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ABSTRACT

A Unitied Approach for Fault-Tolerance in Communication Protocols

Anjali Agarwal, Ph.D.

Concordia University, 1995

The goal of this research is to provide a unified approach to fault-tolerance in com-
munications systems under a model of transient failures by formally incorporating the
states and transitions for fault-tolerance into the specification and design phases of
the communication software development life cycle. Historically, researchers have
tended to address the wide variety of phenomena within fault tolerance in the area of
distributed database and distributed computing by countering the effects of their indi-
vidual causes. Not much work has been done in the field of providing fault-tolerance
to communication protocols, especially at the specification level. Since protocols
include a large amount of abnormal processing triggered by transient failures, high
teliability and performance in the presence of such events are required for such pro-
tocols. Theiefore, after a failure in the processor running the software or the process
itself or a crash of the local memory of the process, which may lead to an unstable
and illegal system state, the protocol must be able to recover and continue its execu-
tion starting from a legal state. A protocol that possesscs such a feature is called a
fault-tolerant protocol. In the context of such fault-tolerant protocols it is assumed
that the starting point in the protocol development life cycle is a complete

specitication and an error-free design.

An understanding of fault-tolerance based on checkpointing and rollback recovery in

distributed system environments is introduced and the related work is reviewed. and a
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better approach to checkpointing and rollback recovery is proposed. The idea of
checkpointing and rollback recovery in distributed systems is applied to obtain
scheme for recoverability of protocols. Tne protocols after recovery can retuin not
only to an initial state. but also to an intermediate state that was reached in the past,
while retaining consistency in the exchange of messages. The rollback recovery pro-
cedures are then incorporated into the specification and design phases of the com-

munication protocols. Their validated protocol specifications are provided.
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CHAPTER

INTRODUCTION

"Error does not become truth by reason of multiplied propagation, nor

does truth become error because nobody will see it.”

Mahatma Gandhi

1.1. Motivation

The design of fault-tolerant hardware is a mature atea of computer engieering
and architecture. Several techniques exist to ensure that a hardware failure does not
affect the normal operation in a computer system. The problem of designing fault-
tolerant software has been studied more recently. In particular, the design of distii-

buted systems and real time software is a more complex and critical problem.

The goal of this research is to provide a unified approach to fault-tolerance in
communications systems under a model of transient failures by formally incorporat-
ing them into the specification and design phases of the communication software
development life cycle. Additional states and transitions should be incorporated into
the specification phase itself to provide fault tierance to a system of communicating

entities, to bring the system into a consistent state should a transient failure occur.

Historically, researchers have tended to address the wide variety of phenomena
within fault tolerance in the area of distributed database and distributed computing by
countering the effects of their individual causes. Not much work has been done in the
field of providing fault-tolerance to communication protocols, especially at the
specification level. Since protocols include a large amount of abnormal processing

triggered by transient failures, high reliability and performance in the presence of
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such events are required for such protocols.

The design of self-stabilizing communication protocols has been studied by
Gouda [GoMu91], where self-stabilization has been taken as' an approach to fault-
tolerance. A communication protocol is defined as a set of syntactic and semantic
rules that are used to govern the communication between two or more communicat-
ing entities. In a distributed computer environment communication protocols play an
important role. Because of the complexity and criticality of communication software,
it is necessary to obtain designs for protocols that are free from grneral types of
errors such as deadlocks and unspecified receptions. In addition, after a failure in the
processor running the software or the process itself or a crash of the local memory of
the process, which may lead to an unstable and illegal system state, the protocol must
be able to recover and continue its execution starting from a legal state. A protocol
that possess such a feature is called a fault-tolerant protocol. In the context of such
fault-tolerant protocols it is assumed that the starting point in the protocol develop-

ment life cycle is a complete specification and an error-free design.

If we are dealing with self-stabilizing communication protocols, ther we should
be willing to tolerate the temporary violation of a system specification. The protoccls
should be non-terminating, since termination is one of the factors that can pievent
self-stabilizatio::, and there should be an infinite number of safe states [Schn93]. The
solution to self-stabilization is based on invariants that must be verified in the design.
The problem is that such invariants are protocol or problem specitic. They are flexi-
ble but are difficult to use. Expertise in protocols is required to correct an erroneous
invariant, to encompass all failure modes within the invariant, and to establish time
bounds for recovery. However, there should be no such requirement for providing
tault-tolerance in communication protovols. If we can deal with the processes being

initialized to a consistent state, the processes can be brought to a legal state should a
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transient failure occur, by applying checkpointing and backward error recovery pro-

cedures.

1.2. Overview

The research includes several contributions :
1) First the area of fault-tolerance based on checkpointing and rollback recovery in
distributed system environments is introduced and related work is reviewed. To start
with, the concepts and requirements for our checkpointing and rollback recovery
algorithms are defined, and an algorithm is proposed to obtain the maximally reach-
able event index, MREI(i), which represents the event indices corresponding to
sending/receiving messages that other processes must have reached before process P,

in a system of distributed processes executes its event.

2) Second the problem of fault-tolerance in real-time distributed systems is addressed
by providing efticient algorithmic procedures for checkpointing and rollback
recovery in such systems. Even when the communication network is reliable and
maintains the order of messages, any kind of processor errors, which may not be
detected immediately, could contaminate the system resulting in failure of
process(es). Two approaches to fault-tolerance based on recovery are then con-

sidered.

(i) In the first approach, efficient and fault-tolerant algorithmic procedures for obtain-
ing coordinated global checkpoints and rollback recovery are proposed. Each process
is required to record the contextual information exchanged beiween the distributed
system components during the normal system progress, and the current local state on

stable storage.

- The checkpointing algorithms can be initiated by any process in the system, or

upon failure of one or more component processes as part of & backward
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recovery procedure. Our algorithms return the most recent and consistent check-
point, and require stable storage to save the current MREI and the local state for
every send/receive event. Stuble storage is also required to save the message
received by the receiver process. The algorithms do not interfere with the pro-
gress of the distributed system application. Furthermore, the Domino effect is

avoided since obtaining a consistent checkpoint is always guaranteed.

- Utilizing these global checkpoints, we also present optimal backward recovery
procedures, which require minimal rollback after failures. Livelock problems
associated with rollback recovery are avoided since the consistency of message

exchanges is retained when a rollback to a consistent checkpoint is executed.
To illustrate the checkpointing and recovery procedures, a time diagram with the
exchange of messages is considered. Different scenarios are considered for a process

fuiling/detecting an error during different stages of checkpointing.

(i) In the second approach, our recovery procedures do not require the application
of checkpointing procedures to obtain coordinated global checkpoints, but require
cach process to record the contextual information exchanged between the distributed

system components during the normal system progress,

- in the first case, on stable storage whose requirement is bounded and minimal

and

- in the second case, on volatile storage, further minimizing the requirement for
stable storage and the time needed to access the contextual information from
stable storage. Each process also saves its local and independent checkpoints in
stable storage.

The recovery procedures provide a global consistent state before the occurence of

error(s) in failed process(es) and before the effects of the errors reach other
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processes. In the global consistent state, the recovery point computed locally by
failed process(es) is mutually consistent with the recovery points computed by other
non-failed processes. Also. only those processes are required to restart that are
affected by error propagation, and the time needed to revert to normal operation is
found to be minimal, thus enhancing the real-time responsiveness of such systems.
Our recovery procedure can be used to recover from any number of process failures
in the system, including a total failure of all processes. Proofs of correctness of our
procedure are provided; in particular, the absence of orphan messages, message

losses and duplications is shown. Also. pre-rollback messages are taken care of.

An interaction sequence diagram and its time sequence diagram showing its event
index tuples is considered for a distributed system example consisting of four com-
municating finite state machines. The recovery control messages exchanged after

failure detection are also shown.

3) Next the idea of rollback recovery in distributed systems is applied to address the
problem of designing stabilizing computer communication protocols modeled by
communicating finite state machines. A communication protocol is said to be stabiliz-
ing, if starting from or reaching any illegal state, the protocol will eventually reach a
legal (or consistent) state, and resume its normal execution. To achieve stabilization,
the protocol must be able to detect the error, and then it must recover from that error
and revert back to a legal protocol state. The later issue related to recovery is tackled
here and efficient procedures for the recovery in communications protocols are
described. The recovery procedures do not require periodic global checkpointing pro-
cedures and therefore, are less intrusive. They require less time for roliback and
fewer recovery control messages than other procedures. Only a minimum number of
processes will roll back, and a minimal number of protocol messages will be

retransmitted during recovery. Our procedure, in the first case, requires the stable
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storage to be used to record contextual information exchanged during the progress of
the protocol. A protocol example consisting of six communicating finite state
machines specifying a part of the ISDN user part of Common Signalling System
(CSS7) is considered and recovery control messages required are shown using the
time sequence diagram. In the second case, the volatile storage is used to log the
application rnessages and the stable storage to save the independent checkpoints of
the processes. Our recovery procedure can be used to recover from any number of
transient errors in the system. Our procedure is compared with the existing
approaches for handling the errors. A protocol example of four interacting processes
is considered to illustrate the recovery procedures by transition diagrams when opera-
tional errors change the state of the system by corrupting the local state of a

process(es) as represented by memory or program counter.

Our recovery procedure has also been modeled in PROMELA, a language to
describe validation models, which shows the syntactic correctness of our recovery

protocol design.

The recovery procedures can be incorporated into the specification and design
phases of communication protocols. All the design methods for fault-tolerant proto-
cols described are application-independent. Since they require only the protocol
structure and exchange of local information, they are regarded as unified design
methods for any protocol and all failure modes. However, the procedures and

memory required are assumed to be fault-tolerant.

1.3. Organisation

This thesis is organised according to our contributions. Chapter 2 deals with the
basic concepts and definitions for fault-tolerance based on checkpointing and
rollback-recovery, and its related work is reviewed. The distributed system con-

sidered in the thesis is introduced, and its space time model and system interaction
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diagram shown. The concepts on which our checkpointing and rollback-recovery
algorithms are based are then described. and the algorithm to obtain the maximally

reachable event index is presented.

In Chapter 3 we describe our proposed procedures for fault-tolerance in distri-
buted systems based on checkpointing and recovery. Two approaches are considered.
In the first approach, the processes communicate to obtain coordinated global check-
points upon failure or otherwise, in addition to logging the messages received and
saving the local states on stable storage. The system rolls back to these global check-
points in case of failures maintaining the consistency of exchanged messages. In the
second approach we present recovery procedures that do not require coordinated
checkpointing procedures but require only the messages to be logged on
stable/volatile storage with the contextual information exchanged during the normal

System progress.

Chapter 4 is about fault-tolerance in communication protocols. We first intro-
duce the formal model for communication protocols based on communicating finite
state machines. We then discuss the issues related to fault-tolerant protocol design
and describe the failure model that we will use in our discussion on fault-tolerance.
Finally, for the failure model considered, we propose recovery procedures based on

the second approach of Chapter 3.

The design of fault-tolerant protocols is presented in Chapter 5. Different
methods using conventional, verification and synthesis approach for the design of
fault-tolerant protocols are surveyed. Our research is based on incorporating the
checkpointing and rollback-recovery procedures proposed in Chapter 4 to provide
fault-tolerant protocols using the synthesis method. An example of such a fault-
tolerant protocol obtained is presented by displaying the transition diagram for its

recovery procedure. Validation of this transition diagram using PROMELA is also
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Finally in Chapter 6, some conclusions are made on the work done and some
lines of future research considered. The next section gives a brief overview of fault-

tolerant computing before going into more detail in the subsequent chapters.

1.4. Fault-Tolerant Computing

A fault-tolerant computing system is one that can provide its specified services
in the presence of a predetermined number and class of failures. The basic idea
behind building in a fault-tolerance capability is to provide the system with extra
(redundant) resources, beyond the minimum needed to achieve the computing
requirements. These extra resources can help to overcome the effects of a malfunc-
tion. The redundancy can take the form of extra hardware, which can vote out an
erroneous signal or switch in a spare to replace a failing subsystem, or additional
software, which can allow successful reexecution of a program following detection

of a failure caused by unknown factors.

The terms failure, fault and error have different meanings when applied to com-

puter systems:

- a failure denotes an element’s inability to perform its designed function because of
errors in the element or its environment, which in turn are caused by various faults. It
is a violation of specifications and assumptions. An invalid transition within the com-
ponent leads to component failure, whereas if all the components meet their

specifications when an invalid transition takes place, the failure was a design failure.

- a fault is an anomalous physical condition. It is caused due to design errors such as
mistakes in system specification or design and implementation; external disturbances

such as hursh environmental conditions, unanticipated inputs or system misuse.
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- an error is a manifestation of a fault in a svstem, in which the logical state of an
element differs from its intended value. An error occurs only when a tault is "sensi-
tized", that is, for a particular system state and input excitation, an incorrect next state

and/or output results.

The following summarizes the relationship between the three,

Fault — Error — Failure

A fault may be localized in a given component or distributed to more than one com-
ponent. In a system in which the components interact with each other, erroncous
information produced by one faulty component can be propogated to other com-

ponents. This type of propogation is called error propogation.

In general, there are four phases in which fault-tolerant techniques can be
implemented. These are error detection, damage confinement and assessment, error

recovery, and fault treatment [LeAn9(), RLT78].

Error Detection - Since it is difficult to detect faults directly, a detection process
usually tries to detect errors caused by faults. Error detection techniques are used for
identifying erroneous states of a system. Unfortunately, an arbitrary period of time

may pass before fault detection occurs. This time is called fault latency.

Damage Assessment - Because of error propogation, and the consequent damages
that can be spread over the system, some techniques are necessary for assessing how
much the system state has been damaged for an appropriate recovery. These tech-

niques are called damage assessment techniques.

Error Recovery - Error recovery techniques attempt to move a system from an error
state to an error-free one. There are two approaches for the error recovery tech-

niques: backward error recovery and forward error recovery [LeAnY0), MiliY0]. Tech-
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niques based on forward error recovery try to use the current error state to construct a
new state in the hope that it is error-free, so tnat the normal computation can be
resumed. Techniques based on backward error recovery try to recover a system from
errors by discarding the current system state, restoring the system to a prior known
consistent (error-free) state, and restarting execution. Therefore, they require state
information to be saved during normal computation. Since a backward error recovery
restores a system to a valid prior system state, a recovery is possible from errors of

unknown origin and propogation characteristics.

Fault Treatment - Once error recovery has been done, it is necessary to enable a
system to provide its specified services. If faults are transient in duration, no special

treatment may be required.

The thesis is mainly concerned about providing backward error recovery pro-

cedures considering the effects of error propagation and the damage caused by it.



CHAPTER 2

FAULT-TOLERANCE BASED ON CHECKPOINTING
AND ROLLBACK RECOVERY

2.1. Introduction

The ability to restart the execution of a process is very important for applica-
tions that depend on the progress of the system in the presence of failures. Re-
execution from the start of a process is generally straightforward. However, it is usu-
ally beneficial to restart the execution from a pre-detined point in the process, rathet

than from the beginning. This pre-defined point is called a checkpoint.

Checkpointing in a distributed system amounts to obtaining a consistent global
state or a consistent set of checkpoints during the progress of the distributed system
computations. This is an inherently difficult task because of the distributed nature of
the progressing system computations and the arbitrary message-transfer delays usu-
ally associated with geographic distribution. A state of the distributed system (also
called global state, system state, or distributed snapshot) consists of the current state
of each of the component processes and the contents of the channels linking these
processes. During execution, the identification of the system state is useful for estab-
lishing checkpoints for recovery and restart [Raynall88, Morg85] and for detecting
abnormal conditions such as system deadlocks and termination [ChLa85]. A con-
sistent and legal system state can be used as a recovery point in the case of a future
system failure. Intuitively, when a failure occurs, the processes roll back to their most
recent consistent checkpoint by restarting from the state saved in that checkpoint and

resuming execution from it.
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2.2. Distributed System Model

A distributed system consists of a finite number of loosely coupled processes
running on a finite number of processors that exchange messages over communica-
tion links. These processes form the nodes of a strongly connected network. To
recover from process errors and failures, and restore the system to a consistent state,
we use two types of logs—a volatile log and a stable log Accessing volatile logs
requires less time, but the contents of a volatile log are lost if the corresponding pro-
cessor is in an error state leading to its failure. The volatile/stable log is used to save
critical contextual information required for our checkpointing and recovery pro-
cedures. We assume that the underlying computation or the application program is
event-driven, with the processes communicating with each other by« hanging mes-
sages through a communication subsystem modeled by unidirectional first-in-first-out
(FIFO) channels of unbounded capacities. Since messages are delivered through
channels, each delivery takes a tinite amount of time but has an arbitrary delay. The
channels are assumed to be reliable, meaning that they do not duplicate, eliminate, or
corrupt messages. Processes are considered to be deterministic, meaning that replay-
ing a sequence of events from a state will consistently reach the same final state. We
also assume that the processes are non-fail-stop, meaning that an error occuring in a
process may not be detected immediately by the recovery system. Therefore, an error
that occurs in one process can contaminate further checkpoints and states of itself and
other processes in the system. We also assume that once an error is detected by a pro-
cess, the process will be able to determine the actual point of failure, and will be able

to initiate the recovery procedure.

Due to the autonomous behaviour of processes and arbitrary communication
delays, any single process in a distributed system cannot capture the complete sys'em

state instantaneously. Therefore, gathering information on process states in different
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processors and channel states, that is, the global state. may require solving many

problems existing in distributed systems.

2.2.1. Space Time Model of Distributed Computations

In the space time model (STM), a distributed system is viewed as a collection of
communicating sequential processes, each consisting of a sequence of events. An
event could represent an execution of a function or a single instruction, or the send-
ing and receiving of messages. We assume that the ordering of events is strictly

governed by partial ordering on a set of events [Lam78].

Figure 2.1 shows a space time diagram of a distributed system example. A pro-
cess is represented by a horizontal line called a process line. Nodes in each process
line represent events. For any two events ¢ and b, an event ¢ precedes or "happens

before" an event b if and only if ¢ < b. The precedence relation < is defined as fol-

lows:
1. if « and b are events in the same process then ¢ < b implies ¢ happens before b,

2. if a is a send event in one process and b is its corresponding receive event in

another process, then ¢ < b by their causality relationship.
3. ifa,b,careeventsand ¢ < b and b < ¢, thena < ¢ by transitivity.

4, two distinct events ¢ and b are concurrent if neither ¢« <h norb < a.

2.2.2. System Interaction Diagram

A sysrem interaction diagram shows the logical interrelationships among the
processes taking part in the distributed system computations [SAAA94}. This
diagram is a directed graph consisting of a set of vertices and a set of directed edges.

Each vertex corresponds to a process in the system. A directed edge between two
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processes. say from PJ to P, . exists if there exists a message flow from process P ) to
process P, . For example. if we consider the distributed system specification shown in
Figure 2.1, we need to have the processes connected in a strongly connected network

with the system interaction diagram as shown in Figure 2.2.

We also assume that if a message is to be sent from P} to P, and there does not
exist a channel between P i and P, , the message is sent through the shortest possible
path between Pj and P, in the strongly connected network. If it takes one time unit
for the message to reach between two nodes, then the time required for the message
from Pj to reach P, is a function of the shortest path. If a process is required to com-
municate with all other processes, it will take longer if the underlying communication

system is not fully connected.
2.3. Consistent Checkpointing and Rollback Recovery

Definition 1: A checkpoint is the saved state of a single process stored in a form
such that the process can restart its execution from the point in time when the check-

point was created.
Definition 2: Checkpointing is the process of saving process states into checkpoints,
Checkpoints contain all information needed to restart the process in which the

checkpoint was created. When the process is restarted, its current state is discarded

and the state saved in the checkpoint is restored.

Definition 3: The restoring of the state of one or more processes to the state previ-

ously stored in a checkpoint is called Rollback.

A set of checkpoints, one per process in the distributed system, is said to be

inconsistent if the saved states form an inconsistent system state. A system state is
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Figure 2.2 : System Interaction Diagram for Figure 2.1
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inconsistent if a process in the system has received a message that has not been sent
yet in this system state. Howcver, the system state is regarded as consistent if 4 mes-
sage is already sent by one process but not yet received by the ather process. There-
for e, when a process wishes to checkpoint its state, it must be sure that when it
decides to roll back to this checkpoint at a later time, it will be in a consistent state
with respect to the other processes in the system. Consistency upon roilback is
ensured by guaranteeing that any dependencies on messages are reflected in the

checkpoint along with the actual state of the process.

The rollback of a single process may uffect the execution of other processes in
the distributed system. The rollback to a checkpoint will "undo" any communication
that may have occurred since the checkpoint was created. Consider the execution of
two interacting processes as shown in Figure 2.3. Suppose that the process P, creates
a checkpoint at time 7, and afterwards receives a message m from P,. Attimer,. P,
performs a rollback to the previously saved checkpoint and repeats the execution
starting from that state. The system state is represented by the line joining (P 1o 1o
and (P, 1), and it meets the definition of consistency. However, if P, is rolled back
to point ¢, and then re-executed, it will be waiting for message m, which will not
arrive if P does not also roll back its state to a point in its execution prior to the

sending of m. The system recovers from a consistent state, but message m is lost.

