,,,,,,, PUSSORUREL PR

L -« I ' ’ \ ' ”w‘
.KCCESS'QPNTRGi FOR DISTRIBUTED DATABASES *

"t N ..
Q \ '. - . ' - R ‘ B

- : u . R

- . N e..\ - ’. =) /- 4
- . * ANTHONY McGUIRE ~ ~ . /=

. : . y ' X
. m A Thesis \
h T |) - ' o :n
‘ :/ in T) :
Ve 3 1 bl
. o /! The Department 4
LI ; ‘ g " ' . A\ N 1 - .\
- \ a -) of ' AR
* ' 1 L) " e :
- e . Computer Science ‘
) ;e .

’ ¢ !

Presented in Partial Fulfillment’ of the requireménts
a} for the degree of Master of Computer Science at
\ Concordia University, N
) . " Montreal, Quebec, CAnada R

. \ n .]

.
o

.\‘ November 1978

“

C‘ 1\

.

© Anthony McGuire, 1978

.

S

e e et e o

c o, ABSTRACT °

f, N . tes 4
. B N .
. T ' v v
Access Control for Distriguted-Databases <
Py : . -.v.. R .-" “) N P3 \ 4
S " Anthony McGuire ‘ “ o
"' " N * ,j" F # ' "o
e . — v = . .. L

A ' mechanism .for access control in a . distributed.

database is presented The mechanism is composed of’ separate ’

.access controllers, one of .which runs in-each station of the

computer network A wait graph: model is used to describe the

walting relationships. between processes*and the files of the

database. The access.control: mechanism keeps, for each file,
t

only the unstructured list of a11 files whéch precede "that
one in thef wait gmaph. Except for 51mu1taneous requests,

thIs suffices to detéct /deadlock. In. tne Y case of

.
t

simultaneous requests, - deadlock may occur, .but " is

automatically detected and recovered.

¢ ' 4

Y

-

. ~A variation of‘this access control mech‘ﬁiBM“—tS"also
presented. " In this mecbanism, deadlock 1s‘pomple§g1y aviolded’

by allowing only those edges which do not cause a loop,: to*

! ’ . / . o
‘be introduced infb\ﬁue wait graph. ‘ ' « 0.

. ' \

Both mechanisms are compared on the basis of messaég
. s ¢ 3
» . e .
traffi¢ overhead in the network, CPU time requirements “ahd
\ \ I ’ . b . .
storage- requirements. “It is sHown "that both mechanisms

.reouire low, message traffic overhead particularly for a.

database with high locality of reference.

s : L c (
An implementation of \:\\Distributed Database Access

.
I

- R P T - . . 7
s st b PRGN S 5% 9 \...m
. f

- CT * - - a ! .. ~ ", Iy '

‘ S | ’ “‘ " % : o7 iv ‘h ¥

. E s ' »
Controi Syst§m 'Toé a netuork é; PDP/11 minicomputers is, °

O . -

resenﬁed. ror handlin 1 the access control model .
¢ . .
. underlying this 1mp1emen€ation is discussed. ; ’ ’ N
.' . . i
. B f : e (
' . . ! { . ' ,
. J . ® ' . b >
1] M ¢
* 0- ’ . o8 - M :r ' '
. . . '. R R . ’L\“Q o~ ;1?-3.;32':1{' e ’»7-a '{‘,': i
— . - e T B C FTEy
R R
. . : R \ . - o : o
i v R) N L . ® - 4 o v
i) \\.’ » / o .
. - \ . L .ot .
S . \‘!‘ R o , x4 i
4 . IQ . . . * N . - -
R N " ' . * - N e
- Lo - 'x N . o
v ") - r ’ . S T '
l‘ l .’;s\ ’ » t { ‘
. v -
Q o, . . A
- R — t * -
, - N e . L ' - . '
- 4 . 3 . I "\
. RS . T IR
— A . ' 1 *
[N ° R > b s
~ \\ ‘ -
. , .. ‘ﬂ_‘ N - ' % 4 . «
) . [* .
* = v - , - e
L ' o / ‘
3 . .' [l . ™ '
.t . -
-~ ‘ ° r o~ - \ ~ . S
- . . -7 . -
* ‘ ’ .] ! g
. 1] . y . ‘ li
T 3 U ‘ '
: - L 4 - IR o S
. - - ¢ . . "
Cd N A R ;
‘ ‘ ' - . Co
- ~ . R 4
‘ -
.o .) Lo) . v - PN“~ . ot
. . v
@ ‘ - . . \ ’ .
.~ »] “ ‘ ¢
v ¢ V. ! { N - ' a - '
w . - N . . A] 2
» s
v . iy A . > a
LN v ﬁ‘ . e
- . -] - EET ' :
' -~ "
]
[. .
o R - LI I
' -} N) K) -
. .
- o . . . v N A. —-
’ ' R r
. e e LA e e e ses L e e e e ey iy o
¥ A) . A N - °

2

Juern Juengens. His uidance, ponstant encouragement and our

D@ph } discussions _proved invaluable.in bringiTg this thesis
to fruition; |] , L S

t

To fnrry, go |my ‘Bpecial thanks for her . yxﬁi;ing

su port, and for th many unregarded h?urs\spenf typi

. .
. ’
. . . \ '
. . /
- Y A

1
te

this

~

<4

My gratitude is due to the Royal Bank of Canada, where
'the idea for this thests originated, and who. graciously
'afforded me time to pursue this refearch for several weeks,

w ile in their employ.

. Al
$
i !

Lo\

My thanks go to ‘the management 'af tﬁé Biomedical

~ . Y
Engﬁnffzjfg»~0nit McG;il University, for-the use of their

‘omputtng*faciitttes“durrng“the implementation phase of this

v
'wony o ‘ . ‘.,. .o,
Pl N A - -
. ¢ ‘ B R ’ LT

* Financial support of this Feggé;ch through the Natural

T . / PR
Science; and’ Engineering /Resqa:in///fnun il ¥" ‘Canada -
: ;\;lgranﬁ"no; A;;hS) and' the Québec Mifristry of /ducation’

1s gratef//ly acknowl déed.

-
.

Py

1. fntrqduetfon

2.

L5

3.

I3

.

|
1.1 Distributed Databases '
1.2 Main Desig Problems of D stributed Databases
1. 3 Motivation’ This Work .
- T.4 Outline of This Work .

!

-

Literature ‘Review

2.1 Distributed Patabases

2.2 Distributed Databases in ‘Ho geneous and
Heterogeneous Networks

.2.9 Centralised and Distributed

.
.

Y The Access Control Model

3.1 Background

3.2 Distributed Acdess Control

.3 Network Independence o

The Wait Graph
Deadlock Avoidance and Detec
.Basic Data Structures
‘Maintenancé of Predecessor
The Basic Access Control Al
The Refined,Access Control,

A ER
omplete Deadlock Avoidanee
.1 Assumptions “ .
.2 The Modified Wait Graph
3 Deadlock Avoidance
.4 The P-graph Model
2 The P-graph and MH-graph Comb

The Complete Deadlock 'Avoidan
: . q'l

. The Implementation of the Distrib

Access Control System
5.1 Common Functions of LACs
5.2 The Access‘Controller in. the
‘5.3 Requirements from System Soft
5.4 Avajlable Hardware and System
5.5 The Design of the DDACS
5.5.1 Data Structures in ‘the
5.5.2 Message Handling in the
5.2 .3 Message Formats in the
5 Y4 Suspended Processing in
5.5.5 Remote- File Requests in
5\6 Testing the DDACS , °

L

R e
.

,
R S I

.~ y
. o
“ “
—— '
. i L4

v ! PR A4

r Handling in the Access antrol Mechanism 6

Egrors due to Lost or.Duplicated Messages §

2 tection of Lost and Duplicated Messages |

e Watchman Meohanism ~ - .

6.3.1 The Process Watchman . . : : // 7
' ' T

6.3.2 The File Watchman
rrupt Files = - A
eak-up of the Network : ' 79 .
rrupt: Intermal Variablké in the t

-3
AJIN) = OOV

) Agcess Controller - . 85
2. ' // _ L
- . (l
* 7. Compar son of Three fjccess Tontrol Algorithms 92
* «7 7.1 Dutilines of the Algorithms . v y 92
7. 1 1 Algorithm I
< (Deadlock Detectiqn ‘and” Avoidance) 94‘
»\ T Algorithm II ,
¢ (Complete Deadlocﬁ Avoidance). : 97

The Mahmoud and Riordon

Distributed Access Control Algorithm .10
e Traffic Overhead in Algorithm I- 193
Local and Remote File Requests'’ 1Q4
Deadlock Boss Selection and Recovery 1
ssage Traffic Overhead in Algorithm II _ 107
‘1. 331 Local and Remote JFile ‘Requests 108

-

Recovery) - 110
n Algorithm III 110
tfic Overhead 112
T g . 12
ection and Recovery 115
- . 118
Algorithms I and IIL To119
son of CPU.Regquirements ’ 122
y 122
12
. SOn of Sterage Requirements . T 13? .
lgorithms I and II B . © 127

Algorithms I.and III (\329

132
133

/Program Listings of the DDACS BT
: - K

205

135-

. - .. I\ 0 * .) “,:

I 4

M32

-

s

- - |
- « A
- v ' »
. ' ® // X
. ‘ ’ ' !
b - -
&
2 1 °
-~
L ~
= L]
- -
.) "
“ - ~
.
0 ' -
L 2 ! ,
’
. -
’ LY
¥ \ 'S -
.
- . [b‘
‘
.. »
v
A §
’ g
- M) v !
B . .
P
“
Lo

.’ i T
§ - :'. .)\'\ i+ X))
\ / N
Appendix
A Note on the Variable RECV
- _(\] / . Toa

Appendix D _ "
The Calling Trﬁe in the DDACS

0

. I
Appendix E - . < N
' Example of the DBACS Log File |

. ! ‘ A
. 7 :
T

Appendix F

History of the Implementation of the DbACS

-

- —_— -
.
- o .
; /
/ o :
/ N B
N -
v
" .
. - N ~ .
* :
. N
Y L
“
v ¢
. (Y N
+ s
b . RN . t
0 ; . °
:) N .
1
' o 1

=y

N

T
A Y

N
Q '

.
.
1
.
L 4
4
v
.
f
.
A
A
' ~
2
\
L2X%
1
3
Al
N
3
»
‘e

A ;, INDEX QF FIGURES
(- A v
3. 1 The Wait Graph
3.2 A Loop in the Hait Graph

3.3"A Loop Caused by "Simultaneo@a" Actions -
in the Wait Graph

3.4 Breaking a. Loop in the Wait Graph

4,1 The P- graph .
. 5.1 The Communication Links %n the DDACS -
5.2 The Process Descriptor Table Enbry
5.3 The Procéss Descriptor Table
5.4 The File Descriptor Table “Entry

%55 The Glybal’ File Dire::j;ég o
6.1 ndefinitely Suspend)ﬁ?ocesses ;

}nd Allocated Files ' -

7.1 Deadlock in both the P-graph .
and ‘the W-graph

T.2 Message Traffic Overhead
‘ “in Algorithms I and III

%

20

,21
23
28
B3

/ 51

55 'I‘

- 58.

59
60

" 69

nu7

121

—

TR AT BN ety e, L

.eoncurrent users more . complex tHan when the complete

/ L CHAPTER

Introduetion -) - -
» ‘ g\! N ‘
L.

‘With4 the introduction of computer network téchnology,

o

many apd&ications'have evolved .for whiéhpthe/distribqbion of

a %;tabase is a natural approach. Although the distribution
of data over a computer network'allows for the efficient
implementation of applications - which are themselves

naturally distributed, it exaggerates the‘probgfms of file

consistency and makes ~ control of the file éccess. for

“
4

database is-maintained at one cgntral station.

-
i

-—

ol 1 Distributed Databases I

-

o _ . o d—fj

Throughout the Iiterature there is aLléck of ‘eonsensué

on the definition ,Sf a distributed database [56]..For the

purpose of this work, we define a distributed database as

data which are distributed among the stations of a.computer.

4

' .
network. The data are split into components -called files,
- 0 A

such that all the files in the computer nétwork form a

unique collection of data. ¢ "

A

Tne word file " may also be replaced by‘”ségment or
, .

dataset or ani ‘other convenient word which~describes a

E]

. subset of the database. .

7 ~) . - ’ o »
1,2 Main Design Problems of Distributed Datébases e

- g i

- R . . ~

The.-main- problems in the design of distributed database
systems have‘been. (1) the architecture of the netué?k (2)
the allocation %ﬁf copies of files to -the stations of the

C) P ,
network; -(3) the gpontrol of access to the files of the

- M -

database. . . Y
LA

*The architecture ‘of * the computer network is closely

related to the applications which will be impleménted on the

. "’ﬁ"
used [50]. The two main network structures are hierarchical,

e AR L FL 8 :
.
‘

also called vértical- where one ,or.more stations in the

[y

N

i . network exert control over other stations& d horizontal,
<
- . .
L. where all‘pﬁﬁtions in the network have equal control [5]

N . i tu - ‘

:
H ! . - . .
‘ Historically, the problem of file allofation in a

theoretical research in the area of distributed databases

copies of files amongﬁghe stations of a computer network.

The main objective of the model was 'to minimize the overall

- X -

between the data and the programs wnich reference the data.

4

N ’ - * .
.) ' \ PR v o : \

s~ . ' N) ' /- . , /7
0 M : '
. ¢ . R

network and the type of. file access contnol which will be,

N

. - - computer network has been ‘the gocus of the. majority of

} ~ [211. cnu [12] developed\ model for the allocation of

. storage and ‘transmission costs. Casey [8] investigaged the

. ‘reiationship betweﬁp the optimum number of file copies and

' - the rate of update and query ttaffic to the databage. Levin

3 and Morgan [36,37] have extended the modela//develoﬁed by
- \ bo&h Chu and Casey, by introducing an interdependency

» . "Recently, an increasing amount of research has been

s

; RN
¢ ., o

+ + . done _in the-larea'k:} ‘access . control for distributed

' databases. However, many of the probléms“ have +yet to be
satisfactorily = solved [2]. Because of the . problems
associafed with the Qistribution of control, centralised

. coniﬁoll hés been the dominént ;trategy in distributed
systems. IBM's System Network Architecture '(SNA) 'is an -
exémplg of a commeréially available distributed system which

.

. uses centralised control [28,47].

Lately, work has begun on“éofutioqs to the ﬁfbblems of
\file consistency and deadlock prevention and detection in “,.w§°, }
distributed dafabasis [10,14,15,39,42,52,53]1. Many of the ° |
propéggd soiutions have employed theoretical models for the -+ ~
-) - deadlock Qproblém in single computer systéhs and’applied

these models to the distributed «controlc problem. .This has)

, . ’ , | . , o
' tended to result in solutions which have a high network « | {
traffic overhead [14;39].

1.3 .-ﬁotivaéfgh of Tnis Work - - o

[

'+ Because research in the area of "access control -for '

. : . L , - B
distributed databases has only begun in recent Yyears,
|

! satisfactory sbldtions have yet to be found for many of the

. problems. Solutions’ which have ﬁeen“proposed for the

=t

deadlockaproblem require ei%hef.ceﬁtralise@ control or ‘need

.

high . message traffic overhead. For this\rgasdn, tne aim of

" ‘this work is to develop a distributed databasé access’
. - \ [i . e, B

control mechanism: which -correcbly maintains the database 1

,) \' ! (A . i . * Co ’l o ‘

and, in parpicula%, keeps it dgadlock-free without incg;ring ‘

»
[N *

~

r
a

p d - - {
e .) R

" oo ~ ' \ . -

p 4
= . v,
‘ - . o
' K3 s . LN
v
R . . “ . e I . ' '! e
¥, - . o X
¢ . - . £ [N
. . " -
OOV . U S S - IO ¢ - o m v e e e e e s
O T LT n N « ’ «
' Lo o
. , i
. . .
. v “ .
N - B - . ’

- ‘ ‘ C e
: I - . . .\., N)
high netwquxmeSSége traffig overhead. - : r
1,4. Qutline of This Work- ,
-_..‘;' ,' -) e . - ot

'f' In ehapter 2 a review of the literatqre on ' access
«control for distributed ‘oatanses is'pres&néed; Then, in \ @
qhaptgr 5, a dis;ributed database access control algorithm

is deVeIopeqn This'aléorithm avolids. deadlock-“in the majority

of cases, and detects and recovers from deadlqck when it

does occur. A variation' of this algorithm, wh;gh ayoids

deadlock in all cases, ;s developeé in chapter 4. In chapter —
: . ;(q ' N "o' ‘
Cy 5, 'we‘ deseribe an implementation of the access control

*

mechanism which was developed iﬁichapter 3., Using, the model

whiébn underlies this implementation, wé;pfegént in chapter
6, a discussion of .errors which may occur in the access \;

- . . * %

control mechanism. We also descqibe mechanisms which may be

n “ ~
used to réduce the occurehces of these-errors, and recover . ‘

from them wheri they do occur. Chapter 7* oonta1ns a
comparisonm of the two access éontrol.algoéithms developed in'
chébters 3 and 4. These algorithms aré'aISO cohpared Qith a
aistributed database access control algorithm which is

s described in the 1iterature [39 40]

? ’
CHAPTER 2
; , Literature Révieﬁ\ L
. \ - . e

N Y

/‘* \ . \
Below we present a review of the liéerature in the a?éa
of distributed databases. Because this area. is vast, ranging

from resource allocation in the network to data translation,

" the review is focused on’ those topies which are pertinent to

this work. In partlpular, this chapter contains, an

exhaustive discussion of ‘thg literature on access control

for distributed databases. ’

@

L3

.. .
201 Distributed Databases

o . i o
Schreiber [54,55] defines a distributed database as a.

"set of-files, distributed among the'podes of an information
‘network, which are logically related in such a wéy as to
constftute a nnique collecéio}?of data., He reviewq in detail
the main problems bf distributed database system design:
network architecture, file distributioq, file, direbtary
allocatlon and file access control. In a first step towards
the solution of these pro?lems, a multilevel modei for a
distributed database system is proposed. The ﬁzdel itself is

large and cumbersome.‘ However, 'Schreiber feelz that the

sﬁructure is necessary to providé full logical and physical

data independencé’ and to model both heterdgeneoué and

homogeneous systems. : o -

In the discussion of the file allocation problem,

oy

n

A

il

g

page 6

. s ’] .
f Schreiber examines the major criteria fpr splittigg a file .
| : ‘ \) ~ A . I .
[' into subfiles, so that’ the majority of references to a
, ~ ¥

: . & :
“subfile or%ginate at ‘the station where the subfile is

located. The. criterta are high geographic and functidnal
miocality of reference of ;he databasg.'The distribution o}
the data which nesulfs in high geographical locéllty of
reference, referred to by Schreiber as horizontal o
distribution, is required by applications yhere the data is

related to its g;ographic' ipcation. . The vet;ical° Loy
distribution’, which results in a high functional locality of . \ o
refeience, is characteristic ‘oﬁ,distributed systems where
differeht ‘st;t?ons in the network * perform differbné \

functions. . § co. ‘ ¢

“._ ' Together with Paolini and Pelagatti, Schreiber [50] _ o
, ~
uses the concept é?—ho[izontal and veﬁ%ical distribution to

exaniine distributed database systems, on the basis "of / f

"applicatioﬁs requirements. Among the applications which are |
&

reviewed are manufacturing control ‘qyste@s, inventory

" ~ .
systems, -banking systems, and.computer aided, design systems.

The review of the various applications shows that a.verticél

s *
partitioning of the data along with centralized access

control are the most- common distribution and control

. 0 \ -
requirements.) O

page T

“

2.2 Distributed Databases 'in Hémogéneou ‘and Heterogeneous -

:Networks

i/

Peebles, in his dissertation [52], 1is conterned with

the problem of integra%iqg divefﬁe data access siétemsiin a

" network. He proposes an Inter-Process Communication Faciiiéy
, < ‘ ’ v .)
(IPC) and anjAccess Process (AP) which can perform data

- access. on behalf of a user:-process. A user process in one’

station of the network, uses the IPC to communicate with its

1 S
AP. A user process has an AP in each station of the ns&work

from which it requests data.

-,

In co-operation with M;Qning, Peebles continues his

work on access control for distributed data [42]. However,

in - this paper, the mechanism which is described has been

designed specifically for“a homogeneous .network. Using a
driterion for the partitioning of data similar to that
formulated by Schreiber, Manning and Peebles partition the
d;ta» so that it exhibits ? high geographic lo;;lity of
reference. This cr{térion was used because the systenm 1;
intended . for transaction ,procesSing{‘}from ‘commer§131
applications where most of the references to a particular'

component of the database originate in a uparticular

)gebgfaphic reéion. Examples of such\agplications are banking

%

énd‘retail credit card sales.
.) . .

" The objective of this sysﬁem is to provide efficient'

data sharing among the statichs of the network, with minimum
. v .f"

CPU and compunications overhead. The solution which is

\

~

LI . * . , paée 8
o ot : , B .
' § , b .
i described in this paper, employs two pri;:E;Les; segments

" and tasks. All data objects, including ﬁgssages, are
B segﬁénts. A task is an 6bject which processes a ~message
segment. All inter-task communication is achieved by passing

message segments. A switch mechanisﬁf' resident in each

SRR g

station of the network, is dedicated to the passing of these

P T

, segments. The .protocols 'for intra- ,and— inter-station

£,
%
kS

communications are kebt -uniform) as to make the
, distribution of the data transparent to higher " level .
software. A description of the implementation of this systém

on a two-host network of PDP—ﬁ1 minicomputers, is given.
\ :

.
’ » . H

LR

‘In a companion .papef (431, Manning and Peebles, w%th

P - s i e A
3 . -
, B
e
.

Labetoulle, detail the analysis of the system deseribed
'above, by simulation and modelling using quebing theory

techniques. They found that agreement was good between the

\

model and the simulatien, particularly for high geographic
\ »

L locality of reference. ..

1 ~ e

Chang [10] deséribes the design and implementation Lf a

[

distributed database system. This system is base

on the
work done by Manning and Peebles in [42]..Chané's systém is
designed for a{.medieél database which exhibitls a high
' is also

12

f PDP-11

gqu;aphic locality of 'referencé. This -syste
implemented én a - homogeneous network

minicomputeré. Each .statfbﬁ\vof the network has a database
Machine (DBH);‘thch has access to tﬁe files /residing . in
this station. EAch DBM consists 6f a set of /User Machines

ccess -Machine

(M), a File Machine (FM), and a u%fﬁiik
4

At bl ot adiad I

g .

SRR . : | _ .page 9

. l y) :
(NAM). The user at a station of the network, is regarded as’' ™ -

‘a A
.

operating his .own UM at that station. Data requests

-

R originating from a UM are directed by the NAM tq the FM im %

t A

- _ the station where the requested ‘data is stored. ‘The FM

respands to, the UM via the NAM.

s

.
.

- ‘éhang peinﬁs' out that so far the-déstem haS'only been
P

implemented for one bransaction type, viz., data retrieval.

However, he notes that it will be feasible to extend the

range ‘of transactions to two or three classes.

The .objective of the-system described by»Chupin [15] is
,, §p alloWw a-colleétion of computing fiacilities to appear "to

. . the user as a single network facllity. In thig paper, the

particular concern 1s with the control functions specific to

a data bank,application. The data bank

rd

\which is discusged,

particular system . _.

is SOCRATE [1]. /

The concept of a Logical Neftwork Machine whose function
v *
. is to coordinate user specified functions and processesx is

discussed. In the particular. data bank case it is calleé/the

‘ " Logical SOCRATE Network Machine (LSNM). The LSNM | is

functionally 1layered into a 'compiier level, an abstract

ihemory level and a data-set level. Chupin notes that one of

fhe main objectives of the data access control method is

®

eistributed control. Genéralized

/

network semaphores are
defined to be used for locﬁing purposes. A ngtwork semaphore
.+ 18 described by its locabion,d?%haring degree and name.

However, Chubin indicates that the problems associated with

. Page. 10
-

% e S, L . ~ " wor ° '
P -~ ‘ . v; . . \ S . . s 3
semaphore' naming an semaﬁho -tbaobject binding have not
. aket been satisfactorily solved. g oLk ‘
* .

. . L i
o // “r. - \

o An interestinh approach to coPcurrencyk~control in a

diStributed- datapase on a het eregeneous network is

described by’ Bernstein eg'al [4] In} this system, which is

being implemehted on the ARPA networgf the database is fully

¥
redundant to enhance reliability and\gesponsivity Howeverr

dundancy can increase the cost of updating data because of
{ > !

thekextensiﬁe inter-sfation communicat on necessary to' lock
all copies of the data being updated Global locking of data

1s avoided in this mechanism, by ide tifying transaction

types where lt i3 not necessary. Th predefinition of

transaction classes,

of these transaction typesl Ih an example ‘of ‘ah inventory

cohtrol system \which is given, the authohs show that/99.9%

L .
«of the transactions dg not require global locking of data.

\ .
> . !

Centralised and Distributed Access Control

2.3

3

\ Mahmoud and Riordon [38 39 40] speelfically hddress the

problehs of centralised and - d1stributed access control.

Thelir main concern,”howeber, is with the efflciencf.of the

access control system dtself rather than the speclfic

.of any particular

*

Solutions are proposed for both the centralised control

requirements ¢istributed application:

and
the ~¢istnibuted control cases. In the centralised case, the

acgess control @echanism;{which is' called the "Distributed

Data Base Management Facility" (DDBMF), resides in one

forms the basis for|the identification

..

e

B st i e e oo
. .
.

the‘ other stations 1in the network, as\the central controlY

stag;on. All file- requests issued in t?&r etwork . are first
sent. to this central DDBMF. In the distributed control case,'

a ,DDBMF rgs;d;s ;n Fach station of the network. A file
request is first sent to the DDBMF in the sime station as
the requesting process; {n order to avo{d deadlock in file
hilocation ¢ the solutionghpfoposed for_J/the distributed
control case employs a synéhronised broédcast of. file and
queue status informatron from each DDBMF Thls results in a

high network message traffic| overhead. .

¢ \

t

’ ’The two *abpr&acnes e evalquéd'by simulation, The

. évéluation is based on* message traf}£¢ .overhead in the
network,'CPU ﬁiﬁe rééuirements and storage requirgmént;. The
solution —for centralised control reduires aess CPU time and
storage. This is due to the duplication iﬁ» effort of egch
DDBMF in the distributed control case. The message. traffic

overhead va;ies with. the 1ocality of reference of the

dadbbase for both cases, becoming lower as the’ proportlon of
‘local filg requests increase57 In‘the distributed‘control
. Ease, the message traffic overhead is higher than in the
‘qpntralised case, when thé‘ propbrtion"pf ‘remote acce;s
"requests is higher " than 'phat of iocal access requests.
However, the message traffic overhead decreases faster with

*the increasing locality of reference - for "the distributed

"control case than for the centralized control case. For high

v

locality of reference, the distributed control case requires

/

N

. R :
the lower m?ssage traffic overhead. . - .
o RS ’)

] .
2.4 Deadlock in Distributed Databases

. ¢

e i

-

. Mahmoud and xﬁiordon, together with Hufchinson, extend
their cncern with the déadlook problem in a distributed
system to’ a technique for deadlock p}efed}qion [30]. The
algorithm whiqﬁ tﬁe; develop is aimgd at the minimak cost,of

" deadlock.recovery by pre-emption’. The author's .claim that

this algarithm -1s- suitable for computer networks, is based -

‘ .
primarily on its low CPU and storage requirements.

[N

Chu and’ Ohlmacher [14]° also: examine the problem of
deadlock in distributed databases.'However, unliké Mahmoud
[N .t .

and Riordon, a'compléte system design is'ndb‘diécuSsed. * The

focus of attention iﬁ’the paber is a deadlock prevéntibn and

. detection mechanism for a digbribu‘gd access'controlb}ystem.
~' o i’ ¢ . . . v

The authors propose three mechanisms -~ two deadlock

prevention mechanisms and a -deadlock'. detection mechanism.

Both prevenp;on meqhégisms‘use a fixéd examining path among

’

the stations of the network; for thé examination of remoté

< o«

file requests. The ,sgimple _mechanism which¢¢héy propose,
prevents deadlock by requiring a process to declare in
- 1. -

advance all ~the files which it intends to reference, prior
°' a) F] . \
to the initation of the process. The process is only allowed
e : \
to begin when all-its requested files have- been allocated to
. >

it. In -~the seéona prevention mechanism a variation of
. . a
Habermann's technique [26) 6f granting only safe requests,

[y

S . !

- & - .
. A} -

. .
A e T . - . - . o EA‘.:: R LA e LI RIS R 1% & 1 "\\‘;:

¢

e o

—

5

P e

(S

o \

is used. In order to make ﬁhie mechanism‘efficient for the

-

case of distributed: control, the process ‘Set concept is’

x4

introduced. All processe’s which have~g pending 'rbqugst .fo};

4

the same - file b&long to the same process set. The progress

of one brocess iélindependent of thé propesses which do not

bekong to ite process set.
o '

'The deadlock detection mechanisi which is proposed,
maintains lists of processes and files and p01nters between
“the lists denotlng file requests and/allocations. Deadlock

is detected by scanning the p01nters for the: exlstenc »of a

,loop. This scheme is similar to the deadlock de ection .

scheme used by Mahmoud and Riordon. Both schemes are baeed
on work done by Murphy [49]. In comparing the three deladlock
mechanisms, the authors point gut that the 51mple prevention

~a

nechanism, although restricﬁ;ve, is superior for} most

abplicatioﬁs,'since_it is'eesil& ;mplemented and refjuires

least system‘overhead:

‘ 2

mgchanism requires a process to declare all its files

‘advance, confirmatlon that'a file is to be allocated to
¢ .

process may be retracted if a process of a higher, priority ' .

requests the same file. Ascnlm also proposes a fixed

reservation s‘heme 'which prevents deadlock. This scheme
gives a ‘unique number or priprity to each file.'Then,
processes are|required to requegt files in the order of

. .
que numbers.

\ . ‘ . . '

their uni

. page 13

Y

.

page 148

L]

"~ in a distributed database is outl{ned by Rosenkrantz et al

.

Lt

PR OF,
7

=
=

[53]. Id th;s apbhdach the usér processes, which reference,

~ according to

- .
“+*" network has a 1local acceéss controller

%éz%bjéctivg of the- access

-user process running in 1its station

of

dts

will

' tHe database, "move" from station to station in the network

‘ -) v
their data requirements. Each station in the

-The

own.

controller is to eﬁsure*thét the

~
"eventually

termigzig; thus, deadlock 1is "eliminated. 1t is also the

s <
14

° v E
‘gatabase a3 a whole remains consistent. -

» To achieve the elimination of"deadlocks, the access

/ ! .
controllers in two remote stations

process moves from one

user

brocess-terminates or aborts which’ has

K

station -

communicate

whenever a

to another, when a

previously visited

the other statioh, or when a proces which is involved in a
\ j P

Py

dapabése conflict, has préviously visited the other statioE/

-

A différént éppréach to. the provleﬁldf“access control.;

t

“objective of the access econtrollers to ensure, that thgﬂ'

-

Thg paper shows that the éontrol concepts . employed, work -

'correckly. ‘However, it does not iniicate that this system

°

has .been implemented. . T

)

. 2

-
v

7

»

<

&

~

1

' _/Eperé are no multiple copies of files.

S e

CHAPTER 3 -

\.\\ . B ‘)

- The Access Control Model
' &

Iy

In this chapter .we discuss our philosophy of access

control in a distributed.database: We examine the behavidur

of a graph model which describes the waiting relationships.

betweed\pﬁocesses and files in p;computgr'system. We employ

this graph - model in the design of the basic algorithm of a’

distributed access control mechanism, which avoids deadlock"

in the majority of cases. This}algorithm is then refined so

that it detepts and recovers from'déadlock whepever it doeé

occur. ' ~

4

s - F + . /'

Y
- &

~

3.1 Background , o
- P ’:lj . o . ‘ﬂ'ﬂ ,
, For the purpbse of this study we make some assumptions

P2

conéerning the general organiséﬁiqn of the distribyted data ‘

bége. We assume that the distributed database consfscs of a

stat;c ﬁopulption of files; that each file has a unique name

Y
i

in the network and resides %f exactly one station, so that

LI

i
\

We also assume that a process may make only one filg
access Pequest at a time. A process, whiéh .requires wéccess
to more thé? one file simultaneousiy, must\make'the requesfs
indﬁviahally, one-. request being granted ér refused before

another is made. .

et Wt B . N e Tt BT g 2 o

N\

[, ' e e e . b e e i v b ARt 4 . [
“«

.

We assume that once a file has been allocated to a

' process, nq, other process may gain access to that file until

it has been released. That is, we assume file'access‘to.be

-

~ 3

. exclusive. .)

v ‘a N iy l . ' (ﬁ
¥

Although we envisage a distributed (etabase with a high

-
-

locality of reference, we méke no restriction on. the \files

f

to which a process may request access. A process.running in

an arbitrary station of the network may be granted access to

., any file of theLdatabase; regardless of the location of that

” - v
file. However,-a process executes in exactly one station of

"

the network. Processes ,may be, created and deleted at any
ol

time, but we do not allow a process, to be deletldo while it

is in possession of a file or waiting for a file.

e
i

e

We also assume for processes, as for files, that each-
L

process has a name- which is unique throughout the network.

A} - - .
We do not make any .particular assumption on how many

processes execute in parallel in any one station, or on- the

-

Vnature of the support software in the various stations. We

only assume that thereais in each station, a supervisory
system which controls the process or’ proceéses, which

execute in that station, on behalf of users, and which can

bimplement such sysbem functions as communication with other

stations in the computer network. . . ‘

~
i e

3.2 Distributed Aécess7Control . -

-

. ‘ ~ R |
An access control meéhanism processes all file access

- «
- . - . PaN ,

1 . ! . ’

- _ page 16.

y;

. '~ ' 'v' i n
- " page 17

a
I3

~requesf{\s\. This Jmechanism rnuns in each station of the
network.u}f a process, executing {n‘.StéFioﬁl $,u qequire3f
access to a partieuler file; then this process mékeelthe
: fiie‘access request to the --access controlier wnich“ﬁis
running in station S. The process is then su3pended At some
later time the - process is resumed. Then the file access:
request has . either been' granted or refused. An -access
controlier refuses af file;;geess request if ;hg.neﬁuested
file is currentli ellocatedhhto 'another process and if
aallow1ng she requesting process to walt for thi flle would
‘cause » a deadlock.- An‘ access controller ‘in a _station
’ vmaintains both a local and global file directory. The global
- directory indic?tes thaﬂﬂﬁtétlon at which the remote files
are etored. The local directory names all the files stored
. at the sbat}on‘;n;whienféhe access cg%treller is running and
,containé a\ pointer t& the» head dT‘bheoqueue for each loecal
file. :) A y o
- SN . 7 e
When an’ access contrbller .TECeives a file access
af request,. 1t ascertains_the location of the flle by examining
its local and gldbal file director1es. In a database which
:exhibits a high locality of reference, "the majority of
‘requests will be for local files.yIf phe request is; in
fact for a'local file, the accesst contrOller determines
whether that -file is currently available. If so the Tile is
allocated to.rthe--requesting\ process and that process is
:resumed..;f; however, the file _is currently allocated to

I

“.- some. other process, the access controller determines 1f
L ! . b

. ' . N
,
. . .
\
(S . . , . {
‘)4 9 . n . [voo
. . :
C . f s .. .
. , .
~ .
.. \ . N . .

o
v .

— ; , S e e e T ke ks v s ot y bans o men e .
N AT o N ‘

et S 5B A

e —— - ¢

~

- . . ; page 18

allowing the requesting brbéess to wait would ‘bauSe a _

¥

deadlock. If it wdﬁ%@,‘ then the request is refused.

Otherwise, the request is placed on the queue for that‘filef

If, at some. later time, it 1is discovered that further

L}

waiting by %hé process for that fi]ﬁ/forms part of a
| - ~ 0
deadlock, ,it may then bg decided to refuse the access
<\

bl

request. =, o

If a -process, resquests a remote filé, the access

is stored. ‘The access controller at that station then

processes it as it would a local file request. ‘When it

‘graﬁté' or refuses the request, it communicates thi's to the

requeéting process via the ,access controller in the station

"in which that process executes.

Hhén a process‘ has’ ﬁo further need for a particS;:;
file, it communicates this fact to the file's access
controller. This is accomplished via the access controller

in the same staéion as the process, i?‘the file 1is remote.

‘The file is ‘then free to be allocated to any other process

which may be waiting for it. \)

3.3 Network Indépendence

-
L] ~

*
b

. In the design of the access qonfrol mechanism, we are

striving for independence . of the processes from the

structukg'of the network, as well as from the distribution

°. of the-database in the néq59rk. For requesting. and releasing

¥ ’ (. . @ -
- A . .

e B P PN e

‘controllgr passes the request to the‘séztion where the: file

+

Yo

e - - — T UV —

; ‘ e : ‘ .+ - page 19

files,' a process aiaéys communicates’ wifh - the . access

controller executing in the same station as:‘itself. The [“ '

access ,ééhtroller 1is aware of the structure of the network
and the Qistribution of the database, Sinée itymust be able
to locate files in it. A process, however, need not bé aware
of these aspects ,of the- network. A single process would

behave in-the same manner regardless of whether ther~access

control mechanism of the database is distributed or

centralized. . o .

- For the purpose of granting file access to processes, ‘ o

it 1is again not necessary to know the distribution of the

database. 'Réther, it~ is sufficient to know, for each Ly
station, which processes currently possess which files and

whieh processes currently wait ‘for which files. This means

xJ that the . maintenance of complete global file status
"information is not necessary. Indeed, it is only necessary
F ; that an access controller should have,syfficient information

in order to make decisidns on granting its. own locally

* " stored files. We will see below that the amount of this
; nat

—information 1is considerably 1less than the compleﬁe glopal

file status information. °
t

.- |

3.4 The Wait Graph

4

R

Shoshani and gernstein [57] have investigated the
deadlock problem in the specific’context’of databases; and
they use . a partlcular graph model for describing the status

of the database. This "wait graph® model is~very useful for
¥ \ . ‘

o T ey tuidgg

the present investigation.4

A node of the weit graph represents a resource’which is
currently allocated to some process. A labelled directed
A edge(\represents a process which is in a wait state, because

its resource access request cannot - yet be granted. The

L

source- node of° the edge represents a resource currently

‘owned by the process, while the destination node of the edge

] ' “ is the resource for which the process waits. Each resource
. ig. represented 1in the graph by at mgzh one nade. For our
purposes, the resources are the files"of the data base
(figure 3.1). It should be‘noted that a process which.does

not possess any files but is waiting for access to some

e . file, is not represented in the wait graph. We do not need
- I’\\\\czpreseng such a process since 1its waitinﬁ cannot
contribute to a deadlq_k/’
’ FIGURE 3.1. The Wait Graph
A B - C
o O—0—>0
P
7 4 "»‘;
;
D
) o Procdess P, which possesses files A and D, waits Hor access

to file B. Process Q, which posseses file B, waits for
access to file C.

*

5 In tq;s graph model, a directed loop 1s a necessary and

4

sufficient condition for the existence of a deadlock [10].

kg

page 20

i

/‘whether the int%odudi?&n of a new edge, that 1is, ailowing.

* M f

page 21

-

Hence, deadlock can be avoided by examining the graph to See

-

some process to wait, would cause a ldop'in the gfaph. -

Deadlock can_be detected by examinipg the graph for: the

T

existence *of a loop.aif detected, a deadlock ean be broken

by removing one edge. from the 1loop, corresponding to

i,

refusing one access request (figure 3.2). s o '

¢

FIGURE 3.2. A Loop in the Wait Graph *——f——*,

Files B, C and D are in'a deadlock. This deadlogck can be l
broken by removing one of the edges P, Q or R, in the 1loop, ‘
i.e., by rejecting P's request for B, Q's request for C, or v \
R's request for D. (If P's request for B is rejected, then ~
both the edges P(A,B) and P(D,B) are removed.)) .

’ \

N . ©
\

Since a process may only request dnq file at a time,

there can be at most qne'edge emanating from weach node in

the graph. Qéwever, a node may be the destination of many

edges. . " ') ‘

s
|

l

!

b

|

1

5 !

- a l
i

1

1

!

?or each conneeted component in the wait graph, there
is at most one node from which no edge emanates. If such &

node exists, we call it the "end node" of the connected

\

component. . If no such ndde exists, the connected component

|
\ RN : ?

-

- ' ,q pa%&
contains a loop. By contracting the 1oop to a- -single node,

we obtain a connected component wh*ch has an end node, and

this is the

.
% N
hl
-

As a result of this, a loop may form only at the end_of

end node the node which. we creat by

contraction.

LY

a connected component in the graph or by the joining of ‘two

3.3).

This also implies that there cannot be more than one loop in

or more connected components at their ends (figure

each ‘connected component, and that anyxone'file can be part

of only oné loop at a time., In any one connected component,

the - edges ' which ‘are incldent on the end node are the only
ones whiéh can be removed by the granting of the
corresponding access request. This is because the owner of

that file is the only: processl/jn the connected component

which is not waiting and so the only one whlch can release a

13

_f‘ilec r’ N . J,"

o

. : - . T "page 23 :

3 ' N
~ L]
’ $

< FIGURE 3.3. A Loop Caused by "Simultaneous" Actiqns in the’
Wait Graph .

R _/*\” «
E . F G '
O——0——
. o o
S « Yi . ix
1 i
‘ ' X ’
') O< v '\./‘ W e O -
< K B ' H oo

The loop (F G,d, K) . is formed: by the simultaneous .
introduction of the edges, X(G,J) and Y(K,F). Nodes G and K-
are the only nodes in the two connected components, (E,F,G) {
and (H,J,Kk) respectively, from wh;ch*new edges can emanate. ‘

) » e N .
! i : .
N ¥

3.5 Deadlock Avoidance and Detection" .

D 4
¢

The task of avoiding deédlock can be rephrased in terms

of the wait graph model by sawing that+¢ no 'process may be
¢

allowed to enter a wait state such that any one of the edges
. {
*V\repreﬁenting_}his wait state is part of a loop in the ph.

T\\w

(o] an operational version of this p?inciple, use))

the concept of predecesSor: a node D is 5 predecessor of a

e hode € in &he wait graph, ,if there is a directed path from D
) t C.‘_Then the node D is in a loop if aﬁd only if D is its

. i ’ own redeéessor, (Figure 3.2). Consequently, whenev%y the
2 , . ‘access controlier has to decide if a particular process

should be alloweq to wait for a file, it checks wheYher the

\A
introduct;on of the new edge or edges in:the graph would

_make the requested file its own predecessor in the wait ‘

. ¥
graph.

.) . PR
oot i o

N

.) ' ‘page 24 ¢
' . = 4 .

>

- +

' This method enables the access "ééntrqller_to avoid.
deadloéks, provided tﬁe filé requests are procés§pd one ae'a
time, This means- that one'\geqpest is . decided and all
resulting chanées iq the’ wgit graph compléted before the.
next requqét ié processed. In a distributed system, however,
this i§ not easily éuaranteéh. It may well happen that two

_or more processes executing in‘different stations, request
file accessés in such a way that thé processing of Qtese
requésts by the various access controllers overlaés in time,
h%nd"that.tﬁerefore the decision on each request is based on .
information which is no longer accurate. if we do not wish
to centralize -the wait graph information and, threby, the

‘acceés'cqnérol function, and if we do not wish to 1introduce
a global synchronization of the distr;buted access
controllers,.then we have no simple Qay of7guaranteeing that
such deadlocks w}11 not occur. In chapter 4 we discuss an‘ .
access control algorithm which avoids deadlock comple#ely,
but which }equire§ the intfoduq&ion,of some addifional data
séructures. For the time béing, however, we efamine the

algori%ﬁm in which deadlock may occur. Therefore, we must be

able to detect deadlock, break it, and recover from it.

A deadlock :an be detected if, after the wait g}aph has
heen updated to refléctfall new waiting procesées, there
exists a loop in the gfaph. If the check for a loop is
pé;formed after the introduction of each new edge, then no

deadlock can go undetected. -

3.6 Basic Data Structures:) T
i B

s N

In “order to be able to allocate filqs and hvoid

. . / .

‘information:

- '

(1) For each,prdiégé, a list of all the files currently in
. ///) ’ .
. the possession of that process; a variab&e which

points to the file for which the process is currently

"« waiting for a .file, this pointer has the value nil.
iThis data structure will be referred to as the process
descriptor. ' ,

' (2) For gach file, a list of a}l processés which currently
wai;\\for access to that file; a Variable which poihits

. the file is currently not allocated to a process, this
pointer has the value nil. This data structure will be
referred to as the ‘file dE\Efiptor. Each access

controller in the. network maintains a process

;tatioh, and a file descript&r for each file storéd at

A
its own station.

