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Abstract

A Semantic Analyzer for an Object-Oriented Language

Wai Ming Wong

The object-oriented paradigm has been a subject of much research and discussion
in recent years. The paradigm encourages meaningful and well-defined data abstrac-
tions by introducing the concepts of classes, instances and inheritance. The intense
interest in the paradigm has motivated the design of many new object-oriented lan-
guages as well as extensions to existing ones. The new language features required to

support object-orientation present new and unique challenges for compiler developers.

We view semantic analysis as the task of ensuring that the source program is
semantically correct. It is not to be confused with the task of code generation and

optimization.

In this thesis we present the design of a semantic analyzer for an object-oriented
language called Dee. The design includes the data structures, algorithms as well as

the interface with other components of the compiler.

Given that the interactions between different language features of Dee can be very
complex, we demonstrate that a highly modular and consistent semantic analyzer can

be achieved with appropriate language and compiler design decisions.

The semantic anaiyzer has been implemented using the C language and has been
incorporated into the Dee compiler. The Dee compiler and its development environ-

ment are currently available for use on Unix-based workstations.
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Chapter 1

Introduction

Software maintenance is undoubtedly the most costly operation during the life cycle
of a software product. There has been a continuous search for a suitable programming
paradigm or methodology to reach the goal of maintainability. As indicated by [4],
the recently advocated object-oriented paradigm satisfies the deep requirement of
an carlier approach of structured programming. Both approaches promote higher
level of abstractions rather than the underlying implementation machinery. One of
the reasons for the atiention on object-oriented paradigm is the promise or belicf
that it surpasses the ability of the structured programming approach in producing
highly maintainable software. The Dee research project is an attempt to achieve high

maintainability by adopting the object-oriented paradigm.

Dee is an integrated development environment which includes the Dee language
compiler as well as the facilities for developing and maintaining Dee programs. It is
intended to provide both the efficiency found in compiled languages like C++ [7] and

the rich development found in interpreted languages like Smalltalk [2].

‘The Dee semantic browser provide rapid access to accurate and up-to-date views
of the classes [1] [9). The environment is further enriched by a set of well-defined

system classes.

The Dee language (simply called Dee) is a strongly-typed, class-based, object-

oriented language. It supports concepts of classes, instances, single and multiple



inheritance and, genericity. The design of Dee has been intentionally kept simple to
facilitate implementation as well as to improve readability and conciseness. Simplicity
does not imply incompleteness. Dec is also designed to completely and consistently
support the object-oriented paradigm. Hf a language provides features that deviate
from the chosen programming paradigm, it cannot achieve the full benefits of the
paradigm. A program written in C can be compiled by a C++ compiler but this does
not make the program object-oriented! A language cannot rely on the programmers
to follow the rules of the paradigm and sclect the appropriate language features to
use. If that is the case, one could argue that assembly languages are object-oriented!
One can always write an object-oriented program in assembler. In fact, a langnage
cannot be classified as object-oriented if it does not have explicit features supporting,
inheritance [8]. In essence, Dee is a full object-oriented language without heing
polluted by odd language features that are counter productive. Dee is a tool which

naturally guides the programmer to think in terms of object-orientation.

Since Dee is intended for the development of production-quality software, Dee
source programs are compiled rather than interpreted. ‘The task of developing the
compiler for Dee is both unique and challenging duc to its full support of object
orientation, genericity and views. The design and implementation of the Dee parser
and code generator can be found in the thesis by Lawrence Hegarty [5]. The thesis
by Benjamin Cheung and the report by Joe Yau illustrate the semantic browser {1]
[9]. In this thesis, we describe the semantic analyzer for the Dee compiler. Contrarily
to the common practice of interleaving code generation with semantic analysis, we
consider semantic analysis as strictly checking the static semantic correctness of the
source program. This strict definition of semantic analysis allows us to dedicate effort

for its development making sure that the semantic rules are properly applied.

In Chapter 2, we give a brief description of the general organization of Dee classes
which serves as a base for discussions in subsequent scctions. In Chapter 3, we
describe the overall architecture of the Dee compiler. In Chapter 4, we give detailed

explanations on the functions of the semantic analyzer. In Chapter 5, we deseribe




the implementation. In Chapter 6, we conclude our discussion with an assessment of

the work completed.




Chapter 2

Constituents of a class in Dee

A Dee program consists of a root class and the classes needed by the root class. The
root class in Dee is application specific. A class in Dee is a static class from which
objects are instantiated. The class itself is not an object. Instead, it defines the
behaviour of its instances. The components of each of its instances are determined
by its instance variables. Its methods dictate the actions cach of its instances can

perform.

A class consists of a header and a list of attributes. ‘The header contains the
name of the class, class parameters and, a list of ancestor classes. Attributes are

either instance variables or methods. The following is an example class in Dee:
Example 2.1

class Point
public var x: Float
public var y: Float
var colour : String
public cons MakePoint ( ix : Float iy : Float )
begin

X = ix

y := iy




colour := '"Red"

end

public method MovePoint ( nx : Float ny : Float )

begin
X = nx
y :=ny
end

The class name uniquely identifies the class. In the above example, the class Point
has three instance variables; x, y and, colour. The instance variables are by default
private having a scope of the class in which they are declared; called the host class.
Public instance variables are visible by clients of the class whereas private ones are

not. We could declare an instance variable of the type Point in a client as follows:

Example 2.2

class ABC -- ABC is a client of Point.

var dot : Point -- instance variable dot.

public method MoveDot ( nx : Float ny : Float )

var oldx : Float
var old.colour : String
begin
oldx := dot.x -- legal access
old.colour := dot.colour -~ illegal access
end



The statement. old_colour := dot.colour is not allowed since colour is a private
variable of Point. On the other hand, read access 1o x is allowed. Dee does not allow
a client to write to public variables of its suppliers. Therefore, the expression dot.x

is not allowed to be on the left-hand-side of an assignment statement.

A method has a signature and an optional body. The MakePoint method of Point

has the following signature:

public cons MakePoint ( ix : Float iy : Float )

Similarly, the MovePoint method has the signature of:

public method MovePoint ( nx : Float ny : Float )

Visibility of methods can be public or private. Again, the default is private. A
method can be a regular method; like MovePoint or a constructor; like MakePoint.
A constructor is used to create objects. The method name is a unique name within
the host class identifying the method. A method can have any number of formal
arguments and an optional result type. A method may not return any object and the
result type is omitted as in MovePoint of class Point. A method may have local vari
ables and a body. The local variables have local scope and they are never visible to
clients nor to descendants. Examples of local variables are oldx and old_colour in the
method MoveDot in class ABC. A method body consists of a sequence of Dee state-
ments. A method without a body is considered to be abstract. Its implementation

is to be defined in the descendants of the host class.

Dee has statements similar to imperative languages except procedure or function
calls. A call is a method invocation which involves a receiver object, an attribute
name, and an argument list if required. The attribute name may be an instance
variable name or a method name. It is referred to as the message. Method invocation

as a whole is called an application. Applications are shown in the following example:




o

Example 2.3

class Line

public var a : Point

public var b : Point

public cons
MakeLine ( iax : Float iay : Float
ibx : Float iby : Float)

begin
a.MakePoint ( iax, iay )
b.MakePoint ( ibx, iby )

end

public method HorizontalMove ( step : Float )

begin
a.MovePoint ( a.x + step, a.y )
b.MovePoint ( b.x + step, b.y )

end

In the above example, all statements or expressions involving the dot operator are
applications; for example “a.MakePoint” and “a.MovePoint”. In Dee, an application
involving a constructor implicitly creates the object. Since MakePoint is a construc-
tor, the compiler also generates the code to create the object wherever MakePoint is

invoked. Therefore, the application “a.MakePoint ( iax, jay )" creates the object a.

An expression in Dee is actually a series of applications which yields an object.
In the application “a.MovePoint ( a.x + step, a.y )” above, the actual arguments
are expressions. The expression “a.x + step” is internally represented as “a.x._plus
(step)”. Since the dot operator associates to the left the expression is interpreted as
“(a.x)._plus(step)”. The application a.x yields an object and this object becomes the

receiver of the _plus message.

-3



Chapter 3

The Dee compiler

A class is a compilation unit in Dee. Programmers write classes using regular text
editors and the source files are stored as conventional text files. Figure 3.1 shows the

inputs and outputs of the Dee compiler.

The code generated by the compiler is in the form of € source files. The Maker
and Linker utilities read the C sources and produce the executable code file. Al
though this approach to code generation is not unique to Dee, it is considered to be
highly practical. It allows us to capitalize on the efforts alrcady invested in machine
code generation and optimization for the C compiler. Since C is a widely used and
relatively standardized language, the Dec compiler becomes portable across varions

machines.

Each Dee class is defined by a single document called the canonical document. 1t
is the Dee source file that the owner develops. In addition to regular functionalitics,
the compiler also creates a class interface for the class it currently compiles. An
interface is a machine-readable file describing all attributes of the class. Interfaces of
all compiled classes are saved in a data base managed by the class interface manager
[1] [9). The compiler often searches the data base during compilation to obtain
information about other classes. If it does not detect any error, it will write the
interface of the compiled class to the data base. The same interfaces data base is

also used by the semantic browser to create human-readable views of classes for the




C source

Dee
compiler
Class
Interfaces

Indicates a software module
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D Indicates a data structure

Figure 3.1:

programincrs.

The compiler itself is made up of four modules; the parser, the code generator,
the class interface manager and, the semantic analyzer. Their relationship is shown

in Figure 3.2.