Another serious consequence of interaction on checkpointing is depicted in Fig-
ure 2.4. In this figure, process P, takes a checkpoint at time 7| and then sends a mes-
sage to process P,. After receiving this message, P, tukes a checkpoint at time 1)
Subsequently, P fails and restarts from the checkpoint taken at 1,. The system state
at P’s restart is inconsistent, because P,’s local state shows that no message has
been sent to P,, while P,’s local state shows that a message from P, has been

received. This problem is also known as the orphan message problem.
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As the system executes, the message loss problem can be avoided by recording
the messages on stable storage in a message log. Each message carries with it an
event index for the sending process at the time the message was sent. A message is
called logged if and only if its data and the event indices for the sending and the
receiving processes are recorded on storage. Logged messages remain on storage
until they are no longer needed for recovery from any possible future failure of the
system. Recovery from an inconsistent state as shown in Figure 2.4 is possible if the
orphan messages can be distinguished and are not sent by P, after recovery since
these messages are already on the message log for P,. Processes must be rolled back
in such a way as to insure that any two processes are in a consistent state with respect
to each other with no message lost, i.e., they agree on which messages have been sent

and which ones have not,

Definition 4: Any set of checkpoints (no more than one checkpoint per process)
which taken collectively form a consistent state of a distributed system is called a

Recovery Line.

2.3.1. Requirements for Efficient Checkpointing and Recovery Procedures

Clieckpointing and rollback recovery procedures can be used to provide a
method of restarting an application from a point in time prior to the occurrence of a
fault thereby rendering the program more resilient to faults. It has been used in appli-
cations such as distributed programs and distributed database systems. But these pro-

cedures must follow certain requirements [FrTa89, SaAg93a).

An ideal checkpointing procedure should:

1. be nonintrusive, meaning that when the procedure is executed, there should be no
interference with the underlying distributed system computations, processes

should always be able to exchange system application messages and there is no
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visible effect on the performance of the system:

obtain an efficient checkpoint, meaning that the obtained system state should be

as close as possible to the system state when the procedure stops;

obtain a meaningful state, meaning that the obtained system state should be a

state that has actually occurred during previous computations of the system;

incur low overhead minimizing the time lost during checkpointing and disk space

for storing checkpoints;

be fault-tolerant, meaning that if during the execution of the procedure a failure
occurs in the system, the procedures should still terminate and return a consistent

system state or checkpoint.

ideal recovery procedure should:

provide us with a maximum global consistent state, i.e., for the failed process, the
state before the occurrence of error, and, for the other processes, the state before

the effects of the error had propagated to that process.

require a minimal number of processes to rollback, meaning that in addition to the
process where error occurs, only the processes affected by the error need to roll

back to their respective recovery points;

use a minimal number of recovery related messages;

require a minimal number of application messages to be retransmitted;
use a minimal amount of storage for its implementation; and

recover from any number of process failures in the system.

2. Problems Related to Checkpointing and Rollback Recovery

This Section outlines some problems that make checkpointing and recovering

state of a system very difficult. They are as follows [Sarr93, KoTo&7, SaAg93b]:
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1) Lack of global time: Distributed systems suffer from the problem of having no
global time scale. Events occurring in a traditional sequential program will always be
totally ordered by physical time. Unfortunately, this is not the case in a distributed
system. Therefore, some method of artificially ordering events in different processes
is needed in order to discuss the creation of meaningful checkpoints. In checkpoint-
ing algorithms a partial order is imposed on all of the events using the "happens

before" relation as described in Section 2.2.1.

2) Communication delay: If the state of a single-process program is checkpointed, it
can be done so instantaneously since there is no need to coordinate its checkpoint
creation with any other processes as there is no outside interaction. However, in
multiple-process applications the fact that there is no global time scale, implies that
it is impossible for system wide states to be saved instantaneously. Therefore, some
communication protocol must be employed in order to save states that are consistent
across several processes. However, in distributed systems, there is an inherent delay
between the time that a message is sent and the time at which it is received at some
remote process. Since checkpoints cannot be created according to a global clock, and
messages incur a delay, it is impossible to save and restore states of several processes

instantaneously.

3) Frequency of checkpointing: This really depends on the application. The two
things to consider when deciding on the checkpoint frequency are the need to minim-
ize the amount of computation to be rolled back, and the overhead of the actual
checkpointing operation. If checkpoints are taken often, the system performance will
degrade but recovery time will be decreased. On the other hand, if checkpoints are
taken less often, system performance will be affected to a lesser extent but a penalty
will be incurred at the time of rollback and recovery. The designers of checkpoint

and rollback recovery must weigh the advantages and disadvantages of checkpoint



frequency on the basis of how likely it is that the system will have to be rolled back.

This can be considered as an optimization problem as done in [ ChKr&8].

4) Pre-rollback messages: The communication delay inherent in distributed systems
introduces another obstacle to rollback and recovery. When a process has rolled back
its state, some messages that it has sent prior to its rollback may still be in transit (i.e.,
the messages may not have been received at their destination yet). These messages

would no longer be valid since they were sent before the sender had changed its state.

Definition 5: Messages which are sent by a process prior to its rollback but are
received by another process after the rollback is complete are called pre-rollback
messages.

It is important for checkpoint and rollback recovery algorithms to make sure
that these pre-rollback messages are somehow flushed out of the system so that they
are not mistaken for valid message resends upon rollback. Consider the system exe-
cution in Figure 2.5. After the recovery line is created, messages are sent between
processes P, and P,. After the rollback, P resends message m, as m,” and P,
resends message m, as m,". However, message m, which was sent from P,, was in
transit while the rollback was taking place and arrives at P, after the rollback. If m,
is not detected as a pre-rollback message, P, accepts message m 4 thinking that it is

actually receiving m, and the whole system execution is now in error.

5) The domino effect: Restarting a system from a set of inconsistent checkpoints
may cause the biggest problems in checkpointing and rollback recovery, the domino
effect problem [Ran75] as illustrated in Figure 2.6. The domino effect refers to the
avalanche rollback of processes to their initial state due to the rollback of one pro-
cess. In Figure 2.6, processes P, and P, have independently taken a sequence of
checkpoints. The interleaving of messages and checkpoints leaves no consistent set

of checkpoints for P, and P, except the initial one at (X, ¥ ). Consequently, after
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P, fails, both P and P, must roll back to the beginning of the computation. For
time-critical applications that require a guaranteed rate of progress, such as real time
process control, this behaviour results in unacceptable delays. Message logging has

been proposed to avoid such a problem.

6) Livelock: When a process rolls back to its checkpoint, it notifies all other
processes to also roll back to their respective checkpoints. Due to communication
delay all processes cannot recover simultaneously. Recovering processes asynchro-
nously can introduce livelocks; i.e., situations in which a single failure can cause an
infinite number of rollbacks, preventing the system from making progress. Such a
situation is illustrated in Figure 2.7. Process P, fails before receiving the message
n . rolls back to its checkpoint W, and notifies P,. Then P, recovers, sends n, and
receives n,. P, now has no record of sending m |, whereas P, has a record of its
receipt. The global state is therefore inconsistent. P, must also roll back to its check-
point ¥ to forget the receipt of m,. Now P, has no record of sending n | whereas P
has a record of receiving n,. Hence, P must roll back a second time to restore con-
sistency. Furthermore, P, sends n, and receives m ,, after it recovers. Message »n, is
received by P after it rolls back. However, as a result of this second rollback, P,
forgets the sending of m ,. Therefore P, must roll back a second time to restore con-
sistency. And this second rollback of P will cause the third rollback of P,. P, and
P, are forced to rollback forever, even though no additional failures occur. This

livelock problem must be solved by any rollback recovery algorithm.

7) Message loss: Recovery from a set of consistent checkpoints may cause message

losses as illustrated in Section 2.3.
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2.4. Classification of Checkpointing and Rollback Recovery Schemes

Distribuied checkpoint and rollback recovery algorithms [ChLa&5, JoZw9(,

KoTlo¥7, LeBh¥X, SiWegY, StYe&5, VRLE7] can be classified into two categories

according to the method used to create checkpoints with respect to recovery lines:

*

Pre-planned: processes coordinate their checkpointing actions such that each
process saves only its most recent checkpoints, and the set of checkpoints in the
system is guaranteed to be consistent. The responsibility of obtaining the
recovery points lies with the checkpointing algorithm rather than the rollback and
recovery algorithm. When a failure occurs, the system restarts from these check-
points.

Un-planned: processes take checkpoints independently according to its own
needs and without any synchronization with other processes. Multiple check-
points have to be kept in local stable storage. Upon a failure, the rollback and
recovery algorithm must find a consistent set of checkpoints among the saved
ones (i.e., to select checkpoints such that they form a recovery line). The system
is then rolled back to and restarted from this set of checkpoints. To aid in
recovery anc to minimize the amount of work undone in each process, messages
that have been sent or received by a process are saved with the process state when
a checkpoint is created [JoZw90, StYeX5|. Algorithms that take this approach
can be turther classified into those that use pessimistic and those that use optimis-

tic message logging.

In pessimistic (or synchronous) message logging, every message received is logged to

stable storage before it is processed [BBGX3, PoPr83]: a receiver process is blocked

until the message is logged on stable storage. Thus the stable information across

processes is always consistent. However. this method slows down every step of the

application computation, because of the synchronization needed between logging and
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processing of incoming messages. On the other hand, in optimistic (or asynchronous)
message logging. messages received by a process are logged in stable storage asyn-
chronously from processing {EIZw92, JoZw9l), SiWe8Y, StYe85]. In this case, log-
ging can lag behind processing, a receiver process does not block to log each mes-
sage. Failure-free computation is not disturbed. but some extra work must be done

upon recovery to make sure that the restored states are consistent.

Pre-planned checkpointing schemes are always guaranteed to find recovery
lines which are valid since the checkpointing of individual processes is synchronized
such that the collection of checkpoints represent a consistent state of the whole sys-
tem. In some un-planned checkpointing schemes, on the other hand, it cannot be
guaranteed that checkpoints form part of any recovery line since these recovery lines
must be extrapolated at the time of rollback. Consequently, un-planned strategies
that cannot guarantee consistent recovery lines cannot ensure that a rollback will not

necessitate a re-execution of the entire system.

These methods achieve only a subset of the goals of reducing the overhead dur-
ing failure-free operation and limiting the extent of rollback. The overhevd during
failure-free computation includes message overhead between processes to ensure that
a consistent system state is recorded to rollback to and the cost of saving the check-
points on stable storage. The pre-planned strategies incur a higher overhead during
the checkpointing phase since it is during the checkpointing phase that recovery lines
are determined. The more infrequentiy the checkpointing computation is done, the
more out-of-date the checkpoints will be, and thus the more work that will be lost (in
spite of it being error-free) following a failure. The processors indeed rollback to a
consistent state, but not necessarily to the maximum consistent state before the error
event. If there are no failures, then the above approach places an unnecessary burden
on the system in the form of additional messages and delays. On tae other hand, uu-

planned strategies incur very little overhead during checkpointing but have a high
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overhead during the rollback phase. Since more than one process may be involved in

the creation of checkpoints in the pre-planned schemes and the approach usually has

a two-phase structure, the pre-planned schemes tend to introduce synchronization
delays blocking the normal computation whereas in the un-planned strategies only a
single task is involved in creating its own checkpoint.

Between the classes of the un-planned strategy, the main trade-off between the
pessimistic and the optimistic approaches is the overhead during normal computation
of logging the message against a more complex recovery. Faster recovery is
achieved at the expense of greater run-time overhead or specialized hardware for
pessimistic message-logging as compared to optimistic message-logging where mes-

sages not yet logged when a rollback is initiated can cause slower recovery.

2.5. Related Work in Checkpointing and Rollback Recovery Algorithms

Various checkpointing and recovery procedures have been introduced in the
literature. Much of the previous work in checkpointing has focused on minimizing
the number of processes that must participate in taking a consistent checkpoint or in
rolling back [IsMo89Y, KoTo&7, LeBh88]. Another issue that has received consider-
able attention is how to reduce the number of messages required to synchronize the
consistent checkpoint | BCS84, TKT8Y, VRLE7]. Researchers have succeeded in pro-
viding rollback by obtaining the recovery line joining the checkpoints of the
processes immediately preceding the contaminated events. However, not much has
been done in providing minimal rollback, which is the line joining the local states of
the processes immediately preceding the events that may depend on the contaminated
data produced as a result of the erroneous event. Moreover, most of the algorithms
assume the processes to be fail-stop, i.e., the errors in a process are always detected

immediately by the recovery system.



Under the schemes that fall into the pre-planned approach category:

Chandy and Lamport [ChLa85] have proposed a global snapshot algorithm
where the checkpoints can be looked upon as valid recovery lines to which the sys-
tem can roll back. Their algorithm is computationally expensive and does not provide
minimal rollback. Also, it does not provide a meaningful state: the global state
obtained may or may not be a global state through which the system has passed. To
obtain an error-free checkpoint, no error should have occured in any of the processes
between the state where the algorithm was initiated and the state where it was ter-
minated. Also, after a loss of coordination between the processes of a protocol [Refer
to Chapter 4], the application of distributed snapshot algorithm may or may not ter-
minate; therefore, it is not guaranteed that it will return any global state |[SUAY2]. A
moditied distributed snapshot algorithm for the case when a loss of coordination

occurs is given in [SUAY4|.

Koo and Toueg [KoTo87] give algorithms, also based on pre-planned approach,
which guarantee that a minimal number of checkpoints will be created, and that a
minimal number of processes will be forced to roll back should a failure occur. The
obtained checkpoint is an efticient and meaningful state. Minimal storage require-
ments are needed since only the local states corresponding to checkpoints are stored.
But the algorithms do not tend to consider the problem of message loss upon rollback
recovery. However, they solve the livelock problem during recovery. They allow
multiple rollback and checkpointing. One of the deficiencies of these algorithms is
that they are intrusive; the processes are not able to exchange system application
messages during checkpointing. There is a large system overhead, in the worst case
of 30 (N 2) for each checkpointing and rollback recovery algorithm, where N is the
number of processes. Their rollback and recovery algorithm does not provide
minimal rollback. If each message transfer takes one time unit, then in the case of a

fully-connected network and in the worst case when each process transmits system
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messages to all other processes after they take their last checkpoints, 5 time units are
required for each checkpointing and rollback recovery procedure. Their checkpoint-
ing and roliback recovery algorithms are for fail-stop processes and are based on
two-phase commit protocols.

The checkpoints created using the VRL algorithms [VRL87, Venk88] are
always consistent. Only those messages that cause backward dependencies are stored
as channel states in the checkpoint. The obtained checkpoint is an efficient and mean-
ingful state. The algorithms arc non-intrusive. They are inexpensive since the control
information is only piggybacked onto the system messages during checkpointing. Of
course, special control messages are required during rollback of the order of N?
where N is the number of processes. Venkatesh et al claim that their strategy can be
easily extended to support multiple rollbacks. The rollback recovery algorithm
guarantees that minimal number of processes will be forced to roll back should a
failure occur. However, their algorithm does not provide minimal rollback. It pro-
vides rollback to the most recent self-induced checkpoints (SIC) of the initiator pro-
cess. It discards all checkpoints that follow it (without giving any procedure on how
to do this) even though they may be used to obtain a consistent state close to the
failure point. Rollbuck to the most recent SIC may still require non-erroneous events

to be undone.

Israel and Morris [IsMo&Y] presented a non-intrusive checkpointing protocol
that guarantees the existence of a globally consistent state, which is also close to the
system state at the time of invocation. The protocol requires a minimal number of
processes to checkpoint and is resilient to process failures. But they assume the
processes to be fail-stop, i.e., the error should be detected as soon as it occurs and the
failure should be detected by any live process. They also consider the system to be
connected in a fully-connected configuration, which may not be true for many distri-

buted systems. The algorithm cannot handle concurrent invocations. The number of



checkpoint related messages is of the order of N where N is the number of processes
o)
in the system, and other related messages are of order O(N 7). The number of time

units required for the checkpointing protocol to terminate is O (V).

Leu and Bhargava !LeBh88] present checkpointing and r(;llback algorithms that
guarantee a globally consistent and meaningful state. The algorithms by themselves
are intrusive. The non-intrusive version forces multiple invocations of the algorithms
making the algorithms complex. The algorithms do not require all processes to
checkpoint or rollback in case of failures. The algorithms allow concurrent invoca-
tions without any deadlock or livelocks. They handle multiple process failures during
checkpointing or rollback of other processes. The processes not affected by error
may need to rollback. The message overhead for checkpointing is not too high, of the
order of three times the branches in the checkpointing tree. But an extia message
exchange is involved during the derivation of the child-parent relationship. Similarly
for the rollback operation the number of control messages required are 3N with extra
messages required to establish rollback tree. The time for checkpointing and rollback

operations is each (three times the depth of tree) time units.

Under the schemes that fall into the un-planned approach:

Strom and Yemini [StYe&S5] introduced the concept of optimistic message log-
ging. They provide a consistent system state that is independent of orphan or lost
messages. The time needed to create checkpoints is minimal and there is no over-
head during checkpointing. However, they require a high overhead in time and an
exponential number of message exchanges to recover from the failure of one proces-
sor. They require resending of application messages after recovery during replay,
which will be discarded if those messages are already logged by the receiver process.
The domino-effect is not completely eliminated. A processor rolls back 0(2|N')

times in the worst case where [N | is the total number of processors. They have also

not considered multiple failures of processes. The processes are assumed to be fail-
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stop.

Johnson and Zwaenepoel [JoZw90] find a consistent state from a set of indepen-
dent checkpoints and messages logged onto the stable storage. Their algorithm pro-
vides minimal rollback if all the surviving information of all the surviving processes
is logged. However, their algorithm is based on the assumption of processes being
fail-stop. The recovery state algorithm can be used in recovering from any number of
process failures in the system, including a total failure of all processes. The domino-
effect is not completely eliminated if all messages received by each process are not
eventually logged. A consistent state would not be obtained and earlier checkpoints

would need to be considered to obtain a consistent state.

Sistla and Welch [SiWe&Y] have also presented algorithms to recover from
crash failures. No further failures are allowed during the recovery procedure. O(N)
extra information is appended to each application message and Q(NV 2) messages are
exchanged for rollback with no node rolling back more than once. They do not pro-
vide a fault-tolerant version of the recovery procedure. In their optimized use of log,
there is a message loss problem since non-failed process may not roll back and resend
messages, whereas the receiver process might have failed and lost the message or the
receiver process considers it as an orphan and discards it. The algorithms do not also
consider the problem of pre-rollback messages.

Elnozahy and Zwaenepoel [EIZwY2]| have provided an efficient rollback
recovery protocol for a system of fail-stop processes. However, they have a complex
recovery scheme and complex maintenance and storage of the antecedence graphs,
with messuage overhead of 3N during recovery. There is no message loss problem and
the pre-rollback messages are taken care by the use of incarnation numbers. The
authors claim that the protocol also tolerates an arbitrary number of fail-stop failures,
including additionat failures during recovery. Their protocol does not provide

minimal rollback.
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Comparison and analysis of most of the algorithms presented in the literature

can be found in [Agar94].

2.6. Concepts and Requirements for Checkpointing and Rollback

In a distributed system, processes perform computations on their respective
local variables and send and receive messages to and from other processes. Events
(sending or receiving messages) are assumed to be partially ordered by Lamport's
"happened before" relation, and an event is uniquely identitied within a process P, by
an event index EI . Each time a process receives or sends a message, it increments its

event index E/, by one.

The maximally reachable event index tuple MREI(i) | SaAgY3a) for process P is
denoted by MREI()=(El,El, --- El. --- El ), where EI El, - - El
represent event indices that other processes must have reached before process P, exe-
cutes (sends or receives) its event with event index E/,. This concept is based on the
concepts of maximally executable sequence and maximally reachable state intro-
duced in [KakY1] and the concept of event index as defined in [FoZwY0)], and is simi-

lar to the concept of vector clocks [RaSiv6).

The maximum (minimum) of two maximally reachable event index tuples
MREI (i ) of process P, and MREI (j) of process Pj (both processes belonging to the
same system), denoted by MAX (MREI (i ) MREI (j)) (MIN(MREI(i),MREI(j))), is a
maximally reachable event index tuple whose & th element is a maximum (minimum)

of the & th elements of MREI (i ) and MREI (j ).

Algorithm MREI specities how to obtain a maximally reachable event index

tuple, MREI (i ).
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ALGORITHM MREI:

When a process P, decides to send a message, it:

(MI) increments by one its local event index Eliin MREI (i),

(M2) tags the transmitted message with the maximally reachable event index tuple
MREI (i ),

(M3) saves the corresponding executed event tuple (EXECEYV tuple) in storage.

When a process P f receives a message from process P; along with MREI (i), it:
(M4) increments by one its local event index E/ | in MREI (j),
(M5) updates MREI (j) such that MREI (j ) = MAX (MREI (i), MREI (j)),

(M6) saves the EXECEYV tuple in storage.

Using this algorithm, each process knows the maximally reachable event index of
any other process after the execution of its events. Informally, the maximally reach-
able event index MRE! (i ) represents the most recent local and consistent knowledge
of the state of the global computation in the distributed system, from the point of
view of process P, .

In the following we show the proofs of correctness of Algorithm MREI
[SAAA94]. We are mainly interested in showing that the maximally reachable event
index tuple computed at each process represents a consistent view of the distributed

system computation.

Lemma 2.1. The local event index EI; at P; in the maximally reachable event

index tuple MRET (i ) is a consistent state of P, .

Proof. This can be proved by contradiction. Suppose that the event index in the
maximally reachable event index tuple for P, does not represent a consistent state

for P, that is, according to the definition of consistent state, it represents a situation
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where a message was never sent by another process. Then there are two possibilities:
1) the storage is corrupted, which is not possible according to our assumption about
storage, or 2) the channel has generated the received message, which is also not pos-
sible because of our assumption about the reliability of the channel and its state on
startup. Hence, the event index for P, in E/, represents a situation in which either P,
received a message from some other process, or P, itself transmitted a message
(according to the process specification). These two situations represent a consistent
state. Hence, the event index EI, for P, in MRET (i) represents a consistent local state

for P,..