* - —

-

above, is also haintéined by the access control mechanism.
However, as noted, it is sufficient to know the predecé%hors
of each file in the wait graph in order to avoid and detect
deadlock. The—1list of predecessors 1s maintained b& the

s .
) \

. b 1
[. k3

P I B : .- I S T AT

. waittng, if any. If the process is not currently:

Information .on the wait graph, as described:

{‘) deadlock, the access controller maintains the following..

" to the process which currently possesses the fiye If

descriptor for each process executing in its own ~

£

-/

access -controller for each file stored at its own station.

PV
S

Y
value nil.

- B A -
> - >, . '/' N L)
et R
3

L

. I - . ‘ page 26

* e

. \ .)
This data structure will be referred to as the predecessor .
. _ , v '

- i

list.

[} 1

LY

The predecessor 1ist of a. file need not /eflect the

Structure of the wait graph In order to avoid or detect a

- deadlock, it is sufficlent to know the set of all those

files whi¢h precede a given'file in ﬁhe/wait graph.zThis
obeervation, aloné with the assumption phat the population
of files 1in the network is static, enables us td implement

the predecessor list of each file as a bit list.

. ‘ . f

. 3.7 Maintenance of ?redecessor LLists

'

¢

Whenever a new edge is introduced into the wait graph
AN

the predeeessor list of the destination node of bhis edge
muse be éugmented by that of the source node. Moreover, ¥t
the destination node is itself a predecessor of one or more
other nodes, then the predecessor 1ists of these nodes must
also be augmented by that df the soutce nodes This task is
greatly facilitated by the fact that, for eébh:node,F 1n-the
waiE;grapp, there ien~be at most one emanating edge. The
degﬁdnation of euch an edge wi;l_be called the inmediate
successor,of F. Therefore, in order to allow the update of
the predeeessor lists, we maintain an immediate successor
pointer ﬁor egch file. If the file ls an end node of a

connected component in the wait graph, this pointer has thea

-

. . . i}
" .We have noted already that removal of an edge from the

0

?

\

b e et cmeare ot e o AL T Y

N page 27
g . — : , ' | B
o , == walt ' graph, |due to ﬁﬁé\g anting ,0 a file access request,
ﬁ“; yﬁﬁ may only happen at the end of a conn cted component. More
precisely, an ledge can be removed from éke graph'only if its
. destinatigp node’ is an end'node of a connected component.
L P Consequently, the removal of such an éd éffect@ only th%h

change to such\ a nodes's predecessor \\list consists of

o n “ / -
erasing the source node of'the‘removed edge, as yell' as the

members of that node's predecessor list.

¢

If the_access controller detects a 1lo in the wait

graph, thdt is, a deadlock, it breaks it by ejecting oﬁg;sf '
file

the access requests which form the edgles of the loop.

This corresponds to removing an edge from- th waii graph.
:Bub this edéé is not one whose destinatioq s an end node,
-On the contrary, its destinatiép node is a ‘yedecgﬁsor of
ali the other nades in the loop!.aﬁd the remo ;1 of the edge
nust be"pfoperly réf{ected in the predecessgr lists of'ali

successor nodes in the 1loop.

EO ¥

This updaée of predecessor lists after the ‘rémo;al of
.an* edge " from a'loop,‘is complicatéﬂ‘b&-@he fact thai we do
nét have any structural information on the wait graph: “if
file E 1is 1in the pre&éceséor list of file F we know that
“there is a directed path‘f%om Eto F in the wait graph.
However, we do not know whethef the reﬁovai of an edge which
1s incident on F, Sho»ld be ﬁeflected in F's predecessor .

1ist by the deletion of E, (figure 3.3).

N . .
4 .
. . N)
" f
. [}
. . ' . h
. -
N N 2 - P PR v memim . e -~ - L.
8 g e - i ey -y et . . T e o . . o~ - S e e
——— B . .

FEENS

SRR

s - — n e Cmra e i e ————————— .+

L e

-

We therefore propose that ,\"’yhenever:é loop is bmoken by -
the removal of an edge, the predece;s?él?r lis.ts of * all files,
in tl:xe loop are reset to empty, a;xli, starting at the r’;ode
wl;\ieh was the destination of the removed edge, these
predecessar lists‘ are rebuilt in turn., This is possible i.f‘
it *1s known, for 'every file, which files are ity
predecessors via a path of length one in th‘e wait grappi
that is, which files ;re its immediate prede'cesgérs. The new
predecessgﬁ list is then rebullt by forming tt;e t;nion Jof the
predecessor lists ofythe file's immediate pr"edecessors angl
the immediate predecessors ’vt%}emjelves. This includes the
immediate predecessor, in the loop, which we know to have

been already rebuilt (figure 3.4). Consequently, we -

maintain, for each file in the wa'it graph, a 1jst .of -

immediate predecessors. ' .

(] L] ¢ -—

-

S ' , s

FIGURE 3.4. Breaking a 'Lkoop-in the Walt Graph

E" ! F.
. 3 o T

O— > -)

- l

- vi

A |

oA

B Ox
V. < W O
K J " H

The 1ldop (F,G,|J,K) is broken by removing the edge Y(K,F).
The predecessor lists of files F,G,J, ahd K must be rebuilt
as foéllows: from {E,F,G,H,J,K,} to {E} for' file F; to (E,F}
for file G; to {E,F,G,H} for file J; to {E,F,G,H,J} for file
K. The predecessor l1ists of files E and H remain unchanged.

\

- page 28 | i

A

E
P

, Cy » . . page 29

In summary, the data structures which represent the
: ;

wait graph are pdedecessor list, immediate predeceésor.ITEt\\\:

@ and the immediate successor pointer. v

3.8 . The Basic Access Control Algotithm

1 -

We first present a simple"algorithm' bhiéh\ does not

allow for simultaneous requests for files. 1In the next

-
P

. section’, we will refine this algorithm in such a way that it

detects and recoveﬂs from deadlocks due to simultaneou§

1
b}

requests. . " . ¢

— -~

L s -
When a process makes a file access request, the access

J
controller locates the file in the net%ﬁrk. The access

L4

controller in the stéfi n where the file is stored, éxamines
_ o :

the requested file's descriptor. If the file is currently

free, the process is granted access to it immediately: The

process and file descripto}s are updated accordingly,

« \

If the file is not ‘currentlylkree, then the access

controller qhécks whether the process has. already been

\granted other fPles. If this is not the case, then the

process is entered into the queue of the reqqéstéd fi}e*<aﬁd
*]

the process and file descriptors are updated accordingl&.

-

. If the requesting‘process already possesses one of more
files, then it must be ascertained whether allowing the
. . - N
. process to wait causes® a deadlock. The process's access

controller does this by‘bxamining the predec%ssor lists of’
\ .
all files currently in the possession of the Process, t?i see
\
) |
\

\
|
¢ men o e g A4 [, N
i

AT TTEITNETRTE TN

Ce

whethgr the requested file is.already avpredecessor of ;ne
of these files, in the wait graph.'IT.so, then allowing the
process tod wait would cause a de;glock and, hencg, the-file
access regueét is refused. If not, the process is allowed to

wait and is entered on the reque§fed file's queue. The

page 30

[s el

process and' file descriptors are updated accordingly. The

» o ,/ N o . .
immed¥ate successor pointer of each of the prqocess's current

R

files is updated to'point to the requested file.

e

Once a process is allowed to wait for a. file, . that

file's predecessor list must be updated. If the process has _

- i L
no file$ currently. in its possession, then there 1is no

4

change to this list. Otherwise, all files in the possession
.)]

of the process are added to the immédiate' predebessore ist

-

of the requested /ffile and to. ;fs predeeessor list. The

. K ‘ .
requested file's predecessor list is further augmented by
those of ' the process!s current files,‘that is, of the new

immediate predecessor files, as well as theée new immediate

predecessors themselves. -Since immediate. predecessor and-

4
predecessor lists are implemented as bit 1lists, updating’

these lists amounts to an OR operation. : 1

°

Once a predecessor 1ist has been updated, it is used to

update the predecessor ;iét of that file's immediate

successor in th% wait graph. This "predecessor list
péopagatiop" stops at.the file which Js the‘end node of the
¢onnected component, “that is,‘ the fi%e whichn has no
immediate successo; iﬁ the wéit graph. (The case where there

ﬁs no end node is discussed below..)

0

e e W * . » ' Y

<

P

.
. : L]
o
.

3.9 The Refined Access Controlthlgorighm Cos

S

The basic algorithm described above works correctly if
files are requested sequentially. However, as »noted gbove,
several independent) requests may' be 7 processed
simultaneouSly, which ﬁgy lead to a deadlock We refipe the

7bove algorithm tc detect and recover from sych deadlock.
b) -

We first ass that there is, associated with each

: file in the database, a component of the access control
mechanism, “which maintains the predecessor list immediate
‘predecessor 1list, immediate lsuccessor pointer and file

:descriptor for .this file. Ve call such a component a loecal

gecess controller CLAC) In this. way we develop the

algorithm in’ terms of a virtual network of LACs which may be

abstracted from the distribution of the files i%; the;

database. Since there is a one-to-one correspondence of LACs

Lo 9

and files we. will occasionally ‘use the terms ""LAC" and

-~

,"file” interéhangeably. Moreover, for files represented. ip

1
1

the wait graph, we will sometimes use the term "node"

°

. . T
instead of "file" or "LAC".

.
¢ -]

~ . We ,then assutic that the files of the datsbase are in

‘ some fixed static ordér such that we may say some one file

is "higher" 'or "lower" than some other fiile in that order.

One such order is given by the: representation of the,

-

"~ predecessor 1lists as bit lists. o : .

.
N

‘In order .to. detect deadlock we modify the above

algcrithm in the following way: each time ‘a. LAC receives a

’

|
h
I
1
|
|
f
i
{

- . | | . page’'32

-

list 'of files which is intended as an update to its

. A
predecessor 1list, %t does not perform the update

immediately. Instead, ';t checks whether its own file is a

member of the received list. If this is the case, then its

file is a member of a loop in the wait graph, and that means
1t is deadlocked If, however, the LAC's file is not a
member of tke list received, then the‘ LAC updates its

’

pfedecessor list as.usual and passes the updated list on to:
its immediate successor, if any;*which then acts in the same

'fashion. If no deadlock is detected, then the predecessor

l1ist propagation will tgrm%nipe at an end node's LAC.
s I
"When a LAC debects a deadlogg, it switches to "deadlock
mode™: the LAC's normal functions of predecessor ' list

updating and .propagation are suspended, and only file

-

descriptor and- immediate predecessor list updating still

continues., The updatfng of predecessor 1ists can be safely
suspended, . since a file " will remain deadlocked until the
o -

deadlock recovery routine has been performed. =’I'he deadlock

C g s
recovery routine will correctly rebuild all these .

predecessor listef

-

N) , S '
When a LAC discovers a deadlock, it assumes

'

responsibility for breaking it. However, several LACs,. whose

files™ are incdes in the loop, may discover the existence of

SN e’ . .
the loop. If each of them decides on its own to break. the

deadlock more than one edge may be removed from the loop,

\

i.e., more pending requests bhan necessary may be réjécfed.
Therefore, it is desirable to have some mechanism by which

P .. N -

. q '

A

page 33

‘7!
i ! 4 4 P

one LAC will be selectqd, This LAC will then break and

”

p

recover from the deadlock. To-accomplish this, we use tﬁe

static order among files, whieh was. introduced above.

| A LAC which detects a deadlock sends a message to its
* ' file's immediate successor. This message indicates that a

deadlock has been detected and contains the name and statié

~1

order number of. the originatifg LAC's file. The LAC which

-

x receives-thié message will .either have deteitéd the same

detected thefdeadlock and be functioning normally. If it has

already detected the deadlock, it will have suspended its

normal functions, as described above, and sent a. "deadlock"

i message of its own to 1its file's immedjate successor.

[

/ Otherwise, it switches to "deadlock modéi on receipt of the

message. !

? ' In either case, the LAC, when it receives the message,

1
message. If ‘ité’ file's '‘number 1is lower, it passes the

L4

message to its file's imme@iate successor, which is also a
file 1in the loop. QFhérwise, iﬁ.destfoya‘the message and
. originates a "deadlock™ message of its own, if 1t, has not
already ‘done so. It then continues processing in deadloik

mode.

By this mechanism, only one message will travel
!

° compleﬁely around the loop. That is the one\originated by

]

the IAC whose file has the highest number in the loop. This

4

[.
R T - - - e e - T seewgppr - o~ s - -
. ' Q | '
. + .
N) . - N

“ ,.‘comparés its own file's static order number with that in the .

R

g

tadlock, since its file is part of it, or™ill not have

— \) . , 3

L \ . ' .- page 34
) g L - \; ‘ 3

J
- - —~ '
R \ .
: , l

\
_QAC recognizes its own "deadlock" message when it receives

it=back. It then assumes the responsibility for breaking and

| recovering - from fhe deadlock. Every other LAC, which has a
i ‘ file 1in the-deadlock, will have passed on at least this one
13 v : .
"deadlock" m#ssage and, 8o, knows not to assume _this

. / .
responsibility, but to remain in deadlock mode until it
' »

‘ receives a deadlock recééery message. We will refer to the

LAC, which/has thus been' selected to break and recover from

]

3 . {
) \ the deadlock,. as the "boss".

. P /
; : The boss will break the deadlock by refusing: the

pehding request for its.owp filé, which for@s an edge in the
i : loop. There can be only oﬁe such edge, since, as noted
v above, a file dgn be in only\qée loop at a time. But before ¢

this edée is removed frop the loop, tpe boss musthﬁrepare

‘for rebbilding the predecessor lists of all file} in the
o loop, to reflect the rejection of this request. The boss

first removes from its immediate predecessor list the source *

podﬁ\of the edge it wishes to cancel. The Poss knows this
noée as the one“fra; whose LAC it }eceivgd iés own peadlock ..
message. Also, the boss requests this LAC to invalidate its
immediafg successor pointer.‘If the process, whose reqﬁest
'was represented by the cancelled edgg, possesses other files

as well, then all these files will also be remoJéd from the

boss's immediate predecessor list, and all their immediate
sdécesso} pointers will be reset to nil (figure 3.4). When
this has been dgne, the boss rebuilds its own predecessor

list by forming the union of the predecessor lists of ‘its
/ : .

.
- an b ——————— = s

: | page 35

\ °g)
immediate predecessors and the 1immediate predecessors

[}

themselves.

-

“

y |
of the one request from the graph. The doss then sends a

"deaalock recovery message" to ?ts own file's inmediate
successor. The LAC thch receives this meséage will, as a
result, rebuild its file's predecessor list us&ng those of
its ' file's immediate péedeces;ors. This inc}udes the
immediate predecessor in the loop whose predecessor:list has
.. also been reguilt,,and, so, a predecessor 1list rebuilt in
: . this way reflects the removal of the one rEquest from the
graph? The LAC then passes Jh the deadlock recovery message
; ' to its own file's immediate successor, a?d returns to normal
functioning. ' _ ‘ ' A

9ﬁZ The deadlock recovery message 1is passed completely

§ *

‘1lpop, is, in turn, correctly rebuilt. The boss then receives

back and recognizes 1its own deadlock recovery mesSggea It
) ¥
~ then refuses the pending request for its gwn file. At this

’ _ . point the deadlog¢k has been’broken and reeoyéry cdmpleted.

5 i+ ; The boss retu}ns to normal functioning.
<

(During the recovery from a deadlock, all processes
, . . 17 '

which access the database may proceed as wusual. The

| processes in ire deadlock are, by the very fact that they
. N €
' ’ are. in a deadlock, suspended. Therefore, théy can neither

releése nor request a file. The process whoseé request 1is
Oy ;
: . N

s Svarmrpapay oo

The ‘rebuilt predecgssor list“now reflects °"the removal -

around the loop, and each predecessor list of a file in the

A . . - - e et . . @ - - e

¥

page 36

rejected 1in order to break the deadlock, 1is also kept
waiting until the status information for all files in the

loop has been correctly rebuilt "

. A process which is not in a deadlock may request one of
the deadiocked files. If this process possesses any files,

then the immediate successor pointers of these files, as

well as the immediate predecessor 1ist of the requested

file, are updated in the usual fashion. If the LAC of the
requested file is ’stiltl in deadlock mode, it will have a
correct immediate predecessor list when it . later receives
‘the deadlock recovery message. If the LAC in question has
already redeived and honoured the deadlock recovery message,
it will update its predecessor 1ist and pass it on to itsy

1mmediate successor In the usual fashion.

TN In some networks, we could not exclude thé possibility-

_that a "predecessor update”, when ?ravelling around the
loop, overtakes the deadlock recovery message. As a result,
a LAC, which i3 still in deadlock mode, maf receive an
"update predecessor list"

/ modé, the LAC will ignore such a message. When 1t 1later

deadlock

processes the recovery '

automatically generate a %?rrect predecessor list,

‘ . P
It should be noted, that the algorithm will usually not:
, Y . -~
have to perform d?adlock recovery at all. In the//sfoposed
mechanism, deadlocks cannot occur unless access requeéts are

issued simultanebusly and then conflict in the rather
7 \ " N

message. Operating in deadlock

message, it will

/

/

h

page 37

¥

special way described _above (figure 3.3). Usually, the ' o

-

algorithml will avoid deadlock and will do sd “without
1néﬁrring high overhead. However, if 'a deadlock should B E ;

happeq‘ it will be detected and recovered from correctly. |

‘ r . 3 ~
The algorithm which we described above will be referred |

to in subsequent chapters -as the "deadlock avojdance and

detection" algorithm.

PO - s - o

;o page 38

A]

® CHAPTER 4

Complete Deadlock Avoidance

The deadlock avoldance and detection algorithm,
descr}bed in chapter 3 above, will avoidk deadlock in the
most usual cases. When a deadlpck does occur, the algorithm
will dgéecf it and recover f}om it. Described below 1is an
alternate approach to the access control. problem. This
aqProach uses a varation of the wéit graph 'Structure as
described in section 3.4 above; to _depict' the waiting
relatfonships between the \processes and files in the
network. However, in this algorithm we do not allow a new
edge to be introduced into the graph until it "is certdin
that it will. not form part of a_ioop. Thus, deadlock is

completely avoided.

4.1 Assumptions - /} . % ‘

All the assumptions concerning the datébasé and the
.access controller which were described for the avoidance and
detection algorithm, are alsoc used in this algorithm. These

~

~ assumptions are summarised as follows: the database exhibits
. a high localitj of r:fenence; the'files of the‘databasg are
static in both number and location; each file has a ﬁnique
name; there are no multiple copies of files; file accessl is
exclusive; a process ﬁay make only one file accéss‘requesp

at a time; there is an access controller in each station of

L]
L]

s

=

A et

A i

= e n e -

-

4

e —————— i et b, s 0 4 e .- - E I

page 39

the network; a process always addresées its file access

.requests to thé access cbntroller running 1in 1its ovp

~station;

4,2 The Modified Wait Graph

G ' B
To distinguish the wait graph which was introduced in

chapter 3, from other graphs which we will employ, we call

that wait graph the Wégrapﬁ. A variation of the W-graph is

“Nused in this approach to the prob{ET. In‘fact, th W-éraph

s

is wused 1in its entiqéty, but with the addition tha{ a file
which‘is allocated to a préceqs and whigh has no ocess
waiting 'foy acéess to it, is also represented as a noge in
t*e graph. Such files form nodes in the W-graph hhich ﬁave
nﬁ incident or emanating edges. These nodes may be regarded;
in the usual sens; of the W-graph, as end nodes, since they

have no immediate successor. We call .this wait graph the

MW-graph.

4.3 Deadlock Avoidance .

L

°

: N
The . initial processing of a file access rézuest %s
identical to that described in sec%jon 3.8, the 1initial
processing of the avoidance and detbctionfalgorithm,lup to

the point wﬁ;re it must be determined ‘whether allowing a

process to wait for a file would result in a.deadlock. This

deadlock check, however, is different in this algorithm.

!

Effectivefy, the access controller determines ghether the

i

introduction of the new edge og(edges into the/ MW-graph,

. . N . ! page uo

representing the waitin® process, would cause a loop in the
graph. It does this by 'waikipg' the connected‘component_ of /
the Mw-grabh which coniains the node représenting the
, requested file, uritil it reaches the end ‘node of the

; connected component. The ‘'walk' starts at the requested

s .
file's node and proceeds in the direction of the graph.

|

. . 'éince a connected component of the Mw-grabh has at most

L]
one end node, a new edge can be made incident on any node in

that component withouf the possibility of éﬁusing a loop, if
it is known that no new edge is-being created at the same
time, emanating from that end node. Henge, the access .
controller determipes if the process which owns the end node
R . file, has a file request currently Seing processed. If it

) ’ + has not, tﬁen‘it is safe to introduce the new edge into the

¥ graph. Thus, a process is allowed to wait for a file only
after it has been determined that this waliting does not

result in a deadlpck. This is done by ensuring that there is,

n6 other "simultaneous" action which might interfere with .

allowing the process‘to wait. However, if the process which

owns the end node has an outstanding file.riggggp_\iurréntly o .
" being processed, then éhe access controller waits until the

processing of this request has been completed.

Because the access controller waits for the completion
g{ a process which itéelf’mﬁy be suspended, there gxists th;
possibility of cyeclic waiting. This waiting results from the
fact that we do not allow anoend node in the MW-graph to

become a predecessor of another end node which.is about to

/

[e - st ot

\) ‘ ' ' ' .~ page U1

bFCme‘ tbe source of a new edge. For this Teason we regard
such an end node as a 'shut' node. A shut nbde -in the
MW-graph represents the fntendéd introduction &f the new
‘edge in the graph, of which that node will be the source.
The deadlock avoidance scheme can be rephrased in terms of
these shut'nodes; a new edge will not be introduced. into the
graph as long as it would be incident on a connected
compotient ‘which contains a shut node. The result of this is

that the access controller mu;t wait until the shut node

becomes ‘open again, N

Because of the possibility of ‘cyecliec waitiné, the

access controller determines if its waiting would result in

a deadlock. If it would, then the access controller rejects

thé'file request ‘which it .is 'probes;ing. Otherwise, }t
suspends the processing of the request until the sJLt node
on.which ﬁt‘waits has become open again. At that time, the
\aé;ess controller resumes the progessing of the Eequest. If
"ithe end node has remained an end node, the_new edée can now
be introduced into the MW-graph because.}t is now safe to dq
so.‘ However , }1% the node has now an immediate sucesSor'in‘
the MW-graph, the access qontroller repeats the process of
finding the end node and determining whether the new edge
' can be ;ntrédgced or not. It does this wuntil the edge 1is
:}ntroduced and thp fequest pla%?d ;n the file queue or until

the request is rejected due to a potential deadlock.
AN .

-

~n

4.4 The P-graph Model

- . .
/ -

/. . ' as ‘s
In the avoidance and’detection algdrithm, our version

1 , of a walt graph, ‘the W-graph, was sufficient to describe the

waiting relationships between the processes and files in ‘the

network. In this approach also, a varlation of the W-graph,
P %)

REE ST ARG

the MW-graph, describes the waiting relationships between

\

the prodesses and",files. There is, however, the additional

WEL T A

need to describe the waiting relationships which can exist

o
ad

between shut nodes of this graph. We have again found' it
useful to wuse 'a graph model to describe ghese waiting
relationships. Because of the fact that shut nodes are the "

-

sources of ‘proposed! new' edges in the MW-graph, we call o b

this graph the P-graph.

A node-in the-P-graph represents a file which is owned

A - *»
by a .process. That process has a file access request
currently outstanding, and the acéess “coﬁ%rollgr is

" -

determining whether a new edge or edges, repre$eﬁting the

request, may be introduced safely into the MW-graph.

-

o A labelled directed edge in the P-gr?bh represents the
suspended processing of an aocess request from a process .X.
The source node of the edge is a file owned by process X.
The ‘destination node Gf the edge is the file which is the
0 end node in that connected component of the MW-graph which
contains fhe requested file. This file is owned by some

I

other process, Y, which also has an access request. being

proceségd. The edge 1in tne P-graph shows that the access

A

— R , [-y

) /* S ._ . : page 4?

- controller cannot cohtihue, the processing f the access
request from process X, until'khe processing of the request

from Y has been mompleted (Figure 4,1). It s oulF be noted

37
that a node in the P-graph is also an|end|node in the

/

Hw-graph Th;s is because new ‘edges in the My-gr\ph can only

‘emanate from end nodes. '
¥ @ 4 b

. ' AN .) ' . '
. FIGURE 4.1. The l::ﬁaph ‘ . T . q

: A

~ ' . D
G) \\\\ . | { |
g Y 0O o
!) ¢ . H ' Y Co ‘ '
- >
|} A node in the P-graph e
%= An edge in the P-graph : Lo
. (O A node in the MW-graph . B
© ' €—— An edge in the MW-graph s

€-—~- A proposed edge in the Mw-graph .
The edge (ﬁ F) in the P-graph shows tHat the processing of
the access request from process X for file E ils suspended
until the processing of Y's request for file G| has been
completed. -

b

A node is 1ntbodﬁé;d into the P-graph when|the agcess
cdntroller wishes to create a new-edge in the MW gﬁapﬁ and
must determine that it is safe to do so. In this case, all
the files owned by the requestiné Erocess' ar shut -and
therefore become nodes in the P-graphes A node is removed
from the'P-graph when the processing of the request has been -

completed, 1.e,, when the corrésponding néw edge "has K

Ly
o , ‘ C o

.
i - . \
. - .
PP » e ——y . - . . A Sl etk mabriont 3 X el -
e L = iy P Y. AW
. N

/ - T : . page il

. ’ .
] t b - b . . »

actually been ‘introduced into tﬁe Mw-graph or the request

has been-rejected because deadlock would have resulted - had

i

.

i _—_— the process.been ‘allowed to wait for the requested file.
| .. ~ |
r As in the case of the W-graph, a directed loop,in the

" . - P-graph 1is also a neceséari'and'sufficient condition for the

Al

existence of a deadlock In the P—graph a loop describes a

deadlock- between the suspended processing -of requests. As. in « v

. the w-graph, such a deadlock can be avoided by examining the
- ﬂ P-graph to see whether the. introduction of a new edge would

' cause a loop in gﬁe graph. Deadlock in the P-grapqp can be J T
" detected by checking the graph for the existence of-a-loop.

If found, a deadlock can be broken by removing one edgeé from

. the loop. This corresponds to rejecting one of the suspended

o, e TSI g M SSGTRC TR SRRy ey e e o w
-

h ' access requests which have formed the deadlock.
: . R

& The behavipur_of“tne\P-graph is identical to _that of
the W-graph. A P-node can have only one emanating edge, but

may‘be the destination of many edges. A connected component

in the P-graph has at most one end "node. If n7 end node

&\ ’ exists then the component contains a loop. As a result of-

. o , |-

5 this, a 1loop ‘in the P-graph can only form at the end of a
o 4 v

connected component. AS in- the w-graph" the ~ edges

'representing two or more distinct/access'requeste may be

introduced,into~vthe P-graph .. imultaneonaiy. These edges -
combine the two or more cbnnefﬁbd components in such a way
"as to form one'connected componentkwnich contains a 1qop.. ' !
The 1loop ig, at Lthe 'end of thia\sew component sin6e4%t

contains at least the last edge in,éach ofitheosubcomponents

; 1 . ’ . [+% -
.
] . . c .

which together form the new connected -compogent.

T @

4.5 . The ?-gréph'and Mw-graph'CombineJ -

,{. ’Q' I [- '1. ' {:t - ‘ , ‘;
© . We can now approach the problem of -avoiding and

. '» . detecting deadlock in the network in terms of the P-graph

model. The P—graph reflects the fact that new edges are)

! about to be 1n§50duced intp the Mw/graph The P-graph can be

superimposed on the Mw—graph, with nodes in-the P— aph .

. *» corresponding to shut nodes in the Mwagrapﬂ* Because new

3

CEE 4 edées ‘emahate eonly frdm the end nodes in the MW-graph, the

2L P-graph may ﬁq obtained from the the MW-graph by selecting

all connected components of the MW-graph which contain a
. t 4
shut nodé and by contracting these components to a single

* node. The edges in the P-graph show the waiting

o

relationships between the suspended processing of the ahcesé

requests from the owners of the shut node files. ~

\- ‘o

A ¢esiréd new edge in the Mw graph is not introduced :, ’

until it has been detemined that/the corresponding new edge

Ny

- in the P-graph is not an edge in" a loqﬂ However, if a. loop
.] ,
.does occur_ in the P-graph, the removal of one of its edges

in order'to,break the deadlock, is reflected in the Mw-graph

., by the rejéction of the cqrresponding access - request. That

‘; means the desired edge which would have eventually resulted

?

in a deadlock is not introduced into the MW-graph.

' . o
- .
S

! For these reasons, if, in* the P-graph, deadlock 1is \

-avoided ip the majority of cases and detected and broken’

{ .
ool ‘ .o
- I

page U6
\

A\

when it does occur, fhen we can guarantee that. no deadlock S

will ocecur in the MW-graph. This means that deadlqék among
" the processes and"filés of the. network is completely ! j

avoided. Co .

4.6 The Complete Deaulock Avoidance Algorithm

Because the behav::Erm5of the P-graph is identical to
that 6f tﬁé_w-graph in the previous approacg, we can use
identical "data struotd;es and an algdvithm identical to the
.avoldance and detection algorithm to' avoid (gnd detect ‘ ﬁ J
deadlock in éraph. FSr the“purpose of the'present algorithm,
. the Mﬁlgraph is described by the ﬂimmediate sucocessor

pointer. No other data structung is maintained for this
graph. , Lo ¢ .

-~
v N \

. - T

Tnhat part of the complete deadlopk avoidance algorithm
which manipdiates the P-graph data structures, is identical

to ‘the " algorithm described in section 3.9 for avoiding,

deteating and recovering from deadlock in the W-graph. |

However, in this a&algorithm, a LAC maintains the immediate
sucessor pointer‘of its fi;é in the MW-graph as wqll as the
P;graph data structures of its file. Nevertheless, the LAC
'onlf maintains P-graph inf&rmation when its file is a node‘
id the P%graph. Because a(filé may be a naede in th; P-graph:
only while its owner's request is beiﬂg processed, a LAC
‘doéﬁ not .manipulate its file's P- graph data structures

except at this time /

A

£y

i

#

¢ additional

In chapter T.
‘. ..' \

complexity

) > -We have described an algorithm for an a

“avoidanée algorithm discussed in chapter 3.

of the "algorithm

page 47

gcess contro;ier-‘
whiéh completely avoids deadlock among\ thé giles of -a
,VﬁistriSuted.database. We will refer to this/ algorithm in
subsequent ch;pters as _th; "Complete‘Deédlock Avoidance"
‘algorithm. The'algoritha‘is more complic;ted~and"usea more

'elaborate data structures théﬁ thé deadlock detection ‘and

However:, the

and its data

‘structures is cdmpgnsateq,for by the fact thét it requires
less message 6 traffic overhead than the previous algorithm,
particularly im the case of database with high locality of

reference. The comparison of the ‘two algorithms is discussed

R

: CHAPTER 5 ’
. , .

The Implementation of the

Distributgd Database Acce’ss Control Systenm

In this chapter we discuss the implementation of an

access control system for digﬁﬁ?buted databases. We call

this system the Distributed Database Access Control System
(DDACS). The access controller yhich‘runs in each station of

} , the network {s designed using the algorithm, described in

.

, ‘ section 3.9, which avoids deadlock in the majority of cases

Y

" and which detects and recovers from deﬁdlock, if' it does

occur.

5.1 Common Functions of LACs ' ' .

ofs

In the discussion of our access control philosophy we .

have used the concept of the Local Access Controller (LAC).

The 1local access controller is abstracted from both'the
structure of the network and the disﬁriéhpion of the files
of the database. However,‘ the imhiementation of the
theoretical model of the access contfol mechanism should
incorporate the characteristics of the real netﬁork which
would be relev1't to the efficient execution of the

- mechanism.

»

The common functions of the LACs which run in the same

station, can be combined in one access controller for that

station. The function of this access controller is to

P]

) page 19

recelve all file access reguestsafrom user processes in the
same station, and file access requests which have been
directed to that station ’from some remote station. The
access controller also maintains the local and global file

directories in its station.

Because of the assumad high locality of reference of
the database, we can expect that, in the majority of cases,
completé connected components of the wait graph will be

contained in one station, i.e., all the files repreéented in

- the connected component are resident in that one station. W9/

can' also expgct .that, wWhere thié is not the case, large
continuous pértions of the component will .be contained in
.one station. In these cases, the accéss?cont}oLler performs
the predecessor list prépagation routine on the predecessor
lists of those files which form a continuous portion‘of a
connected component of the W-graph 1in its station. This
eliminates the need for predecessor 1list propagaéion

messages between LACs resident in the same station.

In the case of deadlock recovery wWe -can also expect

i

large continuous parts of the deadlocked component to be

contained in a particular station. In this case the action
caused by "boss selection" and "deadlock recovéry" can be

‘performed by the acce8s controller by Fepeating the action

for every file which is a node on a continuous portion of

the w-g?aph loop contained in its station. This speeds up

the deadlock recovery routine by reducing the requirement

" for message passing between LACs.

' N

/

N

! bage ;b

1 .
»

In-generbl, whenever some information causes a . LAC \to‘

perform an, action. on its' data- structures, and must be

"prbpagated along a connected component, the access

6ontrol¥g;‘ performs the necessary routines. It 15 more
;ffeefgh to have the access controller perform Fhe required
aétion in the appropriate. data structures for all files
alorig that portion of the connected component which is in

its station, than to have the meﬁsage - passed from LAC to

"LAC.

5.2 The Access Controller in the DDACS

In the Distributed. Database, Access Control System,

. there 13 one access controller in each station of ' the

network. The design of the access contoller is based on the
aigorithm described in section 3.9. A user—procéss addfesses
all file access requests‘to the access controller which runs
in thg same station as itself, If a process requests a local
file, tﬂe access controller itself processes the request,
Howgver, if the request 1is }or a remoteifile, the’access
controller passes the requgsh to the access controller in

the remote station where the requested file is stored. This

spheme is also followed for the releasing of files.

In- the model -of the access controller which was
implemented, éheréﬁ"is ‘no communication 1link between the
access controller and the iocal access controllers of the
files. Furiher, there are ho communication links between the

local access controllers .themselves (Figure 5.1). This is

I e corom . I T Y LS S 5. AY

‘page 51 |

because the LAC is a cqnceptual tool for dealing with the.

maintenance of the data structures associated with a file.

In the iﬁblgﬁentabion itself, these data structures are

maintatned by the one access controller, so that no message

passing is necessarQ. However, the-copbept of the LAC 1is
still maintained withih the access controller and may be
regarded as the access 'c;nt;oller itself when it is
maintaining the daéa structures of a particular file. When
it switches to those of another 1local file; it can be .
regarded as "assuming the identity" of that file's LAC. This
essentiaI&g serializes Dthe processing of the LACs in a j

station, so long as the access controller is implemented as.

a sequential process,

!

FIGURE 5.1. The Communication Links in the DDACS
. - /

STATION A . STATION B : L
USER o A®™s | 1 laccEss _2 USER
L PROCESSES® [~ CONTROL [CONTROL <1 PROCESSES
p A
3 |3 MESSAGE SWITCHING MECHANISM 3| 3
¥ FILE ACCESS Y ¢ FILE ACCESS Y
MECHANISM : | MECHA NISM ,

The communication links in the DDACS are:

(1) Between access controllers in remote stations for
passing control messages

(2) Between user processes and the access controller in the
same station .

(3) Between wuser processes and the File Access Mechanisms /
"where their required files are stored .

-~

[

=page 52
U . (
Control messages between the .accéss ’controllers will _~/
consist of the following :

‘(1) Remote accesslrequest

(2) Request granted/rejected C
(3) Predecessor list propagation

(4) Update immediate successor pointer
(5) Deadlock message (Boss selection)

(6) Deadlock recovery "'_

Between a user process and its access céq}roller, the

\

messages will be: ° : \\\\\\
(1) File access request) o

(2) File release)
~ / _ .
(3) Request granted/rejected

5.3 ; Requirements from System Software

In order to implement the access control mechanism . as .

/
described Aéove, it 1is necessary that a Message Switching

Mechanism should be part of the underlying distributed
SYstem; The Message Switching Mechanism should provide a
communication channel between any two processes in the

netwérk ﬁhich wish to tommunicate with each other.

It is also necessary that there exist a File Access

Mgchanism which would perform the actual file handlihg on

_behalf of ;/ process, once that process has been granted

'access to th

desired file. In order to do this, the Flle
! i
Access Mechanism must be resident in each station of the

network., Also, the File Access °‘Mechanism in one station ‘

s

=

PSP

should ,ge éble to communicate with a process in a rempte

station via the Message Switching Mechanism.

In order to make the distribution of the files of the
database transpanent\ to the user process, it is'necessa}y)
that file request and release, and file access routines

]
“Should be ava}lable to these processes. Further, these

routines should nop\requir the user process to know thé
location of. the files})ggxsthe distributed database. The
routines will be of the type : .

GET FILE (file,return code),’

RELEASE FILE (file, return code);

READ FILE (file, buffer, return codei.

WRITE FILE (file, buffer, return code).

o
'

?é.u Available Hardware and System Software

The Distrlbuted ‘Database Access C?ntrol System was .
implemented for a network of Digital Equipment Corporation
(DEC) 'PDP 11 minicomputers, consisting of one PDP 11/70 and,

-

one PDP 11/40 méchine.

2

The operating system running on the network stations
during the 1mp1ementation was RSX/11M version 3‘1 [66]1. This
operqting ,systeng provides an interactive \e\viron ent for

P 4
software development. Also available on this system is a

Filg Access Mechanigm, FILES/11 and a Message Sai ching
Mechanism, DECNET V1.2 [641]. \

The Message Switching Mechanism, DECNET V1.2, provide

R e - » . - - . v

4 s - —— P e T e kot nttindel

~

4

eI

page 54

: A
a message service between processes in the same station, or

in remote stations and between pnocésses and the File Access

SMechaﬁism. The DECNET facilities which are necessary for the

L
implementation of the access controller are as follows:

(1) "To deliver a nessage from a sender process to a
receiver'process. |
(2) To aéknowlgdge the sender process Qhen the message 1is
received by the recgiver process,
(3)~ To allow the sender to con?inue processing once the
message is sent and acknowledged. .
.(8) To allow the sender to suSpend itself, if desired, by
. Waiting forja reply to a parti;ular message.
(5) To bufferﬂmessages for the receiver if 1t=is busy, so
that the message may' be extraeted whenever the
receivér desires.

(6) To resume the receiver, 1?.suspended, upon the arrival

of a message from a particular sender.)

These servlées are invoked through the use of subroutines,
eone for each available, service, which are called from the
procegseSJ These subroutineé, which aré épored as part of
the System.library, are éesigned to interface with programs
written in FORTRAN. or MACRO/11, the .PDP/11 ‘assembly

language. The message .switching protoéol is completely

. eohtained within DECNET and is»tranSparent‘to the user, ‘

°

‘ The File Access Mechanism, FILES/11, provides user-
access to sequential, index - sequential and direct accesé

files. The user process may invoke the services of -FILES/11

s - . PSR AR

pag; 55

directly through the use of system provided routines, or via

the DECNET mechanism.

-

language with which the required DECNET user subroutines ca

interface, it was found necessary to write the DDACS in
'FORTRAN. However, a préprécessor was available on the system
used for theiimplémentation, which.makes up for some of the
deficienciess of FORTRAN. This preprocessor 1is called
_ Structured Fortran (SF4) [67]. Hence, it was decided ' that

the DDACS should be developed in Structured Fortran.
M 3

/

5.5 The Design of the DDACS

The access controller was developed as a sequential
pfocess. I£ can be broken into two distinct parts: the
access control portion, which manipulates the data
structures, as described in chapter 3, and the interface

with the environment.

. The interface performs all the commqnications with the
user processes in the same station and with other access

‘controllers in remote gtations: by means of DECNET V1.2.

Because of the fact that FORTRAN was the highest 1eve§

Message communication in DECNET V1.2 is ae&omplished by

initalizing a communic.:tion link between the two processes
which wish to communicéte. This link is associated with an
integer number, called a Logical Unit Number (LUN), where
1 § LUN € 255. Then, any of the " DECNET services can be

invoked , for ﬂ%at communication 1link by calling the

e b} - . . mp ome W LEREEE e e e e e

e 7 Ao AP

appropriate DECNET user Subqoutiqe and passing the logical

\
Vs

page 56

A v

unit npmber as parameter. It 1is necessary pofg}ate the

max imum number of comm&pication links which a procéss will

use simultaneously, wupon callinig the DECNET initalization ¥ .
subroutine. This puts an uﬁpe? limit on the total number ofyh N v;
’EEET/ procesé!s aﬁd reﬁote access controllers with thch an'. ‘
Cccess controller. can ;ommunicate at any one time. - A") i
communication link between two processes may be broken by .

eiihgr process calling the'appropriate DECNET sqbroutihe, or
by te}pinétion of either process. \ \

v

The interface portion of the "access controller consists .
~ ' \ .
of three routines which initalize the communicatign work
areas, connect 1links to local processes and remote access

controllers and receive and send messages on these links. ~

The access control portion'of £heADbACS consists of 30
routines. It performs the function'gf the access controller
in a station when it ﬁanipulétes the process descgibtor*data
'strgétures. It.also performs the function of a LAC when it
manipulated the data structures associaﬁeé}with‘one of its
files: file descriptor, predeceésor fists, 'immediate
piedecessér, lists and immediate . successor poiﬁter. These

data structures have been implemented as tables: a process

descriptor table and a file descriptor table.

5.§§4=Data Structures in the DDACS

The process .descriptor table includes the procegs w

LS

© L]

,:‘),'

N | Y

4 .

,; : page'57#

®

descriptors for those local processes which are currently in\
communicaton with the access controller. Figure 5.2 details

an entry in the process descriptor.table. ‘ ,

\ o

. STTN The station in which the process runs

FIGURE 5.2. The Process& Descriptor Table Entry

~ ~

\

PNAME | STTN | STATE | FILES [REQST|REPLS |PLIST | QUE

ar

L
[} \ i

The fields of the
follows:
PNAME The process name

process .descriptor table entry'ere as

4

file
(initial,

request or
suspended,

STATE The state of the processing of the
release , from this process,
resumed))

_FILES The files currently used by the process

REQST The file requested by the process v

REPLS “The number of outstanding replies to predecessor
requests for the processing
request or: release

PLIST Auxilary #ariable for forming the union of predecessor
lists dyring the processing of file requests
releases/ from this process. ’)

QUE The linK for the file request queue

A o i

-

list
of this process's file

n link with a local process is the index of

The table 1is ogganized so that the logical unit number of
the cbmmunfbaf?f/r

. the associated process descr1ptor in the table. An entry in

the table -is initalized when the 11nk with the process is

established. The _entry is deleted when the 1link is

i

disconnected. Ad entry in the table is'considered active if

~

the process owns at . leastwone file and/or, has a pending

file * access request. Otherwise, the entry 1is inactive

although the link may not be disconnected. A section of the
. - \ . . R Pl
process descriptor table is set aside for information on the

L

> e e "

g

e -
. ; ! ! “ \
- - ’
- o PR . :] page 58 ’ -
’ ‘ ‘ P : :
7 T ' . g

communication links with other access controllers (Figure',y
¢ ' 5.3). MAgain, the eritries are. indexed by the logical unit PR
e) 2 . : PAREE
number:of ‘the-links. . ;

1
t° { Lo

To maiotain a consistent approach to the processing. of
file requests from both “ local: and ' remote processg the

process descriptor table is ‘alsg/ .used to store ‘process

'descriptors Qf remote processe which request or hold local

filesﬂ Such an entry is creEde when a remote proceéss

"requests, a local file. The entry is updated for any further

local file requests from tﬁat process, and is ‘deleted when

the process has released all the files local to the access

- BRI TR T w10, WDREY et pemnm b v o

N

controller. For rehote processes the communication alink
, 'npmber does not provide . an index to the .table, since all

°communication%w1th a remote process is‘effected through 1its -

3

e gD
\;;;B"

access controller. Entries, for local and remote processes
. L3 * $
; . are stored in the same sectign of the.table..\

\

*
~ . FIGURE 5.3. Th® Process Descriptor Tab ”4 ‘ o
“ ‘ - ’ *
\/ - v " ,.‘ i .
ENTRIES FOR ACCESS CONTROLLERS -
S e . ENTRIES FOR USER PROCESSES - :
e ~ . ‘r . - - — —
- ‘ . :] } °.
The process descriptor tabie has an area reserved for)
holding information on communication. links with remote'
access controllers. The remadinder of .the table ‘contains
process descriptors for user processes which own or request
) files in .the statign. . -
. o ‘ . |) ‘) ! — ‘v 8
. . ? !) ’s‘f

- ‘ page 59

-
'

-
D

RPN " An entry in the File Descriptor Table (FDT) consists of
, ™7 a fiie' deseriptor, a preéeoesson* list, an immediate .