The scanner and parser convert the source file into an abstract syntax tree; the
AsT-a in Figure 3.2. The abstract syntax tree is a data structure created in memory
to be used throughout the compilation process as a common communication medium
for all the modules. It is a transient structure which exists only during compilation.
The semantic analyzer analyses the AST-a and adds semantic information to it. The
code generator, in turn.makes use of all information generated by other modules to

emit C codes.

The semantic analyzer is the only module interacting directly with the class in-
terface manager module. During semantic analysis, it requires the interfaces of other
already compiled classes. The class interface manager performs the necessary accesses

to the class interface data base. The requested interface is then converted into an



Dee source

’

Scanner/
Parser

i@.

Sematic _

AST-a CIM

Code

C source

)

.

Aat-a ia the Abstract Syntax Tree of the Class being Compiled.
Ast. b is the Abstract Syntax Tree of the Classes it needs.
Figure 3.2:
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abstract syntax tree structure which the sernantic analyzer is capable of processing.
If no error is found, the ahstract syntax tree of the currently compiled class is passed
to the class interface manager for data base update. At this point the class is free
from any syntactic and semantic errors. The code generator can safely perform its

tasks based on the resulted abstract syntax tree.

11



Chapter 4

Functions of the Semantic
Analyzer

The semantic analyzer enforces the static semantic rules that are not detected by
the Dee language grammer. In this thesis, we demonstrate the semantic rules by

examples. The complete description of the Dee semantics is found in chapter 3 and

4 of 3.

We have identified the following functions that the semantic analyzer has to per

form:

- Processing of inheritance and extension.
- Processing of genericity.

- Type substitutions.

- Resolution of names.

- Detection of type errors.

- Detection of structural errors.




4.1 Processing inheritance and extension

Inheritance is a powerful mechanism for software reuse in the
object-oriented paradigm. It allows classes to be defined by modifying or extend-
ing cxisting ones. Extendibility is possible through constrained polymorphism and

dynamic binding,.

Dee supports multiple inheritance and extension. Extension is the same as inher-
itance except that all extended attributes are private unless explicitly redeclared as
public in a child class. Public attributes are visible by client classes whereas private
ones arc not. An example of extension would be a stack. A stack may be imple-
mented by an array but the clients of stack should not be able to perform random
accesses to the array. When a stack extends an array, the array operations become
private and are only visible to the class stack but not the clients of stack. Consider

the following example inheritance hierarchy:

Example 4.1

class P
public var pa : Int
public var pb : Int
private var pc : Boolean
private var oldp : P
public method pma ( ax : Int ay : Int ) : Int
begin
end
private method pmb
begin

13



class Q§
public var qa : Float
public var gb : Float
private var qc : String
public method qma ( ax : Float ay : Float ) : Float
begin
end
private method gmb ( ax : Float )
begin

-----

class C
inherits P

extends Q

public var ca : Float

private var cb : Point

public method cma ( loc : Point )
begin

-----

In this example, both P and Q are parents of C. Conversely, C is a child of both
P and Q. The ancestor relation is the reflexive, transitive closure of parent relation.
The descendant relation is the reflexive, transitive closure of child relation[3]. Since
the closures are reflexive, C is considered as both the ancestor and the descendant
of itself. The class C gets all the attributes of P and Q. C may declare additional

attributes as well as overloading (redeclaring) the inherited ones. Let Ap, Aq and

14




Ac be a set of attribute names declared in class P, Q and C respectively. As a result
of inheritance, the set of actual attribute names that C has access to is the union
of Ap, Aq and Ac. We call this set AC. In general, AC is the union of all attribute
names of the child class and all its parents. Al is a set of names that appear in at
least two classes in the inheritance hierarchy. A substantial portion of the semantic
rules regarding inheritance deal with the resolution of name conflicts when Al is not

an empty set. The classes in Example 4.1 can be described as:

Example 4.2

Ap = { pa, pb, pc, oldp, pma, pmb }
Aq = { qa, qb, qc, qma, gmb }
Ac = { ca, cb, cma }
AC = Ap U Aq U Ac
= { pa, pb, pc, oldp, pma, pmb, ga, gqb, qc,
gma, qmb, ca, cb, cma }
AL = {)

In this simple example, Al is an empty set and we do not have any name conflicts.

4.1.1 Effects of inheritance .

In general, for each attribute e in AC and e is not in Al, the semantic analyzer sets the
attribute visibility to private if e is inherited by extension. Otherwise, the visibility
is unchanged. The only exception is that an inherited or extended constructor is
always set to private. The rationale for this exception is that the set of attributes

of the parent is a subset of the attributes of the child class. The constructor for the

15



parent is therefore very likely to be insufficient for the child class and it should not he
visible to clients of the child. The child should declare its own constructor. However,
the parent’s constructor is useful for the child class. It can be used to initialize the

inherited attributes in the child’s constructor.

Some parent attributes may contain the parent class name as the type. This is

demonstrated in Example 4.1 by the variable oldp in class P.

private var oldp : P

The semantic analyzer changes the parent class name to the child class name when

inheriting oldp. The attribute oldp for class C becomes:

private var oldp : C

The result of inheritance can be seen in the following descendant’s view of the class

C:

Example 4.3

class C
inherits P

extends

~- Attributes from P
public var pa : Int
public var pb : Int
private var pc : Boolean
private var oldp : C

public method pma ( ax : Int ay : Int ) : Int

16




private method pmb

-- Attributes from Q

private var qa : Float
private var gb : Float
private var qc : String

private method qma ( ax : Float ay : Float ) : Float
private method qmb ( ax : Float )

-~ Attributes from C itself
public var ca : Float
private var cb : Point

public method cma ( loc : Point )

4.1.2 Constrained polymorphism and the concept of class
conformance

Polymorphism is defined as the ability to take several forms [6]. In object-oriented
programming, this refers to the ability of an object to be treated as an instance
of various classes. Given that unconstrained polymorphism is undesirable, polymor-
phism in object-oriented programming is constrained by inheritance. The inheritance
hicrarchy depicts the possible classes to which an object may belong. An instance of
a child class can be considered as an instance of all its parent classes at all levels of

inheritance. Consider the following inheritance hierarchy:

Example 4.4

17



Vehicles

wheeled Tracked
all wheel Rear wheel Front wheel
drive drive drive

In the above example, let the object “my family car” be an instance of “front. wheel
drive vehicles”. The object “my family car” can also be an instance of “wheeled
vehicles” as well as “Vehicles” in general. However, “my family car” cannot be an
instance of “Tracked vehicles”. The class “front wheel drive vehicles” is said to

conform to the class “Wheeled vehicles” as well as to the class “Vehicles”.

In general, a class X conforms to a class Y when Y is a parent of X. If X conforms
to Y, every instance of X is also an instance of Y and every attribute of Y is also an
attribute of X. The class X has fewer instances than Y but it has more attributes.

Based on our definition of the ancestor and descendant relation, X conforms to itself.

4.1.3 Resolution of attribute name conflicts

A name conflict occurs when an attribute of a certain name is declared in more than
one parent of a child class. The semantic analyzer detects name conflicts automat-
ically and produce errors accordingly. In fact, name conflicts have to be resolved

before codes can be generated. An example of name conflict is shown below:

Example 4.5

class P

public var tmp : Int

18



class

public var tmp : Float

class C
inherits P

extends Q

method abc (a : C) : C
begin

tmp := 1;

end

In this example, the class C is supposed to inherit the instance variables tmp from
both P and Q. The statement; “tmp := 1” is ambiguous since it is not clear which
tmp variable the programmer is intended. The semantic analyzer cannot arbitrarily

choose one or the other.

Resolving instance variable name conflicts

The only situation where a variable name conflict is not ambiguous is that all vari-
ables with the conflicting name actually denote the same variable. Another way of
describing it is that the variables come from the same source class. Consider the

following example:

19



Example 4.6

class GP
public var tmp : Int

class P

inherits GP

class Q

inherits GP

class C
inherits P

extends

Since class P and Q inherits from the class GP, they both inherit the variable tmp.
The tmp in P and the tmp in Q actually are the same variable inherited from the class
GP. In this case, the name conflict is permitted. Given that a class can have class
parameters, the variable tmp may have a type more complex than Int. The semantic
analyzer also has to ensure that the type of the conflicting variables in all parent
classes have to be the same. Detail discussion on genericity and class parameters can

be found in Section 4.2.

20




Resolving method name conflicts

Method name conflicts are also resolved using unambiguous cases provided that the
signatures of all methods with the same name in all parents are equal. Two method
signatures are equal if the number of arguments are the same and the types of all

formal arguments and result type are the same.

The semantic analyzer tries to resolve the conflicts automatically where it is pos-
sible to do so. In the cases where conflicts cannot be resolved automatically, Dee
allows the programmer to associate a “from clause” to a method in the child class. A
method with a from clause cannot have a body. Instead, it specifies the parent class
in which the method body to be used is found. An example use of the from clause is

as follows:

Example 4.7

class P

public method abc ( a : Int ) : Int

begin
end
class

public method abc ( a : Int ) : Int

begin

end

class C

inherits P Q

21



public method abc ( a : Int ) : Int from P

In this example, the method body of the method abc in class P is used.

The semantic analyzer has to enforce the following rules regarding the use of the

from clause:

1. The class specified in the from clause must be one of the immediate parent
classes. In our example, it has to be either P or Q but it cannot be one of the

parents of P and Q.

