: V1P101201301R1023024R4025Q2R3R2V3V4V1,

New-outer 1l: VIP 1012013Q1R1031032033034R2V3V4V1

. regions resulting from the unification method applied to the

\ ' o
enlarged ohstacles of fiqure 4.2.

Having identified these regions, the next step in this

s

method is to test if{gahjinitial vosition I and the fiqgl

";sk belong to t ' same component. If

-42-
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Figure 4.3

Figure 4.4

they belong to two different components then there is no

motion for the disk from I to F. When I and F belong to the’
same reqioﬁ, motion from I to F can be determined very

easily. Let Iy and Fp be the external points of
intersection of éhe line IF with the boundary. Let' us
denote the motion of< C from X to ¥ by (X, ¥Y). Note that
this motién is a translation if (X, Y) is a straight‘ edge;

otherwise, the motion is a rotation. ((I, IO), Ig to Fo

along the boundary,. (Fy, F)) gives a motion for the disk to
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reach its destination. See figure 4.4.
, A

The two 'major steps in method 1 are enlarging the
boundaries of obstacles and unification of enlarged
boundaries to determine the - connected components. Each
major step involves a finite number of primitive operations
such as : 1. dsplacing each stréight edge by a constant
amount parallel to its original direction: 2: determining
circular edqges and 3. determining whether or not, a vertex
of a region 1is convex. Since . each primitive overation
involves a constant number of ‘additions, multioiications.or
compariséns, the cost of the method will be measured_by. the
number of primitive operations tequired to determine the

B3

existence of a motion.

[

Tge cost of the first step namely that of growing the
obstacles and ;he boundary 1is O(n) where n is the tota X
number of vertices in the obstacles and the outer boundary:
The number of vertices in the grown-up configuration is also
O(n) since we can have utmost 2n verticés and 2n edges in
the grown-up Soundaries. Next, in the unification step, the
grown-up obstacles are checked for  possible intersections.
Each edqe% in the worst case , would be tested with every
other edge for intersection. Once an intersection is
detected, corresponding boundaries are unified together_ by
tasting each new vertex with fespgct' to the set of free

positions and traversing each edge of a boundary at most

once. Hence, the unification process is linear on the

——
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number of vertices of the unified boundaries. So, the cost
of detegting intersections and unification  for all
boundaries is O(nz). The cost of determining ‘the

component (s) to which I and F belong is linear in the total

number of edges. Since there are at most O(nz)'edqes in the

new configuration, this cost is O(nz). Finally, 1if they

belong 'to the same region, I, and F, can be determir}ed-in~

‘time O(n) and so the. path 1is determined in O(n) time.

Hence, we conclude that -the total cost of this method is
O(nz).
4.3 Representation of planar regions and contéurs :

In wthis sectiﬁn, we shall éescribe the region
representation technique developed by Merrill [13]. This
representation facili&ates efficient methods for computing

-
boundary intersections, unions ,a8 well as for vpoint
enclosure problems. This method when adooted to motion
finding  problem, reduces the overall compleiity of the
method. u

In (13}, a recﬁanqular grida is Qsed within which
regions are to be rep;eéented. In -order. Eor a region
Jboundary to be represeﬁégd in this grid, it should satisfy
three conditions : 1. Eoundary should be closed and
continuous.’ 2. If agrid line parallel to the reference
axis passes through e*treme points (local maximum or minimum

points) oi\?oin;s of inff®ction, the number of. arid points

of the boundary on this line may violate Jordon Curve

Theorem. In case, it happens, these.special points have to:

| / .




Bé repéated certa&n ~number ‘of. times. 3. The boundary
should not loop back on itself. |

Once the boundﬁry is made to satisfy these conditions,
it can be represented as a discrete data in tpe*gkid. Let
ymin({T) and ymax(T) denote the minimum and the 'maximum Y
co—ordinéées of a boundary T to be represented in the qrfa
and let p = ymax(™ - ymin(T) + 1. Then for each y; where
yi‘= ymiﬁ(T) +i-1,1<1i < p, let Yi(T) denote the set of

all X-coordinates of 5he points of the contour T whose
¥

y—-coordinate is Yi. - This set, called Y-partition
corrdsponding -to Y;r is kept'in a sorted fashion. In this
manner, the entire boundary ,T.is discretized.into sets of

Y-partitions., This representation enables simplified
*

solutions to two primitives that we need.

L4

'Primitive 1 : Given two regions A, and A, compute the -

‘region A, - Ay =A  and  its components when A, is 'not

contained in Ak‘ Further; determine the enclosing component

of I anf F.

S
A solution to this primitive is not given in [13]. Our
solution is as follows : Consider ymin(m) = max { ymin(k),

ymin(l) }, ymax(m) = min { ymax(k), ymax{l) }. Regions A,

and A1 could overlap only in“the strip’ determined by ymin(mf

‘to ymax{(m). Those Y-partitions of region Ak corresponding

to  ymin(m) to ymax (m) should be modified to get
' AY

corresponding Y-partitions .of region Ak - Al. Other

Yyt

f-partitions of region Ak remain same for region Ak - Al.

In the common range that is computed, each odd-even pair of

o
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) e\i;y &-partition’in region A should be analvzed in the

followi}xg manner and points for region Ak - Al should be

i

\\found. Suppose (go(k) ' xe(k)) is an -odé—:even pair of region

A, ~and’ (xo(M , x (1)) is an odd-even pair of the region A,

) . ) 1 I ‘Lj‘
.in an Y-partition Y, (m) where ymin{m) < y, < ymax(m), then

i ..“%’ X PN - °5 = A
only one of the following 5 situations would arise :

’

~&
1. ) . ' i ~
L ey - S
. l .
wn (X§ (k) < x(1) ) and- ( x (1) £ x (k) ) .

Ina.'this case, (xo (;(),0 Xq (Ly ) and’ { xe(l), xe(k) ) are‘w’

., introduced as two consecutive odd-even pairs in A, = A,

2 . . " s
: ' s

9

( Xy (k) > x5(1) ) and ( x (k) < x (1))

No pair is introduced“in reqic;n "Ak - Al correspbnding to
(xp(k) r Xg(k) ) "and (x4(1), x (1) ).

fﬂ’;i"“af ( x5(k) € x5(1) ) and [ x, (k) ‘< x, (1) ).

A




= =

a

(xo(k), -%D(l) ) is the only odd-even pair introduced in the

4

correspondina partition of Akh-,Al.

42 (xg(k) > xp (7 1 and (X (1) < x ().) . ‘

In this case,'(-xeﬂl),_xe;ﬁ) ) - is introduced as an odd-even

N

pair Ak - }l'

N ; \

-

5. ( xo(l) 3‘“xe]k) ) ;and hgnce ( xo(k?, xe(k)r) is an

oddre§én pair in Ak —'Al. o
5.4 x (1) € xgo) ) and so ( xg(k); X, (k) ) is an odd-even

pa%F in Ak - Al.




———

~

: ” :
: b
y analyzing the partitions of the two regions Ak and Ay in.

the“common range, as explained,_region boundary for Ak - Al

is fo;med. ‘During the above,analysis, ff either (Ol, Elo or
(O, E5) (odd-even pairs,ET::aining‘the initial and ‘ final

positions)'is changed then i‘new odd-even pair is’computed

»
4

and kept in therco:respopdinq pair.’ : o

. . A
In the solution to our problem, we need Y-partitions of

region Ak - Al only when Al is not  contained in Akf Region
AL is not contained in Ak whenn one of the following

- - z . L
conditions hold . :

f f

1. "ymin{l) < ymin(k) ‘/ o . ‘ - ~
2. ymax(l) > ymax(k) ‘

3. One of the situations 2, 3,. 4, 5, 5 arises when

analyzing 'the Y-partitions in the common range. \\f

In case, when one of. the above conditions holds, '

A

.

different components of the region A -ﬁAi can be determined

by the following method : ) ' »

po

Consecut'ive Y-partitions of the region Ak - Ay are analyzed:

in the fo{iowinq manner to obtain the different’ components.
Suppose Yi(;? and Yi+1(m) are two consecutive Y-partitions

of the region Aké - Al. If there is ;n odd4€?en pair

J

ey



Py

/?

&f these Y-oart1t1ons contain bot# (O \\\E and

Jxo(i+l), Xo (i+l)) in Y l(m) such thar 1nterval (xo(i+l),

Lt
xe(i+l)) is completely coMtained in an even—odd pair (xe(i),

xo(i)) of Yi(m) then the pair (xo(i+1), xe(i+l)) may

indicate the beginning. of a new component. Corresponding

‘odd-even pairs of successive partitions are analyzed. After

éertain Y-partitions, if there is a Yj(m) such that there ié
an odd-even pair (%, (])r Xq (3)) in Y (m) and it is
completely contalned in an even-odd)paxr (x (3+1), 0(j+l))

of

m), then a component of region A; - A is

k 1

recognized. The y-values of this comoonent range from Yiel

- s
to Xj and the.Y-partitions of this component are as follows

Yj+l(

1+1(m) = {xp(i+1), % (i+1)} : For y, such that y; , <y, <

]-l Y, (m = {~ 'cor{:fszndjng, odd-even "pairs from
Y(w) -partition of the regidn Ay = A } and Y (my = {xolj),
x, (3) :

'(021 Ez)
then this 1is the enclosxng component of I and F. If this

set has only one of the pairs then I and F belonq to two
<
dlfferent component and hence there is no mot1on. If both

of them do not belong to this component then this component
\ .

does not contain I and F. A These odd-even pairs are removed

from the ccrreﬁ'onding Y-partitions of the region Ak - Al.

'By, analyzing all the Y-partitions of the region A_ - Ay,

k
Y-partitions of the component containing I and F can be

determined. ' . N
Primitive 2 : Given two regions Ak and A, . comoute their

' .
@ E 3
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union Ay if they intersect :

‘The bouhdary of the union of the regions Ak and Ay will have

Y-partitions from ymin(m) = min { ymin(k), vmin(l) } to-:

ymax (m) = max { ymax(k), ymax(l) }. Rules for creating
Y-partitions of the common region are formulated in a manner

analogous to thlat for creating Ak - A and they are

!

summarized as follows :
1. If € x, (k) < x(l) ) then (x4(k), x (k)) and (x4(1),

xe(l)) are considered two adjacent odd-even pairs in the

., .
union.