Lemma 2.2. The event indices for all processes P, in MREI (i) provide con-

sistent views of the states of their respective processes P, for 1 <a <nand v #i.

Proof. The event index for P ) in MREI (i) is consistent because it was either
received directly from PI or indirectly from another process that received EI} from
P, itself, which is therefore consistent, because of our assumptions about the reliabil -
ity of the channel. The event indices for all other processes P, in MREI (i) are also
consistent because they are consistent in their respective local processes and were

transmitted along with application messages directly or indirectly to P,.

Lemma 2.3. The maximally reachable event index tuple MREI(i) at P,

represents a consistent view of the states of the local processes of the distributed sys-

tem.

Proof. This is true since according to Lemmas 2.1 and 2.2, each event index in
the maximally reachable event index tuple MREI (i) represents a consistent state in 4

process.

Theorem 1. MAX (MREI (i ) MREI (j)) represents a consistent view of the states

of the processes in the distributed system.
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Proof. According to the previous lemmas, the two maximally reachable event
index tuples represent two consistent views of the states of the local processes.
According to the algorithm, this maximum will be computed at P, therefore, the ith
element of the maximum is always consistent and will be equal to P;’s view, because
P, will have the most up-to-date knowledge about its own index. The jth element of
the maximum is also always consistent and is equal to the jth event index in
MREI (j), because P ; will have the most up-to-date knowledge about its own index.
Finally, for the rest of the event indices, the maximum tuple will contain the max-
imum of two consistent views of the states of the processes. We are interested in the

most up-to-date view for each process, which is therefore definitely consistent.

2.7. Summary

In this Chapter we have introduced the distributed system model based on the
space time diagram and system interaction diagram. The basic concepts and
definitions for fault-tolerance based on checkpointing and rollback recovery are
reviewed. We also mentioned certain requirements that an ideal checkpointing pro-
cedure or an ideal recovery procedure should meet to provide efficient restart. Any
checkpointing and recovery procedure should also solve the problems of pre-rollback
messages, domino-effect, message-loss, orphan messages and livelock.

We have also presented an analysis of many important algorithms from the
literature for checkpointing and rollback recovery in distributed systems. Most of the
algorithms presented in this chapter have assumed the processes to be fail-stop, i.e.,
the errors are always detected immediately by the recovery system. Therefore, an
error which occurs in one process can never contaminate further checkpoints and
states. However, if reliable error detection is not always guaranteed, then rollback to
a particular checkpoint may not guarantee correct performance and may require

further rollbacks until a real safe state has been reached. The algorithms presented in
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this chapter provide efficient consistent checkpoints for the systems to rollback. Most
of the algorithms allow a minimum number of processes to checkpoint and roll back
in case of failures. but do not provide minimal rollback to the state event just before
the effect of the error is manifested. They do provide rollbacl; to the last consistent

checkpoint state.

In this Chapter we have also presented our concepts on which our
checkpointing/rollback recovery algorithms for a distributed system of non-fail-stop
processes will be based. The next Chapter will provide our proposed procedures for
checkpointing and rollback recovery in the distributed systems environment that will

include most of the features of ideal checkpointing and recovery.



CHAPTER 3

FAULT-TOLERANCE IN DISTRIBUTED SYSTEMS

3.1. Introduction

Distributed computer systems are becoming increasingly popular and are being
employed for critical applications demanding high reliability. They are more com-
plex than centralized systems, which increases the potential for system faults. The
development of procedures to ensure fault-tolerance in real-time distributed systems
has been addressed in recent years. A well-recognized approach to implement fault-
tolerance is to develop generic checkpointing and rollback recovery procedures. In
contrast to checkpointing and recovery procedures for non-distributed systems, the
complexity of similar procedures for distributed systems results from the fact that we
are dealing with distributed and real-time processors, in which both partial ordering
of distributed event occurrences and timing requirements must be respected. The key
performance considerations in this approach are the overhead when no failure occurs,
the extent of rollback, the number of control messages required during rollback, the
number of processes required to roll back, and recovery within the specified real-time

requirements.

In the previous chapter we have introduced an algorithmic procedure for
efticient collection of contextual information in distributed systems, which is based
on the concepts of event indices and maximally reachable event index tuples. This
information is appended to each of the transmitted application messages. In this
Chapter we will introduce algorithmic procedures for checkpointing and rollback
recovery in distributed systems based both on the pre-planned and the un-planned

approaches. Each process uses the recorded contextual information to decide on a
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checkpoint and/or recovery point that is globally consistent with the rest chosen in

the other processes.

3.2. Checkpointing and Rollback Recovery Based on Pre-planned Approach

In this Section we first propose checkpointing algorithms for distributed systems
to obtain global checkpoints, which can be initiated by any process in the system or
upon failure of one or more component processes as part of a backward recovery pro-
cedure. We also present recovery procedures that utilise these global checkpoints to

provide minimal rollback after failures.

In the concepts for checkpointing and rollback recovery in Section 2.6, the exe-
cuted event tuple (EXECEV tuple) for the sender process P, corresponds to
(MREI (i), local state ), which is stored on stable storage, and the EXECEV tuple
corresponding to the receiver process I’j s
(MREI (), local state , P;, message received ), which is also stored on stable storage.
Consider the time diagram and the exchange of messages shown in Figure 2.1, In this
example, when m, is received by P, it increments its own event index and updates
its version of P,’s event index by computing MAX(1000,0210). 1t stores the EXE-

CEV tuple as (1210, S 1, P, m,). Similarly, when P, sends message m, it incre-

ments EI, in MREI(1)=1210 and the EXECEV tuple stored is (2210, §2), and so on.

3.2.1. Checkpointing Algorithms

In this Section we present two checkpointing procedures based on our concepts.
Procedure I can be initiated by a single process or concurrently by any number of
processes in the distributed system. The procedure does not block the sending and

receiving of application messages. In this procedure, it is assumed that there are no
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process failures in the distributed system during the invocation of this procedure (i.e.
this is a non-fault-tolerant version). Procedure 1I is the fault-tolerant version of Pro-
cedure 1, where checkpointing is invoked by a single process or concurrently by two

or more processes periodically or after their failures are detected.

3.2.1.1. Procedure I: non-fault-tolerant checkpeinting
(A) Initiator Process

When one or more processes P, decide to checkpoint, the procedure executes the fol-
lowing:
(1) It initializes the local arrays initiator and ACK T to false and [-1.-1. - -+, =1],
respectively:
Forall j =1 to N except i
{ initictor|j| = false,
ACK Tljl=1|-1.-1, --- =1 }
(2) It updaies EI (i) to reflect the last checkpoint tuple:
EI0G)=MAX(El(i), EI (h)). where EI (k) is the last checkpoint tuple
(3) It sends the maximally reachable event index tuple E/(i) with the checkpoint
message (CHK ) to every other process:

Forall j=1to N excepit i
Transmit CHK (El (i )) to PJ:

(4) If it receives CHK (EI (j)) before receiving ACK (EI (i)) from any other process
Pj. it updates E/ (i), however if an acknowledgement i« received, it updates the
array ACK T.

Forall j=1to N exncept i
{

Receive msg from PJ:



IFmsg=CHK (EI ) {
initiator |j1 = true
El(iYy= MAX(EI().EIG)): )
ELSEIF msg = ACK (EI (j)) then ACK T|j] =EI():
}
(5) Forany j =1 to N except i
IF initiator [j] = true
Forallk = 1 to Nexcept i
Transmit ACK (EI(i))to P ;
(6) Expect acknowledgements from the processes who initiated checkpointing or for
which ACK T|jl#EI():
Forall j = 1 to N except i
IF (initiator{j) = true) OR (ACK _T|jl # EI(iN {
Receive ACK (El (j)) from P,.:
ACK T'jI=EI() )
(7) If Forall j =1 to N except i
ACK Tyl =EI)
Checkpoint using the local state corresponding to its event index E/ in
EI(i) from stable storage
(8) El (k) = EI(i) for next checkpointing

(9) end.

(B) Non-initiator Process

When process P I which does not decide to checkpoint, receives CHK (El (i )) from

P

i



.44 -

(1 It initiates the local array initiator and ACK_T to false and [-1,-1, - -+ ~1],
respectively:
Forall k = 1 to N except j
{ intiator|k] = false;
ACK Tlk]=1-1.=1, - =1} }
(2) It sends the acknowledgement message for the maximally reachable event index
tuple EI (i ) to every other process:
ACK Tli)=EI();
EI(j)=EIG);
Forall k = 1 to N except j

Transmit ACK (EI (j)) to P,

(3) If it receives CHK (EI (k }) before receiving ACK (EI (k)) from any process P,, it
updates £/ (j), however if an acknowledgement is received, it updates the array
ACK T:

Forallk = 1 to Nexcept jand i
{
Receive msg from P ;
IF msg = CHK (EI (k)) {
initiator |k | = true;,
El(j)=MAX(EI (i), EI(k)); }
ELSE IF msg = ACK (El (k)) then ACK T [k] = EI(k);
)

(4) It sends an acknowledgement message with the updated E/ (j) to all processes if
there is a concurrent initiation and ACK (EI (j)) was not already sent:
Forany k = 1 to N except j
IF (inttiator |k | = true) AND EI(j)Y=# EI(i)

Forall m= 1 to N except j
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Transmit ACK(EI (iVto P, .

(5) Expect acknowledgement from P if there are concurrent invocations:
Forany k =1 to N except j
IF (initiator [k ] = true) |
Receive ACK (El (i) from P
ACK Tlil=EI()}
(6) Expect acknowledgements from the processes other than P, who initiated check-
pointing or for which ACK T[k]#=EI(j):
Forall k =1 to N except jand i
IF (initiator |k] = true) OR ACK Tk |#EI(j) {
Receive ACK (EI (k) from P, ;
ACK Tlkl=EIkK): )}
(7) If Forall k = 1 to N except j
ACK Tk} =EI())
Checkpoint using the local state corresponding to its event index Ef in

EI (j) from stable storage
(8) El (k) = EI(j) for next checkpointing

(9) end.

The reception of ACK (EI (j)) from a process P ; ensures that the checkpoint sig-
nal has been received by process P f and that process P | is now aware of the latest
maximally reachable event index tuple as the checkpoint, i.e., Pj has not failed or has
not yet invoked the checkpointing procedure. Furthermore, messages received by
process P; from every other process P i after process P, ’s event index in the global
checkpoint. which have an index less than or equal to process P/ 's event index in the
tuple, form the incoming channel content for P . If these messages have been

received by P,, they are already in the stable storage and can be obtained later for
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Tecovery purposes.

Note that any process can initiate Procedure | since each process has the maxi-
mally reachable event index tuple for every other process after the occurrence of any
event (transmission or reception). Because the channels are assumed to be reliable, it
is clear that every process receives the checkpoint signal and checkpoints after its

reception, and therefore the procedure is guaranteed to terminate in finite time.

3.2.1.2. Example ]

Consider again the example shown in Figure 2.1. The sequences of EXECEV

tuples stored in stable storage are as follows:

For P: (1210, S1, P, m2); (2210, S2); (3732, S3, P,, m8); (4732, S4); send
CHK(4732); (5932, $5. P, . m12)

For P,: (0110, S1, P4, ml); (0210, 82); (0310, S3); (2410, 54, P, m5); (2532, S5,
P .. m6): (2632, S6); (2732, S7); (4832, S8, P, mY), (4932, S9); receive

CHK(4732) from P |, start checkpointing algorithm

For P (0010, S1); (0322, 82, P ,, m4); (0332, S3); (2642, 84, P,, m7); (2652, S5);
receive CHK(4732) from P, start checkpointing algorithm; (2664, S6, P ,,
mll)

For P,: (0311, S, P, m3): (0312, §2); (2653, S3, P,, m10); (2654, S4). send
CHK(2654)

Suppose that the procedure is invoked concurrently by processes P and P, and
that the last recorded checkpoint was (2410). According to the procedure P, sends
(4732) with the checkpoint signal and P, sends (2654) with its checkpoint signal.

The new global checkpoint (GCP) obtained using the procedure I is therefore at
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(4754). The message received by P, after EI,(GCP) =17, i.e., mY from P,. has
[El, = 4] < [EI (GCP) = 4]. Therefore mY forms the incoming channel content for
P ,. Similarly, message m11 is the incoming channel content for P,. Message m12 is

not the incoming channel content for P, since EI, = 9 is greater than E/ ,(GCP) = 7.

3.2.1.3. Procedure II: Fault-Tolerant Checkpointing

The following fault-tolerant procedure considers the case when checkpointing
can be invoked by a single process or concurrently by two or more processes periodi-
cally or after their failures are detected. It generalizes the non-fault-tolerant version
of Procedure I that now deals with ore or more process failures during or before the
invocation of the checkpointing procedure. The variable array element Fuilure|i |
indicates to process P ; Whether or not a process P; has failed. Variable Failure |i] is

set to true by P, if P invokes the checkpointing procedure after it fails.
(A) Initiator process

When one or more processes P, decide to checkpoint:

(1) Forall j =1 to N except i { intiator|j| = false;
Failure|j) = false;

ACK Tlj}=[-1,-1, -+, ~1]; }

(2) EI(i) = current MREI tuple of P, for periodic checkpointing (or MREI tuple
El (i) corresponding to the event before the occurrence of an error leading to pro-
cess failure in case of checkpointing upon failure)

(3) EI (k)= last checkpoint tuple

(4) CHECKPOINT(EI (i ), EI (k ), Failure|i)])

(5) end.
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After entering CHECKPOINT(_,_,_) the value of any element of Fuilure [] can-

not be changed externaliy.

Procedure CHECKPOINT(E/ (i), EI (k), Failure [i])
(1) IF ((Failure|i] = true) AND (EI in EI(i) < EI in EI(k)))
El(i) = MIN (EI (i ),EI (k));
ELSEEI(i ) = MAX(EI (i ),EI(k));
(2) Forall j=1 to N except i
IF (Failure |i ) = false )
Transmit CHK (EI (i )) to Pj:
ELSE Transmit CHKF (El (i )) to Pj:
(3) Forall j =1 to N except i
Receive msg from Pj;

IF msg = CHK (ET ()

{
initiator{j| = true
IF (Forall k = 1 to N Failure k) = false)
EI(i)= MAX (EI (i ).EI(j));
ELSE
IF ( (Forany k = 1 to N Failure [k ] = true) AND
(El in EI(j)>El in EI(i)))
El(i)= MIN(EI(i).EI(J))
ELSE EI(i) = MAX (El (i ).EIl (j));
}
ELSE IF msg = CHKF (El (j))
{

initiator |j| = true:,
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Failure [j] = true;
Forallk = 1 to N except j
IF ( EI] in EI(j) < Elj in EI(i))OR ((Failure |A ] = true) AND
(EI] in EI(j)> Elj in EIRR))
El(i) = MIN(EI (\).EI (j)):
ELSE Ef (i) = MAX (EI (i ).EI ().
}
ELSEIF msg = ACK (EI(j))
ACK Tj1=EI();
(4) Forany j=1to N except i
IF initiator}j| = true
Forall k = 1 to N except i

Transmit ACK(EI (i) to P, ;

(5) Forall j =1 to N except i
IF (initiator [j ] = true ) OR (ACK T{j| = EI(i))
{ Receive ACK (El (j)) from P’;
ACK T|jl=EI({) )
(6) If Forall j=1 to N except i
ACK Tlj]l=EIU)
Checkpoint using the local state corresponding to its event index EJ in
EJI (i ) from stable storage

(7) EI(k) = EI (i) for next checkpointing

(8) end.

(B) Non-initiator Process

When process P}.. receives CHK (El (i)) /| CHKF (El (i )) from P,
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(1) Forall k = 1 to N except j
initiator [k | = false
Failure |k | = false;

ACK Ttk =1-1,-1, - -+, =1];

(2) IF CHKF (El (i)) received Failure [i] = true:

(3) IF Failure [ j] = true [* due to the process P i interrupt mechanism */
{ EI (j) = MREI tuple corresponding to the event before the occurrence of
error leading to process P f failure;

CHECKPOINT(EI (j), El (i), Failure (j));
STOP; |
ELSE {
El(j) = El();
Forall k = | to N except j
Transmit ACK (EI (j)) to P, ; }

(4) Forall k = 1 to N except j and i
Receive msg from P :
IF msg = CHK (EIl (k))
{
initiator (k| = true ;
IF (Forall m = 1to N Failure {m} = false)
El(j) = MAX (El (j).EI (k)
ELSE
IF ( (Forany m=1to N Failure |m] = true) AND
(El,, in EI(K) > EI in EI(j)))
EI(j)= MIN (EI (j).EI (k));
ELSE EI (j) = MAX (EI (j).El (k)):
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ELSE IF msg = CHKF (El (k))
{
initiator [k ] = true;
Failure [k] = true;

Forall j=1 to N except k

IF ( EIJ in EI(k) < El_in EI(j)) OR ((Failure[j] = true ) AND

(El, in EI(k) > El, in EI())
EI(j) = MIN(EI (J).EI (k))
ELSE EI (j) = MAX (EI ().EI (k));
)
ELSE IF msg = ACK (El (L))
ACK Tkl =EI(k):
(5) Forany k = 1 to N except j
IF (initiator [k | = true ) AND (EI (j)# EI (i)
Forall m=1to N except j

Transmit ACK (EI (j)) to P, ;

(6) Forany k = 1 to N except j
IF (initiator [k ] = true)
{ Receive ACK (EI (i )) from P,
ACK T()=EI(U);}
(7) Forall k=1 to Nexcept jand i
IF (initiator |k | = true ) OR (ACK T|k|#EI())
{ Receive ACK (El (k)) from P;
ACK Tlk)=EI(k);}
(8) If Forall k = 1 to N except j
ACK Tkl =EI({)

Checkpoint using the local state corresponding to its event index E/ ; in
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EI (j) from stable storage
(9) El (k) = EI(j) for next checkpointing

(10)end.

The value of Failure[j] cannot be changed between Steps 4 to 9. If a failure of pro-
cess j occurs during Steps 4 to 9, the checkpointing algorithm is again initiated using

(A) after completing all the steps of (B).

3.2.1.4. Example 11

To illustrate Procedure II, we consider again the example in Figure 2.1. Suppose
P, invokes the procedure after maximally reachable event index of (2654) with
Failure{4] = false. Let the last checkpoint be the tuple (0310). Following the steps

of Procedure 11, different scenerios may occur:

Case(i). P detects an error after its event index (4732) before receiving the
CHK (2654) signal from P, that an error had occurred in P, after its event index of
(2210). Then EI(1) = MAX (2210,0310) = 2310 and P, sends CHKF (2310) as the
checkpoint upon failure signal. When P, receives the CHKF (2310), it sends an
ACK (MAX (2654,2310)) and checkpoints when ACK (2654) is received from every
other process. Similarly, other processes also checkpoint when ACK (2654) is
received from every other process. Message m11 will be the incoming channel con-

tent for P, and the global checkpoint tuple is (2654).

Case(ii). If P detects the error after receiving CHK (2654) from P 4 but before send-
ing an ACK (2654), then EI (1) = MAX (2654,2210) since El, = 2 is not less than EIl
received from P . It sends a CHKF (2654) to every other process and checkpoints

when ACK (2654) is received from every other process. Similarly, other processes
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also checkpoint when ACK (2654) is received from every other process. Message
m11 will be the incoming channel content for P, and the global checkpoint tuple is

again (2654).

Case(iii). If P, detects the error after receiving CHK (2654) from P, but after send-
ing an ACK (2654) to other processes. The global checkpoint as obtained by all
processes after the termination of the procedure is (2654). Process P initiates a new

invocation of the checkpointing procedure with E/ (i) = 2210 and E/ (k) = 2654.

3.2.1.5. Correctness and Complexity

In this Section, we first prove the correctness of Procedure | and I1. Then we

describe their respective complexities.

Proofs of Correctness

Lemma 3.1. Every process terminates its execution of the checkpointing pro-

cedure.

Proof. Let P; and Pj. be the initiator processes that concurrently invoke the
checkpointing procedure periodically or upon failure and P, be the non-initiator pro-
cess. When Pi (Pj) receives the maximally reachable event index tuple from Pj(P‘. ),
it knows that some other process has initiated the procedure and is waiting for its ack-
nowledgement, similar to the way P, (PJ.) is waiting for an acknowledgement from
every other process. So it takes the MAX (MAX or MIN in the case of the fault-
tolerant version) of the two tuples and sends an ACK along with the MAX (MIN )
tuple in the case of concurrent invocations. Therefore, P]. (P,) will not be in a
deadlock waiting for an acknowledgement from other initiator processes. P, sends
an acknowledgement upon receiving the checkpointing signal from any of the

processes P; or Pj. But this acknowledgement may not be corresponding to the
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MAX (MIN ) tuple. When P, receives CHK (CHKF ) signal from the other process it
sends an ACK along with the MAX (MIN ) tuple. Therefore initiator processes will not
wait for ACK (MAX /IMIN tuple) from non-initiator processes also and will terminate
when acknowledgement corresponding to the MAX (MIN ) is obtained from all other
initiator and non-initiator processes. Similarly non-initiator processes also receive
ACK (MAX IMIN tuple) from all other initiator and non-initiator processes and will

terminate,

Lemma 3.2. If the set of checkpoints in the system is consistent before the exe-
cution of the checkpointing Procedure I or I, the set of checkpoints in the system is

consistent after the termination of either procedure.