2. The signature of method in the child class has to conform to the signature of
the one in the specified parent class. Signature conformance means that all the
formal argument types and the return type conform to the ones in the parent.

The number of formal arguments must also be the same.

3. The ‘nethod body in the class specified by the from clause has to be conerete.
Since a from clause can only refer to a concrete method, a method body with

a from clause is considered as concrete.

4. The use of the from clause in a method found in only one of the parents is

redundant but it is not an error,

The following table depicts the rules used by the semantic analyzer to antomatically
resolve method name conflicts. Whenever the semantic analyzer cannot resolve a
name conflict, the table indicates that the programmer has to specify a from clause
for the current class to be compiled without errors. The table also describes a special
case of inheritance where inheritance takes place even when a method is redeclared in
a child class. If a method is redeclared with an abstract body and one of its parents
has a method with the same name having a concrete body. The child class inherits

this concrete body.

22




Only two parent classes are used in the table for illustration purposes. The same

rules apply to any number of parent classes.

ParentQ
Parentl

Child

Actual Body

Requires From:

abs
con

Nil

A parent class having a method of the same name
A parent class having a method of the same name
A child class either inheriting or redefining
the method

The body actually used after inheritance

The From clause has to be used to direct
inheritance

Abstract method body

Concrete method body

No method of the same name defined in the class

23



Actual | Requires
Parent0 | Parentl | Child | Body | From Comments
abs nil abs abs no remains abstract
con nil abs con no child gets the body parent 0
abs nil con con no use the body of the child
con nil con | con no use the body of the child
abs nil nil abs no remains abstract
con nil nil con no child gets the body parent 0
abs abs abs abs no remains abstract
abs con abs con no child gets the body parent 1
con abs abs con no child gets the body parent 0
con con -a- con yes child gets the body from
chosen parent
abs abs con con no use the body of the child
abs con con con no use the body of the child
con abs con con no use the body of the child
con con con con no use the body of the child
abs abs nil abs no remains abstract
abs con nil con no child gets the body parent 1
con abs nil con no child gets the body parent 0
con con -a- con yes child gets the body from
chosen parent
Table (1)

—a— The child has to define the method with either a concrete body or a from clause
to guide inheritance. In cases where the method is not defined in the child at

all or it is*defined with an abstract body in the child, the semantic analyzer

produces an error.

4.1.4 Redeclaration of attributes

In Dee, The semantic analyzer automatically inherits all attributes of the parents if

they do not present any conflicts or the conflicts can be resolved. The programmer
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may also redeclare the inherited attributes based on certain rules. The semantic
analyzer is responsible for enforcing these redeclaration rules. An example of instance

variable redeclaration is shown below:

Example 4.8

class P
public var pa : Int
public var pb : Int
private var pc : Boolean
private var oldp : P
public method pma ( ax : Int ay : Int ) : Int
begin
end
private method pmb
begin

.....

class Q
public var qa : Float
public var qb : Float
private var qc : String
public method qma ( ax : Float ay : .Float ) : Float
begin
end
private method qmb ( ax : Float )
begin
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end

class C
inherits P

extends Q

public var pc : Float -- Redeclaring pc of P to public.
public var ca : Float

private var cb : Point

public method cma ( loc : Point )

begin

.....

Redeclaration of instance variables

If the programmer is redeclaring an instance variable in a child class, the instance
variable must be of the same type as the one in its parent. Only the visibility of the

variable can be redeclared. The possible visibility redeclarations are shown below:

Extended variable Inherited variable
Parent Child  Result Parent Child  Result
Public Public Accepted Public Public  Accepted
Public  Private Error Public  Private Error
Private Public Accepted Private Public  Accepted
Private Private Accepted Private Private Accepted

a0 oW
PN I

In case a and d, a warning message is produced.

The above tables shows that the rules for both extended and inherited variables
are the same. A private variable is allowed to be redeclared either public or private.
In case a and d, the visibility is the same. It is not an error. Instead, there are

warning messages saying that the redeclaration is exactly the same and is useless,
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The only error case is case b where a public variable can never be redeclared as
private. Examples of visibility redeclaration are shown in the following example

where the parent classes P and Q are the same as in Example 4.8:

Example 4.9

class C

inherits P

extends (

private var pa : Int -- disallowed
public var pc : Boolean -- allowed
public var ca : Float

private var cb : Point

public method cma ( loc : Point )
begin

end

Redeclaration methods

If the programmer is redeclaring a method in a child class, both the visibility and the
method signature may be redeclared. The redeclared method must have a signature
conforming to the signature of the method in all the parents. The following table

illustrates the visibility redeclaration rules:

Extended variable Inherited variable
Parent Child  Result Parent Child Result
Public Public  Accepted Public Public Accepted
Public  Private Error Public Private Error
Private Public Accepted Private Public Accepted
Private Private Accepted Private Private Accepted

z2rz-2
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The above rules are similar to the ones for redeclaring visibility of instance variables.
The only exceptions are the warning messages. Even though the visibility is the same,
the method signature and the method body may vary. In that case, we cannot report
a warning that the redeclaration is exactly the same and is useless. An example of
method redeclaration is shown in the following example where the parent classes P

and Q are the same as in Example 4.8:

Example 4.10

class C
inherits P

extends Q

public var ca : Float
private var cb : Point
public method cma ( loc : Point )
begin
end
public method qmb ( ax : Float ) -- gmb from Q is now public
begin
..... -- May have a different body.

A method may be redeclared to have a concrete body, an abstract body, or a from
clause. When the redeclared method has a concrete body, the body in the child class
is used. As indicated in Section 4.1.3, a method with a from clause has a concrete

body. The body referenced by the from clause is used.

When the redeclared method has an abstract body, the net result of the redecla-

ration depends on its parent as illustrated below :
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Assuming the following inheritance hierarchy:

class P
method abc ( a : Int ) : Int

begin -- A concrete body.
end

class
method abc ( a : Int ) : Int
begin -- An abstract body.

end

class C
inherits P Q
method abc ( a : Int ) : Int
begin -- An abstract body.

end

In the above example, method abc in class C has an abstract body and it has a
concrete body in P, C inherits the method body from P. If the method abc in both P
and Q have abstract bodies, the abc in C remains abstract. However, if abc in both
P and Q have concrete bodies, the programmer has to specify which body to use by

a from clause.

4.2 Processing genericity

Genericity is also a technique for software extendibility and reuse. Although it offers
similar benefits as inheritance, genericity and inheritance are considered to be com-
plementary [6]. It is the ability to define type parameters for modules. It allows the

same code module to be used to manipulate data of different types. This concept of
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type parameters is adopted by statically typed object-oriented languages like Fiffel
and Dee where classes may have class parameters. In Dee, programmers can define

generic classes for general use. For example:

Example 4.11

class Table ( key : Comparable info : Any )

In a client class of Table, an attribute may be declared as the following:

address_ book : table ( String, Address )

In the above example, String corresponds to the class parameter key and Address
) I Y

corresponds to the parameter Any.

In Dee, class parameters must be qualificd. In the above example, key is quali
fied by the class Comparable and info is qualified by Any. The classes Comparable
and Any are called constraining classes. 'I'he semantic analyzer verifies that the
constraining classes are valid classes and that the actual arguments conforms to the
constraining classes. It also has to ensure that the number of actual argnments are
the same as the number of parameters declared in the class Table. In the above ex
ample, String conforms to Comparable and Address conforms to Any. The class Any
is provided to be a sensible default for parameter qualification. Any is an ancestor

of some, but not all, classes.

4.2.1 Mixing inheritance and genericity

Dee allows the mixed use of inheritance and genericity. In other words, parameterized

classes can inherit attributes from other parent classes. They can also be parents of

30



other classes. However, the semantic analyzer has to ensure that all constraining
classes of the child class conform to the constraining classes of all the parents. The
number of parameters also has to be the same. An example of mixed inheritance and

genericity is the following:
Example 4.12

class P ( t : Any )
var

a: ¢t

class Q ( u : Any )
var

b: u

class C ( s : Comparable )
inherit P Q

In the above example, all classes have one class parameter and the constraining class
Comparable conforms to Any. The class P and Q are allowed to be the parents of C

and C is allowed to be the child of P and Q. .

4.2.2 Complicated class parameter declarations

Since a class may have any number of parameters and the constraining classes them-
selves may also have parameters, the parameter list of a class may become very

complex. An example of a complex class parameter list is demonstrated below:
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class C ( A : List ( String Table ( String Employee ) ) )

The type of any attribute declaration may also be very complex. For example:

Example 4.13

var

temp : C ( List ( String Table ( String Employee ) ) )

The semantic analyzer should be able to process as many levels of nesting as the

system resources permit.

4.3 Type substitution

Class parameters are used as types in attribute declarations. The concept of type
in Dee is clarified in Section 4.5. The following example shows the use of class

parameters as types for class attributes:

Example 4.14

class List ( K : Comparable T : Any )
public var

temp : T

public method insert ( key : K node : T)
var
worknode : T

begin

end
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public method delete ( key : K )
begin

end
public method find ( key : K) : T
begin

end

K and T are class parameters that can be used as types in the class List. When List
is compiled, the variable “temp” is treated as an object of class Any. The method

parameter “key” is treated as an object of class Comparable.

Type substitution refers to the replacement of class parameter names by their
corresponding constraining class names. The semantic analyzer determines that T
is a class parameter name by T’s presence in the parameter list of the current class
List. It then replaces T by the constraining class Any. Since class attributes and
local variables may be referenced many times, the semantic analyzer performs type
substitution only once for all the attributes of the current class before type checking
is performed. Therefore, type substitution overhead is reduced during type checking.