. N .
. predecessor list an immeoiate successor pointer and a.

pointer to the head of the queue for the corresponoing file.
&

(Figure 5.3) There is an entry<1n the table for each of the

. .local files of the actess controller. The manlpulation of an
. I A
e entry in this table may be regaroed as the” act1vity ‘of the

corresponding file s LAC. Thne Iist of file names in the FDT

- oonstitutes the accesa.controller s local file directory.

o

A ’ 2 . e
X

- - <

FIGURE 5.4. The File Descriptor Table Entry . . g

A4 o A
LT FNAME | MODE'.| OWNER | QUEUE | PLIST | IPLIST | ISUCC
F . ’ P s \ N oL . ’ ; <\; R °
T * The -fields of "the 'file’ descrigfor table entry are as
., . ~.follows: A . ‘ .
FNAME The file name - _ ‘ . K
" MODE . The current status of . the file (free, allocated,
\ C L deadlocked) Co- 2
C v .OWNER The process which currently owns the fil
- QUEUE The "'pointer to the head of the reques%~d§eue for this
tie. :

PLIST ¢The file's predeceasor list in the wait graph
IPLIST The file's immediate predecessor 1list in the wait

X graph® .
. ISUCC The file's immediate successor pointer in the wait
- graph’ 4 .

@2 . - r
S globa¥<5f11e° directory 1is maintained by the access

~ controller.*There is an entry in this directory for each
e . [. N € ~
1‘ i, “ . o !
* 7 "file in the network, which consists of the file namé and the

.o * mame of the station where the file is stored. Because the
' f;le population‘is static in both number and ldeation, the
global “file directory can be ordered by station. All files

4

in one station form-a group of consecutive eqtrles in the
[’ ’ ’ /’
v . . u\

e

e e b

. . ; A
o) page 60

4global directory. The group~ of entries relgting to one,

station is-in the same order as the entries in the” ;gie

.descriptor table 1in the statiopn's access controller. Then,

‘the positlon of an entry for a particular file w1tnink’its

group is‘ used as the index of that file'] associated data

structure in its adcegs controller's file descripté} table.

"FIGURE 5.5. The Global File Directory

FILES IN STATION 1 |-

- FILES IN STATION 2 .

. | FILES IN STATION n
-/
The global file directory is comprised' of sections. Each

section contains the “list of files stored 'at one of the
Aetwork stations.

\ /
o

referred to by their. index in the global file directory. In

PN

communication ‘between ap access controller and a user:-

process, files are refered” to by their file names.

[

»

5.5.2 Message Handling in the DDACS

d
S

Tne access controiler/”AScepts messages from .;ts
4 (- .

*

1nter£ace one at a time. All processiﬁg wnich may be

accomplished wibh the data immediately at nand, is performed

" before another _message 1s accepted. This may involve the

‘manipd!atign of more than one Fntry in either of the tables.

.) . » .
- In commun{cat1on between access controllers, files are)

/ T .) -
A . page 61
E " For exéﬁple, a predecessor bropagatiqn travels Q9 the end of
} . n’ ‘ a conpeétedicomponent of ,the ~-grdph ‘and the predecessor

list of each file on t;e portion of the component travelled
| ’ by the prépﬁgatién, is updated accordingly. When ;n access
controller receives or initiates acpropagation, it follows
that portion of the cdnnected\cqmponent'which is continudus

and. local to itself, 'lupdating all the' appropriate

predecessor lists, before performin% any -other action or

L , accepting another message. Messages which are to be sent to

~

) ' a local process or remote access controller, are submitted

to the Message Switching Mechanism.

<, ‘ ’
5.5.3 Message Formats in the DDACS ‘ o

For simplicity, the message formats in this®

\implementation are all of the same length. The maximum

leﬂgth of the message format'is dec;ded by ‘the length of tﬁe
' bit 1lists which .form part of some messages. Since the bit
» lists ind&cate files, thé length of the bit list depends on
the numbér of entries in the glbbal file diregkory. The

‘message formats themselves are described in appendix A.

[}

t
Whenever some processing of the adcess controller

requires more than one piece of ‘information of a particular

type to be sent to a remote access controller, a bit list is

! formed of all the files in that remote station to which the
« . | R :
information refers, and only one message is sent.

This occurs when an access controller queues a file

.page 62
- \ l , ,

request from a process's which owns more than one remote
file in the same remote station. Logically, the access
controlleq would send a messag; to each of’thg LACs of the
process's current files to Gpdate its file's immediate
successor pointer. However in the DDACS fhe access
controller sends one message to eaéh remote station_in which
the process owns files. The message contains a bit list
which indicates which files are to have their immediate

h]
successor pointers updated. i ‘

Similarily, when an access controller requires
predecessor lists from a remote station, one messaée is sent
to the remote access controller. The message contains a bit
1ist which indicates which file's predecessor 1iststare
required. The reply to a predecessor 1list request- is one
message which contains a predecessor list. This list is.the

union of all those predecessor lists which are requested.

»

~ - 4

5.5.4 Suspended Processing in the DDACS .o

There are three actions of the access contrqller which

cannot always be :completed with the data immediately

avafiable. ‘These actions all require predecessor lists. JIf

\

' L
the predecessor 1lists required dre those of remote files, -

‘then the processing must be suspended until the predecessor
lists can be obtained from the remote access controller.'The
three actions which require the predecessor lists are file

release processing, the file request deadlock check and

deadlock. recovery procéssing. Because the access controller

6 "
4

Y

bt

page 63
g &) -
N is developed as a sequential process, the suspension of the

procéssing of one of 1its 1logical LACs would mean the

suspension of the access controller as a whole. To overcome

this difficulty, the process descriptor table is extended to
hold informatjon on the processing of file‘requests or
releases which must be suspended. This information, stored

~ /
as part of the process ﬁescriptor for that process which

made the file request or release, is the wunion 'of the ; f
predecessor 1lists received so far in response to reqhests{

) - and the number of #Qﬁfigs yet to be received (variable REPLS

and PLIST, see Figure 5.2). \ ’

. Similarily, a deadlock descriptor table is employed, in

a which all information on a suspended deadlock’' recovery can
. 7/ N

be stored. The number of suspended deadlock recoveries

\

b er—————————————— e . S

'stored in this table, depends on the requirements of a
?partieular system. Since deadlock occurs'only rarely, this

table requires little storage space. In the DDACS, up to
- Py

three suspended deadlock recoveries are allowed'by an access

controller, at any one time.:
4

L}

5.5.5 Remote File Requests in the DDACS i
C e In order to perfo#ﬁ the deadlock check for a file

request, the acceés controller requirés the predecessor
lists of all files owned by the requesting‘proceés. In the
A DDAéS, Qhen‘a process- requesﬁs a. remote file, the file -~
request ‘'message _which 1is sent to the rémote access

14

controller contains a 1list of the flles owned by the

............

page 64
[}

N LR ’ - ‘ ' '

;’ process. It .also contains a predecessor list which is the
union of the predecessor l1ists of all the files owned by the
process which are local to that pcocess's accesé controller.
Thus, there is no need for messages concerning the files

' owned by the process, The number of predecessor list4

requests and replies is also reduced.

5.6 Testing the DDACS. | .

1

The dDACS was tested using two access controllers. Both ™
acééss controllers were in fact run in the same station.
However, since the DECNET Message Switching Mechanism allows.
communicati&h links between processes in the same station,

(\\ it was ﬁossible‘to simulate fwo remote 'station; with an
access contralle{ in each. Routines were developed which

allowed the ﬁgef processes to communicate with the access '

controller. The routines commurniicated with.whichever of the
td% access contr:llers was in the same simglated "station”
as the user process. Each access controllér had sufficienf
spuace in their process descrip;or table tq allow up to five
user processeé‘ to. be in communication with it at the same [
pime. |

L4

The distributed database consisted of ten files, .five
files under the Juristiction of each of the access
controllers. Actual file manipulation by the user processes
was not impiemented . The file manipulation was simulated by
sdséending a WYuser proces§" wheneyer it/ would{ have in

reality been processing its files. The periods of suspension ;ﬂb

.
te . [

a —
- . .. PP . PR B -~ e S e e v e Y R Yt et s mene B o aram mm s e B g emaeme & -

—— ‘ ' - PN s e “ - v ¢ IR
Dl - v 2 . v 1 - v . +
’ . . - : N L Lt O S R T
. o R M C . B

page 65

Wwere chosen accérding to which sequence of file requests was

being tested.

[}

, The DDACS was impleméntéd Wwithout error checkiﬁg, error
' analysis or -error recovery réutines: The model which was
implemented 1is that which performs ‘only the access control
algorithm using tpe walt graph structure to avoid deadlock
inithe majority of cases, and detec? deadlocks whenever they
’~hgg&3r. Consequently, testing the implemented modei consisted
of vérifying the correct allocation of reduested files to
the user pfocé;ses. A log filé for each access controller
was’ used to achieve this. All messages sent and received by -
the access éontroller, as well as sdignificant evenﬁs and’ the

access controller's variables at the time of the events,
{

were recorded on a lgg file. An exfimple of this log file is

shown. in appendix B.

Appendix A contains t&% qomplete brogram list;ngs of
fhe DDACS. Appendix B containéy}he message fo;mats. Appen?ix
D contains the célling trge of the DDACS and anendix E
contains examples of the log file. ' ‘

- ’a

CHAPTER 6 -

Error Handling in the Access Control Mechanism

3

We present below a discussion of possible error
conditions in the distributed access control mechanism. With
each type of error, wve propos; a method for reducing the
occasions of’'the error, and for recovering from tge adverse

y

effects of such an error. We base our_ discussiory on the
model of the ac;ess control mechanism, described’z; chapter
© 5, which underlies the implementation of the Distributed
Databaseq Access ' Control ' System. ﬁowever, this., does not
expend to a detailed .discussion ofAspecific errors \in that

particular implementation.

6.1 Errors due to Lost or Duplicated Messages

We define ; lost message as a message which the'sendér
blaceg correctly on the mess;ge switching mechanism, and
which i§ correctly addressed, but thch is never received by
the receiver to which it was addressed. The receiver is not

aware of the fact that the message was sent to it. -
z , .

A duplicated message is one which the sender process
places only once on the message switcbing‘mechanism, but
which is presented to the receiver pfocess more than 'once,
each time as a distinect message. The sender procesé is not.

aware of the fact that its message has been duplicated.
. "' ﬂ .

[SE— e marp

*

. ' page 67
v ' [
»
The most common effect of a lost message 1is tThe’

indefinite suspension~; of a usér process. Tﬁis is
particularly true of messages which refer to file accesjg
re&uests: either the file access request itself or the reply

to the request. A user process suspends itself when it makes

a file access‘request, and r?mains 'suspended until a reply

to the request 1s received from its acccess controller. If

-

el

the request is-: lost, so that the access controller cannot
send a reply, or if the reply is lost, then the process wily
remain suspended indefinitely. The loss of @ reply which
grants a file access request, not only 1leads to thel
indefinite suspension of the process,. but alsd to the

indefinite allocation of the granted file to that process.

The loss of a file release message leads to the
indefinite ailocation»of, the file to the 'process which .’
issued the release message. goﬁever, Wwhen the proce§§
' 4erminates, the access controller in the game-station as the
process,, automatically releases any cfiles 'which the
process's descriptor indicates as still being allocated to
that process. If a process releases a remote ‘fiie and the-
release message from the access controller in the process's
. stdation to the remote access controller, is lost, then the
file remains allocated to that process. The termination of
the'process has no effect on this, since -the"pfocess‘s
déscqiptor in the same statién és the process, noflonger

shows that the file is allocated to that process. Then, the =,

v

file is indefinitely allocated -
| . L

ie

" connected component would brin

\ ’ page 68

Lost or duplicated messages also affect the performance

of the access controller if they result .in wait graph

variables which do. not ‘refleet' the real relationships

_between processes and files in the network. The inaccurate

wait graph variables may lead to faulty processing of file

access requests, which may result in deadlock. The deadlock

will be detected and broken in the usual way, provided that

the inaccurate variables which caused it, are corrected by

the normal processing—of the-access controller. This would
be the «case 1if a predecessor list propagation message was

lost. The next yropaéation4 along the 'same path of the

redecessor lists up to
date. However, the deadlock would not be detectel and broken
if some immediate sucessor pointér was incorrect, since this

would cause the propagation to stop or be misdirected.

Indefinitely suspended processes, such as those in an
undetectable deadlock or those which wait indefinitely

because of lost access requests or 'replies, as well as

\

indefinitely dllocated files, lead to lock-up of parts of

the distributed. system: - Files which are owned lb§
indefinitely suspended processes are themselves indefinitely

allocated. Any process whieh is waiting for,an”indefinitely

~allocated file, is ;ﬁén indefinitely suspended; Any flle

which such a process owns, becomes indefinitély‘gilocated.
N \
In" terms of the W-graph, any connected component whose

.ehd node is an indefinitely allocated file, is a "dead"

comporient. This means that it does not shrink since phé-end“

A

e . *

[

»

\ . | page 69

\ N Y

-node file cannot be released. All the fileg which‘afe nodes

in . the dead ' component, are themsevles indefinitely

allocated, The these

2]

processes Which own files are

indefinitely suspended.

If a process requests an indefinitely“aliocated filé,

v

and 15 allowed to wait for that file, the pgFocess becomes

_indefinikely susbended. IAny file which that procéss owns,

and 'all the files which are their predeéessors in the

W-graph, begc;ﬂi:ndefinitely allocated. The processes which
own these predecessor files‘are then indefinitely suspended
’ 'y

(figure 6.1).

a

FICURE 6.1. Indefinitely Suspended Processes
and Allocated Files

»

c
' \
1

g

) -

¢

o

\

<y

H
The process which owns file G is indefinitely suspended. The
~connected component which has G as its end node will not
shrink since the process which owns file G cannot release
it. If process P is allowed to wait for file F, then it will
wait indefinitely. The connected component (4,B,C) is joined
to the "dead" component by the edge (C,F). All the files in
this component are then indefinitely allocated. ‘

y

\

w

" — page T0

v
The result, in erms 6? the W-graph, is a _.connected
component which continues to'grow w;;h the additipn of ghw
sub-trees. A coqneﬁied componeﬁt will only shrink wheﬁ“ the
process which o&ns the file regresented by the end node,
releases that file,ahd it is allocated to a waiting process,.
Hdwever, in this case éﬁe "end“ node"” file is indefiﬁitely
allocated and; hence, the connected component“_does not
shrink.’Thg result is a conneeted component in the W-graph

kY

. which will only gﬁow.

"

6.2 Detection of Lost and Duplicated Messages

It has been noted in the literature that the design and

implementation of resilient communication protocols is

important in the prevention of faults in computer networks
[48]. Howeveq,- assuming that for a giﬁﬁn Message Switching
Mechanish thére.gxists the possibi}ity tQat a message\ will
be .lost or duplicated, lwg are interested in examining a
mechanism which will detect this condition. We present below
a scheme which is useful f‘ogdete?:i:ing lost and duplicated

messages, and which ‘can be implemepted ' as part'of the

communication routines of the access controllers and user,

processes, This scheme assumes that the message switching

t

fmechanism guarantees that all messages sent on a particular

communication 1link, arrive 1in the order in which hhey'afe,

sent [63].

In each station of the network, the access controller

maintains a logical communication 1isg with every other .

b e day e

access controller and with all processes in its own station

which own or have requested a file. The messages which are
‘ -, ‘

sent on a particular link can be uniquely 1dentified‘ by

\ -
,knumbering them consecutively. Then, 1lost or duplicatied j

messages can.be detected, if the ideﬁtification number of ,

*~the last message received on a link is ma&ntained for every

logical communichtion link which the access controller has.
. @
This scheme can also be employed by a user process for

detecting if messages sent to it by 1its access controller

have been lost or duplicated.

Since the detection of a lost mess;ge on a logical
¢ N]

communication link depends on the receipt of a subsequent , | '

message on Lhé same link, the above scheme wil{“not detect a "

, file access irequest, from a user procefs to "the access

controller in the same station, which is 1lost. This ‘is

<

'b?cause a user process &ygpends itself once ié makes a file.

~

/ .
‘access request, until it receives a reply to that request.
_'Therefore, there are no subsequent messages on tﬁ% logical

communication link with the access controller, , which would,

indicate that the request had been lost.

6.3, The Watchman Mechanism

N

‘indefinitély suspended processes and 1ﬁdefinitely
" allocated files cannot be detected by any, action of the

access controllef. It is desirable that a mechanism should

(/Be introduced into the“system, which can detect such error

conditions and recover from them. Described below is such a

— mechanism,'which we. will call the "watchman".s
The watchman mechanism/contains tﬁovdisfinct parts. One

..

paft detects and resbmes_indefinitely suspended prooesses.

-

TniS‘ part we call the "process watchman®. The otner part,

the "file watchman", detects and _recovers 1ndef1nitely

-~ -
n —I

allocated files. Each station in the network has its own
watchman mechanism which® is concerned only with those

processes and files w ich are local to its station.
/' . o - /

° ’ N [4 8
J_ ‘ . _ S
6.3.1 The Process Watchman " e - R
! ‘. . ¢ . v to- * .

The process watchman is a program Egich exists as.oant '

!

of the Message Switching Mechanism (MSM). ﬁt may be regarded
as a routine which is invoked from within the MSM and' which

o

has accéss to the MSM service routines. . e

For the purpose of this study‘we\Bostulate tnat ﬁhe'ﬂ
Message Switching -Mechanism should nave‘.a facility which
detects the absence of message fréffic for a-centain lengths
of time on a particular communication 'link This time-ous,
facility 1is applied to the commpnicatign links between usen
‘processes and the access controller in the same station. In .

o

lparticular, it 1is applied when a user process sqspends
itsel upon~making an ”access request.. Then; there 1is "a
?t;m;loyt" on this process's comfitnichtion link, if .the

" access controller does not send a :reply to .~the access

request within a specific length of time. This kength of

time 1s;§@oided as pa;t of the 'system tuning procedure ‘snd“

a

"™

| $ - B
) ' el ’ R o - T “”@""——T"'
el ‘ b
» - . .

, , <~ :
SO IR o, . page 73

' 'd

o

-depends on such variables as the requirements of the user

; ' © ' processes and the system loading

RO N ~

- 4 Whenever the MSM detects a time-out as described above,
“ "it invokes the process watchmah, and supbiies tne name of
'the'ygfocess whose 1link was timea#out. At this time one of
" three conditions' exists with regard, to the process's
}equestE (1) it is currently being processed: (2) the
fequesp message was lost; (3) the reply message has not yet
. been reeerred by the process and may be lost. The watehman
~ must determine which of these condltions ex1st and correct

. A ~

it if the condition is erroneous.

' . 3
The- watchman learns from ‘the process's descriptor, via

1lthe access controller, if the requesﬁ is stilll pending. If
.80, then if the’ requeeted file is local, the reqyest is
. ;" cuﬁrentl§ being processed and no error exists. In thgé case
v \the' wétchmen resets ~the time=out for this communication

1ink However, in the case of a remote file, the watcehman

e 0 - e .

PR communicates with the file's access controller .to determine

2 . 3 A . .“'

=. " " . the condition of the processing of the request. If the

eyt . watchman lea;ﬁs that the feguesh was not received, it sends
'{29 o duplicate of‘the‘requeet message, via the MSM, to the
R ‘l remote ?coess contrellen% This is fagalitated ey the fift
that a message puffefhis aesoeigted wb?h each active 1local

' process. »This buffer contains the last message related to

) that prooess which was procesaed by the MSM. If, however,
" the relote access controller indiuates that the~request was

grantod, then the reply neesage has been,lost. In this case, -

A

q.

; ‘ : page T4

Y -

. u4-_m?f' e ;‘ B . .

‘
« 7o
4

'the watchman ré}eats Qhe reply messaée to' the aécess
contrbller in 1its staéion. If the request ha#,been put on
the file queue by the remote access controller, éhén the
watchman takes no corrective actioﬁ. An access cqontroller

v -

keeps no record of Mrequeéts waich were pejeet;d,— and
therefore cannot tell if it had already rejected some
particulanrféquegt. Then, if the remote access onproller
‘has already rejected thé'request and the reply'ﬁ§;$105t, the
‘request will be repeated and processed as if it had not beén
received.. When the watchman has finished its procépsing for
\\ 5 ~a particular pfocess it resets ' the time—oét %or that
!

’ brogess's link.,'] (

' . ™

' In the case where the process descriptor in the same
-~

. .
station as the process, shows that no request is pending for

that broeess,.then eitherighe request message or the. reply

L] ¢ *
message was lost, Ho r, the watchman cannot conclude

which message was lost, since it does not know which file

was hequested.{.Then\ the watchman sends a megsage with an
!

**appropriate error;code, via the MSM, to the’ proeess." On

- receipt, of ' this 2Fssage, the process reissues its file

«

'fccess reduest; If the request has already been granted, the
access controller will reply that the. file is already‘ owned
: _ 4

by the -requestiné process. Otherwise, the request is

st . .
processed in the.usual fashion. - N : \

iy

Va

2

6.3.2 The File Watchman

The file watchman is a program which requires close

co-operation with both the Message Switching Mechanism and

the File Access Mechanism (FAM). Thus, we postulate an ,

"zintérface for the File Access Mechanism, which exhib%tq the

Ie

I

i

usual characteristics of the FAM interface, but with a

eommun{cation‘liﬁk to the watchman. -This interface also

records the tlme End origin of all read/write requests which

it receives. Furbher, this interface has a time-out facility

yhich invokes the filé watchman whenever an ailocatedvlocal

file has n;t been read or written to in Jlonger than some
| P e .

specified time. ’

Whenever hthe file watchman is invoked, it determinés-

whether khe particular fife; whose allocéfion it is

B
e o M

examining, 1is ind%finitely allocated. This igytpe case if

the process has released the file, but some error has caused

the file to remain- allocgted to the process. The file

-

watchman learns from the FAM interface which proceés owns

.the file. The: watchman then determines from the access

controller in ‘the station in’ which that process runs, the °
status of the process. If no process descriptor exisbk for,*‘

" that pro®ss or its descriptor does not show that file as

owneh by the . process, tWen the file Es 1ndef1nite1y
allocated. Then the file watchman éendéla "file reléése"
message to the file's access controller. The filg is then
,free @o be.re-allocqted; if, however, the process descriptor

shows that the file is owned“by that process, then no error

. .
N / ' ’ £
. .

R ———

- -7 S TR IR T e TN
’ page 76 .
, i f\)
i
-~/

exists. In this case the watchman instructs the FAM

-

interface to reset the time of last access$to or last

sinspeetion of that file, to the current time.

The usefulness of the watchman mechanism £an - be

measured with regard to a particular distributed system. The

high coah_in processing and network traffic overheadlmay not

be jmstiffed by the service effered, especially if resilient

/ protocols exist in the Message Switching Mechanism which
minimise communication errors. : A ‘fﬁf
X P
) e 6.4 Corrupt Files o

“ . ' <, o

N

When theAFile Access Mechanisp attemps to read or writei
portions o} a file on behalf of ; ”érocess, it may detect
that the medjum on which the file is stored is damaged so as
to cause physical read or write ernors. We describe a file

- in this conditibn as a "physiball& corrupt fiLe": When'ia
‘ My Lo e .
y . user process references a file, it mayxdetect that the file

contains invalid data which are inconsistent within the file
"itself or inconsistent with data .from another source. We
» . ‘
refer to a. file in this condition as a Plggigally cerrUpt"
file. - - ool
. : ' “ Ll - / . .,‘
T ' o ‘\ ' ; . * ’.\".
‘Described below is a framework for ﬁhe kecovery of
. files _which have been qorrupted We' assume the existehce of e
e a process, which we call the repairﬁan, in each station of

I - . ¢

the network. A cor upt file is allocated to- the repairman .

uhile it is being rec vered The ﬁechanism of the nepairman ,

y

™ - i+ e st e o
- - s .

page 77

‘148 not of 4interest here. In fact, it may not always be
possible to recover a file automatically, and therefore,.the
recovery may require some-manual intervention by a ghuman

operator,

* ,
The repairman 1is allocated a file which needs to be

recovered, and releases~ii when the récovery is complete. In
this way, the data structures, W-graph and file queue which
concern the corrupt file may be maintained in the usual

fashion. : . e
ﬂ \

'In the case of a physically corrupt ~file, “the FilJ
Access Mecnanism returns an error code to the user process -
when it-detects ‘the file to be corrupt. The‘process releases

the file immedlately by sending uthe access controller a., -°

release message which 1ndicates that the file is corrupt.

“When the file's access éontroller receives the release

messéké, it° rejects the requests of all ‘those’ ‘processes

-

which aré currently waiting for ¢ the corrupt file. This

effechiyely deletes thed file I predecessor and immediate

predecessor lists. The access controller then 1nvokes the

'repairmpn and allocates the flle to, it. Any requests for the /

file which are received while it |is allocated to the

oL repairmén,u are also rejected. The rejection meSsage“

indicates that the file is under repair. A process may wish,

nevertheless;' to wait for the file. If so, it then issues a

N

special. ‘access reduest. ‘The special access request 1is s
" processed in . exéctly the rsape5 way as an ordinary access
request for a file/whicﬁ is not currently free.

te
A

R . . .
. a . -
. w . : ‘
. *
.
s N Y P
o ey ae v o . Bt tnr i i e e (B T W g
! . . R

f “ . N
. e i B
‘ * 2 EY 3
\ Lo Lt o YA e . &

Q1n‘t.he W-graph which is npt an end‘node, indicat}ng-that the

, ; \ v, page T8
In the case where a file is .logically corrupt, the
process which detects this condition, reports it to the

access controller. However, the condition may be detected in

) some manudl processing of output data, rather than durink- o

the exicutign, of -a program. In this case a process may be
run whosg sole function 1is to report that the file 1is
corrupt’, In,'éither case, the access controller rejects all
QFnding requests for the file, invokes §he repairman and
allocates the file to it. New access requésts for that file

are handled as described above.

A process can detect that a file is“corruthOnly while

‘it is accessing that file. This means that the file is’

either not in the wigraph,‘;f no other process has requested

it, or it is an end node in the W-graph. Thus, removing the

file from the possession of that prodesg and ailocating it

,'tq the Fepai:man does not involve ! W-graph manipulation,

since the file has no sugceSsor‘in the graph.

©
I |

However,. as noted above, a corrupt file can be detected -
by procﬁssing other than that of the user process to which-~

the file is-allocated. In this case, the file may be a node

“\broceps which owns the file'is suspended. Thén, the file is

\
not‘removed from the bossesrion“of the pr;cess until that
process has been resumed. Aggin,‘\;hé aLlocgtién'of-thé
corrupt. file to the "repairman" does not reqﬁire W-graph
manipulation, since 1t is not removed from the possession of -

3

the process yntil 1t becomes an end node.

U

_page T9
e |

The process which owns the file when its corrupt state

is detected may wish to have access to the file again as

soon as it 1is recoyered. When the process is informed or

i
itself detects that the file is corrupt, it sends a special

‘?ccess request for that file along with the corrupt file

<;pelease message, to the access controller. Then its request

is placed at tﬁe head of the queue for that file, and the

-

process is allocated the file as soon as it is recovered.

When the recovery of the corrupt file has been

completed, the repairman releases the file. On receipt of

!

the file release message, the access controller résumes

normal functioning, with respect to that file, and allocates
it according to the first entry on the queue. However, if
the repairmanicannot completely recover the file without
some manual interventi&n,qit inforhs the access controller
of this fact. Because the time it takes a wuser os. systqms
programﬁer to recover such a file is indeterminabie, e
access controller-rejects~all pending and future requests

for that file with a suitable rejection messag§+_inc1udfng

the special requests introduced aone, Normal functioning

for that file is resumed when ihe repairman informs the

access controller that the file has been recovered.

. l

6.5 Break-up of the Network

Faults may occur in the computer network ﬁélch causelit

,to break into two or more distinet™ parts. In a

a

v

seographically distrib:tig,wnetwork faulty communicati ns

R I T

-

page 80

equipment could isolate one or more subnetworks from the
remainder of the network,.éffectively breaking the network
into two or more subﬁetworks. Each ;subngtwork would then
regard the rest of the network as being unavailable. A\
subnetwork'cquld consist of only one sﬁation. Stations 1in
thé nétwork: could aiso become unavailable if the access
controller in:the station ceased to fugction correctly, or
if there was a failure of some otﬁer vita; cgg;onent of .the
station,. | -
2 ‘ 4
. Farlts in communication equipment may occur wpich do’
not cause the computér network to break into twp'or;more
distinct parts. in such a-\case an underlying _recovery
mechanism can take advantage ;f fhe structure éf the hetwor;\'
to rerou%e messages which are normally routed thrq&gh the
equipment which 1is now faulty. Such cases are not of

interest here. We consider only those cases which result in

the break-up of the net.Jork. '

When an access controller discovers that it can no
longer ‘communicate' with aﬁothér accéss contro}lef in a
remote station, it assumes that tha; acceés controller and
all fthe files stored at that remate station are no longer'
available. It must tﬁeh alter its data structures to reflect
thié fac%. This involves infdrming any lpcal process which
owns or 1is walting for one of the unavailable files, and ﬁ@
reconstructing the local W-graph data structures which make

! { .
reference to- .any of these files. “Moreover, it must

restyucture‘the,queugs for its own local files .so0 that it

»

3
, .
kA £ st s ¢ P e

“ .

- ' . ' ' page 81

does not allocate .one of fhem to a process in the same

L / :
Lo station as an unavailable access cogjyoller. .

When an access centroller first detects a fault in the
network, it checks th; availability of the other access
. coptrollers to determine the extent of the failure. Then it
brgadcasts a "network recovery" message to. the access

controllers in the network stations which are ’stiii ’

available. Every access controller which recelves this
oadcast message or detects the fault for ';tSelf, first
broadcasts a "network recovery” message 1if it has not
. .akready done so, and performs the reeorery routine‘deséribed
belpw. If the apcess 'contrpller disco;ers tnat some

subnetwork of moée‘than one station has hecome unavailable,: -

theg broadcast message and subsequent data structure recovery ')

pertain to all the unavailable access controllers}

-

The access contreller first flags, in its global file <

-

Jirectory,j all those files which have become unavailable to
itr. It then rejects any future requests for an unavailable
file with an appropriate rejectLon message. Any process in

==f—’//%ﬁe*3am§]station as the access coptroller which has a

k) . A

L pending request £hr one of the,unavailable files also has

+

o 1ts request rejected Any process which owns one of the

- unavailable remote files continues to use it and release it ‘

L. if informed by the File Access 'Mebhanisn' that 1t \oan ne
~ longer gain access to‘that,file; B N RN 2
. \ : . ‘ ‘ i

-The access controller reorders the gueues for its local

H

,
.
- . s s e \m

page 82

I3
u

files, so that all requests from processes in the remote
?ystationa :here the access.controller is no longer available,
are at th¢4ta1i -end; of the queues.' These entries are
flagged so that the file is_not allocated to one of tho;e
ﬁemote . entries as loné as the co:respondihg access
controller remains unavailable. Any new request which .ds put

on a file queue 1§\ehtered ahead of such flagg@d'entries.

If @.'local file is allocated to a process in the same
station as an uﬁavailable‘access controller, it is removeq
from the possession of thét process. This is done because
the remote process cannot signal that it 'has ‘éeleased the

file, as long és~ its own access controller remains

unavailable. : - Lo

To rgcgver its W-graph var\‘,iabl‘e“s’,_l the access controller
removeq,?rom the immediate predecessor lists and 1&mediate
succéssor pointers of its owh local f%;es, any reference to
theseé unavaildble f;hes. It must also remove from each of
it§ predecessor. lists any sub-component Q;Abhelw-graph which
has one of the unavailable files.t@s its root and_is an
immediate predecessor oﬁione of‘its local fiiles. This “is
'because the.reméVal of an immgdiaté pﬁehecessor node breaks
off that Subcompénent Ar the W-graph of which that ﬁode was

a root. Effectively, the edge emanating from this node, is

removed from the W-graph by the error which caused the’
~ i - Y \ .

EIRY
break-up of the network. ™ -~

-

Ca%

The removal of this edge from the W-graph is HEflé%%ed

~ -

eap

v K

page §3

' .in the variable lists in a similar fashion to the deadlock
recovery described' in section 3.9.’ 'l'he access controller
flags as invalid any predecessor list'whiach ¢dontains one of \
the unavailable files. It then rebuilds its immediatle

LN
C” predecessor lists by deleting from thenm any reference to the

, : e\.
un?vailable files. The acéess controller then rebuﬁds the

predecessor list. which is flaggeg as invalid, only when it

requires it for - file request or release processing or when

it has beeg requested by some remote access controller.

.

The access controller - rebuilde a predecessor 1list by

first setting it to empty (null). it then gnters all its
immediate predecessors into that 1list. .Subsequentwly,\it

, forms the union of each of its immediate‘ predecessors and‘
) e auguments the list which is being rebuilt, with this union.
However, if a predeceseor Iist of an 1immediate predecessor

a is flagged as invalid, the. access controller must rebuild

12N
-

this list before it can be used in the un;ion. Hencg, the

T] [}

4 nebuil‘ding of the predecessor lists 1s a recursive process.“

a
¢

If the. eccess controller requires a bredecessor list

'for its recovery processing, which is ip a remote’ station,
it requests that list only if it has already reeeived a
; broadcast "network recovery" m:ssage from the - access
controller in. that rem&te station.\ Otherwise it continues

" the recovery without that 1list. Any deadlock which may occur

‘as a result of this action will be detected afid recovered in

. the usual ‘fashion ' . <

e e e 1 o

. bage 84

When a predecessor 1list has been rebuilt, the invalid-

flag 1is " removed. A rébuilt predecesSoE“iist is propagated

along the éonnected component of the W-graph, &s 1n the

deaglock reéovqry. - If a bredecessor list, which is flagged
as jnvalid, is to be augmented by é propagated list, ‘it 1is
first set to null, It‘is‘then augmented with the propagated
l1ist. This effectively .removes the -unavailable .files from
the predecessor 1ist,’éince any propagatioa will be either a
result of the recovery described above or the result of

introducing a new edge. . -

-~
N

If the access controller suspends the processing of

requests which would require propagation of an invalid.
<t 1

prehecessér list, then any new edge will have 5 valid
propagated predecessor lisi assogiated with it. The flag is
removed from a predecessor list which has been recovered or

e

has receivéd a propagation.

1

\

When™ this operapion has been compleped, the W-graph no
longer contains any of the unavailable files. The access
controller _then‘rejeqts any pending requests.from its local
péocesSes for any of theéé files. It also. informs any local
process which currently owns one of these Yiles, -that %t is

-~ .
descriptor ~€o reflect the release of this file, or the
1 \ * o .

no Jongeg&iizflable and updates the 4corresponding process

rejection‘of the request. ,Any further requests :for such

unavailable files are rejected with ap appropriate message.-
‘ ' § . .

If the network breaks into two or more subnetworks as a

Al
.
b) | - . .
v

et e

sy page 85~

-

| {
result of a communications fault, each subnetwork degects ‘

that the remainder of the network is. no longer available.

N

When the abowe recovery routine -has been completed, a . -

- -

\\ subnetwork continues processihg as usual; except that

certain remote files are not available. When the fault has

Moy

{ been corrected and the subnetworks reconnected, the ,access

7/

i controller delétgs the unavailable flags from the entries in™

ihe global file directory and file queues. Processing then 7

continues as usual. (

.

/ .xPy "file granted" meqﬁage which 1is received by an
access SontrotTer\ for a process which no longer waits\(‘\or~ %
%—0’/) ’|/

that Pemote file, is returned with a suitable error code t&

. , - . {
: the remote access contrq;igr which issued it. The file is A

) then free to be reallocated. K , '
. }' i _‘r_ 1

a

. 6.6 Cérrupt Internai Variables in the Access Controller

. it e, , .)
, ’ + The process descriptor, the file deseriptor, . the

‘ predecessor 1list, the' immediate predecessor list and.-the .,

- ? b

immediate sucessor pointer are the variables maintaineg/ by . |
- //" ‘ i
the access controller. The.redundancy of the infofmgtion in

¥ . the lists of these variables may be uséﬁgto\check them for . \‘

~

validity.m Described below 1is a dcheme by which the access

- controller may check the wvalidity of |its Qariables; and
. . ')) ,)‘
reconstruct them, should .,a yalfdity check shpow them to be .

.

\1‘
' An-access controller performs a validity check on its

q‘ , . / R /) ,

corrupt. » : / , - ‘

) C S .
I . : . .. page 86-

variable 1ists if it is given some indication that ‘these
vaﬁiables may be corrupt.'If\ the -access controller‘ sends
messages which contain corrupt data or sends messages to the -

wrong remote access controller, then the remote access

- sy e

controllers will return these mesﬁages with suitable error
codes. When.. the access controller recelives these erroneous
messages back, -and ' when, - it. cannot find another obvious.< . . |

3 * ° "1
»

correction . for them, it will perform the validity check on~ . - S

its variable lists. -)

)) : <, 'J"
This scheme is described in two parts: the first part

i - ‘checks the validity of both the process and file descriptorsw
njpovers them 1if necessary;‘ the second part 1is the

\ validity check and recovery for those ‘variables which

describe | the thraph' the predecessor and immediate_

] . ; r,
—_ predecessor lists and immediate sucessor pointer. R

B ' Because of th# assumed high locality of referen e of
. -
| ‘the data base, the majority of the variables maintained by -

‘ B an access controller will refer to processes and files which

"are local to its own’ station. Then the access controller can
oy .

checﬁ’tﬁe validity of its own variables withouﬂ' requiring

2 a

information from other access control%srsﬁ L S

R | v . - .
The first level vaﬁ@%ity check by the access controller

on its variables is a syntax check. An entry in one of the

variable lists must conform to /aﬂj particular ‘ syntax,. .
e
. otherwise the -variable list is at least partially corrupt.

+ For example, file names and procesa names, by convention, -

— [NV S

h : ‘'should - "'begin with a particular series of alphabetic

characters. File nameg\gan be recovered from the. global file -
hirectory if they afq $§ntacticaily 1ncorréé£.< There is,/ *
e - however, no such wayof reéovqring the process names if they’

« © are 1incorrect. “This problem cani be overcome, if, among

- ~

access'controllefs,.processes‘are always referred to by ‘the

index of their processvdescriptor in thé same station as the . ?“L
“process. ' ‘ S ‘
. . : o |
The next lgvel validity chee¥ compares the‘procéés and - oo

file descriptos tables. if a process descriptor indicates J
that the process owns a local file, then .that file's -
\§\\\) descﬁipppr should indicate that it is owned by that process.
. Otherwise, at least one of the ., variables f{s \corrupt. The
i : . validity of the file descriptor can be checkeég}urther if

.) the access cdntr&iler determines from the Filev Acceéé
£ . Mechanism, to which prdéess the file is allocated. If the
\ ' P process describtor shows that the prqceﬁé" has:L requestgd a

o | .
local file, then the corresponding fil¢ queue should contain
~N . ‘ - -

} 1 - an entry, for that request.
. . J -

} . . If the filgﬁdf:zriptor list pr?QeS to be corrupt, the
, ’ “ec
:

.access contéoller\r structs it as f&llows: from the File

o

P .4:\\\\ﬁccess Mechanism the access controller obtains information

; . on which of its local’ files are free, which are allocated,

~

- < .~ and " to what‘prdéesses they are allocated. This information

5 is sufficient to reconstruct the cdhplete file descriptor "

. .
#ﬂ - Jdist, except for the pointers to the head of the queues. . '

o

s

determines which remote :-files are-owned by t process by'..

o ' page-88

. \ ;
The file queue may be recbvered from the entries in the

-

" process descriptor table which _show that the progesQ is

waiting for a local file. If the process descbiptof table is

. beleived to be corrupt, then the queues are reconstructed

from information from the remote access controllers in which
remote processes are waiting for 1local files. Locai
processes are resumed with a suitable message so that: they " |

reiissue their requésts. Thq\requesés»are then“reprocessed.

The access controller reconstructs a process descriptor
only when it requires that descriptor for some proéessing.

This is done to avoid reconstructing a descriptor which is
. ' v

‘then deleted because of ‘the termination of the processz'To

facilitate this method of reconstruction,///the access

-

controller flags its.procéss descriptors as invalid, when it

discovers the process desdriiggg/tablé is corrupt.

; \
Yhen the access controller receives a file access

~

fequest from a (ﬁrocess whose descriptor 1s .flagged as -

invalid, it checks the file descriptor 1list tb:determine

'which’ local files are owned by the process,. It - then /f ‘

A

requesting the information from the remote access

controllers. Once the acce#ss controller has determined which®
: | , 5
fites the process owns, the request can be processed in the,

ushél way. The flag 1is then Femoved, from the process

descriptor. -

\ . e

When the access controller receiveb° a file release

\ .) }

«
3

- a release from ‘such.a process can have 40 adverse effect. In

&
this casex the flag is not removed, since the process may

}} then at least one of the variables is corrupt.

« page 89 '

essage from a process whose . descriptor ‘isf flagged as) ‘ ‘

inv;Iid\\\it processes the release in the usual way. As long ..
- % ‘ |
as a proeess only releases a file which it owns, processing 7~k

requeSﬁ-some file in the'future. The granting of file
request which had been pending is also processed. in the
usual Gay. Agaio, the flag 1is not removed. }he flag 1is

‘removed and the descriptor deleted when 'a process

- -

L3

terminates, -
o o~ .

- There are }elatfonships between the Qériaoles which

=~

describe the ’w-graph * which can ‘b ‘used b? tﬁe\acceés
controllep to check their validity. Th§§

e relationships are

as follows: for any file the immediate predecessor list must

AN

~

be a suoset of the predecessor list. If the file's immediate

W

. sucessor pointer' is not empty then the ‘file should be a
~

member of both the -predécessor and immediate predecessor

&

lists of its immediate sucessor. If these relationships do
not exist between the variables which describe

he. W-graph,

"~
’

! c ' '
If the access controller detects that its W-graph

(

' variabiles are corrupt, it reconstructs_them-as follows: it

AN

first flags 511 the W-graph variables as being invalid. New
edges in the w-graph emanate from the end nodes of connected
components, and the introduction of new edges may result in

a loop in the graph. However, the aacdss controller cannot
o " . ’

use the invalid predecessor lists., AA&ApAAAAAfOf. deadlock

v
! ‘ -

“

r . : .
predecessor lists are requested as required.

A ”
. N) . T 2
- T . ° . ‘. C 4
. - ~
) . . \ - page 90
-~ &
. . vy
» ‘. e ‘ o .
' s ' .

. checking' and hence, allows new edges into the graph without

"the usual deadlock cheek Any loop which may form as a

q .

result of this will be detected and broken in the usual wa.‘

/

« .

13

Pred!cesSor list propagation _.follows the graph

* component described . by the liet of immediate sucessor,

pointers: " If sqch a- pointer is invalid, it must be reeet

Y before the propagation can continue. Whenever the accese

controller receives/?fpreaecessor list propagation or starts

one itself it . recreates any part of the W—graph variables

. which are flegged as invalid, as iv - prqcesses the
» ' - . h

propaéation. i: ' o : - -
. s ﬁ L

- R . * ~

econstruct an - invalid predecessor list ehd

. .] .
them to null.\ The immediateé ‘predecessor is rebuilt by
forming "a list &f files owned by the processes which have a

requéht on the que\ for the'file whose W-grpah vanigbles

‘are being "reconstructed This {nformation is obtained&fﬁom

the process descriptor table. The predecessor 1list is’-then

.

rebuilt in the fashion described in. section 6.5 above.

L) ,
However, in this case all remote access controllers %re

regarded as having correct predecessor 1ists and these.-

A file's immédiate sucessor pointer is recreated by
detérmining from the process descriptor table, which file

2

was requested by the pnocess which owns the fjile whose

Wegraph variableaA are beigg constructed. The reconsbructéd

\ »
’

] ‘ ¢ ' . .)

(b ek Wk MDA o b, I Ay s A aTal 8w B, e A N e A T W«W-' e -

" -

@ S O Aa——— T ST

. N . ~ page 91

o - .
¥ - B \ . . - . [
. . N - Ge N , ‘ 3 .Y

.
N ' -
' v \

4

succesSq;.,The invalid flag is removed when a file&sﬂq-gfaph
~ C
;?“ wariablesﬁhave been reconstructed. ' v -

.

LS

v . .

predecessor propagation is recedved.’ Hénce, an. deadiock
Y -

detected and broken in: the usual way. f T

* . The 'u§u§1 deadlock check. is performed wheneveff a

which formed while deadlock checking wu; suspendedr is

predecesgor list’ ise”then propagated to this . imﬁediaté ‘

-l .) ’

. N . .

. - . \ ~ "
. « : & - \ [.

-, N LI - » R P} ~ R

I3

©» CHAPTER T o R

Y .Comparison of Thrée Access Control AL§6r1thms .