Proof. If the set of checkpoints is consistent before the execution of the check-
pointing procedure, then the maximally reachable event index tuple E/ (k) received
during last checkpointing represents a consistent system state. Also, from the con-
cepts of maximally reachable event index tuple as given in Section 2.6, EI (i ), which
is the current maximally reachable event index tuple of P, for periodic checkpointing
or the tuple corresponding to the event before the occurrence of error, represents a
consistent system state. Therefore the set of checkpoints obtained after the termina-
tion of the checkpointing procedure corresponding to the maximally reachable event
index tuple MAX (EI (i ).EI (k)) for non-fault-tolerant version and MAX (EI (i ),El (k))
or MIN (EI(i).El(k)) for the fault-tolerant version, represent a consistent system
state. For the fault-tolerant version the M/N function is applied to remove the depen-

dencies of the events occuring after the failure.

Theorem 3.1. When Procedure 1 or 1I is applied, its termination is guaranteed

after which the system reaches a consistent system state.

Proof. The proof is straightforward using Lemmas 3.1 and 3.2.
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Complexity

The number of messages required for single invocation is N (N =1), i.e., the mes-
‘, .
sage complexity is O (N”). For M (M <N) concurrent invocations, the number of

messages required is 2N (N —1), which has again the complexity of O (N 3,

The time required to perform checkpointing (if we assume that the message
from one process takes T=one unit of time to reach all of the other processes in a
fully connected network system or T'=d units of time, where d is the depth of
minimum spanning tree of a strongly connected network, to reach the leaf node of the
spanning tree), is 2T time units for M =1 or M = N invocations and 37 time units

for 1 <M <N invocations.

3.2.2. Rollback Recovery Algorithm

In this Section, the checkpointing procedures described in Section 3.2.1 will be
used as the basis for optimal recovery in distributed systems requiring minimal roll-
back. In earlier work on recovery in distributed systems, a recovery point is defined
to be the consistent state saved as a result of the last checkpointing procedure. How-
ever, in our approach, a recovery point is the state just before the occurrence of an
error for the failed process, and the state just before the occurrence of the effect of
that error for other processes. The recovery point may, in the worst case, be a state

saved during checkpointing or a state further ahead in the transition sequence.

For the purpose of recovery we assume that there is a mechanism in the system
to carry out error detection before checkpointing and that the checkpoint is a safe
state. We also assume that all the states preceding the error in all the processes are
correct (safe). A process also assumes that the received messages are correct and

hence the process of fault-detection would not suspect the sender. Otherwise, each
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process will suspect the messages it receives and will throw the blame on some other

Process.

The storage required in our recovery algorithm is as follows. Each process P,
has a record on stable storage of the scquence of maximally reachable event index
tuples MREIl(i), MREIz(i), MREIm(i), MREIIm(i) that are known to that
process after the last checkpoint along with their respective local process states. This
can be obtained fruin the sequence of EXECEV tuples as stored in Section 3.2.1.2.
Also, for the purpose of recovery, the sender process stores in the EXECEYV tuples the
id of the process to which the messages were sent. The new checkpoint is obtained
after the event tuple MREI (i), and MREI, (i) corresponds to the last event which
occurred before recovery. Moreover, a request to suspend transmission after check-

pointing is sent along with the CHKF signal.

The following recovery algorithm requires that only the affected processes per-
form minimal rollbacks. We assume that no failure would vccur in the system during

recovery.

3.2.2.1. Algorithm R1

(i) After process P, receives a CHKF (EI (j)) signal from failed process Pj, and
obtains the event indices corresponding to the global checkpoint
GCP = (CP, -+ (‘Pj. - CP, -+ CP), it traces the recorded sequence of
maximally reachable event index tuples,
MREL (i), MRET (i), -+ MREI (().MREI (i), -+ MREI, (i), up to the
tuple MREI al)y=(El, - EIJ. - ElL - El ) where the event index Elj

of the failed process Pj is greater than the failed process’s event index

corresponding to the checkpoint CP]. (i.e., trace the sequence until when Elj of
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MREI__ () > CF’j ). The recovery point RP; for process P; would then be EI, of
MREI" ). If MREI_‘ +l(i) cannot be obtained then El‘ in MREI,m (1) gives RP‘.

The recovery point for the failed process P ) of course, corresponds to CFP .
A

(2) Process P; sends RF| to those processes to which messages were sent after the
last checkpoint.

(3) The processes receive messages sent by other processes up to and icluding their
recovery points. Recovery points are received from processes if their event
indices in the message received were greater than their corresponding event
indices in the last checkpoint.

(4) Consider the sequence of EXECEV tuples for the received messages:

For any process P, where 1<m<N:
IF MREI, (m) < RP, received from P,
I MREI (m)<RP
the stored message is not required to be replayed after recovery
Else
the message is replayed after recovery since this is the message sent by
P, befcie its RP, and received by P, after its RP,|
Else remove message from storage since it is a contaminated message

{5) Remove the tuples received from the last checkpoint up to the recovery point to

update the sequense of tuples to be stored:
Consider the sequ.nce of EXECEV tuples for the received and sent messages:
For any process P, where 1<m<N:
For tuples corresponding 1o sent messages:
Remove the tuples from the sequence of EXECEV tuples since the
message sent has either beer. received or was contaminated and sent
after the recovery point

Else retain the tuple in the sequence
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For tuples corresponding to received messages:
lfMREIm(m) > RPm
retain the message in the stored sequence
Else remove the message from storage since it has been received before its

recovery point

The processes resume their executions from the states corresponding to their

respective recovery points.

3.2.2.2. Example

To illustrate Algorithm R1, we consider the example shown in Figure 2.1 and
reproduced in Figure 3.1. Let the last set of checkpoints correspond to the event
indices (0310). Let process P, receive a CHKF (2210) signal from P, and obtain the
global  checkpoint as (2310). It then traces the tuples recorded up to
MREI | (2) = 4832, Therefore, MREI (2) = 2732, and the recovery point RP, =7
corresponding to E/ =1 of MREIx(2). Process P2 sends RP2 to P | and P3 and
receives recovery point from P ,. Stored messages m 5 and m 6 are not required to be
replayed. Message mY is removed from storage since it is contaminated.

Similarly, P finds its RP; = 5 and sends it to P, and P ,. It receives m 11 from
P 4 until recovery points are received from P, and P,. Messages m 4 and m 7 do not
need to be replayed. Message m11 is replayed since it is sent by P, before its

recovery point and received by P, after its recovery point.

Process P, also finds its RP, = 4 and sends it to P . It receives RP, = 5 from P,
and decides not to replay message m 10
Process P, receives message m 12 before receiving RP, =7 and decides to

remove and discard it from storage.
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After recovery the tuples retained in storage are:
ForP: (3732,83,P,, m8),

Forf,:

ForP:

ForP4:

The number of messages required for each non-failed process is equal to the number

of processes to which messages were sent since the last checkpoint, and in the worst
‘, . - . . 3

case is equal to (N-1)(N-1), i.e.. of the O (N”). The time required is T time units

where T = depth of minimum spanning tree.

3.2.2.3. Algorithm R2
For this algorithm we assume that a system failure can occur during the execu-
tion of the rollback procedure.

(1) If process P, fails (detects an error) during the execution of Algorithm R1, then:
If EI in the maximally reachable event index tuple MREI (i ) corresponding
to the event before the ocurrence of error is > RP;

Continue the recovery algorithm R1
Else
exit recovery algorithm R,
discard any RPI. if received, from any process P i and
follow the appropriate checkpointing algorithm

(2) If process P | receives a CHKF signal from process P; before resuming its execu-

tion from the state corresponding to its RPj , then:

exit the recovery algorithm R1,

discard any RP, . if received, from any process P, . and
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apply the appropriate checkpointing algorithm

3.3. Procedures for Fault-Tolerance Based on the Un-Planned Approach

In this Section, the problem of fault-tolerance in distributed system is addressed
by providing efficient algorithmic procedures for recovery in such systems. Qur
recovery procedures do not require the application of an intrusive checkpointing pro-
cedure, but use contextual information exchanged between the distributed system
components during normal system progress. On detection of a failure, each process
through an efficient propagation mechanism, will locally compute a recovery point

that is mutually consistent with the recovery points computed by other processes.

Two approaches are considered for the storage requirement needed to imple-

ment our recovery procedures. These are described next.

3.3.1. Stable Storage Requirement for Message Logging

In the concepts for checkpointing and rollback recovery in Section 2.6, the exc-

cuted event tuple (EXECEV tuple) for the sender process P, corresponds to

(Pj,MREI (i ). message sent Pj ). The EXECEV tuple corresponding to the seceived

process Pj is (P, MREI(j), message received P ). A record of the EXECEV tuples

is appended to the process’ execution history stored on the stable storage after every
transmission or reception of a message. Consider again the time diagram and the
exchange of messages shown in Figure 2.1. When m, is received by P, it stores the
EXECEV tuple as (P,, 1210, m,) on stable storage. Similarly, when P sends mes-

sage m.. it stores (P ,, 2210, m ) on stable storage and so on.
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3.3.1.1. Recovery Procedure

For the purpose of recovery, we define the in-neighbor (out-neighbor) of a pro-
cess, say P, , to be the set of processes from (to) which P can receive (send) applica-
tion messages according to the distributed system specifications. For example, the
in-neighbor and out-neighbor sets of process P, of the distributed system example of
Figure 2.1 can be easily determined from its system interaction diagram in Figure 2.2

as (P, Pl and (P, P, P} respectively.

The following recovery algorithm requires only the affected processes to per-
form minimal rollbacks on their respective computations. We assume the processes to
be fail-stop. The recovery procedure provides us with a global consistent state before
the event an error message is sent in the failed process and before the effects of the
error reach other processes. We also assume that no failure would occur in the system

during recovery.
(A) Initiator Process

When a process P ; detects an error caused by the reception of a message emanating
from process P, it initiates the recovery procedure in which process P ; executes the
following steps:

(1) It suspends transmission of application messages and 1t computes the maximum of
the event index tuples as MAX (MREI (i ), MREI (j )), where MREI (j) is the event
index tuple at P f before receiving the erroneous messagc and MREI (i) is the
event index tuple sent along with the erronrous message. It then decrements by
one El; in the maximally reachable event index tuple obtained. The recovery
point RPj for process Pj is Elj in MREI (j).

(2) It broadcasts a recovery control message (rem) containing the tuple obtained in

step (1) as the recovery point (RP) tuple and the i.d. of the process P, to each of
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the processes in out —neighbor (P j) U P,. The reason for including P, is to let the
erroneous process know as soon as possible about the occurrence of error, which
will consequetly reduce the amount of rollback caused by the possibility of the

[N

circulation of more contaminated messages.

(3) It receives messages sent by all processes P, . such that P, € in—neighbor (Pl- ),
until it receives a recovery control message from each process in
in-neighbor (P f ).

(4) At this point, it restarts from the local state corresponding to RP]. and it first con-
siders each of the messages recorded in the process’ execution history whose
event index in the associated tuple is greater than RPj.

Let E/, be the event index corresponding to process P, (from which the message
| has been received) in the tuple associated with the recorded message.
} L2t RP, be the recovery point for process P, .
IF El, <RP,
i THEN
- replay reception of the same message
ELSE
- the message is removed from storage because it is contaminated and the
process must wait for a replacement message to arrive from the same source
process.

(5) It updates the storage for the sequence of EXECEV tuples corresponding to

recorded messages by removing the tuples stored up to the recovery point RP/'

Such tuples have Elj < RPJ.

(B) Other Processes

For processes other than Pj: When a failure is detected by a process, say P,, all

processes will eventually know of its occurrence. A process, say P,, knows about the
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failure either directly, by receiving an RP tuple with the i.d. of the failed process P,
from process Pj (ie., P, € out-neighbor (P j)), or indirectly as described below. In

either case, when process P, receives an RP tuple, it executes the following steps:

(1) It suspends transmission of application messages and it traces the recorded
sequence of maximally reachable event index tuples
MREI (k ), .MREI (k ), - - - MREI(k),, up to the tuple MREI(k), ,, where EI, of
the failed process P; is greater than EI, in the RP tuple. RP, would then be EI,
of MREI (k). If MREI (k), +1 do not exist, then RP, would be EI, of MREI (k),, .

(2) It sends a recovery control message containing an updated recovery point tuple
(in which RP, is the one found in the step above) and the i.d. of the failed process
to the processes in out—neighbor (P, ).

(3) It receives messages sent by all processes P, in a temporary buffer, such that
Pm € in—neighbor (Pk ), until it receives a recovery control message from each
process in in-neighbor (P ;) except for the process(es) that have already sent a

recovery control message.

(4) At this point, it restarts from the local state corresponding to RP, and it first con-
siders each of the messages recorded in the P,’s execution history whose event
index in the associated tuple is greater than RP,.

Let £/, be the event index corresponding to process P, (from (to) which the
message has been received (sent)) in the tuple associated with the recorded mes-
sage.
Let RP, be the recovery point for process P, .
IF the recorded message corresponds to a reception
THEN

IFEI, <RP,

THEN
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- replay reception of the same message
ELSE
- the message is removed from storage because it is contaminated and
the process must wait for a replacement message to arrive from the
same the source process.
ELSE /* if the recorded message corresponds to a transmission */

- reexecute the transmission transition

(5) 1t updates the storage for the sequence of EXECEV tuples corresponding to
recorded messages by removing the tuples stored up to the recovery point RP,.

Such tuples have EI, < RP,.

The local states corresponding to their respective recovery points are also saved in

stable storage for reference during further failures.

3.3.1.2. Example

To illustrate the recovery procedure consider the example of Figure 2.1 and
reproduced in Figure 3.2. The failure is detected by process P, when message m is
received from process P,. The sequence of EXECEV tuples recorded on stable

storage before the detection of the error are as follows:

For P: (P, 1210, m2); (P, 2210, mS); error message received from P, with
MREI (2)=2732; start recovery procedure

For P,: (P5, 0110, ml); (P, 0210, m2); (P 4, 0310, m3); (P |, 2410, m5); (P, 2532,
m6); (P4, 2632, m7); (P, 2732, error message); receive recovery control

message from P,

For P;: (P,, 0010, ml); (P ,, 0322, m4); (P,, 0332, m6); (P ,, 2642, m7); (P ,, 2652,

ml0); receive recovery control message from P,
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For P : (P, 0311, m3), (P4, 0312, md); (P4, 2653, mil); (P, 2654, m1l); receive

recovery control message from P,

Because P detected the failure, it initiates the recovery procedure by suspend-
ing transmission of application messages and computing the MAX(2732, 2210) as
(2732). It decrements EI, by one to give the resulting tuple as (2632). The recovery
point RP  is therefore found to be 2. It then broadcasts a recovery control message
containing (P,, 2632) to each of the processes in its out-neighbor, i.e., to P,. No mes-
sage is sent by its in-neighbors. After its receives a recovery control message from P,
it removes the original error message received and waits for the correct my message
to arrive. The stable storage is updated by removing the tuples up to the recovery

point. Thus storage consists of the tuple with message m, for further failures.

Process P,, after receiving recovery control message from P, suspends
transmission of its application messages and traces the recorded history up to the
tuple (2732). The recovery point RP, is therefore 6. It then sends the updated
recovery control message containing (P ,, 2632) to its out-neighbors, P, Py and P,
No message is received from any of its in-neighbors. After a recovery control mes-
sage is received from P, it reexecutes from its last local state saved up to its
recovery point and then resends message m . The stable storage is updated by remov-

ing the tuples up to its recovery point.

Similarly process P, finds its recovery point to be 5. Since it receives m
before receiving the recovery control message from P, it saves it in a buffer to be
considered later to be saved in stable storage. Thus after updating, P,’s stable storage

contains the local state corresponding to its recovery point of 5 and reception tuple

for message m,,.
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Process P, finds its recovery point corresponding to its event of 4 and the stable

storage after restarting contains the local state corresponding to event 4.

The recovery line corresponds to the recovery index in each of the processes and is
(2654) with message m |, saved in stable storage. Only two processes are required to
roll back (P, and P,) and message m , is to be received from buffer storage. Also,
seven recovery control messages are needed to execute the recovery procedure. Fig-
ure 3.3 shows the recovery tree for our example, which depends on the in-neighbor
and out-neighbor sets for each process and the process that detects the failure. The
depth of the tree corresponds to the time units needed for recovery and is equal to 3
time units if the network topology is same as the system interaction diagram of Figure

2.2,

3.3.1.3. Correctness and Complexity

In the following we show the proofs of correctness of the recovery procedure.
We are mainly interested in showing that no message loss, message duplication, or
orphan message will be introduced during the recovery process and therefore proper

termination of the procedure will be guaranteed.
Proofs of Correctness

Lemma 3.3. Every message reception replayed by one process will not be
rctransmitted by the sender process since the message has already been recorded on
stable storage by the receiver process. Therefore, the message duplication problem is

avoided during recovery.

Proof. Let (P, . MREI (j ), message m received P,) be a record of « message

reception in Pj 's history. According to our recovery procedure, a message replay will

occur if: (1) MRElk(/')SRP‘ (step 4 in the recovery procedure). In this case, we
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Figure 3.3. Recovery Tree for the Example of Section 3.3.1.2.
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must show that the transmitter, say P, has recorded

(Pj, MREI (), message m sent P,) in which (2) MREI, (k) <SRP,. But when mes-
sage m is received we know from the procedure for updating MREI () after recep-
tion of a message (step M5 of algorithm MREI in Section °.6) that (3) MREI, (j) =
MREI, (k). By substituting (3) in (1), we obtain MREI, () <RP, , which is the condi-

tion for no retransmission in (2).

L.emma 3.4. Every message waited for by one process is going to be retransmit-
ted by the sender process. Therefore no message loss is guaranteed 2nd no deadlock

will occur during recovery. This will guarantee progress during recovery.

Proof. Let (P, . MREI {f), message m received P, ) be a record in process P ) 'S

history. According to our recovery procedure, m will be considered iff for a message
., MREII. U)r> RP, (step 4 in the recovery procedure). The necessary condition that
must hold in order for P] to wait for retransmission of n1 is that (l)MREIk ) > RP‘.
But we know from our algorithm MREI that when m is transmitted, (2)
MREI (k) 2 MRET, (/). Using (1) and (2). we obtain MREI, (k) > RP, . which is the
necessary condiiion for P, to retransmit message m (step 4 in the recovery pro-

cedure).

Lemma 3.5. Every message retransmitted by one process is going to be waited
for by another process. Therefore no oiphan messages will be introduced during

recovery.

Proof. Let (P e MREI(R ), message m sent P,.) be a transmission record in pro-
cess P s history. According to our recovery procedure. message m corresponding to
the above record will be retransriitted only if MREI, (k) > RP, . But Pj will wait for

a retransmission ift (1) MREI, (j) > RP, as received with the recovery control mes-
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sage of P,. We already know from step 1 of the recovery procedure that
MREIj ) > RPJ..

For message retransmissions. we have (1) MRE/ (k) > RP, and due to our algorithm
MRE]I, we have (2) MREIA () = MREI, (i) for message m. Substituting (2) in (1) we
obtain MREI, (j) > RP,, which is condition (i) above, ie., it is a message to be

waited fo~,

Theorem 3.2. The recovery procedure is free from message duplications, mes-
sage losses, and orphan messages.

Procf. The recovery procedure is free from orphan messages because every
transmitted message is going to be waited for and expected (Lemma 3.5), and every
message replayed by the receiver is not going to be considered for retransmission by
the sender (Lemma 3.3). The procedwe is free from deadlocks because every mes-

sage waited for by the receiver is going to be retransmitted by the sender (Lemma

3.4).

Lemma 3.6. Every process P, will eventually restart from its local state

corresponding to RP,.

Proof. According to our procedure, each process will move from the blocking
state to the restart state only once a recovery control message has been received fiom
each of its in-neighbors. Because the channels are supposed to be reliable, then even-
tually, after some finite time, all recovery control messages will reach their destina-
tions. Therefore, according to step 4 of the initiator or other process, cach of the

processes will move to its restart state.

Theorem 3.3. The recovery procedure is guaranteed to terminate and the distri-

buted system computations will eventually resume from a normal state.
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Proof. Lemma 3.6 guarantees that the first phase of the procedure terminates
properly, that is, each of the processes in the distributed system will eventually move
from the blocking state to the restart state at which the process’ history is traced back
and each of the recorded events is considered. Also, Theorem 3.2 shows that the
second phase in which histories are considered does not introduce orphan, duplicated,
or missing2 messages and therefore each of the events recorded in the finite history
will eventually be considered and the distributed system can resume normal execu-

tion.

Complexity

The maximum number of control messages required for recovery is T#(out-
neighbor(P ), for every process P in the distributed system. An additional message
would be needed (according to step 2 of initiator process) it the sender of the errone-
ous message does not belong to out-nelghbor(Pj), where Pj is the initiator process.
Moreover, if we suppose that each transmission takes one time unit, then the number
of time units required for recovery is equal to the depth of the recovery tree, and the
number of edges corresponds to the number of recovery control messa;es needed to

implement the recovery procedure.

3.3.2. Volatile Storage Requirement for Message Logging

To recover from process errors and failures, and restore the system tc a con-
sistent state, we use two types of logs—a volatile log and a stable log. Accessing
volatile logs requires less time, but the contents of a volatile log are lost if the
corresponding processor is in an error state leading to its failure. At irregular inter-
vals each process P, independently saves its local state along with its MREI (i) tuple

and incarnation number (/N#) in stable storage as its independent checkpoint ICP (i ).