After the semantic analyzer has performed type substitution, the class List becomes:

class List ( K : Comparable T : Any )
public var .
temp : Any
public method insert ( key : Comparable node : Any )
var
worknode : Any

begin

33



end
public method delete ( key : Comparable )
begin

end
public method find ( key : Comparable ) : Any
begin

end

If List is a parent of another class, the constraining classes of the child are used in

type substitution. Consider the following example class:

Example 4.15

class MyList ( I : Int B : Any )
inherits List
public var

mykey : I

Type substitution is shown in two steps for clarity. First, the class parameter names
of List are replaced by corresponding class parameter names of MyList. The result

is shown below:

class MyList ( I : Int B : Any )

inherits List

-- Attributes from List.
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public var temp : B

public method insert ( key : I node : B )
public method delete ( key : I )

public method find ( key : I ) : B

-~ Attribute of MyList

public var mykey : I

Then, the class parameter names are replaced by their corresponding constraining

classes. The result is shown below:

class MyList ( I : Int B : Any )

inherits List

-- Attributes from List.

public var temp : Any

public method insert ( key : Int node : Any )
public method delete ( key : Int )

public method find ( key : Int ) : Any

-- Attribute of MyList

public var mykey : Int
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Type substitution is also required when List is a supplier of a client class. When com-
piling the client, the semantic analyzer fetches the signature of the required attribute
of List through the class interface manager. Since parameterized classes can have
different arguments, the semantic analyzer has to perform type substitution on the

supplier signatures every time they are retrieved. Consider the following example:

Example 4.16

class C
var
waiting list : List ( String Person )
public method add_person ( person : Person )

begin

waiting list.insert ( person.name, person ) -- Line 7

end

In Line 7, the signature of insert is retrieved:

public method insert ( key : K node : T )

Since waiting list is declared as an object of Lisi (String Person), K is replaced by
String and T is replaced by Person. The signature after type substitution is then

used in type checking. It is shown below:

public method insert ( key : String node : Person )
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4.4 Resolution of names

Names in a Dee class can either be class names, supplier attribute names, variable (or
object) names, or class parameter names. The following example shows the different

categories of names in a Dee class:

Example 4.17

class C ( T : Comparable )
inherits P
var abc @ T
public method calcuiate (a : T ) : T
var
def : MyType ( String )
begin

def.show ( a );

self.abc := a;

result := a;

end

In this example, class names are C, P, Comparable, MyType and String. Variable
names are abce, def, and a. The supplier attribute name is the method “show” of
the supplier class MyType. Supplier attribute names are only found immediately to
the right of a dot in an application. T is the class parameter name. The method
“calculate” of C is declared but not used. If it is used, it will be treated as a supplier

attribute name.



Dee also supports two special variables “self” and “result”. Every class has a
variable “self”. Every method that returns a result has a variable “result™. The
variable “self” is a convenient way of referring to the current class. The variable
“result” is used to return result of a method. Result is returned by assigning to the
variable “result”. In the above example, “self” has the type C(T) whereas “result”

has the type T.

4.4.1 Using the class interface manager

The information on supplier classes and their attributes are contained in class inter-
faces managed by the class interface manager. The semantic analyzer invokes the
appropriate routines of the class interface manager to obtain the information it needs
at the time the needs arise. If the name refers to the current class or to an attribute
of the current class, the information is already contained in the abstract syntax tree

currently in memory and class interfacc manager routines will not he invoked.

4.4.2 Resolution of class names

Before the semantic analyzer can process inheritance, it has to obtain the interfaces of
all the parent classes indicated in the inherit and extend lists of the current class. The
interfaces describe all attributes of the parents which are to be included in the current
class based on the inheritance rules described in Section 4.1. In Example 4.17, there
is only one parent; P. If there is no class interface for P the class interface manager

will report an error.

When a class name is used in a method or variable signature, the semantic analyzer
also retrieves the required information from the class interface through the class
interface manager so that class conformance can be verified. If the class My'Type in

Example 4.17 exists and is declared as the following:

class MyType ( T : Comparable )
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The class interfaces of the classes MyType and String have to exist and String must

conform to Comparable.

4.4.3 Resolution of supplier attribute names

A class being compiled often needs the attributes of other classes. The need arises
when an attribute is actually used; not declared. The following example demonstrates

the need for an attribute of a supplier:

Example 4.18

class EmployeeData Base
var
data_base : Table ( String Employee )
public method Show Employee ( key : String )

var

one_employee : Employee
begin

one.employee := data_base.search ( key ) -- Line 8
end

The interface containing the attribute “search” is required at line 8 where the message
“search” is sent to the object data.base. The semantic analyzer is responsible for
obtaining the interface for the attribute “search” in the class Table through class
interface manager. It also ensures the correct usage of the attribute in the expression.

In the above example, “search” should be a method with one parameter (or formal
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argument) and a return type. If the attribute is an instance variable of the class
Table, the semantic analyzer will give an error. Type checking is described in details

in Section 4.5.

4.4.4 Resolution of variables names

Dee does not support implicit declaration of variables. Every variable used in a
class has to be declared. Variables can be instance variables of the class, method
local variables, or exception handler variables. Instance variables have a scope of the
current class. Local variables have a scope of the method in which they are declared.
Method parameters and return result are also considered as method locals. Fxception
handler variables have a scope of the exception handler itself. Examples of exception

handler variables are shown below:

Example 4.19

class C
var
abc : Ti
method do_something ( v : Comparable ) : C

var
def : Bool
ghi : T2
begin
def := ....;

attempt abc := ghi.conversion(v);
handle 20 : CO
x0 = ....;

abc := ....; -- Line 14

40




handle xt : C1

x1 := ...,

handle x2 : C2

X2 = ...

end

end

In this example, the variables x0, x1 and x2 are exception handler variables.

When a variable name appears in a statement, the semantic analyzer first searches
for the name in the enclosing handler. If the name is not found, it then continues
the search in the enclosing method and finally the current class. If the name is not
found in any of these three scoping levels, an error will be produced. In general, a
variable declared in an outer scope is accessible in the inner scope. In Line 14 of the

above example, the instance variable “abc” is accessible in a handler.
)

4.4.5 Resolution of class parameter names
Class parameters can be used in declaring objects. Consider the following class:

class C ( T : Comparable )
var abc : T
var def : MyType

The semantic analyzer detects that T is a class parameter name instead of a class
name. It replaces T by Comparable. Type substitution has already been discused in

Section 4.3.
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4.5 Detection of type errors

Dee is a strongly typed object-oriented language with a type system and a confor-
mance relation linked to the inheritance hierarchy. The main task of the semantic
analyzer is to check the type correctness of each statement in each method in the

current class.

4.5.1 Classes and types

A basic class without class parameters is a type in Dee. The declaration “i @ Int”
can be either described as “i is an object of class Int”™ or as “i has type Int”. On
the other hand, a parameterized class denotes many types. Consider the class Set

defined below:

class Set ( T : Comparable )

Variables can be declared as the following:

a: Set ( Int )
b : Set ( String )

Both the types Set ( Int ) and Set ( String ) are valid types according to the rules
of genericity (Section 4.2) but they denote two different types. Therefore, a type is

defined by a class name and its arguments.

4.5.2 Type conformance

In Section 4.1.2, we gave a simple definition of conformance where a class X conforms
to a class Y when Y is a parent of X. A more general definition must consider the

class arguments. Let X and Y be types. The type X is in the form of C (Al,...,An).
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Y is in the form of P ( Bl,..,Bm ). P and C are the parameterized class names. Al
to An are arguments of C and Bl to Bm are arguments of P. X conforms to Y if all
of the following are true:

1. P is a parent of C.

2. The number of arguments of C is the same as the number of arguments of P,

orn=1am.

3. For all x where 1 < z < n, Ax conforms to Bx. In other words, each argument

of C conforms to the corresponding argument of P.

4.5.3 Type checking

With the completion of certain preparation works like processing inheritance and
Ltype substitution, type checking becomes a relatively simple and uniform operation.
The semantic analyzer checks type correctness by applying the type conformance
rules described in Section 4.5.2. repeatedly on various parts of each statement in the

current class.

4.5.4 Type checking statements

An example method is shown below. It is a method of the class Set used to determine

if an object is a subset of another:

Example 4.20

class Set ( T : Comparable )

public method <= (other: Set(T)): Bool

Subset relation
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var x: T i: Iterator(T)
begin
new i.makeiterator(self)
result := true -- Line 6, an assignment statement
from i.init until i.finished do -- Line 7, a loop statement
X := i.current
if other.member(x) -- Line 9, an if block.
then
else result := false
break
fi
i.next -- Line 14, an application as a statement
od

end

An assignment statement in Dec has the general form of vi= I where vis a variable
and must not be the special variable self. I is an expression. The semantic analyzer
determines the type of both v and E and the type of F has to conform to the type of

v. An example of an assignment can be found in Line 6 of the example above.

A Dee statement can be an application in the form of x.m(al,...,an). The receiver
object is x and the message is m. The arguments for the method are al to an.
The application should have the type void when used in this context. However, the
semantic analyzer only gives a warning message if the application has any other types.
An example of an application as a statement can be found in Line 14 of the example
above. The type void is not a class. It is an artificial type used within the semantic

analyzer only. The result type of a method that does not return result is void.