Fa . . . ¢ . {
» . : B * N v '

] .

In this -chapter we compare three accesg .control

_ algorithms op the bas¥s of the message traffic, overhead

which they' incur, ‘'‘and their CPU time and -storage: ’

. ‘i . A ' 3 — . . ~ _ .
'requirements.‘The three accegss control .algorithms which we’ -

compare. are the deadlock detectien and avoidance algorithm

described in chapter 3,. the complete ~dbadlock avoidanpe

algorithm, ~desc‘rfbed "in chapter lu, and the distributed
: access eontrol algqrithm described by Mahmoud -and Riordod in
| {391 'and éuol,lghesefalgprithms are~ref rred to as elgoritpqi:"
.1, slgorithn II and algoritha III re@it}!eiy. o

¢ . o &~

a

o

. e : ‘ Cot
7.1 Outlines of the Algorithms e ® T . k
q’)’

. . X - S -
Below we present an outl1nekgf__the__comginedrgdead%xxﬁr-—~*~“—

’

_detection and avoidance algorithm, describedrinAchapter'3 R
. . ‘ .
above. We also present an odt}ine of the Complete Deadlnck . .

-

Avoidance Algoritﬁm’ described in chapter H above.

lII respectively. It should be\ noted that the algorﬂfhms.

program -or programs.. Rather, they describe the o'der ‘ofa> ; .37‘

Ts

events in a distributed Qatabase system under ‘panticular

page 93
N

s, ! LN In their discussion’ of access control, Mahmoud.ar‘xd"'
s ’ _4Riordon [39 40] define two classes oﬁi‘ processes- . . .
Class 1: Processes which do not own f%les.\s whose reque:t 13\"0,
9 for' a&single fi.le and t.hat file is not a multiple copy f‘ile. |
b '.Class 2: Processes .which already own at least one ﬁile
and/or whose access request ‘is a multiple f‘ile request or a
A . . request f‘or /a multiple copy f‘ile. .

R 4 “a
Clas;sw and 2 are mutually exclusive. In the case of

\q f q}gorithms I and 1I, multipleg file requests % and multiple' ,
", " copies of files do not oeccur. - R -
_ The fpllowing notation ‘is used’ in the outli\ne'of the
algorithmslz . ' oo
a R AC '~ The access controller in ‘tlll'e local statilon
'RAC_~ The .a‘c‘cess conbrqller of the\rem.ote’ stat.ion, .
J ' SAC - If a class,?2 process requests .acc;.ess to a file which
/"" ' c cannot: be ,grant‘efd ‘fv‘imme(ﬁate’lby, then "that file is a
-] pqde in the wéit- graph. The pb.de is then part df a ;
:_\,,, ‘ '. 99nnectéd component, which will have an enc nodées Thé
) e a&zess controller in the same~ station aé fhe file .
| - ", -unleh 1s that'end node;-is ref‘erred to as SAC.” . .
= ’ PL - Predecessor List . T -
. * . IPL - Immediate Predecessor List , .
’ I8 ;'Immediate Meessor Pointer S N ,\— . -
P- ft Pr‘efix denoting ’?-—gra,ph s%rucj)re e.g.P—\PLTS\LQe\ L
'agraph.pi*edtecesso:'list . }‘, -, Q ‘ // - ‘
. : R ’ & ,
“ %ﬁ/ , e , ' L -
- ?’;' . , ’ P o

. Loeq, File Request:
s Prodess sends file request to AC
/ if file is.free then \

L . begin : ' I
. . - ends "file granteu" massage to prooess, .
T : “AC ates prdcess desnriptor and file descriptor
e, end . '

else begin - | e

-T—7'IE£33£ains PL of files oyned by process o _
© . AC. performs deadlock check; i’
» o {this oheck is trivial if the proeess owns no files}
= . . , if deadlock is false then - S e

»

e begin
b - . ' AT updates’ IS of files- owned by process,_
- AC starts PL prapagation; 6 ‘ , }
¢ AC queues the request L . _ ‘
A ‘ end

. , else AC sends “requeé% rejected" messag& to proeess-:ég”
- end ‘ ’

- . - ¢ . . r . .

v -

R
Ren TPV R 2
Mgl %

1 N .

'Remﬁfe File’ ﬁéquest' . LP ¢

a o : -Proc
' ERN AC o

. o AC s
B , frri
ot ' ift

- . ~

S

]

3
F
> -
, /
: -
' . -
N .
f
.

. - else

ess sends file request to AC' «

btainq PL of local files owned by proaess
ends "file request" to RAC A

le rgquest“ message includes _PL of local files and list

of files owned by proceas} ‘.

he file is free'then . N 4
bégin .~

*RAC sends’' "file granted" message to AC,
RAC updates precess and file descriptors;
"AC sends "file granteo" message to process,
AC updates process descripteer e

end | ; - ’ ¢
begin - ’ .
RAC obtains PL’ of.files owned‘by process except: files
local to process; . N
{PLs of files-local to process have Been sent in the
*®file requést" . messagé} ’
RAC performs deadlock check; . 3 ,
if deadlock is false then " . . -
begin " L :
RAC updates IS of files owned by procesf; -
{files owned by process may-be in any station of
the network. Updating the IS of these| files may
require messages . to remote statlons }oA . '
.« RAC starts PL propagation; . - . ’
' RAG ‘queues the requestJ ' Y.
end o,
else begin Voo ; :
 RAC sends rejectlon message to AC; . s

AC sénds r ject1on message to process ¢ -
nd ‘

{ ¢ [aamad

vet N .
K . . ~ .
B e [AP '
, R -
N “

T e - ' - ’ . : s
.

Request granted afﬁer queuing: ' :)
[AC {s 1in the same station-as the file. Prooessemay or may

L not be in a remote station.} e\//f’"'
. {there may be edges(inoident on ¢th requested file other
' than those whichr are rembved due to granting the request.} ' v

., 1f other class 2 processes ‘are waéfing for-the requested g ,
TI%; then.. L C A

q Ee in B . N i .)) \ . B . . }

‘ ~ AT obtains PL of files owned by the process;
, : AC deletes these Pls and files owned by proeess from PL e
o - of requested, fiie;’ v e
e{idelebes files 'owned by prbceséafrom IPL of requested

»

0

-~ end
else AC sets PL and IPL of requested file to null, , . .
AC sets IS of files owned by process to null; . . _ I

- AC updates file descriptor;
’ if process is in a remote station theh

¥ Spw——

begin e ' :) .)
AC sends "request granted&,pa&ggﬁe to RAC; - ‘ . .

AC updates process and file descxiptors; A X K
) - RAC sends "request granted" message to pnoeess, ‘ | -
' Q\:) ' RAC updates process descriptor R e N ;
’) end . . N T,
o el se in e .
to . Al sends "request granted“ message to process,; .
o AE updates process and -file descriptors | A " '
end , - . . -
i 2 A - ’ ’ = * ‘ °
t “ \‘ 4 . (I N ‘
’ '\‘ 4 ?
, .
v r \\E\
,/ . * i) . %‘ [- ’ _ ' . o
- ! : i
‘. . \ .
[N ‘*\ » 4 —
i s
- ~» . \ 4
’ v 5 ' \ . ’ ‘ F
! / - ' N - i
_ _‘3 ' - *, AR
n ‘ — <
. s / *J/ 2
. . ‘ ¢ - -
. - -
. / . . '
. - I e - *f;;)f
0
") ' 7 '

o . 7.1.2 Blgorithm IT (Complete Deadlock Avoidance) " ' .

Local' File Request: : . L T
., Protess sends request to 4C -
.. if file is free then . ‘ .

3

. .
'\ . i be in VAR 4 , L
“ a ¢ , AC sends "file granted" message “to process, . .
' , AC updates process and file descriptors . s
g P . end °. .

i ' els¢e Begin - ‘ | ’
i . AC shuts nodes of files owned by process' L

' AC starts search,for end node ot‘ g¢onnecte o—omponent

! . containing requested f‘ile,

: T Search ends when an AC f‘inds the end noge ‘of the

connected component which contains the requested file -
{this AC is referred to.as the SAC. AC may be.t.he _same

access controller as SAC}

while the end node is snut and request is, not rejected’

~ g R

S cla
¢
-

ao
. begin ' ' < .
| SAC obtains P~PL of filés owned by process; .
! SAC perf‘orms d eadlock check . .
) if deadlock is true - -then . .
be%in . .
/ sends reject1on message to AC’; - .
e - . \AC sends rejection message to process; *
oS AC reopens the shut . nodes owned by progess . -
S ‘ g "- end. , ’ - oo
3 else begin . “ 3 . i o
SAC updates P-I3 of files owned by process; , }
i SAC starts P-PL’ propagation; |
|

'SAC queues processing of request; 2
SAC suspends the processing "of the request;
. _ {SAC may process other” requests 6 while the
processing of this request is suspended} -~

. \ SAC resumes the processing of the request

N . when the node becomes openj;:
oo {at this point the node which has become open
N . ~ - will no longer be an end node, if the request ,
: ©_ which caused it to be shut has been placed
. ' * and still remains on the file queue}
if node is not an end node then

begin
' . SAC restarts: search for end node,

) , 1 " SAC finds end node of connected
t . ;) ‘ . " component ; '
N SR - - end s /
T : A . end - - .
s ‘ \ end '
. ' .‘

. @
BN
N,

.}"

[

!

Y%’

.
__ﬁ_;_
»

”~

] N

Fo
r 1

E
\ "

’ toif end node was found to be open then .-
p ’ - sends "end node opén" message to AC;
AC updates IS of files owned by process;
. AC reopens the shut nodes owned by process'
- AC queues the, request' T .
N 3
% P .g-g.d_ [\ () . . .
end ~ R L N
o - ’ ‘. “) - ’ /
e . .
' ~ e .
,'/ . 1.,«"{:, . P4
£ A o .
- * ¢ .o «
—_— - -'
. .
' \
V4
3 ° .]
» ey . .
¢ . - - e ..
~ . ., . ' [=
e T “.‘Lh_* .‘, A
. / o o) 17v
7 Ve ¢ ! —_ . s
-
N & -
N ~ o
o« /) - . L
N\ g
- @ v
' f ‘ A
. - ’ .
.q) ‘
' ’
. , {) o
. iy
v - - 4 f
& X
- P ~ \ :
. .
4 LS ¥
n . 4 oy - .
L f
[- " ‘Q" ,
o re ' , .;I *
Q- LN . \
; 1. -
. -»
. R °) o

BN

'

Remot

e File Request:

.AC 8
» owned
if fi

Process sends .request:to AT v ’
message (1neludihg 1ist’ of files

ends ° "file request"
by process) to RAC .
le.is free then

n ¥

¢
b

SAC starts PéPt*propagation,
SAC qu
SAC su
{SAC may . process

es processing of request;

other requests

proeessing of this' request is suspended}

i
~ I

. -k
egin
RIE pdates proeess and file descriptors" N
ﬁ: updates process descriptor;
C sends "file.granted " mes3age to ‘AC;
.'AC sends "file granteu" message to process
.~ .. .end R . . J : .
else b eéfh ' ' S {
o huts nodes of files owned by process; - .
: RAC starts search for end node of connected component
containing requested file, .)
. Search ends when an -AC nds. the end node of the
t _ connected component which contains the requested file;
{This SAC may be the same access cohtroller as RAC} o
while the end node is shut and request is not rejected
0 o .
‘ =N '
tains P-PL of flles ownad by process' . -
. SAC performs deadloék check;
-1f deadlock is true then’
begin
¢ SAC sends "request reJected" message to RAC;
) RAC sends rejection message to AC; '
- » e AC sends rejection message to process;
. : * AC reopens thne shgh des owned by proeess
s end
. else ET'§15~ ~
' — pdates P-IS of files owned by iprocess;

ends the prdcessing of the request;

while the

-SAC resumes the

pnocessing
when the node becomes, open;
{at this point the node which has become open

of the request

~will no 'longer be.an end node, if the request

whigh caused it to be shut has been placed
and still remains on the file queue}
1f node is not an end _node then o

begin
SK& restarts. search for end node;
" SAC finds end node of connected
N compon nt .
end

T S o ig'end node was found to be open then

~ begin "
. SAC Sends "end node open" message to AC;) ‘
\\ AC updates IS of files owned by process; coo

S N “ .
». AC reopens the .shut nodes owned by process;
v AC queues the request . '
end ° T ~
———— - M .
~ “end
. ——
, .
A , .
-1)
.
R -
- (R
. r
.
o . co 6 .
3 / . .
° - A
. - 3 °
E .
.) &
, i . . o \
. . e . -
y ' g . =
p ' o ’
'
L A3 ~ .
) .
¥ i B e - Yy .,
a L4 ' ¢ -
. tr < ” v, -
'] - ~ \ ~ -~
- — v - S
v . .
. o 1 , i .)
P . “ s ' 4 N
. '
) i Ve ¢ , s M . ¢
\ Vo . » c - \
- . 5 ~ -
\‘ ? - - € N * v - A
by . R
. , - A '3 Y . N
. ® IS Iy " ‘s
:
. [)
L . -
4 . ” ») .
'/‘) Y r ' ° ' (-
L] . ‘ i [y i
;o O ' . . i Yo
\ -
’ /r i o by ’ “(
» 4 3 »
. . . _ i
. . '- v‘ - + ‘
’ - - a »
‘ - K n
'<
. . 4 - :
. 2
.
¢ \ T ~ ~ . - -
- o t W - v
. A
‘ . 3
) 0 " N &
- N . © \ '. . -— o
s - N
- [y N .
’ [- 7t
. % Lt
€ B . ®
.] o
- » ’
o . -~ 1
. \' K Yo .) .
, . . 2 s =%
r ¢ e
N P . . .
.
- . + ’
L \ , =
. . J
> B -~ - had * '.
: RN
R * » X o - oy g' .
: 4 [’ v, Tl L
3, o
.l .
;
v s “ 1 At '
c ‘' A .
s 0 ' ot .
- k4 o P 4
-~ — - e
. e R .-
'. ; . v / Vg M
.

§ ' o R R page 101

M'\
o ‘
7 1. 3 The Mahmoud and Riordon Distributed Access Control o
Algorithm j'“ ' o
- ‘efﬁz” Below " we present a'“¢escription of the Distributed

5‘_0- Access Control Algorithm described by Mahmoud and Riordon -
[39,"0]. We refer to this algorithm as Algorithm ITI. The

d;vision of ‘the requesting proceéses into class 1 and class

‘ ?2 also applies in this algorithm. Mahmoud "and Riordon
’ include in their discussion, files with multiple cépies< in .
" various stations\of the network. Their algorithm also alléws // '

. processes ‘t8 feque;t more than one file in a single request

, message} .
| - The access ‘controller, called ‘the Distributed Database % \
E » | < ‘ ! . - " ¢
b ' Management ' Facility (DDBMF), runs in each station of the ‘

network. A process sends its access requeﬁt, which ¢an be) » ’
. , f N = , '
for one or more files, to the DDBMF in‘its own station. When = -
- ' . '
. - - . o> “ .
a process makes a flle access request, it enters a wait -

state until sueh time as all the files it has requested .are

" avallable -to it. A request .for a remote file is sent by the

local DDBMF, to the DDBMF in the remote station where the
“file is store?. 'If the file %s free, it 1is granted
immediétely. When a DDBMF re elves ‘a request for a file
5 which {is not free,-it takes into account the class pf the \),4

-

- requesting process, If “the processl‘is 'of class 1, the
request is K6 placed on the appféﬁriate file queue. If the
process belongs to class 2, ;the”-request is 'placed on a

special queue Eallpd the pre-test queue. - S

4 v e s e s e s e e - . - T e e o
- . '

el

”J
The DDBMF acts on its pre-test queue only at Specific
times, which are separated by intervals, of equal 1ength At

- X page 102 -

{

the end of such an 1nterval,.a synchrqnized clock in each
\ .

~- N
§tatiow(/6; network generates a signal\for the g DDBMF 1in
that station. Then, every DDB&F broadcaste a status message
concerning its own files and pre-test queue’to each of the
other DDBMFs 1in'the network. Thud, if there are N DDEMFs,’

.each one broadcasts and receives Nc 1 status messages. From

these status ‘messages, ‘each DDBMF: upd ates. its global file

dﬁeue information and cdnstructs a global pre-test queue,

This queue 1is then ordered ‘according to. some predefined

. static scheme, so.that it is identical in every DDBMF..
 Stptie, soheme, o that 1% te
The global pre-test quéue contains all " the requests
“\issued - in - the previous time-interval which must be checked
for deadlock, Each DDBMF in the netwdrk then performs the
same deadlock test on all Wie entries in the global pre-test
queues. The deadlock detection scheme uses the graph

?epresenta%ion and deadlock detection algorithm of Mur phy
~[501s - R o) - -

OIf the deadlock check shows that the rfquest may be

" queued, it is placed on the approprlate file queue. If 5
reqdest is rejected, however, the regquesting proceesﬁmust
release all the files which it currently owns and request
them again in parallel with the QEH request. The DDBMF
acﬁieves this by:rre-empting the process s current files and
placing all lts equests at the tail end of the eppropriate

queues. It then sends, a message informing the process that

this has been done. - : : //’ oo

o

- p On receipt‘of such. ‘a rejection‘-meésaggf*the process ' ‘

]

leavés the wait séate; If it does not wish to wait for all,

*9

files to become free again, it informs the DDBMF of this. ‘ |
The DDBMF then removes all its requests from the queues.' ' . -

- W Otherwise, the précess returns to the wait state and is \

& resumed when ell its requests can be satisfied. | :
] !] - . / . {.
I‘ . ' ‘ ‘ .: .

7.2° Message Traffic Overhead in Algorithm I ° _ .

f \ 1
the algorithm I for the various cases of the processing: of . \
. ., ra .

Below we list the mességghﬁraffic overheap incurred in ‘ ..' i
' 1

1
i) file access requests. Each case is described and- two - 1

~

formulae are given for the messaée traffic overhead which it
‘incurs. The-formulae express the message traffic overhead

incurred for a local and remote file reggest respectiveiy.
’ ' ' ¥
The symbols used to express these formulae are as follows: '
2

» Nl

" RR RRt+RRy “ . !

RRt - The rehote file request meSsage between access

= . controllers -
- »

RRy - reply to remote file request between access -

t

controllers
R = Rt+Ry , . .
Rt - file request hessage .to access controller from a

process in the same station’ -

The reply to file request, sent from the access

Ry
/ N : ®
' dontroller to the process -

' ' ¢

o

I3 * i
- v
- , .
. o .
- v v - . -
- .. .
! ' . o
. .
>
. .

- -page 104
Pr -.,The ‘"predecessor 1list reéhuest" message and
corresponding reply .
Pl - The "predecessor list propégption' meséage
f .
U - The "update immediate sucessor pointerd message

UPr = The "request to update immediate successor'pointeruto

null aﬁd send predecessor 1list! gessage, and the

cq;responaiﬁg reply. ‘

B - The number of iqterwétation boundariesl on the
connected'c?mﬁonent of the .wait graph between the

-requested file and the end node of that connecped -

component
Kw = KreKfaKl N ‘
. p
Kr - The numbpr of remote stations.in which filés are owned

=

-by the requesting process.

Kl

H

1 if the requesting. process owns files in 1its own
5 station, else K1=z0

Kf -1 if the requesting process owns files in the same

H

station as thé requested file, else Kf=0. *

2 »
)

7.2.1 Local and Remote File Reguests

The message traffic overhead in algorithm I 1is as
B23

follows: v

1. The file 1s'found to be free and the'request is granted,

or the file is q}located to the "repairman" and the

v

request is rejected:

page 105

' £ . ,
2: The PGQUestfis rejeétéd due towg“p?tential deadlock:
. R+ K;*Pr o ’ / - : '
R+ RR + (Xr + Kf.)'*Pr B ' . B

\ . .
' .

3. The request is queued after a deadlock check:

o

Rt + Kr#*Pr +|Kr'U +'B*P1 -
Rt + Rgt'+ (Kr‘+ Kf)*Pr + Kw*U + B¥*Pl '~ S -
§. The rEque;t is'granted after queuing; .no oéher edges wére
incident on the requested fife'é node:. ’
R + Kr#*Pr + Kr¥%y 4+ B¥*pl + Kr#*U
R+ RR + (Kr +KE)*Pr s Kw*lU + BP1 + KAy
5. The request is -granted éftgr queuing; or edges ﬁere

/

R + Kr#Pr + Kr#y 4+ B¥P1 + KrAUPr ‘ e (7.1

hd L]
-incident on the the requested file's node:

R % RR + (Kr + Kf)#Pr + Ku¥U + B*P1 + Ku*UPr (7.2) °

7.2.2 Deadlock Boss Selection and Recovery '
i

Below we present thefformulaq-fqr,the message traffic
incurred for the 3selection of a deadlock boss and the

dﬁhdlgck recovery in algorithm I. The symbols

Y

express the formulae are as follows:.

Bs - The "boss selectfgn" message

the wait graph.
N - The number of nodes in the wait graph loop

t

Ii - The number of remote Stations containing the immediate

predecessor files of node i in the loop

L——-—.‘-'__—'—xxl“;é“ 2 _LP N . N N o PR -

V/lpage 106

. b :
. \ . Ve C *

+ . . Ib '= The number of remote stations which contain files

™ g
owned .by the process whose request is rejected %P
. /s

“ order to break the deadlock, but which do nof “contain

any other file which is alsq an immediate pfedEcessoP

of the boss file. '
< N ya . . ,
Rv - The "deadlock recovery" message ') .

\ - ¢ "

B« The number of.inter-station boundaries on thé€ loop in
on Doy ‘

[

°
.

the
Pr - 'Th e

wait graph _ o

"predecessor list’ request” message and the

corresponding reply

El

a

&

The upper limit of message traffic for th® selection of ‘

. a deanock boss, is incurred, Qhen each access contrqllér

rs

which has 'a file in the deadlock, 'detects the deadlock and
jssues a boss selection message. Each message travels along

the ﬂ%@ﬁ as far as the boss, where it is destroyed. In this .-
{ .

cagse the overhead is

L3:713:Y meééages
N FE ‘,
When the boss has been selected, the recoveﬁy procegds

" around the loop starfing with the boss. The message traffic

overhead for.the déadlocklreCOVery is then

N) /) V" . ' -
Pro(IIt - Ib) + Bfl—tvj‘ ' : '
i= : . :

4

L)

The total maxifium message traffic overliead for &eadlbck

boss seiectipn and recovery is then given by s B

’

, N
Bs*Bl + Pr# (M= Ib) + B*Rv
’ i=1

-
© e Rmen v W e £ A bt

& . - . o -
f . . .

«

-
»
\ [}
]

‘ T o SR .y
.. . oo E . ypage 107 .
N > S P e .‘ - ‘ \\ ,
s) 7.3 Thg yessage'Traffiéﬂ0verhead in Algorithm II ‘
N oL » L .
| : . . Below we, 1ist the message traffic overhead incurred in -,
g Algorithm 11 ?Br the various cases of the proeessing of file a
4 ‘ ‘access requests. Fach case is d@scribed and two forhulae are \1
“given ’fo} the %Zssage traffic overhead in ‘that case. The) . '
LI .,formuL@e‘expregsithe_messhge_traffic ove{hegd inqurred,éor a !
- local and remote file réques£ rei?éctively. ihg symbql% used '
. ’ to express these formulas are as folloﬁs: R - ' '))
. o~ : : :
' = R~ - as for Algorfthm I .. . - -)
‘ 'RR - as for Algorithm I ° ' _ ‘
} a - K\Pp - The rehueg& to Shut nod@é 'if they are not already £
-) . . shut, to set P-graph immed}ate sucééssor pointers to
puli and to §en& P-graph predecessor pfsté, uénd ‘the') 1
o corresponding. reply. $
E. -‘The Peﬁi nod; réqueét" message.
?&%] Ey - The "end ﬁode found" reply messéfg) e T
g ’ ~Pd - P-graph predecessor list .propagation message n ‘ .
. ° n' - The number =<~of times- processing’ af a reguest is
) '\ suspended o ’ ‘ < . -
B - as for Algorithm I r .
v Bp -~ The number of inter-station bduridaries’ on . the
‘ ooﬁnected componéhf of the P-graph ‘between‘ the .
: . i immediate successon of 'the files owned . 5y the;
’ M requestiég process and the end nodé of that component.
. -

Bp is the .total number of boundaries for the whole of

the n suspensions. If n= 0, then, Bp= 0.

E . “ » N ° J

U;T,afas in Algorithm 'I. ' ’ ;

P-graph" message . - .

~ 1 -
,

© e AL > dean e A . ot o s 8 Y .'.

- ‘ . . . J" page108.\\

4

Up -'The "update immediate successor pointer in the -

LR VN

Kw - as for Algorithm I ‘ agw ©
Kp = Kr + Ks ++1 '
Kr' - Tﬂe number of reﬁbpe‘sbations in thch;files ére owned
| by the reqdeséing'proceés. . *{;
KL ; 1 if the requesting proéess ow?J/files in its,own'-'
) ystation, els®& K1 = 0. ¢ ¢
: . e . v . .
Ks = -1 if. the requesting process owns files in the same .
station as the end node which is shut, else Ks 0
‘ ' » . ~
7.5.1 Local‘and Remdte File ﬁeguests - ‘ ‘-
They’mésséée tr;ffic overhead in , Algorithm II"is‘as
follows: . ’ ' \ - r
1ﬂ The file is fo&nd ﬁb be free and the request is granted:
. R ” o r
R + RR - T:j> ‘ ' R
.2..The redugst is rejected dge tolpotential‘deadlocki.’\ .
R+ Kp*Pp + BAE +.By . - - , : \
R + RR + Kp*Pp + BAE + Ey - | oo /
3 ' The end .node was found to be open ”aﬁd the. requést was
‘queued: Sy
- + Rt + Kp*Pp +.B*E + Ey + URr " ‘ . ,
" RE + RRE + Kp*Pp + BYE + By + UMW o ’ "{k -

L}
S oo : . - a
N . The processing of the request is suspended after a I
* * , . ! N _) ‘ i
dgadlock check: . : } . {
: Rt + Kp*Pp + Kp*Up + Bp*Pd + B*E . R :
o . R ! N . N II 1
P "Rt .+ RRt + Kp*Pp + Kp*Up + Bp*Pd + BRE - A
! ; - ’ v L
5. The processing of ¢ request is suspended n times. In :
&.P g he\ ° - ' ¢

this. cade Bp describes the nimber of P-graph predecessor

l

list pfopagation messages which hust be Qent betweeﬁ

;- \ stations of the network, as a résult of the proeéssing of
1 L}) }> g

* . the request being suspended n times. Kp may not be the
“same for each of the n ?uspenéions of the request. It

- will differ by at mo%t 1, depending on whether the end

node which is shut is not in a station which contains a
file‘ owned by the, requesting process.. B describes ‘the
number of "end node regquest" messages. which are’ serrt

R between stations in.the network as a result of the search

for an .open end-node: . .o)
— . Y .

Rt +- Kp*Pp + n[Kp*Pp + Kﬁ\pp] + Bp¥*Pd + B*E

L Rt + RRt + Kp*Pp n[Kp*Pp + Kp*Upl + Bp*Pd + BY*E

6. The request is rejected after n suspensions' -
. R + Kp*Pp + n[Kp*Pp + Kp*Up] + Bp*Pd + B*E + Ey.

R + RR + Kp*Pp n[Kp¥Pp + Kp*Up] + Bp*Pd + B*E + Ey

L 7. The request is queued after n suspensions of processing\

- Rt + Kp*Pp + n{Kp*Pp + Kp*Up] + Bp*Pd + B*E + Ey + U*Kr '\\
Rt + RR€'+ Kp*Pp + nl[Kp*Pp + Kp*Up] |
.+ Bp*Pd £ B*E + -Ey- + U%w

/

|

|

.
!

& .

* .dsually lower, but never greater than N' and B in the

A

'

8. The request ’‘is granted after queuing:
R + Kp*Pp + nl[Kp*Pp + Kp*Upl &=

+ Bp*Pd + B*E + Ey + Ur # U*r S T8
"R + RR + Kp*l:‘p + n[{Kp*Pp + Kp"Up]\’ , . 4 4 o

"+ &p*Pd + B*E + Ey + U®w + U¥*w : (T.5)

Li;,Z'Deadlook Detection and Recovery . e

/,'/Sinoe‘ éhe/ selectios _of the deadloek boss an& the.
,/deadlock ‘-recovery is 1dentica1/for both fhe W-graph and the
P-graph, the ﬂormulae fob the message traffic overhead in
Aigorithm‘II for these cases are identical to those of

‘Algorithm I. The equations are - -

Boss selection: Bs*Bp! L S ' \
| v P . |
Deadlock recovery: _Pp*(rIi - IB) + Bp* thp ‘
- 1

I3

It should be noted however, that the values of N and

Bp for the P- graph deadlock boss selection and recovery, are

equivalant W-graph deadlock boss selection recovery. This is

discussed furtherz in sectlon 7. 5 (see also figure 7.1).

¢ - ’ A : «
7.4 The‘Message Traffic Overhead in Algorithm III . K ;

The message traF¥fic overhead for 1oca1 and remote file

requests in Alggrithm III is as. follow3°

L2

I3
-
1
’
]
»
<
)
" .
I . s im s e e mwat

B 1R o iy ok s i e 3 g . = , . N T e Lo et - o~ = A Eaainbdid s A
. . . ~ ,

1. The ré}uest is granted:‘ T " \ R

R : . PR -
. 0 f - - Sng
R + RR . . ~ '
2. The refuest is réjbctgd: e L
' R+ RFP - | N
.) ' . ' : AR T
R + RR.+ RFP - : , *
_ o
where N
.) : .) . . I
R =~ as in Algorithm I . s

“ER - as in Algorithm I

ﬁREP - Th; mqssaée sénﬂ to Ehe requesfing process to infoqp.
3, i;f that its request has been rejed@ed and all its
‘files pre-empted; reqéests for its requireq fileﬁjfgve

‘. been placed on the tail-éndiof the appropriate file’

tr

queues. ° ' . .

At the end. of a time-interval each aécess coﬁt:oller
broadcasts status\mgssages concerning its fi;é queve .and
pré-teé} . queue. The 'message traffic overhead” for this
broadcast is) "j
’ Ne* (Ne-1)#S I (3
where « . - . '

Nc - The number of stations in the network

- 8§ . = The file queue and pre-test. queue status message.

The status message accoxnts for the majority of message
traffic overhead in the network. The traffio overhead

incurred by these status messages is not directly related to

the request message traffic. Rather, -4t 1is. a geneﬁ\}

.
- . .,
'
IS .
v 4 ‘

e et s e .\ . R ' = s = . ' .
. . i Lo . o

o

. ot

. . " . pagé 112

I

overhead which occurs in the network ‘once every tlme
interval. " ’ g - S .
- +
’\ E .
7.% The Comparison of Message Traffic Qverhead
) P .
. / S —

In all three algorithms the division of the processes.

"into two classes is applicable. However, in algorithms I and

)

"

II, class 1 contains only those processes which do not
- 5 \ . N :)
already own obne or more files. Multiple copy files and

multiple file requests are not permitted in phése
algorithms. In algorithms-I and II, class 2 contains,pQSSe
"processSes which own at least one file when they makégéisfile

' access request. As in Algorithm III, only rqgﬁes%s from

‘elass 2 processes are checked forgdeadlock. ‘) r?
' .:'S‘ Ny ' i

o

7.5.1 Algoriths®I and 11 - ¥

The co risdn of the message traffic¢ overhead in the
two algorithms is of interest only for class 2 processes.
For class 1 processes,’ the message traffica overhead for

.local and’ remote . access requests is R and R + RR

respectively, in both algorithms. . K
' ‘-’) s v

-

-/’/;;e formulae for‘tﬁe message traffic overhead for a

PN

request are ,
R + Rr*Pr. + Kr*U + B*P1 + Kr*Upr
and ' - , | et
‘R + Xp*Pp + n[Kp*Pp + Kp*Upl
+ Bp*Pd + B*E + Ey + U¥r + U%r

— o o i i g e oo

v K
’ +

\\' - | ’ ’ "2 page 113

P
- .

]

for algorithms I and II respectively. It is assumed that the

request i3 granted after it was queued; that deadlock does

not occur. In both ‘algorithms, this causes the highest

pd:eible message traffic, apart from_ the case in which

hd -

deadiock oceurs,

We compare the message traffic overheads in terms of

o . .
number of messages. *To this Eend we need not coneern.

ourselves with the particular natﬁ?e of the different xypes
of messages. We are only interested in the~ number of
messages - sentr, We ineerpret” tﬁe ’symbols introduced in
sections 7TiZ2 aﬁdu7.3 as representing the number of messages:
required for a:p?rticular . purpose. ‘The valuee fop: fhese

symbols are derived from our implementation. - C -

Formulae' 7.1 apd 7.3 describe the"messege t}affic
overhead which i$ 1ifcurred 1in algorithms I .and 1II
.res‘ectively, Awhen a local file‘request is qheued.and then
gﬁanteq. We compare these .formulae by using

E = Pl =1, Prp=Upr =2 and U = Up 1.

.Then, the difference between the formulae 7.1 and 7 3 is

Bp*Pd +{(n-1)#*Kp*Pp+(n+1)*U*Kp+Ey (7.9
in-the case where Kp = Kr. We use .this simplification
because Kp 'differs from Kr by at most 1, and only in the

case where K1 = 1 and Ks = 0, or where K1 = 0 and Ks = -1.

Formulae 7.2 and 7.4 describe the message traffie.’

overhead whieh, 1is incurred in algo;ithms I and 'II.

respectively, when: a remcte file request is queued and then:.

’

g~
-

.
-

- This ‘is justified since Kp differs from Kr+Kf by at most 1,

" Formula 7.5, « then, .expresses ‘the difference between the

”maximum message traffie ouerheads which is incurred by a

granted.w Again, we use the. number 6f actual-messages to
- - . | ' T

compare the formulae. In doing so, we assume Kp = Kr+Kf.

t

and only wﬁen Kf is not equal to Ks+Kl. Then the difference

\

between formulae 7 2. and 7.4 is . . .

Bp*Pd+(n-)'Kp*Pp+(n+‘l)*U'Kp+Ey ..
This is identical to formulae T. 5 for the difference between

the maximum message traffic overhead for local requests.

T

file request in algorithms I and II respectively.

-, . 2 . ’ . &

From our implementation we conclude, : . R .
A=, Pp = 2, U:qﬁ, Ey = 1-
Substituting these v31ues into formula 7. 5, we obtain.

Bp+(3n-1)*xp+1 Cp B (7.8) .
This formula depeqps on n, the number apf ,times the . ‘ $-
processing of the request is suspendeq in algorithm II, and B

- Bb, the number ‘of 1ntérstation boundaries on the P—graph ; -

<

component, for a given 'value of Kp. ' P

2

for n = 0, Bp = 0, the difference isl-Kp +1 Co « : |
‘the difference is 2Kp+1+Bp ..

° [
i

for.n

"
-
-

the difference is BKp+1*Bp ‘-

I
v

for n
® @ -

The only case where :a file-trequest incursr‘less message

1

trafficu-overhead in--algorithm. II' than in algorithm I, is i
when n = 0, Bp = 0 and Kp'> 1.. !
' i

7
Hhere.n = 0 and Bp = pu the prbcessing of the "request ‘

was not suspended in algorithm II. Kp reflects the locality ~
A ’

.
9 » R ¢ P

ot

page 115

| o , N /o
¥ of reference of the database. As‘Kp increases the lecality‘\

. of reference decreases. P

L)

. . ., In summary, _the message traffic'overhead for a file

: T -Fequest 1n algorigm I, depends on the locality of reference ‘

[~

= of the database. "In .algorithm II, th! message traffic |
g \ @ @ |

- overhead for a file request depends on the 1 ca ty of

’ reference of the database, and on the number of tfmes the .!~ -

.processing of a request is suspended When the processing of : !
F‘ ‘ (EY ' ‘
- a request in algorithm II 1is not suspended, the message‘

~ Y

_ traffic overhead incurred is less than that incurred in

R algorithm I,7 when Kp > 1. However, the méssage traffic
N /
! e overhead incurred in algorithm II increases with the number

« ' of timeelthe processing of a request is suspended.

) " The 'ngﬁber of times the processing of a regflest is
P . . .) ' Q a
suspended depends on the rate of file access requ¢sts and

the average serviceu time of the requesis. As the average
¢ ~ - ‘ L ‘. L
service time decreases, for a given rate of requests, the

I4

prqbability‘ that ‘the processing of éJ\request will be

;o : suspended; also decreases. The average time decreases as the
-~ - "-'i -
- locality-of reference increases. Thus,’ forja database with

hi&hf locality = of reference, we~ can expect that the

! ' \‘ processing of a_ requeeh in .algorithm II will. not be

~

suspended.

- &x .l R . g . ‘ v
7.5.2 Deadlock Boss Selection and Recovery o

1) ' A\

- ' fn oﬁr comparis®n of message traffic overhead above, we

page 116
- 1 \ P ’
assumed thaﬁt;i;adlock does not ‘occur. However, ‘fog d
()

f

particular se network attributes, Mahmoud and ‘Riordon °

[(40] observed a number of‘deadlocks ranging from.12 to ‘105

in a simulated 6 hour session, depending on the précentage

of class 2 processes which make additional file requests.

Then, we must add the message traffXg overhead for deadlock

boss selection and recovery to the overhead for alggrithm{l
, ' ,

and II.

*
| \

-7 The maxiﬁum mess;ge trafficaoverhead for boss selection
B and deadlock recovery is described by formulae 7.3
o N

Bs*B) + Pr¥(rIi-Ib) + B¥*Rv
: , I=1

© -)

i ’Altﬂough the expression for the deadlock boss selection
and_rébo%ﬁ%y message traffic overhead iscthe saﬁe for both
algorithms I and II, the value of N mayrbeidiffer;nt for the
same cése. in the differenf‘élgonit;ms.,This is Because in
algorithm I, the deadlock is de;cfibed—'by a loop in the
‘W-graph; 1in algorithm II theﬂloop is 3n the P-graph. A node
in the’P—graph eorrespénds to one or more "nodes_'in' the

W-graph (see figure 7.1).

page 317

N

v e

<€—— W-graph.
. P-graph
——--Boundary between stations

\\ The Ioop in the W-graph, (A,B,C,D,E,F,G,H,), was formed by

* the "simultaneous" introduction of the edges (A,B), (C,D)

and (F,G). The P-graph for the same case is described by the

loop (A,C F). In this example in-algorithm I, N = 8, = U

in algorithm 1II, N =3, Bp = 3. If *Ii =1, Ib = 0 for
algorithms I and II then the overhead is

24%g 4 4 = 196'messageé for algorithm I

6%3 + 3 = 21 messages for algorithm II

.
.

-

When Ii and B are equal in both cases, although this need

not be so, the message traffic overhead depends on the -

' 4
number of nodes in the loop. For the same case, the number

of nodes 'in the P-graph loop is less than or equal to the

Rt

number of nodes in the W-graph loop. This means that when B

and Ii are equal for both algorithms, the messdge traffic

overhead - for deadlcck boss gelectiop :and recovery in

algorithm II is less®than or equal to that ofwalgorithm Iin.

! ’

LR BN NP R

T e
a
»
.

v

A whas

-

am.

o et g e o e ot N i

. -page 118

. . the same case. ’ o
A -) .
B. may be less in algorithm II than in algorithm I, but

may not be greater, since ail nodes . in the P-gréph‘ére also

\

in the W-graph. Then -the W-graph has at least the same

number of inte;station boundaries, B, ai the P-grabh.

, . . \
{t is nop‘necessary' that all Ii be equal in both
| algorithms for a given deadlock. However, for a given
locality of referen;e, Ii snhould bﬁ equal-for algorithms I
and II. The different algorithms do not affect the

' distribution of file ownersnip in the network.

+ o -

-

In summary, the message traffic oyerhead_incurred for a
dea&ﬁﬁck boss selection and ,rec%very‘ in the P-graph of
algorithm II iS lower thaq in the W-graph of-algorithm'I.
This cqn<bé seen in the example discussé& in figure,K 7.1.

Then, we conclude, that for a database with high locality of

reference; the total message traffic overhead is léyer in.

' L

algorithm II than in aigorithm I.

\

-

WG S

\)
7.5.3 Algorithm III . ‘ ,

A\

In algorithm III the message. traffic overhead- depends

ot

not only on the file requests which are made, but also on

-

“the status broadcasts at the end of each time interval. The

message traffip overhead due to status messages is described

/. by

Nc®*(No-1) %S

1S.depends on the number of files at a station, the leﬂgth of -

(I 3

® e, T L : A y

Ao it AT V5 B Sl N O b

L

s e i b bt g ©

i

.) - ' r page 119
the queue for each file and"the 1edéth of the pre-test

queue. Let us assume that tne status of feach yfile ‘can be

-included in one Méssage Sf, regardless of the length of the

b

queue. Similarly, Qe'assume ﬁhat the pre-test queue'requires
only one message 5p."Then ;he status broadcast message
traffic overhead is : : -

\ " Ne*(Ne-1)*(SE*F4Sp) . ¢7.9)

where F is the average number of files per station. {
2,

Mahmoud and Riordon <[40] use in their s1mulation, Nc = 16

with 128 files in the network, i.e., .F = 8. Using tHese

‘figureé, and assuming that Sp = Sf = 1,«we obtain fo; the

&

message traffic overhead ‘ —
/ . Ne*(Nc-1)¥(Sf*F+3Sp)=
1920 messages per time intgrvél
7.5.4 Compérison of Algorithms I and III
.« , B

Uéing the simulation parameters of -[40)], we compare the
>3 ;

message traffic overhead "in Elgqr}thm IIT with several cases

for algorithm I. In eaqp case'for algorithm I we use formula
"T.1, the maximum traffic overhead for a filg }equest, and

formula 7.3, tﬂe maximum message :traffic\ AVérhead‘ for
"deadlock boss selection ;nd recovery.IWe.use formula 7.9 for

the message traffic overhead in algoritnm .III.

In the comparison we use theifollowing valueg:

Ne = 12, pumbér'fiies in the network = 128,\thus F =8,

i

R =2, RR = 2. - -

" Rate of requests = 20 requests/minute

‘ , “ * _'-:{‘

p 20m ua

L e

Synchronized‘timp interval = 1 minute_

. We vary the foLlowingvparameters:

LY

E

D = the number of observed deadlocks in-6 hours
Below, we describe the cases which we use in the
compa}ison
A N » 4 !3 ‘.‘r.
Case ,1: Kw = 0, Bx0, I1 =0, Ib'z 0, E = 90%, D = 12 ~ "
Case 21 Kw=2,B=2 Iiz1, Ib=0, N=14, E =803,
D =23 . °
. r [} ' ' .
/ﬁase 3: Kw = 4, B =3, I1i =2, Ib= 1, N=7, E = 70%,
D=z 39- ' , .
'Case 42 -Kw =6, B=4, Ii =4, Tb = 2, N = 10, E = 60%,
, D =z 62 . ’

Case 1 reflects Iigh locality of reference, since Kv = 0,

- Ii = 0, and E = 90%

»

H

1

percentagé~of all‘reﬁuests which

¢

-~

are for local files

Y

R e T ey

. o . ,: ’ ; : page 121..

- ” - R . * ‘ |

FIGURE 7.2. Messagé Traffic Overhead in Aléorithms I and III
: —y
Case 1., 2 3 b S
"1 File request I. Ly h 256 . ugg 684
Deadlock .I 0 0.78 3.79 18.36
A, - .

Total T 4 256.784 | 491.794 | 702.36 R
AYgorithm III 1964 1968 | 1972 1976 '®

The message traffic overhead per time interval 1is computed

~for the four cases described above using formula 7.7 and 7.2
for the . file request overhead and formula 7.6 -for the
deadlock-overhead, in algorithm I and formula 7.7 for the
status message overhead in algorithm III, assuming a request. v
rate of 20 requests per minuke ‘

2

<

Using k1 =1, i.e., Kw-1 z Kr+Kf, and Bs = 1, Pr

H
n

Rv = 1, U = 1, PL = 1,.formula 7.1 becomes

~ ? . . -

\ ' . SKw+B-2 .) 3 .

Formula 7.3 becomes . , ‘

4 © 0+ BL+2%(N*Ii-Ib)+B -
' The message traffic overhead was calculated for file" .

requests, and deadlock boss “selection and recovery for

algorithm I, in the four cases described above. The results

are tabulated in figure 7.2, As can be seen from that
(] . .

figﬁré, the message traffic overhead for algorithm III

greatly exceeds thagt of..algorithm' I, for the cases

described. . 2

In the computation of tne message traffid-toverheaq in '
' S S |
figure 7.2, we wused that fact that in simulation, Mahmoud !

»

v t

4 . » . M .
: . H
N T
~ - >
. e s .. e e e h e p—————
e a0 ' A I A v [N v ’ -
. ‘a
\ B . .