’

2. If X (k) 2 x (1) ) then ( x,(1), x, (1) ), ( x4(k),

Xo (k) ) are two adjacent ddd-even pairs.
3. 1If ¢ %o (k) < xq(1) ) and’ ( x;(k) < x (1) then ( x,(k),

xeil) ) is introduced as a vair.

4. IF ( xo(k) > xo(i) ) and Xe(k)'> xe(l) } thenm ( xo(l),

xe(k) ) is introduced.as an odd-even vair.

5. If (x5(k) < xg(1) ) and ( x,(1) < %, (k) ) then (xq(k),
xe(k) ) is a new pair in Ak - Al.

5.0 TIE (xp(1) < xq(k) ) and ( x, (k)

[ XS

xe(ll,) ;hii/i xo(l),

Xo(1) ) is a new pair.
The two regions intersect if and only if the following
conditions are true :

l. A, and A have at least one common y-line. 2. While

analyzing the Y-partitions of the common y-lines, at least
e

~

one of the situations 3, 4, 5 or 5 arises in one of them.

\ . . . .
In the following section, we make use of this discrete

representation and orimitives for an efficient solution to

{
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the motion finding problem.

4.4 A fast algoyithm ﬁor planning the motion of a
disk. ‘ ] '

Outer boundary and boundaries ' of inner obstacles are

‘grown-up by the amount R and the nlarged regions are

rep}esented as Y-partiti%ns. Let (xmin, xmax, ymin, ymax)
denote minimum and maximum X and Y co-ordinates of the
original outer boundary. Then the rectangle Hﬁ?xmin - R,
%min - R, (xmax + R, ymax + R)} encloses all the
boundaries, In this rectangle, y-lines are introduced at
,unit distance from ymin - R to ymax + R and also through I
and F. Further, for each boundary T, let Pl(T) = {xmin(T),
vibe Py(m o= (xmax(m, y,}, Py(T) =\{x1, ymin(T) } and P, (T)
= {xz, vmax(T)}. Then y-lines are also introduced through
these points. This would capture the intersection of any
two regions when the common region is within two consecutive

'y-lines.

R . . \
Regions to be represented in the rectangle should

R P
satisfy the three conditions mentioned in section 4. Since

! all our boundaries are closed, condition 1 is always

satisfied. Boundaries of the obstacles in our problem never

~

loop back on itself and so situation of this type would
never occur. As° the Y~-partitions 'for each regqion are

determined extreme points and points of inflection are
* ' -

¢

detected and condition 2 is checked among those points. .

It is sufficient to déscribe-how the Y-partitions of

[l &

° " each boundarv is formed. Each boundary T is traversed once

3
4

»



to get (ymin(T), ymax(T) ) of that boundary. Y-partitions
8f that boundary are to be determined for each Ye o ymin (T)
< Yt < ymax(T) .

] t »
Points of intersection of any ¥, -line with the edges of the

boundary forms the corresponding Y-partition. If Y is a

" tangent to a circular arc then the point of intersection '‘'is

s
introduced twice. If Y, passes through a vertex V such that

edges incident on V are both above or below Yy (local
minimum or maximum) then V is repeated twice. When one of
those edges is above and énother is below Ye then V' is o a
poing of inflection and ‘it is added only once. Another
sitégéion in which points of infiection would arise is when
an deqe PQ (P_ 3 Q,) of‘the region coincides with Ye- If T
is an inner bound;ry then we claim that the interval of -yt
that precedes P (if exists) and- the interval that follows Q
(if exists) both belong to the region T. _ The proof is
omitted. ) ‘

As a consequence of our claim for an inner boundary T,

if an edge of T say PQ coincides with Ye then the followiﬁg

method is adopted to form Yt(T).

_'All points of intersection of the obstacle with Ye is

determined and sorted in ascenainq order. If the sorted
‘sequence is of the form ... *** p' p Q Q' **#*x _ - then

intervals [P',P], [P, O] and (Q, ©'] helong to the region T
i

and so all‘three pairs .should be odd-even. v
A

We consider the case in which region T is the§outer

boundary ‘and an edge PQ coincides with Yy Now, we claim’

\'53_ _ .
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that the interval that precedes P [(if éxists) and the
interval that follows Qg (if exists) both do;bnot belong to
the region. ibnce again we omit -the proof,
Hence we conclude that if contour T 3i'the outer boundary
if one of its edges coincides with QZ then all points of
intersections of T with Ve is determined.)'lf
...*%** Py p @ Q' **x . jg the sorted sequence of
Yt(T) then (P', P) and (Q, Q'} should be even-odd pai;s (do
not belong to the regiony whereas (P, Q) should be an
odd~even pair. In ‘this fashion, Y-partitions for all
grown-up .boundaries are formed. From the Y-partitions of

the outer boundary, the two odd-even pairs (Ol, E and (02,

l)
‘Eé) containing I ;nd F can be determined.

Havinq fouﬁa\‘the Y-?artitions for the outer boundary
and an inner boundary O, ﬁhe next step is to chéck whether
the inner boundary penetrates the'oute; boundarv. If the
N
inner boundary .O is completely conttained in the outer
.boundary then it is kepot in a set S. S contains those inner
boundaries which do not intersect the outer boundary and
this set 1is initially empky. If O intersects any of the
membar of this set, tﬁen union of‘ those boundaries are

trmed. This task is done by priﬁitive 2.

If tha? inner boundary penetrates the outer boundary,
they have to be merged together to get a new outer bqundary!
In this new outer boundary, if I and F belong to two
different components then there is no motion. Otherwise,

&

enclosing component of I and F should be determined. All




»

the above-mentioned tasks can be done using primitive 1. If
I and F belong to the same coﬁponent, the new outer boundary
‘is this component and the above nroceés shéuld be revpeated
for every LQSiiﬁfoundary. | | '

At the ®end of the process, if I and F belong to the
same comooneLt then each member of the set S shq&id be
checked with this component for possible penetration. ‘Those
penetrating ﬁeméers should be merged with the component.

On completion of this methoﬁ, either we would be having
the component conpaihinq 1 and F, proving the existence of
motion or the method would have stoppedt due to I and F
belonging to two different components. Thus the decision
problem is solved using the partitioned representation and
the primitives. ‘

Analysis of Method. 2. , )

Finally, we shall ‘analyze this algorithm to find its
cost. ' .

Cost of the first step namely growing-up the boundary is

O(n) . In the next step, the Y-partitions of each houndary

are determined. .We have a maximum of (ymax - ymin + 3) + 2R
+ 47 lines and each line can intersect utmost O(n) edges of
the boundaries. So, the cost of forming the Y-partitions of
all the boundaries is O(n). These points are to be kept in
sorted order in each y=-line, Sorting can be done as
follows :

When the Y-partitions of an inner boundary are being formed,

each y-line is tested for possible intersection with every

<

.
v
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edge of that boundary. We vcan have utmost n points of
intetseétion on a y-line with any boundary. As a point (x,

y) is £9und out, it is put into the location ( x - xmin (T)

) of an ;rféy‘containinq xmax (T) - xmin(T) + 1 locations,
where xmin(T) and xmax (T) are the minimum‘pnd maximum of the
X-coordinate of that boundary T. Due to the special nature

of our problem, this sarting is linear on the number of '
‘points.

Hasinq formed the Y-partitions, inner boundériqs which
penetrate outer boundary ite merged with the outerjboundary
and this is accomplished using priﬁixives 1 and 2. In the
'wqut | _case, (situation when the inner boundaries are
;ai:uise disjoint and none of them penetrates 'thf outer
sboundary) primitives 1 and 2 would be used J(J+1)/2 times. l
Let us first comoute the cost of. doing primitive 1 onee.
Let the outer boundaiy W and an inner boundary O have m, and
m, verticéé respectively. On a common y-line, the
Y-partitions ’of W and O can have a maximum of my and m,
points. The cost of forming one Y-partition for region W-0
in theo.common range is ml/z + m2/2 - 1 which is less than -~
2n/2. Hence, the total cost of forminq' region W-O0 1is a
constant multiple of n which is O(n). From the Y-partitions
of region W-0, extracting the Y-partitions of the component
containing I and F is also O(n). Hence, the cost of doing
primitive 1 is O(n). 1In the same way, we can prove that the S

-

cost of doing.primitive 2 is O(n). Primitives 1 and 2 would
[

be used utmost J{J+1)/2 times. Hence the cos
‘ /

»~
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determining enciosing component of I and F and thereby
solving the decision problem is utmost Q(é).
4.5 Remarks

Among all the motion planning problems, probably we
have addressed ggg\ simplest éase. Yet, as we have
demonstrated, an efficzéﬁt>solution requires new techﬁiques
in discrete topology and computational geometry. In [14],
an O(n logn) motion planning algorithm based on the\,
construction of Voronoi diagram is given. Our main thrust
in this paper’'~has been to soeed up the solution by
considering discrete versions of -continuous spaces. The
rSpreséntations for céntours and the regions bounded by them
provide rapid computationq; procedures for testing algebrait
and topological préperties of the region. This
representation may not be valid in general situations;
however, within the context of determining components of
regions bounded by the enlarged boundaries of obstacles, the
inherent aporoﬁimation of ¥eoresentation does not affect the
accuracy. In other words, connected components are always
determined chsectlv and hence the decision ~problem is
solved exactly. Moreover, an optimal algorithm for solving
the point enclosure problem requires O(n) steps when the
region‘ is a polygon with n vertices. Hence, our alqoéithm
optiﬁally solves the motion planning problem for a - siqgle
aisk. The only‘question left open by us is that of finding

a path from I to F. We assert that this can be done in time

O{(n) if the edge information for each point 1in the
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Y-partitions is kept.
There are several advantages to our algorithp. Some of
these are : 1. Having determined the existence of motion

for a given set of obstacles, if one or mdfe new obstacle is

- . A . H
introduced, our method can be extended with minimum cost to

+

determine the existence of motion in the new confiqugag¢$n.
2. If the initial position I and the final positioq P are
not known in advaﬂ:;, then all the connected components are
needed to determine the motion between arbitrary points of

FP. Our method can be modified to handle this case without

i

changing the overall comnlexit&.

When an obstacle is deleted from the set of obstacles,
the tesulETﬁ; set of free positions and hence the set of
connected components will change. A similar situation would
arise when a disk of different radius is Eonsidézed whilé

fixing the boundaries, the initial and the final positfons.