The expressions appearing after the keywords if, elsif, while, and until inust have
the type Bool. The class Bool does not need to be explicitly declared in the current

class. An example of an if block can be found in Line 9 of the example above,
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4.5.5 Type checking expressions

A Dee expression is either a literal constant, a variable or an application. The type
of a literal constant is determined by the parser and it cannot be in error. A variable
must be declared in Dee and the semantic analyzer looks for its declaration in order
to determine its type. The search is in the order described in Section 4.4.4. Another
type of espression is an application. The semantic analyzer spends most of its time

type checking applications. An application is in the general form of:

x.m(al,...,an)

Where:

x is the receiver.
m is the attribute name; the message.

al to an are the meti. J arguments.

The semantic analyzer must find the type of an application. The following example
is used to demonstrate the entire process of finding a type of an application. 1'he

supplier class Set is the one declared in Example 4.20.
Example 4.21

class MyClientClass

public method method.a () : Bool
var

seta : Set ( Int )

setb : Set ( Int )

begin
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if seta <= setb then -- Line 10

else

fi

The if statement in Line 10 is to test if the set seta is a subset of setb. For the if
statement to be type correct, the expression must have the type Bool. The expression

is internally represented as an application show below:

seta. lessequal ( setb )

The types of the local variables are verified when the semantic analyzer is processing
the declaration section of method_a. It makes sure that class Set exists and that the
argument Int conforms to the class parameter of Set. Since the class Set is declared
to be “class Set ( T : Comparable )” and Int conforms to Comparable, the type “Set

(Int )" is a valid type.

When processing the expression, the semantic analyzer needs to find the type of
the receiver object (variable) seta. It searches for its declaration according to the
rules described in Section 4.4.4. It finds out that it is a local variable of method.a

and has a type Set ( Int ).

Next, the semantic analyzer has to obtain the signature of the attribute lessequal
of the class Set. This is done by calling a routine in class interface manager. If the
attribute does not exist, the class interface manager routine returns an error. In our

example, the method _lessequal does exist and has the following signature:

public method _lessequal ( other : Set ( T ) ) : Bool
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Since the name T in the signature is a class parameter, the semantic analyzer needs
to substitute it by the corresponding class argument of the receiver type. In our

example, T is replaced by Int.

public method .lessequal ( other : Set ( Int ) ) : Bool

The method _lessequal has one parameter and there is one argument; setb provided in
the expression. The semantic analyzer proceeds to find the type of setb also according
to the rules in Section 4.4.4. It finds out the setb is a local variable and has the type
“Set ( Int )”. For the method invocation to be type correct, each method argument
must conform to its corresponding method parameter. In our example, the variable
seth and the method parameter have the same type; “Set ( Int )”. Since a type
conforms to itself, the method invocation is correct. As indicated in the signature
of _lessequal, the result type is Bool. Therefore, the entire application has the type

Bool and the if staterient in our example is type correct.

4.6 Detection of structural errors

The semantic analyzer is also responsible for checking the structural consistency of

the methods as well as the class. It has to check the following:

- A constructor must have ‘a result type of its host class.

- If the result type of a method is not void, there must be an assignment to the

variable result in every path through the method.

- If the result type is void, there must not be any assignments to the variable result.

The keywords break #nd continue cannot be used outside of a loop construct.
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- There must not be an assignment to the variable self.

- A class must not contain both abstract methods and constructors.
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Chapter 5

The Implementation

In the first part of this chapter, we describe the key algorithms used by the semantic
analyzer. We present the algorithms in pseudo code notation rather than in the
implementation language (C) in order to highlight the essential points without a mass
of low-level detail. The pseudo code given here, in addition to supporting explanation
of the semantic analyzer, should provide a useful guide to the actual code for anyone

who chooses to extend it.

Although we do not show complete C code, we have included a number of function
prototypes to clarify the explanations. The Appendix B contains complete listings of

a few central functions.

5.1 The pseudo codes

The pseudo codes are designed to depict the programming constructs usually found

in procedural programxfxing languages. There are loops and conditional staterents

which are self explanatory. The comments in the pseudo codes are enclosed in /*
w_.n

and */. The equal sign “=" has an assignment semantics as in the C programming

language. The “==" denotes equality in a comparison; for example:

if ( a <in> A_set == TRUE ) then .....
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We hope to achieve a clear and concise description by gencralizing all data entities in
the semantic analyzer by a collection of simple abstract data entities and a collection

of operations that can be performed on these entities.

5.1.1 Sets

A set is an unordered collection of elements containing no duplicated elements. A set

is defined in the following way:

Let Parent_Attributes = { Add, Subtract, Multiple, Divide }
This defines a set Parent_Attributes which has 4 elements. The operations allowed
to be performed on a set are demonstrated in the following examples:

Let Child_Attributes = { Absolute, Modulo,

Remainder, Add, Subtract }

Parent_Attributes <union> Child_Attributes
yields { Add, Subtract, Multiple, Divide,

Absolute, Modulo, Remainder }

Parent_Attributes <intersect> Child_Attributes
yields { Add, Subtract }

Parent_Attributes - Child_Attributes
yields { Multiple, Divide }

/* Difference removes elements of the second set from the first. */

Add <in> Child_Attributes yields TRUE.




Multiply <in> Child_Attributes yields FALSE.

Child_Attributes <equals> Parent_Attributes yields FALSE.

Child_Attributes <not equals> Parent_Attributes yields TRUE.

<Card> Child_Attributes yields 5.

The <Card> operator returns the cardinality of a set.

5.1.2 Lists

A list is an ordered collection of elements. There may be duplicated elements in a
list. Lists are polymophic. They can contain elements of any type including list type.

Therefore, we can have a list of lists. Lists are defined in the following form:

Type-list = list[ Int, Float, Bool ]

Allowed operations on lists are:

The <head> operator returns the first element of the list;

for example: .

<head> Type_list yields Int

The <tail> operator returns the list with the first element

removed; for example:



<tail> Type_list yields list[ Float, Bool ]

The <len> operator returns the length of the list; for example:

<len> Type_list yields 3

The semantic analyzer represents the type of a variable in a Dee program as a list;

for example:

Let Type(t) denotes the type list of the type t.

If,

Var Payroll : Table ( Straing, PayInfo )

Then,

Type(Table) = list[ Table, Type(String), Type(PayInfo) ]

In general,

Type(t)= list[type 1, ..., type n]
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where,

type 1 is the class name of the type and type 2 to n are the type argu-

ments. Note that the type arguments can also have arguments. Each

type argument is also a type list.

Another example of a list is the signature of an attribute; for example:

Let Signature(a) denotes the signature of the attribute a.

If,

method convert( operand : Int ) : Float

Then,

Signature(convert) = list[ Type(Int), Type(Float) ]

In general,

Signature(a)= list[ type 1, ..., type n ]

where:
In the case of a method:
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type 1 to n-1 are the types of each corresponding parameter. Type n is

the return type if exists.
In the case of a variable:
There is only one type in the list.
Each type in the list is itself a list as defined above (Type(t)).

5.1.3 Maps

A map maps elements of one set (called the domain) to elements of another set(called

the range). Maps can be explicitly declared in the following form:

Variable_map_of_c = map[ Index -> Int, Response -> Bool,

Salary -> Float, Vacation -> Int ]

The <Dom> operator returns the domain of the map; for example:

<Dom> Variable_map_of_c yields { Index,

Response, Salary, Vacation }

The <Rng> operator returns the Range of the map; for example:

<Rng> Variable_map_of_c yields { Int, Bool, Float }

A mapping may be applied to an element of its domain to yield the corresponding

element from the range. This is similar to function application. In the above example,

Variable_map_of c(Index) yields Int whereas Variable_map_of_c(Salary) yields Float.



Maps are used in the semantic analyzer to map attributes to their signatures. This

is similar to a table of signatures with the attribute name as the key. For example:

Let Attribute_map_c = map[ al -> Signature(al), ...,

an -> signature(an) ]
Therefore, we can retrieve the signature of an attribute by:

Attribute_map_c(al) yields Signature(al).

5.2 The algorithms

Let:

current class be c.

: class ¢ inherits class x }

I
A
»

Inherit_set(c)

: class ¢ extends class x }

]
)
»

Extends_set (¢)
= {v : v is an instance variable of class c }

Var_set(c)

Method_set(c) = {m : m is a method of class ¢ }

Parent_set(c) { A set of all parents of class c }

Inherit_set(c) <union> Extends_set(c)

Attribute_set(c)= { A set of all attributes of class c }

Var_set(c) <union> Method_set(c)
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Child_map

[ map of all attributes declared in c to

their signatures ]

[ a0 -> Signature(a0), ..., an -> Signature(an) ]

Total_Inherit_set(c)={ x : x is an attribute of at least one
of the parents of c and is not declared

in the class c }

Total_Attri_set(c)= { A set of all attributes of the class c

after the effect of inheritance }

Ancestor_set(c) = { A set of all ancestors of c in all levels of
the inheritance tree. }
/*
For example, C inherits from B and B inherits
from A. The Ancestor_set(C) is { B, A }.
*/

The distinction between a set and a list is important. All atiributes of a class is
collected in a set since an attribute cannot be declared more than once. The parent
classes are collected in a set since the same parent class name cannot appear more
than once in the inherits and extends section of the source file . The implementation

must detect duplication and produce appropriate error messages.

Many of the algorithms in this section check a relationship that must exist between
corresponding components of two lists. Clearly, the relationship cannot exist if the
lists do not have the same length. Accordingly, the algorithms check that the two

lists have the same length.
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5.2.1 The type conformance algorithm

/*
Input : Type lists Type_list0 and Type_listi.
Output : TRUE if Type_listO0 conforms to Type_listl.