. [N
'*,L;r' s oo " ty Y
NCE - .

L R A NS IR
IR ~;."‘;th'§‘4"¥~1‘.{«.}

RN

\ page 122
. L 4 ? \\ «
and Riordon observed a numbén'of deadlocks ran@ipg from 12

A

to Q@, depending on the .ratio of local tb\iémote,£11e~

d

requests. However, it should be noted that in algoyithm I,

. many of these deadlocks woula be avoided. Hence, the message e

e

traffic overhead for deadlock detéction is, in reality,

e

lower thaq;;§,taﬁﬁiéted in. figure 7.2.. To compute this
. number ';}’peadlocks which would not indeed be avoided f&f a
X particular locality of reference, woulé réquire a .detailed’
‘simulation model of the DDACS, wﬁich is beyond the scope of

- this work.

-1t should also be noted that figure 7.1 assumes that

- ‘all requests in algorithm 1 are first queued and then

granted Ag&}n, this would not be the case in reality. Than,

”the message traffic overhead would be lower than is shown in

the figure. - ’ r '

(a

. . 7.6 Comparison of CPU Réqyirements

Y

.7T.6.1 Algorithms I and IT

qqqqq

In algorithms I and II thne procesging of requests from

‘class 1 processes is identical. Therefore, the CPU

& . - . .
requirements of both-algoritnms for the processing off these

requests are also-identical, This is also true for requests
from olass 2 processes which can be granted imgé?iately. It

is in the processiné of requests wnich must be checked for

o déadlock that the algoriﬁhms diverge. In algorithnm 1II kthé

amount of processing for a request depends on thé/number of

3 e A v P
L s et L . . ey o T A . -

P e emtmtre semird s e - »

page 123
\ - N ” .

shut nodes wnich are encountered before* the request 1is

queued or rejected, and on the number of remote stations in

which the requesting process owns files. In algorithm'I the
X

X ¢

amount of processing also depends on the’ number of reéhote

statlions in which the requesting process 6;;5 files.

A -
3

X «for the processing of the same reqﬁesé, algorithms, I
and II require identical CPU time up to the point where it o

has been décided that the request .is to ‘bg checked for

¢

" deadlock. The requirement in both algorithms for "walking"
the connected component of the wait grapnfiintil the end node

is reached, is comparable. In algoritnm II, the "walking" is

AN

done before the request is queued. However, i? algorithm {,

e -
the predecessor lists of fhe node, whicn would, be visited in

—p—

algorithm II's walk, are updated after the request hnas béen

queued. In algorithm I, the wupdating of the predecessor:
lists along the conhected component amounts to an OR

instruction at each node of the graph visited. '

w
.
s

Establishing an edge in the wait _ graph demands—

R .
identical routines ‘in both algorithms. In the case where

., o= O’Tor‘élgorithm II,-1.e., the processing of tne reqqfst e .
is rot suspended, no more graph mahipulation is required :
when the re%pest is queued. However, in Algorithm I, the
edée or edges must be correctly removed frﬁm the W—graﬁh

when the reqdes% is granted..This involves requesting rehote_

® .e -

file\ predecessor lists'and updating tne predecessor list of g

the - requested file if <there are otner class 2 processes

'waiting'for that file. The updating of ‘immediate successor C
’ |

\

\ i . N - |

——

et Lok Pehian s e =T £

//j/?outines in algbrithm I, the CPU ’requiFemengs of bgth

N

pointers is identical in both aléorithmsr

. ~— . - N
‘g — . ¢ 8 .

This shows. that in the case where the request is queued

and then granteq, algorithm i requires' the procqssinz

of
predecessor list. requests 'anq replies for every rem&t;

i station in which the requesting :process owns fi}fs, 12;
excess of the progessingvrequired by algorithm II when n = 0
for the same case,. / X |

o -

<iIn the case where ﬁ = 1, algorithm II requests-and
ﬁrocésses P-graph predecessor* lists -“from the remote
stations. . Since the'-é-graph manipulatibn routinég in
algo;ithm 11 afe identical to the W-graph manipulétion
algorithms are equal when n=1 and "the request is que ued
.before it 1is granted in algorithm I. However, as n
1ncreases, algorithm II requires P-graph pkedeces%@r list

manipulation- in excess of phe"broce§éing required by

algorithm ‘I for the same case.

In algorithm II, the probability that the processing of.

. arequest is suspended depends ‘on the arrival - rate of:

'feduests and the average service time of the requeéts. As

noted in section 7.5.1, a database with high lovality of

reﬁerence, the probability that the processing of a request
yill not be suspended, is high. This means that §n, most

cases where the request is queued before it is granted, we

)

[P

. ‘can expect Algo?ithm II to require less CPU time for request

processing than dlgorithm'l.
: 0

. , -] page 124"

h)

{

¢
'
1
i
4
i
¢

r ' ’ B [- _ page 125

e - - -
.

erd . The deadlock boss selection and _recqvery routines in

“ both algorithms are identical, As shown in the comparisvn of
the message traffic overhead, the number -of nodes in a
A Y

P-graph .l1oop is less than or equal to the number of nodes in

" the corresponding W-graph loop. The CcPU requirements ,of

for the same deadlock. The difference in thetir requirements

"will depend on-: -the difference 'in the number of nodes in
their respective 1loops. ~Algorithm I will require the

exoagtion of °'N1!-N2! ©boss selection routines and N1-N2

deadlock recovery routfnes more than algorithm II, where Ni

- is _the number of nodes in the loop of algd;ithm i. This
assumes that the maximunm message traffic overhead, as
described by formula 7.3, is required.

~ . Py

, 7\.6.2‘ Algorithms T and III .

N [

" A precisé qﬁantiti—v‘g analysis of the CPU rec‘quirements‘
of algorithm III is nét pos§ible, since -no implemehtation
details _ére a;ailable to us. Howe;er, qsing the outline of
the algorithﬁ presented in section 7.1.§, we méy attempt a

rough analysis and comparison with algorithm I. /?“ '

In aléorithms'l.aﬁd };L,,x%e’CPU1reduirements‘are equal

. for requests.from”class 1 processes-.and requésts from class

2 pfocesses which can be granted immediately, since the

of requésts; Again it is in the .deadlock check processing
that the algorithms differ.’

! ’, . »
|

P FETEI—— e v

P

b
t

algorithm II will not be greater than that of algorithm I .

algorithms - are identical for the procesgsing of these types:

L3

i
:
¥
§

o R s 0y

iy

—tt?

},f

page 126

s ' T :

+2 In algd}ithm I, the access controller wnere the

requéstea file 'is stored is the only one which checks the

request for deadlock. Because the wait graph information is

-

&tored‘ as' bit 1lists, once the,necessar& lists have beén

collected, the deadlock test consists of an AND operation.
In- algorithm III, all access controllers (DDBMFs» apply the
same deadlock .detection algorithm [49] to all pending

.]

. . \

N

requests.

A @similar observation may be made regarding tne:

maintenance of file status information. In algoritmm III,

eGery access contréller maintains global file queue and

&

pre-test queJe information. In algé}ithm I, only infotmation .
o !

" on those files which pfecede a given file in the wait graph
)

[L]
is ' mainmtained by an access controller. Further, this

-

information is only maintained for those files which are

;
’ / 4

local to the accees controller. In the case where a 'deadlock

o

doés occur in algorithm I, only those qcceSS'controllers

which have files in the deadlock -are involved 1in the

recoyery. The recovery itself again consists of the |

manipulation of bit 1lists.

.]

From this comp4rison we can conclude that the CPU

requirements "of Algorithm 'III exceed those of alggrit%m ;.

This is attributed to the simultaneous execution of similar

aléﬁrithms by eaEH of the access controllers in algori¥thm

II1. DA |
. - ‘

In algorithm I, the CPU‘requirements decrease as the

’ R

v

page 127

o
K

) locallty of referen,gl of the databa inereases. This is due
to the fact that the deadlodk chec%iZlgoriﬁhm is- faster, the
fewer _the access controllers tﬁ;t must contribute some)
preQecessor list to it. High 1locality "of reference also
implies that ip algorith% I, there is a low probapility that
deadlock will occur._JHOWever, in a goritp@ III, the CPU
requirements for the mafé%énance’ of ¥ne global status
infgrmation and ”the 'eiecution of the deadlock °cﬁ;ck‘
glgorithm ane,unaffected by the 1oca1it¥ of reference of the
daPabase. ! ' ,

» B

T.7 Comparison of Storage Réquirements

4 \
— . - © Y.

P s i - *
7.7.1 Algorithms I and II

N . ’

In.both algorithms I aﬁd IT, the §torage";hauirements
depend' on the maximum number of files in the network. This
. 'de;ermines thd’ size of the 1local and -global file
Hirectories,\ an§ the lengtn of the bit list in the process
and file des&k:ptor. In algorithm I abit ¥ist is usia to
Qescribe predecessor lists, imégolate preaecessor 1ists and-
the files owne by a process. In a 16 'bit per word’
architecture 128 files would require 8 Qonds of storage for

\

each of these variables.

»

I
el ! ¢
e Iy

Algbrithms I and II have some storage 'requirements in
common: the file ‘directo}y and the deadlock descriptor
‘table. Thefpéocess descriptor table (PDT3 in both algorithms

differs only in that algoritnm.II requires éne more Qariable

« page 128

’
&

)

than algorithm I rto describe §he queue of requesté who se
brocéssiﬁg has been suspended at a bartfbular shut node.“ An

' v, eftra variable in the file descriptor table of algorithm II/
his also required to pointdto the head of this queue. The
v ,amount of storage reqired for the w-graphiin algorithm I 1s
‘ 1dentica1 to that’ required for the P-graph in algorithm II.
. 1‘ ~However, an extra variable in algorithm II is required 'for

the ;mmediate successpr pointer of the wait graph.

L)

’ . ¢ In summaﬁy, aigonithm II requires one more vériabie

, than‘algorith; I, for each file in the n;twork sﬁncé there
' ,is a file descriptor table entry for each file. however, in
both algorithms, there are more process descriptor table
entries than there are active processes. This 13 because e;
TR S process has an entry in- the PDT of each station in which it
e v " owns' or waits fop a file. Then algorithm i1 rgquires tyoc

g mqre~Var§ables per active PDT éntry than algorithm I.

L ‘ In our ;dpl¥ﬁentation, algqiithm I requires 22'words'of

t , ’ ‘ /

storage per process d écriptor taﬁle entryoand 22 wordp of
!storage per file de crlptor table entry (1oca1 file), 1f we
assume‘there are 12 f11es in the network. Then aLgorithm II

. ‘ requires 23 words ff storage pgr process descriptor table

&

édpry and 24 words of storage per file descriptor table

" entry. oo A O t

\ @ -

- e o We cohclude that algorithm II's storage réquirement is

greater than that of algorithm I. However, as noted above,

. the extra variables required af% poinfersx'whiéh do not

b e - s Ay p————— s ————"_ - e

A J

sy Ao Sl S i

Py

- ’ _ ' page 129

Hepend on the number of files. Therefore, the precentage

difference decreases as the number of files in the nptwork
1ncreases. ’ ' C i
' g . . »

. 7.7.2 Algorithms I and III -

.
- ' . * '/‘{

In algqrithm III, each access controller stores a
;] i 1

/ glébal ffle .directory.. This is comparable in storage
requirements to the global file directory in algorithm I. It

also requires a process descriptor, as in algdrithﬁ I, but

1 o
does not requirpﬁ;inliary variables for storing predecessor

. IR 4 !
lists in connection with -file request and release

proceSsing. Algorithm III does not use the W-graph
structure. However, the deadlock détéction algorithm which
is employed, requ1res that each access controller have at
its disposal the queues for all files in the netwogk, and a
global Pre-test quque. P o ‘ 7

T ———

e |
T i

—

In comparing the storage ieguirements of algorithms I

and IIT, omitting those elements which are common Yo bbth,
we ‘compare5the storage allocated to lhe éuxillary vakiables '
in the process descriptor table and the wait graph variables
in algorithm I, with the storage allocated to .global file

queues and pre-test queues 4in algorithm I1I. - . :
' ' ' i

Using Mahmoud and Riordon's simulation parameters of 16 *

stations, 4000 users, 128 files we obtain for algorithm I

Auxiliary variables = 10 words;

2
’

Wait graph.variables = 84841 3 17-words.

- |) ' I
+

¢) | N
b Lo If we say that eadh statior may have up to 50 concurrent
. users then the storage fequirement for algerithm Iis

r . T 50#16%10 + 17%128

= 128‘(17+16 25)
v = 128%78.25 words

For algorith IIT, the storage requirement is

(average queue length) *16%128 . ‘ R

+ (average pre-test quetﬂength) #16%16

.o I¥ we assume ' |
Q = average queué‘length = average pre-test queue length,
tﬁ;; becoées |
storage = Q*16%128 + Q*6¥16 = :

= Q*16*16*9 ‘ .

Since the expected length of a queue in th?~ simulation

is not available to 1s, we cannot compute the amount of

storage required for these queues. Therefore, we compute the

.queue length needed 1n algorithm II{, in order for it to

have the . same storage requirement as algorithm I. Then, we

v

compute what average queue. length -

expected in 'Mahmoud and Riordon'.s”Simulation, \fromithe

simﬁlation parameters in {40]. ‘

For equal:storaée in algorithms I and III . .
G Q=44 words
If a queue "enfry requires 1 word, this indicates an average

queue length of 4.4 entries. ; . N

¥

: : .
Na = 20 requests/min 1s the average le request rate from
S

Mahmouq,and Riordon's simulation parameters. Assuming that

-

. . . : A |) page 130

ould reasonably be .

\

.

o |

/ - : page 131
the distribution of the requests is uniform over the 128 °
i fileé in the hetwork, then the average request rate per flle
is given‘by

" Nf=20/128 requests/minute
v !] _ -
"From Kleinrock [35], the average queue length is given by

E.=p((1 -p) . 7y

‘ | 1 .
where p = (average arrival rate) * (ave}age service time)

:l"‘.i

In this case » = 20/128 and X = 5 minutes per request [40]

" Then § = (100/128)/(1-100/128) = 3.57 requests

This is of the same order of magnitude as the 4.4 re&uests

2

compq&sd above for equality: of storage requirements for
algorithﬁ§ I'and III. From this we can conclude Lhat the
‘storage requirements of the two algorithms are within the

same order of magnitude for the simulation parameters given

in-[40]. ' ¢ ’

“

i

The average queue length and as a result, the storage
kY . . \
requirement of algorithm ZII, depends on the rate of file

requests., If we increase Nf to 25/&28 requests/min, then

q = 42 requests, more thai 10 times the requirements for the

\

\ . N
parameters given in [40]. The storage requirement for
S\

algorithm I, however, does not depend on the request rafe.‘

page 132

& ,
CHAPTER 8

Py A v

Conclusions and Directions of Further Work

/ ° o

-

. 8.1 . Conclusions ' ' .

K oy

We have ﬁreéented in this thesis, a new access control
' 3

mechapism for distributed Qatabases. We have shown in this

mechanism, that access control for distributed datab?ses can

itself be distributed to the stations of the computer .

network, without thé maintenance of global file information

at each station.) _ , !

The proposed meéhanism has been fully implemented for a

network of PDP/11 minicdmputers. This‘implementatigg,§hows

"that the conceptual tool called the local access controller

(LAC),- which was used in the design of our access control
method, may be iﬁcorporated in an implementation withopt

fncreasing the message traffic overhead in the mechanism.

. ¥
In the discussion of error d:tection and recovery

mechanisms for our access control method, we have proposed

solutions "which would substantially improve the reliability

of our system. On the other Hﬁnd, these mechanisms would

~ !
‘incur a considerable overhead, and would in part require

modificatioﬁs to the underlying Message Switching Mechanism.

| . o
We have developed a variation of our access contro%'

"

mgchaﬁism which avoids deadlock in the database in all
n I

i

B A s — =
- A —

, - page 133

cases. While tHis variation requires more storage, it

reduces the CPU time requirement and message graffic

overhead for a database with high locality of reference.

*

We have compafed our access control mechanism with the
distributeg access controllmechanism of Mahmoud and Riordon
{39,40].- While noting that their mechanism is more generél,

we . found that for those cases where our restrictions are

L]

applicable, our mechanism is superior, particularly with
'regafd to message traffic .overhead.

!) |
j _ . . |
8.2 Further Work

”

The primary aim of further work is to remove the
restrictions of our access control mechanism. The ability to

handle multiple: file requests and to provide for shared

access ' to files, as well as the introduction of multiple)
copy files, would greatly ihcrease the applicability of our

4

nrechanism.

¢

The introduction of multiple file requests and shared.

access to files means that a node in the wait graph may have

md}e'than one emanating edge. In the latter c%sé, all the
emanating edges need not belong to the same process.

Avoidance and detection of deadlock using such a graph model //;///)4//

would not be a simple variation of our mechanism. /,, o
. . , P / ‘r
It®remains to be seen if our model can -"be gené?alised ;

in the way described above, or if an altogether different

approéch might be appropriate. The basic idea, however,

[1 it b ——————————_

! ' ™ -
2 \ ') ' page 134
SN o
rqmains valid, viz., that in a distributed system, a waiting
- relationship should only be {epreéented in"a.particular
! ' station if i@ affects thé allocation of ‘objects residing 1in .
g that station.
* o 1
>
_— . = /
.) .
. ' - ¢
A ’ I -
‘ K - :‘ ’
. —_
n’\\ l ' H :
2 a. & :

3.

page 135

» _ BIBLIOGRAPHY

1
Abrial J.R., Cahen J.P., Fav;e J.C., Portal D., Mazare
G., Morin R. "Project SOCRATE - nouvelles specifications
(version 3)", IMAG Universite de Grenoble, Sept. 1972
Asohim F, "Da;a base networksb- an overview", Management
Informaties, vol.3, no.1., . 1974, pp.13-28 ’
Bachman C.W. "Trénds in database management.1975", Procs
"AFIPS NCC, 1975, pp.569~576 .) |
,BernsteinuP.A., Goodman N., Rothnie J.B., Papadimitriou
S.A. "fﬁe concurrency control mechanism of SDD1: A

system for distributed databases", IEEE Trans. on

Software Engineering, vol.SE-4, no.3, May 1978,

pp-15u—168 ‘ *
' {
Booth G.M, "Distributed information systems", Procs.

AFIPS NCC, vol.45, 1976, pp.789-794

Booth ‘G.M. "The .use of distributed data bases .in

" information networks", ™ Proecs. First Computer

Communications Conference, Washington, D{C., Oct.1972,

' ppo 371."’376

Bucci G., Golinelli S. "A distributed strategy for-
resource allocation in informa£ioq networks", Prbcs.
International Comﬂﬁtiqg Symposium, éelgium, April 1977,
PP.345-356 | SR
Casey R.G. "Allocation of copies of a .f}ie in aﬁ
information network", Procs. AFIPS SJCC, .May .1972,

pp'617-625 s

~

~»

10.

11,

12.

13.

, - - bége 136

Chamberlin D.D., Boyce ‘R.F., Traiger I.L. "i

¥

deadlock-free scheme for resource locking in a database

environment", Procs. IFIP, Congress, 1974, pp.340-343 /
Chang E. "A distributed medical data base", Computer
Networks, vol.1, no.1, June 1976, pp.32-38

Chang E., Linders J. "A distributed medical data base",":

Mg%hods of Information in Medicine, Oct. 19fﬂ,
pp.221-é25 .

Chu W.W. "Oétimal file allocation in a multiplg computer
system™, IEEE Trans. on Comgﬁfers, vol.c-1 no.10,
Oct.1969, pp.885-889g

Chu W.W. "Performance of file directqry systems for\data

. bases in star and distributed networks", Proecs. AFIPS

11“

,,,,,,

NCC, vol.45, 1976, pp.577-587 . - —
Chu W.W., Ohlmacher G. "Avoiding deadlock in distributed

i i
data bases", Proecs. ACM National Symposium, vol.1,

.~ Nov.1974, pp.156-160

15-

17.

18.

Chupin J.cC. ~"Control concepts of a logical network

machine for data banks", Pfocs. IFIP, 1974, pp.291-295
16.

Chupin J.C., Seguin J. "A metwork diréct access method",
Procs< European Workshop on Distributed Computer

[4

. b
Systems, Oct.1974 . -

-

Coffman E.G. Jr., Elphick M.Jd., Shoshani A. "System

{
dead-locks", Computing Surveys, vol.3, no.2, pp.67-68,

~

June 1971
'a

Collmeyer A.J.. "Database management in é multi-access
env ironment", Computer, vol.4, no.6, pp.36-46, Nov./Dec.

1971 . . o "

.
&

e W e - PR et e e e = - —

{;pr-

ed’ database technology -~ a
: (4

v pasé 137

19. Davenport R.A. "Distrib
= ° [+]
survey", Computer Networks, vol.2, no.3, July 1978,
pp.155-167

20. Davenport R.A. "Distributed or centralised database?",

¥

- Computer Journal, vol.21,-no.1, Feb. 1978, pp.T-14

21. beppe M.E., Fry J.P. "Distributed data bases: a summary
h . N of research",’ Coﬁputer Netwo}ks, vol.1, no.2, 1576,
. pp.130-138

22. Frafhey D.J. ™A praétical approach to managing resources

A

and avoiding deadlocks", CACM, May 1973, pp.323-329
- ‘ - 23. Fry J.P., Maurer J. "Operational and technological
| issues in .distributed data bases", Auerbach Resort, '
1977 ‘ '
- : 24. Ghosh S.P. "Distribﬁtihg a database with 1logical
- asgsociations on a computer network - for parallel

i ' searching”, IEEE Trans. 'on Software Engineering, .

-vol.SE-2, no.2, June 1976, pp.106-113

25. Grapa E., ﬁelfordAC.G. "Some theorems to aid in solving

. " the file allocation problem", Comm. ACM, vol.20, no.11,
o I Nov.1977, pp.878-882 '

26. Habermann A.N. "Prevention of system deadlocfﬁ",- CACM,’
2) o ' .

] vol.12, no.7, July 1969, pp.373- ‘
| ; -3 ,311——-\\ '

27. Hermann J. "Flow control in the ARPA Network", Computer

- Networks, vol.1, no.1, 1976, pp.65-76

28. Hobgoodnw.S. "fhe role of the network control prograﬂ in _

-] - Systems Network Architecture™, 1IBM Systems Journal,

| . vol.15, no.1, 1976, pp.39-52

f
29, Holt R.C. "Some deadlock properties f ‘computer }
\/'

.
B ' . . o/ .
. . \ Fy .
"
—_
. .. o T T S ST S T S S OO Mt v er A e one el e mes o e - ee il "y WY "
. \ - S M T e v vt i S Jrinite g
. .- « meiew e ew ¥ o N v g " T o A
. LN . .) . . . , . Y A
. s . \ - o .

L Y i A e]

—b

30.

: page 138

_ ‘ ’

systems", Computing Surveys, vol.4, no.3," Sept. 1972,

lpp.179-196 . .

Butchinson D.A., Riordon J.S., MahmoudSTA. "A recursive
. —

9

. algorithm for deadlock preemptioﬁ in %omputer networks",

31.

32.

33.

34,

Procs. IFIP,-1977, pp.241-245

Johnson P.R., Beeler M. "Notes on distributed data
bases", Draft Report, BBN Inc., 1974 .

Karl M. "The distributed database of the information

s&stem of the German police", Proecs. EUﬁopean Workshop
on Distributed Computer Systems, 1974 '
Kimbelton S.R.,; S?hneider’G.M. "Computer communications
netwvorks: . ;ppfoaches, \ objectives and performance
considerations", Computing Surveys, vol.f, no.3, 1975,
pPp.129-173 | '

King P.F., .Collmeyer A.J. "Data base sharing - an

. ‘ .

efficient mechén;sm for supportin% concurrent

 processes",. Procs. AFIPS NCC, vol.42, pp.271-275

3%.°

\

36.

37-

o bases: a framewbrk- for research", Procs. AFIPS NCC, E

'
&
L

38.

kleinr&ck' L. "deueing sysiems",hvolf1, John Wiley and
Sons, Inc.,'1§75 |

Levin K.D., Morgan H.L. ﬁOPtima} ‘program and data
locations 1ih compuker‘ networks", égmm. ACM, vol,20,
no.s, May 1977, pp.315-322 ‘
Levin K«D;, Morgan H.L. "Optimizing distributed data

‘

vol.4l, "1975, pp.473-478

e 'h Q .
Mahﬁ&@d S.A. "Resource allocation and file access

. control in distributed information networks", Ph.D.

Thesis, Carletgn University, Jan.1975

- 39.

‘ 40.

41,

42,

43.

4y,

""7-

McFadyen J.H. "Systems

—_ page 139

) Al

Mahmoud S.A., Riqkdon J.S. “Softwére controlled achess

to distributed data bases", INFOR, vol.15, no.1,

Feb.1977, pp.22-36

‘Mahmoud S.A., Riordon J.S. "Protocol coysiderations for

software controlled ' access methods in qistribpted

databases", Procsc'Internati?nal Symposium on Computer
. . ‘
Performance, ' ‘Modelling, Measurement. and Evaluation,

March 1976, pp.241-256 \ |

Mahmoud S.A., Riordon J.S. "Optiéal allocapion of
resources in distributed inform#tion networks™, ACM
Trans. on Data Base Systems, vol.1, no.1, "March 1976,
pp.66-78) '

Manning E.b., Peeblgs R.W. "A homogeneous network for
data-ghaning communications", Compuﬁer Networks, vol.f,
no.u,\i977, pp.211-224

Manning \E.G,, Pesbles R.W.J Labetoullg J. "A homogeneéus

computer détwork- analysis and simulation®, - Computer’

Networks, . vol.1, no.4, 1977, pp.225-240 ' -

Marill T., Stern D. "The Datacomputer - a network data
utility", Pracs. AFIPS NCC, vol.uﬁ, 1975, pp.389-395
Maryanski F.J. "A survey of developm%nts in gistributedl
ddta base Management systems", (IEEE) Computer, vol.11,
no.2, 1978, pp.28~38 "i
Maryanski F. J. et al "A minicomputer-baséﬁ distributed

data base management system", Pfoc. NBS-IEEE Trends and

1976, pp.113-117

network archHtecture: an

¥

48.

50.

2 ‘ ° 51,

N 53.

54,

55.

< - 5\\\\\\‘page 140
I‘}j '

'overview", IBM Systems Journal, vol.15,, no.t, 1976,

pp.4-23

Morgan D.E., 'Taylor D.J.,; Custeau G. | "A survey of
methods xfor improving computer network reliability and
;vailability", -(IE%E) Computer, vol.10, ho 11, Nov.

\

1977, pp.42-51 . - a

. Murphy ° J.E. "Resource allocation‘ wiﬁh inte}lock

detection in a multitfask system", Procs. FJcg, vol.33,."

pphﬁ169-1176, 1968 s~ /

Paolini P., Pelagatti G., Schreiber F.A. "An applicatid

oriented approach to distributed datajbases", Procg.

r

.AFCET Journees de Formation, :Basés de Donnges

Repartles, Paris, March i977,,pp.139—151 \
. "
Parry D ~"Distributed data base manage“ent s
\

Procs ONLINE Conference on DBMS, April 1976\

Peebles R.WZA:Design ¢onsiderations: for E\ distributed
. 3 |
data access system", Ph.D. Thesis, (AD-7¥5569), Wharton

School of Finance and Commerce, 1973 \

/ . ‘ ’ R
Rosenkrantz D.J., Stearns R.E., Lewis II P.M. "System

level conecurrency control for, distibﬁte database
systems", ACM Trans. on Database Systems; vol.3, no.2,

June 1978, pp.178-198

’

Schreiber F.A. "A frafewdrk for distributed d;!g bases"
Procs. International Computing Symposium, Belgium, April
1977, pp.475-482

Schreiber F.A. "Distributed data bases: some problems

. still to be solved", Procs. Convention In ormatique,
2 '

Paris, Sept.1975 -

e+ it 2 b

}

* ' ’
. .
& -
S
. .
' N . . . « F .
w o .
R TR T TR R T A e e e W a e e e e O R T P T S ee

i

ARG & L T e A B

By

5T.

- 58.
-services", Computer Networks,
. pp.53-64 - | | ,
‘Taylg;j F.E., [National Computiné Centre Ltd:] "The

Corporation, haynard, Mass., 1977 -~

| page 141
Schreiben\ BE.A. "Problems and models in distributed data
\ ' [4

base systems™;- Internal Régbrt n.75-14, Lab.di
Cafcolatori, Politechnig§o di Milano, {975‘ “
Shoshani ' A., Bernstein A,J.; "Synghronibation in a
paralleliaccessedgdata baéeﬁ, Comm. ACM, vol.2, nq.11,

Nov.1969, pp.604-607

~

Stefferud E. "Economics of network delivery of computer

vol.1, no.1, 1976,

| . . . A -

relative merits of distributzd computing", - 1cs Procs,
. {% N . ﬂ'ﬁ

April 1977, pp. 57

.

Thomas R.H. "A solution to tpe updahe,:ﬁroblem for
multiple copy databases';hich use distributed control",
Bolt, Beranek, and Newman Inc., Report 333&0,_Ju1y11§%§
Walden tﬁ.c.'"A system for rnterprécéss communication in

a resource sharing‘ computer network", CACM, vdl.15,

no.4, April 1972, pp.221-230 o .

Wailentine V.E., Maryanski F.J. "Implementation of a
distributed database system", TR-CS 76-03, Fe§/ 1976,

Kansas State University :
Whitney V.K.M. "A study of optimal file assignement and
. 4 L

communication network configuration”, ?h.D.’"Thesis; U.

Of Michi ’
Michigan, 1970),

%DECNET&11 Programmers Guide- and.,Reférence: Manual®,

Digital Equipment &E\Q?rétion, Maynard, Mass., 1975

N ~ N ;
"DECNET-11 V1.2 Release Notei", Digital - Equipment

N~ ' a;,n*

-

Ny

‘ (.
s L\

S e T

N

L]

J . T " ' ;age 142
{ o0 - 3 P - i .
] N . L3 ' ’
L = ’ - : N
T 66. "BSX-11M V3.1, Executive Reference Manual®, Digital

¢

»

Eduipmentlporporgfion, Maynard, Mass., 1977 ’
67. PStructured FOR{RAN.Programmers . Manual", " Institutional
“Research ‘Labo?étoqy of Electroniecs, Cambridge, Mass.,

I3

1977

. “v
Y ¥ »
0 . K hd
Ll \ -~ -
-~ . .
-
- .~ a
r s,
9 . -
‘e 4 13
¢ o
~ L -
. '
o
R a
.
L4 " '
R -
" X
)
’ _ N -~
{
) ° . - ' -
. -
. !
\
- —
o . - .
”
. .
2.
3
\ A *
. o I
N e
o
e — - .o . &
s o v -
a . . . ' FREEN .
N ~ . -
- / - °
° * - - .
. = =~
., .
. - -
- . e
- . - -
« >
- v
<
N .
. \— -
3 N -
. -
e S .
o s
« ~ 7 - .
- a o
o r
" L]
' . .
-
- ' L Y
. - - . .
N <
< [J
lv [L ’
’ 4 7
t . . 3
. *
- ’,
-~
e i F
N
> } 4
) P
* . 1 ‘ .
L] " ¢
y
. , . /
a . .‘ r
. L] o
[4 - \ . P
f
A
«
1
! A a -—
ety ¥
LU EEEAT .Y ‘.
4 wt AT 4G * ¢ LA v .
P e CLYVNN 1 € e,
[- !) -
Ed ’: ~ 3 ™ M

L

\ page 143
APPENDIX A .o N A
[od
L0 Program Listings of the DDACS ‘
C . INDEX
" ALLOC ‘ . 164
ALLOCF ~///ﬁ\x% © - 182
“BEGIN - (M ‘ 188
. - CLDOWN ‘ 187
COM , 144
- DBREAK - , | 169 ‘
. DBEADLK : SN . 175
| DELETE. - . 181 |
DSPLST . 7191 AN
ENTER © 180
EXEC R . 147
FLREQ ’ , 162,
" GETF . 196
INACT s ‘ 160
INIT , 151
INTT2 ' z _ 155
; LOG ‘ o _ 189
NTCON[W] - . 2014
NTDIS{W] 3 _ , 1 200
NTINIT : , 203 : .
NTRCV[W] ‘ S 201 | X
NTSND[W] ‘ 202 | ‘ f‘
NTWAIT . 199
" MWAIT < : 158
PLRPLY , S R L
PLRQST) .. 173
PRO Vs . ’ 194
PROPGT “ S 168
QUEVE - : - 176
RECOVR . ' v 170
REJECT C 161
RELEAS ‘) - 163 ,
RELF , el - 198 _ ,
REMRQ ' 184 -
RMGRN_ L . - 185 . .
BMREQ Coer ' 7T ,
RQSEND (i 186 .
SEND : ‘ . 165 -)
UNTION - e |
UPDIS A : 271 ,
. o
f [4

¥

/%

¥/,

1

¥ —

” .Subroutine COM’

IMPLICIT INTEGER (A-Z) * N
COMMON AREAS =~
THIS IS THE COMMON AREA FOR ALL THE RUUTINES.
THE CODE OF A ROUTINE BY THE COMMAND

IT

-

‘page 144

1S INSERTED

<IN

AINSERT COM.SF

7 "l

COMMON /DLOCK/ DFILE(3),DPRED(3),DBOSS(3), DREPS(3) DLIST(3),

DSTAT(3),DNUM,DPROC

DLOCK: THE DEADLOCK DESCRIPTOR TABLE
: WHENEVER A DEADLOCK RECOVERY MUST BE SUSPENDED BECAUSE
. PREDECESSOR LISTS ARE REQUIRED FROM SJIME REMOTE STATION,
THE VARIABLES WHICH DESCRIBE THE PRESENT STATE OF THE
RECOVERY PROCESSING ARE STORED IN THIS TABLE. 0
" DFILE: THE FILE WHOSE PREDECESSOR LIST IS BEING RECOVERED
DPRED: THE'FILE"S IMMEDIATE PREDECESSDR IN THE LOOP
DBOSS: THE BOGSS OF THIS DEADLUCK
.DREPS: THE NUMBER OF REPLIES STILL OUTSTANDING FOR PREDECESSOR
LIST REQUESTS
DLIST: THE UNION OF THE PREDECESSOR LIST REPLIES RECEIVED SO FAR
DSTAT: THE STATUS OF THE RECOVERY PROCESSING { - INITIAL
2 - SUSPENDED _ 3 = RESUMED
DNUM: THE NUMBER OF DEADLOCKS CURRENTLY BEING RECOVERED e
. AT THIS STATION
DPROC: THE INDEX OF THE DEADLOCK DESCRIPTOR IN THE TABLE DLOCK

COMMON /DNET/ STAT(2,10),W0RK(224), hORDS NODE(33, TASK(3),LEN

DNET: DECNET VARIABLES
" THE VARIABLES REQUIRED BY THE DECNET USER ROUTINES ARE
CONTAINED IN THIS AREA
STAT: THE STATUS OF AN ACTION ON A COMMUNICATION LINK, THE LINK

NUMBER ‘IS THE INDEX TO THE STATUS TABLE.
£.G. STAT(1,N) IS THE STATUS OF THE LAST ACTION ON LINK N,
STAT(1,N)=1 INDICATES THAT THE ACTION WAS COMPLETED
SUCCESSFULLY

THE DECNET WORK AREA

THE NUMBER OF WORDS IN THE DECNET WORK AREA

THE NAME OF THE STATION TO WHICH A COMMUNICATION LIKK.
1S TO BE MADE

THE NAME OF THE TASK TO WHICH A COMMUNICATION LINK

1S TO BE MADE

THE LENGTH OF A MESSAGE,
ON A LINK

IN BYTES, WHICH IS TO BE SENT

- r————a e PR

. v I q
y
. ' .
v

LI ' . page 145
‘ ; - T)
’ b Subroutine COM (Continued¥
~ [: ,
COMMON /VARS/ MSG(5,5),FILE,PROC,RCODE,ERR,LOCAL,REMOTE,RTN, P
1 START,LENGTH,LACS,DISPL,LFILES,B05S,BPRED,PRED,LIST,
2 PRLIST,MASK, SUSPEN ,LOCK,RECV
/% VARS: THE VARIABLES USED BY THE ACCESS CONTROLLER ~
MSG: = THE MESSAGE BUFFER FOR.THE SEND ‘AND RECEIVE ROUTINES.

A 5 WORDUFFER IS RESERVED FOR EACH OF S5 POSSIBLE
COMMUNICATION LINKS, ' .
. THE NUMBER OF THE LINK IS THE INDEX OF ITS BUFFER. .
FILE: THE FILE WHOSE DATA STRUCTURES ARE CURRENTLY BEING
MANIPULATED,
4 THIS VARIABLE IS AN INDEX TO THE FILE DESCRIPTOR TABLE
PKOC: THE PROCESS WHOSE ACCESS REQUEST IS ”URRENTLY BEING
- PROCESSED.
. . THIS VARIABLE IS AN INDEX TO THE PROCESS oascaxproa TABLE.
. RCODE: THE RETURN CODE IN REPLIES TO FILE REQUESTS
ERR: LOG COGDE FOR THE .LOG SUBROUTINE
/ LOCAL: THE NAME OF THE LOCAL STATION
REMOTE: THE NAME OF THE REMOTE STATION
RTN: THE NUMBER OF THE SUBROUTINE WHICH wAS CONTROL.
START: STARTING POINT OF THE PROCESS osscnxproas IN THE
. PROCESS DESCRIPTOR TABLE
LENGTH: THE LENGTH OF THE PROCESS DES“RIPTOR TABLE -
LACS: THE NUMBER OF REMOTE ACCESS CONTROLLERS 1§ THE SYSTEM
DISPL: THE DISPLACEMENT OF THE LOCAL FILE DIRE”TORY IN THE
'GLOBAL FILE DIRECTORY B
LFILES: THE NUMBER OF LOCAL FILES
BOSS: THE BOSS OF THE DEADLOCK CHRRENTLY UNDER CONSIDERATION, .
. THIS IS A POINTER TO THE FILE DESCRIPTOR TABLE
BPRED: THE IMMEDIATE PREDECESSOR OFf THE BOSS IN THE LOOP.
PRED: AN IMMEDIATE PREDECESSOR IN THE W~GRAPH OF THE FILE
‘) UNDER CONSIDERATION
LIST: A BIT LIST INDICATING FILES BY THE POSITION OF THEIR
ENTRY IN THE GLOBAL DIRECTORY. USED MAIJLY FOR INDICATING
_ . WHICH PREDECESSOR LISTS ARE REQUESTED, C v
. A FILE IS REPRESENTED IN/THE LIST AS FOLLOWS:
FILE N IN THE DIRECTORY XS IN THE LIST IF
BIT N IN THE LIST = 1)
1.E. LIST.AND,2*%%(N=1) = 0 INDICATES BIT N IS ZERO
ALL BIT LIST VARIABLES REPRESENT FILES IN THIS WAY:
v LIST, PRLIST, PLIST, PL, IP,
PRLIST: STORAGE AREA FOR THE UNION OF PREDECESSOR LISTS
MASKe A BIT LIST INDICATING ALL THE LOCAL FILES |
SUSPEN: A BOOLEAN VRRIABLE WHICH SHOWS THAT THE PROCESSING
' OF THE -CURFENT REQUEST HAS BEEN SUSPENDED.
LOCK: A BOOLEAN VARIABLE WHICH SHOWS WHETHER A POTENTIAL
., OR REAL DEADLOCK HAS BEEN DETECZTED.
RECV: A BUOLEAN VARIABLE WHICH SHOWS WHETHER THE RECEIVE
MESSAGE ROUTINE SHOULD BE INVOKED FOR A PARTICULAR LIMK
AS A RESULT OF THE LAST ACTION OF TAE ACCESS CIONTROLLER,

¥/

e o e 2 e 7 et et 51 g bttt

fammormm S T

1
/%

¥/

/%

PDT:

PNAME:
STIN:
STATE:

OWNED:
. REQST:

REPLS:
PLIST:

QUE:

page 146

Subroutine COM (Continued)

-3

COMMON /PDT/ PNAME(10),$TTN(10), STATE(IO] yOWNED(10), REQST(IOJ, ’

REPLS(lO) PLIST(10),QUE(10)

THE PROCESS DESCRIPTUR TABLE
THE VARIALBE °‘PROC’ IS THE INDEX TO THIS TABLE.

TAIS 1S ALSO THE NUMBER OF THE COMMUNICATION LINK
IF THE ENTRY IS FOR A LOCAL PROCESS.

THE ENTRIES FROM THE BEGINNING OF THE TABLE

TO POSITION START-1 ARE RESERVED FOR INFORMATION !
ON THE REMOTE ACCESS CONTROLLERS,

THESE ENTRIES ARE ALSO INDEXED BY THE :
NUMBER OF THE COMMUNICATION LINK,

THE PROCESS NAME

THE STATION IN WHICH THE PROCESS RUNS

THE STATUS OF THE PROCESSING OF THE FILE REQUEST

OR FILE RELEASE FROM THIS PROCESS.
0 - NO PROCESSING 1 - INITIAL

2 = SUSPENDED 3 - RESUMED

THE FILES DWNEP BY. THE PROCESS. * A BIT LIST

THE FILE REQUESTED BY THE PROCESS., THIS IS AN
INDEX TO THE FILE DESCRIPTOR TABLE

THE NUMBER OF OUTSTAINING REPLLIES TO PREULCESSOR

LIST REQUESTS FOR THIS PROCESS.
THE UNION OF THE PREDL"ESSDR LIST REPLIES RECEIVED

SO FAR,
THE FILE REQUEST QUEUE. ‘

A LINKED. LIST .OF QUEUED REQUESTS,

COMMON /DIRCTY/FNAME(10),HOST(10),MODE(10),04NER(10),WAIT(10),

1

PL(10), IP(IO) IS(IO)
THE FILE DESCRIPTOR TABLE AND THE FILE DIRECTORY

DIRCTY:
) ‘ THE VARIABLE °FILE‘ IS THE INDEX TO THIS TABLE,
THE VAB&ABLES ‘FNAME® AND °HOST® FORM THE GLOBAL
AND LOCAL FILE DIRECTORY. THE REMAINING VARIABLES
FORM THE FILE DESCRIPTOR FOR THE LOCAL FILES.
FNAME: THE FILE NAME
HOST: THE STATION AT WHICH THE FILE IS STORED.
_MODE: _ THE CURRENT STATUS OF THE FILE, . L .
0 - FREE 1 = ALLOCATED 2 = DEADLDCKED
OWNER: THE PROCESS WHICH OWNES THE FILE. THIS IS AN INDEX
. TO THE PROCESS DESCRIPTOR TABLE
C . WAIT: A POINTER TO THE HEAD OF THE QUEUE FOR THIS FILE.
- PL: » THE PREDECESSOR LIST, A BIT LIST
©1P: THE IMMEDIATE PREDECESSQR LIST,. A BIT LIST
1S3 THE IMMEDIATE SUCCESSOR' POINIER. AN }NDE& TO

THE GLOBAL FILE DIRECTORY

LOGICAL*1 SUSPEN,LOCK,RECV

‘ Sybroutine EXEC

_“N i -
L .
\ . . N I - ‘\ i \ 5 -
/¥ EXEC,SF - '
THEMXECUTIVE -ROUTINE .
THIS A CYCLIC ROUTINE. IT ACCEPTS MESSAGES FROM THE RECEIVE
MESSAGE ROUTINE AND SELECTS THE SUBROUTINE TJ PROCESS THE
- ' MESSAGE ACCORDING TO THE MESSAGE.CODE. ' ‘
1 */ ' !
$INSERT COM.SF ' ,
LOGICAL*Y STOP _ : ’
RTN=1 , . ' ' :
CALL INIT s INITIALIZATION
.DO :
CALL MWAIT -+ 3ACCEPT A MESSAGE o
RECV=.FALSE, ‘ s -
- .SWITCHON MSG(1,PROC) : - -
C o .
C FILE REQUEST FROM LOCAL PROCESS
«CASE 1 . i f
STOP=,FALSE., g _ :
I':O i "é .
) .UNTIL STOP ,OR., I == 10 ' N
I=I+1 : : .
, .IF FNAME(I) == M5G(2,PROC) FVALIDATE THE -
4 STOP=,TRUE. FILE NAME
FI :
«RFPEAT : - , {
.IF sTOP -
\ . FILE=1 :
CALL FLREQ ;FILE REQUEST. v
+ELSE - ‘ ‘
RCODE=~2 ; REJECT REQUEST =
CALL SEND ;UNKNOWN FILE NAME
.FI
RECV=,TRUE., ;REMEMBER TO ISSUE A RECEIVE

«ENDCASE :MESSAGE ON THIS LINK

FILE RELEASE FROM LOCAL PROCESS

V-

STOP=.FALSE.