The initial state is also saved as a checkpoint by each processor. Stable storage is also
required to save the global consistent checkpoint GCP = (GCP |, GCP,. -+ GCP))
at the initial state of the system as (0000) and later as obtained by the recovery pro-
cedure after failures. In the recovery algorithm, only the MREI(i) stored in an
ICP (i) is used. Once the restart point has been established, the process will be res-
tarted using the MRE/I (i) and the local state. The volatile log is used to save critical

contextual information such as the EXECEV tuples which consists of the following:

For messages received: (incarnation number received, P, (process from which

message is received), MREI (r) received, MREI (i ) obtained, message 1eceived)

For messages transmitted: (incarnation number sent, P (process to whom

message is transmitted), MRE/ (i ) sent, message sent)

Incarnation numbers [StYe85] are used to distinguish messages sent before and after
recovery. A new incarnation is started at the beginning of each recovery and the
incarnation number is incremented by 1. Each message sent is also tagged with the
current incarnation number of the sender. A record of the EXECEV tuples is
appended to the process’ execution history on the volatile log after every transmis-
sion or reception of messages. Consider the space-time model of a distributed compu-
tation shown in Figure 2.1. When m, is received by P, it stores the EXECEV tuple
as (0, P,, 0210, 1210, m2) on volatile storage. Similarly, when £ sends message m
it stores (0, P ,, 2210, m5) on volatile storage and so on. No messages are required to
be logged to the stable storage during execution, thus reducing the overhead when no
failutes occur and the time overhead during recovery because the non-failed

processes do not have to obtain the message log from stable storage.
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3.3.2.1. Recovery Procedure

In this Section we present a rollback recovery algorithmic procedure for a distri-
buted system of non-fail-stop processes, meaning that an error occuring in a process
may not be deiected immediately by the recovery system. Therefore, an error that
occurs in one process can contaminate further chechpoints and states of itself and
other processes in the system. Most of the existing recovery procedures either require
the establishment of a global checkpoint by applying a checkpointing procedure
perindically or the obtaining of a global consistent state during the recovery phase for
fail-stop processes. Our concern here is the development of a minimal-time recovery
procedure for non-fail-stop processes that can obtain most of the ideal requirements

for recovery procedures listed in Section 2.3.1.

We do not discuss error detection here, but we do assume that there is a mechan-
ism in the system to carry out error detection that is correct, such that there are no
messages that were sent by one process after its erfor state that were received by
another process before its error state, as shown in Figure 3.4, i.e., the error states
detected in the system should be consistent. By this assumption we mean that all the
states preceding the error in all the processes are correct. We also assume that once
an error is detected by a process, the process will be able to initiate the recovery pro-
cedure. Our recovery algorithm can handle any number of processes detecting an
error leading to its failure, including total failure of the system. However, we also

assume that no failure occurs in non-failed processes in the system during recovery.

We first provide an informal description of our recovery procedure, then we for-
mally describe the steps performed in the procedure, and finally we provide the

proofs of correctness and the complexity of the procedure.
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Figure 3.4. Inconsistent Error States
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Informal description

Our recovery procedure dees not require any intrusive pre-planned checkpoint-
ing procedure. Instead, independent checkpoints, JCP (i), are saved in stable storage
of every process P;. A global consistent checkpoint is obtained by our recovery pro-
cedure considering the MREI(i) corresponding to the independent checkpoints
ICP (i ), the error event index tuple ERE! (i) (the MREI (i) just before the error event
for the faulty process P;), and the effect of the error on non-faulty processes. Note
here that the MREI (i) within the JCP (i) may not be the same as EREI(i). If the
current MREI(j) for a non-faulty process Pj is such that it is not affected by the
error, then it is not required to restart from its latest independent checkpoint. It only
needs to resend messages to the failed processes, since the volatile storage of failed
process is lost upon failure. If a non-faulty process is affected by the error, it re-
executes from its independent checkpoint before the effect of the error, replaying
messages from its volatile log and resending messages only to the failed processes, up
to the event that is just before the one affected by the error. The event index tuple

corresponding to this event is part of the global consistent checkpoint.

After detecting an error, the faulty process Pf sends a recovery message to all
other processes in the system through its shortest path between the faulty process and
the non-faulty process P nf and blocks any transmission of application messages. The
non-faulty processes, after receiving the recovery message, block any transmission of
application messages, find MREI (nf ) before the error event and send it with an ack-
nowledgement to the faulty process. Pf then finds the global consistent checkpoint,
GCP. from the informdtion obtained from Pnf, and sends the GCP to all other
processes. Pj. then restarts trom its recovery point corresponding to its independent
checkpoint, withholding messages already sent to Pnf before its error event. Simi-
larly, non-faulty processes after receiving the GCP from Pf restart from their

recovery points, resending messages to Pf before the GCP. Messages to be
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replayed/received after the GCP are checked to see if they are contaminated and pro-
cessed accordingly. Volatile storage for Pnf is made free of any events executed

before the GCP.

The recovery procedure terminates after considering all the recorded events and
saving the local states corresponding to the GCP and the contents of the channel, if
any, in the stable storage. We shall prove later that our recovery procedure will ter-
minate and is free from design errors. We show that every retransmitted message will
be waited for, every waited for message will be retransmitted and finally every
replayed message is not going to be retransmitted. These features amount to freedom
from message loss, message duplication or orphan messages during the recovery pro-

CESS.

The Recovery Procedure

The community of processes divides into three parts: the faulty process, P, ; the
non-faulty process(es), Pnf; and any other process(es) that have also detected un
error, P”f. We present first the algorithm executed by the faulty process(es), P, (and
P“f ), and then the algorithm executed by the non-faulty process(es), P”] .

The notation /CP (i} is used in this section to denote one of the independent
checkpoints recorded by process P, . The notation I(’Pj(i) is used to denote the event
index E’/ stored in the MREI (i) contained with the ICP (i). EREI(i) is the error
event index tuple, which is the MREI (i) just before the faulty event for process P, .

EREII (i ) denotes the event index Elj in position j of EREI(i).
For faulty process, Pf

When a process Pf detects an error that had occurred after the event with event index

tuple ERE/(f ), it performs the following execution



(IP1)

(IP2)

(1P3)

(1P3)
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find the latest JCP (f ) such that ICPf = EREIf (f ), discard any ci.eck-
points after this ICP (f)
IN# = IN# + 1

** send recovery-message RM (Pf, IN#,ICP (f ), EREI(f)) to all other
processes and wait for their RMack (Pf , IN#, MREI (nf )) or
RM (P"f ,IN# , ICP (of ), EREI (of )) messages
** Application messages, with IN# not updated, received from all other
processes before receiving RMack or RM messages are discarded since they
may be contaminated and will be resent in the ELSE part of (OP8) for non-
failed processes.
**IF an RM(P ;. IN# ,ICP (of ). EREI (of )) is received from any other
failed process P”f instead of the expected RMack (P, IN#, MREI (nf ))
message THEN

*find ICP (f ) such that (lCPnf (i< ICP”f (of ) AND

(ICP(f) SICP(of)), discard any checkpoints after this new ICP (f)

* receive RMack (P, IN#, MREI (nf ) from non-failed processes
of

After RMuch (P, . )or RM(PM, -+« )yplus RMack (P -+ ) mes-

of *
sages are received from every other process
** find restart point for Pf, RP(f)=ICP () where ICP (f) is the last
of ull the M ICP (f )s, where M is the number of failed processes
** find the global consistent checkpoint tuple, GCP , such that
G(‘Pj = EREIJ )
GCP, = EREIQ, (of)
GCP"f = MREI"f nf)
where MREl”f (nf ) is the last of the m MRElnf (nf ) received in
RMack (P, . IN# . MREI (nf)) and RMack (P, IN#,MREI(nf )) mes-

sages from P, .
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(IP5)  save GCP in stable storage
(IP6) send GCP and RP (f) to all other processes

(IP7)  receive GCP and RP (of ) from other failed processes .
{Note: GCP s received should be the same.)
(IP8)  Restart from the local state corresponding to its RP, )
** Continue execution up to the event with (MREII. fH)s ERElf Uy
AND (MREI()f )< EREI”f (of ) re-receiving messages with
(Elf < GCPf) AND (IN# received = its IN# )
- resend messages to P“] with Elf > Rl’f (of)
- do not resend messages to P”j
** Save (local state, MREI (f'), IN# ) in stable storage
** Continue execution after MRElf (f)
- suve in stable storage the messages received fiom P, that have

MREI (i) < GCP,

(IP9)  Remove ICP (f )s from stable storage with I('Pj (f1r< (}('l’,

For non-faulty processes P,‘f

When process Pnf receives the recovery-message RM(I’f IN#ICP (f ) ERETf )
from Pf , it performs the following algorithm
(OP1) IN# = IN# received
(OP2) find the latest ICP (nf ) such that ICPf (nf)< EREII (1 ); discard uany check-
points after this JCP (nf )
(OP3) IF the current MREI] (nf)< ERElf (f)
THEN send RMuck (P/ JAN#H, MREL(nf )) to l’/
ELSE
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(OPS5)

(OP6)

(OP7)

(OPY)
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** find in the tuples stored in volatile storage after JCP (nf ) the
last EXECEYV tuple that has MRE/ [ (nf ) < EREI I (f ). Remove
EXECEYV tuples from volatile storage after this MREI (nf ). Now
current MREI (nf ) is the same as this MREI (nf )

** send RMack (Pf , IN#, MREI (nf)) to Pf

Wait for GCP and KP (f ) from Pf
** messages received from all other processes before receiving GCP
and RP (f ) from Pf are stored temporarily in a buffer before being pro-
cessed as in step (OP9)
** [F Pnf receives RM (Pnf , IN# | ICP (of ), EREI (of ), from any P"f
before receiving GCP and RP (f ) from Pf
- send RMack (Pf , IN#, MREI (nf )) to Pof
- do steps (OP2) and (OP3) with the failed process as P of
- also send RMack (P, , IN# . MREI (nf )) to P,
Receive GCP and RP(f )/RP (of ) irom all failed processes Pf P of
(Note: GCP s received should be the same)
The restart point for P"f +RP(nf )isthe ICP (nf ) found in step OP2 after
receiving the last RM from any failed process
Consider tuples stored in volatile storage up to and including RP (nf)
** resend messages to the failed processes, Pf s, which have
(El, < GCPf) AND (£l > RP,(f))
IF its current MRElnf (nf)= GCP”f
THEN
* no need to reexecute from RP (nf )
* resend only those messages after RP (nf ) to failed processes Pf s that

have (I, < GCP,) AND (£l > RP,.(f))
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* save the current (local state, MREI (nf ), IN#) in stable storage
ELSE restart from the local state corresponding to its RP"f (nf)
* Consider tuples stored in volatile storage after RP (nf ) and having,
event indices with Ef . < GCPnf
- resend messages to failed processes that have (E/ 7 <GCP 7 )
AND (Elnf > RP"f ¢))
- consume the messages received
- do not resend messages to other non-failed processes
* Save the checkpoint (local state, MREI (nf ) corresponding to the
event with GCPnf , IN#) in stable storage
(OPY) Continue the execution after GCP”f
* Consume from volatile storage the messages received from any pro-
cess. P, with MREI (i) < GCP, and save these messages in stable
storage. Other messages are discarded from volatile storage
* messages received in buffer/channel from any process P; with
(MREI (i) > GCP ) AND (IN# < itsIN# ) are discarded
* messages in buffer/channel from any process P, with

MREI (i) < GCP; are received and s*ored in stable storage
(OP10) Remove all ICP (nf )s having I('P"f(nf ) < GCP"f from stable storage

(OP11) Remove all EXECEV tuples having MRElnf (nf)in

MREI (nf ) obtained < GCP,, from volatile storage

3.3.2.2 Correctness and Complexity

The correctness of our recovery procedure can be proved by showing that even-
tually each non-failed process will receive the same maximum consistent global

checkpoint from all failed processes and that each process will save the local state
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corresponding to the event index of its GCP and the contents of its input channels, if
any, in the stable storage. In the following we shall prove that our recovery procedure
will terminate and is free from design errors. We show that every retransmitted mes-
sage will be waited for and every waited for message will be retransmitted and finally
every replayed message is not going to be retransmitted. These features amount to
freedom from message loss, message duplication or orphan messages during the

reCoVery process.
Proofs of Correctness

Lemma 3.7. Every process will eventually restart from its local state
corresponding to RP, (i ) and will save the local state corresponding to the maximam
consistent global checkpoint.

Proof. According to our procedure, each non-failed process Pnf will send "M"
RMack messages to the "M" failed processes, and the last of the RMack message sent
to all the failed processes will include the MREI of the non-failed process for which
its MREI"f(nf) will be just before the error event indices for all failed processes
[step OP3]. Since the channels are assumed to be reliable and FIFO, each failed pro-
cess will receive the MREI, . (nf) in the last RMack message and will include that in
the maximum consistent global checkpoint [step IP3]. Eacn P nf will therefore
receive the same GCP from each failed process and restart from its recovery point,
replaying events from its volatile storage up to its GCPnf before saving the local
state corresponding to the maximum event free from any errors [step OP8]. The
failed processes also restart from their recovery points up to the error event index,
which is a part of the GCP, before saving the local state corresponding to the event
before the error event [step IP7]. Any message that was received after its GCP but is
free from error is saved in stable storage as channel contents [step IP7 and step OPY).

The local states corresponding to the GCP form a consistent state since no messages
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are replaved to be received that were sent after error event state.

Lemma 3.8. Cvery message replayed by non-failed processes P, will not be
retransmitted by the sender process P,. Therefore the orphan message problem is

avoided during recovery.

Proof. Let (0P, . MREI (i) MREI (j),m) be 21 :ord in volatile storage of a mes-
sage reception in non-failed process, Pj ’s history. According to our recovery pro-
cedur'e, a message m will be replayed by P : if 1) MREI.(j)<GCP, [step OPR and
step Oﬂl_’9]. In this case, we must show that the transmitter, say P, . does not retransmit
message [ teps IP7 and OP3} with 2) MRE!, (k) S GCP,. But when message m is
received and because of the maximal event index principle, we nave 3)
MREI, (j) = MREI, (k) and by substituting 3) in 1), we obtain the condition for no

retransmission in 2).

Lemma 3.9. Every message waited for by a process is going to be retransmitted
by the sender process. Therefore the message loss problem is avoided during

recovery.

Proof. Let (0.P, MREI (k).MREI(j).m) be a record in volatile storage of pro-
cess ;"j 's history. According to our recovery procedute, m will be considered o be
waited for iff for the message m, MREIj(i) > G('Pj [step OP8 and OPY]. The neces-
sary condition that must hold in order for Pj to wait for retransmission of m is that 1)
MREI, (j) > GCP,. But we know from the procedure for updating MREI(j) after
reception of a message (step M5 of algorithm MREI) that 2) MRET, (j) = MREL, (4.).
Using 1) and 2), we obtain MREI, (k) > GCP,, which is the necessary condition for

P, to retransmit message m [steps IP7 and OP9Y)].

Lemma 3.10. Every message retransmitted by onc process i guing to be waited

for by another process. Therefore no duplicate messages will be introduced during
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recovery.

Procf. Let (0P, MRET(A)m) be a transmission recond in process 27,7 history,
Accoraung to our procedute message m o corresponding to the above tecord s
retransmitted with updated IN# only if MREI (A) > RFP (f). But P “v volatile
storage is lost and it discards messages with IN# not updated [step IP3] and it wants
for a retransmission of all application messages with updated IN# and 1)
MREI, (f ) >RP, (f). For message retransmission we have 1) MREL(K) ~REP ().
But because of the procedure for updating MREI(j) after reception ot a message
(step M5 of algorithm MRE!), we have 2) MREI (') = MREI, (R). Substituting 1)
). we obtain MREI (f) > KP (/). which is condition 1) above. Thus m is going to be

among those messages considered waited for by P, . thus Lemma 3. 10 iy satished.

Theorem 3.4. The recovery procedure is free trom message duphcations, mes

sage losses. and orphan messages.

“e
Proof. The recovery procedure is free from orphan messages because every
message included before the GCP of a process will not be retransmitted by the sender
(Lemma 3.8), and every message retransmitted by a process is going to be watted tor
and expected (Lemma 3.10). Tiie procedure is free from deadlocks because every
message waited for by the receiver is going to be retrunsmitted by the sender (Lemmi

3.9).

Theorem 3.5. The recovery procedure is guaranteed to terminate and the distri-
buted system computations will eventually resume from a normal state corresponding

to the maximum consistent global state.

Proof. Lemma 3.7 guarantees that the procedure terminates properly, that s,
each of the processes in the distributed system will eventually move from the wait
state to the restart state at which the process’ history is traced back and each of the

recorded events is considered. Also. Theorem 3.4 shows that when histories are
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considered it does not introduce orphan, duplicate, or missing messages and therefore
cach of the events recorded in the finite history will eventually be considered after a
hnite time and the distributed system can resume normal execution.
Complexity

The maximum number of control messages required for recovery depends upon
the number of processes detecting error in the systern. For a single process in error
3(N—1) messages are required after error detection, where N is the total number of
processes in the system, for rollback recovery and obtaining the maximum giobal
consistent state. For a system where M c.rors are allowed (M < N), the number of
control messages required is 2M (N-1) + (N-M YM?, which amounts to 2N (N-1)
messages fura total failure. No communication overhead is involved during indepen-
dent checkpointing. Moreover, if we suppose that each trasmission takes one time
unit. the number of time units required for recovery is equal to three for a system con-
nected in a fully connected network. In the case of a strongly connected network. the

number of time units is three times the depth of the minimum spanning tree.

3.3.2.3. Example

To illustrate the recovery procedure, consider the example of Figure 2.1, with
the independent checkpoints and recovery messages added as shown in Figure 3.5.
The errars that produced their failures are detected by processes P, and P, after their
event indices E/4(2) =9 and EI ,(4) = 4, although the errors had occurred after event
indices EREI(2) = 2410 and EREI(4) = 0312. The dashed arrows correspond to the

recovery control messages exchanged after detection of the errors.

The sequences of EXECEV tuples recorded on volatile storage before the detec-

tion of the error are as follows:
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For P )

ForP,:

Tnpe £ .
For P :

For P4:

The MREI tuples saved in stable storage (as a part of the independent checkpoints)

(0, P, 0210
(0,7, 2210
(0, P, 2732
(0, P, 4732

(0, P, 4932

(0, P, 0010
0, P,, 0210
(0, P 4, 0310
(0, P, 2210
(0, P, 0332
(0, P, 2632
(0, P, 2732
(0, P . 4732

(0. P |, 4932

(4, P?_. 000
(0. P 4. 0312
(0, P, 0332
(0, P, 2632
(0. P . 2652

(0, P, 2654

(. P,. 0310
(0, P4, 0312
(0, P, 2652

(0. P, 2654

, 1210, m2)
. m5)

, 3732, m¥K)
,m9)

, 5932, ml2)
, 0110, m1)
, m2)

,m3)

, 2410, m5)
. 2532, m6)
.m7)

, my)
L4832, mY)

.ml2)

,ml)

. 0322, m4)
, M)
L2642, m7)
.ml)

L2664, mll)

L0311, m3)
, m4)
L2653, m10)

.mll)
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corresponding to the indicated places are:
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For P : (0000). (1210), (3732)

For P,: (0000, (0210), (2632)

For P.: (0000). (0322), (2652)

For P, (0000), (0311)

Because both P, and P, detected the error, both may initiate the recovery procedure.

P , executes the following:

1.

!\)

It finds the ICP (2) (= 0210) that has its EREIZ(’.Z) < 4 and discards the 1CP with
the (2632) tuple from stabie storage.

It increments its IN# to 1.

* It broadcasts the recovery message RM (P,.1,0210.2410) 1o all other processes
and waits for their responses.

* It receives RMack (P ,,1,2210) and RMack (P,,1,0332) from P and P respec
tively, but it receives a recovery-message RM(P (. 1.0311,0312) from P .. There-
fore it finds JCP (2) again, this time with EREIZ(?.) < 3. Thisis ICP(2) = 0210 and
is the same as before. It then receives RMack (P ,,1.2210) and RMack (P ,.1,0332)
from P and P,

* The restart point RP (2) = 0210.

* The global consistent checkpoint tuple GCP = (2432) is determined.

The GCP 1s saved in stable storage.

It sends the RP (2) and GCP to all other processes.

Itreceives RP (4) = (0000) and GCP = (2432) from the other failed process P ,.

It restarts from its RP,(2) = 2.
* continue execution up to the event free from the effects of both the error states
in the system, resending message m3 to P, and re-receiving message m5 resent

by P,.
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* (the local state S4, MREI (2) = 2410, IN# = 1) is saved in stable storage.

* message m6 is saved in stable storage as part of the global checkpoint.
9. The stable storage is cleared of all the other /CP s except the GCP.
Process P, executes similar steps and saves its local state S2 corresponding to

MREI (4) = 0312 in stable storage.

When  the non-fuiled process P, receives the first recovery-message
RM(P,,1 ,0210,2410) from P, it executes the following:

. Itincrements its IN# to 1.

2. Htfinds its ICP (3) = 0322, It discards its checkpoint after this ICP.

3. Ittinds in its volatile storage the EXECEV tuple with MRE(3) = 0332 and sends
RMack (P ,,1.0332) 10 P,

4. Before receiving the GCP and RP(2) from P, it stores the received message
ml1lina bufter. ltalso receives RM (P ,.1,0311,0312) from P, and finds again its
ICP (3) = 0322 and MREI(3) = 0332, It sends its RMuck (P2,1,0332) to P, It
also sends RMack (P 4. 1.0332)to P and P ,.

5. ltreceives GCP and RP(2) from P2 and GCP and RP (4) from P4.