FALSE otherwise.

For Type_listO to conform to Type_listl, the type of
Type_listO and its type arguments have to conform to
that of Type_listl.

*/

Function Conform( Type_list0O, Type_listl ) : Bool
Begin

/* Type_list0 and Type_listl are the type list of two types */

if ( <len> Type_list0 <> <len> Type_listl ) then
return ( FALSE )

if ( <head> Type_list1l

<in> Ancestor_set(<head> Type_list0) ) then {

Type_list0 = <tail> Type_list0

Type_listl = <tail> Type_listl
/* Now <len> Type_listi should be one less. */
loop <len> Type_listl times {
if ( Conform( <head> Type_listO,
<head> Type_listi ) == FALSE ) then
return ( FALSE )
Type_list0 = <tail> Type_listO

Type.listl = <tail> Type_listl
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}

else

return ( FALSE )

return ( TRUE )

End Conform

5.2.2 The type equality algorithm

/*
Input : Type lists Type_listO and Type_listl.
Output : TRUE if Type_list0 equals to Type_listl.
FALSE otherwise.
For Type_list0 to equal to Type_listl, the type of Type_listO
and its type arguments have to equal to that of Type_listl.

*/

Function EqualType( Type_list0, Type_listl ) : Bool
Begin

/* Type_list0 and Type_listl are the type list of two types */

if ( <len> Type_list0 <> <len> Type_listi ) then
return ( FALSE )

if ( <head> Type_list0 == <head> Type_listl ) then {
Type.list0 = <tail> Type_list0
Type.listl = <tail> Type_list1

/* Now <len> Type_listl should be one less. */
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loop <len> Type_listl times {
if ( EqualType( <head> Type.listO,
<head> Type_listl ) == FALSE ) then
return ( FALSE )
Type_.list0 = <tail> Type_listO

Type_listi = <tail> Type_listl

}

else

return ( FALSE )

return ( TRUE )
End EqualType

5.2.3 The signature conformance algorithm

/*
Input : Child signature list SigChild and parent
signature list SigParent.
Output : TRUE if SigChild conforms to SigParent.
SigChild conforms to SigParent only if all argument types
and the return type of SigChild conforms to that of SigParent.

*/

Function SignatureConform( SigChild, SigParent ) : Bool
Begin
/* SigChild and SigParent are lists representing two

* signatures */
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if ( <len> SigChild <> <len> SigParent ) then
return ( FALSE )
else {
loop <len> SigChild times {
if ( Conform( <head> SigChild,
<head> SigParent )== FALSE ) then
return ( FALSE )
else {
SigChild = <tail> SigChild

SigParent = <tail> SigParent

}
return ( TRUE )

End SignatureConform

5.2.4 The signature equality algorithm

/%
Input : Child signature list SigChild and parent
signature list SigParent.
Output : TRUE if SigChild conforms to SigParent.
SigChild equals to SigParent only if all argument types and
the return type of SigChild equals to that of SigParent.
*/

Function EqualSignature( SigChild, SigParent ) : Bool
Begin
/* SigChild and SigParent are lists representing

* two signatures */
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if ( <len> SigChild <> <len> SigParent ) then
return ( FALSE )
else {
loop <len> SigChild times {
if ( EqualType( <head> SigChild,
<head> SigParent ) == FALSE ) then
return ( FALSE )
else {
SigChild = <tail> SigChild
SigParent = <tail> SigParent

}
return ( TRUE )
End EqualSignature

5.2.5 The inheritance algorithm

/*
Input : current/child class c
Output : Total_Attri_set(c)

*/

Procedure Inheritance

Begin
/*

Before inheritance, there are only attributes declared in

the current class; c.
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*/
Total_Attri_set(c) = Attribute_set(c)
/* Start of loop handling inheritance and redeclarations. */
for each p <in> Parent_set(c) {
Let Redeclare_set(c) =
Attribute_set(c) <intersect> Attribute_set (p)
Let Inherit_set(c) = Attribute_set(p) - Redeclar_set(c)
Let Parent_map = [ map of all attributes of p to their signatures ]

/* Handles inheritance */

for each a <in> (Inherit_set(c)) {

if ( a in Total_Inherit_set(c) ) then {

/* The attribute is inherited from multiple parents */
sc = Total_Inherit_Set( a )
/* Signature(a) in a previously processed

* parent class. */
sp = Parent_map( a ) /* Signature(a) in the parent class */
if ( EqualSignature ( sc, sp ) == FALSE ) {

ERROR : signature a in ¢ is not the same as

a in parent p. A From clause is required.

else {
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/* Inherits the attribute by copying the signature. */

Total_Attri_set(c) <union> { a }

Total_Inherit_set(c) = Total_Inherit_set(c) <union> Inherit_set(c)

/* Handles redeclaration */

for each a <in> Redeclare_set(c) {

sc = Child_map( a ) /* Signature(a) in the child class */
sp = Parent_map( a ) /* Signature(a) in the parent class */
if ( SignatureConform( sc, sp ) == FALSE ) {

ERROR : signature a in c does not conform to

a in parent p.

}
if ( a <in> Method_set(c) and it has a from clause ) {

if ( the class specified in the from clause == p ) {

The method body of a in p has to be concrete.

}
}
} /* for a */
} /x for p */

End Inheritance
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5.3 The program design
5.3.1 The Abstract Syntax Tree

The central data structure of the Dee compiler is the abstract syntax tree. Although
the abstract syntax tree is built by the parser, it is not a parse tree. It is abstract in
the sense that most terminal symbols are discarded and only the essential structure
of the source program is retained. An abstract syntax tree of a Dee program is
shared by all the three processing modules; the parser, the semantic analyzer and,
the code generator. The parser builds the abstract syntax tree based on the source
program. The semantic analyzer decorates the abstract syntax tree with required
information. Finally, the code generator emits codes based on the abstract syntax
tree. The abstract syntax tree is a means of communicating the processing results of

one module to another.

An abstract syntax tree is made up of nodes connected together to represent all
elements in the source program. Abstract syntax tree nodes are implemented in € as
a structure. The structure is assigned with the appropriate information depending
on which Dee program construct the node represents. The definition of the abstract

syntax tree node structure can be found in Appendix A.

5.3.2 Interfaces with other modules

In developing the Dee compiler, we found that the existence of a well-defined, cen-
tral data structure such as the Abstract Syntax Tree greatly simplified the task of
specifying interfaces between compiler components, and thefefore to the concurrent
implementation of these components by different memebers of the team. We have

defined only one entry point to the semantic analyzer as the following:

void SA_CheckClassSemantics ( AST );
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The parameter is an abstract syntax tree representing the current class. The semantic
analyzer module is only called once for each compilation unit after the parser has

completed its work.

When an error is encountered during semantic analysis, the semantic analyzer
calls a common error handling routine to record the error. The calling convention of

the error routine is as the following:

void Error ( StringPtr, int );
The first parameter is a pointer to a string containing an error message. The second
parameter is the line number where the error occurs.

As described in Chapter 3 and Chapter 4, the semantic analyzer accesses class
interfaces through class interface manager [1] [9). We have identified seven class
interface manager functions to be used in the semantic analyzer. The retrieval func-
tions allocate and return an abstract syntax sub-tree representing the inforimation
requested. The semantic analyzer is responsible for freeing the sub-tree if it is no

longer required.
int CIM_Init();

This function prepares the class interface manager for further processing. It is only

called once at the start of the semantic analyzer module.
int CIM_Close();

This function terminates all class interface manager accesses and it should be called

after all semantic processing is done and before exiting the semantic analyzer module.
int CIM Write.Class( AST );

This function converts an abstract syntax tree to a class interface and the new inter-
face is added to the data base. It should only be called with an abstract syntax tree

representing a valid Dee program without any errors,
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AST CIM Read Class( StringPtr );

This function retrieves the interface document for a class and converts the interface
to an abstract syntax tree. The class name is passed as an argument. The function

returns an abstract syntax tree if the class is found. If not, it returns a NULL pointer.
int CIM_Get_Class Params( StringPtr, AST * );

This function retrieves the interface of a class and returns the class parameter list
in the form of an abstract syntax sub-tree. The first parameter is the class name.
The second parameter is an address of a pointer variable which is used to contain
the address of the abstract syntax sub-tree returned by the function. This function

returns 0 if the class is found and returns 1 if the class is not found.
int CIM Get.AncestorList( StringPtr, AST * );

This function retrieves the interface of a class and returns the ancestor class list
in the form of an abstract syntax sub-tree. The first parameter is the class name.
The second parameter is an address of a pointer variable which is used to contain
the address of the abstract syntax sub-tree returned by the function. This function

returns zero if the class is found and returns one if the class is not found.
int CIM_Get AttributeItem( StringPtr, char *, AST * );

This function retrieves the interface of a class and returns the attribute signature in
the form of an abstract syntax sub-trec. The first parameier is the class name. The
second parameter is the name of the attribute. The third parameter is an address of
a pointer variable which is used to contain the address of the abstract syntax sub-tree
returned by the function. This function returns zero if the class is found and returny

one if the class is not found.
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5.3.3 Organization of the semantic analyzer module

The task of semantic analysis is divided into a series of steps described in the flow

chart in Figure 5.1.