In all these cases, we do not yet know how our algorithm can

be minimally modified. These.- restrictions apply to all:

known algorithms for .this problem; however, the first

~ advantage mentioned above applies onlv to our algorithm.

»
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Chapter S
LS~ . ‘ )
Coordinated motion of two disks

5.1 Introduction

Schwartz and Sharir ([21] give a general algorithm to

solve the coordinated motion of two and three disks moving

among polygonal barriers, with respective time complexities

v
O(HS) and 0(n13). Recently, Yap [29] has given O(nz) and
O(n3) algorithms to solve the coordinated motion of two

disks and three Qisks moving among polvgonal -barriers with

some restrictions. His method is based on the principle of

retraction and canﬁgF be qeneralizedm¥or k > 3 disks. The

Y

algorithm to be discussed in this chapter ﬁas time
! ! '

complexity O(nz) for the motion of two disks.

The closest éontender to our algorithm ig due to
Schwartz. and Sharir [21]}. The “general philoséphy of our
algorithm is similar to [21]:; vyet there are substantial
' differences in the way that the set of free positions for
the disks are 1identified, handled and partitioned into

components. Our . method is more like 'divide and conquer'

ap;;Bach, separating the concerns and dealing with. the

aF

components as indegéndently as possible.- When théo

components are to be found, we also takea 'directed goal'

approach. Once we reach the stage wﬁerein each (I.,Fj)

belong to a component Rj for all j3=1,2, ... k, we transfo#m

the topology of the configuration to a simple combinatorial

"issue based on a related graph G. The existence of a motion

gt 2y

is then related to the existence of a specific path in G.

n



Rl

3
(

Wes remark that the graph G = (V,E) is constructed so that

jv| = nk, |B| = n

~ a path between any two specified pvertices’ in G in time

@

O(nk) ° N

In our discussions we represent each wall by a set of

\ . ) .

vertices with the convention that .for the outer wall WO' the
4

-

vertices are kept in counter clockwise direétibn and for
"each inner wall Wj' 1 < j < p-l, the vertices a&e kept in
clockwise direction. Hence traversing this representation,
the ffee positio&s for the disks is to the left of the

boundazy traversed. At anv instant, (Cl'cz' . Gk) denote
N ;

the centers of the k disks and this is. a 4 feasible

. ¢ 4
configuration if Ed(Ci,C.) > ritgﬁ_gor all different pairs

]

of disks and qd disk can penetrate a wall. We also need the
notion of/Hausttff 3I§tance which we -define as follows : 1.
For aﬁy edge ei(straiqhi edge or a circular edge) and' a
point P, the Hausdorff digianqe of e from P is Hy(R,e) = Q&S
{E4(p,x) ) ~
2. For: two edges ey and}ez, the Hausdorff distance -of ey
from e, is Hy(e,,e;) = gggz{ﬁd}P,el)}
3. 'Thel distance between two edges e, and'e, is H(el,e2)1=
min { Hq(ez,el), Hd(el,ezb}
'5.2 Algorithm for coordinated motion of two disks

In this section, we consider thé special case of two
circular disks moving amidst poiygonai barriers. ‘The

important step in our approach is to determine_ tlie connected

components of collision free configurations of the disks.
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' Opce this is done the existence of a motion 1is determined

using a graph-theoritical approach. Of course, the first
- ") .
’ “~ “La
basic step is due to Lozano-Perez and Wesley [12].

We transform the given configuq%tion of polygonal

obéhaéies so that in the transformed sp%ce, it is sufficient

to determine the coordinated motién of Point disks (C;, C,)
e . Cf~— / . .
initially placed at (Il, 12). Note that if the boundaries

are enlarged by Ly then the region bounded by these

T

grown—-up boundaries 1is the set of/free positions for Cl’

g

ignoring the presence of the other dikk. In the same wai,. 4/////// ¥

Q
when the given b§5;dar1es are gﬁ%wn up by r2, the req;on

enclosed by these enlarged boundas&gg\ésﬁerm;ne«the set of

o
free positions for C,. - %
Next, we give a method to enlarge the gigen boundaries
-— : .

by ry. Straight eéqesxare disblaceﬁjby the amount 3 where

the direction of displacement is towards the free positions.

A convex vertex is replaced by a circular arc ceniked at the

.

vertex and radius £y . The ‘two end points of the arc are the
points of intersection of 4he circle with the corresponding
two displaced edges. Ha%ing displaced each edge and convex

vertex, the set of vertlcéé«for each enlarged boundary is

obtained by the points o? intersection of adjacent enlarged

>

1

edges. In this.fashion, the enlarged configuration G, for
the first disk is obtained. 'Similizfgj’we determine the

confiqur@tion G2 for the second disk by enlarging the
' o
boundar1es of the given obstacles by r,-

Having determlned the sets of free p051t10ns Gl and G2

-

.

o

A

Fad



;
for C1 and C2' 'next we shall .compute the connééted
components gk G, and-G,. In an enlarged configquration, some
of the grown-up inner bouhdaries may idgersect the grown-up
outer boundary and thereby dividing the set éf free
%ositions into several components. If the iniqi;l,and final
positions of a disk belong to two different compdnents of

1
its free position then ig\is not possible to move the .disk

to the (final position, Hence, in order to determine a

//mofion it is necessary to determine the different components

in each enlarged configpralion._ This can be aqcomnli§ped as
follows :_Each edge of an enlarged inner bounaary is checked
with  every edge of the opter boundary for bosgible
intersections. ) Poinés bf intersections; if any, are
introduced as new point§ in‘the corteéponéinq eéges'of Qoth
the boundaries. ’

A vertex of the outer boundary which is not.fnside the
inﬁer boundary is chosen and the oute¥ boundary' is traversed
in the counter clockwise direction until a new vér;ex say' P’
is encountered. This sequence of Vgrtiées becomes part of
the‘hew outer boundaryﬂ\ Then Ehe;inner boundary is searched
for veptex P. If the vertex next to P in the inner boundary

q

i's ndt within the outer boundary then the traversal is
«

continued in the outer boundary and the above procedure is

.

L 2
repeated. However, if the vertex next to P is within the

-

guter boundary then the inner boundary is traversed in

clockwise di:ec%ion until the next new vertex Q if

encountered. ¢« The a!equence of vertices from P to Q in the




-

B
- - ' . !

inner boundary is avpended at the end of the partly formed
new outer boundary. Now, the outer boundary is ttaversed
frqp Q and the above procedure is repeated until the

"

original *vertex with which be started is encountered. This

gives one connected component. By " repeating the . above

procedure until all vertices of the grown-up outer boundary
are included in the component Boundaries, we determine the
connected components a;isiﬂq ou£ of the intersection of .one
inner bouﬁaary with the outer boundary.

, By considering each' inner boundary with the newly

formed outer boundary (components) and by repeating the

above process, the set of components of [the free novosition

for a disk can be obtained. Those inner bolwdaries which do

Il
-

not intersect any of these components may hafe intersections

among themselves. We identify these and melrge together all
intersecting inner boundarieg to- get unified inner

boundaries. This can be ‘accomplished wusind the same

1

procedure described above. Any one unified bgﬁﬁaary should

]
be completely contained in a‘comnonent’de;ermined earlier.’

@
Hence, the components of the region bounded by the outer

bcu;dary constitutes the compénen;s + of Fhe set of fre?
position provided reqions detefmipgq by completely contained
"inneg ~» boundaries’ ére' avoided. Thus the set of free
posit}ons is divided in}o'different components where each
component .can be a muitiély-connected region.

'

By independently: ‘applving this procedufe to Gl and

Gy, we determine thé connected commonents of each.’ "If at

«
v

to.



"to proving R

e

any stage of this region flnd1ng, e1ther 11 and pl belong to

two dxfferent components of . G1 or Iz and Fz elong to two

different components ‘of G2 there 15 no motion for the disks.

So considér the situation when Il‘ and Py belong to a

7comoohent\R1 of Ci and ré and F, belong to a ¢omponent R, of

é. The exitétence of a‘boqrdinated\motion can be determined
by. examinig the relative configurations of R, and R,. We

. N v
first prove that only two situations can arise and then
‘ . & : '

characterize the existence of motion in each case.

f - : - ﬁ -
Theorem 1 : Flther R, =R, or Ry N R, ¢.

Proof' : First obser&e that every: free poSition for the

larger disk is a free pos1tion for the smaller dlsk Hence -
every component of Gl must bq completely coﬂgaxned in or

disjoint from .a component of G,. Now, suppose R, N R, = 0 .

4

!
Then the theorem is proved. Gonsider the case in which Rl c

©

Ry #£ 0 . We have to orove that R) & R,. This is equivalent L

17 R =0 . Let us assume the contrary that Rl

L3

- R, *0 . This implies that theté exists a point x in R, -
2 Our hypothesis

is RI n R2 #‘O . Hencg there is a common poxnt x'"4in /ﬁl

R2 such that x is in hl and x 1s not in"R

Rz. x and x' are in Rl and Rl is a connected comoonent o

implies that % ahd.x'.are free pos;txons for C, and they are
connected by a path say Py in Ri. Siﬁce, £, > t,, any free

position of C1 is a free position for C2‘ Thus.x and x' are<

~

free ~positions for Sy and-thev are connected by the same

path Pl‘ This gives that x and x' arge conne&ted in Rz_whete

e o

x is not in*N: which is.a contradiction to the fact that R,

\



is a connected component. This proves ourlclai@ Rl € R,..
Next, we consider the situation when Rl,d R, = g and

show éhat there is always a motion for the disks.

. Theorem 2 : 1If ﬁl AR, = 0 then there is a motion for the

disks from (Il,- iz) to‘(F%, FZ)‘ where Il and F‘l are in Ff“l

and I, and F, are in R,. y

Proof : Because eﬁph point x in R; is a free position for

C,/ there is a component R,' of G, with R, € R,'. We claim

' N = + i se ' i
that RZ R2 .- ,For othervise, Rz, R2 and Rl will be

contained=in Rz' U qulnd this contradicts the fact that Rz

.

and Rz' are maximal. Now, we shqw the existence of a motion
. s b
by constructing a collision free path for the disks. See
. » .
. . . 5
Figure 5.1. Join Il' 12 and let it meet Rl boundary at Il'

and R, boundary at 12'. Join F

boundary at Flﬂ and R

1+ F, and }et iF meet R,

i

1]
2 .

