.
4
. -
1
<
4
’ X
- 1]
-
R
.
~
,
P
/
.
A Y * M
.
-
.
4 —
. —

é
:
§
i p
]
i “
3 s
: f
E )
. .

: -

4 ' .

. -
i

N

S s e e e g o e -

[
- .

A Typed, Applicative Programming Environment

0'4

Presented in Partial Fulfilment of the Requirerhénts
for the Degree- of Doctor of Philosophy at

Concordia University
Montreal, Quebec, Canada

February 1985

T @© PeFe;\mD. Gragono, 1985

‘

PR
-
-
— N ~
L
‘
.
.
1
“
A
~ '
. 3
s
¢ .
- 3
(R ‘\
Y
,"\
s
3 EY
'
.
-
.
.
[ ~
.
I
.
-
.
%
’
’
.
. .
e
8
¢
o
’ .
-
Al
.
’ -
.
o
P
N '
v Iy
N ’
[
&,

- e e g,

~e

T e M s s W R A Bk T 5
.

oty e




v 4

‘Concordia University, 1985

Iy
°

-~ . N
A Typed, Applicative rogramming Environment

3

< A
f

“
]
o . N
' » o

Peter Grogono, Ph.D. . L,

The traditional toocls, an edit&r, a compiler, ar;d a. debugger, are no longer
adeqﬁate for -program Hdevelopment. This pErcepéion' has lead to fhe
introduction of "programming environments" for !Ehe qevelopmént of programs
in various languages. In this thesis, we introduce a hew kind of programming
environment designed for _the rapid production of reliable software. The
environment is based on a family of high-léqel, .applic'ativg languages,

collectively called Dee, that combine features traditionally associated with

both compiled and interpreted languages. . Distinctive features of the

Sy

environment include an explicit .multi-level structure, a rich type system,

modular ﬂ‘progx‘arrp construction, data abstraction, and incremental program o

]

development. , .
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John Dee (1527-1608) was a British philosopher whose cregtive work

»

spann'qd mathematics, logic, alchemy, and magic. The quotations at the
beginning of each chapter of this thesis are taken from Dee's best known
work, the preface to the first English’ translation of Euclid's Elements of

Geometry [Dee].

2 i’i R .
[ have received support, technical assistance, and encouragament: from

n

many sources during the preparation of this thesis. Concordia. University

awarded me a Graduate Fellowship and le Fonds F’.C.A.C..hi‘&giﬁéd further
financjal assistance. The Department of Computer Science tr’ap"“mConcordia

\
University provided a stimulating milieu in which to study and 1eam. ‘I have

" been pnvxleg;d to attend meetings of IFIP Workmg Gﬂ'oupsl dprgn\g my
research. [ am grateful to Hendrik Boom for introducing me *t:q YIG 2..L, to
Mark Rain for mtroducmg me to WG 2.4, and to th? Chan'mén of these
groups, Robert Dewar and Gerhart Goos respectively, f?r vmgxtanons to the
megtings. Several members of these groups, in partichlar Bprigt’ Nordstrom,

ark Rain, Paul Rouse, David Turner, ancj 'Paul Voda,‘ﬁ_a% 'discusseyd the
work described herein with me. Jonathan Seldin c;ffere.d help‘ful c'onfmé‘nt's\ on
the type system of Dee. C.A.R. Hoare provided useful criticisms of an earl)?
version of Dee presented at ETH in Zurich [Grogono 1984]). The members of

my Examining Committee, Hendrik Boom, .Clement Lam, Jaroslav Opatrny;

and‘ Raul Voda have provided continued and welcome assistance. Finally, V.S.

- ik

: :
1 k \‘

el o . e b el i A At A A



[} ' 1 [y *
) - a? ' {
e - - ., - t o ‘
. . A \ +
. * ' , N s
7 1 ! ..
Alagar, who supervised both my Master's Thesis and the present dissertation, .
‘has been a patient listener and critic as well as an invaluable source of
* . . L Co ’
ideas. ‘
¢ N
. rd ° - ” N
i . - : i N
- - ~ 2
1 -,
v ’ \u i
. !
< N \
- . . ¢ ‘ - o
o ¥ /
. | . L
. A pu ) \ s
, } - . :
, : i
Y _ & . 4 ?
- ‘ !
. i
——t & - ‘;
) ¥ ’ . !
L4 ' L
~ [
“ )
. . ‘
‘ _ 2
- - ">
3 i
iy ¢ N
g ]
‘: .
1)
. v AN
| o | '
[ S—— - * s . ’w‘:—r

-3



Em— -

Table of Contenta

1 Introduction

1.1 Strategies and Principles for Prodramming L‘anguage Design

K ; 1:2 Dee ‘ X B
1.3 Organization of the Theais
o
2 Thé Kernel Language
2l Syntax

2.2 Informal Semantics

~ ' 2.3 Formal Semantics

3- Extending the Kernel
3.1 Expfessions
' 3.2 Patterns ' 4
| 3.3 Directives
3.4 Input and 6utput
. 3.5 Modules
o ‘J 3 Error Handling
h 3.7 Synn‘actic Variants

N L 3.8 Equality in Dee

vi

< 3

y

|
Lu
|

-

2

\lls

19

N
[

[
o

N
. &

DRSS IRy )
5



|

4 Typea. ' Co | . ' - 43 -
4.1 _The Role of ‘Types - ’ : “,43
4.2 Preliminaries .« « o ‘ 46" :
4.3 Type Inference =~ . . . | 54 t
4.4 Type Inference Algc;rithms - | . ] 55
4.5 Exarpﬁles | \ .? ‘ ‘ . . 67 ]
& 4.6 Extensions gf the Type Sysb;m‘ ' ) 70 ;
: f
5 Implementation | ' . o o 72 ?
5.1 Dee Processing - ' . B '
5.2 Pretty-printing A — ) 82
5.3/ The Run-time Environment R < 83 ) ]
5.4 Modules S T T g ,
“ | ‘ T el

"9.5, An Architecture for.Dee .

¥

"
.
ek N RS b etk

é A Programming Environment . . \ 4 92
6.]..' Requirements | | 93 ,
6.2 Meeting the Requi;er.nents ) [ “ % ‘
6.3 Programming Methodo]ogies B | 97 ;
6.4, The‘Dee Programming‘—En‘Q'ironment ) 99
6.5 Dee] and -the- Oper’a'ting System " . 103

) .

7 Further Work gn? Conclusion ” N | ) ) ' ‘ 106

7.1 Directions for Further Resedrch * 106

PRSI e ‘-l-\m‘v./ -

o s o -
r

Y. - SN
6 - s

7.2 Conclusipn C o | 107

.

References

ii

108

-




"The fruit and gain which I require for these my pains
and travail, shall be nothing else, but only that you,

. gentle teader, will gratefully accept the_ same: and that

" you \may thereby receive some .profit: and moreover to
excnta and stir up others learned to do the like, and tu
take pains in that behalf."

-

1 Introduction

A programming environment is a collection of hardware and software 'thet
assists a programme‘r in the de.aign and implementation of a program. We
are accustomed to programming environments that support either a compiled
language with an é\:!itor and a compiler or an interpreted language with an
interpreter. In this thesis, we discuss the design of an environment that;
could assist programmers in the way that a text-processing syster{'{ assists
writers or a symbolic algebra system assists mathematicians. A programming
environment must be Based on a programming language or family of
programming \ languages, and the design of the languages, in turn, ﬁwust be

based on a methodology. We begin by discussing strategies for programming

language design. ’ '

1.1 Strategies and Principles for Proagramming Language Design-

There are various, strategies 3__for éhe design of programming languages. *
The strategies vary in importance and ~generality, and not all of‘ them can be
applied to one language. Our discussioné of strategies are of necessity brief,
and much has been omitted. We do not, for example, discuss the roles of

syntax and orthogonality in language design. We introducg several principles
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important for languaoé design and discuss their advantag\es and\ disadvantages
both in general and with reference to existing programming languages. The
application of these principles to the design of a language helps to ensure

that the language is in fact amenable to the production of verifiable and

reliable programs. C,

1.1.1 Abstraction Mechanisms

.

The develogqment of . programming languages . and programming

methodologies used to be treated as orthogonal issues. The applioation of a

‘‘particular method to a particular problem yielded an abstract program that

could be hand-translated into any convenient langquage. Wirth, embodied a
methodology in Pascal [Jensen 1‘978], a language intended to facilitote
top-down development with stepwise refinement [Wirth 1971]. This
methodology has been widely accepted but has resnsted formalization [Vessey
1984]. The introduction of abstract data types brought method and language
still ‘closer, but in this case formalization has been accomplished while
pracsice has not yet been convincing.

The work on abstract data types focussed attention on the importance of

abstraction mechanisms in programming languages. An abstraction mechanism

serves three purposes. It supports encapsulation, that is, the separation of

specification from' implementation (information hiding [Parnas 19711); it

provides a method for naming and parametrizing dbjects; and it enables
information to be localized. The built-in abstractions of a programming
language should be based on mathematical concepts, such as functions, sets,

and relations, rather than on machine-oriented concepts, such as

2 e

vl

e

Fewer

RSN TRLN

PR e e 2 Ty g ST e Lo




e g e -

Prolog,A however, has the converse problem that functional dependencies

' ~

:.\ 14

- goto-statements, assignments, and arrays. There should be a sn\alL number of

fundamental ways in which programmers can construct tr\\eir own abstractions

i

fror:w the buil‘t-ip abstractions of the language.

All languages provide some form of function abstraction. The ubiquity of
functi&nal §bstraction in programming languages was ;rec;ognized early by
McCarthy, Landin, and Strachey [Mcﬁ-thy 1960] ~[l;.andin 1965] [Strachey
1966). McCarthy's work lead to LISP [McCarthy 1962], and Strachey's ideas,
coupled \s;ith Scott's theory of domains, lead to den;Jtatiqnal semantics [Scott
1977). APL [Iverson 1980) and LISP were the ea:')l'i‘éslt‘languages founded on
the mathematical concept of functionality."Languages such as LISP and
SASL [Turner 1976] i'llus'trate the role of higher-order functions in
pf'bgramminé. | |

Set abstraction did not appear in progrémm'iné languages unmtil

* comparatively recently, although set ‘notation has long been used for the

description of algorithms. Languages such as CIP-L [Bauer 1983], KRC
[ Turner 1981], andA SETL {Dewar 1981] provide set abstraction. A relation
can be modelled by a function whose values are sets, but this leads to
A better solution seems to be to incorporate relations

cumbersome notation.

into a language as a prjmitive construct, as in Prolog [Kowalski 1979].
cannot be. expressed in a simple way. (There is a corresponding problem
with functional dependencies ;m a relational database.) Combining functions

and relations in a single language appears to be a fruitful topic for

" investigation [Voda 1984b). .

Abstraction mechanisms must be introduced in a disciplined way. Rules

for naming and referencing objects are particularly important. “"Weé must

L)

P

L

PR

—

Bt T P R

R P A

o



Pal

1 4

. .
" -

_ . ) NN R
3 provide comprehensive management for the names introduced by abstr&;}on.

by adopting simple’ scope rules and making provision’for qualified names. -

(Early implementations of LISP were notably inadequate in this respét;t.)‘ '

The ‘'uniform referen“ principle requires that the denotation 6f‘an\

1

object should not depend.on its implementation. As an example of uniform

reference, we may consider selectors. ‘In LISP, a selector always has. the

form (F X). In Pascal, however, we might 2§e any of f{x), x[f],” x.f, op

x“.f, according to the 'repreéentatfc’m chosen. On the other hand, -a
programmer should be able to provide multiple representations. This can- be
done in "flavoured" dialects of L_ISBP and in some‘object-oriénted languages.

“

An important characteristic of a programrﬁipg languagg/ is the ease with
which problems can be represented in it;. at an ﬁpp'ropriate lev;l of
abstraction. “The "level" of a language is determined to’a large extent by its
built-in  abstractions. CIP-L, -Mary2 [Rain .1;81;], ’and SETL_ ﬂar“e
'"wide-spaectrum"- languages that support the expression of programs at -all
stages- of development,‘ from specification'to low-level, i_mperatfve code.. The

desigﬁer ‘of a wide-spectrum language has to .provide either an extremely rich

environment or -a meta-pi‘ogfamming languége that enables programmers to

construct their own task-specific environments. Although LISP is not a

wide-spectrum language, experience with LISP has shdwn t‘hat transformations
are simplified if the probler:w is expressed in \a lancjuage that can be uséd as
its own‘metala'nguage [Saqdewall 1978]; :An alternative strategy for very
high-level llanguage)s is to exclude low-level features from the -language

altogether. If the' programmer has no low-level control, the system must be

»
»

capable of making its own representation and iﬁwplementat’ion decisions.

1

Multi-level sttems provide an *\{t\e:native to wide-spectrum language

design. Berklir]g has proposed a system

ith five levels [Berkling 19&/1].
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1. Algebra, transformations, partial _evalyatioﬁ, naming, higher order

“function$) variable-free programming.

o
1

2. lambda calculus, beta-reduction, literal substitution.
3. Expressions, trees, pre-order l'representation and traversal.
4, Constructors, :atoms, lambda-variables, primitiveAfunct?ohs, definitions.

5. Stacks.- - N : v : -

)

' ‘.
Dee, the principal topic of this thesis, is also a multilevel system.

Comparing Berkling'sJ systems to Dee,. we find "that, roughly, Lj in 'Dee
corresponds to Berkling's-levels 1 and 2, L'z to levels 2, 3, and 4, and L, to

level 5. (The significance of Ly, Loye.. is explained Section 1.2.)

1.1.2 Values and Ol;jects o °

Mathematics deals with values. Values are abstractions: they cannot be
createﬂ, destroyed, ar changed. éomputers ‘cannot process values. Within
the computer, a value is represented by an object. Objects can be created,

destroyed, and chancjed. Most programming languages,  confuse values and

objects.. Maintaining a clear distinction between values and objects

-contributes to clear language design [MacL%nnan 1982]. .

' The designer of ;a programming language has the ‘choice of providing
access to computational.objects or of éoncealing them and providing instead
access only to their vglues. f\ programming language that has an assignment
operator élldws access to objects. The inclusion or exclusion of assignment,
or an equivalent operation, hgs a nun}ber of consequences concerning the
ease with which we can reéd and write programs and the ease with which

tﬁe langugge can be implemented efficiently.

/ : ’ ‘ - ' 5 \ 8
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A pure applicative language provides only wvalues. The objects
representing values ‘can be shared in an implementation [Hoare 1975].
Referential transparency and the lack of side-effects permits a wide class of

transformations and implementation optimizations. Pure applicative languages

have a seripus disadvantage, however, in that they have very limited

*
'

mechanisms for representing states. States can be passed as arguments to a

¢

function and: passed again, perhaps in modified form, to recursive calls of the

same function. States can also be simulated by cont‘inuations, but the -

-

notation is cumbersome and opaque.

Object-orieﬁted languages, such as Smalltalk [Goldberg 1983], adopt the
opposite approach. Objects, rather than their abstracted values, are visible
to the: programrﬁer who can explicitly create and destroy them.
Object-oriented languages undoubtedly provide a simpler, and perhaps more
accurate, model of the real world, but the problems of transforming and
verifying programs. written in object-oriented languages have yet to be
“studied in depth.

The usual arguments against the use of objects are based on complexity
and lack of referential transparency [Backus 1979], and those against the use
of values/arerbased on efficiency. Whatever the relat;\ive merits of these

aré} ents, there remains the fact that programmer$ need both values and

\,/bj ects.

-

1.1.3 % Semantics
)

It ‘i‘common practice to design a programming language and then .to

provide a formal description of it. The formal description is presented in

the form of a semantics for the language. There has been much debate as



=

\ ~

[

" to the relative'po.wer of various descriptive methods, and %rful" methods

have been developed‘ to describe bizarre constructions such as jumps into a
blo‘ck. ) : k

A semantics ascribes a }rwear;ing to programs. It can do this by describing
either what the program does or how it does it. Algebraic and axiomat’;c
semantics belong to t’he first category ("what"), and operational semantids
beléngs to the second category ("hoW"). Denotational semantics bridges the
gap: a denotational semantics can be as abstract or as operational as we
require. The choice of semantics affects the difficulty of describing
language features. . Features that are easy to describe operationally tend to
have straightforward, implementations. Features that are easy to describe
denotationally have pleasant mathematical properties but ar:a often inefficient
to .implement. Examples of this dichotomy include the éoto-siatement in
imperativ‘e languages and dynamic scoping and call-by-name in applicative
languages.

Ashcroft and Wadge h,ave made a strong case for the prescriptive use of

denotational semantics [Ashcroft 1982]. There is as yet no widely-used

programming language ' whose design was directed solely by denotational

‘semantics. There are, however, several languages that were designed by

constructing a semantics for operations on a particular class of denotable

objects. These languages, which include APL, LISP, SNOBOL [Griswold

1971], and ML [Gordon 1978a], provide evidence of the éffectiveness of the
method. . ) '
The principle difficulty of applying the method arises when the language

is implemented. Unlike procedural languages, these "abstract" languages do
P

“

not have natural implementations on.a von Neumann machine. We can

overcome this difficulty in either of two ways. We can devise cle\;ér,

¥
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1.1.4 Types

f

implementation techniques to map the language onto a ‘von Neumann
architecture or we can design a new kind of machine to close the "semantic

gap" between software and hardware.

Before applying an operation to an opé;and, we must erisure sthat the
operand belongs to the domain of Ehe operation. This condition is satisfied
if the operand has the appropriate type. ALGOL 68 [van Wijngaardenw'l?75]
and Pascal demonstrated the feasibility, the advantages, and some of the-
difficulties” of compile-time type checking. The concept of abstract data
types fé)llowed, but there are as yet few lapguages that support abstract data
types in a fully satisfactory way. ‘It seems natural to make the abstract
data type the unit éf modularity, but there are few examples '‘of the
successful application of this idea [Goguen 11984]. It is‘generally conceded
that type declarations are unacceptable in a language intended for interactive
use. This perception has led to languages such as ML and B [Meertens
1981], which do not require type declarations but infer types automatically.

Type checking a program is akin to proving a static property of the
program. Type inference goes furthér in the sense that, if we regard the
type of an object as an a;.;oproximation to its value, type inference is partial
evaluation. By increasing the precision of the type system we increase our
knowledge of the static properties of the program at the expense of time
spent compiling it. With a sufficiently precise type system, we can prove
termination of the program, but only at the risk of non-termination of the
compiler [Martin-Lof 1979]. The language designer must compromise

between security and compiler complexity.
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[Boom 1982] [Voda 1984a]. .