The design of the semantic analyzer is modular enough that the entire process
of semantic analysis is clearly depicted by the main routine of the semantic ana-

lyzer(SA _CheckClassSemantics). The routine is shown in Appendix B.
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Chapter 6

Conclusion

6.1 Full implementation

Although the exercise in designing and implementing an Object-Oriented language
is a valuable experience by itself, the success of the Dee research project is judged by
the quality of its end products; the Dee language, the compiler and its development
environment. Dee is a working system available for students to conduct further re-
search. It can also be made available for production-quality software development.
It is crucial for the Dee compiler to work correctly; ensuring that only valid Dee pro-
grams are compiled into executable form. The semantic analyzer plays an important
role in verifying source program correctness. Not only do we need to establish a set
of consistent and ecasy to implement semantic rules, the semantic analyzer also has

to enforce all the semantic rules described in Chapter 4.

Although the functional specification described in Chapter 4 is informal, we spent
much effort in exhaustively enumerating all possible situations. This set of concise

and relatively simple semantic rules helps to ensure a full implementation.

I left the project before the Dee compiler was completed. After my departure,
several errors were found in the code for the semantic analyzer. Most of these errors
were minor, concerning memory management, AST traversal, and error reporting.

There were two major errors.



1. The “ancestor list” constructed by the semantic analyzer originally contained only
the classes mentioned in the “inherits” and “extends” declarations of the source
program. This list was later extended to include all of the ancestors of the

current class, as its name suggests.

2. If a class might inherit the same attribute from two parents, the user is required
to include a “from” clause indicating the desired parent. The type checker must
nevertheless check the signatures of the attribute in both parents, not just the

parent from which the attribute is inherited.

In retrospect, it is clear that both of these errors are actually design errors. The
Dee compiler is a complex artefact, and it was not possibie for us to realize all of the
implications of the design at the beginning of the project. We learned two lessons
from errors of this kind. First, they were relatively casy to correct, which illustrates
the importance of the simple and robust architecture that we chose for the compiler.
Second, these errors would have been discovered much carlier if we have used formal

techniques to specify the compiler components.

6.2 Maintainability

We view the Dec project as an on-going research project as well as a production-
quality software product which has a life span far beyond the initial development
period. Maintainability is the key to extended software life span. The program
design of the semantic analyzer has to be well disciplined. This is particularly true
for the Dee semantic analyzer where there is no standardized or automated software

tools to help its development.

For a program module to be maintainable, it has to be readable. We define
readability as the overall ease of understanding the program structure as well as
the algorithms involved rather than the superficial coding style. However, a proper

coding style is also necessary to ensure readability. In the design of the Dee semantic
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analyzer module, we strive to derive simple and concise algorithms that are consistent
with the overall approach of the entire module. The module as a whole represents
a systematic approach to semantic checking rather than a mixture of odd semantic
checking routines. The major algorithms as presented in Chapter 5 are conceptualized
as numerous loops iterating through elements of various lists or sets. Simple concepts
like these allow us to perform the best implementation possible. They can also be

casily understood by those who will be maintaining the semantic analyzer module.

Another attribute of maintainability is modularity. The semantic analyzer module
is designed to interact with the other components of the compiler in a well defined
fashion. Module independence is achieved by loose coupling with the rest of the
compiler as well as information hiding. Module independence allows modifications to
the module with minimum effects on other modules. The only common link to the
three compiler modules; the parser, the semantic analyzer and, the code generation,
is the abstract syntax tree. The abstract syntax tree structure is well defined and
the access to the tree by each module is also well defined. The semantic analyzer
does not need any other information from the parser other than the abstract syntax
tree. This is demonstrated by the only entry point to the semantic analyzer where

the only function parameter is the abstract syntax tree of the current class.

The interactions with the class interface manager are also well defined. In fact,
they were defined well before the implementation stage. The early definition allowed
development efforts for the semantic analyzer and the class interface manager to pro-
ceed in parallel. The seven functions identified in Section 5.3.2 represent the only links
in the semantic analyzer to the class interface manager. The entire process of class

data base management and class information retrieval are completely encapsulated.

After the original developers of the Dee project have left the project, there were
various enhancement made to the semantic analyzer. The semantic analyzer is read-
able enough that the new developers can incorporate the new features with minimal

learning effort.

We believe that we have established a set of concise and consistent semantic rules
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for the Dee language. We have also been successful in implementing the rules in the
Dee semantic analyzer in a modular fashion and within a relatively short time frame.
We are confident that given the current design and code quality, we have provided a

solid foundation for future works in the Dee project.
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Appendix A

The Abstract Syntax

Structure

/*
* FILE : deedefs.h
* Dee AST struct definitions.

*/

#ifndef _DEEDEFS_
#define _DEEDEFS_

#define NIL NULL
typedef enum { FALSE, TRUE } Boolean;
typedef int HashIndex;

typedef char *StringPtr;

/* Loop types */

Tree

typedef enum { Infin_1, While_1l, Until_l } LoopType;
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/* Literal Number types */

typedef enum { Int, Float, Byte } NumberType;

/* Mode for local variable */

typedef enum { Param, Result, LocalVar } LocalModeType;

typedef enum { IGNOREATTR, FROMSELF,
FROMPARENT, FROMCLAUSE } AttriSrc;

typedef enum { MethodM, ConsM } MethodType;

/* A method body is either a ‘‘from’’, abstract,

* concrete or an Instr */

typedef enum { BodyUnknown, BodyFrom, BodyAbs, BodyConcrete,
BodySpecial } BodyType;

/* An ident node can be one of local, inst var, handler

* local or method */

typedef enum { IdenLocal, IdenInstVar, IdenMethod,
IdenCons, IdenHandlerLocal } IdenType;

/* Abstract syntax tree definitions. */
typedef enum {

List, Class, Type, Var, Method,
Local, Assign, If, IfPair, DolLoop, Loop,

-1
(1]



Apply, Iden, Break, Continue, Nil,

Attempt, Handler, Signal, Bool, Number,
String, Null, Undef, Signature, SymTab, CTemp
} ASTNodeType;

typedef struct ASTNode *AST;

struct ASTNode {
ASTNodeType NType;

int Column, Line;

union {

/* Lists of nodes are reprsented with List nodes. The

* empty list is represented by NIL. */

struct {
AST Node;
AST Next;
} List;

/* A Class node describes an entire class. */

struct {
HashIndex ClassName; /* Name of the class */
StringPtr ClassComment; /* Comment following class
* header */
AST ClassParamlList; /* List of Signature nodes */
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/* List of the actual classes corrspnding to formal

* class params */

AST InheritList; /* List of Class for
* inherited classes */
AST ExtendList; /* List of Class for
* extended classes */
AST InvarList;
AST Attributelist;
AST Ancestors; /* list of all ancestors
* of this class */
AST Uses; /* The classes of all
* variables used in */
/* stmts of all methods */
Boolean ClassHasSpecial; /* true if the class has any
* gpecial methods */

} Class;

/* A type has a name and a list of arguments, which

* are themselves types. E.g. Array[Table[Int Stringl]. */

struct {
HashIndex TypeName; /* Type name */
AST TypeArgList; /* List of Type containing
* arguments */
} Type;
struct {

HashIndex Sigld;
AST SigType;

7



AST SigOriginalType;

int Stack0Offset;

} Signature;

%

/* Never altered by type

substitution */

/* Instance variable descriptor. */

struct {
StringPtr VarComment;

AST VarType;

Boolean VarPublic;

AttriSrc AttributeSource;

AST SourceClass;

} Var;

/* Method descriptor. */

struct {
Boolean MethPublic;
MethodType MethKind;
HashIndex MethName;
StringPtr MethComment ;
AST Result;

AST MethOriginalResult;

AST MethLocallList;

AST MethParamList;

/*
/*
/*
/*

/%
/*

*
/*

*
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Type node giving the type of
the variable */

True if this is a

public variable */

True if this is a public method#*/
One of method or cons */

Method name */

Comment following header */
never altered by SA */

List of Local local

var descriptors */

This is a pointer into the

MethLocallist where the



* parameters start

* (not sep. list)*/

AST Require; /* Require part of a method */
AST Ensure; /* Ensure part of a method %/
AST Body; /* List of statement nodes  */

BodyType MethBodyType; /* What kind of body does this

* method have */

AST DefinedBy; /* Set by the SA */
AST ImplementedBy; /* Set by the SA */
int LocalCount; /* Number of local variables */
int ParamCount; /* Number of parameters */

AttriSrc AttributeSource;
BodyType FromBodyType; /* The true body type of a
* from body */
} Method;

/* Local variable descriptor. Local variables include
* parameters, result, self, and declared local

* variables. */

struct {
HashIndex LocName; /* Local variable name */
AST LocType; /* Type node giving type
* of variable */
} Local;
struct {

HashIndex Id;
IdenType IdenKind;
int LocDisp; /* Stack displacement if
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* a localx/
AST IdenType; /* type of this id filled
* in by the AST =*/
} Iden;

/* The next group of nodes represent statements. */

/* Assignment statement: LHS := RHS. LHS is always a

* local variable or self instance var */

struct {
AST AssignVar; /* LHS Identifier node
AST AssignExpr; /* RHS expression subtree
} Assign;

/* If statement */

struct {
AST IfPairList; /* List of IfPair nodes */
AST IfElse; /* List of statements in
* the else part */
} If;

/* A pair consisting of an expression E and a list
* of statements S, corresponding to "if E then S"