2 boundary at F
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Note that there are parts of R, boundary and R béundaty

1 2
which are at maximum distance from each other. Let these

£
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gportions be RI: and Rz'. Itiis easy to‘seé that the first
disk at Cl can be moved from I1 to Il‘ and C2 can be moved
from I2 to Iz' simultaneously. Now, C1 cdnvbe ﬁoved along
Rl' upto Fl' and C, can be moved alongkﬂz' upto Fz’ and this
may be done simultaneously. Finally, C1 can be moved from
Fl' to F1 aqd.czq |
proof is complete.

car .be moved from Fz' to F,. Hence, the

.{ Next, we consider the situation R € R,. In this case,
we relate ¢the existence of coordinated motion to\ the
existence of a path on a qraph constructed accordiﬁ& to the

'conﬁiéuratiods R1 and Rz. Let V1 and V2 denote the set of
-vert}cegL of the Ry Qnd R, boundaries. For each vert;x i of
VZ’ ve define ‘ q N

L. = { x iV, [/ Eg(i,¢) > r; + rz} U {x in (a,b) / Egq (1,%)

1

= + r, and (a,b). is an edge of Rl} We define the vertex

1 2 .
set V for our gqraph to be V=0 { (i,x) / x in Li} we also
‘o ’ ' v [
construct bpoints (I1 . Fl ) and (Iz ,Fz ) on R1 and Rz
corresponding to (I;,F,) and\(Iz,Fz) and introduce the pairs
1 t J 1 A : M 3
(I, I, ., (F',F,') as vertices of G. FonsdiK the line
segment joining the Doints’ll, 12 and let Il';Iz“ denote the
furthest pair of points where this line intersects Rl and
Rs. Similarly construct,?l apd Fz . Note that (I1 ,12 Vo,
(Fl',Fz'; are vertices in G.“Bﬁsed on Hausdroff distance
notion, we defineé the edge set E of the araoh G as follows :
E, : There is an edge between {(i,;), (i,y)} if x and v are
, adjacent vertices in Rl and Hd(l, (x,¥) 2 rlf ry. Ez :
The;e. s an edae between (1,x) and (j,x) if Hd(x, i, >

’
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a

£i+ £y Es : Consider vertices (i,x) and.(j,y) where i"and
3 a:é‘adjacgnt in Ré and x and y are adjacent in Rl. Let S
= (i, and‘s2 = (x,y). This gives faise to 24 different
confiqurationé for,sl and S, These are :

1. S1 @s ahstraight edge and S,y is a circular arc and it is
concave gp.( 1.1 sl'and s, do not overlap. 1.2 8, and’ S,
overlap. .1.} s, is covered by s; fully. 1.4 s, is coveréd
by 5'2 ST ‘
2. sy is a gtraight edge, s, is ‘a circular arc and it is‘
convex up. 2.1 S1 ‘andbs2 do not.éverlap. 2.2 81 and 52
overlap. 2.3 si is coyered by\sl.x 2.4 Sy is covered b§ s, -
3. s, is a circular arc (always convex up) s, is a circular
arc and it 1is concave up. 3.1 Sy and szido not overlap.
3:5 sy and)ga overlap. 3.3 s, is covered by s;. 3.4 s, is
covered by s,.

4. S is fa circular arc, Sy is a circular arc and it is
convéx up. 4.1 Sy and Sy do not bvetiap. 4.2 5 -and Sq
overlao. 4.3 s, is covered by\sl. 4.4 s, is covered by s, .-
5. Sy is a circular arc and.‘s2 is a straight edger 5.1 31.
and s£ do not overlap. 5.2 s, and s, overlap. 5.3 s, is
covered by sy- 5.4s5 is covered by 8, -

. s, and s, -are straight edqeé. 3.1 s, and s, do not
overlap. 5.2 S1 and S, overlap. 5.3 szlis'covered by 5y -
314151 is coyered by 8,. '

In all these cases, we define edge between 51 énd 52 as

follows : If s, and s, do not belong to any of the cases

2.3, 4.1, 4.2, 4.3, 4.4 then there is a motion from (i,%) to:
N .



(j,y) if and only if the following condition is true : a.
Either Hd(x,(i,j)) 3_r1+ r, and Hd(j,(x,y)) > rl+ r, or b.
Hd(i,(x,y)) > rl+ r, and Hd(y,(i,j)) 2 6+ r,. Suppose (a)
is true ' then by El and E2 edges would have been introduced
between the vertices ((i,x), (j,x)) and ((3,¥),(3,¥}). A
similar reasoning holds for (b) also. Hence, we do not have
té.introduce new edges in these cases. However, if 51 and
s, are }a’ one of the cases 2.3, 4.1, 4.2, 4.3, 4.4 and if
H(sl,sz)'i r1+r2 tth we introduce an edge between S1 and
S, -
Note that it 1is sufficient to prove the existenée or
noh-existgnce of a motion along the boundaries of Rl and R2’
We shall show that a motion alohg the boundaries from
(Il',Iz') to (El',Fz') exists if and only if thére is a path
in G between (Il',Iz‘) and (Fl',Fz'). Clearly this would
confirm the motioq of disks from ?Il,IZ[ to (FL'FZ)'
Theorem 3 : There is a motion for the disks from 111',12')
to (Fl',FZ') if and only if there is a path in G between‘the‘
vertices (I,',I,') and (F;',F,").
.ahd

Proof : Suppose there is a path in G between (I.',I

1 1"

(Fl‘,Fz'). Then as a direct consequence of our definitions

o edges, the existence of a motion for the disks follows.
So, it remains to prove the converse.
Assume that there is a motion for the disks from

(Il',Iz') to,(Fl',Fz‘). We shall show that there is a opath
in G between (I ',I,') and (Fy',Fy') . We state and orove

several lemmas leading to the final result.
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Lemma 1 : There is a motion from (11‘,12‘)ﬁto (Fl',Fz') if

and only if there is a motion along the boundaries 31 and R2

from (Il'}Iz'l to (Fl',Fz').

° ]

Proof : The if—paﬁt is obvious. We prove the onlv-if part.

L4

Suppose there is a motion for the two disks from (Il',Iz')'

to (Fl',Fz'). We have to prove that correspondingly there

is' a motion along the boundary for the two disks. Let C;

and C2 be the corresponding positions of the two disks on

the trajectories at any instance.

Figure 5.2

Let the line segment C,C, meét the boundary of,ﬁz
externally at P, and the line segment C2C1 meet R,
externally at Pl‘ Obviously, Ed(Pl,PZ) > r1+'t2.~ Hence, we
get a set of free positions on the houndariés which defines
a motion slonq the boundary. . ’

Lemma 2 : Any Aotion along the boundfry can be Franéformed
into one along tﬁe boundary that involves only the verfices

of the boundary.

pe—— —



Proof : Although the motion is continuous, we can consider
any motion as given by a-sequence of points, say, (uo,vo),
(ul}vl) oo Qugevied, (v, It is implied that from (u;,v;)
to (ui+l'vi+l) the motion is along the edge as defined bY
these points. Moreover, it is continuqus in the closed edge
<(ui'Yi)’ (ui+1,vi+1)>. Let (uk,vk) be the first pair such
that either u, or v, for both) is not a vertex of the

' boundary. (ul,vl), 1 =1, .. k-1l is a pair of vertices of

and B, denote the

and R 1 2

" the region boundary R, 5"

boundaries of the region Rl and Rz.

Let B

“

Case 1 : u, is not a vertex of 31 and Ve is a vertex of Bz.

1

Vi+l

.

In this case, since u, is not a vertex of 3, it is nossible

to move C1 at u, to the nearest vertex uk‘\of By keeping C2
at v%.

Case 2 : u

Hence, the pair (uk,vk) can be replaced by (uk',ék).

is a vertex of Br and v, is not a vertex of BZ'

k k

Let (v be the edge on which v lies. If ic s

L} L]
k-1 'V ! k
vossible to move C2 at bk to vk', keeping Ci at.u,., then the
h Y
nair (uk, v,) can be replaced by the vair !uk,vk') vwhere vk'
'is a vertex of BZ’

case 2.1 : Supoose such a motionefrom v, to vk' is not

K ~

v
-



possible. This implies that the circle C center u,
{

radius I+ ry. intersects the segment (Ve s vk'); This

and

lmplies that the segment (vk 1 ,vk) is outside the circle.C.

Hence Ed(vk_l +U ) > £+ r, and Ez(v,,u) 2 Iyt r,. This

shows that the previous vertex uk—l' is outside or on the
\ ' . | ‘
circle ;f/;;j:; and edge’ (u,_,,u,). is completely outside the

13 . g [] ) 1]
circle at Ve-1 - Hence, C, can be kept at v, _, .and C; can

" . .
be. moved ¢to Uy . Hence the pair (qk,vk) can be replaced-by

f ]
(Gervey ) - ,
/gase 3 : Both U and.vk are not vgrtices of‘B1 and Bz.
Let (dk_l',uk') be the edge on which Uy lies and
(Vi_1'rYc') be the edge in which v, lies. .

Case 3.1 : Suppose it is possible to keep Ci at ﬁk and move

Cz'from vy to vk'. Now, the pair (4 ,v,) can be replac?d by
the pair (uk,vk‘) where up alone is not a vertex of Bl' The
rest follows from case 1.

case 3.2 : It is possible to keep C2 at v, and move C from

oy, to “k . In this case, the oa1F (uk,v ) can be reolaced

by the pair (uk 'vk) where Vi alone is not a vertex of 32.

'The rest of the details are .ag in case 2.

|

case 3.3 : It is not possible to move C; to u, keeping C2
at v; and it- is not possible to move C2 to ;k‘ keeping Cl at
dk' This implies that ;he circle with center v, énd radius
Tt I, intersects the segment (uk,uk‘) and the circle with
center ay and radius_rl+r2 intersects the segment (vk,vk').

But E4(u,,v,) 2 ry+ ry and -the circle at v, intersects

3 . 3 3 . ! ) 1 ;
seqgment (uk,uk }- implies that' the segment (“k—l .uk) is
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‘Since Ed(u

«

: L] " -
outside the circle at v, . Hence, Ey(u _,',v) 2 +

£t Iy-
k-1'+VY¢-1') 2 £+ r, also holds, the edge

ug_'su ') ise completely outside ' the circle at wv, ‘.

Hence C2 can be kept at Vk-l' and C,; can be moved to uk'.