1=0
LUNTIL STOP ,0F, I == 10
I=I+1 ° . . '
" JIF FNAME(I) ‘=¥ MSG(2,PROC) }VALIDATE .THE
STOP=,TRUE. ‘ ' SFILE NAME
oFI ’ : '
+REPEAT - N
JIF STOP ' . .
FILE=I - .
. CALL RELEAS ;RELEASE THE FILE ,
.ELSE)
RCODE==2 ;REJECT THE RELEASE

CALL SEND ' $= UNKNOWN FILE NAME
oFI :

......

o

.CASE 3

.CASE_4

RECV=, TRUE:
. ENDCASE

3

Subroutine EXEC (Continued)

' REMEMBEJ TO ISSUE A RECEIVE -
sMESSAGE ON THIS LINK

FILE REQUEST FROM REMOTE PROCE§S

CALL REMRQ
«ENDCASE

FI1LE RELEASE 'FROM REMOTE PROCESS

‘FILE=MSG(2,PRAC)

A

.IF PNAME(OWNER(FILE)) ==.M5G(3,PROC) : VALIDATE

PROC=0OWNER(FILE)

CALL RELEAS
+ELSE

ERR=

CALL ROG
.FI
+ENDCASE

;THE FILE®S OWNER
a .

° tLOG ERROR

REQUEST FOR REMOTE FILE GRANTED

I=START~-1
5TOP=,FALSE,

+UNTIL STOP ,OR. I == START+LENGTH

I=I+1

LIF PNAME(I) == MS5G(3,PROC) iFIND THE
STOP=.TRUE. JREQUESTING PROCESS

Sl
+REPEAT
.IF STOP

FILE=MSG(2,PROC)

PROC=1
CALL RMGRN

{,zuéz
" “ERR=4
"™CALL LOG

F1
RECV=", TRUE.
+ENDCASE

JREMOTE REQUEST GRANTED

s LOG THE ERROR

-

.

C
«CASE 6
¢
c
C .
.CASE 7
C
C *
v .CASE 8
c
C
«.CASE 9
C
c ~
.CASE 10

AN

& i BRI S € e
P

~

‘CALL PROPGT

page 149

R T R M Sy I S

|
Subroutine EXEC (Continued) , - -

REQUEST FOR REMOTE FILE REJECIED

I=START=1
STOP=,FALSE.
LUNTIL STOP .OR.
I=I+1
.IF PNAME(I) == MSG(3,PROC)
STOP=.TRUE.
. WFI
« REPEAT
LIF STOP
FILE=MSG (2, PROC)
RCODE=MSG(4,PROCT* S,
. PROC=I .
' - CALL REJECT ,
+ELSE ,

ERR=4 | !
CALL LODG . - ' - .
.FI - ' . } i

RECV=.TRUE, : = -
-ENDCASE Y :

PREDECESSOR LIST PROPAGATION .

1 == START+LENGTH

JEIND THE -
;REQUESTING PROCESS

FILEsMSG(2,PRQC)
PRED=MSG (3,PROC) ,
PRLIST=MSG(4,PROC) , .
PREDECESSOR PROPAGATION

+ENDCASE

BOSS SELECTION (DEADLOCK BREAK)
FILE=MSG (2,PROC)

PRED=MSG (3,PROC)
BOSS=MSG (4,PROC)

-,
~

" BPRED=MS5G(5,PROC) ‘ ,

CALL DBREAK_
t N b .
QEN%:DCK\RECGVERY‘MESSAGE

FILE=MSG(2,PRDC) ‘
BPRED=MSG(3,PROC) -

BOSS=MSG (4,PROC)

CALL RECOVR

.ENDCASE

UPDATE IMMEDIATE SUCCESSOR POINTER °

ILESMSG(2,PROC) - . T -

LIST=MSG(4,PROC)

2ALL UPDIS: N
+ENDCASE - Sy

.....

TEADTISTIN G e a v gEuE s

e

™~

CALL CLDOWN
«ENDCASE
<ENDSWITCH
«.REPEAT. °
END

Subroutine EXEC. (Continued) =

¢ ‘ ' o .
) # C PREDECESSOR LIST REQUEST MESSAGE
: LCASE 11 ‘
3 LIST=MSG(4,PROC)
Y CALL PLRQST q‘
. .ENDCASE
i - C
s c PREDECESSOR LIST REPLY
¥ ___«CASE 12 ‘
i ‘ ‘ PRLIST=MSG(4,PROC)
£ PROC=MSG(3,PROC)
H CALL PLRPLY
%/// JENDCASE -

c . , -
% c - REMOTE ACCESS CONTROLLER STARTUP

+CASE '13 * .
CALL BEGIN b .
. .ENDCASE
C ”
C- ‘ REMOTE ACCESS CONTROLLER CLOSE DOWN
_ +CASE 14
' ERR=MSG(4,PROC)

wkvtquv;:-w‘—-‘»»‘ -

/*

¥/

/¥

/)

.

‘

" DATA SUSPEN, LOCK,RECV/S* FALSE,./

v ’ /

Subroutine INIT 4

suaaouriﬁe INIT
THE INITIALIZATION ROUTINE
ALL THE ACCESS CONTRODLLER VARIABLES ARE INITIALISED.
THE DECNET INITIALIZATION ROUTINES ARE INVOKED AND -
THE COMMUNICATION LINKS WITH THE REMOTE ACCESS CONTROLLERS
ARE ESTABLISHED. THE LOG AND LOGGING REQUIREMENTS ARE
ALSO INITIALISED.) -

SINSERT COM.SF - f
COMMON /LOGS/ LOGON,MSGS,EVNS,TABS .

| L : page 151

LOGS: THE BDOLEAN VARIABLES INDICATE THE LO GING REQUIREMENTS.

LOGON: LOGGING IS REQUIRED T/F
MS8GS: LOG ALL MESSAGES T/F
EVNS: LOG ALL EVENTS T/F
TABS: LOG ‘ALL <TABLES T/F

-, =
LOGICAL*1 LOGON,MSGS,EVNS,TABS
DATA LOGON,MSGS,EVNS,TABS/4*%.FALSE./
DATA YES/'Y 7/ | A

DATA FNAME/’F1°,°F2°,'F3*,'F4°, F5°,
1 °*R1',‘R2°,°R3',°R4*,°R5'/

DATA LOCAL,REMOTE/‘L1’,°L2'/

;INITIALISE DIRECTDRY
sFILE NAMES
TSTATION NAMES

DATA MSG/25%0/ ' ,
DATA MASK/"037/ A BIT LIST QF ALL LOCAL FILES \
DATA NODE,TASK/'HO’, ST*,4%" */

!

SRIN=RTN iSAVE CALLING ROUTINE
RTN=2 - : \ \
N=10 - ;. MAXIMUM NUMBER OF DECNET LINKS

WORDS=14421%N

: ; INITIALIZE PROCESS DESCRIPTOR TABLE
.FOR 1= 1 TO 10

PNAME (1)=0 , - :

STTN(I)=0 . , \

OWNED (1):=0 '

REQST(I)=0

STATE(1)=0 |

REPLS (I1)=0 S

PLIST(1)=0 TR :

QUE(I1)=0 f
. REPEAT

1

——

page 152
v b

Subroutine INIT (Continued) ' ' -

c , , 4 , -
coo. ‘ 3 INITIALIZE FILE DESCRIPTOR TABLE . ’
.FOR I= 1°TO 10 -
cWJIF I > 5 : ‘
HOST(L)=REMOTE .’ ; FIRST 5 FILES IN TABLE

.ELSE \ s ARE LOCAL
‘ HOST(I)=LOCAL ;NEXT 5 FILES IN TABLE . -
’ oF1 ‘ ; ARE REMOTE
' MODE(I)=0 , vt ‘)
OWNER(I)=0 ~ : :
WAIT(I)=0 .
PL(I)=0 [' ' iz
(=0~ . S
IS(1)=0 , , '
+REPEAT .

c s INITIALIZE DEADLOCK DESCRIPTOR FABLE : .
JFORI= 1 TO 3 . :
DFILE(I)=0 - .
DPRED (1)=0 - - ta
DBOSS(I)=0 , . .
* DREPS(I)=0 : '
DLIST(L)=0 . , .
. DSTAT(I)=0 ' . - : ‘
<REPEAT . . : - w

. INITIALIZE COMMON VARIABLES

FILE=0 . » ‘
PROC=0 ‘ \ , 7
DPROC=0 c ; 7
START=2 . . '
LENGTH=8 : . . , \
LEN=10 . S L |
'LACS=1 | S . ' o N ‘
DISPL=0 e , u

. LFILES=5 =~ ‘ T
DNUM=0 g R co T

(@]
-

@
.
: : '

Nl e - [EAPERN B . s e -, ot - .-
. v.;.,...ww-..;‘. P z.v-,:z.—u.,”. '4>;,, . .‘l”»‘,.«l‘vm_.n. ey

0o

~

CALL NTINIT(STAT,WORDS WORK)

page 153

7 INITIALZE THE NETWORK
JIF STAT(1,1) == |-

ITIALISE THE LINK WITH L2

TASK(1)=RE

PROC=1 -~

PNAME (PROC) =R

STTN(PROC)=RE
OWNED(PROC)=0W

i_/

USE LINK 1 FOR REMOTE ACTCES

OTE
TE .
NED(PROC).OR, (., NOT ,MASK)

CONTROLLER

[N

;FILES OWNED BY REMOTE ACCESS CONTROLLER
CALL NTCONW(PROC,STAT(1,PROC), ICON,NODE, TASK)
sCONNECT LINK

«IF STAT(1,PROC)
RCODE=13

==

]

CALL SEND

;s SEND STARTUP MESSAGE

-ELSE
RTTE(IZ,.LF) STAT(1,PROC)
f (° L1 FAILED TO INITIALIZE THE LINK TO L2,
.F o) . v

ERROR =°,I5)

,} $

. .

.

, SR
" ‘ : page 154
*,' N ¥ ‘
. ‘ Subroutine INIT (Continued) e
.C ; INITIALIZE THE LOG
’ WRITE(12, .LF) - : I
¢ - (°SL1 =4LOG 2 [Y/N]:*) S \ .
.o READ(12, .LF) ANS
i (R2)
o JIF ANS == YES
. LOGON=,TRUE. .
CALL ASSIGN(11,‘L1.DAT®) ' \
WRITE(12;,LF)
(*$L1 - LOG MESSAGE ? [Y/Nl:*)
, READ(12,,LF) ANS '
3 (a2) -
.IF ANS == YES
MSGS=,TRUE. oL ‘
S FI. ‘
WRITE(12,.LF) ‘
© ° (*$L1 - LOG EVENTS ? (¥/N1:°) R
: . READ(12,.LF) ANS o
‘ - (A2) : ~
, . JIF ANS == YES - Y
‘ , EVNS = ,TRUE, . o
i JFI1 ! .
&) WRITE(12, .LF) ;
’ - . (*sL1 = LOG TABLES ? [Y/N}:*)
3, . ‘READ (12,.LF) ANS . , v
£ v o (A2) : :
- JIF ANS == YES . .
. , TABS=.TRUE. o '
' . oFI - '
. WFI _ L o o)
CALL LOG s . Tl
WRITE(12,,LF)" .
_(* LY INITIALIZATION COMPLETE")
. RTN=SRTN : RESTORE CALLrNG ROUTINE
RETURN X ' .
. ¢ELSE ‘ .
. ERR=Y JOECNET ERROR L

WRITE(12,.LF) STAT(1,1) .
(* L1 FAILED TO INITIALIZE THE NETWDRK. ERROR =°,1I51 .
. STOP
- .FI
END .

I3

[4*/

, Subroutine f[NITZ:'

%

SUBROUTINE INIT ' . e . N
$INSERT COM.SF

THIS 55 THE INITIALISATION RDUTINE FOR ACCESS CUNTROLLERig;r

IT 1S/IDENTICAL TO INIT EXCEPT THAT IT DOES NIT ATTEMPT
CQNNECT A LINK WITH ACCESS CONTROLLER L. .

COMMON /L3GS/ LOGON, MSGS ,EVNS, TABS d
LOGS: THE BOOLEAN VARIABLES -FOR LOGGING REQUIREMENTS
LOGON: LOGGING IS REQUIRED - T/F A
MSGS: .LOG ALL MESSAGES : T/F n A
EVNS: LOG ALL EVENTS : T/F : .
TABS: LOG ALL TABLES ' CL}Q . T/F

. _LOGICAL*1 LOGON,MSGS,EVNS,TABS . A R

DATA LOGIN, Maqs EVNS/3*;FALSE.£ . ‘ -

'DATA YES/°Y '/ , S oo v

DATA FNAME/'F17, 'rz','F3',’F4','rs',o-~A ;REMDTE FILES

1 *R1°,%R2°,°R3°,'R4*,“RS*/ - {LOCAL FILES

DATA LOGAL,REMOTE/‘LZ','Lf'/

DATA SUSPEN,LOCK,RECV/3*,FALSE,./

DATA MSG/QS*O/

DATA MASK/"1740/ sA BIT LIST OF ALL LD"AL FILES
DATANODE,TASK/* HO', 'ST',4*' vy

SRTN=RTN . \
RTNZ2 . :

N=10 ;. MAXIMUM NUMBER OF DECNET LINKS
WORDS=14+21*N : o) ™.

@ -
: ~ 3 . INITIALIZE PROCESS DESCRIPTOR TABLE o,
.FDR I= 1 10 10 ; c
PNAME (1)=0
. STINCI)=0 -
< QWNED(I)=0 # : i
REQST(I)=0 - L R
STATE(I)=0 : , . :
REPLS(1)=0 ' e . R
PLIST(1)=0 o ST
QUECI)=0 I : oo
* REPEAT . ‘ . Lo e

-

S o . subrouti”ne‘INI'TlZ (Continued) o s

% oy :) ! i 0 '
k . . -) ? ‘ - . v ,
;' INITIALIZE FILE DESCRIPTOR rAaLg) ‘ L

r
4 - .FOR 1= 1 ruﬁ1o -
L JIF I >5 : .
HOST(I)=LOCAL - ;FIRST S(FILES IN rABLE
: e «ELSE o ; ARE REMOTE ™ .,
.- L . HOST(IL)=REMOTE NEXT S FILES IN TABLE ’)
. S FI . $ARE LOCAL T
; . MODE(I)=0 . C .- ,
h OWNER(I)=0 R T : . oo
J) ‘ WALIT(I)=0, - - o . .
4 oo PL(I)=0 o . _— '
a IP(1)=0 - ; . .
L 1S(I)=0 , r S < e
* .REPEAT . ‘ ’ S . o
c . - s S
c, - >3 INITIALIZE DEADLU»K DES»RIPTOR fABLE .
o .FOR I=1 70 3] . .
% S DFILE(I)=0" . - ; .
b "‘ npasu(;) =0 R e . o J ~
‘ v DBOSS(1)=0 .
& . DREPS(I)=0 ’ s . :>‘A\ - :
e T DLIST(1)=0 - ' , :
‘DSTAT(I)=0 . EEE A . oo
.REPEAT . .- L B

H

~e
‘

o U c 3 e,
’ " FILE=0 L B ' o :
' . PROC=0 , C, . . < ‘) h T\
b« s , D C:o ‘ ' - :
i ART=2" ~ _ e)
"+ LENGTH=8 o . ; : o
g LEN=10 - ‘ K
- LACS=1 . '
. DISPLSS. . ~ : . i
LFILES=S e . .
DNUM=0 ~ . = .. . : . ’\ﬂ

e . Subroutine INIT2 (Continued)
C - g £ L , .
.C) ; INITIALZE THE NETWORK
. _"CALL NTINIT(STAT,WORDS,WORK) p a_ »
e . «IF STAT(1,1) == 1 'x
c . N ' . : '
C. i ’ INITIALIZE ENTRY FOR L1 IN PROCESS TABLE

T PROC=1 ' ' - .
. PNAME (PROC)=REMOTE
e : STTN(PROE)=REMOTE
. OWNED(PROC)=0OWNED(PROC).OR,(,NOT,MASK)
. +FILES OWNED BY REMOTE ACCESS
’ C b) .) 7
C : H INITIALIZE THE LOT

/

WRITE(12,.LF)
(’°SL2 - LOG ? [Y/N]:°*)
- READ(12, .LE) ANS
(A2) -
. v+ "JIF ANS == YES
: LOGON=,TRUE.
. " : CALL ASSIGN(11,°L2. DAT‘)
» NRITE(12,.LF) . .
_ (’SL2 =~ 'LOG MESSAGE ? [Y/N]%')
READ(12,.LF) ANS . .
- (A2)
. <IF ANS == YES
' MSGS=,TRUE,
. . oFl s ,
WRITE(12,.LF) - - L=
) (°SL2 - LOG EVENTS ? [Y/Nl:s*)
)- READ(12,.LF) ANS v
(A2)- i
+IF AN YES) :
EVNS = ,TRUE, ' v
FI ’ s L
WRITE(12, LF)
(’sL2.~ LOG TABLES ?
READ (12,,LF) ANS ~
(A2)
"« IF ANS YES o <
TABS=,TRUE, T o
-Fl T -

FY/Ni:'),

. FI
CALL LOG . -
. ITE(1Z,.LF) '
7 L2 INlTIALIZATIDY/SRMPLETE')
RTN=SRTN
RETURN v
.ELSE - _ S
ERR=9 . '
WRITE(12, .LF) STAT(1,1) -

4

DA (* L2 FAILED TO INITIALIZE THE NETWORK,
. sTOP .. ., . . o
.FI . ,
END s ,

ERROR

e

CONTROLLER L1

#,15)

A ——

page 157

e PRSI S SUEDR P N S

" \

— g . .

g) : | " \ S 0 page 158 -

T2
‘ . /
. Subroutine MWAIT, - RSN
Ve
) » .)

o

’ SUBROUTINE MWAIT ‘
/% THE WALT FOR NEXT MESSAGE ROUTINE - '
THIS ROUTINE-RECEIVES MESSAGES ON THE DECNET COMMUNICATLON .
LINKS, IF NO MESSAGES HAVE BEEN SENT TO THE ACCESS CONTROLLER,
: IT WAITS FOR THE NEXT MESSAGE OR LINK CONMNECTION REQUEST.
¥ . . o . ,
. BINSERT COM,SF - ‘
SRTN=RTN ;SAVE CALLING ROUTINE
RTN=3 . . s
.IF RECV o
'\“1; +IF STTIN(PROC) == LOCAL .AND, REQST(PROC) == . ,

+IF OWNED(PROC) ==
C * CHOMMENT *¥%% CALL NTDISW(PROC,STAT(1,PROC)) DISCONNECT LINK

ERR=6 ,
a CALL LOG ;LOG THE DISCONNECT,

- R MSG(1,PROC)=0 ‘ .

. +ELSE
< . CALL NTRCV(PROC,STAT(1,PROC), LEN Ms3(1,PROC))

b ! JRECEIVE ON THIS LINK ; .

ERR=7 .
CALL LOG . . ;LOG RECEIVE ISSUED

oF1 \ \ . S
- .FI . ‘ \ . '
\ -ELSE . -
+ ° PROC=1 JRECEIVE FROM REMOTE ACCESS CONIROLLER
.. CALL NTRCV(PROC,STAT(1,PROC) H@N MSG(1,PROC))
JFI \

v .
- v)

r

page 159
\ : ’
. Subroutine MWAIT (Continued)
RCODE=0 ' N
) PROC=0, - -
;SETTING THE LINK NUMBER (PROC) TO ZERO ALLOWNS THE 7
s ACCESS CONTROLLER TO' WAIT FOR THE NEXT MESSAGE OR
CALL NTWAIT(PROC) $LINK CONNECTION REQUEST
.IF PROC == ; PROC = 0 IS A CONNECTION REQUEST
CALL NTCGTW(STAT(1,10),ICON,NODE,TASK) } GET CONNECTION INFORMALI
IF (STAT(1,10).NE.1) GO TO eoo «
© J1F TASK(1) == REMOTE -
1 PROC=TASK(1) - — 2
; vt
| CALL INACT sFIND INACTIVE ENTRY IN PDT
,CALL NTCONW(PROC,STAT(1,PROC),;ICON,NODE, TASK) sCONNECT LINK
IF (STAT(1,PROC).NE.1) GO TO 800 Co /
. «1F RCODE %= 0 ; RCODE'= 0_INACTIVE ENTRY FOUND
k : . CALL SEND JREJECT IF NO INACTIVE ENTRY IN PDT
» CALL NTDXISW(PROC,STAT(1,PROC)) ;AND DISCONNECT LINK
~ IF (STAT(1,PROC).NE.1) GO TO 800 ™~
.ELSE. z
o L ‘« IF PNAME(PROC) “= REMOTE ‘
D 'PNAME (PROC) =TASK(1)
> STTN(PROC)=LOCAL ; ~ .
oFI .
oFI ‘ .
CALL NTRCVW(PROC STAT(1,PROC) ,LEN,MS8G(1,PROZ))
JRECEIVE A MESSAGE ON LINK‘PRU”
: .FI
/% ' ‘ ,
A FAULT IN DECNET CAUSES ALL OUTSTANDING RECEIVES TO BE LOST .
WHEN A LINK IS DISCONNECTED., THIS 1S RECOGNISED BY A MESSAGE :
RECEIVED NOTIFICATION ON THE LINK WHERE NO MESSAGE wAS ACTUALLY
- RECEIVED, ALL THE "RECEIVES® WHICH WERE LOST ARE REISSUED.
x/ ‘ * .
.IF MSG({, PRDC) == 0 ' : : ‘ -t
_ SPROC=PROC , C
- '+ FOR PROC=1 TO 10 ‘ '
.IF OWNED(PROC) "= 0 ,AND, REQST(PROC) == 0. ,
- \ $ CALL NTRCV(PROC,STAF(1,PROC),LEN,M5G(L, PROC))’ '
~ .F
.REPEAT B e —
PROC=SPROC : NP \
C 2 ! .
c)
JFI
" IF(STAT(1,PROC),.EQ.,1) GO TO 900
800 ERR=9 ;DECNET ERROR ' ' : '
900 CALL LOG’ - _
* RTN=SRTN JRESTORE CALLING ROUTINE - - - TS
RETURN ' o ‘ .
END b .
- * ’ L
‘ : , -
s . \N_gl !
- , .
h ’) - \ fg‘-w~

/%

THE FIND ACTIVE ENTRY IN PDT ROUTINE T :
IF THE VARIBLE °PROC’ IS ZERO, AN INACTIVE ENTRY IS SEARCHED
FOR IN THE PDT. OTHERWISE, THE ENTRY FOR THE REMOTE ACCESS
CONTROLLER, WHOSE NAME IS IN *PROC’, IS SOUGHT, -
INACTIVE ENTRY: FILES OWNED=0 FILE REQUESTED=0
X/ s . -
$INSERT COM,SF
" LOGICAL*1 STOP /
‘ SRTN=RTN . ;SAVE CALLING ROUTINE «
RTN=4 . -
STOP=,FALSE. .
RCODE=0 '
.IF PROC == 0)) _
PROC=START~1 ;FIND INACTIVE ENTRY IN PDT ,
+UNTIL STOP .OR. PROCCS3 _LENGTH ‘
PROC=PROC+1 ' '
_ «IF OWNED(PROC) == 0 .AND. REQST(PROC) == 0,
STOP=,TRUE, ' ‘ : ’
. oFI '
\ +REPEAT
.IF .NOT.STOP . .
b2, RCODE==~4* : . "
PROC=LENGTH+1 . ' B
oF1 /
ELSE
I=0
JUNTIL .STOP .OR, I == START~1 ;FIND THE EVTRY FOR THE
toI=1+ o JREMOTE ACTESS CONTROLLER
. - _oIF PNAME(I) == TASK(1) ;PAMED IN 'PROC*
. STOP=,TRUE, - | -
Fl . - \
.IF STOP /
, " PROC=I y B .
= .ELSE ,
RCODE==6 -) sLAST LINK IS USED FOR
PROC=LENGTH+1 sREJECTION OF TONNECTION
oF1 b sREQUESTS . ’ /
CALL LOG L ,)
- RTN=SRTN ;RESTORE-CALLING ROUTINE
L RETURN .
) END \
/ ~
N /
\\ ‘: N M
- \ I [‘
. ‘\\\ '1 , {:} ‘ \ »
¥ ' 3
N ’ A

¢

~

Y

'SUBROUTINE INACT

page 160

§ ‘

Subroutine INACT

.

/%

¥/

’

K . .
. . *} . i
. ’ ‘ Subroutine REJECT

A

! L)
SUBRUUTINE REJECT
THE REJECT FILE REQUEST ROUTINE
" THE FILE ACCESS REQUEST IS REJECTED AND
FOR THE PROCESS 1S5 UPDATED.
ALL NON-LOCAL FILES ARE DELETED FROM THE
FIELD IN ITS PDT ENTRY,
THEN THE .ENTRY BECOMES INACTIVE ONCE THE

ALL ITS LOCAL FILES., ~
TINSERT COM.SEF
SRTN=RTN ;SAVE CALLING ROUTINE
RTN=S

REQST (PROC) =0

.IE STTN(PROC) *= LOCAL
OWNED(PRDC)-OWNED(PRUC) AND , MASK

JFI .

CALL SEND

CALL LOG ' o

RTN=SRTN ;RESTORE CALLING ROUTINE

RETURN ‘ -

END

s SEND REJE"fIOV

I THE PROCESS 1S REMOTE,

page 161\

[}

THE PDT ENTRY
*FILES OWNED®

PROCESS RELEASES

{DELETE ALL NON-DBCHMr", 1

;FILES OWNED BY

A'REMOTB PROCESS

et

MESSAGE

-

‘ ' page 162
Subroutine FLREQ-

. SUBROUTINE FLREQ .
e FILE,K REQUEST FROM A LOCAL PRUCESS
. THE REQUEST IS GRANTED IF THE FILE IS LOCAL AND FREE,
/ JF 'THE PROCESS OWNS NO OTHER FILES OR THE DEADLOCK TEST
PROVES FALSE, THE REQUEST IS QUEUED. A REQUEST FOR A REMOTE
FILE IS SENT TO THE STATION WHERE THE FILE IS STORED.

/%
~$INSERT COM,SF -
. DATA FREE/0/ ';FILE MODE=0 INDICATES FILE IS FREE
SRTNIRTN ;SAVE CALLING ROUTINE
RTN=6 : , ‘
TSSGCALL LOG :
.IF HOST(FILE) == LOCAL , ;
.IF MODE(FILE) == FREE ‘
CALL ALLOC ;ALLOCATE A FREE FILE
. ~JELSE . ' ,
. . .IF OWNED(PROC) == 0 ~
' CALL QUEUE }QUEUE THE REQUEST
+ELSE ‘ ,
CALL DEADLK ;DEADLOCK CHEZK ; r
.IF .NOT,SUSPEN
+IF LOCK
/ RCODE=-3 :REJECT DUE T3 .
\) : CALL REfECT .Poreumlhu DEADLOCK
Lo o CALL QUEUE $QUEUE THE REQUEST
- . .FI . '
- . .FI . ~ 1
, . oFI ‘ @k _ \
‘ L. WFI i |
.ELSE
CALL RQSEND: « jREQUEST FS% A REMOTE FILE
; LF1) [: .
- RTN=SRTN ;RESTORE CALLING ROUTINE ' L
RETURN .
END

porsy

.
"
.t

7%

e e g

gt

e

Shbroutine RELEAS

SUBROUTINE RELEAS
THE FILE RELEASE ROUTINE

THE F1LE IS DELETED FROM THE.PROCESS’S DT ENTRY,

IS REMOTE,
CONTROLLER. OTHERWISE,
THE HEAD OF ITS QUEUE, IF ANY,

‘$INSERT CZOM.SF

SRIN=RTN

RTN=7

AMASK=2%% (FILE=1)
CALL LOG

.IF HOST(FILE) == LOCAL
CALL ALLOCF
«IF .NOT. SUSPEN

OWNED(PROC)=0OWNED(PROC) ,AND. (.NQT, AMAS)

+IF STTN(PROC)
RCODE=1
CALL SEND
+ELSE

== LOCAL

; SAVE CALLING ROUTINE

" page 163

<

IF THE FILE

A RELEASE MESSAGE IS SENT TO THE REMIOTE ACCES§S
THE FILE 1S ALLOMATED TJ THE REQUEST AT

;UPDATE FDT ENTRY

;DELETE FROM
;PDT ENTRY
2ACKNOWLEDGE RELEASE .
; FROM LOCAL PRACESS

OWNED (PROC) =OWNED (PROC) . AND . MASK ' (
;DELETE REMOT FILES FROM PDT ENTRY IF PROCESS L[S REMOTE

i o FI
.IF WAIT(FILE) == 0
SPROC=PROC
PROC=WAIT(FILE)
WAIT(FILE)=QUE(PROC)
RECV=,TRUE.
CALL ALLOC
PROC=SPRUC
+FI ‘
«F1 '
«ELSE
RCODE=4

sALLOCATE THE FILE
¢ SAVE PROCESS INDEX

;RESET HEAD OF QUEUE

;s ISSUE RECEIVE ON THIS LINK
;ALLOCATE FILE TO HEAD OF QUEUE
;RESTURE PROTESS INDEX

¢
%3

oFl
+IF

w
'
oFl

RTN=SRTN
RETURN

END
§

e BIRE Y | SR

CALL SEND

OWNED (PROC)=0WNED (PROC) .

RCODE=1
CALL SEND

OWNED (PROC) ==
PNAME (PROC) =0
STIN(PROC)=0

PLIST(PROC)=0
STATE(PROC)=0
MSG(1,PROC)=0

&,

#RESTORE CALLING/ ROUTINE | SR

i SEND RELEASE MESSAGE TO REMOTE A.C.
sIF' FILE IS REMDTE k\\
AND, (NOT.AMASK) ;i DELETE ™FROM
! iPDT ENTRY

; ACKNOWLEDGE RELEASE

:F?UM LOCAL PRJCESS

INITIALIZE PDT ENTRY
$IF IT IS INACTIVE °

/%

>

Subroutine ALLOC : -

-SUBROUTINE ALLOC

1

THE ALLOCATE THE FILE ROUTINE

THE PRJCESS’S PDT ENTRY IS UPDATED TO SHOW THAT THIS FILE Is
OWNED, THE FILE®S FDT ENTRY IS UPDATED TO SHIN IT IS OWNED BY
THIS PROCESS, THE FILE GRANTLD MLSSAGE IS SENT TO THE PROCESS.:

%INSERT COM,SF

SRTN=RTN. ;SAVE CALLING ROUTINE
RTN=8 i '
AMASK=2*%%(FILE=~1) N~——-——¥INSERT FILE AS UWNED .

DWNED (PRJIZ)=0WNED(PROC) .OR.AMASK ;IN PDT ENTRY

REQST (PROC)=0 ‘ 4
STATE (PRQC)=0 N

OWNER(FILE)=PROC JUPDATE FDT ENTRY

MODE(FILE)=1 S

RCODE=1 -
CALL SEND
CALL LOG .
RTN=SRTN ;RESTORE CALLING ROUTINE
RETURN) . - ’

END

;SEND FILE GRANTED MESSAGE

¢ TR

" Subroutine SEND

\ 4 B .
SUBROUTINE SEND ' -) . -
‘ THE SEND MESSAGE ROUTINE:
THE MESSAGE IS COMPOSED ACCORDING TO THE MESSAGE CODE SUPPLIED
BY THE CALLING ROUTINE =~ °‘RCODE’, THE LINK ON AHICH THE MESSAGE
IS SENT = °LUN’ = IS EITHER THE LINK TO THE REMOTE ACCESS
CONTROLLER OR TO THE LOCAL PROCESS CONCERNED,

$LINSERT COM.SF

SRTN=RTN :SAVE CALLING ROUTINE

RTN=9 ‘ : ,
LUN=1 \ JLOGICAL UNIT NUMBER OF THE COMMUNICATION LINK
.SWITCHON RCODE *

REQUEST GRANTED

JIF STTN(PROC) == LOCAL
MSG(1,PROC)=RCUDE :
MSG(2,PROC)=FNAME(FILE) - - ' -

. LUN=PROC , !

ELSE ' : ‘

- MSG(1,PROC)=5 s

" MSG(2,PROC)=FILE
JFI - %
MSG (3, PROC)=PNAME(PRQOC) ' .-
LENDCASE ~ :

REQUEST REJECTED
«CASE =3,=5
«1IF STTN(PROC) == LOCAL
MSG(1,PROC)=RCODE
MSG(2,PROC)=FNAME(FILE)
LUN=PROC .
LELSE
. MSG(1,PROC)=6
MSG(2,PROC)=FILE
M5G(4, PRUC)=R"ODE

’ - \

JFI
MSG(3,PRUC)= PNAME(PROC)
-ENDCASE))
FILE NOT FOUND OR INSUFFICIENT TABLE SPACE _ °
.CASE -2'°4'-6 * .
- .IF SITN(PROC) == LOCAL ‘ C
" LUN=PROC
) MSG(1,PROC)=RCODE - -
LELSE S
MSG(1,PROC)=6 ’
MSG(4,PROC)=RCODE . ‘
B .FI e ‘ .

+ENDCASE

§

+CASE

© JCASE

+CASE

.CASE

«CASE

page 166

Subroutine SEN? (Continued) ~ .

\

]

REMOTE FILE REQUEST :
3 \ ‘ ‘
MSG(1,PROC)=RCODE
HSG(2,PROC)=FILE
MSG(3,PROC)=PNAME(PRQC)
MSG(4,PROC)=0WNED(PROC) o L
MSG(5,PROC)=PRLIST C
+ENDCASE . oo

REMOTE FILE RELEASE OR REMOTE REQUEST GRANTED o
4,5 .

MSG(1,PROC)=RCODE

MSG (2,PROC)=FILE - \ .

MSG (3, PROC) =PNAME (PROC)

.ENDCASE

PROPGATE PREDECESSOR LIST
MSG (14 PROC)=RCODE - . .
MSG(2,PROCY=FILE ‘ ‘ /
MSG(3,PROC)=PRED - '
MSG(4,PROC)=PRLIST A
.ENDCZASE _ - ' ’ \

BOSS SELECTION (DEADLOCK BREAK)

8 - e ' - N
MSG(1,PROC)=RCODE ‘)
M5G(2,PROC)=FILE . \
MSGC3,PROC)=PRED ' : o ,
MSG (4,PROC)=B0SS - : _
MSG(S,PROC)=BPRED . A S
LENDCASE * R - o

~x
DEADLOCK RECOVERY

MSG(1,PROC)=RCODE ~ . .
MSG(2',PROC)=FILE .
MSG(3,PROC)=BPRED -
MSG(4,PROC)=BOSS ' ..

"~ +ENDCASE ’ ’ R

i‘UPDME,IMMEDIATE SUCCESSOR POINTER , . ,

10 . : , ~

MsG(1,PROC)=RCODE ‘ .
, MSG(2,PROC)=FILE L . y

MSG(4,PROC)=LIST ‘ L ‘

+ENDCASE oo c ~ ' oA

i . -

S T T e T

RIS

o

e

toy

' Subroutine SEND (Continued)

‘

’ ~

- > ‘

c REQUEST PREDECESSOR LIS

.CASE 11 ‘ _jf} ~

‘ .~ MSG(1,PROC)=RCODE ° ~
MSG(3,PROC)=PROC
MSG(4,PROC)=LIST
JENDCASE : .

c PREDECESSOR LIST REPLY
.CASE 12
MSG(1,PROC)=RCODE -
MSG(3,PROC)=PROC S
MSG(4,PROC)=PRLIST ,
. .ENDCASE : ‘

©C - START UP MESSAGE

.CASE 13
MSG(1,PROCI=RCODE '

MSG(3,PROC)=LOCAL X
JENDZASE

c CLOSE DOWN MESSAGE

.CASE 14
MSG(1,PROC)=RCUDE
MSG(3,PROC)I=LOCAL
MSG(4,PROC)=ERR - .

" LENDCASE | L K
JENDSWITCH - »

CALL LOG _ . .
. CALL NTSNDW(LUN.STAT(I.PROC),LEN,MSG(I,PROCO) . .
JIF STAT(1,PROC).NE.1 .

" ERR=9 ; DECNET ERROR

CALL LOG

JFI - . B}
JAND., STTN(PROC) == LOCAL

.IF RECV K
CALL NTRCV(PROC,ST‘E(I,PRDC),LEN,MSG(I,PRO:)) ;
.FIL) ' : .
. RIN=SRIN 7RESTORE CALLING ROUTINE
RETURN ‘ : .
END

’ v

e e e T T

prppes v g e v e

"‘\

;RECEIVE ON THIS LINK IF

PROCESS LOCAL

7

SUBROUTINE PROPGT
. THE PRJIPAGATE PREDECESSUR LIST ROUTINE

THE VARIABLE

O

.

Subroutine PROPGT

‘PRLIST’ CONTAINS THE PROPAGATED LIST,
THE GRAPH, GIVEN BY THE IMMEDIATE S
ROUTE OF THE PROPAGATION.:

page 168‘

A PATH IN
OCESSOR P3INTERS,
THE DEADLOCK TEST 15 PERFORMED AT °

I8 THE

EACH NODE OF THE GRAPH BEFOURE THE PREDECESSOR LIST IS UPDATED.
A DEADLOCK IS .

OR THE FILE IS IN DEADLOCK MODE. THE PROPAGATION IS
SENT T] THE REMOTE ACCESS CGNTROLLER IF THE I.5, IS A REMDTE

THE PROPAGATION ENDS IF THE I,S.

DETECTED,
™ILE,

$INSERT, K COM.

SRTN=RTN ;SAVE CALLING ROUTINE

RTN=10
LOCK=.FALSE.

«UNTIL FILE® ==

SF

LOR,

i

HOST(FILE)

.OR, MOBE(FILE) == :
AMASK=2**(F1LE=~1)
AMASK=AMASK,AND ,PRLIST

‘ JIF AMASK "*=0
LOCK=,TRUE,

-~ +ELSE

CALL LODG

PL(FILE)=PL(FILE).OR.PRLIST

‘

?RLIST=PL(FILE)
PRED=FILE"

+FI
+REPEAT
.IF LOCK
PROC=0
BOSS=0
BPRED=0

AN

CALL DBREAK

"«ELSF FILE *=0

RCODE=7

CALL SEND

FI

RETURN
END

FILE=IS(FILE)

o

IS NULL,

“=LOCAL ,OR,

LJZK

A 4

sDEADLOCK IS DEIECTED IF THE
;FILE 18 ITS JAN PREDECESSOR

s UPDAIE

PREDECESSOR L1ST

s PROPAGAJE P.L. TO THE
i NEXT@NOODE IN THE GRAPH

¢DEADLOCK DETECTED

7START BDSS SELECTION

.AND. HOST(FILE)

RTN=SRTN ;RESTORE @ALLING ROUTINE

*= ‘LOCAL
$ SEND PRDPAGATION TO THE -
s REMOTE ACCESS CONTRILLER

P4

SUBROUTINE DBREAK

¢ INSERT 20M.SF
«SRTN=RTN
RTN=11

MODE(FILE)=2
.IF BOSS < FILE
BPRED=PRED,
BOSS=FILE
.FI
. CALL LDG
PRED=F ILE
FILESIS(FILE)
-REPEAT
.IF BOSS ==
DPROC=0
CALL RECOVR
.ELSE
RCODE=8 °
CALL SEND

FILE

+FI ‘.
*RTN=SRTIN
RETURN
END .

RS
J e

2

N ," - .
Subroutine DBREAK-

)
v
/

wer

.

THE DEADLOCK BOSS SELECTIDN ROUTINE =
THE BOSS SELECTION FOLLOWS THE LOOP IN THE GRAPH, THE BOSS.

1S THE HIGHEST NUMBERED FILE IN THE LOOP ACCIRDING ‘TO THE ~ -
 GLOBAL DIRECTORY, THE SELECTION PROCESS ENDS MRHEN THE. NEXT'
FILE 1S ALSO THE BOSS DR THE NEXT FILE IS REMITE,
CASE THE BOSS SELECTION MESSAGE IS SENI TO THE REMOTE .STATION.”

N - 8
o’

:SAVE CALLING ROUTINE

3

LUNTIL BOSS == FILE-.OR. HOST(FILE) n= LOCAL

s

°

IN THIS

- " ..
°

“

Lo

) g . ‘

Yy s SELECT BOSS BY HIGHEST
: iPOSITION IN DIRECTORY

Toan
.

{NEXT FILE IN LOOP & g °

~
/

-3 START RECOVERY’

$ THE REMOTE AC

;RESTORE CALLING ROUTINE

.....

t

.
>

' ;SEND BOSS SELECTIDN WESSAGE 10
CESS CONTROLLER

L%

a

s

-

e are Lo -« page 170

« B © o ¢ -~

] g ‘ Subroutine RECOVR
SUBROUTINE RECOVR :
THE DEADLOCK RECOVERY ROUTINE . &

THE RECOVERY STARTS AT THE BOSS., THE FILES OaNED BY THE OWNER
OF THE BOSS‘’S IMMEDIATE PREDECESSOR IN THE L30P, ARE DELETED
FROM THE BUSS’S IMMEDIATE PRED®CESSOR LIST, THE RECOVERY, WHICH
FOLLOWS THE LOOP, RECREATES THE FILE'S PREDECESSOR LIST FROM
THOSE OF ITs IMMEDIATE PREDECESSORS, IF A REMOTE PREDETCESSOR LIST
1S REQUIRED, THE RECOVERY IS SUSPENDED UNTIL IT IS/RECEIVED.—
WHEN ALL PREDECESSOR LISTS IN THE LOOP HAVE BEEN RECOVERED, THE

REQUEST FOR THE BOSS*S FILE, WHICH FORMS PART OF THE LOOP, 1S
REJECTED IN ORDER"TD BREAK THE DEADLOCK,

d

' " RINSERT COM.SF .
.SRTN=RTN ; SAVE CALLING ROUTINE L ,

RIN=12 .
.- «IF DPROC == B , ‘1CLOSE DOWN LF THERE ARE :
.IF DNUM > 2 ;>2 DEADLOCK RECOVERIES - *
ERR=8 3 IN PROGRESS ']
SALL' CLDOWN " » o . -
.+ELSE : " Co ‘ ‘
DNUM=DNUM+1 ‘
'DPROC=1 . ‘
, «UNTLL DFILL(DPROC) =0 ;SELECT °‘DLOCK’ ENTRY
o . DPROC=DPROC+1 ' ;FOR TH#HIS RECOVERY. ,
: » REPEAT v .
. oFI .
.FI : : /
.IF BOSS == FILE .AND. MODE(FILE) == " 3IF START OF RE;OVE#Q ,

IP(BOSS)= IP(BOSS) AND,.(.NOT.OWNED(OWNER(BPRED))) /
;DELETE FILES OWNED 'BY REQUESTER OF

.

‘oFI ; THE BOSS FILE FROM BOSS’S 1.P.L.)
«UNTIL DSTAT(DPROC) == 2 ,O0R. HOST(FJILE) ~= LOCAL :
.OR. MODE(FILE) *= 2 ¢«) .

.. LIST=IP(FILE) ‘ '

“ CALL UNION - ;FORM UNION OF P.L.°S OJF I.P. L{sr

", +1F DSTAT(DPROC) == 2 . .RECOVERY SUSPENDED)y, C g
, DFILE(DPROC)=FELE ‘ , :
. DPRED(DPROC)=BPRED. . -
. ' DBOSS(DPROC)=BOSS ¢ '
' CELSE : g -

.- PLC(F4LE)=IP(FILE). . .Recoven PREDECESSUR - Lxsr-a/
PL(FILEY=PL(FILE), oﬂ DLIST(DPROC) -
MODE(FILE)=1 ' s REMOVE FILE FROM nsnouoﬂx MODE

. CALL LOG. % o
" FILE=IS(FILE) . ©. § NEXT FILE IN LOOP
. DSTAT(DPROC)=1 - ¢) ,
.Fl ’ e ..: ¢ L ~a a
«REPEAT - S
/ .' i N . P R A.
i . r ‘ uA »
t
) ¢ & . + °

s

.
. ve

o« IF DSTAT(DPROC) "= 2

’ . ‘) |
/ - -
. AY . - \‘ -
~ o —
B b AV} R
{fubéoutiqe RECOVR (Continued)

9

_elF HOST(FILE) “= LOCAL ,
’ CODE=9
. CALL SEND- .
+ELSE ' ¢
. PPROC=OWNER (BPRED)
RCODE==-3
CALL REJECT
CALL DELETE

;REMOTE ACCESS CUNTROLLER

JREJECT REQUEST TO BREAK
; THE DEADLOCK

FI
DSTAT(DPROC)=0
DFILE(DPROC)=0
DNUM=DNUM=-1

. BOSS=0

* - BPRED=0

fRESET DLOCK ENTRY

T WF1

.

’

/

RTN=SRTN ;RESTORE CALLING ROUTINE

RETURN ot
END “ ?