1.1.5 Transformation
There are three approaches to program correctness. One is to write a
program and_ then prove it correct; another is to develop a program and a

proof of 1its correctness concurrently; and a third is to transform a
’\

_specification into an executable program. When the third approach is used,

the transformation may be .carried out by the system, by ‘the user, or by the

\

system under the direction of the user. A variation of the second method is

to write a program that may be interpreted as either a proof of the

existence of an object or a method for determining the value of the object

' -
-

Programming by transformation is in some ways orthogonal to the other
strategies considered here; if transformation is the only method used in a

L

transformation system, verification is not required. An advantage of
transformati.on over verification is that the correctness of a transformation
needs to be proved only once; in this sense, transformations are equivalent to
proof rules. This advantage may not be of practical use, however, if the
number of transformations in the librar.y is large. The following are
desirable properties of a transformation system.
1. The system automatically selects appropriate transforn-mations from a
library.
X
2. Each transformation has applicability conditions and, if these are
satffied, the transformation preserves the correctness of the program.
3. The trans?or.mations cover a wide spectrum: from specification level to
machine code level. )

4. If distinct transformation sequences of a single program lead to

irreducible programs P and Q then P = Q.



¥

5. If P can be transformed to Q then Q is in some sense "bétter“ than P.

The fourth property is called the Church-Rosser prop?akl‘ty,‘ by analogy wit:w
reduction in the lambda calculus, and the fifth is called monotonicity.

The Church-Rosser property irnpﬁlxies a canonical representation for
programs. meay not be achievéble or even desirable. Monotonicity may
also be una’t{ainable. It is certainly possible to imag.ine situations in wl;ich a
program might get "worse" before getting "better." The advantage of
monotonicity is that it prevents an automated s;stem from looping; it is of

less importance in an interactive system.

1.1.6 ati
Notation <
A _programming language should not restrict programmers. Ideally the
programmer should enjoy the freedom of the mathematician, introducing new
notation at appropriate places. It is easier to provide syntactic freedom

than semantic freedom. One approach, used in languages such as Mary2,

allows ‘the user to introduce new syntax. Another approach, of which LISP

and Prolog are the principal examples, is to provide tools for language

processing and hence to simplify the task of embedding new languages into a

host language.

1.1.7 Summary of Requirements

Our view is that there are three factors that should influence the design
of a programming environment: a programming methodolwogy, a programming
language, and the selection of software tools t"hat constitute the environment.
Our model for methodology is "structured growth" [Sandewall 1978], derived

from experience with LISP, coupled with source transformation. Qur

10



language is designed for this mgthodology. Our principal tools, an interactive
editor, type checker, interpreter, and incremental corf\piler, are intended to

i

support the effective development of correct and efficient programs.

o

1.2 Dee N | v
Dee is”a generic term denoting the family of languages around which this
thesis "is organized. The individual languagés are called Ly, Lo)... where Ly
is a "higher level" language than L .
Dee is d family of programming languages‘intended to meet some of the
requir'e"?rﬁents stated or implied in the foregoing discussion. The nc;velty'of
Dee lies not so much in any one of its features as in their combination.
The important features of Dee include the following.
“
1. The languages of Dee are applicative , languages with referential
transparency and without side-effects.
° -
2, Dee has a simple kernel language but provides powerful abstraction
mechanisms.
3., Large programs can be built from generic modules, thus minimizing the
need for re-programming for a new applicatioﬁ.
4. The language processors use, type inference. Dee éf‘ograms are type-‘séfe
bdit need not contain type declarations. .
5. Dee is both a programming language and its own metaldnguage. In Dee,
as in LISP, programs may be manipulated as data by other programs. '

6. Dee has a simple syntax but provides parsing directives that enable

appropriate notation to be designed by the programmer.

11




1.2.1 Origins of Dee
Dee, like LISP and several other programming languages, has its origins in

the lambda calculus. It also borrows heavily from LISP,

o
’ Ll

“

Lambda Calculus

The lambda calculus [Church 1941] [Barendregt 1984] providesya ué’efui ;

foundation for a programming language for several reasons. First, functions

in the lambda calculus are defined by evalqation rules rather than by éraphs.

Second, there is a close relationship between bound lambda variables and the

"formal parameters" of programming languages. Third, the typed. z;nd untyped

lambda calculi provide theories for typed and untyped languages. Finally, the

lambda calculus can describe all computable functions. ¢
)

LISP was the first programming lanquage to be based explicitly on the .

lambda calculus. Other, more recent languages based on lambda calculus

include ISWIM [Landin 1965], GEDANKEN [Reynolds 1970], and Asp

[Nordstrom 1984].

LISP

The success of LISP seems to be due not so much to its origins in the

lambda calculus as to its other important innovations: automatic storage

management, simple syntax, a si;mgle data structure, and the equivalence of
program .and data.

Despite its advantages and popularity, LISP is inadequate as a vehicle for
expl;:ring’rﬁodern techniques of program development. LISP reveals its th/n.
early history in features such as a mixture of dynamic and -static scoping,

awkward treatment of higher order functions, and non-applicative features

Tnd e R P R aTENY




_tests. Réc_:ent dialects

S-expréssions and can be processed as data. Some of the mor

: A
introduced to simplify programming and to improve the efficierii:y;\ of
T .

interpretation. The tricks required to implement LISP efficiently show

throdgh as semantic anomalies. As.ex'a’mples of these anomalies, consider
. . 1
the dual nature of nil, which is both an atom and a list, the use of conyto

construct pairs as well as- lists, and the semantics of the various equality

of ‘LISP‘ hav? addressed some of these problems.

4

;SCHEME '[Steele 1975], for example, uses static sco;;in and provides - full

support * for higher 'order functions in a consistent way.

The price paid for the' flexibility of representatibn in LISP is lack of
secum:y. The data structures correspond to types, and a data template with
1ts selectors and constructors corresponds to an abstract data type. This
abstract da'ta type, howeve;', exnsts only in the mind of the programmer, and
the language ﬁrovide‘s no mechanims for ensuring consistency of access or
detecting the effect of a change in xmplementatlon. It is evident to the
‘careful reader of a LISP program that types are bemg used implicitly and in

A}

fact can be inferred by a simple algorithm. Inference was introduced in ML

and has subsequently been used in languageé such, as HOPE [Burstall 1980] )

and Miranda [Turger 19831 P

\

v

Comparisorl\ of Dee and LISP |

-
An important similarity beW Dee is that both languages

treat functions intensionally. Functions in LISP and Dee are represented by

recent’
LY

functional’langdages treat functions extensionally,"as indep{a dently existing
objects.
Dee is purely. applicative. Unlike LISP, in which it is possible to "escape"

from purely functional programming by using SETQ, RPLACx, and property

13
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listé, Dee ernp—loys functional languages. Some programs that can be written
easily in LISP are harder to write in Dee. They may also be less efficient.
On the other hand, we claim that program development and transformation

are easier in Dee, and a transformed Dee program may be more efficient

than a LISP version of the same program. Finally, the semantics of Dee are

simpler than the semantics of LISP.

Dee programming "style' is based on LISP. Dee does not}ermit some of
the’ freedoms of LISP that are exploited in Al programs. For example, Dee
expressions do not have side-effects. Dee is based on the observations that
a functional style promotes clarity, that symbolic processing should not be
more difficult than logic;I or numerical processing, and that a program
should not be confused by low-level considerations such as pointer
manipulation or storage ‘'management. The type system of Dee goes beyond
that of LISP by providing type inference, type checking, generic functions,
and type constructors. B ‘

Dee is strongly typed. :Compile-tirr{e type-checking enables efficient ‘code
to be generated and errors to be detected before execution.

An important advant’age of LISP is the close relationship between the
internal and external representations of programs. The kernel language of
Dee has this property, but the surface language does not. The syntax of
Dee is such that Dee programs are much less readable than LISP proérams
when written in Cambridge prefix notation.

LISP uses dynamic scoping whereas Dee uses static scoping. Static
scoping makes the interpreter less efficient but simplifies the construction of
the Dee compiler. X

LISP uses call-by-value whereas L1, the top-level language of Dee, uses

call-by-name. The practical effect of this is that some programs that do

14
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not terminate in LISP do terminate in. Dee. Strd\ctures that are conceptually

infinite can be created although only finite.hortidns ofA them can actually be

o

processed.

Dee provides more facilities for structuring data than LISP.

1.2.2 Overvie\IN of Dee

The kernel language of De_e is a language called L,. L3 is a machine
representation of LZ and for most purposes we ignore the digtinction between
Lo and L3. They are related in the same way that S-expressions and

M-expressions are related in theoretical discussions of LISP [Allen 1978, p.

o

236).

The language L, has pleasant theoretical properties closely related to the
lambda calculus. It has, however, two imeortant disadvanté'ges. First,
because of its rudimer;tany syntax, it is difficult to write useful programs in

it. Second, a naive implementation of L, would be inefficient. -

The Dee system builds on L, in two directions. The high-level language

. L] can be translated in a relatively straightforward manner into Lj;. The:

low-level languaée L4 is an imperative language produced by compiling L,.

We consider Lo to be the "canonical" level of the system. In principle,
any. language with a denotational semantics could be used as Lj;. In
practice, we anticipate the use of "diafects" of L, tailored to specific
applications,.. Similarly, there are a number of ways of implementing Lo,
including interpreting it, wﬁich renders L, unnecessaryl. The languages L.
and L, play a larger role in this thesis than L, because translation from L,
to L, is currently basedyon well-known mel;hods.

We hope to achieve Fwo things from the implementation of a Dee system.

First, Dee may turn out to be a useful environment for program

15
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development, supporting L, as its principal language. Second, and of greater

importance if Dee is viewed as a research project, a Dee system will prdvide

a framework for experimenting with techniques of current interest, such as
programming by transformation. We are also investigating the feasibility of

using Dee as a development environment for Brouwer [Boom 1982].

1.3 Organizaton of the Thesis

Various aspects of Dee and its implementation are discussed in subsequent
chapters. The description has a "middle-out‘" form. First, irf Chapter 2, we
describe t\he' qunel language, '—2- This daﬁ'iption is brief because L, is

typical of simple, functional languages.-

~

In Chapter 3 we ghow how the kernel language is extended into a .usable
programming languafge, Ll' The use of two languages in this way is
innovative and, we suggest, essential for the kind of programming
environment that we propoée. A lénguage rich enough to express progi‘am
transforrhations comfortably is not suitable as a target language in a
transformation system. '

Chapter 4 is a detailed discussion of the type system of L;. The r:ype
system is based on the polymorphic type system of ML [Milner 1978] but
also provides generic functions an_d coercion. The type system i§ not entirely
novel because others have used a ;;imilar approach [Burstall 1980] [Letschert
1984]. The emphasis in ML and these systems, hpv»}ever, seems to be on
type inference prior to interpretation. Anothe;‘ important application of t'ype'_
inference, exploited in Dee, is the t:.i'ue use of type information to generate

better compiled code than is possible within & conventional LISP-like system.
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We claim that Dee's type system provideg greater flexibility than others
without compromising security. '

Our concern in Chapter 5 is with implementation issues such as parsing,
interpreting, and compiling Dee programs. The flexibility of the type system
combined with the modular st‘ructure ‘of Dee programs presents wunusual
problems for the compiler. In a conventional modular system, changes to a
module affect only its- clients; thus the flow 'of information in "tri%kle-down"
recompilation is uni-directional. If a Dee module imports generic functions,
chan:]ing ‘it may require recompiling parts of the modules that it calls. We
propose a new technique for incremental compilation that allows for this
possibility. ‘

In Chapter 6, we address the design. of an environment for the
development of * Dee programs. Most« existing programming ernVironments
belong to one of two classes. Either they are. based on a compiled, typed
language such as Ada [Ichbiah 1983] jor Pascal, or they are based on an
untyped, interpreted language such as APL or LISP. The first kind of
environment is secure, at least ;nsofar as the type sygtem permits, but the

unit of interaction is large: a small change necessitates the recompilation of

an entire module. The second kind of environment permits a much smaller

unit of interaction -- a single expression can be evaluated -- but typicallY

provides much less security. The motivation for the design of Dee was the

goal of combining the advantages of both kinds of environment by providing

a fine level of interaction with the security of a robust type system.
In this thesis, we are broposing 4 programming language and a
programming environment. The language has not been completely

<
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. "A 'mechanician, or-a mechanical workman, is he, whose
- skill _ is, without knowledge  of mathematical
demonstration, perfectly to work and finish any sensible
work, by the mathematician principal or derivative,
demonstrated or demonstrable."

2 The Kernel Language
!Q‘The "kernel lan'guage" of Dee, Lz; is an untyped, applicative language.
The language L, is similar to"LISP in that it is based on the lambda calculus

and there is a close relatioﬁship between the internal and external

‘representations of programsg. The internal representatidn of L, is called Ls.

For most purposes, the distinction between L, ‘and L3 is unimporia;\t and we
use’ "Lz"‘ to mean both L, an;i Ls. The language L, plays the role of an
assembly language in a convgntional programming environment. Programs in
L, are mechanically generated from L) programs and consequently they do
not Eontain type errors.‘ The language Lo is therefore a suitable medium for
program transformation. ‘

A conventional assembly language is not suitable for transformat'ion, other
than trivial kinds of Qtransfon;mation such as peephole optimiz.ation, because
too many implementation decisions have already been made by the.time it/ is
created. In Dee, these decisions are deferred until Ly is compiled iﬁto Lge
The language L, provides a useful, intertmediate lével at which expressions
are referentially transparenf and a°wide variety of significant optimizing
transformations .are available. Programs in L, are representable.as typed
objgcts in Ly and s.o transformation schemata can be written in Lp.

We describe L, in three ways. First we give the syntax, then an
/

informal description of the sémantics, and finally a denotational semantics.
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2.1 Syntax’

A program in L, is an expression composed of one or more primitive

objects or sub-expressions, An expression is a constant, an identifier, an

»

" abstraction, an application, a local definition, or a conditional expression.

. tHe set of prirﬁitive functions. In a complete implementation of Dee, there
' / , . . .

x - Y

‘Constants

P a ‘

' The following objects are constants: members of the et {false,true} of
truth.values; members of the set {...,-1,0,1,...} of integers; and members of
would be other kinds of constant, such as characters, strings, and tokens, but

the constants given suffice for the purpose of this, exposition.

Identifiers *

Each identifier in a program abbreviates an expression. An identifier has

* a scope, and within that scope it is bound to a value. In Ly, identifiers are

used - as formal parameters k of functions and in local definitions as
abbreviations for expressions. When a function is invoked, the value of each.

argument is bound to the corresponding formal parameter.

. w
Abstractions

If1 X1,X9y000sX,, are identifiers and E is an expression, then

(LAMBDA (X; X ... X) E) ‘ (2.1)

¢

is an expression whose value is a function. In general, E will contain free

» ~

variables, including soms of X1yeessXpye

' -
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Application .

If EgsEqyeensEp, are gxprqssiof\;, then
(g Ep e EY (2.2)
is an expression. ' \ |
L‘;cal De_finitipqg
O If x1’x2’°":xn are idlentifiers and EU,Ei,...,En are_e;cpressions,. tl';en
(LET (X Xg e X)) (E} Ep wEy) Ep) @3
. and ‘ / ’ | .
(LETREC (X, /ﬁ«z e X)) (Ej Ep oo E) Eg) PN I
" are expressions. T \ '
/ .
" Conditional L
If Eg, Ey, and E; are expressions, theri ‘ .
o (2.5)

(IF Eg Ej Ep)

is an expression.

The conditional is included for convenience. It is not necessary, because

We tould follow the approach of the lambda calculus, defining the conditional

v

as follows.

(IF Eg €; Ep) = (Eg E) Ep)

A true = (LAMBDA (X Y) X) |
| false = (L@MBDA (X Y,)-Y) L
All l?z expressions can be constructed by ‘repeated appligatfon of these
rules. . ' . S . : . ’
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2.2 Informal Semantics

The evalu;tion rt:af expressions in L, is based on the reduction rules of the
lambda calculus. There are additional rules for constar:ts, which are not part
of the pure lambda calculus. We do not consider the possibility of errors
occurring during the execution of an Lo, program. This is because L, plays
the role of an assembly language in .the system. Programs in L, are
mechanically generated, and any required error-checking code is sulpplied by
the compiler. -

The evaluation of. a constant yields the value of the constant.

‘The evaluation of an identifier yie'lds the value to which the identifier is
currently bound. (An unboungi identifier would be an error but, by
hypothesis, this cannot occur.)

The evaluation of the abstraction (2.1) yields an object called a closure.
The closure is a triple“consisting of the parameters X1seeesXpy the expre.;xsion
E, and the current bindin.gs of the free variables of E. We write this
closure as —

(LET U (LAMBDA (Xl we Xn) E)),
in which U contains the bindings. It is an important feature of L, (and of
any other language that provides full support for high grder functions) that
thé evaluation of an abstraction yields a value that can bé bound to a
variable. Expression (2.1) may be applied to arguments Ej,...,Ep, in which
case E will be evaluated with X; bound to Ej, i o= 1,200,

The evaluation of the application (2.2) starts with the evaluation :of Eg.
" If the value obtained is a primitive function, f, the arguments EqseeesE, are

evaluated and f is .applied to them. Otherwise, the value of Eg must be a

obtained by ‘evaluating E. During the

\v
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e\}aluation of E, each Xi is evaluated and the result is bound to the

corresponding E;. The bindings of the other free variables of E are taken
J

from u.
#. The forms LET and LETREC were introduced by Landin [Landin 1965].
The evaluation of (2.3) proceeds as follows: first, the expressions Eqseenskn
are evaluated; a mew environment is created in which X; is bound to E; for i
= L,2,...,n; and, finally, the expr,ession E is evalua;ed in this environment.

The evaluatioﬁ of (2.4) is similar except that EyseeesEn are evaluated in a
dummy environment that already contains the identifiers X1peesXye  The
variables Xip,...,X[, cannot be evaluated in the dumr;1y environment, however,
80 Ej,...,E, must be function definitions. This construction allows recursive
and mutually‘ recursive functions to be defined but it does 'not provide
immediate recursion. For example, (2.6).does not terminate in Lo.