In other words, the pair'(nk,vk) Eqn.be replaced by the pair
(v, V1) where both Uy and Vg-1 A4re vertices of By énd

"2

Hence we éonc1u¢e that any mot it along boundaries B,
and BZ can be replaced by a motion consisting only the

vertices of the boundaries Bl and BZ'

Lemma 3 : For évery motion of the disks along the boundaries

Bl-and 82 involving only their vertices, there corresponds a
[ M Ry

path in the graph.

-‘Proof : Let?(uO,vo), 4u1,vl) ees f{u_,v,) be a motion along

the boundary such that uy and vi are vertices of B1 and 82

respectively. We have to prove that this motion can be

-

replaced by, (uo',vo'), (ul',vl'f e {u

((uk_l',vk_l‘), I“k'“vk',) is an edge of the graph. '

4
Cons;der any quen pailr (uk,vk) and (“k+l'vk+1)'
Case 1 : Let u, and U sy be adjacent in Blland Vi and Vsl

9 n+l

\ , 1 2
be adjacent in BZ' Let Up s U s 0T e Uy v Y be the

sequence of adjacent vertices between g and u We shall

k+1°
show that there is a path in G corresponding to the motion

1uk'?k) to (uk+1'vk+l)' We prove this by induction on the.

. ¢
number of vertices between uy and Upe®

Suppose there is only one yvertex say uk1 in between Uy

and uk+1.

",;m') where.



Yk , Y+l

Let V be the positidn of C2 when Cl'is at ukl. If v = vy

) 1 1
then the path iS ( (uk,vk) r} (uk pvk)) ( (uk Ivk) ’ (uk,’_l'vk.',l)) .

1

If" v = - Ves1 then tﬁe pathu is  (lupevid,e  (uy 'vk+l))

1

((uk 'uk+l) (9k+l'vk+l))' If v is an interior point of .the

segment (Vi 1%, ,1) ‘then either the segment (v, ,v) is outside
is

the circle of rgdihs ry*+r, at u L or the segment (v,v

K k+1!
outs}de the g¢ircle of radius r1+r2 at ukl. 1f (vk,v) is

X . 1 ' .
free then d(vk,uk-) >+ o1, and d(vk'“k) > rytr,. ,Thls

.imolies that the edge (uk,ukly is outside the circle at Vi
Hence the given motion can be modified as (uk,vk), (ukl,vﬁ),

9

Uy by Viesy and . the corresponding vpath ‘1is ((ag r vy )y
v U hov) s tu v, W)L IE (n,v,,,) is free then
the given motion can be modified as (uk'vk)',("kl’vk+l)’
(uk+l'vk+l) and the -corresoond?nq path is ((uprvy) o
(Ukl-vk+1)¥.' ((ukl,vk;i). (“k+l’vg+l))‘ This completes the
oroof for the basis of induction.

Next assume that the theorem 1is true when there are »

1

(>1) vertices between Uy and Upey - We orove the theorem for

the case of p+l vertices between u, and u, ... When the Ci
is at ‘ukl, C2 should be at some position v on thé segment

;(vk'vk+1)‘ I1f v = v, or.v thep either ((uk’vk)'~

e+l

1 ) o1 - ‘s
(. AN pr (W rv ) e (g Vi) would be an edge’in the

-

constructed granh. If v is an interior point of the segment
- K e ;




Vi riar)

then " either (1.1) =he segment (v, ,v} is free or

(1.2) the segment (Vv ) LS ffeeT

motion can be modified to : fix C

2

1

In case 1.1, the given

1
K and move Clptc .

at v

Correspondingly, ((uk'vk)' (ukl,vk}) would be an edge in the

/
graph. Now, (uk'vk)’ (uk+l'Yk+l) is a motion in which there

' , , < 1
-are n vertices 1n between u

K and-u

k1" By hypothesis, this

motion is recognizable as a path in the graph. In case 1.2,

the given motion can be modified to : move Cl from u, to u,

1

4

énd Cz'from Ve O Vyq- The corresponding edge in the °graoh

. is ((Ukr"’k)r (uk

1 .
AOTSRRE Now we

;

shall orové that the

subSequent'motiog is recognizable by the gravoh.

. : . : - o1 2, 2 3
Case 1.2.1: Tbe Sequggce of edqgs‘(uk ﬂfk ), (uk PRT S TN

(ukw1

N

'uk+1

)" 'are all outside the cirtle at v

<

a

K+1° In . this

case the path in the graph for the motion is ((ukl,vk+l),

(u.2

TS UACTS AR

* Case

1.2.2

wi>

b3

There s a vertex

.

oy L3 ‘ | P*L
k ’vk*l) ) '_ ((uk Ivk+1) [ (uk olvk+}~)) . -‘-ct ,.A(Uk ka+l) [4

~

1 2

 r U

r . :
u,~ such that u Ly

ukrijafbutsiﬁe,the'circie at vk+lvénd uk§¢l is 1inside the

circle

~

P ‘ ‘ '
. i3’ a consequerice of the r

a
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e

esult that any edge of élh

3 .

13

5



u” . In this case, 02 can be moved to&vk keépinq Cl at u

. than p vertices in.between ukr and u

)

¢

should either be entirely‘zmtside the circle C center Vil

and radius rytr, or entirei§\within it. It cannot penetrate
. ' “ ~
the circle. Now, C2 can be kept at Vk+l and Cl can be moved

w v

upto, ukr along successive- edges and hence this motion is

recognizable by the graph. ) "

(Y

Case 1.2.2.1 : The edge AV Vi) 1S outside the circle at
1

K *

k417 V1)
is recognizable as a path in the graph since there are less

By induction hypothesis, motion from (ukt,vk) to (u

k+1°
Case 1.2.2.2 ¢+ The ¢ircle of radius rl+r2 at ukr intersects

. . ; i,
edge (Vk'vk+l)' We claim that there is a vertex u, " in the

sequence ukl, u;z, e ukr such t’h“as»eitherc2 can be moved

, NS T s o T ,
ov ) i m si —
t K keeplnq C1 at uy { teratlvg otion) or a multansggg,,

o

. > i '\ i+l l///’/
motlon‘exlsts from (uk 'vk+l) to (uk ,vk};//,,

Suppose our claim jg _mot true. 'Then the circle C_ at

q
every point'qg in the squenéefukl, ukz... uk;.intersegts

Vet Vit Further, our initial condition is that (vk,v) is

} ién¢,‘\e-=,

} has a

blocked. This gives that. n {(Vk’vk+lf’ n cq
i i+l

(u, " ,u ), 1 £ +< r-1. Rurther {(v 'V ) N e

k k kK’ k+l . g

.cont inuous transition on (vk'vk+l) as q moves along

(ukl,ukz), (ukz,ukz) cer continuously.

This shows that the cof:esbonding position for .CZ in
. .
(vk,vk+l) whe? C1 is at u, is in the -seqment that }pcludes

. ot . s S w ' r
Vesle This gives that there is no mot}on beyond (Vk+1'uk )

which " is a contradiction. Hence, our claim that C, can be

moved to v, through a simultaneocus of i;eré%ive motion .and
B ' *
¢ .
>

- 75 -
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a

v

R

, . j . T -
motion from (uk ,vk) to (uk+l’Yk+l) is recognlzablg,gs a

. - Y
define the motlon’as (uk.,vk)‘(uk

o

)
-
R A

i

Y
.o

. . ‘\ B
for this motion there 'i's an edge in the graph. At this
\ e '

stage C, is‘at.ukj; for some j. 1 < j < r. Now, the forward
3 - - .

\

-

path'ﬁncthe graph due to induction hypothésis.

case?: . .

&Y\
We assume that u, and.vk+1 are adjacent and v, and v, .,

are not adjacent. We shall ‘prove this,gase also'using

3

“induction on the number of vertices between v, and v, .

,‘ Let there be only oqﬁ vertex vkl'between'vk and v .

k+1

. Let v\bewhhg,posétlon of C, when C, is at v, .‘:If v =u, or
‘then thé motion is‘reéognizéble. Otherwise, Ed(v;vkl)

U1

> rpor,. ghe glstance cannot- be equal to ry+ r, "since in

"”éhaﬁ case, v would be a vertex. This implies that the edge

[N

1.

Vk . Hence, we can

(U su,, ) is outside the  circle at

i

anh,this.ianrecdénizablz&by the graph. 4

Next éssump that when there are p (>1) vertices between

T

v, and §k+l the / motion is recognizable by the graph. We'

prQve the ?asg'ﬁn which there are (p+l) ventices between Vi

. . 3 . 1 ‘2 pt+l
épd Vsl Lst vk ,”VK ‘e Yk .be .the vertices. Let v
. t
“. . } . , - .

. - T¢ - .

i o 6
|3 LY R
’ ° | ! ..

v

V) v D (i) s
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o . 1 o
be the position of C; when C, is at v . ;f vo=oa

U 4y thep by hypothesis, the motion is reco@nizablq; If v

or v ' =

is an interior point of (Vk'vk+l) then by our previous

arguments,\(uk,ukgl) is butside the circle at v{l. Then the
giveﬁ mot ion can be redefined as : (uk'vk)’ l%,

(uk,vkl), (uk+l'vk+l)' * Due to the given motion, there are

. 1 1 1
edges between (uk,vk), (uk+l'Yk ) and (uk+1,vk Y, (Uk'vk ).

(u‘.(+l 'vk

By induction hypothesis, motion from (uy ov L o (

U+l k41!
is recognizable. Hernce there is a cofiespondlnq path in the

[

:

graph for the given motion.

a
B

1 2

) Case 3 : Let there be s vertices U uk PR uks between

1 2 t B
P Ve e K »between Vi

- . 1 '
K+1- Let u be the position of C1 when C2 is at v, ". JIf
‘is in'(ukL%uk1+l) and 'is not a vertex, it can be moved to

i+l

Uy and U+l and‘t vert}pes v and

X

\

the nearest vertex uk . Hence the moiion is, the segquence
) iv1- 1 i+l 1, i 1 i1
. ( (uk ,‘Vk’).' (uk 'Vvk ) ) ( (uk "‘I'vk ) (uk lvk ) ) ( (uk ’vk )
: : . : i 1
(uk+l'vk+l))' By case 1, motion from (uk,vk) to (u}(L,vk )

\

is .recognizable, In the same way, we can snlit the mét ion’

' i 1 . . . L. .
)Erom (uk Yy ) to (Pk+l’vk+1! by considering the position of

'tl success ively at vkz, vk3 .o .vkt+1.‘ In all these  cases,

we can use case 1 and derive an equibglent motion that is
récognizable.
e Hencq/wé Kave shown that for an arbitrary k, 0 < k < =,
&
the motion from (uE!yk) to (uk+l’vk+l) is recognizable by
the graph G. Since k is arbitrary we-conclude that for the

given motion there is djrecognizable path jn G. From lemmas
. . [ i -
1, 2 , 3 we have shown that for )any arbitrary motion of the

)

Fo



/

. P(n

disks from (Xl',lz‘} o (Fl',F2'¥ there is a correspondina

il

‘path in G between (Il',Iz‘) and (Fl‘,Fz'J. This completes
the-proof»bf‘thebrem\B.