-

Kt

5

page 171

;SEND RECOVERY MESSAGE TO THE

-

- ’
!
L -
o
('\
S
*
I
N »
AN |
)
»
-
A
\
! t
.t . -~
¢
- ; w

.
Lo
3 / -

/¥

*/

B g ° Subroutine'ﬁPDIS Y
/ -, . .

SUBROUTINE UPDIS, " -
THE UPDATE IMMEDIATE SUCCESSOR POINTER ROUTINE
THE VARIABLE ‘LIST’ CONTAINS A BIT LIST OF ALL FILES WHOSE

"7 7 IMMEDIATE SUCCESSOR POINTERS ARE TO BE UPDATED TO ‘FILE’.

. SE T

$INSERT COM :
AVE CALLING ROUTINE -/

.SRTN=RTN ;

RTN=13
_.FOR I = 1 0 LFILES . .
) AMASK=2¢*(I~-1+DISPL) " #IF A LOCAL FILE IS IN THE
AMASK=AMASK,AND,LIST v ;LIST, UPDATE ITS IMMEDIATE
«IF AMASK %= 0 CoL s SUCCESSOR POINTER
PRED=I+DISPL :
. . IS(PRED)=FILE .
. " CALL LOG :
N :
.REPEAT | . . .
RTN=SRTN RESTORE CALLING® RDUTINE » ,;
RETURN - " : . h
END | s ‘
L |
e [0 /o - L4
1 ' L - N
N M0 wlv(‘ ¥y ¥ n
/ o ’ Ve ‘ ‘§3 ‘1
! - " ¥ J" i \
4 g ’
. - ? .2 H ¥
- ". i ' *
| +
q
. . .) ¢
. ‘7 N\ “ .
' s A BN "'
~ H & \ "+ / “l
. L o
[» ~ : ~
L , y y
| - .
1§\ . , .
\ e B ! ;
l a N : 3 .
(\\ 's / . 4 . '\
L3 ‘ . i
s . . . ,‘.‘{‘ ~ S g A P S

3 . ‘Q
Q > | J
4 7 - B *
. ° _page 173 | |
8 AN .
- - 4 s . N K" l 3) ~ ﬁ' f £
” . Subroutine PLRQST o :
’ - . L)
nlig ’ .) . ‘
SUBROUTINE PLRQST oL ! |
/% THE SATLSFY THE PREDECESSOR LIST REQUEST’ ROUTINE

.THE VARIABLE °LIST’ CONTAINS A BIT LIST OF THJISE FILES. WHOSE - 4
"PREDECESSOR LISTS ARE REQUIRED. THE UNION OF THESE . PREDECESSUR' . l
LISTS IS RETURNED IN ‘PRLIST', THE REQUEST CAN 8E FROM THIS ; A
ACCESSOR CONTROLLER, ROUTINE °UNION’, OR FROM A REMOTE ACCESS ¢ .
~ CONTROLLER . L . S
i ¥/ ¢
%INSERT COM,SF
/ SRTN=RTN ;SAVE CA?LING ROUTTINE

RTN=14 , L 2 _ .
PRLIST=0 i v e ;;:
+FOR L = 1 TO LFILES g ’ Yo

AMASK=2%%x(1~1+4D1SPL) - ¢IF A LOCAL FILE- IS IN THE LIST
* AMASK=AMASK, AND,LIST ;175 P.L, IS RbQUlRED .
, ° .IF AMASK *= 0 ° L
PRLIST = PRLIST .OR. PL(I+DISPL)
FI . , § “ e ' . -
| :REPEAT o N : L
‘ . CALL LOG R ' . / ‘
L * JIF SRTN "= 19 ; UNION = RN 1§ .' ROUTINE UNION REQUIRES -
i ' RCODE=12 7 THE PRLIST,'UTHERWISE REQUIRED .BY THE
CALL SEND . s REMOTE ACCESS ;DNTRJLLER ‘.
.F‘/I ? .) ‘
RTN=SRTN ;RESTORE CALLING ROUT{NE” \ . G
RETURN ° i U o . -
END L t .,) p . .»:m., (.
S - b C . B
’ M‘\:) "L;‘l\ 3
) Q:’,? i a N . W o -
' K ¢ ,; l -
: A .
! 2 .
vz : |) o)
‘;§ .ﬁf
" — é ”
’ h n ’ n ! -
-~ ' ‘ /.1',‘ ‘ *
¢ . * e ‘v S0 x"
, |) k4 ot
Foo ' i . .
) : ‘ - ‘ : N e;‘. ! o
. ’u R) \% &
:/ . . ;,;?_%d' : "
;>: e . N ’ Los e
i . o o Lo o - .
’ e ! SRREN .
|) B . f; ‘. , ‘..0. ‘.‘h: "‘; H o
. " o' ‘) A A y *
".‘ . . h“: ¢ \ [3 * -
T RS , / b ¢,
K o o L"_t_' ’ R ..y
N L - U « s PR s "‘ . "*rf \
.;_;._ﬁ.m;.‘i;u‘_._“ > ii_\ . :{ :.:.u;.‘ R " n

/%

£/

© «IF PROC > 10

"'w|
LN

Subroutine PLRPLY

SUBROUTINE PLRPLY /

THE PREDECESSOR LIST REPLY RECEIVED ROUTINE ~

A, REPLY TO A PREDECESSOR LIST REQUEST IS RECEIVED. WHATEVER
PROCESSING MADE THE REQUEST MAY BE RESUMED IF ALL OUTSTANDING
REPLIES HAVE BEEN RECEIVED,

L

¥INSERT
SRIN=RTN
RTN=15

COM,SF
rSAVE CALLING ROUTINE

gINDICATES PL REQUEST BY DEADLOCK
DPROZ=PROC=10 ;RECOVERY DLOCK INDEX
DLISI(DPROC)3DLIST(DPROC).OR,PRLIST
' DREPS(DPROC)=DREPS(DPROC) =1 .
.IF DREPS(DPROC) == $RESUME RECOVERY IF ALL
DSTAT(DPROC)=3 REPLIES *HAVE BEEN RECEIVED
BASS=DBUSS (DPROC) - , ~ .
PRED=DPRED (DPROC) : =
FILE=DFILE(DPROC) . -
“ALL LOG
¢ CALL RECOVR
'FI - & , o " A, .
.ELSE 3P.L. REQUEST BY F1LE RELEASE PROCESSING
PLIST(PROC)=PLIST(PROC)..OR.PRLIST -
- REPLS(PRUC)=ZREPLS(PROC) -1 : :
.IF REPLS(PROC) ==
FILE=REQST(PROC) .- , /
STATE(PROC)=3 U 4
CALL LOG oy, .
“ALL RELEAS RESUME RELEASE PROCESSING

I . o - P .
.FI : Q ‘ »' . L Q) R .':

RTN= SRTN ios - o

~

RETURN @ P I ST

END : : —
. . . -
- . .\‘ * .
4 . " ‘ a Py . ' PR
. .)

/4\'

o g T,

2

¥/

page 175

P
SUBROUTINE DEADLK ‘
' THE DEADLOCK CHECK ROUTINE

THE UNION IS FORMED OF THE PREDECESSOR LISTS OF THE FILES OWNED

BY THE-REQUESTING PROCESS., IF THE REQUESTED FILE IS A MEMBER OF
THIS UNION,' THEN A POTENTIAL-DEADLOCK EXISTS, -

$INSERT COM,SF - ' : -
SRTN=RTN ;SAVE CALLING ROUTINE ;

RIN=16) - . .
LBCK=.FALSE.
SUSPEN=,FALSE,
LIST=0OWNED(PROC)
CALL LOG : _
CALL UN1IN .. ‘ ; BY REQUESTING PROCESS /

;FORM UNION: OF PL'S OF FILES OWNED .

+IF STATE(PROC) == 2°

SUSPEN=,TRUEZ : PROCESSING SUSPENDED
IELSE , 2
AMASK=2%%(FILE~1)
AMASK=AMASK,AND. (PLIST(PROC),0R.OWNED(PROC))
«F AMASK ~= 0 o s IF REQUESTED FILE IN UNION

. LOCK=, TRUE, - ;POTENTIAL DEADLOCK '
JF1 ' \ o :

FI ' .

RTN=SRTN ;RESTORE CALLIN ROUTINE S ,

RETURN. - - : :

END oy P

Y
P

i1

, =~ Subroutine QUEUE

SUBROUTINE QUEUE
THE PUT REQUEST ON THE FILE QUEUE ROUTINE
THE REQUEST 1S ENTERED ON THE FILE QUEUE, THE IMMEDIATE
SUCCESSOR POINTERS OF THE REQUESTING PROCESS’S FILES ARE
UPDATED TO POINT TO THE REQUESTED F1LE. THIS FILE’S PREDECESSOR
LIST IS AUGMENTED WITH THOSE OF THE REQUESTING PROCESS’S FILES,

A PREDECESSOR LIST PROPAGATION IS STARTED.

!

SINSERT COM,SF
SRTN=RTN ;SAVE CALLING ROUTINE

RTN=17

CALL LOG <

CALL ENTER sENTER REQUEST ON THE QUEUE
REQST (PRJIZ)=FILE ‘

. «IF OWNED(PROC) *= 0 jUPDATE 1,5, POINTERS' OF FILES
LIST= UNNED(PRUC) RND.MASK ;OWNED BY REQUESTING PROCESS
CALL UPDIS - co
LIST=DOWNED (PROC) .AND, (,NOT ,MASK) :

«IF LIST ~= 0 ;IF REMOTE FILES OWNED ° E
RZODE=10 :SEND 1,S. UPDATE MESSAGE TO. THE
CALL SEND ;REMOTE ACCESS CONTROLLER

.FI) ‘

PL(FILE)=PL(FILE) ,OR.PLIST(PROC).OR, UNNLD(PRO»)

;UPDATE FILE’S P.L. AND I.P.L. .
IP(FILE)=IP(FILE),OR,O4NED(PROC) /-
PRLIST=PL(FILE) .

"PRED=FILE ~ . , -

FILE=IS(FILE) - .

CALL PROPGT ; START PREDECESSOR PROPAGATION
FI : .

-RTN=SRTN ;RESTORE CALLING RUUTINE

RETURN , , :

END - ,

o

38

~

o 6 AR b e 4

,) ‘ : : page 177

Subroutine ﬁMREQ

SUBROUTINE RMREQ .
THE FILE REQUEST FROM A REMOTE PROCESS ROUTINE
THE FILE IS ALLOCATED IF IT IS FREE. THE REQUEST 1S QUEUED IF
"THE PRIOCESS OWNES NO OTHER FILES OR THE DEADLAICK TEST PROVES
FALSE. THE REQUEST. IS REJECTED If A POTENTIAL DEADLOCK EXISTS.

$INSERT COM.SF
DATA FREE/0/ > :
;SAVE CALLING ROUTINE :] ; .

SRIN=RTN

RTN=18 -

CALL LOG ! v ‘#p -

.IF MODE(FILE) == FREE JALLOCATE A FREE FILE |
CALL ALLOC :

.ELSE

+IF DWNED(PROC) == 0
CALL QUEUE

+ELSE
CALL DEADLK
«1F NOT,SUSPEN

- [
:oquf/rus REQUEST

JDEADLOCK CHECK

JIF LOCK . .
RCODE=- + $REJECT REQUEST DUE TO
) CALL SEND ;POTENTIAL DEADLUCVg\
- T -ELSE , o
4 CALL QUEUE ~ ;QUEUE THE REQUEST
F1 o - : N
F1 , o
JFI
.FI ' ’ ' .),
RTN=SRTN ;RESTORE CALLING PROCESS : g]
RETURN . , ’
END - : | . ' A
. ‘ : J

3

s

/¥

-

¥/

|

Q

Subroutine UNION

~

SUBROUTINE UNION' '

THE FORM UNION OF PREDECESSOR LISTS
*LIST’ CONTAINS A BIT LIST OF THE |FILES WHOSE

PREDECESSOR LISTS ARE REQUIRED, THE UNION IS REQUESTED EITHER
8Y DEADLOCK RECOVERY PROCESSING OR BY FILE REQUEST OR RELEASE
IF THERE ARE ANY REMOIE FILES IN

THE VARIABLE

PROCESSING.

) LIST REQUESTS ARE SENT TO THE REMOTE STATION. I
‘MAVE BEEN RECEIVED,

- STATUS
MAY CONTINUE, ‘

.
;o epes
ot

'$INSERT COM.SF

SRTN=RTIN
RTN=19 .
CALL PLRQST
.IF SRTN == 12

«IF DSTAT(DPROC) ==

;SAVE CALLING ROUTINE

"DLIST(DPROC)=DLIST(DPROC).OR.PRLIST T

3 - THE -FORMATION

;GET P.L.'S OF LOCAL FILES
;ROUTINE 12

page 178
o8
!
!
/
/’
j . - ‘ f

4

/7

d!B%INP

LIST, PREDECESSOR
ALL REPLIES
THE UNION

\\\Nf‘f\\;\

. . A
& .

4

RECOVERY ' ROUTINE °RECQVR’
;RESUME RECOVERY PROCESSING

+ELSE _
ALIST=LIST.AND,(,NOT.MASK) \ .
«IF ALIST ==
. “~ DLIST(DPROC)= DLI&I(DPRDC) OR.PRLIST
- .ELSE) . »
. LIST=ALIST .RLMUTE FILES IN LIST ‘
: DREPS(DPROC) = DREPb(DPRDC)+1 C
. . DSTAT(DPROC)=2 / ;SUSPEND PROCESSING
| - - . DPROC=DPROC+10 ,
. : - -RCODE=11, . $SENT P.L. REQUESTS
: S CALL SEND - ; TO REMOTE STATION
o) .?I . X . :
J .FI PO - ~ . 1
he . ' -~ \ i
¥ \ \ , . ,
o | - ‘ ¢
’ a \ N i
-) . N . {{
r —‘"‘\ . \/_',../\\ ;
' N .) 2 b ¢ \ ¢
T & K - T
. L ‘ Gy ‘
: | i i :(o -

.
LN ,

P i RN

fasd
-
—

\ ! page 179 - .

P Y
*

" Subroutine UNION (Continued) .
g 1
4 .)) N
~ - * l t
.ELSF SRIN == 22 ROUTINE 'ALLUCF® ='SRTN 22
, «IF STATE(PROC)= . 3RESUME FILE RELEASE PROCESSING - ‘
. R PLIST(PROC)= PLIST(PROC) OR.PRLIST :
' \ .ELSE ’
‘ ‘ ALIST=LIST. AQP (NOT.MASK) - .
4 ' «IF ALIST== :
‘ t PLIST(PROC)=PLIST(PROC),0R.PRLIST R .
. 'STATE(PRQC)=3 ; -
. «ELSE o - -
-) ‘ LIST=ALIST ' \
L. REPLS(PROC)= REPLS(PROC)+1
T y STATE(PROC)=2
» o ., RCODE=11 §SEND P.L. REQUEST
‘ . CALL SEND, ;T0 REMOTE STATION
o.FI .
.F1 -
+ELSE . ;FILE REQUEST PROCESSING
PLIST(PROC)=PLIST(PROC).OR,PRLIST .
. o , STATE (PRUC)=3 : .o .
A N FI ‘ , ot
CALL LOG : ' - .]
, , RTN=SRTN :) L o
. RETURN ,
* END ' \ o ’ .
. .)} ks / El .
£ . 1 _
a’ v 4_‘ ‘... v e e e ‘ . .. ‘. . . -
\ e . . d ’
i e ~ X ' Vs ES *
, .)
h . \ ' .. \ . .
I) ! |
I e) ‘ '
 — ¢ ¢
2 /~ : ‘ ' ‘ ’
i N :(.
. . ' '
4 ! \ " !
N ~ ~ ’@" e ‘V ; . .
v Ut A ;)
P) , ["
| ". > o -
' L}
~ / g \) - N /, . A
] L] A\
‘ ¢ P R R - 2D il <94‘Q!0.“;Q‘< ~ ‘
\ . w " v)) boe

x/

J

/%

N LREPEAT .

' page ‘180

Subroutine ENTER _
a‘\ '

" SUBROUTINE ENTER N

THE ENTER REQUEST ON THE FILE QUEUE ROWTINE "

THE VARIABLE ‘WALT’ POINTS TO THE HEAD OF THE .QUEUE FOR A FILE.'
THE TAIL OF THE QUEUE IS FOUND AND THE REQUEST IS ENTERED THERE.
. THE QUEUE IS A LINKED LIST OF PROCESS DESCRIPTORS OF REQUESTING
PROCESSES.

N | !

. » .
$INSERT COM.SF . N %
SRTN=RTN ;SAVE CALLING ROUTINE
RTN=20 \

.IF WAIT(FILE) ==
WAIT (FILE)=PROC
-ELSE
PGINT=WAIT(FILE)
JUNTIL QUE(POINT) == 0
POINT=QUE(POINT) . v

\\\\\\;}s QUEUE EMPTY?
YES - ENTER REQUEST AS HEAD

!NO - FIND TAIL

. QUE(POINT)=PROC JENTER REQUEST ‘
FI - "
QUE (PROC) =0 . ;RESET TAIL

,CALL LOG . ; l :
~ RTN=SRIN ;RESTORE CALLJING ROUTINE :
RETURN .
END] :
? - \.‘
' \ \ \
- \ ‘) ~
// ' \ i ‘-; .
. ’)
' - ' .g, ‘: e
1 \ y =~ ’ . -
\ ; o)
. D .
y - > N
! . o \) R
s f ’ ;’
o N \ —— E) % \‘
v ra - A .
> -
N ‘e \

Subroutine DE.‘LETE

'ﬁq"." '

/éUBROUTINE DELETE r

. THE DELETE A REQUEST FROM A FILE QUEUE ROUTINE

IF THE REQUEST IS AT THE HEAD OF THE QUEUE THE POINTER TU‘THE

‘) HEAD 1S RESET TO PUOINT TO THE NEXT IN THE QUEUE, OTHERWISE,
"y R WHEN THE REQUEST IS FOUND ,

THE POINPLR TO IT IS RESET TO POINT
TO THE NEXT ENTRY IN THE QUEUE. *

/*

¥/ . .
‘ $INSERT COM.SF . , ' '
SRTN=RTN :SAVE CALLING ROUTINE) v
RTN=21 :
- . JIF WAIT(FILE1 == PROC ' . ; 1S REQUEST AT HEAD OF QUEUE?
: WAIT(F1LE)=QUE(PROC) . JYES = RESET HEAD POINTER
- ‘ ‘ .ELSE '
o B POINT=WAIT(FILE) ;NO = FIND REQUEST
LUNTIL QUE(POINT) == PRUC .
POINT=QUE(PROC) to)
- +REPEAT \ _
QUE(POINT)=QUE(PROC) 77" {RESET POINTER TO NEXT IN QUEUE
.FI - - ’))
\ * QUE(PROC)=0 - .
CALL LOG :
RTN=SRTN ;RESTORE CALLING ROUTINE hE
" RETURN o ‘
END N : ,
N
y - . ”
-
's .
- b —_— i
. - -,
. 4 N : '%
» ¥ ¢

oeb ammmrmmreememaeesm K, '0.\'{

*L
|
|
|

X/

e ' . E
page 182

¢

-

T,
Subroutine ALLOCFN Lt ;

o N Y
SUBROUTINE ALLOCF -t
THE UPDAIE FDT ~ENTRY DUE TO FILE ALLOCATION quTINE
THE FILE IS ALLOCATED TO THE REQUEST AT THE HEAD OF THE QUEUE.
THE FILE'S PREDECESSOUR LIST AND IMMEDIATE PREDESESSOR LIST ARE
UPDATED AECORDINGLY, = NULL, IF THERE ARE NO MORE RE UESTS.ON -
THE QUEUE. IF THERE ARE, THE PREDECESSOR LISTS JF THE FILES
OWNED BY THE REQUESTING PROCESS AND THE OWNED FILES THEMSELVES
ARE REMUVED FROM THE FILE’S PREDECESSOR LIST. THE FILUES OWNED

BY TRE REQUESTING PROCESS ARE REMOVED FROM THE FILE’ I.P.L.

-
N

SINSERT COM.SF, . . K
SRTN=& ;SAVE CALLING ROUTINE
RTN=22

E. .

CALL LOG

JIF WAIT(FILE)

PL(FILE)=0 . :

& IP(FILE)=0 g o

f OWNER(FILE)=0 ¥ . ,
MODE(FILE)=0 | ; S
ELSE) N ‘ :
SPROZIWAIT(FILE)
“«IF QUE(SPRUOC) == 0

n
H
o
-
w
™m
-3
)}
o
-3
M-
<=
s
o)
(o]
=
<
|
[

:IF ONLY ONE AALTING SPRDCESS

L 9 &P (FILE)=0 . RESET P.LL. AND I.P.L. TO NULL®
‘ PL(FILE)=0 ‘ S
2 STATE(SPROC)£3 - v/
[y é,{ . “ . R l. . . \ N

~

e

L

/-, ’ ’ .) n N . . . page 183 R) :
¥ . |) . . "”; - ! g .) v.(y
! ! s ’ ot - o - s ’ ! - - ' R o © ™ L
: .. : T Subroutine ALLOCF (Continued) . I
.ELSE : _— rot o
LIST= UWNED(SPRDC) ' ol . ' = ’
'_ . CALL UNION ; FORM UNION JF FILES OWNED)
T .IF STATE(SPROC)== .PRO"ESbING NJT SUSP&NDED) - N
SFILE=FILE _?SAVE, FILE . ~ S
— FILE=0 g ¢ ; NULL FOR UPDIS ROUTINE C
- CALL upDIS ‘ JUDATE 1.S. POINTERS P9 NULL ’
1 : ; LIST=LIST.AND. (. NDT MASK) +IF REMOTE.FILES
' ,) .IF LIST ~= 0 , . 3ARE UWNED ’ -
7 /RCODE 10 i " +SEND UPDATE I.,S. MESSSAGE ¢
— 'CALL SEND , +TO REMOTE STATION ' .
{ , FILE=SFILE ' JRESTORE FILE , y f
o IP(FILE)=IP(FILE).AND.(.NOT.OWNED(SPROC)) ’ T « '~'
PL(FILE)=PL(FILE).AND,(.NOT.(PLIST(SPROC) ’
' <OR.OWNED(SPROC))) - .o o
:; DELETE FILES OwWNED FROM FILE’S P.L. AND I.P.L.. ‘
> HE DELETE P.L.S OF FILES QWNED FROM FILE’S P.L. | s
1 .ELSE s
L ' SUSPEN=.TRUE, * s SUSPEND RELEASE PRDCESSING
T , " I C ° .
; ‘ .FlI .= ‘ . : ST .
! ~ . .FI) . o . B _ ‘ . . .-
RTN=SRTN ;RESTORE CALLING ROUTINE s) b.,
RETURN SR g 4 . CL
END ; . ~ L)
- I N) .
! Q - " -)) " “I‘
. v "%‘ - 8 / .
u'..’ A . \ ’ 3 =~
"‘qh - i 9 Ok ;
. . v . "1 ["” - i
e ”' . \ :
‘. - ‘ o N '
. . h -
d . T |
; . e ‘
. / Lo Co- a '
o (Fj‘«_ v * ‘ ! » 22
3 ¢ . / IR \
¢ . & ' . | .
‘ t) @ ‘-“ & ' ’
.' v « -i - u\ .
. M ,‘ . . ’/, * " ‘I" " ‘n \
] : } ‘4 . :\ '." .' ,
- ' N ’ /s“@ LT o , o !)
- \I‘ ‘~ “" hd \ »‘2 ‘Q .' A.) ’ '5' ""‘ ’
. L] ”. - . .lfJ » ’ -, L \\‘
) T l'r vl . ! ! .i -
! hal !

i
// . f S \ \\\\\\\\\] - 4 , ¢ / ~
\ - C RN
~ Subroutine REMRQ _ /
., \ L4 . . / !
4
. A
’/
o - . \" e l ¥ - AN
~ ~ SUBROUTINE REMRQ '+ - * i |
1 /% - - - THE INITHAD REM&TE REQUEST PRU"ESSING ROUTINE ° '
3 ‘ THE PDT IS SEARCHED FOR AN EXISTING ENTRY FOR THE REMUTE
: . _PROCESS. IF NONE IS FOUND, AN INACTIWE ENTRY IS SOUGHT. ,
THE PDT ENTRY IS UPDATED FROM THE INFURMATION IN THE _MESSAGE -
: . AND THE ACCESS CONTROLLER’S VARIABLES ARE SET. .
*/
' $INSERT COM.SF :
{ . -« -~ LOGICAL*1 STOP ') N - , .
l * SRINSRFN ;SAVE CALLING ROUTINE - b
\r RTN=23 *) . 4
' REM=PROC: ;SAVE THE MESSAGE BUFFER INDEX
PROC=START~=1 S - -
; STOP=.FALSE.™ : ‘ . ™~
j +UNTIL STOP,OR, PREBC == LENGTH . - FLOCATE .ENTRY IN PDT
! “ PROC=PROUC+} ' . ¢ FOR THIS PROCESS
b .IF STTN(PROC) . == REMQTE, AND PNAME(PROC) == MSG(3,REM) y
| - ‘ STOP=.TRUE, . -
| .F1 o : - .
. ' +REPEAT - . - : e
‘ “ .IF .NOT.STOP e - v |
PROC=0) .. 3FIND AN INACTIVE ENTRY
A CALL INACT, ‘ : v
- FI ¢ " . Vs
PNAME (PROC)=MSG(3,REM). i} $SET PDT ENTRY AND VARIABLES
STTN(PROC)=REMOTE ' .| ?ACCORDING TO ENFORMATION

OWNED (PROC)=MSG(4,REM) © ;1IN THE MESSAGE /
REQST (PROC)=MSG(2,REM) ho- : :
STATE(PROZ)=1 -
PLIST(PRIC)I=MSG(5,REM) R ,
F1LE=REQST(PROC) ‘ . !

4

CALL RMREQ _'START FILE REQUEST PROTESSING
A CALL LOG — - \ (
N RTN=SRTN ;RESTORE- CALLING RUUT NE
’ RETURN .
N END N) ' ' :
. . | .
g . .
. N .
11 f h ’ v
e . 3 N . .
. (-;,- \| - . \ N

oy

e L - ! -
. b . ! .) - -
- - L
) N
7 .- -)
Tl , ' Subroutine RMGRN
i '
I R “ w ’ « . ~ -
RN) N N
.. ‘ s R

| ' SUBROUTINE RMGRN
, /% THE 'REMOTE REQUEST GRANTED ROUTINE

§ THE PDT ENTRY IS UPDATED TO SHOW THAT A REQUEST FOR A
i

$

~ REMOTE FILE HAS BEEN GRANTED, THE PROCESS IS NOTIFIED QITH
- A REQUESTED GRANTED MESSAGE. : oo)' ;o
¥/) . :
| SINSERT COM.SF =~ ‘ e . ;o
T SRTN=RTN ;SAVE CALLING . ROUTINE - ’ ™~
AR \ RTN=25 :\ . N -
AMASK=2*%(FILE~1)) - B ,
OWNED(PRIC)=0WNED(PROC),0R,.AMASK L+ UPDATE PDT ENTRY . ,
: & REQST(PRIC)=0 * ' ~_
b - CALL LOG s . -
: RCODE=1° . ;SEND REQUEST GRANTED MESSAGE B
CALL SEND +TO THE PROCESS . . :
RECV=-'FA[JkSE. h o s T N
. RTN=SRTN ;RESTORE CALLING ROUTIRE) - .
RETURN "~ R S)
| N - '
‘ - o B - .
&% : ‘ . 4
- n . .
! “
4 . t ! N
’ N .
\ . oa
\ t
. i | o) . . .
] . . v
3 ; .
' - !] ‘r "" '/h * \‘\'“
. "
[8 N s N /~‘ N .
v, N o
gy _ , - .
B \ :JF
L
\. ’ - .
‘". ? AR \ - R .) e e WL e et
. ') ~
o, ' /

P

T~ © | subrouttde Rbsaun

'\\\ . \ . . /-N ,‘ 1‘ . . ,
/ -+
. . ', - * ‘Cn N /
SUBROYTINE RQSEND ') S '
THE SEND A REMOTE FILE REQUEST Rﬁur1ua ' “f”fﬁ
" THE UNIJN OF THE PREDECESSOR LISTS OF THE LOC Ab FILES .

OWNED BY THE REQUESTING PROCLSS IS SENT AS PART UF THE
REMOTE RFQUEST MESSAGL. .

$INSERT bdM SF

SRIN=RTN ;SAVE CALLING ROUTINE . . ‘) ..
RTN=26 B -) .,
PREIST=0 , ,) ‘ . ‘ i
.FOR I=1 TO.-LFILES .
AMASK=2**(I+DISPL=1) : o 'FORM UNION OF P.L.S UF.

<IF (QWNED(PROC).AND.AMASK) ~= 0 _ “$LOCAL FILES OANED BY

PRLIST=PRLIST.OR.PL(I+DISPL)

,THE REQUESTING PROCESS

.FI . Y .
«REPEAT ’) X - : ..
REQST(PROC)=FILE. s UPDATE THE POT ENTRY
RCODE=3) %.“
CALL LOG oyt)]

" CALL SEND "t SERD REMOTE REQUEST TO REMUIE STATION)
RTN=SRTN ;RESTORE CALLING ROL}I‘INE’ ..
RETURN _ - N - :
END ' N o L , .
s 0 ” - . : ¢ ' . ¢ :) \ . .
LY 1)
& .
} + . . - / . '
c R
¢ v . N . '
<
L] , ‘ ; ‘l -~
\ . N .
~ ' {\',-.
\\\ . -
° AN
. .\'\\ .
\ e ~ N
. v i .
» + .\\ '
. . ™~ ¢ .
\\ » -

N

N
“ Y
‘ ~\~f««. " e rmion comans st | nd s e 3T e bR S bant et in ¢
) . ')

- . . ') I N I 7

‘ﬂ
"

s o

.
-

‘E _ SUBROUTINE CLDOWN ' C
| /%. . _ WTHE CLOSE DOWN ROUTINE o E
L A CLOSE DOWN MESSAGE IS SENT-TO THE REMDTE AZCESS CONTROLLER
{ JIF THE' ”LOSL DOWN WAS LOCALLY INITIATED.. . Y ... :
. x/ . 4 ") . ‘
oo %INSERT COM.SF v . N Vo
N SRIN=RTN ;SAVE CALLING ROUTINE . .o)
' © RIN=27 v - .
. JIF (SRIN ==1 .AND, STTN(PROC)- == LOCAL) .OR..SRIN == 12 g
COMMENT SRIN 12 1S ROUTINE RECOVR ;fhy
, COMMENT SRIN 1 IS ROUTINE EXEC - 2 o
S RCODE=14. _ ’ .)
' " CALL SEND . ; SEND CLOSE DOWN MESSAGE .
o .FI y R . - N
L. *.IF ERR °= 0) ‘ L :
P . ' WRITE(}2,.LF) LOCAL,ERR . e s
{ , . (X»A2,' CLOSING DOWN DUE TO ERROR ‘,QQJ i) .
FI l ,) ' L}
] e P L] n | y
| ' CALL LOG - ° .. o] o
WRITE(12,.LF) LOCAL™ . ’ clv s ‘
(" *,A2,° CLOSING DOWN®) . S
.IF LOGON ‘ iCLOSE .THE LDG 1¥ IT WAS OPENED - e
CALL CLOSE(11) ' X .
" WF1 L
O stae 3STOP PROCESSING'
. END : :
| - ’ .
0y \,\ > N
] - L]
- \ A ,:’ B s -)
».. = - hl . Al
o .) '\ _d R
-‘ ’ 1) -
-~
¢ \ A i * » * -
. , ~ - $ '
. o - .

-

r-—r—r—vr—-v-—-ﬁ—-—v———-—w——.-—-{v—v—f‘f—*,

T e

» -
—

" " ° SUBRQUTINE BEGIN : ' - .

o /% THE 'START UP ROUTINE ', .

| , FOR LG USE ONLY E
9-- " */ 'S . ' . R . s

*SRTN=RTN
RTN=28

\ ~ RTN=SRIN
. " RETURN M ,
END o Lo

N
)) '
. ' . .,
»
3 ' R
’
'
. 1
. ‘ N
- LI > o ! Z
. . . \ s -
1 : '
‘ ’ ¢ ' ’
{ R { . . -
! .
4 2
- ‘) A . -
5 .
. N
L] ‘. :
. . .
N « | v a ! ' -
- . ’ ! N .
* ’1 N '
~. * :
¢ i
-
.
"l
.
-
-
« 9
. f
-
- t '
9 -
a) - * ’
4 ‘
. —_ 4
e f .
REEEN .
. . s o ~
¢ . . .
. .
13 \
. 13
3 - . -
PER1 ~ A
. - t '
I' b
. .
. ¢ .
"
\‘ ” ’ ‘
!
\ e 5 '
. .
@ .
+ -
r ¢ ° ' -
» 'A » ‘I N
’ 1]
¢ ‘ * . *
' > ,
L} 3 - .
\ : . . .
v o
- -

‘S INSERT ZOM,SF - S
SAVE CALLING *ROUTINE

CALL LOG R
sRESTORE CALLING ROUTINE

o

'

.

L - - Subroutine BEGIN

e

Y

. -~
) ?
. “*n 4
-~
Ad
Y
! N
I‘ .
a
.
. -
A [
N
N 1
-
L4
. '
L4
*
)
& N
” !
.
o
o\
v
a
i
.
. t
J
L.
r
+
* @
° .
-
° ‘ -
& ’
*
[
' L8
-
v
L)
* v
.
N
1

f
v/ ..

SR e sy e €6 gt AW e o B |
N \

4 \

N A e e et Y T

- o

»
Sl PO, ST
.y .
i

-sUBREUTINE LOG \ '

T OB LN D WA e

Subroutine LOG .
'7 \- . . s . . . \-/ o ‘ . A}

THIS ROUTMJE LOGS THE MESSAGES, EVENTS AND TABLES AS REQUIRED '
BY THE ACCESS CONTROLLER, THE LOG F1LE NAME IS INITIALISED
IN THE INIT ROUTINE, : S .

' [4

SINSERT COM. SF J . .
COMMON /DIS/ DSLIST(10,2) v '/
COMMON /LOGS/LOGON, ﬂscs EVNS,TABS . :) s
LOGICAL¥1 LOGON,MSGS,EVNS, TABS N D
INTEGER NAME(3,30) - - -~
DATA_NAME/'EX' YEC’,.’ ','IN','IT',' LMW, ALY, T Y, '
#IN®, "AT*,°T %, *RE’,*JE’,"CT*, "FL*,"RE*,*Q *, .
IREU"LEO !Ast !AL' .LO"‘C C'OSEO'!ND"O "'
,PR.,.DP. 'GT' .DB' 'RE','AK."RE."CO.p‘VR'I .
'UP"'.DI’ ls] lpl:'o 'RQ."ST."PL'?"RP"'LY'l . 7L
-.DEO,'_AD' OLK,' OQul 'Eu0'OE ',"R‘M"'RE‘\"Q ")
PUN®, 2107, N *,EN', *TE", "R *, “DE’, 'LE", 'TE" o
'AL""[JD"'CF' '_RE-' 'MR"‘Q :,'RM','RE'»"":L n' .
'RM".GR',.NI ""-'-RQ"’SE"""ND"'CL"'DU."WN.' .
'BEQ I',"N o'- o'o '.-t'a '(: v'c,‘.\l'-o h)/ ;
- « 1 LOGON -)
WRITE(11,.LF) R}N (NAME(I“RTN) I= 1L3) o . -
(° *,12,%,3A2)
.IF EVNS) . .
- SWITCHON RTN . . e,
tCASE 1)

.
1 < ’

.IF ERR = ' AN
HRITb(ll,.LF) MSG(3,PROC)

.

o (9x,’ INITIALIZAPION OF. ',AZ,-,, LPILES ,'12)

‘ . (9X,'UNRECOGNIZED PROCESS NAME - *,A2) g
: I o o
.ENDCASE - : UL

.CASE 2 , =
-~ WRITE(11,.LF) LOCAL,LFILES -

" JFOR J=1 T0 10
*WRITE(11,,LF) FNAME(JJ HDST(J)
(9X,2(A2,X)))
. <REPEAT < . . - -
. +ENDCASE * s ’ ‘- :
LCASE 3 X :
‘ WRITE(II,.LF) ERR, RCODE PROC - . .
. " (9X,3(X,12),2(X,A2)) ‘_ < :
¢ .ENDCASE _ oL .
v ,CASE ¢ - . '
, WRITE(1I{;LF) paoc i L
"(9%X,X,12) T
C .ENDCASE - . .
- .CASE 5 , v b
WRITE(11,,LF) FILE,PROC,RCODE ¥
- (9%, 3(X,12)) ",
: .ENDCASE o : , : "

(9X,3(X,12), 2(x A2)1 ! P
-, - +ENDCASE . . o . ,
“ *) w’CASE 7) \& t '
. L . CALL DSPLST(OWNED(PROC),0) el
:) WRITE(11,.LF) FILE, PRD&,STTN(PRDC) (USLISE(I n, I 1,
(9X,2(X%,12),X, A2 X, 1011) - ,
\. .ENDCASE L . " N
. ./CASE 8 , R .
.. s CALL DSPLST(OWNED(PRDC) PL(RILE)) - /
.~ .7 WRITE(11,.LFY FILE, MODE(FILE) OWNER(FILE) PROC
TN ((DSLIST(1,J),1I=1,10)@i=1, 2) : .
o (9X,4(X,12),2(X, 1011)) o ’ * |
, ~ JENBCASE.~ L oA
A .CASE 10 < B .)
- . CALL DSPLST(PRLIST 01 . '
: WRITE(11,,LF) FILE,PRED, (DSLISTOI 1) I=1,10)
(9X,2(X,12),X, 1011) . N . .
; <ENDCASE ." ‘ * : . .t
.CASE 11‘. . - . ’
NRITE(II,.LF) FILE,PRED,B0DSS,BPRED
(9%,4(%Xs12)) - _ .
+ENDCASE i . S

: .CASE 12] S
" . CALL ' DSPLST(PL(FILE),0) . - *
, : , WRITE(1l,.LF) FILE, IS(FILE), MDDE(IS(FILE)):
LR A (DSLIST(1,1),1=1,10) . . o
/ . (9%,3(X812),X, 1011) \ : ol !
BN .ENDCASE o ,) A n
.CASE 13 _ ce . , o - N
et WRITE(11,.LF) FILE,PRED -+ | ’ , ’ . !
0 e ¥ . ' (9)(,2()(,12))« i . ' '.'-b " v ‘ } . -
. . LENDCASE . , o - : St]
- . .C{ASE 14 ’ &) P /-' . .« .) '
CALL DSPLST(LIST,PRLIST) . . - o
- . -* MRITE(11,,LF). ((DSLIST(I 9y 1=1, 10) 31 2)
- ~,,; o (9X,2¢Xx,1011)) ¢ \ T ‘b
. - JENDCASE . , o .
.CASE 15,20,21 ' et e L
: WRITE(II..LF) FILE, PRD” . ‘e -
. LT (9X,2(X,12)) . .
t *«ENDCASE Lo A

- .. .CASE 16 ‘\“\\;;;;;\; o
CALL USPLST(GWNEQ(PROC) 0) ' ,

' Tl WRITE(41,,LF) FILE,PROC, (DSLIST(I 1),1=1,10) e :
. . Tl 9K, 20%,12),X, 1011 -) . » &
. “ .ENDCASE r . : : S

P 4 3
x . @ ‘ -0, < ‘ . -
- . — . . 4
. ' e

-

.
. " v . 1 -
i :
- . i
- i . , P
, ,
° . Al k4

- "+ Subroutine LOG (Continued) ~

N -
/ '))) ~- ' '
o . . 9
. .

< .

o ¢ .ease 17 ° ¥ : a
WRITE(II..LF) FILE, PROC, WAIT(FILE) - ') :
. . - (9X,3(X,12)) / SR .
. , .ENDCASL C ' S ‘
.CASE’ 18 ‘ = ‘ s
. . WRITE(11,.LF) FIEBE,PROC, MUDL(FILE).STTN(PROC)
. (9X,3(X,12),%,A2) o
.ENDCASE . , s S
.CASE' 19) « SR ,
C ‘ . JIF SRIN == 12 ° 7 RECOVR = 12 : .4

: - o * CALL DSPLST(DLIST(DPROC=10),LIST) .
; : “WRITE(11,.LF) DPROC=10,((DSLIST(I,J)PI=1,10),J=1,2)
S - ©(9X,12,2(X,1011)) . : :
> © +ELSE . « o

Y .CALL DSPLST(PLIST(PROC), L;sr)
P . WRITE(11,.LF) PROC,((DSLISI(I n,1=1, 10),J= 1 2)
, (9X, 12 72(X,101I1)) . (\ ; .
_ © WFI . :
. ’ ;ENDCASE , : °. .]
.CASE 22 ' - - ", -

. » A
. .

CALL. DSPLSTIPL(FILE) 0)
WRITE(11,.LF) FILE, WA’LT(FILF) (DSLIST(I, 1) I= 1 10)

oo (9X,2(X,12),X, 1011) .
.. .LNDCASE ‘n ’ . .
. .CASE 23,24,25 LT Co
E - CALL D LST(D?&ED(PRDC) 0) .
§ . T WRITE(1™LF) FILE,PROC (DSLIST(I 1),1=1,10), STTN(PRDCJ
i . (9X,2(X,12),X/10I1,X,A2) i ,
\\\ , . JENDCABE - - .
s T L— PN -C‘ASE 26 ¢
R . . CALL DSPLST(OWNED(PRDC) PRLIST) . L.
WRITE(C1!,.LF) FILE,PROC, ((DSLIST(I, J) 1= =1,10),J=1,2)
‘ (9%X,2(X,12),2(X, 1011)). ‘ ,
: ’ .ENECASE = e T
‘ +CASE 27.: = ! L ’
s . .IF ERR == Lo
- o WRITE(ll,.LF) PROC, STAT(1,PROC) .
’ - (9X,I2,” DISCONNECT bRRDR’,li)
3 e ot < ELSE- - ‘ : x
—— S ' WRITE(11,.LE) LOCAL, ERR S R
] . ’ (9X,* CLOSE DOwWN OF **,A2;" ERROR =",12) ' ,
- ; .FI ' ' - .
o " . ' -ENDCASE .
co .EASE 28
' WRITE(11, ,LF) TASK(I) Y o .
3 ‘ o (9X,A2) . ’ R .
¥3 \ ENDCASE)
. : .ENDSWITCH, . . '

- -Y.FI ‘ .;

<
-
i

w

.o | , o _.

.IF MSGS ,AND, (RTN. == 3 OR, RIN == 9)
ZSWITCHON ERR - I
.CASE-6 g J .
: RN CALL DSPLST (OWNED (PROC), 0) / - “
‘ A WRITE(11,,LFY PNAML(PRDC) (DSLIST(I i),1=1,10) \
oo ? . (9%,A2,° DISCONNECTED *,10I1) . .
: ' .ENDCASE - x . ‘ ‘
.CASE 9 .
. WRITE(II,.LF) PNAME(PROC),STAT(I PROC) .
((9%, R2,° DECNET ERROR *15) . -
: .+ENDCASE -~ o 2 S ,
" WCASE 7 . ' ‘ ' .
~ WRITE(}I,,LF) PNAME(PROC) ,) :
Cs " % (9X,* RECEIVE FROM ' ,A2) "
. .ENDCASE
+DEFAULT ‘
WRITE(11,.LF) (MSG(I, PROC) 1z1,5),45G(2,PROC), MSG(3,PROC)
(9X,5(X,159,2(X,A2))
.ENDC ASE
<ENDSWITCH
w0 FI 7
IO - L : L ,
.IF TABS 'AND. ERR == 10 N . } N N
g .FOR I=1'TO 10 - ' ’ ¢ L :
A ’ v, CALL. DSPLST(UWNED(I) PLCI))
s - WRITE(11, .LF) 1,PNAMECI),STTN(I),REQST(I), (DSLIST(J 1),d= 1 10),

(X,12,2(Xx,A2},X,12,X,1011, 10)(2(A2 X), 4(12 X), lOIl)
-REPEAT , . i L]
ERR. 20 - ‘ S a
RETURN" , ‘ ~ . .. n ‘ " a
END S . '

.
it
i

!
|
|
0
1 FNAME(T), #gsr(xg JOWNER (1), MODE (1), wA1T¢I),15(1, (DSLIST(J}2) ., J= L, 10)

WFI " - T ' : '

o -
:

N
L}

| " .7 '. . Subroutine DSPLST

.
51

L A M -
’

t -
s LT ' e
¢ , \/‘"—' “ ‘ Y‘

THE DSIPLAY BIT LIST ROUTINE ~ . . :

TH1S ROUTINE IS CALLED BY THE LOG ROUTINE TO COVERT A BIT
LIST INTO A CHARACTER LIST OF CORRESPONDING ONES AND ZERUS..
E.G. LIST=23. DISPLAY=1110100000

IMPLICIT INTEGER (A<Z)' '+ .~ g . g
COMMON/DISA DSLIST(10,2) .-
.FOR I=1 TO 10 . S

AMASK=2%*(1=1) ’ : ‘ s i

A1=AMASK.,AND,LIST! :) X .) .