(LETREC (S) ((CONS 0 S)) (CAR S)) (2.6)

A;ll occurrences of LET and LETREC can be removed from an L, program
by _applyiné the following reductions. We write E ==> E' to denote the
reduction of E to E'. FIX is the fixpoint combinator. ) )

(LET (X1« Xp) (B}« E) Ep) ==

(LAMBDA (X ... X)) Eg)E] ... E,)
(LETREC (X;) (Ey) Ep) ==>

(LAMBDA (X3) Eg)(FIX (LAMBDA (X;) E;))
(LETREC (X; «. X)) (Ey .. E,) Eg) ==>

(LETREC (X{) e

(LETREC (X5 w. X;) (Ej . E,) Ej)
(LETREC (X3 ... X,) (Ep .. E;) Eg) )

Although these reductions do not change the values of the expressions, they

discard information that is of use to an interpreter or compiler. Moreover,

23
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it is impractical to compile expressions containing FIX. For t:.hese reasons,
we consider LET and LETREC to be irreducible forms in Lo.

The evaluation of the conditional expression (2.5) commences with the

-

evaluation of Eg. [If Eg yields true, the value of (2.5) is found by evaluating

Ey. If Eg vields false, the value of (2.5) is obtained by evaluating Eo.

re

(L

. 2.3 Formal Semantics
By design, L, has simple semantics. The important points to note are

that the semantics does not assign a meaning to an incorrect program and

" that it permits applicative order ("call by value") evaluation. We describe

¢

L, by means of a standard denotational semantics.

We use upper case letters for syntac’tic objects and domains and lower
case letters for semantic objects and do‘mains. Domains have three-letter
names and typical members have one letter names.

We require the concept of an environment for the semantics. An
environment is a partial funct;ion from identifiers (syntactic objects) to
dt;nc;table express‘ions (semantic ot;jects). Let ids(u) be the set of identifiers
bi';und by an environment u. We denote the sum of environments u; and uy
by uj+ugy, where ids(uj+ug) is the union of ids(uy) and ids(up). If an
identifier is bound in both components of a sum, its binding from the left
component is used. The notation [I->e] denotes the environment in which
the identifier [ is bound to the expression e. Since an environment is a
function, we have [I->e](I) = e and, by the rule abave:

([I-)el] + [I-)ez])(l) = ej.
Each row in a domain table contains three entries. The first, a sindle

lett;er, is a typical element of the domain. The same letter, usually

¢
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decorated with subscripts, is used in the semantic equations. The second
entry is the name of the domain and the third is an informal description of
the domain.

In Lo, any value that can be yielded by an expression can be bound to an
identifier. This fact is expressed by the domain equation

den = exp.

W
The domain den is therefore redundant, but we have retained it in the
semantics for clarity.

The semantic function K maps the syntactic object. C, denoting a
constant, to the semantic object which is the representation of the constant.
We do not specify the details of K.

v

The semantic function M maps an expression and an environment to a

.
‘value in thé semantic domain exp. Values in exp are expressions in a
lambda calculus extended with constants. All syntactic objects -- that is,
values in CON, IDE, EXP, and DEF -- are enclosed in braces {...} in the
defining equations.

The function STRICT is used to convéy the' meaning of a call-by-value
implementation. STRICT is defined by equation (2.7).

STRICT(F)(Xl e X)) = (2.7)
if L € {X},.Xp} then Lelse F(X},eXp).

The effect of including STRICT in the semantic equation for abstraction is

that the arguments of an application must have a normal form. This

corresponds to call-by-value in an implementation. If STRICT is omitted, we

- can show that if E; is converted to E; using the reduction rules of the

lambda calculus (with obvious syntactic changes) then in all environments
[Stoy 1977, pp. 158-67]
M{Eq} = M{Ey}-



Syntactic Domains

“ L°Y
-~ . C CON ' constants
1 IDE identifiers i
b E EXP , expressions

D DEF f  Jgefinitions

Semantic Domains

c con constant values

e exp expressible values C ¢ ‘
\ f fun functions

d den denotable values’

u eny environments

a Domain Equations
- - exp = con + fun
#
fun = den -> exp ' _
w
den = exp
env = IDE -> den . !

Semantic Functions
" K : CON ->%on -
M : EXP <> env -> exp

U : DEF -> env -> env

\ M{ch = k{c}
M{t}u = ufl} | -

R 4



M{(LAMBDA (1} ... 1) E)}u = - o
STRICT(lambda(xy,X2yeeeXp) M{EHLI}->%1 Tueut [ -Dx Jou)) .

M{(Eg Ej v Eplu = (M{Egli)(M{E Juyene MIE Ju)
M{(LET D B)lu = M{EHU({D}+u)

M{(LETREC D E)}u = M{E}ix(lambda v.U{D}vsu)
M{(IF Eg £y Ex)lu = if M{Eg}u = true then M(El}u else M{Ez}u
ull = el = [1->M{EN] '

U{Dg, Dylu = U{Dglu + U[D1}u '
‘ \ g
!
f : . Y . $ ;
- \ :\/.; . T
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"And our two sciences, remaining pure, and absolute, .in’

their proper terms, and in their ,own matter: to have,

and allow, only such demonstrations, . as are plain, .

. certain, universal, and of eternal verity."

3 Extending the Kernel

The language L’l is an expressive, high-level programminé language. With

the addition. of user-defined types, it attains the expredsive power of a

.typical, high-level, imperative language. The expressions of L, however, are

easily translated into Lj, a language with simple semantics. Furtheﬁnore,
the manipulation of L, programs by L; programs is straightforward because
of the simple internal representation of L, programs. Thus Lj is a language
that enables us to reason about programs and to formalize our reasoning.

The language L, is strongly typed, but the discussion of types is deferred
until Chapter 4. Consequently, this chapter makes use of a small number of

undefined concepts. Some features of Ly are not relevant to this thesis and

are mentioned briefly or not at all.

A program in L; consists of expressions and directives. We discuss '

expressions first.

3.1 Expressions
An expression in Lj can be evaluated. The evaluation yields an
equivalent expression in irreducible form or an error, or it fails to terminate.

Whereas L, has LISP-like syntax, Lj has a syntax that is closer to the

syntax of the ALGOL family of languages.

<
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3.1.1 Constants

Corresponding to each of the primitive‘ types of Dee, there is a set of

constants that evaluate to the values that they denote. In the examples we

use values of the type bool = {false,true} and of the t):pe int-= {...,-1,0,1,...}.
The full language also contains denotations for characters, strings, symbols,
and other constants. All constants have the property that both thetlr type
and their value can be inferred from their representations. In L;, primitive
functions are identifiers with global bindings, although in Lo they are
constants. This difference is necessary because primitive 'functions can be
redefined” and overloaded in Ll whereas, in the interests of efficient

implementation, they must be constants in L,.

3.1.2 Identifiers

Identifiers play a conventional role in Ly. An identifier is boupd when it
‘occurs in a formal parameter position or as the-subject of a local definition.
Other uses of an identifier must occur within the scope of a binding. If an
identifier is overloaded, several bindings may be visible from certsin parts of

the program.

Any token that is, not recognized by the parser as a special symbol is

assumed to be an’ identifier. In addition to conventional identifiers, the

following tokens would be recognized as identifiers in L;:

+ iHF | *SPEC-NAME*

o

U

3.1.3 Abstraction
If e is an expression and X{jsessXp are identifiers, then

[xl,'...,xn] >e - (3.1)

-

is an expression denoting a function. (3.1) corresponds to the L, expression

«
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(LAMBDA (X; ... X) E) | (G2

The occurrence of x; in (3.1) is a binding occurrence of xj for i = lyeeesn.

The scope of x; is the expression e.

Abstractions are anonymous functions with free variables bound in the

- context of the definition ("lexical scoping"). 1In L it is always permisaible

to repléce, for example, the successor function by the expression

(n]->n +,1.
The arrow ("->") may be omitted, although \gre use it consisteéntly in this
thesis. Thus we can also write the successor funﬂction in the form

(n]ln+ L . |
This notation is used in Combinatory Logic, where it is called "bracket
abstraction". It was also used by Church in early vers:ions'of the lambda

calculus [Seldin 1985]. o 4

3.1.4 Application
If f,eq,...48, are expressions, then
f(el,-oo,en) (3-3)

is an expression denoting the application of the function f to the arguments

€1seses€y- 1B EXpression (3.3) corresponds to the Lo expression

(F El sse En)
AN
" 3.1.5 Local Definitions
i If X]yee0%y are identifiers and e, ey,..,e, are expresssions, then
let xl=gi,...,xn=en in e - (3.4)°
and
letrec xj=e1,..yX =€ in e ; (3.5)

30

BT VA



#&’m‘ .

b

///;re expressions denoting the value of the expression e in the environment

/ " determined by the definitions xl=e18..,xn=en.‘ A let or letrec expression - .

binds the identifiers that occur in it.” These ~expre’s‘sions coi‘respond to the e
'Lz expressions ‘ N N “ | a q
(LET (X} wee Xp) (€} we Ep) E) C ;
- and S " ‘ g ot ;
(LETREC (X} oo Xg) (E] w E) E) ~© ° _ '

! The ex?t"essions . Do ) | L ) -
, e where x;=ey,..., X =8, end o .;. (3.6) _
and ' | é.
e whererec xj=ej,..., X = end A C ' ; (5.7) ‘ )
are equivalent to (3.4) and (3.5) resplec:tiviely.' o ;
v ‘ 3
3.1.6 Conditionals ) “' :
If eg, 21, and ey are expressi:ons, the;n' i

.
3

if eg then ey else ey . ., ‘ “ © (3.8)

LU S O DT

is an expression with the natural meaning. This expression may also be

written in the abbreviated form ' .

-

. eo ? el I ez. N . N v (3-9)

Both expressions correspond to the L, expression : . x

(IF Eg E; Ep). - .‘

Conditional expressions are used in the definitions of recursive functions

.

such as the familiar factorial function: ' . ! ‘

letrec fac = [n]1 ->n =071 | n * fac(n-1) R ‘ ‘
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3.2 Patterns -

Ly bhas a collection of functions called constructors chat are ‘used to
create objects,” which have a particular type and internal structure.

.Correspondingq to the constructors are recognizers and selectors [McCarthy

4

1960]. A recognizer for a type °T is a function IS-T such that {S-T(X) is
true iff X is of type T. A selector is ‘used to extract a particular field
. , S

Jfrom a compound object.

L]
A pattern is an expression composed of constructors and identifiers. A
3 ' . .
pattern may qccur at any place in an expression where an identifier is
-y - 2

g
¢
i
¥
i
t
N3
;
%
L1

ok
by

required in a b‘\ndinvg context. For 'e‘isample, suppose that we have defined

A

"type RAT of rational numbers withz constructor ‘MAKE-RAT, recognizer

IS-RAT, and selectors NUM and DEN. The funct;.qw . ‘ g
1 letn- NUM(r); d = DEN(r) in n/d : G ;
‘can be written usingf a pattern in.the following forms: "/ 3 ?
| IMAKE-RAT(] > n/d. (3.11) |
We-cgn replacé MAKE-RAT by the user-defined infix operator % (Section l ?
3.3.2), obtaining - “ ) » 1
 [n%d] => n/d. ‘ . o - (3.12_) . §

i

Patterns do not introduce any new semantics. (3.12) is transformed first

>

into (3.10) and then'to the d-2 expression
(LAMBDA (R) (LET -(N D) ((NUM Rj (DEN R)) (DIV N D))). (3.13)

| - All occurrences of selectors in. a program can be ‘replaced by ihtroducing :
- v 1. ‘
appropriate patterns.. It. is never necessary to define selecters in L; ;

programs. . ) N
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.2,2.1 The Case Expreasion? 'y S :
. : . The expression : ' Lo

2
i 2
R Kt i 515

e
4

-,
pEn it

case e of p; : ey; pp ¢ ep; ... Py ¢ ey; else eq

LT

A ‘{ . .
\\ * contains patterns pj,..,py. If the expression e is such that it could have

2
K

ML

' ’ begn constructed by p;, then e- matches p;, and thé value of the case

.

! : ) expression - is ' e; evaluated with the identifiers’ in p; bound to the

corresponding components of e. If e does not match any pattern, the "value
: o«

of the. case expression is ep,

Case expressions are frequently used to discriminate values of “union

't):pes. Suppose that we have defined the type NUMBER as the union of Int

] ; and RAT with constructms‘
- : INT-NUM: Int ->° NUMBER : E
and . . :
RAT-NUM: RAT -> "“NUMBER. : o,
‘ ‘ The following expression retufns the integer component of a value of 't.ype’ jg
v NUMBER: o a « | . '
- BN case u of ' , | :

, - | _INT-NUMG) ¢ §; /
‘ - - RAT-NUM(n%d) : n/d; A RPN
. i

else error('Incorrect type'). °

This corresponds to the following 'f.z expression:
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(IF (IS-INT U)
(INT W) L - T -
(IF (IS-RAT U) | |
(LET (ND) - - -
To(um RATU) -
(DEN (RAT L)) ) . =

(DV N D)) o
- (ERROR "Incorrect type") ) ).

i " N -
(:! + . .
2
N . -~
. ’ N
- I

33 Directives.
In addition to expressions, :an L, program .may contain directives that
affect the environment in which expressions are evaluated. Directives fall -
into thx;‘ee classes: pqrser' directives control the translation of L; into the
’ ithex‘nai tree representation; environment directives define partiél functions
.tfrom'tokens to values; aﬁd global definitions introduce new objects into the °
global enyironment. 'In the first two cases, the purpose and implementation
of a directive is similar to defining a property in a LISP system. The

difference in Dee is that properties are static and must be established during

initialization. An L, expression can access a property value but cannot alter

&

it.

. 0
3.3.1 Scope of Directives

* When a directive §is pracessed, the environment changes. Expressions
following the directive are evaluated in the new environment. The effect .of

this rule is that, within a module, declarations must be appropriately ordered,
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' 3.3.2 Parser Direptives

and during an interactive session, -directives become

have been entered.

The Dee parser recognizes the special tokens

are treated as identifiers.

()L 1 =, 57

. The parser directive

< let x = infix(f,m,n); . .

’

defines a binary- infix_ operator, x, with left

¢ .

precgdence n. The effect of (3.15) is that the infix xbressioni

Bl X 32
is transformed to
f(el ,BZ) .

The expression ~

el'X1 82 X2 93, 4
in, which x; and x; are infix operators with left
precedence rp(x;), will be parsed as

el Xl (ez X2 33) :
if rp(x;) < Ip(x9) and otherwise as

(el Xl ez) Xz 63.

3.3.3 Global Deﬁnitions
The forms
. let‘x1=al, seey anan;
‘and

lptrec‘xl=al, seey Xn=8nj

.‘/ : »
' - 35

f (3.14). . All other tokens

(3.14)

~ (3.15)

receden:ice m and right

precedence Ip(x;) and right
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introduce new values X1seeesXy iNto the ‘global environment. The definitions
(3.16) and (3.17) have the same effect as
let X1=81, ey Xp=3p in €
and
letrec x;=a,, «13%n=8n in e
if we think of "e" as being the rest of the current module ‘or the rest of the

' —

interactive session. - . _

3.4. Input and Output

‘Input and output facilities are provided by streams [Lan_din ‘1965]. A .
stream is a lazily evaluated infinite list. ”

An input stream appears to the program as' a list of characters
("character directed input") or as a-list of tokens (“token directed input").
The type tok is a standard type: its values are valid Dee tokens., The
lexical analyzer splits the incoming character string into tokens and passes
these to the program. By default, the rules used by the lexical an;ls)'ger are
the éame as those used for Lj. The lexical analyzer is table-driven,
however, and its tables can be modified by directives.

An output stream rnay consist‘of characters, tokens, or arbitrary dpta‘
structures. In Dee, as in LISP, there is a default external representation for
every data type: the generic filnction SHOW construct's.'" the éxternal

representation of any object given to it. Problem-specific external

representations can be obtained by overloading SHOW.

'
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3.5 M.odules

A group of decla}ations may be collected together in a module. The
effect of the directive

import M

in which M is a module name, is similar to the effect of processing the
declarations within M. The difference is that a module does not necessarily
reveal all of the objects declared within it. The following modu‘i'e,introduces
into the environment the type RAT of rational numbers.
module rational : ) >

type RAT = int * int;

let MAKE-RAT = constructor(RAT);

let % = infix(MAKE-RAT,20,30);

let PLUS =[a % b,c % dl->a*d+c *b%b *d, -

TIMES

[a%b,c%d]->a*c%b*d,

SHOW = [a % b] -> format(a/g,"%",b/q)

where g = GCD(a,b);
export %, PLus; TIMES, SHOW i
end rational
The type \RAT is represented by/ the Cartesian product of two ints. The
function MAKE-RAT, defined wusing the system function "constructor",
constn‘mts a fationai number from two integers. A client of the ‘Amodule
constructs a rational -number using the binary infix operator % The
expression 4%6, for example, evaluates to the rational <4,6>. This
constructor is used a.;. a pattern in the definitions of the functions PLUS and
TIMES. These functions overload the pr_imitive integer functions PLUS and

TIMES. Since the infix openﬂtors + and * are associated with the names

5 3
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"ﬁLUS" and "TIMES" in the global environment,they can be used to add and
multiply rationals as wéll. ,

The function SHOW displays or prints a rational number. When displaying
a value of a user-defined .type, the system uses an applicable definition of
éHOW if one exists, otherwise it uses a default representation. The ability
of the system to display an object .of any type, whether or not the
programmer has defined a formatting function for it, is extremely useful
during program development. |

The names exported by this module are declared in an export directive.
These names provide the only means by which a client can constru(;t and use
rational numbers.

The abbreviafion of MAKE-RAT to % illustrates a defect of L) that h59
yet to be solved. We would like to define a constructor for RAT that yielris
a rational in lowest terms. For example, we use the function GCD (greatest
common denominator) in (3.18).

MAKE-LOW = [m,n] -> MAKE-RAT(m/g,n/g) . (3.18)
where g = GCD(m,n). ]

We can defin%,- % to be the infix form of MAKE-LOW, but if we do, n%d is
not a paétern and could not be used in (3.12).

Identifiers imported from a module may be renamed by the importer.
For example, we could write -

import rational[%,ADD,MUL,SHOW]
The identifiers ADD and MUL become local synonyms for PLUS and TIMES.