6. It restarts the execution from its RP (3) = (0322.

7. Itresends message m6 with IN# = 1to P,

8. It saves the local state S3 corresponding to MREI (3) = 0332 and IN# =1 in stable
storage.

9. Other events after (0332) are discarded from the volatile storage. The message
ml 1 in buffer is also discarded.

10. All ICP s before GCP are removed from the stable storage. All EXECEV tuples

before GCP are removed from volatile storage.
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When the non-failed process P, receives the first recovery-message
RM (P ,.1.0210.2410) from P, it =xecutes similar steps and saves its local state 82
corresponding to MREI(1) = 2210 in stable storage.

The global consistent checkpoint obtained is maximal. Aiso, twenty recovery
control messages are needed to execute the recovery procedure and to obtain the
GCP. If the underlying communication subsystem is fully connected, the recovery
takes three time units. Eight time units are needed to terminate the recovery pro
cedure if the physical communications connectivity is as shown in the system interac -
tion diagram of Figure 2.2. A laiger number of time units is required because of the

large distance between processes P, and P -

3.4. Summary

In this Chapter we have proposed certain  algotithmic  proceduies o
checkpointing/rollback recovery in distributed systems based both on the pre-planned

and the un-planned approaches.

In the pre-planned approach, error recovery is based on non-fail-stop processes
coordinating their checkpointing actions and system restarting from process states
obtained from these checkpoints. For this purpose, we have presented two efticient
checkpointing procedures and an optimal rollback recovery algorithm with its fault-
tolerant version. These checkpointing procedures are based on our maximally reach-
able event index tuple, which ensures that the checkpoints we obtain are the most
recent and consistent possible system states for the processes initiating the procedure.
Thus the domino effect is avoided. In addition, our checkpointing algorithms do not
interfere with the progress of the underlying system computations. Our procedures
can be invoked by any process in the distributed system, periodically or upon failure

or can be initiated concurrently and independently by more than one process. Furth-
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ermore, their successful termination is guaranteed in spite of the occurrence uf any
process failure during their invocation. Our optimal backward recovery requires a
minimal number of processes to roll back and provides us with a maximum global
consistent state after failures. Livelock problems associated with rollback recovery
are avoided, since the consistency of message exchanges is retained when a rollback
to a consistent checkpoint is executed. These procedures thus meet most of the
requirements for ideal checkpointing and recovery procedures except that stable
storage is needed to record the local state along with other information after every
transition by each process in the system and the control messages of O (Nz) are first
required for checkpointing and additional control messages of O(Nz) are again

required for rollback.

In the un-planned approach, the problem of fault-tolerance in distributed sys-
tems is addressed by providing efticient procedures for recovery in such systems
based on the stable storage and volatile storage requirement by the processes. Our
recovery procedures do not require the application of an intrusive checkpointing pro-
cedure, but use contextual information exchanged between the processes during nor-
mal system progress.

In the first approach the processes are assumed to be fail-stop and are not
required to take any checkpoints except the initial state. The processes only need to
log the message sent or received along with other information in stable storage. Dur-
ing recovery the processes need to replay initially from their initial state and later
from their recovery points up to their subsequent recovery points to obtain the local
states corresponding to these recovery points. Each process then considers the infor-
mation recorded after its established recorded point and a minimal number of compu-
tations are redone. Also, only the affected processes are required to perform minimal
rollback. The procedure described is for single process detecting error and no other

failure in the system is allowed during recovery. The control messages required are
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Z#(out-neighbor(” ). for every process P . which amounts to the ()(Nz) in the
worst case if each process has every other process as its out-neighbor.

In the second approach tor the un-planned strategy, the processes are assumed
to be non-fail-stop and at irregular intervals each process independently saves its
independent checkpoint in stable storage. The message log is saved in volatile storage
thus making the stable storage requirement to be minimal. Thus during recovery the
processes need to replay only from their last correct independent checkpoint and not
from their initial state. The recovery procedure provides us with & maximum global
consistent state. Also, only those processes are required to restart that are aftected by
error propagation and only those application messages are retransmitted that e
affected by error. Our recovery procedure can be used to recover tiom any number of
process failures in the system, including a total failure of all processes. O (N) contiol
messages are required for rollback and obtaining a global consistent «tzie in i system
of n processes with single process failure. Theretore, a recovery procedure using ths
approach meets all the requirements for an ideal recovery procedure. Motcover,
proofs of correctness are provided for these procedures and absence of orphan mes

sages, message losses, and duplications is shown.

The next Chapter will concentrate on fault-tolerance in communication proto-
cols and recovery procedures for fault-tolerance based on the un-planned approich

will be presented.



CHAPTER 4

FAULT-TOLERANCE IN COMMUNICATION PROTOCOLS

4.1. Introduction

Protocols that su .t modern communication systems are becoming more com-
plex and sophisticaica. High reliability and performance in the presence of errors
such as unexpected message reception are required for a number of safety-critical,
real-time and distributed applications of such protocols. Protocols are not perfectly
designed, and some errors may occur during operation. Classical research on protocol
design concentrated only on satisfying the well-known safety and liveness properties,
to verify the absence of syntactic and semantic design errors. Recently, the design of
fault-tolerant protocols has been addressed, and formal protocol specification models
are being modified to accomodate the specifications of fault-tolerant requirements

[KKMS92, Malv0, SAAAYS].

This Chapter addresses the problem of fault tolerance in computer communica-
tion protocols, modelled by communicating finite st*te machines, by providing an
efticient algorithmic procedure for recovery in such systems. Even when the com-
munication network is reliable and maintains the order of messages, any kind of tran-
sient errors that may not be detected immediately could contaminate the system
resulting in protocol failure. To achieve fault-tolerance, the protocol must be able to
detect the error, and then it must recover from that error and eventually reach a legal
(or consistent) state, and resume its normal execution. A protocol that possesses the
latter feature of recovering and continuing its execution starting from a legal state is
also called a self-stabilizing protocol. The issue related to recovery is tackled here

and efficient procedures for the recovery in communication protocols are described.
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The recovery procedures make use of the contextual information exchanged between

the processes during normal system progress.

4.2. A Formal Model for Communication Protocols

The use of a collection of Communicating Finite State Machines (CFSMs) as a
natural and intuitive modeling formalism for communication protocols has been
motivated by the observation that protocols can be characterised by event-diiven
processes that communicate with each other by exchanging messages through unt-
directional First-In-First-Out (FIFQO) channels [|Boch78].

Definitions

A CFSM in a system of N CFSMs, each specifying a process in a protocol, can be
formally defined by the quadruple CFSM, = (S .5, . M, . T), where:

S, 1s the set of internal states of process P,
Sy € S, is the initial state of P,

Mu is the set of messages sent by P, 1o other processes (MS;) and messages

received by P, from other processes (MR ),
T is a partial transition function: §, X Mu =)

(we can say that a message m belonging to an M'/ is a label for a transttion),

Figure 4.1 shows a protocol example consisting of six CFSMs specifying a part
of the ISDN user part of Common Signalling System Seven (CSS 7). This example
will be used throughout the rest of this Chapter, and it was also considered by
Kakuda [Kak91]. In the figure, the label of a transition consists of: 1) the type of tran-
sition: a -(+) sign prefixing the label denotes a sending (receiving) transition, 2) the
name of the message, and 3) the name of the process to (from) which the message is

sent (received) in the case of a sending (receiving) transition.
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Figure 4.1. Protocol Example: part of the ISDN user part of CCITT's CCS 7
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A transition at a state s of process P tor message m is said to be specitied if
T (s.m) is detined in the CFSM that models P . A glabal state of a protocol is a pai
<§.C>. where § = (s, 85 o8 and 8 oa, 0 0 L8 represent curtent states of
processes P P, -+ P . respectiveiy, and C =(c . tor all 127, and 1=, jsN)
represents the current states of the channels. A gloval state <§.C > iy said to be
reachable from the initial global state <§ . C>. denoted by <S,, C > TS O
iff <§,C>=<8,.C > =" <S.,C>; that is. there exists an execution path consist
ing of an interleaving of message receptions and transmissions that takes the protocol

from the initial global state <§,. C,,> to <S. C>. A global state <S5, > is ~aid 1o be

»
legal (iflegal or unsafe) if <S5, Cy>= <S.C>is(not) true.

4.3. Issues Related to Fault-Tolerant Protocol Design

There are two types of errors that should be considered for the design ot fault
tolerant communication protocols: 1) protocal design errors, and 2) operational
errors. Because of the increasing importance of computer communication based
applications and their criticality, the design of reliable computer communication pro-
tocols plays an important role in providing effective and responsive communication
services. Current research directions in communication protocols requite that a
correct protocol design must ensure three types of properties: hveness, safety and

responsiveness [SAAA9S).

Much research has been done for the development of formal methods for the
design of communication protocols. These methods tend to follow one of two design
approaches, namely the analytic or the synthetic approaches [PrSa91]. Independent
of the approach used, two types of properties must be guaranteed in any protocol
design, the safety properties and the liveness properties. The safety properties of the

protocol ensure that the protocol never enters an undesirable state. These properties
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include freedom from deadlocks and absence of unspecified reception error. The live-
ness properties of the protocol ensure that the protocol performs its intended func-

tions with respect to the service specifications.

Using a specification language or model, the protocol is designed so that the
specified protocol service will be provided without encountering either of two types
of protocol design errors: i) syntactic errors, which cause the protocol to deadlock,
and therefore affect the safety of the protocol due to the presence of an unspecified
reception or a deadlock state, and it) semantic errors, which cause the provision of an
incorrect service to the distributed protocol users and therefore affect the liveness of

the protocol.

The third type of property for a correct protocol design, responsiveness,
possesses the following two features: 1) timeliness, which respects the timing
requirements of the protocol specitication, and 2) fault-tolerance or stabilization,
which recovers the system to a legal state from an illegal state should a protocol error
be generated during the operation of the communication software. In this thesis we

only address the design of fault-tolerant communication protocols.

The operational errors are related to the environment in which the implementa-
tion is executing. These errors, often referred to as transient errors, may change the
state of a system, but not its behaviour [Schn93]. We assume that the abstract state of
4 system may be corrupted. but the system itself is inviolable (its behaviour remains
intact). Transient failures may change tne global state in a system by corrupting the
local state of a process as represented by meory or program counter or by corrupt-
ing message channels. All these conditions lead to some form of synchronization loss.
The property of fault-tolerance models the ability of a system to recover from tran-
sient failures under the assumption that they do not continue to occur. Given that we

can never eliminate transient failures, a fault-tolerant system meets a stronger notion
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of correctness. That is, should a transient failure occur, resulting in an inconsistent
system state. then regardless of the failure's origin, the system will eventually correct

itself to a consistent system state.

By way of example, coordination loss is examined within distributed systems
{Schn93]. This example is adapted from Gouda and Multari [GoMu91] and Multari
[Mult89]. "Informally, coordination is said to be lost at a given global state of a distri-
buted program if and only if the local states of the different processes in the program.
though each of them may be correct in its own right, are inconsistent with one
another in the given global state." This phenomenon has numerous causes, many of

which are indistinguishable once such an event has occured. These include:

1) Inconsistent initialization: The different processes in the system may be initial-
ized to local states that are inconsistent with one another.

2)  Transmission errors: The loss, corruption, or reordering of messages nuy 1esult
in an inconsistency between the states of sender and receiver.

3)  Process failure and recovery: If a process returns to service after "going down”,
its local state may be inconsistent with the rest of the processes.

4y Memory crash: The local memory of a process may crash, causing its local state
to be inconsistent with the rest of the processes.

Traditionally, each of these issues has been handled separately, one at a time, and

separately for different protocols.

4.4. Related Work in Fault-Tolerance for Recoverable Protocols

There has been a considerable effort in the research community for the develop-
ment of checkpointing and rollback recovery algorithms for fault-tolerance applica-

tion. Most of these algorithms have been designed specifically for distributed data-
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bases and distributed programs. However, we would like to use checkpointing and
rollback recovery in the context of communication protocols. Recently Gambhir
[GambY2, GaFr91] has presented an algorithm for detection and isolation of faults in
software providing network services. However, they do not provide any procedures
for recovery. Kakuda has introduced checkpointing and recovery procedures to be
used for communication protocols. They have characterized fault-tolerant protocols

as follows | KKMS92J:

"A correct state is a global state reachable from an initial global state through a
sequence of state transitions such that each state transition is not triggered by
any error event. It is a sequence of global states that is passed through by the set
of processes beiore entering an incorrect state. A sequence of state transitions
from an initial global state to a correct state is said to be a correct sequence of
state transitions. Incorrect states are defined as global states that are not correct
states. A sequence of state transitions, such that the first state transition is trig-
gered by an error event and all intermediate global states except the final global
state are incorrect states, is called an incorrect sequence of state transitions. A
protocol is said to be fault-tolerant if, for each incorrect sequence of state transi-

tions in the protocol, the final global state in the sequence is a correct state".

Kakuda's algorithms are based on the concepts of maximally reachable state and
maximally executable sequence, where another process Pj must reach a maximally
reachable state LY for process P; by executing state transitions given in the maxi-
mally executable sequence RY of process Pj for process P,. In order for other
processes to determine the maximally reachable state and maximally executable
sequence a process has to add special information of Rs and Ls for all other processes
and its own transition sequence and state reached, to the message usually exchanged

among processes. This results in a large overhead to every normal message sent.
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Using this added information, the message exchange sequence executed by other
processes is always memorized. As a result a large storage requirement is necessary
for information of the maximally executable sequence of every other process and the
maximally reachable state of every other process. In practice, the maximally execut-
able sequence that staris from the latest saved recovery points in all processes is all

that needs to be stored.

In Kakuda’s propcsed scheme [KKMSY1], recovery points in a process that ini-
tiates checkpointing are predetermined based on the maximally reachable state and
maximally executable sequence. The algorithm performs rollback by restarting from
a saved checkpoint and forgetting transmitted messages in the sequence of executed
state transitions from the saved checkpoints and also forgetting receiving those mes-
suges if they had already been received or discarding them upon their reception. By
discarding state transitions from the saved checkpoints, even if they are free from the
effects of error, Kakuda's algorithm does not offer minimal rollback. Kakuda has
presented the recovery algorithm for the case of a single process with state error con-
sidering the reception of an unspecified message as error event and has not con-

sidered multiple processes in error.

Gambhir & Frisch [GaFr1]| presented an algorithm for the detection and isola-
tion of faults in software providing services. The algorithm combines the results of
software static analysis with an event-driven monitoring algorithm. Static analysis is
used to generate a structure that describes all possible execution sequences of the net-
work services software. The monitoring algorithm uses this structure to track the pro-
gress of the processes and upon fault detection uses the structuse to identify the pro-
cess states at which the fault occurred. Their approach provides the two sets of
LAST attributes for each process, which give the boundaries between which the fault

should have occurred where one of the boundaries is 4 consistent state free from the
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effects of error. The concept of LAST attributes is similar to the concept of maxi-
mally reachable state as given by Kakuda where both the LAST attributes and the
maximally reachable state identify the states at which other processes must have
been. In Kakuda’s approach maximally reachable states are obtained dynamically
whereas in Gambhir’s approach the LAST attributes are predetermined and stored
and their information can be obtained by the machine that runs the monitoring system
and has the input-output of the formal specification stored in its attached database.
Gambhir ¢t al do not provide any comments or procedures for checkpointing and roll-
back recovery. The LAST attributes can be taken as consistent states to which the

system may roll back.

Detailed analysis of these algorithms can be found in [Agar94].

4.5. Procedures for Fault-Tolerance Based on Un-Planned Approach

In this Section, we present our recovery procedures, which are based on the un-
planned approach of logging all the message transitions and restarting after failures
from the obtained restart points. Two approaches are considered for the storage

requirement needed to implement our recovery procedures.

4.5.1. Stable Storage Requirement for Message Logging

The executed event tuple (EXECEV tuple) for the sender process P; consists of
the destination process Pj. the type of event (i.e., transmission), MREI (i), and the
message m. This record will be denoted by (P i MREI (i), m) and is stored with
the process” execution history on stable storage. Similarly, the EXECEYV tuple for the
receiver process PJ consists of the source process P;, the type of event (i.e., recep-

tion), MREI (j). and the message m, denoted by (P,, +. MREI(j), m) and is also
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stored on stable storage.

In the following. we provide an informal description of our recovery procedure.
The in-neighbor (out-neighbor) set of each process is defined to be the set of
processes from (to) which it can receive (send) messages according to the protocol

specifications.

Informal description

Our recovery procedure does not require any intrusive periodic checkpointing
procedure. In our approach, we use two phases. First, after detecting an erroncous
message, the processes involved in the protocol will move to a blocking state at
which no transmissions can occur. At this state, each process will use the recorded
contextual information to determine the effects of the error on itself and will decide
whether a rollback is needed or not. Each process determines its recovery point with
respect to the message that caused the error and then propagates its recovery point to
its out-neighbors. After each process receives the recovery point from each of its in-
neighbors, the second phase starts. In this phase, the process moves 1o its restart state,
which depends on its recovery point, and traces the recorded history. Only contam-
inated messages will be resent and receptions of non-resent (non-contaminated) mes-
sages will be replayed from stable storage. Three possibilities exist when considering
cach of the events recorded after the recovery point: 1) reception even. to be
replayed if the transmitted message is not erroneous, 2) reception event to be waited
for if the transmitted message is erroneous, and 3) transmission event to be resent
again if it occurred after the recovery point. Only after considering all the recorded
events, the recovery procedure terminates and the process will resume its normal exe-
cution. Our recovery procedure terminates and is free from design errors. To prove
this, we will show that every retransmitted message will be waited for and every

waited for message will be retransmitted and finally every replayed message is not
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going to be retransmitted. These features amount to freedom from deadlocks and
unspecified receptions during recovery. In our procedure, we assume that a process is

able to detect the occurrence of a fault caused by an erroneous message reception.

N

Recovery Procedure

When process P ’ detects an error caused by the reception of a message emanat-
ing from process P,, it initiates the recovery procedure following the steps of Section
3.3.1.1(A) for recovery in distributed systems. Similarly, other processes follow the

steps of Section 3.3.1.1(B) for recovery.

Figure 4.2 shows a transition diagram illustrating our recovery procedure. A
blocking state corresponds to any protocol state at which no transmission of protocol
messages will occur. A restart state in a process could be any state in that process
determined by the recovery procedure and corresponds to the recovery point for that

process.

4.5.1.1. Correctness and Complexity

The correctness of our procedure can be proven exactly on the similar lines of
Section 3.3.1.3 by showing that its two constituent phases will terminate properly. In
the first phase, we can show that during the tracing of the recorded history, non-
progress problems, such as deadlocks and unspecified receptions, will not occur. In
particular, we can show that for every retransmitted message there will be a process
waiting for that message, and for every replayed message by one process, there will
be no corresponding message retransmission by any other process, in the lines similar
to Lemmas 3.3, 3.4, 3.5 and Theorem 3.2. In the second phase, we show that eventu-
ally each process will receive one recovery control message from each of its in-

neighbors, and therefore moves from the blocking state to a restart state. Lemma 3.6
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Figure 4.2. Transition Diagram Illustrating the Recovery Procedure of Scction 4.5.1
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deals with the correctness of this phase and Theorem 3.3 deals with the overall

correctness of the recovery procedure.

The complexity of our procedure is also similar to our recovery procedure of

Section 3.3.1 and is described in Section 3.3.1.3.

4.5.1.2. Example

in this Section we show an application of our recovery procedure using the
example introduced in Section 4.2. The process interaction diagram derived from the
protocol specification example of Figure 4.1 is shown in Figure 4.3. The in-neighbor

and out-neighbor sets of each of the six processes of the protocol example are shown

below:
in-neighbor(MTP) = {MSDC} out-neighbor(MTP) = {MDSC}
in-neighbor(MSDC) = {CPCO, CPCl} out-neighbor(MSDC) = {MTP}

in-neighbor(MDSC) = (MTP, CPCI, CPCO}  out-neighbor(MDSC) = {CPCI, CPCO}

in-neighbor{CPCI) = {MDSC, CC} out-neighbor(CPCl) = {MDSC, CC, MSDC}
in-neighbor(CPCO) = {CC, MDSC} out-neighbor(CPCO) = (MDSC, MSDC, CC}
in-neighbor(CC) = {CPCO, CPCl} out-neighbor(CC) = { CPCI, CPCO}

Figure 4.4 shows the time sequence diagram corresponding to our protocol example.
Suppose process CPCl detects an erroneous message sent by process CC. The
recorded execution histories until an erronoeus message or a recovery control mes-
sage is received by different processes are as follows:
For CC: (CPCI, +, 103201, SUID),

(CPCO, -, 203201, SURQ);

(CPCO, +, 353623, PCID):

(CPCI. -, 453623, error msg)



- 106 -

Figure 4.3. Process Interaction Diagram for the Protocol Example
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Figure 4.4. Time Sequence Diagram showing Event Index Tuples
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For CPCO: (CC, +, 213201, SURQ):
(MDSC, -, 223201, SCP2).
(MSDC, —, 233201, 1AM);
(MDSC, +, 243623, ACM1);
(CC, —, 253623, PCID)

For CPCI: (MDSC, +, 001201, 1AM1);
(MDSC, —, 002201, SCPI);
(CC, -, 103201, SUID);
(CC, +, 454623, error msg)

For MDSC: (MTP, +, 000101, IAM);
(CPCI, =, 000201, LAMI).
(CPCL +, 002301, SCPI);
(CPCO, +, 223401, SCP2);
(MTP, +, 233523, ACM);
(CPCO, -, 233623, ACM1)

For MSDC: (CPCO, +, 233211, IAM4);
(MTP, -, 233221, IAM)

For MTP:  (MDSC, —, 000001, IAM);
(MSDC, +, 233222, IAM),
(MDSC, -, 233223, ACM)

CPCI initiates the recovery process by sending to all of its out-neighbors including
CC (if CC does not belong to its out-neighbor set) a recovery control message that
includes its recovery point. Once a recovery control message is received by a pro-
cess, it computes its recovery point and sends it along its recovery control message to
each of its out-neighbors. Figure 4.5 shows the recovery control messages in dashed

arrows,
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Figure 4.6 shows the recovery tree with process CPCl at its root. This tree
shows the different control messages exchanged during the applicatton of ow
recovery procedure. The depth of the tree (which is three) corresponds to the time
units required to execute the recovery procedure if the network topology is same as
the system interaction diagram of Figure 4.3. The number of edges equal to twelve

represents the number of control messages required.