Finally we give a brief analvsis of our method to show -
‘ - . : ' ' .
thyt the cost of the entire algorithm is 0(n%) where n is

the total number of edges 1n the obstacles. It is- easy to
see that the cost of enlarging the boundaries ard
determining 'Rl and Rz, is O(nz). Note that’Rl‘and R2 can

each have O(n) vertices. For each vertex i §n~R2, fLi'  is

om and hence the vertex set V of G is O(nz). The number
of edges introduced bv types El ang. E2 is O(nz). Ssnce
there %s b(ﬁ) circular edges in R1 and RZ' the number of

edges in gzpe E3 is also O(nz): Moreover Hausdorff distance
» ’
between 2 edges (straight line segments or circular

1
Y

2 3 v . =
segments) can be computed in constant time. Thus the cost

of . constructing G=(V,E) with V| = O(nz), |E] = O(nz) is

|
2'). Now the path finding algorithm in [23] requires time

@(lv| + |E!) and thus the coordinated motion problem for two

L4 5 N e
disks is solved in time O(n“).




Chapter ¢
Coordinated motion nf several disks

7.1 Introduction.

«t
"

we clve a aenera.izatior nf pour alﬁf}ltﬁm *rn determine

the existence of a coordinated motion of several disks: when

a motion ex1s8ts our algor ithm also ‘constructs

a

collision

free path. We first describe the generalization for k = 3

and then discuss the most aeneral situation.
3.2 Céordinated motion of 3 disks

Let r
Ty 2 I I, 1+ ©2
displace independently the bhoundaries bv r

and C and C3~be their

. .
respect ively and compute the sets Gl' G2

[l-COMDOHEHtS, ru-components and r3~comnonents.

step, we identify the components R1 in Gl‘ R,

1"

v

RS and rs be the radii of the three disks Awith

centers. We

r

2

and

3

and - G of

3

In the next

in G

in %ﬁ to which (Il,Fl), (IZ,FZ) and (13,F3) belong.

palrfﬁli, i

2

1

and R3

£ any’

F.) belong to two different components then there

‘is no motion. If Rl’ R, and R, are pairwise disjoint, then

the problem degenerates into éinqle disk problems of moving

C3r1n R3. C2 in R2 and Gl in Rl and there 1is always a

/ N

i g n n =
motion. if Rl n R2 O and.R1 R2 R3 ¢$ then we can

prove R; S R, and R, Ry = 0. Hence the given

degenerates into the coordinated motidn of

C

independent of C3 and. there is alwavys a motion for

.

13 to F

in the same waye

v

1

c

problem’

and C
(=)

3

2

from

3 Similar degenerate cases can also be .considered

Ne;& we coms#¥er the case when the regions Rl, R2 and
L .




[Ny

R‘3 are not dis?oint; It is straightforward to use theorem 1
oé chapter 5 and prove that Rl‘s R2 c R3. In this case, we
define 'a graph G as in chabter ? to determine the existence
of a motxoﬁ'ané a pvath in G 1f such a motion exists.  The

construction of G is briefly described below:

. Let Bi’ i=1,2,3 denote the'bqundarv of the reaion Ri'

When Ri is multiply connected B, is the wunion of sever
: . X
boundaries whose interior is Ri. We also let Bi denote [the

vertices on its boundary. From the context it should | be

g obvious as to which we réfer. The set of vertices incldde
‘ . ' ; : [] ] ] ] 3 i

for example (Il 'Fl ) . (12 sz ),. (13 .33 }  which ar
co?;tructed from (Il,Fl), <I;’F2)' (13,F3) by a constructio

+ shown below: For any trinle (i;j,k) of free opositions, th
corrtesoonding *points on the boundaries are (i',3',k") which

are the poihts of intersection ofl the external bisectors of

the angles ar 1,3,k, with R/ ,% and R3 boundaries. See’
. .
figure.

’.

/

o ?

1f 1i,j,k are collinear, we perturb one of the (points -
& v T

s
rd

' -t




sliqhtly and then apoly the above construction. For each i
! .

in BB' we define . .

Li' = j in 32 / gd(i,j) > r3+r2~v q ’j in. Rz-boundary /

Edl],x) = r2+r3;;

s = r . B . 1 4 . -
L1 , {x in ~81 / Ed(L,k) > rl+r3, U ‘k in Rl boundary /

Ed(i,k) = r1+r3}.

For each 3j' in 52' we define u .

[ R I i : “’ i : - )
Ly ‘;k in By / Eg(i,k) > rl+r2} U lk in Ry boundary /

coay - 1
Ed(lvj) = 1’1+I2}.

IS

n N 9
The vertex ;V of the graph, is defined as follows;

(V = U f¢i,3,x) / 3 in L'y % in Li‘élﬂ Lj‘*'}. We also
. (‘ .
L Fz "F

T4 i 1 ] ] 1 ' 3
include the triads (I3 ' 12 . Il } and (Fq ) in V.

1
The edge set is defined as follows: c ‘-

- . v
¢ . -

Type l: There is an edge between (i,j,klﬁ and (i,j,kz) if
. P
and On%y if ky and k, are adjacent vertices in R, and
Hq (3, (ky,%5)) > ry+ry and Hy(d, (ky,ky)) 2 ry+rgs .-
_Type 2: Define {(i,jl,k), (i,ﬁz,k)}3as an edge if and only

+
r2t

if jl and j2 are adjacent in R2 and'Hd(i, (jl,jz)) > 3

§nd Hd(k, (jl,jz)) 1';1+52.
Type 3: Introduce'{(il,j,k), (Iz,j,k)} as an edge if and

oﬁly if il’,iZ are adjacent in R, and Hdwj: (il’iz)) > f2+r3'

and Hd(k, (il+12){ > rl+r3.. .

Type 4: Let {(i’jf'kl)' (i,jz,kz)} be an edge if and only if
Hd(i, gjl,jz)).z r2+r3ﬁand Hd(i, (kl,kz)) > r3+r1 and edges

(3..,3,) and (k,.k.) are one of the forms 2.1, 4.1, 4.2, 4.3,.

- i

4.4 (see chépter 5) and ﬁ((ql,jz), -(kl!kz)) > r2+r3.

Similarly we define type 5 edges. of the Form {(il,j,kl),
. - .\

-. 81 -




L33

(1,,3, kz)? and type 5 edges of the form {(il,jl.k),

(153,607,
Type 7: There is an edqge bexweén (;l,jl,kl) and (iz,jz,kz)

if and only if edges }11,12), (]l’jz) and (kl,kz)‘are

" pairwise of the form 2.1, 4.1i 4.2, 4.3, 4.4 (see chapter 5)

—

and Hill), i), (343,00 27 ry¥rg, HOG3.350 . (kg akp)) 2
tl+r2, H((kl,kzl, (il,%z)) > t3+r1.

It is obvious that all' nossible iterative motions are

-

" covered by edges of the first 5 types. Any motion for the

three disks which is not given by these edges is captured by.

type 7 edges. _Having defined the’'graph G = (V,E), we can
prove that there is a motion for the 3 di?ks from the

initial configquration (I;,1,,I3) to the final configuration

(Fy/FyiFq) if and only if there is a path in G between

4

(I, I,',15%)  and (Fl',Fz',F3'). We generalize and state

below the most important theorem of chapter 5.

Theqfem 4 : There is a motion for the disks from

(I;',1,',I5") to (Fl',FZ',F3') if and 6nlx if there is a
path in G between the vertices (Il',Iz',I3') and '
(F 'IF "F ')- ' .

1 2 3

Proof : The proof is similar to the proof of theorem 3 and

requires the associated lemmas also. We omit the details.

-

Although\ we can compute the connected components

bounded by B,,B,, B, in time O(nz), note that there are

g

'=O(n3) vertices and edges 1in G. Hience the cost of

constructing G is O(n3) and the cost .of determining the

existence of a path in G is also"O(n3). ) v’”\> o
el e
*» \

% ¢ [}
. .
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5.3 Coordinated motion of k ( > 3) disks.

We give a few exémules, and state some results to

.

motivate the generalized algorithm. First consider cases

when two of the reqgions Ri'Rj 1< i‘ﬁ j < k are disjoint.

' This will reduce the problem inta two subproblems and within
each we éeal Qith fewer than k disks. Since at this stage
we assume that motion coordination for k-1 disks has been
completely solved, we solve each one of these subproblems to
obtain the solution to the original problem. Hence it is

sufficient to consider the most general situations when

R1CR2

Suppose I = (Il,Iz, . e Ik) and F = (Fl,Fz, .o ,Fk)

cR3I (... < Rk.

are the initial and final positions of the disks. In order;
. to generalize our algorithm to k > 4 disks, it is essential
first to obtain I' = (Il',Iz';‘... ,Ik') . and F' =

(F,',F,', ... ,F ') where (I.',F.') belongs to B., 1 < j < k

1 F2 k') 3 F .

and 1', F' are free positions for the disks. Thi§ requires
definth I' and F! in such a way that a coordinated motion
of the disks from I to I' and F' to F are obvious or are
easily derivable. For k > 4 such mappings are not alwayé
easy to define. See for example the figures below :

In figure 5.1, k = 4 and disks can be phshed to their
boundaries along the directions shown.

In'_figute 5.2, kX = 4 and D, cannot be pushed out without
higting the other disks.

In figure 5.3, k = 4 and bl is first pushed to its boundary.

1

Disk4 can be pushed in one of the directions shown.




i

K=4:Disks can e pushed to their boundaries 'along the

directions shown. . . . .

Dy is first pushed out to its outer boundary. Now disk D

can be pushed in one of the directions shown.

»o‘ C’/' c

4



s

!

D4 cannot be pushed to its boundary.