This avoids the need for qualified names, but it is not clear whether this is

a betfer device in practice.

o
|




3.6 Error Handling

In the current version of Ly, errors are handled in an unsophisticated

way. If a partial primitive function receives an argument outside its domain,
u

the program terminates with an error message. This mechanism is used to

handle division by zero, for example. The programmer can use the same

|

mechanism by passing a string to the primitive function ERROR. When
ERROR(S) is evaluated, the program terminates and returns the value of S.
We expect that later versions of Dee will incorporate a mechanism that

allows errors detected at a low level to be trapped at a higher level without

terminating the program. The effects of a mechanism of this kind on the

usefulness of Dee, and the details of its implementation, have not yet been
. .

explored.

3.7 Syntactic ‘Variants

It is relatively straightforward to design dialects of L, that are suitable

for other applications. For some, purposes, for example, the notation

Tf(x) =e . (3.18)

for function definition is preferable to
f=[xl->e (3.19)
y This is a simple syntactic transformatior.\.‘ Note, however, that the notation
of (3.19) is still useful 1‘01‘ anonymous functigns.
For transformations of the type introduced by Burstall and Darlington

[Burstall 1977], the definition of a function as a set of equations is useful.

For example, a function that computes the le?Eth of a list might be written:

len(nil) = O (3.20)

len(x.y) = 1 + len(y)

39

\ ’

FEEE

o

e

IEmENTY s st o

S xRl At -

R




e n g

\

The difficulty in transforming equations of this kind into Ly is the -

introduction of approriate recognizers and inverse functions. For examplé,
(3.20) should be transforrhed to

len = [s] ~> null(s) 70 | ...
rather than .

len = [s]->s =nil 70 ... .
An equation of the form

fg(x)) = .. ’ (3.21)
corresponds to a definition of the form :

f = [x'] 2 e g7 Hx) e \
Thus (3.21) is only acceptable if g"1 can be derived b)} the trénsformat}on
system.

We have_ also considered the practicality of a syntax for L; in which all
expressions are constructed from prefix operators, ‘infix operators, and
operands. Abstractions and applications, for example, would have the forms

X]geeesXpy +> © N

and

f @ el,...,en ) w :

respectively. (The éymbol "+>", borrowed from category theory, was

" sy gested for this purpose by H. Boom [Boom 1984].) A preliminary

investigation suggests that the resulting dialect is less readable. .Either many
levels of precedence would be required, as in ALGOL 60 [Naur 1963] or C
[Harbison 1984], or all operators would ‘have the same precedence, with
evaluation proceeding from left to right, as in Mary2, or from right to left,

as in APL.
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3.8 Equality in Dee , '- '

The equality predicate in L1 is represented by the polymorphic primitive

function EGiUAL. Atomic objecfs are "EQUAL" if they have the same bit -

representation, whether or not they have the same address. Structured
objects are "EQUAL" if they have the same type, and hence the same
structure, and have "EQUAL" leaves. .

This definition of equality contrasts with typical LISP systems, which
provide several equality predicates. For example, COMMON LISP [Steele
1984] has EQ, EQL, EQUAL, and} EQUALP. The various predicates
corfespond to different implémentations of the test for equality. The choice
between them is often based on;\ the programmer's knowledge of the
implementation. For example, if (EQ X Y) yields T, then (EQUAL X Y)
-certainly yields T because EQ compares addresses. The converse is not true
because objects may have different addresses but the same value.

The Dee definition is a compromise between convenience and precision.
It is convenient because it simplifies programming and transformation. The

intended meaning of equality in Dee is equality of abstract values. Thus

"equal” in Dee corresponds most closely to "EQUAL" in COMMON LISP. The

. expression EQUAL(X,Y) in Dee will fail -to terminate (or will cause stack

overflow) if X and Y are isomorphic, cyclic structures. This is not a serious
pt.‘oblern because the user cannot create cyclic structures in a purely
applicative language. Nevertheless, the run-time environment of Dee
contains cyclic strhcﬁures,;énd primitive functions provide access to them.

A more serious problem is equality of functions. Since equality of

" functions is undecidable in principle, the best solution is to define the

function “'equal" in such a way that no two functions are equal. Dee ducks

‘

this issue by implementing "equal" in the obvious way: atomic values are .

T 41
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Yequal" if they have the same value; structures are "equal" if they are
isomorphic and have "equal" leaves. Consequently, if the evaluation of

EQUAL(F,G) yields true, then F and G are extensionally equal (F(X) = G(X)

for all x), but if the evaluation of EQUAL(F,G) yields false, F and G may

o;' may not be extensionally equal. For example, if we have defined-

f=[M]->n*n-1
g=[mM]->m*m-1
h=[h]l->(C+1) *(n-1)

then no two of f, g, and h are EQUAL. - ' “
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. declarations are permitted but not required.

"Dee program is a form of assertion.

"In mathematical reasoning, a probable argurﬁent, is
nothing regarded: nor yet the testimony of sense, any
wit, credited: but only a perfect demonstration, of
truths certain, necessary, and invincible: universally and
necessarily concluded: is allowed as sufficient for an
argument exactly and purely mathematical." '

4 Types

&

In strongly-typed languages, type declarations are required by the

compiler. In untyped languages, types are present but implicit. In.Dee, type

Thus a type declaration in a
The compiler checks that type

information provided by the programmer is consistent with the information

that it has inferred, and it may exploit additional precision provided by the
- "

programmer. In this chapter, we describe the type structure and the type

inference algorithm of Dee. 9 ‘

.
’

4.1 The Role of Types ’ . : |

Four important attributes of a computational object are its name, type,
location, e;nd value. An object posseases different combinations of attributes
at different times, depending on both the language and the current form of
the program. In a typed, compiled language, each object possesses a name
and a type. ;n the soux"ce code, a location in the compiled code, and a value
.during exacutiqn of the program. In an untyped, interpreted language, ea_ch

object possesses a name in the source code, a type, a location, and a value

)nnn,.n-Hlﬂ)'n;nup;,.,”""
por
e

ey
¥
)

. *’“’*v’%"'igj"_;fd 5

- SBAY TRASTIWR bt e
S R i R Yol

T g e

e LTINS AR % L AT e s

- —F



during interpretation. There are, of course, many variations of these simple
paradigms; the important issue is the time at which names are bound to
their attributes.

s

It is a useful rule of thumb that early binding provides efficiency and

that late binding provides flexibility. The binding of a variable to an

address, for example, occurs at different times in different languages. In
machine code, it is determined at coding time; in assembly language or

FORTRAN, it is determined at linkage time; in ALGOL 60, it is determined

" at block activation time; and in LISP, it is determined when SETQ ig

evaluated.

Types and values are handled in different ways. An object always has a
type, and the question is whether the type is part of the representation of.
the object. In a typed, compile:j language, the representation of an object is
an entry in the symbol téble: the type is part of the representation. In the"
compiled code, the type no longer appears explicitly because the compiler
has ensured that there are no typegerrors. In an untyped language, type
errors can be detected only if ob}ects cérry their types around with thgm.~
-

4.1.1 Requirements

The primary requirem’er.\ts‘ fo‘r the type discipline of Dee are that type
errors should be detected by the system and that type declarations should be
optional. Type errors may be detected during interpretation, compilation, or

execution of compiled code. For convenience, ‘errors should be detected at

the earliest possible opportunity. An additional reason for preferring

compile-time error detection is the overhead incurred by postponing error

checking until run-time. .

2
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Othér desirable features that a type discipline might ‘provide are
polymorphic functions, generic functions, and coercion. A polymorphic
function accepts arguments of. an unlimited number of different types: for

example, LISP's CAR selects the first component of a list of objects of any

’

type. A generic function is actually ‘several functions that share a name: we

say that the name of a generic function is overloaded. For 'example, in
many languages, "+" is a generic function that may be used to add both

integers and floating point numbers. The distinction is important for

. implementation because the same code can be used for every instance of a

polymorphic function, but different code is required for instances of a

generic function, the appropriate code depending on the types of the

arguments. . . ’a ;

Coercion is the implicit conyversion of a value from one type to another.-

Coercion may requif‘e a change of representation, as when int is coerced to

real, or it may ﬁot, as in char to byte.

The requirements may be summarized as follows.

> -

1. All type errors should be detected during interpretation or compilatioq.
2. Type declarations should be permitted but not required.
3. .The type discipline should provide polymorphic functions, generic

functions, and coercion.

. . . I

‘When we read a program written in an untyped language, such as, LISP or

4.1.2‘ Meeting the Requirements

APL, we attempt to deduce the types that the programmer intended but did

not state explicitly,. We do this because type information helps us to

- n
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' v
.'understend the program. This ing,u‘itive’ form of type inference was
formalized by Hindley fpr Combinatory Logic and hence for the lambda
calculus1 tHipdl\e9 1969]. The key result is that if type annotations are
removed from a well-fprmed term in t.he lambda calculus, the principal type

of the expression can be inferred from the untyped expressxon. This result

» was first applied to a programmmg language by Mllner [Milner 1978). Since

Mllneg published hxs‘paper, other type: disciplines have ‘been. proposed [Coppo

19807 [Reynolde 1981] [MacQueen 1982] [Holmaﬁ‘om 1983] [Coppo 1983]
tMeerteqe 1983] ‘[Letschert 1984]. We describe theb type discipline of Dee ]
and- then compare it to other disciplines. T

The requlrements of Dee can be met by an algorithm that can: (1) infer r ]

. the type of an expression; (2) check that, if declared types are present, they ® 3
-are compatible with inferred types; (3) resolVe overloading; and (4) insert 3
appropriete coerpions. - ~

Type checking is performed during the transiation from Lj; to Lj;. Each
object-in an L, ‘proogram“ r;as a type that Is either explicit or inferred by the

' . dystem. ,Objecfs in an Ly prpgram are known to have correct types, but the . ,,J
types are not fepresented explicitly. | | 'y

- ) o ; . o 3

4.2 Preliminaries '

‘ In this section, we provide a foundation for the discussion of types by :,.
defining a sublanguage of Ll, ; term language for types, and the concepts f
peceésaﬁ for type inferencet :
¢ ..a
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4.2.1 A Sublanguage for the Discussion of Types

For khe discussion. of types, we consider a language' that is a subset of

amount of detailed work but offers no new insights. The main differences

other forms are omitted.

and E, are both T. We use concatenation to denote application, writing fx

for f(x). Some of the-examples use features of the full language such

Y RIS £ g P R SO e e e ALY A1 o

4
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if Eg then E; else Ej’

‘infix binary operators.

An expression in thef sublanguage has one of the following forms.

<

L

s !
3

] A constant; .
- 2. A va\’riable.
, 3. An abstraction, [X] -> E.
“ 4. An application, EyEp. )
*5. A let form, let X = E; in éz.
’ form - p -

T

. letrec -X'= k4 I"\ E;

have been t;'ansformed to

. let X = FIX([X] -> E}) in Ep.

47

The conditional expression

-~

Li.. Applying the type disciplin’e to the full language requires a considerable

between the full language and the sublanguage are that functions have

exactly one argument and that forms that are merely sugared versions of

is correctly typedt and !‘\as' type T if Eg has ty;‘:e bool“and the types of E;

L)

For‘the purposes of type ‘in_ferenc"e, we assume that expressions of the

“%
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4.2.2 The Type Sublanguage \ !

The type sublanguage consists of terms constructed according to the

s

folloyving rules.

1)
1. A primitive type is a term. - : S

2. A type variable is a term. .
., ’ A

3. If Tis a term, (WT is a term. - . " __g/

4. I Tis a term, #T) is a term. *. / ‘

5. If T; and T, are terms, (1;1) > (Tp) is a term.. o

6. [If T1,T9ye..y T, are terms, (.Tl,) + (To)+ we + (Tr;) is a term.
7. If T1,T9eey T are terms, (Ty) * (sz * ... % (T,) is a term.
8. If T1,T9..., Ty, are disjoint terms, (T1) & (Tp) & ... & (T)) is a term.

We assume the existgnce of the primitive types bool, with values.

. {false,t'rue'}, and int, with values {...,-1,0,1,...}. We use u,v,.. to denote type

variables and T,Tl,'f'z,... to denote terms in the type language. In the term

(W)T, (U) is a quantifier that binds occurrences of the type variable u.

#(T) is the type whose values are sequences (or tuples) of values of type ‘

T. It is introduced as a convenience in order to'avoid the necessity of a

recursive type definition for an intuitively simple concept.

(T1)->(Ty) is the type of functions from T; to To. (Tl):o-(Tz)+...+(Tn) is
the discriminated union of the types T;,T;,...,Tp. (Tl)*(T'z)*...*(Tn) is the
Cartesian product of the types Ty,To,e.., Ty,

(T))&(Ty)&...&(T,) is the cor:junction' of the types T1yT2seeesTpe The

.syr;\bol "&" and the name "type conjunction" were introduced by Coppo

[Coppo 1983]; Qur type conjunction is sligljtiy different from Coppo's,

_however, because In our system the type (Tl)&(fz) may not  exist.
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Intuitively, type conjunctions correspond to overloaded names. If we use
PLUS to add both integers and rationals, its type is L

(int*int->int) & (RAT*RAT->RAT)

In" Dee, a type conjunction cannot be formed if the components of the

conjunction have values in common. The purpose of this rule is to ensure
that lt is always possible to’resolve an overloaded name at compile-time.
The operators + and * are, associative. We assume ‘an order of
precedence amongst the unary operator # and the opera.tors <>y +, *, and *:
# (highest), ¥, ,;’ -, & ((lowest).(' When there is no ambiguity, we omit

parentheses. For example, we write int->bool rather than (int)->(bool).

. If T is a term containing free and bound vériables, t!]g,rl\r}a'{resh(T) is a

. ) /
new type term which is the same as T except thaé\gey/* j@riables are

substituted ‘for the bound variables. For example, v' is new in

¥

5 refrésh((v)u,*v) ==> (v u*v'.

4.2.3 Eiplicit Ty;;e Declaration -
Types may be declared explicitly in Dee pr;Jgrams in two ways. First, a
new type may be introduced by a-declaration of the—form ‘
type type-id = type-term;

For example:

type RAT = int * int;

. The left side of this definition is a type identifier, and the right -side is a

. » .
term in the type sublanguage that specifies the representation of the type.
As a notational convention, we write primitive types in lower-case bold

letters and user-defined. typés in upper-case letters.

[

49

~
Py




ey

4

Fiecursive types are introduced by typerec. Values of. the lfype
CHAQTREE are binary trees with a character at each node. Nil is an
implicit niladic constructor for every recursive type. ‘.For example: |

typerec CHARTREE = char * CHARTREE * CHARTREE;

An identifier may be given a type wherever it occurs in a binding

context. There are three binding contexts. The identifier I is bound in each

of the expressions
1] -> g, : .
let I = E; in Eyp,
l?\trec I‘ = Ey in Ep.

There are oth}gi' binding occurrences in L; because pattern matching may

accur, but fﬁey all reduce to one of the forms above. In any of these

contexts, -the identifier I may be replaced by I:T, where T is a term in the

type sublanguage. -
— . N~ ’

L

4.2.4 Substitutions and Unification
A substitution is a list of pairs. ' Each pair consists of a type variable

and a type term. For example, the substitution

[u=#int, v=bool] - ‘ (4.1)

denotes the substitUtion that replaces u by‘#int'and v by bool. "I" denotes

the empty substitution, equivalent to the identity function.

A substitﬁtion, S, may be -applied to a term E; we write S(E) or SE.

Applicatiort congists of replacing occurrences of the variables in the term by

the terms specified by the substitutions For example, applying the

substitution (4.1) to the term u*v yields the term #int*bool. Abplying'the

empty substitution I to a term leaves the term unchanged.
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Two substitutions, S; and Sp, may be composed. We use juxtaposition to
denote composition. For any substitutions, S; and S;, and any term,-‘E:
Y (51S52)(E) = S1(S,(E)).

. N
A unifier for terms El and E, is a substitution U such that

|
»

U(El) = U(Ep).

For example, the terms #int->v and u->bool are unified by the substitutionﬂ :

:

(4.7) because

[u=ffint, v=bool](#int -> v) = idfintg> bool

and
#int -> bool.

.[d:#int, v=bool](u -> bool)

4.2.5 Bases

A basis is a set of bindings of identifiers to types. A basis is analogous

to the symbol table of a conventional interpreter, which is a list of bindings

of identifiers to \aalues. The basis

¢

{X:u, F:int->bool}
represents tryinformation ti}&t X has type u and F has type int->bool.

2

The types of standard identifiers are passed to a top-down fype inference

procedure in a_ speqiai basis called the standard basis. The standard basis’

has the form ‘ -y

{no’ CAR:#U-SQ, csey PLUS:int*int‘)int, o’vo}

A basis can also be regérded as a partial junctio(n from identi}iera to .

¢ —

types. If

\'/ B = {Xlle,...,Xn:Tn}, . “

then B(X;) =.T;. If X does not occur in 'B, then B(X) faiis.
There are two ways of addirig a binding, X:T, to a basis B. The first,

" denoted by B++X:T, corresponds to conventional scope rules. The second,

+

. i

.
e T
-

Rk
s
«1‘(« .
e

SRR et 4 L AR I L T s e
, . £ y
\

) O A 4

.
T S et b ot S e Tl




denoted by Bé&&X:T, allows variables to be overloaded. The semantics of

these operations are defined by the following rules.

1. The extension B' = B++X:T' can always be formed and B'(X) = T,
whether or not B contains a binding for X.

2, B doés not contain a binding for X, then B' = B&&X:T' can be formed
.and BY(X) = T

3. If B contains a binding X:T and T&T' is a well-formed type, then B' =
B&&X:T' can be formed and B'(X) = T&T'.

4, If B contains a binding X:T and T&T' is not a well-formed type, then B!

=~B&&X:T' cannot be formed.

4.2.6 A Partial Order for Types X

The i:ype of .an object tells us something about its value. A type that
allows a small number of values provides more information than a-.typé that
allows a large number of values. We formalize this observation by defining
a partial order on types. The partial order is ~ue’.eful because it makes

L4
- precise the idea of finding mare information about a type during analysis of

0

rthe program, and it permits the introduction of coercion in a systematic
way.

There are a number of situations in which the conversion of a value from
one type to another i‘s always a safe operation. If .a conversion of this kind
is introduced implicitly by the system, it is called a coercion. Coercion
from a type, T, to a type, T', is safe if the set of values of T is a subset
of the set-of values of T'.