4.5.2. Volatile Storage Reguivement for Message Logging

To recover from process errors and failures, and restore the system to a con-
sistent state, a stable log and a volatile log are used. A process P, saves its lTocal state
along with its MREI(i) tuple and incarnation number (IN#), as an independent
checkpoint /CP (i) in stable storage. We assume some mechanism in the system is
carried out to checkpoint when the process state is free from ertors. The stable
storage also stores the initial state of the process as the recovery point and later as
obtained by the recovery procedure after failure. In the recovery algorithm, only the
MREI (i ) stored in an ICP (i ) is used. Once the restart point has been established, the
process will be restarted using the MREI (i) and the local state. The volatile log is
used to save the EXECEV tuples, which consist of the tuples corresponding to the
messages received and messages transmitted as discussed in Section 3.3.2. For exam-
ple, for Figure 4.4, when process CC receives message SUID, it saves (0, CPCH,
(03201, 103201, SUID) on volatile storage. Similarly, when CC sends SURQ to pro-
cess CPCO, it saves ((, CPCO, 203201, SURQ) on volatile storage and so on. No

messages are required 1o be logged to the stable storage during execution.

4.5.2.1. Proposed Recovery Procedure

In this section, we present our recovery procedure, which is based on the
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CPCl

Figure 4.6. Recovery Tree for the Example of Section 4.5.1.2



-112-

requirements and concepts introduced in the previous section. We first provide an
informal description of our recovery procedure, then we formally describe the steps
performed in the procedure. We assume that no failure occurs in non-failed

processes during recovery.

Informal description

Our recovery procedure does not require any intrusive pre-planned checkpoint-
ing procedure. Instead, independent checkpoints, ICP ., are saved in stable storage
associated with each process P, . Error recovery is triggered when a process P ,
receives an unspecified message m from P, T] (s, m) may be undefined because P/
has entered an illegal state, or it may be undetined because P, has entered an illegal
state, thereby sending an incorrect message. Pj starts the recovery algorithm by re-
executing from its last independent checkpoint, re-receiving the messages from its
volatile storage and finding the mismatch event in comparison to its previous execu-

tion. Three cases can be identified, as follows:

caseji:  No mismatch event is found. This case occurs when the re-execution pro-
ceedes correctly, and the (formerly) unspecitied message is no longer tound
to be unspecified. Thus, the error was in P/‘ but the sequence of messages
was correct, so the error has not propagated to other processes. Thus Pj
simply continues its operation from the point where the original error wis

detected.

casej2: A message umsg, previously sent to some process is found to be an invalid
message. P ; then determines a recovery point before the sending of umsg )
sends a Recovery Point (RP) message to all other processes, and restarts

from its recovery point.

casej3: A message umsg, is found to be an unspecitied message from P, . l” then
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enters the initiator process, where it sends an Initiate Recovery (IR) mes-

sagetoP,,.

When process P, receives the IR message, it enters into a non-initiator process.
It tinds its independent checkpoint before the event umsg, was sentto P - If its pre-
vious recovery point is greater than this ICP and greater than the event when the
umsg, ~was sent, then process F; has wrongfully detected the umsg, . The system
enters into a permanent-failure recovery (PFR) algorithm, where it finds a global
consistent checkpoint using the independent checkpoints of all processes and the
recovery procedure teminates Otherwise, P, performs re-execution of its recorded
history. If P, has indeed sent umsg, . it finds its recovery point RP, and sends a
Recovery Point (RP) message containing the RP, to all other processes. The
recovery procedure terminates her for P_. If instead, P, now finds some message
umsg; from P i which was not previously detected as UMSG sent by Pj. , the system
enters into the PFR algorithm and the recovery procedure terminates. Another case
may be that P did not detect any unspecified message during its initial execution but
during re-execution it detects umsg, received from a third process P, k=/. In this
case it sends an IR message to P, and a UR (P, ) message to Pj indicating that an
unspecified message was received from P, and that Pj may receive an RP, message

from P, . It then behaves as an initiator process.

Meanwhile, the intiator process P, receives some control message in response
to its IR message to P, . This control message may be the RP message from P, a
UR (P‘) message from P, . an RP message from Pk (if UR (P, ) message received) or
the IR message from P, . The process P i then either terminates the recovery pro-

cedure or enters the PFR algorithm, according to the recovery algorithm.

Finally every process will have its recovery point to restart from.
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The Recovery Procedure

For process P ; that receives an unspecified message umsg, from P,

When the process P ; detects a loss of synchronization in the system by receiving an

unspecified message umsg, from P,, it perfotms the following execution
Pj_0 increment IN# (j) by one

Pj_1 find its latest /CP (j ). Execute from lCPjU') and compare the execution with the
recorded execution up to and including the UMSG umsg, received earlier, and
finding the mismatch event.

Case 1: no mismatch event exists
-IN# () =IN#() -1
- exit and continue execution
Case 2: message umsg , Sent to some process is found to be an invalid mes-
sage
- RPI = MREIJ(/’) before message ni, was sent
- send RP (P, ,RP] JN# (f)) to all other processes
- restart
Case 3: some message umsg, is found to be an UMSG received from pro-
cess P, . where P, is P, or some other process
- send an Initiate Recovery message IR (El (m ),EI (j)IN# (j)) 1o P
to show that an UMSG umsg, isreceived. El (m)is the MREI tuple
sent by P, with the UMSG. EI (j} is MREI tuple for Pj before

receiving the UMSG. Recovery point RP/ = Elj inE/(j)

Pj_2 receive messages sent by all other processes into a temporary receiver buffer,

until a control message is received from the process P, or any other process
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Pj_3 receives control message CM
case a: CM = IR(EI (j),El (k)JN#(k)), from P, (k#m)
lFRPI 2 Elj(j) > ICPj(i)
- send RP (P, ’RP/' IN#(j)) to P,
- send PFR message to all other processes
- start PFR algorithm
lFElj(j) >RPj > ICPj(j)
- send RP (P i RP i JN# (j)) to all other processes
-gotoPj_3
case b: CM = RP(P,, ,RPm JN# (m)), from P,
IFRP, 2EI (m)
- receive PFR message from P
- start PFR algorithm

IF RPm < El (m)

m
-1IFRP, 2 El ()
- restart
-IFRP, < El (j)
- ind ICP (j) where ICP, (j) <RP,,
- reexecute (without transmitting messages) up to the event
where EI_ (j) <RP, . according to the messages recorded in
P f 's execution history
- RPJ = El ,U)
- restart
case ¢: CM = PFR message from any other process
- start PFR algorithm
case d: CM = UR(P,) msg from P
- receive RP(P RP IN#(m})) fromP
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IFRP (P, .RP IN# (k) already received from P A
- REPEAT_j {
-1IFRP, < EI, (j)
- find ICP (j) such that ICP, (j) SRP, AND
ICP,,(j)SRP,,
- reexecute (without transmitting messages) up to the
event where EI, (j)<RP, OREI (j)<RP, , which-
ever is before, according to the messages recorded in
P f ’s execution history. Then RP ;= Elj ()
- restart
-IFRP, 2 El, (j)
- restart
} /* end of REPEAT_j */
ELSE
- goto Pj_3
casee: CM = RP (P, ,RP‘ JN# (K)) from P,
IF UR (Pk ) AND RP P, ,RPm JN# (m)) already received from I’m
- do REPEAT_j
ELSE

-gotoPj_3

For process P_, other than P ;

case ml: receive PFR message
- start PFR algorithm
case m2: receive RP (P]. RP, JN# (j)) from I’/
IF (IN#E(m) 2 IN# (j))
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- ignore RP message, exit and continue execution
IF (IN#(m) < IN#(j))
- IF current MREII (m)> RPj
-find /CP (m ) where ICPj (m)< RPJ
-reexecute (without transmitting messages) up to the event with
El;(m)< RP,
-IN#(m) = IN# (j)
-RP =EIl (m)
- restart
- IF current MREI} (m)< RP/'
-IN# (m) = IN# (j)

- exit and continue execution

case m3: receive IR (El (m).EI (j),IN# (j)) from Pj
IF (IN# (m) 2 IN# (j))
- ignore IR message, exit and continue execution
IF (IN# (m) < IN# (J))
- ind ICP (m ) where ICP, (m) < El ()
-IFRP 2 Elm (m)> lCPm (n)

- send RP (P, ,RP, IN¥(n)) to Pj

m
- send PFR message to all other processes
- start PFR algorithm
- reexecute from /CP, (m) up to and including E/, (m) and compare
the execution with the recorded execution without transmitting the
sdme messages
case m3a: msg umsg, is considered as UMSG sent

-IN#(m) = IN# ()

-RP, =El  before umsg, was send
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- send RP (P, .RP, IN#(m)) to all other processes
- Testart
case m3b: received umsg, as UMSG from PJ
- IN# (m) = IN# (j)
-RP = EI  before receiving umsg f
- send PFR message to all other processes
- start PFR algorithm
case m3c: received umsg, as UMSG from P,
- IN# (m) = IN# (j)
-RP = EI  Dbefore receiving umsg,
- send IR (EI (k ).El{m)IN# (m)) to P,
- send UR (Pk) to P,

-send RP(P, RP  JIN#(m)) to all other processes

m
- receive_state |
receive control message CM
m3ca: CM = RP (P, ,RP IN# (L)) from P,
-IFRP, 2 El, (k)
- receive PFR message from P,
- start PFR algorithm
-IFRP, < El (k)
-IFRP, ZEl (m)
- restart
-IFRP, < El (m}
- tind ICP (m ) where ICP, (m) S RP,
- reexecute upto E/, (m) S KP,

-RP = El (m)

- restart
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m3cb: CM = PFR message from P,
- start PFR algorithm
m3cc: CM = IR (El (m),El (p ). JN# (p)) where pisk or
any other process
-1IFRP, 2 El (m)
- send PFR message to all other processes
- start PFR algorithm
-IFRP,, < El (m)
- ignore IR message
- go to receive_state
m3cd: CM = UR (Pq) message from P;
- receive RP (P, ,RPA JN# (k) from P,
IFRP (Pq ,RPq JIN# (q)) already received
from Pq
- REPEAT_m |
-IFRP < EI (m)
- find ICP (m) where
lCPq (m) < RPq AND
ICPk (m)<RP,
- reexecute (without
transmitting messages) up to
the event where
El (m) SRP, OR
El ((m) < RPk. whichever is
before, according to the
messages recorded in P,

execution history. Then
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RP =EI (m)
- restart
-1F RP‘] 2> Elq m)
- restart
} /¥ end of REPEAT_m */
ELSE
- goto receive_state
m3ce: CM = RP(Pq .RPq JN# () from P,
IF UR (Pq) and RP (Pq .RPq IN# (¢)) already
received from P,
- do REPEAT _m
ELSE
- O to receive_state
} /* end of receive_state */
m3d: no mismatch event up to £/, (m)
- continue execution finding the mismatch event
- IF umsg,, sent, or umsg, received, or no error
event
-find RP,,
-send RP (Pm .RPm JN#(m)) to I’J
- send PFR message to all other processes

- start PFR algorithm

4.5.2.2, Correctness

The SPIN package (an automated protocol validation system for Promela

models) is used to validate the design. In order to validate a design, we need 1o be
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able to specify precisely what it means for a design to be correct. A design can be
proven correct only with respect to specific correctness criteria. We are interested in
finding the following standard criteria: the absence of deadlocks, logical incomplete-
ness of the protocol specification (e.g., unspecified reception), improper terminations

and unexecutable code segments.

We will see in next chapter that our recovery algorithm meets the above criteria

by considering an example.

4.5.2.3. Example

To illustrate the recovery procedure, consider the example of Figure 4.4, with
the independent checkpoints and recovery messages added when process CPCI
receives an unspecified message, umsg as shown in Figure 4.7. The sequences of
EXECEV tuples recorded on volatile storage before the detection of the error are as

follows:

For CC: (0, CPCI, 003201, 103201, SUID);
(0, CPCO, 203201, SURQ):
(0, CPCO, 253623, 353623, PCID);
(0, CPCl, 453623, umsg)

For CPCO: (0, CC, 203201, 213201, SURQ);
(0, MDSC, 223201, SCP2);
(0. MSDC. 233201, 1AM4);
(0, MDSC, 233623, 243623, ACM 1),
(0, CC, 253623, PCID)

For CPCl: (0, MDSC, 000201, 001201, IAM1);
(0, MDSC, 002201, SCPI);
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Figure 4.7. Sequence Diagram showing Recovery Control Messages for Section 4.5.2.3
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(0, CC, 003201, 103201, SUID);
(0, CC, 454623, umsg)

For MDSC: (0, MTP, 000001, 000101, TAM);
(0, CPCl, 000201, IAMI);
(0, CPCI, 002201, 002301, SCPI);
(0, CPCO, 223201, 223401, SCP2);
(0, MTP, 233223, 233523, ACM);
(0, CPCO, 233623, ACMI)

For MSDC: (0, CPCO, 233201, 233211, IAM4);
(0, MTP, 233221, 1AM)

For MTP: (0, MDSC, 000001, IAM);
(0, MSDC, 233221, 233222, IAM);
(0, MDSC, 233223, ACM)

The event index tuples corresponding to the independent checkpoints saved are

as follows:

For CC: (000000), (203201)
For CPCO: (000000, (233201)
For CPCi:  (000000), (003201)
For MDSC: (000000), (223401)
For MSDC: (000000), (233221)

For MTP:  (000000), (233222)

When process CPCI receives an unspecified message, it increments the incarna-
tion number by one and reexecutes from the local state corresponding to its latest

independent checkpoint of (003201). It again finds that umsg is indeed the
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unspecified message. Therefore an IR(453623, (03201, 1) message is sent to CC.
CPCI makes 3 in (003201) as its recovery point and waits for a control message from
any process. After it receives a recovery point message RP(CC, 3, I) from CC, it res-

tarts from its recovery point.

After receiving an IR(453623, 003201, 1) message from CPCl, process CC
reexecutes from its local state of independent checkpoint of (000000) up to its event
tuple of (353623) finding an umsg message sent instead of the actual message PCRQ .
It increments its incarnation number and sends a recovery point message RP(CC, 3,

1) to all other processes and restarts.

All other processes, after receiving the recovery point message RP(CC, 3, /)
from CC, increment their incarnation number and find their current maximally reach-
able event index not to be effected by the error event. Therefore, they continue theit

execution without restarting.

For the similar example considered as in Section 4.5.1.2 using stable storage, we
see that six control messages are required in all and it takes 4 time units for the sys-
tem to recover and to restart from the system state of (353623). In addition, time is
required to trace and replay recorded histories at each process, from the initial stiate
(or the recovery points if any previous failures had occurred) in case of recovery pro-
cedure described in Section 4.5.1, and from the latest correct independent check-
points for this Section’s recovery procedure. However, since only the erroneous mes-

sages are retransmitted, the overall time is minimal.

4.6. Comparison

In this Section we compare our recovery procedure with Kakudu's recovery

scheme [Kak91, KKMSY2], which deals specifically with recovery in protocol
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systems. The main differences between our recovery procedure and Kakuda’s scheme

¢dn be summarized as follows:

1)

3)

4)

In our procedure, no periodic checkpointing is required to establish a recovery
line to be used later for recovery. However, in Kakuda's scheme, periodic
checkpointing is needed since processes roll back to their latest checkpoint and
restart from there. This implies that in our procedure, there is no overhead asso-
viated with checkpointing, whereas in Kakuda's scheme checkpointing is
intrusive and is based on a two-phase commit protocol that requires control mes-
sages of the O (Nz).

Kakuda's rollback-recovery algorithm performs rollback by restarting from a
saved checkpoint and forgetting transmitted messages in the sequence of exe-
cuted state transitions from the saved checkpoints and also forgetting receiving
those messages if they had already been received or discarding them upon their
reception. By discarding state transitions from the saved checkpoints, even if
they are free from the effects of error. Kakuda's algorithm does not ofter
minimal rollback. In our procedure the recovery line is not the checkpoint line
but a consistent state corresponding to the maximally reachable states for the
process detecting an error or a consistent state beyond the maximally reachable
state. Using our recovery procedure. only the affected processes are required to
perform a minimal rollback whereas 1n Kakuda's scheme all communicating
processes roll back to their latest checkpoint.

Our procedure requires the exchange of contextual information along with the
exchanged message. Kakuda's scheme requires a larger amount of information
including the maximally executable sequence to be sent along with the message.
Our procedure keeps the amount of message retransmission to a minimum. Only

those messages are required to be retransmitted that are contaminated by error

events.  Kakuda's scheme requires the retransmission of all messages
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transmitted by one process after its latest checkpoint.

5) Our recovery procedure requires fewer recovery control messages to be
transmitted and also requires less time for recovery (if we suppose that a mes-
sage from one process to another takes one time unit). For the example con-
sidered. the recovery algorithm of Section 4.5.1 requires 12 control messages
and 3 time units, the algorithm of Section 4.5.2 requires 6 control messages and
4 time units, and Kakuda’s scheme requires 15 control messages and 6 time
units. This is because Kakuda's recovery is based on a two-phase commit proto-
col to coordinate and propagate a recovery line to each of the communicating
processes.

6) A large storage requireraent is necessary for information of the maxinully exe-
cutable sequence tuples and maximally reachable state of every other process
and for periodic checkpoints for Kakuda's approach, whereas in our approach
we need to store in volatile storage only the tuples corresponding to the events
that were executed. The stable storage is required only for saving the indepen-
dent checkpoints.

7) Kakuda’s approach considers only the occurrence of error events for a single
fail-stop process. Our approach allows recovery from multiple processes enter-
ing into error states, where errors may be detected immediately or they may

have been propagated to other processes.

Consider the example of Figure 4.1, reproduced in Figure 4.8, displaying the
concepts of all the approaches considered. The message transitions have been omitted
for simplicity. After an error in message PCRQ is detected by the receiver process
CPCI, Kakuda's algorithm rolls back to its checkpoint line, in this case the initial
state for all processes. It forgets the transmission and receptions of all the messages.

Gambhir’s approach detects that there is an error between state S 1 and S 3 of process
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Figure 4.8. Comparison of different approaches
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MTP , states S0 and S 2 of process MSDC , states S2 and S 6 of process MDSC . states
S0 and WFANM of process CPCO and/or between states S0 and S4 of process CC,
i.e. state S | of process MTP , state S0 of pracess MSDC , state S2 of process MDSC,
state SO of process CPCO and state S0 of process C'C are correct states. Therefore
states (S 1,50, 2WFACM SO,S0) of the processes MTP, MSDC, MDSC, CP(I,
CPCO and CC, in that order, form a consistent state to which the system can roll
back. According to our approach the recovery line corresponds to the consistent state
($3.52,56, WFACM WFANM S 3) of the processes in that order. None of the mes-
sages except PCRQ are resent or received again since they are not corrupted by the

€rroneous message umsyg .

4.7. Summary

This Chapter provides some solutions to the problem of fault-tolerance in com-
puter communications protocols, modelled by communicating finite state machines.
We begin by considering the issues related to the fault-tolerant protocol design and
focus our attention to the operational (transient) errors that change the global state of

the system due to process failures or memory crashes, but not its behaviour,

We have seen in the literature that not much work has been done in the field of
applying the checkpointing and rollback-recovery algorithms of distributed systems
to communication protocols. Researchers (e.g., GaFr91) have presented algorithms
for fault detection and isolation by comparing the input-output sequences of the
software implementation with the formal specification stored in its attached database,
but not concentrated on fault recovery. Kakuda has introduced checkpointing and
recovery procedures to be used for communication protocols where in their scheme
fail-stop processes, upon detection of a single error in the system, perform rollback

from a predetermined global checkpoint and forget transmitted messages in the
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sequence of executed state transitions from the saved checkpoints and also forget
receiving those messages if they had already been received or discarding them upon

their reception.

In this Chapter, we have first introduced an efficient procedure for the recovery
in protocol systems for a single error in a fail-stop process. Later, we have presented
a generalized recovery procedure that deals with concurrent failures and therefore
concurrent initiations of the recovery procedure for non-fail-stop processes. Our pro-
cedure uses the contextual information exchanged during the normal progress of the
protocol and recorded on volatile storage. On reception of an erroneous message by
any process, the receiver process finds by reexecution if its own process state has cor-
tupted or it is indeed a sender process that has failed by sending an unspecified mes-
sage. therefore not suspecting each time the sender process to be failed. The process
involved in sending the erroneous message in the protocol will become aware of the
error and will evaluate the effects of that error on its progress. Depending on that
effect the sender process will decide on its independent checkpoint from which it
reexecutes the recorded history and considers each of the recorded events. Since the
errors are assumed to be transient, reexecution from its checkpoint tells if the process
itself has an erroneous state or due to some other process in error, it had sent an
erroncous message. Also depending on the error event, some of the processes may
not be required to roll back, meaning that our procedure forces only the necessary
and minimal number of processes to roll back. A message will be retransmitted only
if it was corrupted. thus keeping the number of message retransmissions to a

minimum.