From the example in figure we see that a motion for the
) \

. - Iy Y
four disks dges not exist if the final position F, of" the’

disk D4 lies outside the region . However, we cannot
conclude the existence of a coordinated motion for the disks
when F4 lies inside . Moreover, the present version of our

algorithm does not directly apply to this situation. Thus

.

,///w—h we shall separately deal with the two issues, namely,

defining the connectivity graph G for a given pair (I', F")

of free positions on the boundaries and defining G when not
\?ll disks can be ©pushed to their reépective outer

3

boundaries.

Once we are given I' = (Il', Iz', cee ,Ik') and F' =

2

Y - 8% -~

(F,', F.,', ... ,Fk') with Ij, Fj €'Bj and , ghesé are freé‘

+

2
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" positions- for the k disks. We construct G by defining V and

E similar’ to our definitions in the last section.
Informally - stated, V is the disjoint union of several
k-tuples of vertices of the boundaries, some old and some

ww R .

newly introduced so that edgh k-tuple is a free gositioh for
. . . .
the disks. Such a set V can be constructed ag’follows :

For each i in bq' define the set-

Li(q,t) = {§ in Bt / Ed(i,]) > rq+rt and § 1is gf vertgx' }

U {3 1is not a vertex and } in Bt / Ed(i,j) =r +rt} for all

g, t ¢+ 2 < g <k, gtl <t < k-1,
Now define the vertex set V of G as : \

vV = {(11,12, cee oi) /i in B, iy in Lo(k,k-1), i,

in (L (k,k=2) 0 Ly(k-1,k-2)) .... (i; in n L, (3,1}

Next we define tie edge set E of G. Informally, these are
& b .
pairs of k-tuples which are ad&acent on their boundaries so

that a simultaneous motion of the disks along these edges is

possible. We consiider all pairs <s, t> where
. :
s = (1,15, «ov 41 -

€ = (33,390 «+o ,3p) where i, £ g g = Iq for 1 < gfp <

. ¢
k. There is an edge in G between the vertices s phd t if
|

Hd( , (1 Yy > r +rq, 1 <g#p < k. Suppose p out of k

iq ‘ P'jP I .

compohents of a tuple are the same an@“the remaining k-p are
digtinct. Without loss or generality assume iab? jq, 1L <gq
< p and iq #'jq for p+l1 < g < k. Now we define an edge
between the vertices s = (il,iz, . ,ik) and t = (il,iz,
“,ip,jp+l,v... 3y if Ha(%q",(it,jt)) > rgtr, for g =

l, ‘.2, .. mand t = u+l: vee é\and H((iq,jq), (it,ja)




Toy*te for all q, t with n+l < g, £ < k.

Next we discuss a method to obtain (I',F') from (I,F)

and develop® methods to determine the existence of a’

- a o ’ ' 3
coordinated motion. First consider the situation when the-

1

points Il'I2’ ee I are vertices of a convex polyqgon.

k

Now we consider the bisectors of the éxternal angles at each,

1j’ It is easy to see that disk Dy can be pushed along its
external bisector to its outer boundary. When this is done
simultaneouslyt thé disks bannoé collide with each other.
If at aﬁy instant of its motion, a disk encouﬁters a
béﬁndary‘ of ‘an inner obstacle, it can move touching tﬁis
wall until reaching ‘the other end of the bisector (on the

opposite ' side of 'the obstacle .boundary) and then can be

oushed along the bisector. See figure below :

4 4

Ly :
centers 11’12’ oo Ik do not form the vertices of a convex
’ L]

3 Y 9
polygon. We tfry to push as many disks as possible without
e

- 87 -

Next we consider the initial configuration I when the
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«

collision to their respective boundaries. One method to

" achieve this is described below : 4

Foim the convex hull H., of the k points I,,I }‘..; I,
Shdd 1 FRES Tprtar e K

Now consider those centers which lie within.Hll Form HZ,
their convex hull. Next we try to enlarge the-.convex hull
Hl as much as possible by pushing out wighoutxcollision,~oné
or more Qiské at the vertices of H,. Without loss of
generality we can assume the vertices of Hl td be already on
their respective outer boundaries.' For eéch disk Dj on HZ{
we find the nearest side Qf él‘ If its length is such that
Dj can go throuqﬁ it without.collision then oush Dj out cgf
Hl‘ Having done this for all the disks at the vertices of
H, we enlarge Hl.witﬁ the ﬁew verticeé (of the pushed out
disks) and recompute Hl" We repeat this process until we
cannot nush out any more disk through a side of the recently
éormed 4H1 or all the disks have been pushed ¢ut so that.the
disks are on their respective outer boundaries. In the

latter case we are done. So we consider next the situation

when a number. of disks are on their respective outer

boundaries with their centers forming the vertices of Hl and

H, has several disks ¥n its interior. Such a configuration

' 1
is collision free.

, ‘It/”may still be possible to push out some more éisks
provided the disks already on their outer boundaries are
nicely vacked. Nice packings might create an inter disk gap
large enough to let several disks move out of Hl.. Such a

packing is done using !a qgeneralized Vororoi polygon




n

1

construction. For dny two disks we define' the distance

’ . 4
between them €0 be the difference o =B where @& 1is the
3

distance between its centers and B is the sum of . their
. - . ) -

7
radii. Consider the perpendicular line which bisects the

distance between the disks. This line sepdrates the disks

in such ‘a way that for all points within the half plane
containing a disk D, this disk'D; is nearer than D, which

lies in

A

disks, perpendicular lines for every pair of disks should be

the other half p;gne. When we have a number of

considered. These divide the entire region containjng the.

disks into polfgonal dells with each polygonal cell
’ . h .

containﬁgg exactly 323 disk. See diagram below :

L]

‘o

-

E4 . . .
polygonal region can be moved freely its polygon

¢

) ’ ’ * L3 lﬂ.' he
Note that a disk within its gegeralized VSfonoﬁ:/ ‘

o . a . ; \ : -
without * colliding with other-disks. Hence we choose a pair

-

1 v

,‘of disks (adjacent on their_cdﬁvex hull) whose distance is a

. maximum and we-separatg them as much as possible. This is

iy - ' < 4 e . ’ .
, ! M -
' , ) . » o
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done by moving them away within the&r Voronoi polygons until

eadh dlsk Just touches a side GE 1ts\Polygon.
o+

Now . the distance between these élsks has increased a&d
j

if disks from inside can be pushed thrduqh this side then it

" will be -done. When this cannot be done and some disks

~

remain in the inferior we rec&hbqte the Voronoi polygons and
repeat until either all disks have been pushed out to their
outer boundaries or no more packing ' is possible. In the

. N »J .
former case we are done and in the latter case we show below

7 t »

how a collision free motion can be determined, when one

M -
¢

exists. .

R The diagram abov¥ shows a packed-critical cenfiguration

with several disks in the interior.which cannot be pushed ta
the boundaries. -For definiteness, we as&ume that j ( 2 1)

disks/arelin the interior and (k-J) disks' " are on ‘their
. ‘. o

respective boundaries. -We denote the interior of Hl by

Hl. Since none of the Jj disks AnyQ ﬁi can be vushed out
/I " -




-
- )

without colliding with.a disk on Hl' we conclude that a

coordinated motion {s impossible when the 'final positions

-
" for . some of the_disks in @ Hy are in its complement region:

(foc‘example on H;). So we. are left to consider the only
P‘ . N «

'case when the final positiéns of disks in ¢ Hk belong té the

open region ( Hl.

v

W need a definition and two lemmas for our further

discussion.

s

Definition : For any two circular disks_of radii ry and oo

-

. L ,
the Stralght line segments which lie at distance r1+2r2 from

a wall W and circular arcs which lie at distance t1+2t2 from
a convex corner at which two w*&tﬁ meet are called critic#l

curves, An open connected region enclosed by several

.

‘critical curves is called a non—crgtical region for r,

because this contaips the set of positions at which the disk

of radius ﬁl can be placed safely ‘when £y is placéd ténching

an outer wall. ”,
("

1]

. - ’ . ~

(2

%



A'. Pemma : Consider three disks of radil £ye> 1, >ar$; Now,
£42rq > r,+2ry. A non-critical region for r; is contained
within va ‘non-critiCal region for - ry when r, is fix?d
touching an outer wall. ) ' .

' Proof : Since every free position of rl'is a |§ree'~po§ition
of r, and non-criticallregions are subsets of free positions
the resultﬁzollows.

. Lemma [Schwartz and Sharir]:

? For each noncritical region R, ¢(R) = 0o(x) where x is any
arbitrary point of R and o (x) is the seé of all connected
{ components of free positions available to ry when r, is

. * placed at x. (rl > rz)
This lemma asserts' that for a noﬁcritical region R (say
with respect to a disk rz)'the disk r, can be conéiderfd as
a 'statié‘ obstaélg .for determining the Totion of the other

disk rl.

Now consider the disk, say D;, of Hy of maximum‘radius.‘

~ This disk lies on Bi, the ri-enlarged boundary. We consiéer

.

each disk in the intqrio; Ngﬁ. Hl and determine Othe

noncfitical regions with Dy fixed. Below we shall explain

‘our methoq. -

Choose a disk say D' from. the interior' of Hl snd
eni;rqe B, by an amount'equal to the diaﬁeter of the chosen
disk. The straight line and ¢ircular segments are the
critical curves and these divide the region Ri into a(number
of connected components. (Rec;ll our descriptions in
chapter 4). These are exactly the noncritical regions with
2
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respect to Di and the chosen disk D'. Now the center of the
disk D' belongs to one of these noncritical regions. We

find this and call this ¢

-

Since for any other disk Dt on

Hl we have R, < R by lemma 0;<0,. Hence 0; is the

i'

1 t,

. smallest noncritical region containing the center of D'.

Now Wwe repeat this pfocess for D, and every other disk in

the interior of H,. We have thus determined at most 3

R 1

noncritical regions containing the centers of the disks in
Q (Hl).

Next we determine for each vair (Ip, Fp) of initial and

final positions of a disk Dp‘the noncritical region to wqggp

P 1% p
noncrit ical regions then the line segment Ipr can intersect

F belongs. If I and F belong to two different

a maximum of j noncritical regions. We determine these
peints and each one of these is a possibie position for Dp
in which it can be placed safely while all éﬁéks on H, can
be-mbved without collision. Note that yhen Ip and gp belong
to the same noncritical region, the disk Dp can ‘be moved
from‘ T to F_ without colliding( with any other disk.