Suppose that in a certain context a value of type T' is required and a

value of type T is supplied. If the substitution is acceptable, we write T<T"'.
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. 4, 5, and 6, assume that T,<T;' and TKT5'

If we consider types as sets of values, then T<T' says that T is a subset of
T'. The relation < is cleerly reflexive and transitive. If T<T' and 'T'S_T,

then the types T and T' /45)' be idenfified. Thus < is a partial order. The

" rules for determining the situations in which T<T' are given below. In rules

\{ .
1. We define the set of conversions allowed between primitive types.
between int and bool, but in a  full

There are no coercions

implementation of Dee there might be conversions such as char to

string.

' 2. If Tis any type and u is a type variable, then T < us

3. Ti&T2 < T; and T1&Tp < To
4 Ty'>Ty < T1ToN |

5. Ty*Tp & TP'*Ty

6. T1*Ty < Ty and T1*Ty < Tp.

7. Ty+Tp < Tq'+To

8. ,Tl £ Ti+Tg and T < ;T1+T2.

Rule 6 says that a Cartesian product may be coerced to a product with

fewer components, and Rule 8 says that a value may be coerced to a union

that contains the type of the value. Rule 8 is used in ALGOL 68; rule 6 is

"its dual. Both rules are discussed byi Reynolds [Reynolds 1981].

-

TS T

L T A P T T

o i e




R e e L

S}

4.3 Type Inference

The type discipline of Dee consists of axioms and inference rules that
enable us to assign a type to some of the éxpressions in the language. .The
result of applying the inference rules to an expression may be a simple type,

a type scheme, or failure. The effectiveness of a type inference algorithm

©

depends on an appropriate choice of rules.
For example, the constant 3 has a simple type, int. The type of (X1 >
X is the type scheme, (u)u->u. Some expressions, such as XX, may. have a

type according to one set of rules but not according to another set. Other

expressions, such as

([XT->XX)([X]->XX) , ]
may not have a type under any reasonable set of inference rules.

The following properties are desirable in a type discipline.

1. Theediscipline should be sound: if a type T is assigned to an e>‘<pression
E, the evaluation of E’does in fact yield a value of type T

2, The discipline should be complete: if E, and E, ére exppessions with the
same denotation, the same types should be assigned to them.

3. It should be possible to infer types by an efficient a196 ithme.

4, The language should be referentially trangparent.

-

Although the precise theoretical limitations are apparently unknown, it
seems to be difficult’ to design a type discipline that satisfies all -of the

requirements. Thus a practical systermnust compromise {Leivant 1983].

." < | / 4 s r
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Well-typed Expressions

°

\Let.E be an expression, B Bp a basis, and T be a type. The statement
BIE:T means that E is a well-typed expression with type T, and B is a basis
that assigns a type to each free variab'le of E. If E is well-typed, has type
T, and has no free variables, we write |E:T.

The following 'list contains the axioms (Rl and R2) and inference rules

(R3 through R8) used in the type s;stem of Dee.

R1 If K is a constant of type T ‘and B is a basis, then BIK:T.

R2 If X is a variable and B(X) = T, t‘hen BIX:T. '

R3 If BIE:T&...&Tp, then BIE:T; for i = 1,.,n.

R4 If B|T1:E, ey and Bl'i'n:E, and T)&..&T, is a well-formed ;ype, then
BIE:T) &...&Tp,.

R5 If BIE:Ty and T} < Ty, then BIE:T,.

R6 If (B++X:T()IE:T,, then BI([X]->E):T;->To.

R7 If BIE:T->T, and BIE:T}, then BI(EjE;):To.

R8 If BIE}:T) and (B&&X:T))IEp:Ty, then Bi(let X = Ej in E5):To.

: { . ' ‘

-

4.4 Tybe Inference Algorithms

Type .inference algorithms are most naturally defined by recursive

‘ decomposition of expressions. An algorithm is a case expression with one

.

arm_for each of the basic expression forms. Type inference algorithms can
be conveniently classified by the parameters that are passed in recursive
calls [Leivant 1983]. If a basis for the free variables of the expression is

passed, we call the algorithm "top-down". If tﬁe basis is not passed, we call

the algorithm "bottom-up". .

55 « .

e
S

R

=
B

RSN “@é

PN S

A Ik i e L R g s




R e
*

We can apply all of the type inference rules except orfe’ in a:'

straidhtforward way. Rule R7, for application, is the interesting case. When
we have B|E;:T;->T, and BIE:T), we apply the rule trivially to obtain
BIElEZ:Tf;_. More often, however, the domain type of Ey is not identical to
the argument ‘type, and we must match the.types.
In the general case, we must infer the type of EjE, from
EsT11-Ty12 & e & T1-2Tin2
and - ;
EpiT'yy & e & T' 10 4

- The algorithm must find all values of i and j for |which there is a

-

substitution, ?, such that . o \
STy = s(ry). o

For each S, we have ElEZ’S(TiZ)' In general, there will\ be several such

types, and thus the type of the application is itself conjuncti&.,

Since several matches may occur at each node of the expression tree,
type inference requires exponential time in the general case. Thus the
method has two disadvantages. First, it is likely to be impractically slow.
Second, it does not uniquely determine the type of a function at the’ point of
its application.

These disadvantages are avoided in various ways in existing languages.
Most languages do not support generic functions at all, and the problems do
not arise. In Ada, a function may be generic, but its arguments must be
simple types determined at compile time. {,Maryz, parameters and
arguments are 'matched one at a time without backtracking. Thus the
exponential complexity of the generél algorithm is avoided at the cost of

imposing a discipline on the user. This discipline is apparently acceptable in

practice."
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The restriction that we make in Dee i.s that the type of an application
may not be conjunctive. The, effecty \of .this restriction are: (1) the time
required for type inference is reason;able in most cases, although the worst
case is still expanential in the size of the expression;‘ and (2') the type of a
generic function is instantiated at the point of application, which provideé

. L]
useful information to the compiler.

This restriction does not reduce the language to the level of, say, Ada.

&
Polymorphic functions can be passed to functions, and\ functions can yield
both polymorphic and generic functions as their values.

There is another interesting feature of (ihe type inference, rules. When a

the basis is
\

variable is bound by abstraction (Ré) or local definition (R8

extended by the addition of the bound variable and its type. Ré6 uses et

f -

to extend the basis and R8 uses "&&". This requires explanation because,
formally, i:he expression
let X =E) In E 5 (6.2)

is equivalent to

-

([X1->E,)(E}) / ' (4.3)

—
-

and it would appear that the .type t;f (4.3) could be-inferred from rules R6
and R7. This observation is correct, 'aqd it is the route that Coppo follows
[(Coppo 1980]. It has the important theoretical advantage that an expression
is well-formed iff it is strongly normalizable. The disadvantage for practical
purposes is that there cannot be an algorithm for type inference.

© There are two aspects of the special treatment of local definitions. The
firét: is the so-called "let anomaly” and it applies to Milner's Algorithm W;
the second is particular to D;e. In both systems, the expression

(11->n (4.4)
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cannot be typed because the terms u and 'u->u, in which u occurs free,
cannot be unified. Consequently,
(11 -> maAX1 -> X) ’ (4.5)

cannot be typed either. Expression"(&.é) can be typed, however, because I
rec;aivgs the type scheme (u)u->u which can be instantiated to either (v)v->v
or (w)(w=>w)->(w->w).
| let 1=[X]->Xinll (4.6)

The second aspect, particular toADee, of the treatment of let is the usé
of "&&" to extend the basis. The effect of this is that a let binding ma;y
overload an identifier but a lambda binding cannot. The motivation for this
distinction, as in Milner's algorithm, is practical. The overloading of lambda
variables is undesirable because the value of a function may be affected by
textually remote definitions.
4.4.1 Top-down Type Inference

Algorithm FT ("find types"). is an extended version of Milner's Algorithm
W [Milner 1978]. It is passed an expréssion, E; a substitutipnl list, U; and a
basis, B. In contrast to Milner's algorithm, whiéh returns a unique type for
an expressibn, Algorithm FT may return a'conjuncﬁive type. The equation

<5,T> = FT(B, E)

means "the result of applyihg FT to a basis, B, and an expression, E, is a
substitution S and a type T". The equation is valid if FT succeeds.

In the description below, there are two operations that may cause failure.

The first .is the function MATCH used in Case 4. If Tl and TZ are terms

and MATCH(Tl,TZ) succeeds, giving a substitution U, then UT; = UT,. If

there is no such. substi;utlon, types cannot be matched, and the algorithm
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. be overloaded by X:T'.

s 7
. e
. . .
fails. The second possible cause of failure’ is basis extension in Case 5:

evaluating B&&X:T' will cause faifure if B contains an entry X:T that cannot
o )

We describe the type inference algorithm by cases on the structure of E.

I is the identity substitution.

1. The expression is a congtant', K, of type T:a
return .<I’ “I">. ‘
2. The expression is a variablé, X, and B(X) =.T: “
return <I, refresh(T)>. ‘ ' o, >
3. The expression is an ‘abstraction [X] -> E:
let <5,Tp> = FT(B-§+X:T1, E) where 'l"l is a new type variable;
return <S, S5T}->Tp>. l
4. The, expression is an application, E:].EZ’
et <S,Tp = FT(B, Ep)s L L
let <5,,Ty> = FT(B, Ep); s
let U = MATCH(§2T1, T7->T3) where T3 is a new type variable;
return <US,S;, UT3>. o | )
5. The ‘expression is a local definition, léf‘)@&/él in Eg: ‘ . |
let <5,,T)> = FT(B, E); : /

let <S,,To> FT(B&&X:SITI, E2)s

return <S;5;, Tp).

)

4.4.2 Soundness of the Type Inference Algorithm | o

i
Theqrem

If <S,T> = FT(B,E), then SBIE:T.

v
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Proof

.

The proof is by induction on the structure of E. The first two cases

" constitute the basis of the induction.

o
s

Suppose the- expression is a constant, K, of type T. ]’hpp from the
algorithm, <I,T> = FT({B, K) and i?follows immediately that BIK.:T.
Suppose that the expression is a variable, X, and B(X) T. Then, from
the algonthm, <I,T> = FT(B, X) and it follows lmmedlately that B[X:T.
Suppose that the expression is an abstraction, [X]->E. Then 3
<5,ST1->Ty> = FT(B, [X1->E) | .
and, frorﬁ the aléorithm, oL
<5, Tp> = FT(B_++X:T1‘, E). )
By the.induc;ion hypothesis, it follows that
S(BH‘-X:Ti)IEL:'l'.Z and so SB++X:ST;|E:To.
Conseqtiénr:ly, by rule RS, ’
" SBI(IXI-E)ST)->T,.

ﬁppose that the expressnon is an apphcatlon, ElEz. From the algorithm,

L3

-

we have

"<$1,T1> = FT(B, Ep) and SpTp> = FT(S;8, Ep).
By the mductlon hypothesis, we can deduce

SlBlEl:Tl and 52518|E2:T2. . R
Also, since US;T) = U(T2->T3), we have , ‘

. <US,5.,UTs> = FT(B, E;Ep). - : .

Consequently, ’

UstlBlEI:USZTl Sy °

and hence = . <

US,S1BIE :U(T2->T3) o (4.7)

2
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and,

U52513|522UT2- . (4.8)

a

Finally, applying rule R7 to (4.7) and (4.8), we have 4 -

U52518|E1E2:UT3. . : ~ .

Suppose that the-expression is a local definition, let X = E; in Ej. ‘ﬁrom'

@

the algorithm we have : N

<$1,T1> = FT(B, E) ’
- and hence, by the induction hypothesis, ' ‘ o )
$1BIE: T, - .
which we may rewrite as ' [ ] “
$,51BIE:5,T;. . 3 T\ %)
Also from the algorithm, > B ,
¢S, To> = FT(B&&X:S;T); Ep) Q
and, by the ‘induction hypothesis, - R ,
S(B&&X:5, T1)IEp: T -
.or . ‘ ’ . | |
| S5pBAAXiSSITYEp Ty, | | | " (4.10)
Hence, applying rule R8 to (4.9) and (4.10), we have )
stlBl(let X = Ey ln Ez).Tz e © Q.ED.
o . ”

»

The proof is similar to Milner's proof of Algbrlthm W. The difference

between the algorithms is confinqd ‘to the mathoda for basis extension and

- type inference for dpplications (Case 4). In both instances, the function

. . . .
MATCH replaces unification. This does not affect the soundness of the

’

algorithm and MATCF,I does not even appear in t.he proof. It affects the
/

cogpleteness i the algorithm, however, becausg mdtching may succeed

[ s . o

where unification fails.
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4.4.3 Completeness of the Type Iryozsrence Algorithm~ -

-

4

o 1

The converse of the preceding-theorem is not valid: there are v:/ell-ty’ped

expressions whose types cannot be inferred from the algori‘th'm.‘ /For; ’

example, as explained above, the algorithm fails for expressions (4.4) and

(4.5). ' ' :

4.4.4 Type Matching

MATCH is a relation on type expressions. In general, gwen two type

expressions, T and T9y MATCH returns a set of substitutions: “
MATCH(T].’TZ) ==> {Sl’.oo,sn}o . ' ’ ./'ia ) )
R ~ ' o
Each substitution, S;, satisfies thefollowing corMition: if S; = I, then ,IS.TZ;

otherwise there is a .type T; such that T; ='5;T; ;‘\SiTz. ‘ R
The set of substitutions may be empty, in which case tl;e types cannot-be
matched. It may corltai-n one sub_étitution, in which case the r’r;atch is
unique. It may contain moré than one substitution, in“ which ca;e the matchl
is amtziguous. The following exar;wples illustrate these possibilities.
. MATCH(int,bool) ==> {}, s ,,f
" MATCH(bool,bool) ==> {1}, |
" MATCH(bool&int,int) ==> {I},
MATCH(u->int,bool->v) ==> {[usboolv=intl}, -~ - -
MATCH(int—->ir!t&bool-3>bobl,u->u) ==> {[u=int], [u=bo61]}.' -

=

It is important to, distinguish between the first example, in which the

match fails, and the second and thlrd examples, in which the match aucceeds

with the xden\ity ‘substitution. The third example corresponds, to t.he choice

of type int for an expression wi:h ‘the over.loaded type int&bo The fourth

,.x;"
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-example illustrates .a match.between two polymorphic functions, of wh{éh theé

filrst has a polymorphic pafameter type and the second has a polymorphic
result.-type. The ‘last'\ example shﬁws what happens when a generic type is
matched with a polymorphic type: th éubstitu'tions are possible. '

The detailed description of MATCH follows. We assume th'ai ‘MATCH Ais

called with type expressions T& and Tp, and we describe the algorithm- by

A

cases. ) ' .

We use some special notation in the algorithm. A type expression is

ﬁa,tomic if it is a primitive type or a type variable. If T is a conjunctiu‘é,‘i

T

type, it is assumed to be 'Tlll&..'.&Tlm. If T, is a conjunctive type, it is
assufpe‘d to be Ty)&...&Ty,. The union of the sets MATCH(Ty15T2)s eery
MATCH(T; ,,T2) .lis written [MATCH(T‘]_i,TZ), i=1,...,m]. " The 'union of the
sets MATCH(Ty,T91), . .MATCH(Tl,Tz‘n) is  written [MATQH(TI,sz),

* j=lyees,nt]. "The gsymbol "U" in Case B denotes.set union. .

The tests must be performed in the order given. We deseribe only-

¥

successful matches. If the cor‘;ditiqns are not satisfied, the match fails. The

partial order, £, is required only for 'bl‘imitive types; its values for composite
types are computed by the algorithm. We do not give rules for union and

’

product types because they.sre obvious extensions of tt)‘e\rules given.

1. T, is a type variable: ' v
» return MAICfH-VAR(Tl,T‘z).
2. To is a type variable:

return MA'TCHIVAR(Tz,Tl). : ;‘ . ‘eI»‘

3. Tl and Top are bott; atomics

if Tl -<. T2 . . ' . . ~
then (3.1) return {1},
t, . o ' V‘
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else (3.2) return {}.
4. Ty is atomic:
if T, is conjunctive

then (4.1) return [MATCH(T,,T5:), j 1,...,mj,
! 1125/ J ..

. else (4.2) return {F .
5. To s atomics \
if Ty is conjunctj\;e

1,..-,m],

then (5.1) return [MATCH(Ty;,T,), 3
else’ (5.2) return {}.

6. Tj is conjunctive: . \

if T, is'conjunctive '

then-(6.1) returﬁ [MATCH(Tli,TZj), i= l,:..,m, j = lyeeesnly
else (6.2) return [MATCH(TH,TZ); i = lyeeeymle

77 T, is Eonjunctive:

| return [MATCH(Tl,sz), j = lyenle

‘8. Ty =Ty => Typ and Ty = Top => Top:

. RES := {};

, for each R in MATCH(T,Ty)) do . 4+

RES 1= RES U MATCH(RT{,RT;2);

retu/m/ﬁt-:s. ' ] '

>

@

The alg'orithl;n MATCH-VAR is described below. It is called with two

4arguments:. v, a type variable, and T, .a type expression. I

K ] ' .. . -

1. If v occurs in T, return {}. .
:2. If T = Tl&...&Tn, retum {[\Y=Tl],n0,= [V=Tn]}° . -

3. Otherwise; return {[v=+]}.' - B ' %

e 2
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" straightforward but long.

p

R

. i
¢ ‘ﬁ
. ' *a
In order to establish the correctness of MATCH, we nheed a precise’ f
statement of what it does. -~ - i
' » . : .
Theorem .
: N PR~ o 3
If S is a member of the set of -substitutions returned by ¥
MATCH(Tl,Tz), then thefe is a type T such that T .= 5Ty = sz. If ;
) b
(.
MATCH(Tl,TZ) returns the empty set, no such type exists. ;
o ;
. = ;
Proof , ;1
The proof .is by structural induction on the type terms. There are four, ;
kinds of type term: primitive type, type variable, conjunctive type, and
: . - ;
function type, and hence sixteen cases. For each case, we must prove that ‘

the algorithm identifies thé case correctly, returns the appropriate

substitution if it exists, and fails otherwise. The proof, which we omit, is

.

P -
Basis Extension Revisited - ' 7

.

If B is a besis for which B(X) = T,, the basis b' ‘= B&&X:T, exists iff

MATCH(Tl,TZ) fails. Intuitively, B' cannot b‘e formed if there are any -

— »

. . 3
values that could have both of the types T, and T;. As we have 'seen, this E

is precisely the condition that MATCH detects. - 4 \
' CN : \ t
[ ~ |

4.4.5 Bottom-up Type Inference ‘ ' ‘ : ‘ i

Leivant introduced 'a new type algorithm and surveyed various methods of
polyrﬁorphic t)fpe inference [Leivant 1983]. His ‘ Algorithm V performs

bottom-up .typé inference: given an expression E, V Teturns a multi-basis B .
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and a type T. If ‘<B,T> = V(E), then BIE:T. (A multi-basis differs from a

1l

basis in that there may be multiple “entries for a particular identifier.)