An example is considered consisting of six CFSMs specifying a part of the
ISDN user part of Common Signalling System Seven and is evaluated in terms of

recovery control messages and time required to roll back in case of an error message
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reception. A comparison is made between Kakuda's approach and our recovery pro-
cedures and it is found that our apnroach performs a minimal rollback, requires only
affected processes to rollback, requires less information to be exchanged. keeps mes-
sage retransmissions to be minimum, needs less stable storage, requires fewer
recovery control messages to be transmitted. and also requires less time for recovery
as compared to Kakuda's approach. Therefore, our generic algorithms are better

suited to provide responsive protocols.



CHAPTER §

DESIGN OF FAULT-TOLERANT PROTOCOLS

5.1. Introduction

Research on stabilization (fault-tolerance) started in the context of distributed
computing systems with a classical paper by Dijkstra [Dijk74]. However, the impor-
tance of stabilization and responsiveness, for communication protocols as a special

type of distributed systems, was only recognized recently.

A fault-tolerant computer system is one that delivers the specified services even
in the presence of faults. The first step in fault-tolerant design is to provide
modifications to existing protocols such that faults are considered as a part of the sys-
tem specifications. The design needs to accomodate fault diagnosis and fault recovery

times for the specific classes of faults [Mal90].

In the conventional method for design of real protocols, a protocol is manually
designed such that all processes in the protocol are controlled by a specified process
for recovery from an error event, and different sequences of state transitions are fol-
lowed for each state where the error event occurs. This report proposes a unified
method for design of fault-tolerant protocols for communication systems which
incorporates the procedures for fault-tolerance based on our checkpointing and
rollback-recovery procedures for protocols as presented in Chapter 4 into the
specification and design phases of the communication protocols. Any process where
an error event occurs (is detected) becomes an initiator process for recovery from the
error event. The method is regarded as a unified approach since it is independent of

the inherent functions of any protocols. For any error event that is detected by the



-132-

reception of an unspecified message, the sequences of state transitions for recovery

purposes for the processes required to rollback are generated by our procedures in

Chapter 4.

Three different approaches can be clearly identified for the design of fault-

tolerant protocols — conventional method, semantic-based, and generic approach. A

brief description of each follows.

5.2. Conventional Design Method for Fault-Tolerant Protocols

1)

2.1)

2.2)

Design of fault-tolerant protocols involves the following steps [KuaKiv2|:

Specification of protocol structure: A relation for message flow among
processes is specitied. An example is shown in Figure 5.1 where circles denote
processes, arrows represent channels, and labels attached to the arrows denote
messages.

Specification of protocol behaviour: A relation between transmission and recep-
tion of messages among processes is specified. For example, in Figure 5.2, cii-
cles denote states, arrows correspond to state transitions, and a minus/plus sign
denotes transmission/reception of a message. In other words, the specitication of
protocol behaviour is equivalent to the specification of sequences of state transi-
tions. This step is divided into the following two substeps:

Specification of normal sequences of state transitions: transitions of Figure 5.2

as shown in its reachability tree represent normal sequences of state transitions.

Specification of abnormal sequences of state transitions: reset sequences due to
reception of unexpected messages are instances of abnormal sequences of state

transitions.
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The number of normal sequences is restricted to those which the protocol
designers can perfectly specify, while there are many abnormal sequences because
error events can occur at any normal state. It is therefore important to specify abnor-
mal sequences for design of fault-tolerant protocols. Steps 1) and 2.1) are common to
the design of any protocol, fault-tolerant or not. Our focus is on step 2.2), which is

crucial in the design of fault-tolerant protocols.

When error events occur, real protocols often revert to an initial global state
through abnormal sequences, called reset sequences, of state transitions. All state
transitions from the initial global state to the reached abnormal state are voided. Also
there is a central process that controls transmission and reception of messages in the
abnormal sequences, thus the time required for executing all the state transitions in

the abnormal sequence is more likely to exceed an assumed deadline.

5.3. Semantic-Based Approach for Fault-Tolerant Protocols

This approach for design of fault-tolerant protocols is to use verification tech-
niques. These techniques aim to prove that the specification meets requirements for
fault-tolerant protocols. First, the specifications are flexibly designed without placing
any restrictions on them, and then the errors against fault-tolerance are corrected

manually.

The first work on verification of fault-tolerant protocols was done by Gouda and
Multari [GoMu91]. They propose a mathematical model for verifying self-
stabilization of protocols. Kakuda and Kikuno propose an automated method for veri-
fying fault-tolerunt protocols [KaKi91]. They model the protocols by an extended
finite state machine and apply methods for protocol verification to verify the fault-

tolerant properties.



All the design methods for fault-tolerant protocols described using veritication
method are application-specific. Expertise in protocols 1s required to correct an
erroneous invariant, to encompass all failure modes within the invariant, and to estab-
lish time bounds for recovery. Moreover, the modified protocol must be re-validated
for syntactic and semantic correctness and therefore, it is a time-consuming

approach.

5.4. Generic Approach for Fault-Tolerant Protocols

Another approach for design of fault-tolerant protocols is generic and is based
on the structure of the protocol specification, which aims to incorporate procedures
for fault-tolerance into the specification and design phases of the communication pro-
tocols. In this thesis, we advocate the generic approach. Kakuda et al have proposed
a method for synthesis of fault-tolerant protocols using checkpointing and rollback-
recovery [KKMS92]. Saleh er al have also proposed checkpointing and roliback-
recovery procedures [SAAAYS5] to be used in synthesis of fault-tolerant protocols.
This method is suitable for design of fault-tolerant protocols, since any process can
initiate the rollback-recovery procedure and any illegal sequence in the protocol can
revert to an intermediate legal consistent state while retaining consistency in
transmission and reception of messages. Only the state transitions from an intermedi-

ate consistent state to the abnormal state are voided.

All the design methods for fault-tolerant protocols described using the synthesis
method are application-independent. Since they only require the protocol structure
and exchange of local information, they are regarded as unified design methods for
any protocol and all failure modes, and it is sufficient to prove the correctness / vali-
date the provided algorithms to be able to use them for any fault-tolerant communica-

tion protocol regardless of its semantics. However, the procedures and stable storage
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required for the synthesis are assumed to be fault-tolerant.

In the following Section we specify the sequences of state transitions for
recovery purposes using transition diagrams when there is a reception of unspecified

message(s) by the process(es) of the system.

5.4.1. Transition Diagrams

Figure 5.3 shows the time sequence diagram for normal behaviour of Figure 5.2.
Transition diagrams for the processes involved in the protocol of Figure 5.3 are
shown in Figure 5.4, representing the transitions a process has to undergo when it
may be an initiator or a non-initiator of the recovery procedure. A process is an initia-
tor when it has received an umsg or it may be a non-initiator when an /R control
message has been received. In the example considered, any of the processes P |, P,,
P, or P, may be an initiator process by receiving messages m 1, m0 or m3,m4, m2,
from processes belonging to their set of in-neighbors, as error messages umsg1,
umsg O or umsg 3, umsg 4. umsg 2, respectively. Thereafter, the processes execute the
transitions as specified in the transition diagrams of their initiator processes.
Processes P,, P, or P, may run their non-initiator processes after receiving IR mes-
sages. P, may receive an /R message from either P or P, since they belong to its set
of out-neighbors and the corresponding path of the transition diagram is followed.
Similarly, P, may receive an IR message from P, or P, and P, may receive an IR
message from P,. There is no non-initiator process for P, since it is not a sender of

the application message in the example considered.

Consider the case when process P, receives message m 1 as umsg 1. It enters
into its initiatorl process and sends an /R (EI[2),EI [1],1) message to P ,. Process P,

may receive this /R message after receiving m 3 or after sending m4. It then finds its
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Figure 5.3. Time Sequence Diagram for Figure 5.2.
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Figure 5.4b: Transition Diagrams for Non-Initiator Processes



- 141 -

RP, and if it is less than its current event index, it means that it has either received an
earlier message m() that was later detected as umsg0 during reexecution or it has
wrongfully send message m 1 as umsg 1. In the later case, it just sends its RP (RP 2)
message to all other processes and restarts from its recovery point. In the former case,
P, sends an IR (EI3].EI [2],1) message to P, and an UR (P 3) message to P, indicat-
ing that P is in error state and process P should receive a RP (RP 2) message from
P.. P, also sends a RP(RP2) message to all other processes. It then waits for a
RP (RP 3) message or a PFR message from P,. RP (RP 3) message is received by all
other processes if P, had indeed send wmsg0O instead of m0 to P,. If P, does not
agree that it had send wmsg( and P, has wrongfully judged that, a PFR message is
send indicating that the whole system has failed and should obtain a consistent state

from its set of independent checkpoints.

Note that the flowcharts for the example of Figure 5.3 represent a substantial
portion of the complete recovery procedure of Section 4.5.2.1 since each process in

the system is not a sender or receiver of application messages to all other processes.

5.4.2. Validation of the Recuvery Procedure

In this thesis Promela [Holz91] is the specification and modeling language,
which is used to describe validation models that define the interactions of processes
in a distributed system. The model is as simple as possible, yet sufficiently powerful
to represent all types of coordination problems that can occur in distributed systems.
The semantics of the language makes it possible to make a mapping from the flow
chart language used in the transition diagrams of Section 5.4.1 to Promela programs

straightforward.

The validation model is defined directly in terms of three specific types of
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objects: processes, message channels and state variables. All processes are global
objects. Variables and channels represent data that can be either global or local to
process. In Promela, there is no difference between conditions and statements. Even
isolated boolean conditions can be used as statements. The execution of a statement is
conditional on its executability. All Promela statements are either executable or
blocked, depending on the current values of variables or the contents of message
channels. A process can wait for an event to happen by waiting for a statement to

become executable.

A process has to be named, defined and instantiated to be executed. All types of
processes that can be instantiated are defined in proctype declarations, which declare
process behaviour but do not execute it. Initially, just one process is executed: a pro-
cess of type init, which may start a number of other processes that will run con-
currently with the init process. Run can be used in any process to spawn new
processes, not just in the initial process. Atomiic is used to indicate that the sequence
is to be executed as one indivisible unit, non-interleaved with any ather processes. It

is used to reduce the complexity of a validation model.

Message channels are used to model the transfer the data trom one process 10

another. They are declared as

chan pl_to_p2 =[5] of {byte, byte, byte, byte}
chan p2_to_p1 =[4] of {byte, byte, byte, byte},
chan p3_to_p1 =[4] of {byte, byte, byte, byte}.
chan p2_to_p3 = 6] of {byte, byte, byte, byte};
chan p3_to_p2 =[6] of {byte, byte, byte, byte};
chan p2_to_p4 = [6] of {byte, byte, byte, byte };
chan p3_to_p4 =[3] of {byte, byte, byte, byte }:
chan p4_to_p1 =[3] of {byte, byte, byte, byte};
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chan p4_to_p2 = [3] of {byte, byte, byte, byte};
chan p4_to_p3 = [6] of {byte, byte, byte, byte};
that initializes, for example, channel p/_to_p2 to store up to 5 messages, each con-

sisting of four one-byte fields.

A message type definition of the form
mtype = {m(, m1, m2, m3, m4, mS, mé, m7, m8, m9, m10,

umsg, IR, PFR, UR, P1, P2, P3, P4, rm1,rm2,rm3, rm4};

makes the names of the constants, rather than the values, available to an implementa-

tion, which can improve error reporting.

Promela programs were written for the protocol example of Figure 5.3
corresponding to its transition diagrams of Figure 5.4. The Promela specification con-
tains a process type proctype p1(), p2(), p3(), and p4() for each of the processes of the
system, which are run atomically in the beginning of the execution of the program.
These proctypes give the behaviour of the protocol indicating the messages received
and messages sent over message channels that are defined globally. The message
send is considered to be atomic with the correct message received to reduce the com-
plexity of the validation model. As a first step. the application is run with no intro-
duced errors, so that no error-recovery processes are activated. This verifies that the
design of the application protocol is error-free. Next, the application is modified so
that any s2nt messages can be replaced with a message of type umsg, and the applica-
tion is re-run. If any of the process types receives a message of type umsg, it instan-
tiates a copy of its initiator process type. This represents the fact that this process has
detected failure, and has initiated recovery. Then, according to our recovery pro-
cedure, if the control message /R is received by any other process type it will initiate
a copy of its non-initiator process type. This represents the fact that this process has

not detected any error, but is participating in the recovery algorithm.
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For example, if process type P1 receives an umsg from process type P2, it will
start concurrently another process type initiator] which sends the /R message on its
outgoing channel connecting P1 to P2. The process type P2 upon receiving the IR
message, runs the process type non_initiator2 and the rest of the recovery procedure
is followed. There is no non_initiator] process type since P1 is not a sender of an
application message. Since Promela has the ability to model the manipulation of the
contents of variables, the expressions such as RP, 2 EI (i) can be easily obtained and

the corresponding path in the flow chart may be followed.

To validate a design, we need to be able to specify precisely what it means for a
design to be correct. A design can be proven correct only with respect to specific
correctness criteria. We are interested in finding the following standard criteria: the
absence of deadlocks, logical incompleteness of the protocol specification (e.g.,

unspecified reception), improper terminations and unexecutable cade segments.

The SPIN (Simple Promela INterpreter) automated protocol validation tool con-
structs, from the Promela model, a validator that can perform reachability analysis in
three basic modes: random simulation, fully exhaustive state space search, or partial
state space search. In particular, for our example, the controlled partial search tech-
nique named supertrace with the bit state space technique is used by the validators
that are produced by SPIN. The validations using the supertrace mode can be per-
formed in much smaller amounts of memory, and still retain excellent coverage of the

state space.

Using SPIN in the supertrace mode it was found that there were no design errors
with respect to deadlocks, unspecified receptions and improper terminations. The
unused parts were eliminated from the specification, to include only the transitions
given in the transition diagrams of Figure 5.4, to prevent extraneous detection of

unreachable code from prematurely terminating the validation.
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5.5. Summary

In this Chapter we have briefly ciscussed the various approaches followed to
provide fault-tolerant protocols. The conventional design approach may require a
central process to control the different sequences of state transitions to be followed
for different error states. The semantic-based approach requires an expertise in the
protocol to manually correct the errors against fault-tolerance and requires re-
validation of the corrected protocol. Our approach to provide fault-tolerance to com-
munication protocols is generic and does not require different state transitions for
different error events or an expertise in the protocol. We specify the different
sequences of state transitions that are based on our rollback recovery procedures of
Chapter 4 using transition diagrams. These sequences are similar for any type of error
events and their number depends on the location of the error in the whole system,
whether the error resides directly in the sender process or indirectly in any other pro-
vess related to the sender process. We have also proven the correctness of our
sequences of state transitions by validating them using the modeling language
Promela and automated protocol validation tool SPIN against the absence of any

deadlocks, incompleteness, improper terminations and unspecified code segments.
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CONCLUSIONS

6.1. Conclusions

The goal of this research was to provide a unitied approach to fault-tolerance in
communication systems under a model of transient failures by formally incorporating
them into the specification and design phases of the communication software
development life cycle. Researchers have tended to address the issue of fault-
tolerance in the area of distributed database and distributed computing by countering
the effects of their individual causes. Not much work had been done in the past in the
field of providing fault-tolerance to communication protocols, especially at the
specification level. Since communication protocols include a large amount of abnor-
mal processing triggered by transient failures, high reliability and performance in the
presence of such events are required. To achieve this a generalized recovery pro-
cedure was developed whose states and transitions could be incorporated into the
specification and design phases itself to provide fault-tolerance, to bring the system

into a consistent state should a transient failure occur.

Our communication network is assumed to consist of a finite number of loosely
coupled processors in a strongly connected fashion. These processors exchange mes-
sages over first-in-first-out communication channels that are assumed to be reliable
and take a finite amount of delay to deliver the message. We also assume that each
processor is equipped with a volatile storage and a stable storage to store necessary
information required for recovery. The processes running on these processors are
considered to be deterministic and non-fail-stop. The transient errors occurring in one

process during the operation of the communication software may contaminate further
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checkpoints and local states of itself and other processes in the system. The opera-
tional errors are related to the environment and may change the global state of a sys-
tem, but not its behaviour. It is assumed that these errors do not continue to occur. In
the context of fault-tolerant protocols it is also assumed that the starting point in the
protocol development life cycle is a complete specification and a design free of any

syntactic and semantic errors.

In the literature we see conventional methods for design of real protocols where
there is a specified central process to control the transmission and reception of mes-
sages for recovery from an error event, and different sequences of state transitions are
followed for each state where the error event occurs. The real protocols often revert
to an initial global state and all the state transitions from the initial global state are
voided. The other approach we see is semantic-based where the specifications for
protocols are flexibly designed first and then the errors against fault-tolerance are
corrected manually. These design methods are application-specific and the modified

protocol must be re-validated for syntactic and semantic correctness.

This thesis has proposed a unified method for design of fault-tolerant protocols
for communication systems based on our checkpointing and rollback recovery pro-
cedures for protocols. The design methods described are application-independent.
Since they require only the protocol structure and exchange of local information,
they are regarded as unified design methods for any protocol and all failure modes.
Any process where an error event occurs becomes an initiator process for recovery
from the error event. The sequences of state transitions after each error event are
automatically generated and are similar for all error events and for all non-initiator
processes. This unified approach is independent of the inherent functions of any pro-
tocol. Any illegal sequence in the protocol can revert to an intermediate legal con-

sistent state while retaining consistency in transmission and reception of messages.
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Only the state transitions from an intermediate consistent state to the error event are
voided. The provided recovery sequences of state transitions are validated to prove
their correctness, using the specification and modeling language, Promela, and the
Simple Promela INterpreter (SPIN), the automated protocol validation tool, to per-
form reachability analysis to detect any presence of deadlocks, logical incomplete-
ness of the recovery procedure (e.g., unspecified reception), improper terminations

and unexecutable code segments.

To obtain the required recovery procedures for protocols, several contributions
were made towards our research. To start with, an algorithm is proposed to obtain the
maximally reachable event index, MREI(i), which represents the event indices
corresponding to sending/receiving messages that other processes must have reached
before process P, executes its event. This algorithm is then used by our other algo-
rithmic procedures for checkpeinting and rollback recovery in distributed systems
based both on the pre-planned and the un-planned approaches. In the pre-planned
approach, efficient checkpointing and rollback recovery procedures with their fault-
tolerant versions are presented for non-fail-stop processes. These procedures meet
most of the requirements for ideal checkpointing and recovery by obtaining the most
recent dnd consistent possible system state for the process initiating the procedure,
being non-intrusive, requiring a minimal number of processes to rollback, providing
us with a maximum global consistent state after failures, being capable of recovering
from any number of process failures in the system, and others. But a large stable
storage is needed to record the local state along with other information after every
transition by each process in the system. In the un-planned approach, efticient pro-
cedures for recovery are provided for non-fail-stop processes that do not require the
application of checkpointing procedures, but uses contextual information exchanged
during normal system progress and the independently saved checkpoint in stable

storage and the saved message log in volatile storage. During recovery the processes
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need to replay only from their last correct independent checkpoint and not from their
intial state. The recovery procedure meets all the requirements for an ideal recovery
procedure stated in Section 2.3.1 by providing us with a maximum global consistent
state; requiring only those processes to restart that are affected by error propagation
and only those application messages to be retransmitted that are affected by error; and
using a minimal number of recovery related messages. The procedure can be used to
recover from any number of process failures in the system, including a total failure of

all processes.

Our next contribution was to provide generalized recovery algorithms for fault-
tolerance in communication protocols. The concepts are based on the algorithms pro-
vided for distributed systems, which are modified to take into account the effects of
error propagation leading to some form of synchronization loss in the system. Error
detection in the system is done by the reception of an erroneous message (unspecified
message) by the receiver process that tries to find by re-execution from its known
correct state if its own process state has corrupted or it is indeed a sender process that
has failed by sending an unspecified message bringing the system to an inconsistent
state. Our procedure also considers the case when a receiver process is not able to
detect the error since its own process state was corrupted and it considered the
erroneous message received as correct, but later in the protocol execution some other
process is able to detect system failure. Qur procedure allows concurient processes
detecting errors and therefore concurrent initiations of the recovery procedure for
non-fail-stop processes. The stable storage requirement is the minimum for saving
independent checkpoints, and volatile storage is used for logging messages received
to reduce the time required to access them during re-execution. Depending on the
error event, some of the processes may not be required to roll back, meaning that our
procedure forces only the necessary and minimal number of processes to roll back. A

message will be retransmitted only if it was corrupted keeping the number of message



retransmissions to a minimum.

Our algorithms have been compared with other algorithms provided for
recovery in the literature for protocols, and it is found that they are better than them

in all the features of an ideal recovery procedure.

6.2. Recommendations for Future Work

In our future research, we would like to consider the other causes that lead to
the loss of coordination within processes, which were not considered in our research.
These causes include inconsistent initialization, where different processes are initial-
ized to local states that are inconsistent with one another, and transmission errors,

where messages may be lost, corrupted or reordered during transmission.

We would also like to study recovery in non-deterministic systems. Since we
have messages logged on storage, and these messages are re-executed from the last
independent checkpoint free from errors, we assume the processes to be deterministic

from the point of re-execution until the state before the error state.

It would also be a good idea to make the recovery procedures for the un-planned
approach to be fault-tolerant. We would also like to move our research further into
the area of responsive communication protocols, to consider the real time features of
our fault-tolerant protocols. We would then like to consider some standard protocols

to check their responsiveness.
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