.«IF Al ==. 1 . oo
- .DSLIST(I1,1)=0 . T, i T ‘
i GELSE: ©oe : o

. - . . .

DSLISTC(I,1)=1 . E , '] o
.FI | . C"ﬂt‘\ o e :
A2=AYASK,AND,.LIST2 L < :) .
JAF-A2 =20« - ; Pa

s ’ so LIST(I’2)=O , - Y ’ .o~ - AN

- .ELSE§““ : . :
DSLIST(I,2)=1 ° : ,

s

WwFl

. , .) A 3
+REPEAT s -
’ L} . . 9 _—
RETURN : ‘ -) ’ o .
. . > . .

ENQ . . . i _— s

. e 1 ~ i . A <Y

- 3
s ’
7 L4
¢ 4
. -
* \ ' .
) o - LI ’
Al . .
0N
! \
. ‘ ‘ v
. () f - 3 .,
) i s . ‘
J, - . ' ~
. ! / <
-
. -
7 . -
-
e S O U,

- 1 -

2 . - . . - e s

» ~

R .
.
Lo v e e e e i it 1 B L e TR - e e e e .- . -
'
' .. f > g
. . . .
. ‘ . v S

' . o “d' .
SUBROUTINE DSPLS:;(LISII,LISTZ) .. ', \ ih. }' \

. .

9 Y

.. . o ° . R L
’ . - o page 194
a - . - :
ot Ce t R » ~
e . Subroutine’PROC, = , | . ‘
' . .0 . o ’ ?
~ l . X ' . i v v . .
7 IMPLICIT INTEGER (A<2) . - ‘ (-
/% PROC.SF <, , :
THIS 1S -THE USER PROCESS, - ' ’
THIS PROGRAM REQUESTS A PROCESS NAME FROM THE USER. |
~ IT THEN REQUESTS FIBE NAMES FROM THE USER, ‘
.. ' FOR EACH FILE NAME A FILE ACCESS REQUEST — :

IS SENT TO THE ACCESS CONTROLLER, IF A NULL FILE _NAME

IS ENTERED BY THE USER, THE PROGRAM RELEASES IIS FlLES.
AND" rLRqINATEs : e ‘ ‘ .
x/ v - A ‘ N .
INTEGER FILE(4) B . o . T
DATA BLANK/*® '/ Ty I "
RCODE=0 - ") - -
v NUM=0 : A _ -,
I=0° ’ ,/ . B . ’ -7
WRITELS, . LF) e T '
.+ ('SPRDCESS NAME ? :°) L -
READ (5;.LF) PNAME c - v
(A2) L SR \ s '
.00 \ Sy T T
WRITE(S, .LF) PNAME’ L \
. C*§',A2,° < FILE NAME ? ') e, . .
J READ (5 ’ Q'LF] FILEX . : N .

. . (K2, I N ;o) -
A . IF FLLEX == BLANK : 7 NULL ENTERED BY.USER
., BREAK - - . ‘ o s

) .FI) ! 3 M » '

CALL GETF (FILEX PNAME, RCODE)- ;FILE ACCESS REQUEST
.IF‘R’ODE 1 sFILE REQUEST GRANTED
) \I =1+ Tl P
‘Y ILE(I)=FILEX v
. . §R1TE(5,.LF) PNAME,FILEX . : :
X,A2,’ GRANTED *,A2). . . .l
<ELSE" ’ o
WRITE(5, .LF) PNAME,FILEX,RCODE .
(X,A2,° HAS '*,A2,’ REJECTED, ERROR=',I2)

C L WFL " S .
PAUSE T \ -~ C
.REPEAT, : - . e
L8 . ’ » . .
.) 4 .
;A
y
¢ 2 o -
- &
r
. S
! v . , R ;
s ' -~
2
“ \
.
- ° - (]
3
-~ - \ '-.—.'»— - - - -
Al -
e %

R .
e .

/

"L NoM=T i :

g

1=0 e T - . . .
SUNTIL I ==-NUM « ° ¢ RELEASE FILES
I=1+1 ' - . . T .
CALL RELF(FILE(I),PNAME,RCODE) ~ J\FILE RELEASE
. «IF RCODE == - s RELEASE’ SUCTESSFUL
) NRITE(5,.LF) PNAME,FILE(I) ©
(X,A2,° RELEASED %,A2) - ,
.ELSE _) "
. ARITE(5,.LF) PNAME,FILE(1),RCODE
(X,A2,* - FILE *,A2,* RELEASE ERROR *,I2).
tQF"I . . . , ~ . . {' g
- «REPEAT . ' '
PAUSE . .
STOP . - o
© END ' o . .
-8 ' /\ ’
¢ “ ") .
¢ - .
o '
-t .
. b
L)
I~
-~ - . - “/
- ' ' ,
« (J 4 ’ - ;
. o
A] -
. < B
. T e e i s
‘ : s .o : . ' '.“'
. ' . .]
T P

I

)
°

Pa— -

R et
N

x/

.

/7%,

, e
A r/ K) *
v s f p)
L ‘ . ’ page 196
L3 7 “ "
. ¥ .
: Subroutine GETF oL
~ 'Y . \ * ' g -
" : r T SNOR h |

. B X . . N . - L4

° - . o T, s T -

— . o N -
, \
l’ » .

SUBROUTINE GETF (FNAME,PNAME,RCODE) -
THE: REQUEST FILE ACCESS.ROUTINE

| THIS ROUTINE 1S CALLED BY A USER PROCESS 'WHI3H WISHES TO SEND
A FILE ACCESS REQUEST TO YHE ACCESS CONTROLLER, THE FIRST TIME
THE ROUITNE IS,CALLED, IT INITLALIZES THE COMMUNICATIONS WORK
AREA, IF THE NUMBER OF FILES CURRENTLY OwNED BY THE PROCESS IS,
ZERD,~ A-COMMUNICATION LINK MUST BE ESTABLISHED WITH THE ACCESS
. CONTROLLER sBEFORE ' THE REQUEST IS SENT. ONCE THE REQUEST IS SENT
'THE ROUTINE SUSPENDS ITSELF BY WAITING FOR A REPLY FROM THE
ACCESS CONTROLLER, THE.REPLY CODE IS RETURNED TO THE PRUCESS
WHEN THE REPLY IS RECEIVED OR A COMMUNICATIONS ERROR @CCURS.
THE PARAMETERS REQUIRED BY THE ROUTINE ARE?
FNAME: IHE NAME OF THE REQUESTED FILE
PNAME: THE NAME OF THE CALLING PROCESS _
RCODE: THE REPLY CODE VARIABLE ~ RCODE=1 = REQUEST GRAN

IMPLICIT INTEGER (A-Z) ' ‘ -
COMMON /VARS/ WORK(35),MSG(5), STATUS(?) NODE(3), FILES TASK().

VARS: THE VARIABLES USED BY THIS ROUTILNE
WORK: THE DECNET WORK AREA pe
MSG: DECNET MESSAGE BUFFER ‘
STATUS: STATUS OF THE ACTION ON THE "DMMUVICATIDN LINK
NODE: THE NAME.OF THE ACCESS CONTRDLLER S STATION
TASK: % THE, NAME OF THE ACCESS CONTROLLER
FILES: THE NUMBER OF Elgﬁs CURRENTLY. OWNED BY THE *ﬂr"
’ . CALLING Paocsss
o ‘ o X
\ ‘ hd ' E_{
o, s -
@ ¥
] - . , ' e . «
5 W ‘ ' R
— . ” » .
.) ~ ‘; > ° ' R
~ " \\/ : o] .
. .
‘J' - . ' 1]
oo > v #)
» "\) / 4
- = Y -
e ! “) ¢
.‘: N 2 '/
. 14
A . . !

e

N

Subroutine GETF (Continued)

‘ -
) LOGICAL*1. FIRST- <o ‘
» DATA NODE,TASK/'HO','ST’,* ‘',°L1*," *,* */
DATA FIRSI/.TRUE./ o B :
~ oIF FIRST . 3THE FIRST 'GLTF’ CALL BY THIS PROCESS
FYLES=0 : .
CALL NTIVIT(STATU553S NORK) ¢INITIALIZE DECNET WORK AREA
IF (STATUS(1).NE,1)Y GO TO- 800 e : .
. . FIRST=,FALSE, ,
. .FI : - . -
.IF FILES =5 " .
. ' CALL NTCONW (1,STATUS, o NODE, TASK) s ;CONNECT LINK WITH
2 IF (STATUS(1), NE 1) GO T0D.800 . ; ACCESS CONTROLLER
' .F1) ' A .
. M5G(1)=1 ~ o s
. MSG(2)=FNAME , R ’
MSG(3)=PNAME e , . e
"MSG(4)=0 .) I o
MSG(5)=0 ‘ T :
CALL NTSNDW(1,STATUS,10, MSG) * +iSEND REQUEST MESSAGE
IF(STATUS(1).NE.1) GO TD .800 ' . >) -
CALL NTRZVW(1;STATUS,10,MSG)" JWAIT FOR AND RECELVE REPLY
IP (SBATUS(1).NE.1) GO TO 800) y -
-RCODE=MSG (1) !REPLY CODE .
- IF(M5G(1).EQ.1) FILES= FILES+1 “ L. ’
RETURN , , , *
WRITE(S, ,LFY PNAHE,STATUS(IJ : , . . \
"(X'Az" DECN.QT' ERROR ',]5) 0, "' ' =
RCODE=-9 s ugcusr ERROR S '
RETURN LT C .
END] ‘ ; : . '
‘;j&-":j;ij~‘f. : i . T . :
\'ﬂ*"‘&;&\ ' C ' ' S s
- E\\‘)\\: Y - . Y
"T—-u i . ‘ * . ’.\.-*\\“‘ _’,\“;\ .
. & - ' o
- e ’ a‘ :6 /g,-'
@ (' . o °.;."
e 3 N “ M \ . o
- - ' ./“) -
~ - - 2
. n" - - r (4 " ‘;:5?; : b

‘ - . : . v - page 198
: . P > - -
7 ‘/\. * , . > ..
! ' - Subroutine RELF
f \\ L ’ ; ,‘/.:"."o : .)
: tei o . f
° = 1) . ¢) tt -
J .SUBROUTINE RELK ~(FNAME, PNAME ,RCODE) ")
/¥ THE RELEASE FILE ROUTINE ’ ‘
THIS ROUTINE IS CALLED BY A PROCESS 'WHICH WISHES TO SEND A FILE
RELEASE MESSAGE TO®THE ACCESS CONTROLLER, THE RETURN CODE
INDICATES WHETHER THE RELEASE MESSAGE #AS SENT SUCCESSFULLY.
%/ . . ' T,
IMPLICIT INTEGER (A=2).
COMMON /VARS/ WORK(35),MSG(5),STATUS(2) ,NODE(3),FILES, TASK(3)
/% &) T VARS: THE VARIABLES USED BY -THIS RQUTINE
© WORK: DECNET WORK AREA e
b MSG: DECNET MESSAGE BUFFER- . -
~ . =". 'STATUS: THE STATUS OF THE ACTION ON THE COMMUNICATION LINK
‘ - .NDDE: THE NAME OF ‘THE ACCESS CONTROLLER*®S STATION
, TASK: THE NAME OF THE ACCESS CONTROLLER <o
"FILES: THE NUMBER "OF FILES CURRENTLY OWNED BY THE
‘ . CALLING PROCESS
*/ .
. NSE(1)=2 - T
‘MSG(2)= FNAME ‘ N
b " MSG.(3)=PNAME : , .
MSG(4)=0)
- MSG(5)=0 ' . -
. CALL NTSNDW(1,STATUS,10, MSG) . SEND fTHE RELEASE MESSAGE .
IF(STATUS(1),NE.1) GO 10 '800 ‘ : ‘
‘ -CALL NTRZVW(1,STATUS,10,MSG) sRECEIVE ACKNJAWLEDGEMENT
) IF(STATUS(1).NE,1) GO TO. 800 ' .
- RCODE=MSG(1) ' .~ JREPLY CODE
FILES=FILES=1 , .
RETURN ‘ .
800 WRITE(S,.LF) PNANE, STATUS(I)
(X,A2,* DECNET ERROR *,15) L. .
, RCODE=~9 o » 3 DECNET ERROR . P
. RETURN - :) o ‘ :
END W ‘ .
4 . ot '. ' ‘- ,
Y ’ 1
t : . |
o TTe— '\\-w\ K ,l .
L — ;> N \\'\\'_:
g - . -«)
'H 4 ’ ¢ .
St * .
| ‘ :

e a Subroutine N{WAIT
THIS IS A DECNET ROUTINE

_ e,) '
| : NTWAIT (lun fistatiy °

< .
—
~.

Any task can ‘call NTWAIT to
calling task resumes
transmitted or, received over a specified LUN, (2) the next

.-message is transmitted or received by the calling ﬁask
regardless of the LUN, or (3) a request for a,logical link
connection is made by another task. ~

Arguments

lun is either the 1og1ca1 unit number of a link, assigned by

the calling task in a call to NTCON[W], or a variable -

set to 0" (zero) by the programmer before calling NTWAIT.

istat . is the name of -the

- integér array) to be examined by NTWAIT to check..for

) completion on the associated LUN. If the argument lur s
“a variable set to 0, this argument must be omitted.

- ¢ -

re \
{
. e
oy o -
)
4
“ .]
i
A
.
~
AR 2
T~
¢
»
> \
L — \ (:‘J Q
N [
¢
!
- P \s:
v
-, . &
° ' . q . .
. ’ »
. 1
\
° a
e, R
. ‘ A
7 N\
\w‘\‘ I \ AN] .
— .) '
T T e—
— , s
o S) ‘\\‘\ g \
——— X
. b L A s
: t
N N q T

. - - 'page 199

suspénd its execution. The
execution when (1) a message is,

status block (a 2 -word

H

L 3
§
A
—
!

< L - Subroutine NT;?S[gl. - \ './/< j

« _* THIS s A DECNET ROUTINE .

~ -

Pt A . ‘ NTDIS[W] (lun,istat,[iword],[iarray]).

%

\

Once all messages have been transmitted, e;ther tasﬁﬁaan

L]

e e

call NTDIS[W] to disconnect the logical link. L
N .
Arguments' . AP ,
gL S lun is tﬁg\I5ETEEI‘ﬁﬁTt—number—of”the—iink, assigned by the . ~
o 1 . calling task in a call to NTCON[W]. . N
3 i istat is the name of the status block (a 2 -word integer
! ; : array) to contain the completion status on return £rom :
i . NTDIS[W]. R g
N . dword 1is an integer Qpecifying the number of words in the
- E , argument iarray. This argument must be less . than or ‘
equal to fdur. If no user information {s to.be passed to
the remote task, this argument can be omitted. - Lo
: - A iarray 1is the name of the integér array containing user
i S ' information to be passed to the destination task. If 30 ’
' ~ user information is to be,passed to the target task, *
‘ .this argument can be omitted
‘W indicates that. control is-pdt/ returned to the calli g
task until the required. action has been completed or gn
erf'?\dbcurs. , I
—\ PR RN
— -~ . .
3 LIS
} - h ‘ —
) ~ ‘ [l
- - . 5
[' 0 L)
* * -
‘ ‘ - . \‘x .\;\
) o] N\\"\.
~..
~
! %) ‘\
N R .

T -

Subroutine NTRCVIW]
‘ THIS IS/A DECNET ROUTINE

!

NTRCV[W] (lun,istat,ibybes,iarray)

Arguments: ,

. (4 . - 4

lup isMhe logical unit number of the link, assigned by the
target task in a call to NTCON[W].

istat - is the name of the status block (a 2-word integer
array) to contain the completion status on return from
NTRCVIW]. , ‘

ibytes 1is an -integer specifying the number of bytes to be
received in the argument iarray ‘This argument must be,
.greater than 0 (zero). *

iarray is the name of the integer array to contain tha
message. ,

W 1indicates that control\ is not returned to the calling
task until the required action has been completed or an
-error occurs.

e e oo e
.

: Subroutine NTSNDIW] . \:\
.0 . . THIS IS.A DECNET'ROUTINE = _ . Lo

Y NTSND[W] (lun,istat,ibytes,iarray)

The source t;:& must call NTSND[W] td\send,a message to a

target task. .

Arguments:) , .

o

-

lun 1is the logical unit number of the link, assigned by the
source ;task in a call to NTCON[W].

is the name of the status block (a 2-word integer array) to
contain the completion status on return from NTND[W].

ibytes is an integer specifying the number of bytes in the

argument iarray to be transmitted. This argument must be

greater than 0 (zero).

darray is the name of+ the integer array containing the

message to be transmitted: ..~

W. indicates that- control is not returned to the calling ..

task until the required action has been completed or an
error occurs. ‘ . .

- s

&

Y

4

i
{
i
|
i
1
|
,

/\‘) ‘ : .
-

Subroutime NTINIT

A 4. THIS IS A DECNET ROUTINE

- NTINIT (istataiword,iarray) i

Both the source and the target tasks must call NTINIT (once
‘and only once before any. logical li7ks.9an be requested).
Arguments:

P
1Y

istat is the name of the status™ block
array) - to contain the completion status on return from
NTINIT. -

jwords is an integer

1ndicating the number of werds in- the
array iarray. This argument muist be at least (14+421n+m) .
where n is the maximum number of logical -links to De
. used by the calling task at any one time for intertask
, communication, and m is the largest®record "size to be
a;cessed by the calling: task for DECNET-11 file access.
If DECNET=11 file acc

ess is used by the calling task,
iword must be at least 50 (decimal). S .
“farray 1is

the name of an integer array containing a

(a 2-word ~integer

- t least
(14421n+m) words. .

s .

A

i : . . : Pages204

§ . . ' ‘," . ? : ' .
' . . - -& . " . £) .

| Y . K . - ' < '
; AN Subroutine NTCON[W]. - -

¢ . e L 'THIS IS, A DEENET ROUTINE «
. ‘ﬁ* ‘ - -~ . - -
A ©+ NTGONIW] (lun istat,icon,node, .
. ' g [taSk] [iobj] [1uic] [iwords]) e

‘ ’ » x'.' o . . ‘A.‘~ . "“r
; * Arguments: " ') >

Fa

i . < = logical 1inK. This number isg used after-this procedure
o ' call by both the source and the target tasks to refer to
! this link. The LUN assigned by the source task.neéli not
- ' be th® same as that assigfed by the target task.
% ' istat is the name of the status.block (a 2-word integer
rdy) to contain the completlon status on .return from
TCON[W]. . ~
\/_icon 1s the logfcal link conhection number. For the initial
request by the source ,task’ to request a 1link, ¢this
: ~argument must be 0 (zero). To. accept the link, the
| ta?aet task must specify the value returned in the
i arg ment icon bysthe NTCGT[W] subroutine.
‘ * . . node a 6-character .(or less) ASCII string. The sou}ce
task must specify the node name of the target task. The
‘ . target task must specify the node name of the specified
. - .task, received in a c¢all to NTCGTIWI.

task must . specify the name of the target tdsk. The

targeb-task must specify the name of the sgurce task,

i . . received in a call to NTCGT[W]. If the object type is a

S o - - task, this argument should be%omitted. .

iobj is™ the name of a 2-word ihiteger array cont3ining Yhe
objkct type code.

‘iuic is the "name of a, 2-word integer array containing the

— ° o

g ' - target task. The target task must’ specify the UIC of the
source~ task, If this argument ‘is omitted, NTCON[W] uses
A the UIC of the callking task.

iwords i an integer specifying the number of words in. - the
' argument iarray. For the sourcé task, this argument must
be less than or equal to four, For the target task, this,
argument, if specified, muSt be¢.0 or 1. If no user "
information is, to be passed this argument can be
omitted. :
.. W indicates: that control is not returned to the calling
task until the required action has been ‘completed or an
error occurs. . - /

—)
- o , N
¢ . < -

. .
+, -~

.f Iun L}!fﬂz'logieal unit number (LUN) ‘to 'be assigned to the .

task is a 6-character (or less) ASCII string. e sourcel

octal UIC. The source task must specify the UIC of the -

L (1144

—

a
°

» .

-

B.1 Message FormatS'for Messages between Access Comggollers

\

4

‘_——KPPENDIX B

Messaée Formats

a

B
1

MESSAGE CODH FIELDS
v i » >, . N
REMOTE FILE 3 |[FILE |PROCESS FPLES PREDECESSOR
REQUEST ‘) NAME OWNED LIST
REMOTE FILE 4 [FTLE |PROCESS NOT USED NOT USED
RELEASE > INAME / :
Iy - S
REMOTE REQUEST 5 [FILE |PROCESS NOT USED NOT USKD
.GRANTED, . NAME ‘
REMOTE REQUEST| 6 [FILE |PROGESS RELPY NOT USED-
REJECTED - NAME CODE | |
PREDECESSOR .| 7. [FILE |PREDECESSOR| PREDECESSOR|NOT USED °
PROPAGATION , ' .LIST .
BOSS 8 [FILE PREDECEéSORiBOSS BOSS'S .
SELECTION e ‘ . PREDECESSOR
DEADLOCK . 9 [FILE [Boss's ‘' |Boss 1 NOT USED
RECOVERY PREDECESSOR .
UPDATE I.S. 10 FILE |NOT USED \||FILE LIST |NOT USED
M v (IoSo) ~ ° . N

PREDECESSOR 11 INOT |PROCESS FILE LIST |NOT USED
LIST REQUEST |} |USED -
PREDECESSOR |{12 [NOT |PROCESS PREDECESSOR| NOT USED
LIST .REPLY USED LIST :
START UP 13 INOT |ACCESS NOT USED- |NOT USED

|uSED. |CONTROLLER .
CLOSE DOWN 14 [NoT |ACCESS ~ |ERROR . |NOT USED °

‘ USED [CONTROLLER |CODE ‘

R

e e @ P ——— U T

\

. ' b, 0 i
B.2 Message Formats for Messages between user processes and

b

))
% - . . ' page 206
\

the Access Controller in the same stdtion..
. ‘ { ‘ . ’

MESSAGE cCobg ‘ FIELDS ~
| PR
'FILE REQUEST| 1 [FILE | PROCESS NOT USED | NOT USED
f NAME | NAME \]
FILE RELEASEY. 2 [FILE | PROCESS | NOT USED | NOT USED
’ TTSNAME,| NAME

! * ‘ < ’ .¢
FILE GRANTRP| 1 'FFILE | PROCESS "| NOT USED | NOT USED
: NAME | NAME o :
" TREQUEST 2 [FILE | PROCESS REPLY NOT USED
REJECTED

NAME | NAME CODE

-

B.3 The Fields Used in the Message Formats .

FILE: -An index to the global file' directory. It indicates.

the .file to which the message refers. -
PROCESS» An index to 'the process desctiptor table in the-
station where the predecessor list s required

FILES OWNED: A bit 1list describing the files own'ed by the

requesting process

PREDECESSOR 'RIST: A bit 1list

REPLY CODE A numeric code 1ndlcating why the file request
was rejected _

PREDECESSOR: An lndex’ES‘the global file. direciﬁry. This §s
the file whose LAC® sent the message: e file is an

immediate predecessor in the .wait graph, of the file to’

which the message refers..

BOSS: The deadlock boss. A index to ‘' the globgl file
directory. In the boss selection message, this refers to
the file which, so far, has been selected boss.

" BOSS's PREDECESSDR: the file which immediately precedes the

bess file fin the loop. An index to the global flle

directory. -

I.S.: Immediate suocessor. An index to' the global file
directory. In the UPDATE I.§. mesBage it refers to the

. file which is the immediate -successor.

FILE LIST: A bit 1list indicating which flles are to have
their immediate successor pointers updated (in message
«type 10), or the files whose. predecessor 1ists are
requested (in message type 12).

~ ERROR: A numeric cbde indicating the reason for close down,

Ind
\

. . e ' , . page 207

APPENDIX C

A Note on the Variable RECV : -

. “ . °
. . , - c
. * - - . e

N . , \’ - - ot “: © ' \
In* the implementation” of f%e DistrfLuted Database - °~ | ,

.Access Control System on thi?wPDP/11 minicomputer network, & K
. . b - .

r

the - access controller used the variableLRECV. This boolean . >

variable indfggtés whether the "receive message! reutine . of

- o
the DECNET message switching mechanism should be invoked for

1

a’ particular | communiZation 1link, as a result of the last .
. . e
-action of- the. access controller. The need €Pr such 7
' L : .
variable arises because of a flaw in'QECNET. =,

&

When, a message 1is sent on a link, aé?)outstanding

" "receive" which the sender pr;cess -may have had ‘on that.
link, 1is destroyed. This means that the.aqcéss contrdllgr
cannot issue a "receivé message'™ on a link with a user .
process, until it ié suré that all ﬁhe processing and
sendéng of messages in éonhection with that link, have been -
poﬁﬁieted. RECV‘is used by the access coﬁtroller to remember

whether "~ a . "receive -message" will have to be issued on a

partiqular link. . . ' /

"

’ . - €
2

ST, N o ' - page 208

. ©) - APPENDIX D |
'The Calling Tree in the, DDACS

I

.. & ’

L « , . . . B .
. Terminal routines_are denoted by a period- (.). a
¢ o | | '

, ‘ : = ‘

P y —— INIT) Sy

— ngé ——— FLREQ '

~— SEND ‘ ——
RELEAS “ .
. . \
3} , . —— REMRQ

[+ LOG ‘ S

A

—— RMGRN : : '

* EXEC - REJECT .~ : 2
—— PROPGT '

DBREAK

RECOVR

UPDIS _ —
PLRQST ') ' . ¢

[TTTT

PLRPLY
- BEGIN I

¢

. [~ MWAIT o ‘ '

Ty

LS

' .)) /. \ &\
L Calling Tree (Continued) ’ o N\

| S : F: NTINIT. ;
; _ NTGONW. “~~ - *°*
L INIT SEND ™
; o ASSIGN. o
. S LOG S

3 — NTDISW. . : :
L ‘ . b= LoG \ T z -

- MWAIT NTRVC IR
. | - = NTWAIT. .

3 ‘ . | INACT A ' ‘ A
— NTCORW. - .

+— SEND » . -
' . — NTDISW. - " : ‘

! : , _— — NTRCVW. ‘ . ’
% . . \ ’ () n\ ‘ \'

. .
’ - - . ~

B o SEND - -
s - : - [— RQSEND. -[:;LOG - ‘

L}

- ALLOC ' ~
: .. FLREQ | QUEUE N
- ** = DEADLK —— LOG
. — REJECT vyuxon
- L+ LogG

. LOG . o "
SEND {:: NTSNDWJ® ‘ - .
v NTRCV : - Yoo

, : E LG PLRQST .
- [LG - . UNIO ——4EESEND ‘ h
ALLOCF —{— UPDIS LOG :

'

' . ' RELEAS .
. - L— sEp SEND

by
LY
PR
-
L 2
@ \, ‘ :
" . ™~ . Ty et
. * . N]
R o L e . /
o0 . . .) :

a . .

’) . . - \

. x Y

+ \ .
. . . .
’,
2
A 1
L] — P
- e
—_ ' ”
B S L - FT RS Sruswegusep e 2P R R RN

Y B

" page ém
3 _ .. R
- - b4
Calling Tree (Continued) :
o [~ INACT LOG “ >
REMRQ [~ LoG
. ®KMREQ . . "
- 0 . . i |
LOG —~ DSPLST. . Do -
8 . I .
RMGRN — L0G ‘ , '-zxuglf ’
- . L sewp \ : -
° !.”
REJECT ————— SEND
. LOG . ,
- . ’ - ‘
’ B i,
. LOG. - , 2
PROPGT 1w—~————{53 DBREAK . -,
' - SEND - *\,
i ' . B - * « X
] 'LOG
DBREAK ——-—————155 RECOVR -
o 1~ SEND
CLDOWN — PLRQST ; -
' UNION SEND - | ' .
RECOVR LOG LOG
SEND ‘
REJECT \ N
DELETE —— LOG o S
». i A
"'uPDIS LOG -
’ Lad ’ 5 Brenand Cu
b IO NS Dot NN |
= - .

¥
L)

TSR NI P

¢ . B .] N
. - S —q |
-/ ’ o .\\ y - ©
.) ' | (page 21} ‘
3 Lo s T o S B
- e "Calling Tree (Continued) . ; '
8 ' ‘ i _ .
.© ' PLRGST ——— LOG V' £ : . B
SRR SEND- .. — S p g
- PLPLY — [ﬂncova oo F ‘ T B
' * ~% _ ~b— RELEAS : -
., o , , 1 - ’ B . .
BEGIN —— "LOG B ’ |
' i SEND | S s I
- CLDOWN ————E LoG - , e .
- : R -CLOSE. : » ~ R
v I M f '5 “ ” . . N
. - } . ' l .
. e

. .
0y t
" \ 4
o ‘
-
- L3
. -
.
. .
r
.
. . ¢ — '
“
N +
L)
[4 AN
.
[] .
*
. 1
. A
<
*
-~ - s -
. ¥
C <
R o B .
. e
.
1
) 1y
s ‘)8) : / >
<
}f -
.
B
- . -
":4‘ 4
. 4)
Cey e
. .
¢ ’
-0~ 3
)
e ' e

-t T \ ‘ - page 212 |

o APPENDIX E ' . L
AN Example of the’ DDACS Log File c

—~ i]

. E.1 Lof File for- Accéss Controller L1
& \) @ ’ ' ’ / o ‘ ~ ‘

INIT INITIALIZATION OF L1 LOCAL FILES.= S DISPLACEMENT ='0 -
DIRECTORY OF FILES ' i -

FILE NUMBER r 2 3 4 s ,6 7 8 9 10 o
FILE NAME F1 F2 F3 F4 FS5 Rl R2 -R3 R4 RS b
A.C. NAME Lt L1 LI LY L1 L2 L2 L2 L2 L2 , ‘
, "
PROCESS DESCRIPTOR TABLE, FILE DESCRIPTOR TABLE
PROC STTN ROQST OWNED ~ FILE OWNER MODE I.S. WAIT P.LIST .
L2 ‘L2 0 0000011111 Fl 0 0 . 0 0 0000000000
o 0 0 0000000000 F2 0 0 -0 0 0000000000
0., 0 0 0000000000 ‘F3 0 0 0 0 06000000000
o 0 0 0000000000 Fe& "0 0 0 0 0000000000
o- 0 0 0000000000 FS 0 0 0 0 0000000000
. _ . : 4 . -
INACT PROC=2 . o : : :
MWAIT 1 F1 X1 0 0 RECELVED FROM Xi-Ll !
FLREQ™ PROC=2 FI1LE=1 _ . i
SEND 1 F1., X1 "0 O o SENT TO X1-L1
ALLOC ° PRUC=2 FILE=f , - _ '
MWALT © PDT " FDT , /
L2 L2 0. 0000011111 Fi- 2 1 g 0 0000000000
X1 . L1 0 1000000000 . F2 0 .0 0 0. 0000000000
0 o0 0 0000000000 F3 0 0 0 0 0000000000°
0 0 0 0000000000 Fd4 0 0 0 0 0000000000
o 0 0 0000000000 FS .0 0 0 . 0 0000000000
. MWAIT 1 Rt X1 0 0 RECEIVED FROM X1-L1
FLREQ PROC=2 FILE=6 \ ?
ROSEND _PROC=2 FILE=6 - OWNED=1000000000 PL=0000000000
SEND 3 6 X%t t o " SENT TO L2 ,
MAALIT- . -PDT . FDT » .
L2 . L2 0 0000011111 ~ F1, 2 1 0 0 . 0000000000 * 4
X1 L1 6 1000000000 F2 0 0 0 0% 0000000000 -
0 0 -0 0000000000 F3 0 0 0 0 0000000000
0. 0 0 0000000000 . F4 "0 0 0. 0 0000000000
0. 0 0 0000000000 F$ 0 0 0 0 0000000000 :
MNAIT 10 6. 0 1 .0 . RECEIVED FROM L2 '
“ypPDIS - FILE=1 I.8.=6 g °)
MWALT PDT FDT , .
L2 L2 0 0000011111 , Kl 2 1 6 0 0000000000
X1 L1 6, 1000000000 . F2 0o 0 0, 0- 0000000000
© 0 0 0 0000000000 F3 [S o 0° 0000000000
0 0 0 0000000000 . F4 0 0 0 0 0000000000 .
0 0 0 0000000000 FS af 0 0 0. 0000000000
._’ . P

. 6 . - - . . §
. . _'r » : . 4
vy N P : 3 © .
Lt Y e e PR 0) o . : ¢ = K

-
LS
N . - . N - . 1w B " Y VR SO UE P VANV EPUAUL G e AC PP S SRS PN - _— %
@ . !
B - . .]
. . -

‘ page 213 °
NG - v“
o Log File L1 (ContiQued) , _—
R N x
4 INACT PROC=3 , |
'3 MWAIT 1 F2 X2 0 0 /. RECEIVED FROM X2-L1 =
6 FLREQ PROC=3 FILE=2 s . , ‘ .
9 SEND 1 F2 X2 o 0 SENT IO X2-L} . , ﬁ
8 ALLOC PROC=3 FILE=2 ‘ ' f:> 0
3 MWALT . POT FDT .
1 L2 . L2 0 0000011111 F1 2 1 6 0 0000000009
2 X1 Lt 6 1000000000 F2 3. 1. 0 0 0000000000 |
3 X2 L1 0 0100000000 F3 0 0" 0 0 0000000000 I
4 0 0 0 0000000000 , Fa o 0 0 0 0000000000
5 0 0 0 0000000000 F5 0o .0 0 0 0000000000
3 MWAIT. 1 F1 X2 0 o RECEIVED FROM X2<L1
6 FLREQ 1PROC=3 .FILE=1 '
16 DEADLK PROC=3 FILE=1 ©WNED=0100000000
14 PLRQST LIsST=0100000000 PL=0000000000
19 UNION " LIST=0100000000 PL=0000000000
17 QUEUE PROC=3 FILE=1 WALT=0 :
20 ENTER PROC=3 FILE=1 i
13 UeDIS FILE=2 I.S.=1 §
9 SEND - 7 6 1 . 2 0 SENT TO L2 i
'3 MWAIT PDT FDT .
1" L2 L2 70 0000011111 F1 2 1 6 3 . 0100000000
2 Xt \&21. 6 1000000000 F2 3 1 1 0 0000000000
3 X2 1 1 0100000000 . F3 0 0 0 0 0000000000
4 0 0 "0 0000000000 "F4 0N 0 0 0 0000000000 |
5 0 0 0 0000000000 F5 0 -0 0 0 0000000000
3 MWAIT 5 6 X1 0o 0 RECEIVED EROM L2
25 "RMGRN PROC=2 FILE=6 '
9 SEND 1 . R1 X1 0 0 - SENT TO X1-L1 '
3 MWAIT PDT .FOT ‘
1 L2 L2 Q 0000011111 F1 2 1 0 3 0100000000
2 Xt L1 0. 1000010000 ° F2 3 11 0 0000000000
3 X2 L1 1 0100000000 F3 0 0 0 0 0000000000 -
4 0 0 0 0000000000 - F4 0 0 0 0 0000000000
5. .0 0. 0 0000000000 , £s 0 0 0 0 0000000000 ‘
3 MWAIT 2 Rt X1 o' o RECELVED FROM X1-L1 -
7T RELEAS PROC=2 FILE=6 ‘ : R
9 SEND 4 6 x1 "o 0 SENT TJ L2, :
9 SEND 1 'Rt Xxt. 0 O SENT T0 X{-L1
3 MWAILT PDT ! FDT
1 L2 L2 0 0000011111 F1 2 1 0 3. 0100000000
2 x1 L1 0 1000000000 F2 3 1,1 0 0000000000 j
3 X2 L1 1 0100000000 %3 0 0 0 0. 0000000000 . -
4 0. 0 .0 0000000000 Fa 0 .0 0 0000000000
5 0 0 0 0000000000 FS 0 0 gf 0 0090000009

&

?

-~ O W s

N W N

UL W N

C Log
MWAIT © . 2 ~ Fi X1 0 0
+RELEAS - PROC=R FILE=1
ALLOCF FILE=1 N\ WAIT=3
SEND 1 Fl x1 0 0
SEND 1 F1 X2 0 0
ALLOC . PROC=3 FILE=1
MWAIT ‘PDT
L2 L2 0 0000011111 Fl
0 0 0 0000000000 F2
X2 11 0 1100000000 F3
-0 0 0 0000000000 F4
0 0 0 ,°0000000000 FS -
. . m .
MWAIT 2 F2 . X2 0o 0 ™
RELEAS PROC=3 FILE=2
ALLOCF FILE=2 WAILT=0
SEND 1 F2 X2 0 0
MWALT PDT
L2 L2 0 0000011111. F1
0 0 0 0000000000 F2
X2 Lt 0 ' 1000000000 F3
. 0 0 0 0000000000 F4
0 0 0 0000000000y F5
MWAILT 2 F1 X2 0 0
RELEAS PROC=3 FILE=I
ALLOCF FILE=1 WAIT=0 -
SEND 1 F1 X2 0 0
MWAIT PDT
L2 L2 0.- 0000011181 " Fi
0 0 0 0000000000 F2
0 0 0 06000000000 F3
0 0 . 0 0000000000 F4
0o -0 0 0000000000 FS
INACT PROC=2 ,
MWAIT 14 ‘0 0 0 0
SEND 14 0 L1 ‘o 0
CLOSE DOWN 0F L1

+CLDOWN

OO O W

OO OO W

E}

COoO0OQ

’

File L1 (Continued)

'pagé 214

RECELVED FROM X1-Li

SENT TO X1-L1
SENT TO X2-L1

FDT

QOQ M=
COCOC

coo0o0OC

0000000000
0000000000
0000000000G"
0000000000
0000000000

v

RECEIVED FROM X2-L1

SENT TID X2-L1

FOT -
1 0
0 0
0 .0
0 0
0 0

coooo.

0000000000
0000000000
0000000000
0000000000
0000000000

RECEIVED FRUM X2-L1

SENT TJ X2-L1

FDT -

QOO0
[eNeRoNoR o)

OO OCOOo

0000000000
0000000000
0000000000
0000000000
0000000000

RECEIVED FROM S1-Li

SENT TO L2

ERROR=0

b

:
- bt

o e L S————EPY AT
.

Y
.,.W.’-«—L..._.. st . e o 3

o

W O O W

i8
16

U > W N

N W B =

14

19
.17
20

23

-

2 INIT .

N D W N e

DIRECTORY OF FILES
FILE NUMBER i 2 3
FILE NAME F1 F2, F3
A:C. NAME Lt L1 L1
PROCESS DESCRIPTOR TABLE
PROC ‘STTN RQST QWNED
L1 L1 0 1111100000
0 0 0 0000000000
0 0 0 0000000000
0 0 0 0000000000 °
0 0 0 0000000000
INACT PROC=2
MWAIT 1 Rl © Y1 .
FLREQ ‘PROC=2 FILE=6
SEND 1 RI - Y1 0
ALLOC PROC=2 FILE=6
MWAILIT POT
Lt L1 0 1111100000% -
Y1 L2 0 0000010000
0 0 0 0000000000
.0 0 0 0000000000
0 0 0 0000000000
" MWAIT 3 6 Xt .1
INACT PROC=3
RMREQ PROC=3 FILE=6
DEADLK PROC=3 FILE=6
PLROST LIST=1000000000
UNION LIST=1000000000
QUEUE PROC=3 FILE=6
ENTER PROC=3 FILE=6
SEND 10 6 0 1
REMRQ PROC=3 FILE=6
MWAIT " PDT .
Lt L1 0 1111100000
Yt L2' o0 0000010000
X1 L1 6 1000000000
0 0 o0 0000000000
0 0 0 0000000000
I)
l"’
' 7
. n

-

. e S

E.2 Log File for’ Access Controller L2

B a— -
/h

INITIALIZATION OF L2

LUCAL FILES = 5

page 215
/

v

DISPLACEMENT = 5

a4 5 6.1 8 9 10
F4 FS R1 R2 R3 R4 RS .
L1 \Ll L2 L2.L2 L2 L2
FILE DESCRIPTOR TABLE
FILE OWNER MODE I.S, WAIT P.LIST
R1 0 0 0 ~ 0 0000000000
R 0 0 0 0 0000000000
R3 - 0 ~0 0 _ 0 0000000000
R& O 0 0 _ 0 0000000000
RS 0 0 0" 0 0000000000
0 RECEIVED FROM Y1-L2
0 . - SENT TO Y1-L2
FDT
R1 2 10 0 0000000000
R 0 0 0 0 0000000000
R3 0 0 0 0 0000000000
R& 0 0. 0 0 0000000000
RS 0 0 _ 0 0 0000000000
0 RECEIVED FROM X2-L1
' 1
OWNED=1000000000 . . :
" PL=0000000000 - i
PL=0000000000 X
WAIT=0] :
0’ ~ SENT IO L1
\ FDT :
R1 2 0 3 1000000000
R2 "0 0 0 0 0000000000
. R3 0 0 .0 0 _0000000000
R& 0 0 -0 0 0000000000
R 0 0 0. 0

v

0000000000

|

!

o

= e e

N b N -

G WA -

WO OON~NW

N W N -

MWAIT &
PROPGT '
MWAIT
L1 L1
Yl L2
X1 L1
0 0
0 Q

MWALT
RELEAS
ALLOCF
SEND
SEND
ALLOC
MWALT
Ll Ll

X1 ~ L2

MWALT
RELEAS
ALLOCF
MWAIT *
L} Ll

0

OO O
QOO0

MWAIT
CLDOWN

o e wmn s % -

Log

7 -6 1 2 0
FILE=6 PRED=1

. * PDT

0 0000011111 R1
0. 0000010000 R2
6 1000000000 R3
0- 0000000000 R4
0 0000000000 RS
2. Rt Y1 0 0
PROC=2 FILE=6

FILE=6 WAIT=3 i

1 R1 Y1 0 0

5 6 X1 0 0
PROC=3 , FILE=6 ‘

PDT

0 1111100000 R1
0 0000000000 ' R2
0 1000010000 R3
0 0000000000 R4
0 0000000000 RS
4 6 X1 0 0
PROC=3 .FILE=6

FILE=6. WAIT=0

PDT

0 1111100000 RY
0 0000000000 - R2
-0 000000000 R3
0 00000000 R4,
0 0000000000 " RS

14 0 L1 0 0

CLOSE 'DOWN OF L2

[4

1

PLIST=0100000000

coocoNn

COOO W

OCOOCOCCO

page’216

FileIL2 (Continued) | o°

.

RECEIVED FROM L1

RECEIVED FROM Y1-L2-
.\

SENT TO Y1-L2

SENT T0 L1

a
! «

FDT

1 0 0 0000000000
0, 0 0 ° 0000000000
0 .0 0 0000000000
0 0 0 0000000000
6 0 0 0000000000

RECEIVED FROM L1

FDT
0 0 0 0000000000
0 0 0 0000000000
6 0 _. 0 0000000000
© 0o ¥ 0 0000000000
0 0 0 0000000000

RECEIVED FROM L1
ERROR=0

FDT
1 (N | 1100000000
"0 0 0 0000000000
0 0 ¢ 0000000000
0 0 0 0000000000
0 0 0 0000000000

‘.
Lo At St o e m

3
e
G TR

'i

LR TR AR et

~-

,\

\
i
2

APPENDIX F

History of the Implementation of the DDACS

“ The Distributed Data Access Control Systém was
implemented for a network‘,of PDP/11 m;niéomputers, using

DECNET V1.2 [64] as the Message Switching* Mechanism. Initial "
testing of DECNET showed ‘that it had all . the functions
necessary for our»impleméntation. However, as noted -in (661,
many of the’ problemé“with DECNET are not appg}ent untii
DECNET it;elf or the whole comﬁﬁfgglg;;ﬁem becomes heavii§

loaded.

Several problems with DECNET were uncovered dufing the -

\

-implemeniation of the ,systeﬁ. These problems were 'not’

apparent during the initial study of PECNET. The two main
P !

problems are;.

|
. i
(1)%en a user process disconnects a - communication 1link @
with the access controller, any outstanding "receive]
message". which the access controller .mayt have had on

other links, is destroyed.

.) &
(2) When a message 1is sent on a communigation link, any

. "receive message" which the sender process had

outstanding on that link, is lost. \ . Q

The “inveétigation of these. problems took a considerable’

effolrt. . | -

‘ . P
B ~
In: July 1978, the operating -“system, RSX/11M, was’
. ‘ ! vt]

Page 218

[

upgradéd. .The new -version of the operating_system did not

.
: L
)

include the.DECNET mechanism. At that time, the DDAéS had
'l‘ t a

been fully dimplemented and substantially tested. However,

- the upgrade of the operating system 'precluded any- further

testing and experimentation.

PR

&)