Algorithm V has 'several advantages over Milner's Algorithm W, and an

extended version of it was used in an early version of Dee.
The advantage of Algorithm V is that it is conceptually simpler than

Algorithm W because it separates the tasks of inferring types and applying a
type discipiine. It works well if standard functions are treated as constants
with known types. )

In Dee, ’sfandarc‘i funétions can be overloaded. Thus ~standard functions
are not constants and must be treated as free variables by Algorithm V.
The muiti-basis re.turned by the algorithm tends to be large even in quite
simple cases because it contains an entry for each occurrence of each
standard function. For this reason, we have found Algorithm V to be
unsuitable for Dee.

e

4.4.6 . Other Approaches | . /

Coppo introduced the idea of type conjunction [Coppo 1985]. Typg
conjunction in Dee is close enough to Coppo's ‘that we use the same
terminology and notation, but his method does not require generic type
variables. The theoretical advantage of Coppo's type discipline is that an
expression can be typed iff it is strongly normalizable. The disadvantage for
practical purposes is that type inference is undecidable. By reéaining generic
type variables in Dee, we can _guarantee that MATCH terminates, but only at

the .expense of not being able .to assign a type to some normalizable

expressions.
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The language OHOPE.[Bursta'll 1980] pg:;Vides type inference for variables
with simple types but requires type declarations for fun;:tions. Polymorpﬁic
functions are provided and can be defined by the programmer. )

Holmstrom defines a high level polygmrphic language and a lawer level
monomorphic languagd [Holmstrom 1983]. The higher level language contains

macros that expand into expressions in the lower level langdage. This -

approach av;ids the "let anomaly" because the lower level language is
monomorphic. The expansion of II leads .to Il'y in which I and I' are distinct
nggcf. (4.4)). We can compare these languages to L and L, in Dee.
The difference is thl_at' polymorphiér;\ is retaéned in Lo fo; ,c?:mpatibility
between interpretatior} and con{pilation., ‘
The type system of B is elegant and powerful. The system performs typb
inference incrementally, and the algorithm is sound and complete [Meertens
1983]). The language B, however, does not pravide higher-order functions.
The type system of Letschert is similar to ours [Letschert 1984].
Letschert's system has' a different approach to typé conjunction, although the
motivation is similar. The type inference ahjorithm is bottom-up rather than

top-down. This increases the opportunities for parallelism but, as we have

noted, may yield results in a form less suitable for compilation.

4.5 Examples

We relax the restrictions that we have employed for the forral
development. = The examples make use of functions with more than one
argument. The standard basis co’ptains the names "+" and "#' used in De® to

denote the functions that add and‘multiply integers.

st
25

) o - %, o
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'Sup'apose that we have introduced a new type, RAT, for rational numbers,

with constructor MAKE-RAT. We can extend "+' to add rationals’ by

~ defining .
4 = [UV] -> let MAKE-RAT(NU,DU) = U, (4.11)
’ " MAKE-RAT(NV,DV) = V
S in MAKE-RAT(NU*DV + NV*DU, DU*DV).

The type-inference algorithh assigns the type RAT*RAT->RAT to the

function being dafinsd\-}\g "+" within the body of the definition has type

int*int->int. We express the type of "+" within the scope of this definition

- ’

. as a conjunc'tive\type:
. -int*int-»}ﬁt & RAT*RAT->RAT. | N (R V)

Within the s'cgpe‘of definition (4.11), an lexprqs,sioﬁ of the form X+Y will.be
accepted if X and‘—Y are eitl{\er both integers\ or both rationals.

We can overload "+ still further. The‘ defined function adds
. corresponding components two lists. It could be used, for example, in a

module that provides facilitiea; 'for polynomial manipulation. PF and PR

stand for "first of P" and- "rest of P"; similarly for Q. The symbol "."

denotes infix CONS.

+ = [P,@] -> case P of | - (6.13)

‘NILO 2 Q5 -
PF.PR : case Q of
NIL() = P;
QF.QR : PF+@F.PR+GR

.

-

The type inference:- algorithm determines that the "+" in PR+Q'R is. a
recursive invocation of the function being-defined. The "+" in PF+PQ, on
the other hand, is not a recursive invocation; it has the generic type given

in (412). The type of the function defined in (4.13) is

&
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. annotated listing of the program.

Hntegint->int & HRATHIRAT->ERAT | | § |
and the type of "+" within the scope of this dafinidtion is |

intHint->int & RAT*RAT->RAT ‘

& HotHFint->#nt & #RAT*#?AT-)#RAT.

A program that-makes extensive use of overloading and contains no type

" declarations may be unreadable. Type inference and overloading are powerful

‘

tools that can be misused. We do not believe, however, that a language .

v

designer can prevent users from writing bad programs. We hope to
ameliorate the problem of unreadability in two ways. First, although Dee

-does not require type declarations, it does permit, them. Thus "a

conscientious programmer can provide as, many type declarations as necessary -

to make a program intelligible to other programmers. Second, since the

‘compiler has to infer types anyway, it can include the inferred types in an

It is evident that the compiler wil] make extensive use of both space and

time. Global program analysis is required for efficient code generation, and
<

the number of names visible within a scope “is larger than in a conventional

system. If overloading is used extensively, type lists become long and time

is spent checking inappropriate combinations. We do not know yet whether

this will turn-out to be a ser‘ilg_us problem in practice, but in the meantime

ks

we are investigating ways of improving the efficiency of the type inference

- ’
1

- algorithm,

69

a

P W e laml, e waers gFt N oed




Crame s

4.6 Extensions of the Type System

We have specifically excluded some type constructs from Dee. In this

" gection, we briefly describe some of these constructs and explain their

omission.

«

4.6.1 Subtypes .
A type T; is a subtype of a type T, if every value of T; is also a value
of T,. In Pascal, for example, the type 1,.100 is a subtype of the type

In the presence of subtypes it is not possible to infer the type of a

integer.

constant by examining its value.

)

In its present fo;m, Dee does not allow subtypes. This restriction is not
necessary, however, .in the presence of coercion. We can assign to each
constant the "smallest" type possible and coerce it to a "larger" typ;a when
necessary. As a practical restriction, the compiler should use only types

defined within the current scope; it should not invent new types of its own.

For example, in the presence .of types 0..5, 10..15, and.int, the type of 4+14

should be int rather than 10..20.

4.6.2 Types as Parameters
~

- In Dee, a type variable, like any other, can be abstracted, and in this
sense Dee provides types as parameters. The processing of paéametric types,
however, is completed before the program -is interpreted or compiled. No

computation with types is performed at run-time.
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4.6.3 Parametrized Types

» A type may be parametrized with another [;arameter or with a constant,
For example, the bounds of an array type can.be congidered as parametrizing
the array type. As mentioned above, Dee allows a type to have type
param.eters but not numeric parameters. A consequencé of this is that all
Dee structures are either fixed in- size or conceptually infinite. This
restriction makes some styles of programm}ng ineffici(ent but simplifies the
semantics of the language and, in many cases, thé task of writing programs.

~

4.6.4 ‘ Enumerated Types

There is really no reason for excluding enumerated types in Dee, and they

may eyentually be added to the language. There were problems in Pascal
with the scope of the identifiers of an enumerated type [Welsh 1977] .but

these seem to have been resolved in more recent languages such as Euclid

[Lampson 1977] and Adla..
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"Thus, in sundry ways you may furnish yourself with
such strange and profitable matter: which, long has
been wished for. And though it be naturally done and
mechanically, yet it has ,a good demonstration

méthematical."

5 Implementation

Experience with LISP systems has shown that an interactive environment

should provide facilities for both interpreting and compiling prograrﬁs. In

general, interpreted functjons and compiled functions should be able to call
n . -
one, another.

Several conditiens must be' satisf'ied if interpretatior; and compilation are
to coexist. The most important of these is that the interpreted code ar,\d
the compiled code must both execute within the same run-time environment.
In particular, the system:must ensure that a function is not applied to an
argument of the wrong t;pe. In an interpreted environment, functions
u;ually check the type of their arguments before using them. In a compiled"
envirqnment, types are usually checked at compile-time and not during
execution. Our décision to maintain a run-time environment precludes the:
use, of graph-reduction‘ ﬁ\ethods of compilation, a.t least during program
development. | )

LISP cc;ntains a number of generic funciions, such as CONS, that can be
-used by the interpréter or the campiler withoyt type 'check.ing. For a
function such as PLUS, which requires integer arguments, a naive compiler"
can simply invoke the interpreter's PLUS, thereby performing a‘. run-time

type-check. A more sophisticated compiler may be ab!é to recognize that an
. argument must be of a particular type and to generate in-line codethat is

© -
~
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more efficient. For example, ADD1 always returns an integer and so TIMES
car; be compiled in-line in the expression (TiMES 5 (ADD1 N)). Modern
LISP compilers use an ad hoc form of type inference to identify such
- situations and produce numeric code comparable to that of a good FORTRAN
compiler [Fateman 1973]. ‘

In this chapter, we describe techniques required for a complete
implementation of Dee. ‘Since a complete impiementation doeé‘ 'notlyet exist,
however, we indicate th:e statu; of the existing implementation at appropriate

places in the text.

5.1. Dee‘ Processing

The interpretation 6r 'compqirlation‘ ;)f‘ an.Ll program requires several
phases of analysis. We describe these as if they follow one ano't.her, but in
practice a certain amount of overlapping is both p()ssinbl“e‘ and desi'rable. The
phases are summarinzed in the following list and descﬁbed fully in the

. ren‘iaining sections of' this chapter.

Parse . C J ' ' : .
The result of parsing an L; program is a tree with LISP-like structure.
_Apply -basic transformatiqna'
Special forms of L; and expressions containing pattern‘é are converted ﬁto'
Lo f‘orms. |
Perfarm type infarancé ‘
‘Each variable is‘t.agged with ié‘s principal type.

., . Label generic functions
. ply

-

—
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©-*” interactively or automatically. . ~ .

Each applied function now has a unique type and the interpreter or
compiler can effect the appropriate instantiation.

Apply user transformations

Transformations coded by the user may be applied at this point, either

o

Perform call-by-value analysis
The default method of passing parameters is "by name".” For efficiency,
this is converted to call—b‘y-value wherever possible.

Select representations °
The default representation of a value is a pointer to its location, as in

LISP. For some applications, . such as numerical computation, the value

itself provides faster access. S

Apply final transformations

* L

These transformations simplify code. generation,
Generate code : . .

Three steps involve/vprogram transformations. _ The d'\vision of
transformations is important because transformations. must be applied at
appropriate levels. We anticipate that in practice, user transformations will

coranprjse“' several levels. When the foufth step, labelling generic, functions,

has been completed, the program can be interpreted.

5.1.1 Parsing . ’ -

The result of parsing a program is a direéfégd acyclic graph that is

*

. represented by a suitable data structure. One of the non-terminals of the

1

grammar is "infix-expression": an expression that contains operands, prefix

‘'
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operatom,{a d mfxx operators. The parser is required to process infix" ‘ 4
e operator directives by modlfymg its tables dynamically to’ ensure\vthat { ’ %
0ccurrences/ yof newly defmed o;;erators are parsed correctly. The easiest ;
- way to sdtisfy :tbhis requirement .is to 'write an ad hoc recursive deqcent ) ?
- parser wllth a proé:qdur'e that pars:as infix expressions ai:cording‘ Eo the latest ‘i
" available informatior.\. ;]'hifa ‘is/’t‘he method used in the gurrént implementation ' :;
of Dee. "I’h'e“ parser was ﬁéﬁ:tructed by an “LL(“l)‘parser' ggnerator; * ‘ ?
:" There “are advgntagesﬁto/’ ‘using an LA&LR(l) “or LR(1) 'p'arsar generator j
, ’[Aho‘ 1977]. In principle, tﬁe behaviour of an LR(1) parser can be’ modifi:_d (“
P Af. by - parser dir‘ectives just .as ‘the behavioux: of an LL(1) parser can be |

‘. modified. In practice, however, the relation between LR(1) parsing tables oy

T /" and the bahaviour of the parsér is ‘much® more complicated’ than the relation -

A P s v

#
between the recursive procedures of an LL(1) parser and the behaviour of .
. th? pgraer./ Consequently, we .have not attempted to cona{truct\ an LR(1) -4 ‘;
e parser for Dee. ‘ ‘ ) .
€, , Y
"The Dee parser uses’ LISMIkB property lists to rep!‘es&nt Lhe relatiqn_ -
) .
between operatqrs and functipn names. An operator is either unary prefix or
" “h . ’
‘ binary infix. The effect of the directive ‘ ’ ) o
\ ’ : ' L . . i
A - 0 .lnﬂx‘(DlFF,luo,IOS*; >y “’ ’ ! (5.1) . ’ -
L " is to give the identlfier "-" the properties BINOP, NAME = DIFF, LEFTPREC 1
L SN . v ik
= 100, and R!GH#’RE‘C = 105. This enahles the parser to translate an ;
- ~ expression such as. { ~ ‘ v / g
7 ‘ * ’ . . : B .- !
) ‘@’.a-b-c / . el ) (5.2) - :
\5 ‘ . a - h ) ’ v B . ) - 4
to either .. 3 ] BT p
: ' DIFF (DIFF(a,b),c) ", (5.3)
Y . l 4
» . or, In’practice, dlrectly to the Ls form) (
R } ’ . « LS
i " (DIFF (DIFF A B) C). A 54 -
. * . < . . TN
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'The directive (5 1) also assigns the property C;P = "M tg the symbol DIF’F,

thereby enabling the pretty-printer to reconstruct the form (5.2).*

-~
It is not possible to associate an operator wnth several functions, or vice

&

versa. Prefix and. infix operators are syntactic devnges that are unrelated to

the semantics of polymorphism and overloadlng I

l N
The con{xbination of a simple grammar with prov:sion for user-defined

operators hbs been used in functlonal languages such  as HOPE Other

languages allow the user more or ‘less to design a language suited to a’

particular problem ] domain. MeryZ, for example, has a general method for

defining operator syntax but all operators have the "same precedence.‘

'R Meple [Voda 198}\] provides a simple and elegant\nethod for arbxtrﬁ?‘y

syntactnc“’ig f@ion based on the relatiouship beylveen patterns T trees.
A

»

( ' x

kS

.5.1,2 Basic Transformations <7

Several simple transformations are applied to an L, program to reduce',it

to an L, ‘program. Expressions - that contain ‘patterns are replaced- by
. .o . - » '

equivalent expressions tfat contain se_iectors, }'ecognizersa ang new vaifhbles.

¢+ A

Cass  expressions are ’transformed  to ﬁ expressions. An Rortant basic

transformation corresponds to beta-reduction in the lembda calculus. The

" general rule for beta-reduction is, in the notation of Chapter a-

CLhIx] - e)(a) >;x_a]e. I . (5.5)

i’ v
»

Beta-reduction is not usually applied in this form because it is not likely to

improve the efﬂclency of the prorgem. In general, x will occur more than

! .
oncetin e and Ithe substitution will increase the .amount of computation .

requlred.ﬁ Spetial cases' of beta-reduction, however, subsume a number of-.
L, . . a -

conventional cempiler optimizations.
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We can sometimes omit a parameter and the- corresponding argument from

an applicat‘i’gn. The following transformation is valid if x; does not occur in

L1

e.
' ([xl,...,xi,...,gn] => e)(8]yeensBjyeenydpy) "‘? (5.6)

==> ([x,e.. eXp] > €)(appee wenytp). - %
If x; occurs 6qu once in e, it is reaéonable to make the substituEion at

1

¢ compile-times

([xpyeenrXjaeserXn] =2 caeXieee)(@]peeesBlpecertn) (5.7)

« ==|> ([Xyene seasXy] <> cosjuees)(Bgene consy)- .

v;ﬂ

Transformations (5.6) "‘and (5.7) look somewhat similar. /' The difference

begween them is that in (5.6), x; does not occur, in e, and in (5.7), x; occurs .

exactly once in e. Finally, as a result of these trapformations, it may
(

happerns -‘tpat we eliminate all of the parameters and arguments from an

\ applicatidn. In this case, we can apply the transformation

([1-> e). ==> e. (5.8)

An applicatiog f(al,...,an) may be replaced by its value if the value of

~+«+ ,each argument is known at compile time. .Th'is is true even if f is a |

user-devﬁned function. The donditional exbression' p=>xly can be simplified to
Thdse transformations ar.e‘ familiar and have been used in recent I(LISP
compilers [B'rooks'l982]. The lang’uatje Ll’ how(ever, provides a"particularly

favorable environment for employing them .because it has a small number of

TN

_ spegial for;nh, ﬁorr\;\'al .order semantics, and no ,side-effects. The,

ansformd®ions described "a,re peéformed by'.the current implementation of

n "
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* 5%1.3 Type Inference

The system maintains a current environment. This is a data structure

containing the -name, type, and value 'pf each accessible object. (These

objects are usually, but not necessarily, functions.) Initially, the current

- environment contains entnes for the standard functlons, including operators

for the pnrmnge types and polymorphic operators for the basic data

structures. When a declaration is processed, an entry for the new object is

added to the current environment.
When a new expression is encountered, it is subjected to type inference.

During type inference, each occurrence of each identifier in the expression is

replaced by a pa‘ir congisting of the identifier and its type. Ifan identifier
is overloaded, it may be associated with several different types in a single
"'

expression. Usiﬁg this decorated form of the expression, the interpreter or

A

compiler can select appropriate instantiations ’of overloaded identifiei‘/s -and

AT

-

appropriate representations for data.
- The current implementation does not attembt incremental typey inference.