P P
Because there are j disks in the interior of Hl and there

.are at most O(jj) j=tuples of points to beﬁconsidered for

gshfe placements of interior'disks. Let § denote this set of

- j-tuples.

Next we explain how a suitable subset of these j-tuples
can be chosen to adjoin with (k—j)ubositions,of disks on the
outer boundaries in order to form V, thé Qértex set of G.’

LCleafly an§ " j-tuple (Al'AZ' cee ,Aj) where eééh,Ai

x
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corresponds to a péssible placemeﬁt of an'inter{or disk‘is'a
feasible position for the entire coordimated- motion If the §
interior disks when placed at these points do not col}ﬂde‘
yith each other. Thus we eliminate from S those tuples
’which>QQ not setisfy this safe placement property for the f
interior Aaisks. . - :ﬁ . | Yol
‘ befine the vertef set W.freytthé qurer,beunderies en
wﬁich the k-j disks on H, reside. .This .is done “qéina‘ our
earlier definitione appropriately modified.':gqchxvertex in
W isia k-1 tuple (representing a collision free placement of
the k-j disks "on their" boundaries) . . Each j-tuple. in S
representsne collision free plecement of 3 ihteriot disks

whenever the k-j disks are restricted to be in their

respective 'outer boundaries. Thusiwe expand tupies of W b&

approbriately ineertlng.vectors from S in all possible ways -

to obtain V. From our construction it 'is 'clear that V
contains k—tuples of free positions for the k disks.

Moreover from the 1emma which characterizes the invariance

of noncritital regions it follows that all possible free ’

positions of‘the' j interior diska’ are captured "in the
definitioh'eof V. The defin;tion of E, the edge set of G rs'
I"identical to our definition L ' ,
! Now, a coordinated motion ‘for the disks can be shown to
'eiistt if and 6 only if there 1is a path in G between I' =

(I(H;), 1(QH))) to F' = (F(H,), F.(RB;)) where (I(H;), F(H)

are the initial and final positidns of the k-j disks on Bl>'

and (I ( QHl)”‘F( QHI}) are the initial and final 'positions

o




’

of the 1 dAisks in Hl. It ' is clear that when there is a
.pathrin G there is a'collisionkfree'cootdinated motion . for
‘tbé disks Qlonq the edges corresponding to the vath in G.
The proof of the converse follows from two‘observations : 1.
_'The lemma [Schwartz ,cSharir] bnobleg us to¢construct the
'maximalunoncritical region- common to_all tné disks on Hl.
‘ ﬁence if the disks in Q.Hi aro placed in collision.freé
,pokicions and are moved not'colliding yith“eaéh other, there
,'is ‘3 ~collis:ion free coordinated notion»for all the disks
‘lonly when those disks on”H1 oan~bo‘moved in a collision.free
manner olonq the boundaries. 2. The disks on H, cannot
~collide with other moving disks belonginq to their common
critical reqion Moreover there is a collision free motion
for them if and only if there is a path between (I(Hl),
F(Bl)), in the graph constructed only from their verticea.
Bacausge this’graph can be obtained from G by a projection to
a’ loﬁor k=3 dimensional set of vertices, the existence of a:‘
coordinate morion'implies that -both G nnd a corresponding
‘path. in G can be consfructed.
A “more formal proof of thié claim will require only
'ionéthy descriptions without contributing any new 1nsight.
S0 we shall - not &ttempt it and instead analyze the'
complexity of this generai}zéd~algorithm.
‘ A careful review of our method revealsgthar the maximum
amount of work is done whon we hoveAj out of k disks in the

interior, push some of them to their houndaries, determine

noncritical regions, form the qraph G and'determine a path

‘- 95 -
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in G Observe that |v| - O(n ‘) because there are atmost °

il

O(nk j) tuples in "W and O(jj) tuples-in S and hence there
are atmost O(jj k-~ j) tuples in v " 8inde § < k and .k is

£1xed 33nk" j < nk. - so,. lvt - O(n ). It is evident that IEI

- O(n ). Hence the cost of findlng a path between two,

4
t

specified vertices in .G is O(n ). ‘ T .

’
xt

The number of noncritical reqione formed 18 b(j) For
each of them, we need to enlarqe Bi by a specified amount.
Since .By has O(n) edgea, "the total cost of enlarqegent is

0(jn) = O(n) since j { < k) is independent of ﬁ The cost

of finding, the \congecied components cann7t exceed O(n ),'
since atmost all pairs of edges (arter enlan@ement) muat be;

examined. Hence’r'fhe ‘ total cost: of | determininq the'

noncritical negions containing the centete is O(n ).

s ”’

‘;’ The cost of determining the set S 7£ tenelble positions

for the j interior diska is purely a fgnction*pf j and hence ’

g - must be considered a constant (indepeﬁdent o ‘n);‘~

Finally we muet carefully evaluete the oet oE finding

the convex hulls Hl and Hz and Bycoessive enlatgements. A

convex hull of j points .can be £otmed in time O(] loqjatﬁ

e .
The qeneralized vOronoi polygons for the J diske can be

B 'conSt:ucted 1n O(j 1ogj) time; See Lee and Dtysdale [91 -

. for Voronoi diagtam conet;ﬁctrbn for circlee. A;te: each

Vorpnoi cons;ructioh we neeﬁ to examine a maximum of’ 3 dieks

" to. choose -a candidate disk and a cortespondinq side to be

systematically ‘in’ an//e¥haustivev’manpgt, The cost is a .

. enlarged for . pushihq t?is out. ?his ‘step can be done :
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function of j ( <-k) and hencq is a constant (1ndcpondcnt of

n). It is fairly easy to see that this. colt is a polynomial .
in 3, the number- of interlot diska. ' '
A ,

Puttinq these together, we conclude that che entire

coat of our motion planninq algo:ithm is. O(n ). ' ,.{' .
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Chapter l

Some Concluding Remarks .
The most challen&lng aspect of robotic manipulators

would be the design of efficient algorithms for realistic

set of object-obstacle instaﬁcea. ' However, the

computational complexity results of Reif [18] and JHopcroft,

Schwartz and Sharir [5] clearly showed that efficient.

algorithms‘tor a large class of nontrivial problem instances
caooot exist. The chief motivation of this thesis conies
from these observations.

" Motion planning and collision quldance algorithms were
first studied by Udupa [24] and Lozano~Perez and Wesley (12]
and these contained no complexity results. Tha? the

investigates these apptoaches for a simple robotic model and

dnalyzes the computatioral ucomplexlty. The most general
- ;

algorithm proposed by Schwartz -and Sharir [21) tegpires
0(n®) where the exponent can be quite high (no bound ‘2;5
given). Yap [25] has given O(nz) an O(n3) algorithms to
solve the ¢oo;?;gated motion of two and three disks. His

method, base on a principle called rettaction cannot be

I

‘generalized for k > 4 disks.. As far as we know, this thesis

is the first attembt to develon an algorithm that is

uniformly applicable for determlninqL“y?e existence of a
collision free motion for w ( > 2) disks. Our algorithm has
time complexity 0(nK) where n is the number of edges (both

straight edges and 'circular) composing the boundaries of
o ¢

obstacles.

4

*,;xr;—v s
5



~

The algorithm dbvelopéd in this thesis does a gqlobal
¥ . : .
analysis of the geometry and the topology of the given

{

\
_configuration and determines the set of connected components
-

of the free positions. The ;1gorithm sepa;at?ly compytgs a
connectéd component Rj wi;p O0(n) edges enclosing the initial
position Ij and final posiéion Fj‘ Qav;ng found this for’
all disks, oﬁr algorithm constructs a qriph G " defined over
the product space 81,82 ‘.T Bk where Bi‘iﬁ‘the boundazz’
of Ri. Since the product space has O(nk) vertices and the
edges of G are chosen sétisfyinéﬁthe collision free property
for every pair of disks, the graph G has O(nk) edges as
well. It is essential to consider a mapping of i - (11,12,
oo 'Ik) and F = (Fl'FZ' e sz) onto the outer
boundaries so that the existence of a motion éaﬁ be related

to the existence of a path in G. For k ¢ 3 such a mapping

P ]
is easy to define. For k > 4 such a mapping may not exist

v

' or may not be easy to find even ‘when one exists. The

methods, outliéed in chabter 5 either finds a mapping or
determines that such a mapping cannot exist. In either
case, our methods show how G, a cqnn;ctivit} graph can be
defined and the existenqe of a motlon is related to the
existence of a path in G. We believe our algoiiﬁhm is
optim&l. l '

The representation of contours and bounded regions

discussed in chapter 4 esnables an O(n) algorithm for solwving

‘the motion planning problem for a single disk. This

representation is an adaptation of the one used by Merrill

L
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certain about minilmal modifications.
D

e

[

[13]. Such a grid representation may.not be valid in vary

L]

general situations; however within the "context of

determining components bounded by straight edges or circular

edées, the inherent approximation of-reptesentation does not

affect the Sccutacy demanded in identifying the connected

components., In other words the connected components are

always determined ‘accurately thus solvfng  the mot ion

plahninq problem for one disk’ in time O(n). Hence our

S
[

ki%orithms in this thesis solve the mot ion planning problem
ob k > 1 disks in time O(nk), ‘
. Finally we remark on the generality of our method.

Having determifed the Qxistence of motion for a given set of

" -obstacles, if. one or more obstacles is introduced, our

' el

method can be extended with minimum cogt to determine the
existence of motion in the new cbnfiguéa on. Our method
can also handle the situation when on -more disk is
i;trsduced after a moFion for k disks hAve been determined.
However, if I and F are not known #n advance then Sal1
connected components 'must. be saved u;til I and F become
known. This requires only more storage and causesino change
in the overall time complexity.

| When an obstacle is deleted frqm consideratipn, the
resulting set of free positions and ihe ,set of connected
components will.étmanqe% " A similar situation would arlse
when a Qdisk of different radius(ais given. In .these

situations, our algorithm can be modified; but we are not

[4
3
N f

- P @
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_ There are several motion planning problems in the plane
% . ’ }
not yet: fully investigated. Some of these are 1. Pro}ing'

formally the optimality of our algorithm. 2. Adaptation of

our methad f£6r the motion of one or mote ladders, (thickness

4 .
may be omitted for simplicity) 3. Complexity of coordinated “\\\\\\\

motion planning for elliptical plates kthickness may be

ignored) 4. Motion planning for a platform with n circular
' . N %

wheels. . e
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