If an expression is chanéec}, the type inference alborithm is applied to the

N

entire ‘new expression. ‘ . ' ) ,
e . . :

/’Iépe,inferen’ce may fail. As we have seen in Chapter 4, there, are two
. . ~
possible causes of failure. After examining f(x), the system may complain
~ . - b
that "f:T; cannot be applied to x::l'z".' This error occurs either because f is

not a function or because x is not in its domain.
is an invalid attempt,K to overioad an identifier. This occurs durini; type ,
7

r4

inference of

lot X = 8

if the new type ofx, infemd from_ the type of a, conflicts with tha type or
¥ - .
typea of x in the surrounding environment. ' , \

”

- . @

The other cause of error ’
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S5.1.4 Use.r Transformathns

At this stage,. the program has call-by-name semantics and is referentlally

transparent. This is an appropriate point at which to apply problem-isp'ecific' ‘

e
transformations.
£

“The Ly program is represented by a data structure that can be expressed

in L. Transformations can be expressed in Ly by case expressions in which
the case labels are pattérns. Thus L; is an approporiate me.tqlanguage fo_r
;coding tranaformati@é: and we do not;’éeed a further level of nc;tation.
L -, . N
5.1.5 Call-by-value Analysis
- The language L£ has call{-by-;iﬁw (CBN) sen:\anti\ca whereas Lé has
call-by-value (CBV) semantics. " This discrepancy must  be resolved during
compilation. It is performeéd as th:;%ast step before code generation -because

this allows all other transformations to assume normal order  evaluation.

Mycroft has formulated a theory and a practical technique for cbn\;ertimj‘

from call-by-need to CBV [Mycrogft 1980). This suffices for Dee because
cal'l-by-ne'ed is merely an optimization of CBN. It is unnecessary to discuss
the t"heory in detail here, but we mention the basic idea. The import}/'at
point is that a program ma;' terminate under CBN but not under CBV. (The

reason. for this is that arguments may be evaluated under CBV even if their

.Vialues. do not contribute to the final value of the expression.” If an

argument of an application necessarily . terminates, the argument can be

passed by value. Conversely, if a parameter of a function is necessarily

evaluated when the funr.Jtlon is invoked, the corresponding argument can be
passed by value. We 'can assume - that primitive funcfions térmirihie and,

yvith the eiception of a few‘ special forms such as if, that they evaluate all

# Yo ' ' " »
N . . ’ . "9 : "
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their arquments. With this information, most calls by name can be safely

o

’(

converted to CBV. Calls that cannot be converted to CBV are implemented |

by passing closures.

5

5.1.6 Representation Selection

-

Type inference provides most but not a'll" of the information i'equired for -
the chgice of an appropriate representation. Suppose that we have obtained
the types n:int and y:#int by type inference in the expression ,

CONS(2 * (n + 1), y). . | S

P

Clearly, the appropriate representation for n is an -integer value. The

/

operators * and + J‘:an be applied to 'integers, 9ieldlng an integer result.

. Type inference instantiates CONS tohave type int*fint=dint. This Is
. 7 ' .

misleading, hpwever, because the polymorphic functioy/ CONS requires its

fitst argument to be a pointer to a value, rather than the value itself.. The

-

code for 2*(n+l) must therefore be followed by code fo create a cell for

4

that value and to return a pointer to it.

s

The foregoing example illustrates the general case. Type iAference can
be. relied upon for ‘the choice o% representation- except when a polymorphic
function 'is instantiated, %n which case the arguments and result must be
pointers. This restriction does not apply to generic functions Pecause the

appropriate generic instanti'ation has already been chosen by the time that

v

codesis generated. ' °

5..7 Final Transformations g

[ ’ 6 ‘4
Our approach is similar to that used in the RABBIT compller for SCHEME
[Steele 1978] and subsequently in other LISP compilers [Biooks 1982]. There

are a number of simple transformations that can be applied to lambda

N
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"The duplicated evaluation of B  wastes space, especially if B is a large

‘ ¢

)

. " ’
expressions to improve the quality of the generated code. The correctness

of these transformationa is assured by lambda calculus semantics.

~ _~As a simple example of a transforrhation that can be 'carried  out at this

stage, we consider the expression '
e |

» ifP&Q . . . (5.9)
then A .
7
alse B.

Since P and Q have no side-effects, we can short-circuiﬁ‘f\e evaluation of

P&Q. Expressi;:n (5.9) transforms to:

. . ' H
then :
t
_ if Q then A else B ‘ A ’ .
. ‘ i N . ‘::‘
alse B.
(’p

expreasion. In practice, we would not generate (5.110) but woﬁld transfarm

(5.9) directly to (5.11° -
| let X =B In ‘ - . (5.11)
it P ) - | | | a
then If Gethen A elss X | | N
else X. ‘

From (5.11), we can generate‘the machine code that we would expect from

a compiler. The important point is that the transformations are applied to
the source code rather than during: 'code generation. Source-level
transformations may interact; and improve the resulting code in ways that

would not be feasible if they were postponed until. code-generation.

~




e —

.

5.1.8 Code Generation

We can generate ci?de either— for a conventional von Neumann machin.e or
for a macr.\ine‘ with a novel architecture. There have been a number of
proposals for graph-reduction machines for the .execution of functionai
languages. An important advarrtage of graph reduction is that nr)rmal order

reduction is achieved by default [Turner 1979]. Graph-reduction machines

have also been proposed by Augustsson and Johnsson [Augustsson 1982)

[Johnsson 1983). Current graph-reduction compilers are slow, and it is F\ot'

easy to see w interhreted and éorppiled functions could call. one another in

an environment based on graph reduction. - Very few graph-reductionk

machipes have actually been built, and iriitially it would be necessary write a
simulator for .an abal:ract machine and generate code for it. ]

. The current Dee compiler generates machine cole for a conventional
processor. This enables intepreted and compiled functions to coexist and

A
allows the system to use the same run-time environment for each.

5.2 Pretty-printing

As far as possible, parsing should be a minimal trangformation that can .

be reversed. The reverse transformation is éalled W"pretty-printing",
"unparsing”", or "back-trahslation". In LISP,'preEty-grinting is straightforward
because 'E‘Qere ‘is a8 close relation between S-expressxons and their external
representation. In Dee, it is. not always possnble to restore all of the

3
‘syntactic sugar in exactly the way that it was given. For example, the

\
expressions .
letx=aine -

and ° e

-~ . . , s.

-
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e wherp x \
have the samregi;lternal representation. The pretty-printer wi'll use or;e'form
or the ot:‘her for this expréssibn, dependirfg on options seiected by the
programmer. |

The parser and pretty-brinter use the same tables for procesging infix

expressions. This ensures that the pretty-printer inserts paremtheses only

" when necessary and always uses the most recently defined infix operéto}s.

3

= 53 The ﬁun-tlme Environment

/

/

The key to designing a system in which the user can choose freely

between interpretation and compilation is the run-time environment.
‘
Accordingly, we describe the environment before we discuss interpretation

—_— e

and compilation.
3

The oldest and simplest form of environment for a LISP-like language is

an association list, or a-list. Each comfoon t of the list contains a name

and a value. When a new scope is entered, local bindings are pushed onto

the front of the a-list.’ When the interpreter needs the current binding of a

variable, it search‘e‘:i\‘the a-list from the front. Thds local biﬁdingé hide - -

other bindings of .the same variai;le in enclosing scopes, in accordance witrg-

~
N
normal scope rules. -

“

\

In its original implementation, the a-list envirc;nment provides dynamic
scopiﬁg: ‘non-,-local variables are evaluated in the environment of the caller.
We can use the same data structure for lexical scoping by modifying the
interpreter sa that the evaluation of an abstraction ’yialds" a- closure
coptaining the current environment. When]l a closure is applied, its body is

evaluated in thé_ environment of the closure.
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This form of environment allows a function to yield a function as a

value. We can define higher-order functions such as COMP, which returns

-the functional corﬁposition of its arguments, and TWICE, which returns a

function that applies a given function twice.
let COMP = [f,g] -> [x] -> f(g(x)),
TWICE = [f] => [x] -> f(f(x)); \

For example, the \application of TWICE to SUCC yi'elds a function that adds -

T2 to its argument.

TWICE(SUCC) ==> [x] -> succ(succ(x))
The admission of higher-order functions into the language precludes the use

of a stack for the environment because, in.general, the envifonment is a

~

tree. - ,
We can make a further simple refinelment to the structure of the

environment. Instead . of representing each local scope by a“ list of
' v

name/value pairs, we represent it -by a list of identifiers and a list of values

- Al

[Henderson 1980] [Wise 1982]. Consider the expression

let x = a, y =b in (5.12)
letx:é,z:dlne. -
With an a-list environmeni, the environment of e is
((x.c) (z.d) (x.a) (y.b)). “ | BECAL)
With the modifed'structur:ev,wzhe environn\\enti of e is |
( ((x 2)e d) ((x y)la b)) ). ' (s

Soﬁ of the 'values in the envimnmeni are closures, ‘the result of
evaluating abstractions. The environment of a closure is represented by a
pointer to a component of the current epvironment. In most cases, this

pointer points to the enclosing scope -- the next -camponent “of the

7
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environment list. The environment of a recursive function or a set of

mut:ually' recursive functions is the current scope, so in this case the

environment contains cycles.

If we use the form of (5.14), the position of a value in the environment
can be specified by two integers. corresponding to {ts.positions in the "outer"
and L"'mner" ‘lists reépectively. The first integer corresponds to the static
nesting leyel of the variable and the second to its "offset" in the current
"frame". (The terminology indicates the close relationship between t\his data
st_ructure and the stack of a traditional block-structured language.) These
integers are lexical addresses, and they can be g’enerated by a compiler.

Another feature of the form (5.14) is that application of user-defined

functions is efficient. The application f(x,,...,x,) is represented by (F.L), in

which L is the argument list. If f is a user-defined function, its evaluation

yields a closure (P E U) in which P is the formal ‘parameter list, E is the
body of the function, and U is the environmgqt in which the functign is
defined. The value of the application is obtained ay evaluating E in the

environment ((P.L).U).

Names are unnecessary when compiled code is being executed, and they

are easily omitted from the data structure.

run-time environment during the execution of the code for e would be

( (nil.(c d)) (nil.(a b)) ). (5.15)

On the other hand; it may be useful to have names in the environment

durind debugging. In "debug mode", the compiler can generate the

environment of (5.14).

We can refine this data structure in two stages to improve effiEiency of
First, we can repla'cs the variable and value lists by

access to values.

- o
’ , - ~
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If we compiled (5.12), the °
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arrays of pointers (known to LISP programmers as "hunks"). With this
»

refinement, it is still feasible for the compiler and the interbreter to use the

‘same run-time environment, ’

The second stage is to replac'e the array of pointers to values by the
values themselves. With this refine‘ment,{ the value lis£ has the s.ame
structure as an activation record in Ehg conventional implementation of ™a
language of the ALGOL family. This d.at_a structure has two disadvantages:
it is difficult to interpret programs, and it is diffiéult to implemeﬁt
polymorphic functir;ms.' . .,’ , i

The current version of E;ee uses neither of fhese refinements. The
rL.m-'-time ‘environmenjt is a linked li.st, as in (5.15).

- The elaboration of a Dee prografn has two phases. First, an environment
for ‘the evaluation of expressions is es’tablished. Secénd, one or more'
expressions are evaluated in this environment.

Suppose that the first phaée is performed by an interpreter. " When a
function def'inition ial encountered, the interpreter constructs a closure
containing -pointers to thg global environment and to the expression that
represents the body of the function. If, on the other hand, th.e declarations
are compiled, the Scompiler constructs a4'closure containing a p‘talﬁter to the:
compiled cod-‘e for fhe body of the function. .

During the second <Sha:;e of elaboration, control switches between the
interpreter, evaluating uncompiled functions, and compiled code, evaluating
compiled functions. E'.x'ecutioon becomes faster as more functiéns are
~"compiled. |

It is clear that L; cannot be interpreted dixjeétly. Certain Initial,

. transformations, followed by type-inference, are required. "In many cases,

- -~




however, a relatively small amount of reprbceésihg is  actually needed. For

- example, the user 'will typically H change a function *.definition or

~ declarations, then the effect of

- transformation and re-evaluate only that;fuhctibn or a small section of the

{0
Fl

code around it. )
Y

5.4 Modules

In the foregoing seJctions',' we have discussed the processing of a program

.as if the program were a monolithic entity. But in general this is not the

case because Dee programs consist of modules.

In Dee, the unit of interpretation is arbitrarily small -- any )gxpression

may be interpreted -- but the unit of compilation is the module. The
requirement that a module may. be compiled" separately places restrictions on

the analysis that the compiler can perform and on the efficiency of the

" compiled code. We discuss first th; basic issues of incremental compilation

and then the -more _interesting issues -of interfaces and the strategy for
recompiling several modules when only one has changed.
Both the semantics and implementation of a’ module can be described in

-

E is an expression and M is a module that exports a collection, D, of
import M; E o L
is the same as the effect of '

let DinE. . SRR o

" terms of the effect of imiporting a module into the current environment. If °

Thé Dee user interacts with ‘the system at the leval of modulbs. (Thii- is“

described ln greater ﬂatall ln Chapter 6.) When a module is "openad", the x
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system must restore or create the environment for that module. This m;y
be done in any of several ways, de'pending on the history of the moduie. ;
Suppose that the module is opened for the first time in interpretive
mode. Each of its declarations is intarprete'd, and an en\'lironment is. created”
in which expressions within the module can be evaluated interactively. The -
processing of declarations is quite rapid because very little work is actually

done: types are inferred an"d checked, -and closures are built fi'om

Y »

abstractions. If the module is now closed, the environment is retained .as

one of its attributes. b

If the f’nterpreter encounters an impqpt directive, it logks for the
er)vironmept attribute of the imported module. If none exists, it reports this ‘
" fact to the user. (Alternatively, it could call itself recursively ‘to construct
the required environment. This is potentially a slow oppration, howsever, and
should be performed oroxly \;vhen explicitly requested.) =~ . ,

The compiler operates in a sirﬁilar\ fashion, crehting ;a "compiled"
environment for the module instead of an "interpreted-" environment’. When

it encounters an import directive, it looks for the compiled environment of

the imported module, but it will accept the interpreted environment.

~_ “ 'J’his simple scheme is _complicated by various faktors. The most

important and obvidus problem, common to all modular languages, is ensuring’
“the .corisistency of modules. We must investigate the-circumstances under

‘which recompiling a module will affect other modules. - A second problem,

one that arisbs only in languages that " provide generic features', is the .

]

compilation of a module that exports generic functions. Dbg provides two.'

Voo ’, .
solutions to proble of this kind. The first solution requires -only local

analysis and can be )performed incrementally. The second requires global
analysis but produces /efficient object code.
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5.& 1 Re’:ompilatlon : K .,

If f\ module M; imports objects frorn anothel& module Mo, \elrectly or

mdlrectly, we wnte "M, is a client of Mo", . or "Mg is a server of 'M;". A
L

module cannot be a client or server of itself.:

When a mo;iule is altered and recomplled, ‘its cllents and servers may also

have to be recombtled. In other lénguages that pmvnde modules or aﬁ sxmxlar
featuré, altering a module wusually requires \Lrecompllmg its cllents.
Recorﬁ'pilation‘ is ‘necessary bec\agse the changes will have altered &pelative-
addresses in relocatable code: without recompilation, errors, would occur
during linking. B

The cxrcumstanCWes in a Dee system are dlfferent for two reasons. f-‘irst,

a Dee module exports an environment rather than relocatable cocje. The

environment is accessed by' lexical addresses that provide an extra ,level of

indirection; this obviates the need to recompile .a client simply because code

sizes have changed. (Recompiling would still be ‘required if the wvalues of;

éxported congtants were changed, but in Dee these also go in the

environment.) On the other' hand, 'the use of generic functions in Dee may

' require the recompilation of a server. . &

Suppase that module M is changé’c/!, but its exported interface does not
change; that is, the séme identifiers are exported and they have the same

types as before. In this case, the clients do not have to be recompiled. If

P

the names or types of exported identifiers were changed, recompilation of

_ the clients is pointless because type canflicts 'would be inevitable. In this

)
~

case, thé system should mark the clients "to be changed" and inform the

user.
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Next, we consider generic functions. At the source level, a generic

‘f'uriction can be imported. In compiled code, Qowever, one or more

" instantiations of the generic function are linked to the client module. When

a client. module is altered and recompiled, the server 'may .be called upon to
-provide differe;mt insta\ntiations of the'gene‘ric functions.K/Thus altering ‘a
rrlwodule.r.nay t;equire recombilatioq of its servers.

In general, a module that exports generic functions has to maintain
seﬁarate code for each instantiation. When it is requested to provide a new
instantiation, it merely creates ne:w code. Old codé' is not destroyed because
{t may be referenced by other clients.

In contrast to,K other systems, .in which c‘hanges flow from servers to

[
clients, changes in Dee flow from clients to servers. The natural way to

: ‘ -
compile an entire Dee program is top-down, first compiling modules without

clients. ‘When a module is changed, code'may be added to its servers.

The method used by E.)ae” speeds up program ‘development by minimizing

recorinpilation, but the co‘Nenerated is less effit?nl; because there is mgre
indirection. It is’pd'ssible in principle to u3e global analysis during
compilation, but this, is likely -to .take considerably longer than incremental
compilation because mqltiple passes would be brequirec‘! to resolve overloads.
Global analysis would be useful at the end of developfment to produce a

Wproduction quality program. N 2,

There was an early version of Dee with modules. The current

¢

implementation, which was developed for the purpose of experimenting with

L)

7 .
the type system, does not support/modules. -

.
v
-
»
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5.5 An Architecture for Dee T .

The descnptlon of -a machine designed. specnflcally ' for executing Dee

prt{grams is beyond the scape of this theals. In any case, Dee- is not

sufficiently different from other . functional languages to pequxre a special .

/\
architecture: any of the machines proposed for functional languages could

execute Dee programs.
It is of some interest, however, to consider the kind of enhancement or
modification to a conventional von Neumann architecture that would improve

.

the performance. of Dee. Dee programs, like programs written in other
functional languages, spend a large\amount of tim: lookiné for their data.
Their perfurmance could be improved by additional addressing modes in the
instruction set. For example, an addressing mode that pe,rmitted an arbitrary

number of indirections (that is, traversing,/a linked list), followed by an

address offset, would enable any operand to' be accessed with one instruction.

The same addressing mode would also be useful for data ‘access in any

block-structured imperative language. Imperative programs, however,\

typically have fewer levels of procedure nesting than -functional programs.
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" "But herein great care I have, least length of sundry
proofs, might make you deme, that either I did
. misdoubt your zealous; mind to virtuous school: or else
mistruct your able \Vdm, by some, to guess much more."

6 A Programming Environment
{ * 4

A programming environment provides a programmer, or a team of

‘programmers, with facilities for the development of software. A

o

'programming environment iseffective if it facilitates the rapid development
. K

of correct software. In contrast to early programming environments-, which

. . ]
provided minimal tools for developing programs in several languages, several

recent programming ‘environments are dedicated to provi;jing a’ high level of

t
support for a single language.

Dee was designed to be used in a particulér’ kind of programming

environment. We outlined some of the requirements of. such an environment

in Chapter 1. In this chapter, we give a detailed description of the proposed

Dee programming environment and discuss the relationship between this

environment and the lanquages Ly and L,.

The v:/ord "environment" is used in this thesis in two quite different
senses.  In Chapters 2 through 5, we used "environment" to denote an
internal data struéture containing bindings required for the evaluation of
expressions. In this chapter, we use "environment" to denote a collection of
hardware and software that assists a programmer during the development of

a program. The intended use should be clear from the context.’

t - 8
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* 6.1 Requirements
v

" We can derive requirements for an effective ‘prc..ugramming environment by
considering the characteristicg of e'ar‘lier programming languages that ’made
r them amenable to software c_ievelopment. #he characteristics that we
consider significant are lenumerated below.
Rapid prototyping
It must be ,possible to obtain a working version vof a program with
minimal attent:lon to detail. Rapid prototyping enables fundamental design

and specification errors to be. detected, before a major investment in

.
.

software development has been- made.

Modularity _ ‘

Separatin‘g the internal V;net‘:hanism of a portioh of the program from its

external interface provides a powerful abstraction mechanism. _

Interaction ' ~

The traditional edit/compile/test cycle is too slow for modern software
development.  Separate compilation of modules helps but may be
insufficient. The environment must provide mechanisms for entering and

testing code rapidly. This requires an interpreter' and/or an incremental

< compiler.

- Type checking

Thorough type-checking is useful both for detecting errors and generating

efficient code.

Representation

The programming environment should permit flexibility in the choice of

representation and it should allow programmers to refine representations

w

during program development. /
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* Semantics
Explicit semantic principles are useful to both t.he designer of a language
and its users. We can reason about programs only if the language has a
robust semantic foundation.’ I:anguages with expressive power can be
constructed from a small set of ap';;ropriate semantic principles angd
well-chosen syntactic sugar.

Efficiency

Implementations of applicative languages are often inefficient. We'do not
; ¥

subscribe to the view that cheaper and faster hardware will make

3
o

efficiency ‘considerations irrelevant. ’ ,
Conciseness ’ v Q/\ -
Language designers must compromise between verbosity and %ierogl;;;hi‘i:ia.

As a general trend however, we should expect programs to be;&otne"

shorter rather than longer. o

; "
’ LR A8

o s ),v

‘ r"’

These requ;rements are not independent. Some of them-® tend f:d; ?cr a
together: for example, postpomng choice of representation ls an 1mp0btant
aid to . rapid prototyging. Others tend to be incompatible, at least,i’f we
base our experience on existing languages. For example,iquularit');r‘ 'an&
s;trong t ina are associated with compiled, non-interactive '.lar‘ﬁguéges,
whereas :ieraction and rapid prototyping are -asspciated with ihterprett'ad,‘
untyped languages.

Nor are the requirements particularly novel. LISP fulfills many of them.
Most implementations of LISP, however, are not applicative, use dynamic
scoping, and have call-by-value semantics. LISP programs, other than those

restricted to" an applicative subset of LISP, are not amenable to
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source-to-source transformations and " are difficult - to maintain.. APL is

3

' ~auitabla for prototyping. A number of recent languages, mcludmg Ada, Mesa

~

[Geschke 1977], and Modula-2 [Wirth 1983], provide facnlmes for creatmg

. program modules that can be separately compiled.

-

Y

6.2 Meeting the Requirements

Dee is an experimental system, and we envisage an adaptable environment
in which different techniques of program developr;went can be explored. In
designing Dee, we/ considered all of the requiren:\ents listed above for a

+programming environment.

Applicative -

Dee is a purely applicative language. - There is no assignment statement,

and the value of an expression is determined by the environment in which

" it is evaluated.

Type checking and type inference

Dee accepts, but does not require, type declarations. The 'principal type

-

of each object is inferred by the compiler.

Abstractlon

{
The principle of abstraction in Dee is slmple and powerful: any name can

/

be abstracted from an expresslon, turmng the expresslon into a, functnon
of which the name is a parameter. This abstraction mechanism pravides

polymorphic and generic functions, higher-order functions, 'and abstract

’

data types.

Call-by-name semantics

95 ’
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Modules

v

An  applicative computation that " terminates under call-by-value
(applicative order) semantics also terminates under call;by-name (normal

order) semantics. The converse is not true. Some program

transformations are valid under call-by-name semantics or call-by-value

semantics but not both.

-

. 2 r
Dee programs consist of madules that can import the environments of

other modules and can export selected names to other modules. This

contrasts with the "flat" name-sp of early implementations of APL and
. %

LISP.

Multi-level

Dee encourages separation of concern by'(providing several notations, each '

L]

appropriate to a particular level. Programs can be manipulated by the

user at all levels.

Extensibility

Dee has extensible syntax. Extgnsible languages were popular for a time
but went out of favor because syntactic ex‘tensions are not useful without
semantic power. We believe that the semantics of Dee, based on
function application, are suffi;:ier‘ltly powerful to provide a basis for a

variety of useful syntactic extensions.

Compilathn

Even with today's fast and cheap hardware, high-level interpreted
lanquages make heavy demands on both time and space. Any system
intended for software development must be capable of transiating

programs into object code of reasonable quality.
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. example, the user should be able to obtain reasonably rapid responsés to

In add'i‘t'i‘on to the "large" operations of editing, interpreting, "and
compiling, the environment "should also provide "small" services. For

?

questions such as the following. Who calls F? By whom is F called? What
is the type of E? How often is F called during the evaluation of E? How
oftdn was transformation T applied during the compilation of E? What,

3
transformations can be applied to E? ' \

L ’ o

6.3 Programming Methodologies

A programming environment must support various kinds of brogtamming
activities. These activities include rapid prototyping, systematic development
of l‘arge programs, program transformation, and the ability to re-use

substantial amounts of software,,

. 6.3.1 Rapid Prototyping

)
The term "rapid prototyping" is used by engineers and software engineers

L

l
to denote an interim product that simulates some of the characteristics of a

proposed- final product [Squires 1982]. A prototype program, for example,

might have a simplified user interface and low time and space efficiency yet

be able to provide potential users with useful "hands on" experience.

Traditional programming laﬁguages are not suitable for this kind of pragram

development because they tend to be oriented towards either prototyping or

production programs but not both. Consequently, prototype programs are:

often written in a language other than the language of the final product

[Gomaa 1981].
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6.3.2 Structured Growth N :
7 ,

A related meth'odology,oin‘ whi‘ch development takes place within a single

language, has been given the name "structured growth" [Sandewall 1978].
Starting from a simple prdgram with‘a clean structure, a complex prograFn is
built by small, cautious modifications [Kernighan 1976]). The dangers of this

approach are obvious: the- original, simple program may evolve into an

unintelligible monster. Effective use of this method requires maturity and

experience in the programmer. /

6.3.3 Transforrﬁation e

The transformational method also starts with a simple program and alters

it [Burstall 1977]. There are several important differences between this and’

the preceding methods. Transformations are intended to alter the efficiency
~f .
“of the program but not its semantics. An important criterion for the

acceptibility of a transformation rule is that it does not alter the meaning

of a program.

.6.3.4 Program Manipulation
The methods described above have a common feature: a program changes

form ‘_c_iinring its development. Thig raises the problem of how to represent

3

the pr'og.rar-n yvhile it is being changed.
The tradition‘al solution to this problem is to represent the program by its

v

source text. This method has many disadvantages. The most important

disadvantage, which underlies all the others, is that the programming

environment can provide only minimal support. This approach typically leads

to an edit/compile/test environment in which an omitted semicoion may be

- expensive in both programmer time and machine cycles. This kin'd of

-
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annoyance is ameliorated slightly by syntax-driven editors and modular

programming languages, but—the- dependenc;a on program text remaing.

The success of LISP-based progrémming environments is due in la;‘ge ;art
to the close relationship between the external and internal representations of
a LISP proéram. Most attempts to build LISP-like en\)ironments for other

»

languages have been unsuccessful. This is because the need for translation

" between surface language and internal structure pervades every part of the

system [Sandewall 1978].

-

:Significant advances in methodologies based on p;’ogram manipulation will

require radical innavations in the notation that we use for writing programs

[Backus 1979] [Meertens 1984].

| 8

6.4 The Dee Program}ning Environment

A Dee system consists of a collection of modulés. | This collection
constitutes a database and presents the wusual problems of database
maintenance, in particular "‘the necessity for maintaining Eonsistency. " The
modules represent "inforrﬁation" that can be examined and altered, as in a
conventional database, but can also be executed because they are programs.
The modules also constitute an interface between the user and the system.
A usger interacts with the system by "opening" a module. When a module is
open, the objects defined ‘within it may be examined, altered, executed, and

compiled. Objects imported by the module ma® be examined and executed

but not altered or compiled.
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6.4.1 Rapid Prototyping —""\

A

Rapid prototyping is supported by a complste set of type constructors and

facilities for both functional and data abstraction. . Programs are concise’

because most declarations can be omitted during the early stages of
de;/elopmént.. "The ability to define prefix and infix operators allows the use
of a notation appropriate to the problem domaiﬁ. Interpretation permits
functions to be tested as soon as fhey have b’\ written. The language

provides simple default 3ext':ernal reprsentations for objects of all types,

[y S

o e

including ’user-defjnecli types. Thus it is not necessary, in the early stages of

proagram development, to write parsing and pretty-printing functions for new
data types.

6.4.2 Transformation .

'Transfofmation capabilities are obtained by using L) as a mietalanguage
for Ly, - The type of an Lp program is provided as a standard data type of
Li. A generic mapping function, with functional parameters, maps one L;
program into anothe;'. A transformation consists of a recognizer that
identif'ies a particular kind of program and an instantiation of the generic
mapping function with appropriate arguments. ’ -

Dee does not contain a built-in theory of program correctness. Thus
programs are not automatically verif’ied beyond the usual level of consistency
required by a combiier. The ability to represent L, programs as L) data,
however, makes it practicable to construct a theory in Lll and apply it to
Lo. (This is analogous to the manipulation of theorems of PPLAMBDA in

'

ML [Gordon 1978b].)
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i.a.z Structured Growth =~ . .’ ( S ;

The modes of intex-'action in Dee are closely related to the modular
structure of Dee programé. At a given point in the interaction, we \;vant
extended access rights to one module and lim‘ited‘ aécess rights .t‘o pthers tha't
depend on it ar on which it aepends. | R

When we initially actival;.e Dee, the visible ‘environment contains only

standdard constants and identifiers. To extend this environment,"we/"open" a
module. Opening a _module giv'es“ us access to the soux:ce text of tiwe m-odule
and enablem to evaluate functions 'define,d within 1t We can char;ge the
text of a function defined /‘in the opened q\odulq and test ‘the; revised
function. We can also evaluate functions impc‘wrted fror;w other modules by
the opened module. We do not, however, have accesfé/ to the source text of
these external fgnctions, and we ;annot alter them.
.- This method of interaction encourdges the correct use of modules by
enforcing "information hiding", but it is too.restrictive 'for practical use. We
must be able to open several modules simultaneously.  With 'suitable
hardware, the "window" éaradigm might b; an 'appropriatg choice‘. Eat;h
module has its own window, and different windows can be provided with
different acces rights. "

When we "leave" a module, we may or may not want to préserve the
changes, if any, that we have made to .it. This choice can be r;made in the
same way as in text editing, where we have the choice of "éxiting" .wii:h any
changes saved or "quitting" without saving changes. '

Consideration of these requirements 'shows that'a module must be-a fairl9
complicated data- structure. For reasonable performance, we requige that the

source text, the internal (L3) form, and possibly the coﬁwpiled code be

components of an active module. We would like these three representations
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6.4k Maint

' system that would provide no basis for cénfidence.

o , { |
of the module to %nsistent, but we may not want to incurr the overhead
f

of recompiling af cted modules after a small” change. The typé systerh of
Dee creates a %urther burden because the system may not.be able to compile

a module Until it has examined the requireme.nts of its clients.

a

ing Consistency o,

Maintaining;;the consistency of a large number of modules is difficult.

——

- The ideal solution wouldi‘ be tg check the consisgency of every change as it is

made. We assume that, athough it might be feasible for small programs,
this is in general impractical. For ‘& practical implementation of Dee, we
propose the following levels of consistency: checking. The proposal is

intended to provide a compromise between an unattainable ideal and a

x

.
(

o ¢

1. When a new .object is introduced into the current environment, or an-

existing object is changed, thé syntax of the new object is checked
during parsing. \,

2. At any time, the user can requés;: that an object be type-chelcked. Thig
check,»&illjx:eveal inconsistencies in- tﬁe; number or type of arguments ‘of
a function and the misuse of generi‘c functions. ' |

3. When an _exprvessdion is evaluated interpretively before its type has been

checked, a type-check is performed.

»

- 4. When a module is, compiled, the compiler checks for both internal
co‘nsistency and consisténcy with the interface of imported modules. If
compiling changes the exported interface of the compiled module, client

/ .

.modules afe recompiled automatically or marked to indicate that

recompilation is required.
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5. "When a collection of modules is compiled, the compiler attempts to
dptimiie the' generated code by using type .information. Actual .vall.vles,
.for example, rather than ;aointers to v’alues, may be passed between
quules.
In items 1 th;*ough 4, an inconsistency is reported, but the system takes

no action beyond issuing the report. In item 5, the compiler attempts to

remove the inqonsisteﬁby by recompiling. Fdr exam;le, if the user atten{pts

to interpret‘E .

a:T+b: T ' (6.1)

in an environment in which "+" is undefined for type T, the type checker

reports an error. Compiling (6.1), however, would succeed if "+" were a

S

gsneric function that can be instantiated for the type T.

-

6.5’ Dee and the Operating System . y T

An important consideration in the design of a progfamming environment is

the number of exi ’t/imj operating system utilities that the environment should -

. <
components o‘ itself.

A simple 'ewonment is easy to implement but has several disadvantages.

For the user, the disadvantage is the need to switch between "modes" --

" 'system mode, edit mode, program devélopment mode, and so on. For the

envirdnment, the disadvantage is that it has no control over or even
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knowledge of what the user does outside it. Maintaining. consn{ncy is

N

infe,asif:'le because, for instance, the user may alter a source file but not

: . . i
reload it. These disadvantages caen be overcome partially - by using an

-

>

elaborate system of time-étamps.

An iﬁtegratqg environment ‘has a number of advantages but requires
congiderably rhore: implementation effort. T'he principalh advantage to the
user is that the environment presents a single, consistent interface; and
therefore it can prevent meaningless or destructive acts by the user.

A compromise can be achieved if the underlying operating system prov’ides
adequate facilities. For example, it must Bé [able to support concurrent
tasks and allow a single user to switch between them. With such a system,
source text editing can be interleaved with program development in a

-

réasbnably secure way [Sandewall 1978].

6.5.1 A Built-in Editor ' L

One of the decisions thatgan imbfementor has to make is whether :the
user has access to the source text.of a modulé after it has been presented
to the system for the first time. The alternative is to provide access o;ﬂy
to the pretty-printed form of the internal code. Some pragrammers feel
that their personal layouts are sacrosanct. Nevertheless, there are
advantages for both the user and the system in maintaining code in interngl
.form only. The amount of time spent in parsing is reduced because a
declargtion or defini;ion is re-parsed only when it is changed. Since the
program exists only in its int;ernal form, there is ‘no need to maintl‘ain

consistency between internal and external versions. This approach requires

an editor that maintains a textual representation of an object on the

. . 104 .
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terminal screen and ;an internal.represéntation of the,objecg in memotry. The
representations must be consistent while editing is in ;;rogress. Many LISP
systems incorporéte such ed“itors. |
T ) // , ' . e

6.5.2 A Built-in Assembler and Linker

' The bee compiler can be writteﬁ' in Ly and is an' essential part of the
system. Ideally, its output would be a block of relocatable machine code

that could be . treated by the system like any other dynamic data object.

Writing such a compiler requires a large amount of effort and is probably’

not justified for aﬁ“experi?nental system. A simpler approach is to write a

compiler that generates assembly code and to use thgypstandard assembler and

linker. This is the method used in the current implementation of Dee; it
requires that the entire system be relinked when new: compiled functions are

Al

installed. L
%
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. thesis to a conclusion.

"For, whereas, it is so ample and wonderful, that, an
whole year long, one might find fruitful matter therein,
to speak of: and alsc in practice, is a treasure endless:
yet will T glance over it, with words very few."

5 ,
1

.
@

7 Further Work and Conclusion

In this chapter, we outline directions for further research and bring the

L
4 a

7.1 Directions for Further Research .

Dee extends the type inference gsystem of ML in a practical way without
sacrificing its useful theoretical properties. There are several ways in which
the type ~system might be extended. It should be relatively straightforward
to incorporate subtypes, bet;*ause sut:;types can be accomodated within the
existing partial ordering of types. A more interesting problem is whether
type inference can quide the int;'oduction of the referencing and
dereferencing operations needed 'during code generation. In this case,
coercion cannot be controlled by thes partial ordering. We would also liké to

investigate the use of parametrized types if they can be introduced without

undue complexiiy. A ‘deeper problem with the current type system is that it

is syntactic. A semantic model for the type sublanguage is desirable

[MacQueen 1982].
Dee was designed to facilitate program transformation. When the
impleﬂentation is complete, we expect to use Dee to develop transformation

techniques. The possibility of improving the performance of applicative

programs by altering data structures in situ is of particular interest.
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The semantics of modules in Dee are not entirely satisfactory. The view

of modules as an sbstraction of bindings seems fruitful, but its deeper
. consequences are not yet clear. We intend to investigate the semantics of
: *\bindings with the goal of making bindings "first-class citizens". This will lay

the foundation for both parametrized modules and modules as parameters. o

7.2 Conclusion

v . '
The description of a complete Dee system in Chapter 6 is speculative

compared to the preceding chapters because a complete system has not yet.
been implemented. Nevertheless, some of the advantages of Dee over other
languages for program development are apparent. These-advantages include:
data abstraction, multiple levels of representation, type inference,
polymorphic andlgeneric functions, and coercion. /

The importance of Dee, however, is that it is a step in the direction of a
new kind of programming environment in which the computing systerh
provides support and assistance at all stages of the programming process.

Ultimately, the environment will provide for the programmer the services of

a librarian, diarist, manager, apprentice, and programming expert.
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