* or "elsif E then S". */ °

struct {
AST PairExpr; /* Bool expression */
AST PairStmts; /* List of statements */
} IfPair;
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/* A controlled loop: “"from S until E while E do S od". */

struct {
AST FromStmts; /* List of initialization
* gtatements */
AST UntilCond; /* Bool expression */
AST WhileCond; /* Boolean expression */
AST LoopStmts; /* List of loop statements */
} Loop;

/* Attempt statement: attempt S handlers end */

struct {
AST AttStmtList; /* List of statements to
* be attempted */
AST AttHandlerList; /* List of Handler
* exception handlers */
} Attempt;

/* An exception handler: var:type statements. */

struct {
AST HandlerVar; /* Local node for handler
* variable */
AST HandlerStmtList; /* List of statements for
* handler x*/
} Handler;

/* Signal statement */

struct {
AST SignalExpr; /* Expression node for
* exception object */

} Signal;
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/* An application node can occur either as a

* statement or an expr. */

struct {
AST Receiver; /* Either an Apply node or
* an Iden node */
HashIndex AttrName; /* Name of the method in
* the application */
IdenType AttrKind; /* can only be InstVar,
* Method or Cons  */
AST AttrType; /* static class of the
* attribute */
AST ApplylList; /* List of expressions:
* the arguments */
} Apply;

/* The following nodes represent expressions. */

/* The expression "undefined Expr". */
struct {

AST UndefExpr; /* Expression node */
} Undef;

/* A boolean literal: either TRUE or FALSE. */
struct {

Boolean BoolVal;
} Bool;

/* A numeric literal which may be an Int or a Float. */

struct {
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NumberType NumKind; /* an int or a float*/
int IntVal; /* if int, here’s the
* real value */
double DoubleVal; /* if float */
unsigned char ByteVal;
StringPtr NumVal; /* String representation

* of value */

} Num;
/* A string literal */
struct {
StringPtr StrVal;
} String;

} Tag;

}; /* ASTNode */
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Appendix B

Listings of the key routines in the
semantic analyzer

void SA_CheckClassSemantics ( class )
AST class;
{

extern Boolean SA_ForceCIMWrite;

if ((SA_HashTable =
(AST *) calloc(l, sizeof (AST) * HASHMAX)) == NULL)

{
SA_FatalError(
"Cannot allocate hash table for semantic analysis");
}
else
{

CIM_Init ();

current_class = class;
SA_InitHashCodes ();
SA_ValidateClassParamType ( class );
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*

*

SA_DetectDuplicates ( class );
SA_InitHashTable ( class );
SA_LoadParentAST ( class, INHERITED ),
SA_LoadParentAST ( class, EXTENDED );
SA_BuildAncestorList ( class, INHERITED );
SA_BuildAncestorList ( class, EXTENDED );
SA_AddParentAncestors( class );
SA_TypeSubstitution ( class );
SA_InheritAttributes ( class, INHERITED );
SA_InheritAttributes ( class, EXTENDED );
SA_WrapupInheritance ( class );
SA_BuildSelfType( class );
SA_InitUndefinedSig();
SA_CheckMethodBodies ();
if ( IsError () == FALSE

|| SA_ForceCIMWrite == TRHE )

CIM_Write_Class ( class );
CIM_Close ();

}
free ( SA_HashTable );

Determines if type0 conforms to typel. Accepts NULL as
argument. If both type0 and *ypel are NULL returns TRUE.
If only one: of them is NULL, returns FALSE. It is
possible type0 and typel has the same name, if all class

parameters conform, return TRUE. typeO is the child.



* typel is the parent.
*/

static Boolean SA_Conform ( type0, typei )
AST typeO; AST typel;
{

register AST typeO_arg_list;

register AST typeO_arg;

register AST typel_arg._list;

register AST typel_arg;

Boolean status = FALSE;

if ( type0 == NilType )

return TRUE;
else if ( typel != NULL && SA_IsAncestor( typeO, typel ) )
{

typeO_arg_list = type0->Tag.Type.TypeArgList;

typel_arg_list = typel->Tag.Type.TypeArglList;
while ( typeO_arg_list && typel_arg_list ) {
typeO_arg = typeO_arg_list->Tag.List.Node;
typel_arg = typel_arg_list->Tag.List.Node;
if ( ! SA_Conform ( typeO_arg, typel_arg ) )
return FALSE;
typeO_arg_list = typeO_arg_list->Tag.List .Next;
typel_arg_list = typel_ 'arg_list->Tag.List .Next;
} /* while */
if ( ! typeO_arg_list &% typel_arg_list )
return FALSE;
else return TRUE;
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else

return FALSE;

/*
* Given two type ast sub-tree containing their arguments.
* This function recursively checks to see if they denote

* the same type.
*/

static Boolean SA_EqualType ( type0, typel )
AST typeO; AST typel;
{

register AST typeO_arg_list;

register AST typeO_arg;

register AST typel_arg_list;

register AST typel_arg;

Boolean status = FALSE;

if ( type0 == NULL && typel == NULL ) {
status = TRUE;
¥
else {
if ( typeO != NULL
&& typel != NULL
&& type0->Tag.Type.TypeName == typel->Tag.Type.TypeName ) {

status = TRUE;

typeO_arg_list = type0->Tag.Type.TypeArgList;

typel_arg_list = typel->Tag.Type.TypeArgList;
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while ( typeO_arg_list &% typeO_arg_list ) {
typeO_arg = typeO_arg list->Tag.List.Node;
typel_arg = typel_arg_list->Tag.List.Node;
if ( (status =
SA_EqualType ( typeO_arg, typel_arg )) == FALSE ) {
break;
}
typeO_arg_list

type0_arg_list->Tag.List.Next;

typel_arg_list = typel_arg_list->Tag.List.Next;
if ( typeO_arg_list || typel_arg_ list ) {
status = FALSE;

}

return ( status );

static void SA_MethSigConform ( parent_method, child_method )
AST parent_method; AST child_method;
{

register AST parent_params;

register AST child_params;

register int i;

char * method_name

= HashItem(parent_method->Tag.Method.MethName);
int parent_i;

int child_i;

if ( SA_Conform (
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child_method->Tag.Method.Result,
parent_method->Tag.Method.Result ) == FALSE ) {
sprintf ( wrkstr,
"Parent and child have incompatible result types \
in method %s.",
method_name ) ;

SA_Error ( wrkstr, child_method->Line );

parent_i = parent_method->Tag.Method.ParamCount;
child_i = child_method->Tag.Method.ParamCount;
if ( parent_i !'= child_i ) {
sprintf ( wrkstr,
"Parent and child have different number of \
parameters in method %s.",
method_name ) ;

SA_Error ( wrkstr, child_method->Line );

/*
* Even if there is an error we still checks the params.

* Use the smaller of the two param. count

*/

i = ( parent_i < child_i ? parent_i : child_i );
child_params = child_method->Tag.Method .MethParamList;
parent_params = parent_method->Tag.Method .MethParamList;
for ( ; i; i--) {
if ( SA_Conform ( child_params->Tag.List.Node->
Tag.Signature.SigType,
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parent_params-> Tag.List.Node->
Tag.Signature.SigType) == FALSE ) {
sprintf ( wrkstr,
“"Incompatible parameter type redeclaration; \
parameter %s, method s.",
HashItem (child_params->
Tag.List.Node->Tag.Signature.Sigld),
method_name ) ;
SA_Error ( wrkstr, child_method->Line );
}
child_params = child_params->Tag.List.Next;

parent_params = parent_params->Tag.List.Next;

/*
* This function is similar to SA_MethSigConform except that

* it checks * if the signatures are the same.

*/

static void SA_MethSigEqual ( parent, method0, methodl )
AST parent; AST methodO; AST methodi;
{

register AST method0_params;

register AST methodl_parars;

register int i;

char * method_name = HashItem (method0->Tag.Method.MethName);

char * parent_name = HashItem (parent->Tag.Class.ClassName);
int methodO_i;

int methodl_i;
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if ( SA_EqualType ( method1->Tag.Method.Result,
method0->Tag.Method.Result ) == FALSE )

sprintf ( wrkstr,
"Multi-parent method %s in parent %s has \
incompatible result type.", method_name, parent_name );
ypP P

SA_Error ( wrkstr, 0 );

}
method0O_i = method0->Tag.Method.ParamCount;
method1_i = method1->Tag.Method.ParamCount;

if ( methodO_i !'= method1_i ) {
sprintf ( wrkstr,
"Multi-parent method %s in parent %s has \
incompatible number of parameters.", method_name, parent_name ),

SA_Error ( wrkstr, 0 );

/*
* Even if there is an error we still checks the params.

* Use the smaller of the two param. count

*/

i = ( method0_i < methodi_i ? methodO_i : methodi_i );

methodl_params = method1->Tag.Method.MethParamlList;

methodO_params

for ( ; i; i-- ) {

method0->Tag.Method .MethParamList;

if ( SA_EqualType ( methodi_params->Tag.List.Node->
Tag.Signature.SigType,
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methodO_params->Tag.List.Node~>
Tag.Signature.SigType) == FALSE ) {
sprintf ( wrkstr,
"Parameter %s of multi-parent method %s in \
parent %s has incompatible type.",
HashItem (methodl_params->
Tag.List.Node->Tag.Signature.Sigld),
method_name, parent_name );
SA_Error ( wrkstr, 0 );
}

methodl_params = methodl_params->Tag.List.Next;

method0_params->Tag.List.Next;

methodO_params

rtatic void SA_InneritAttributes ( class, inherit_type )
AST class; InheritType inherit_type;
{

register AST parents_list;

if ( inherit_type == INHERITED )

parents_list = class->Tag.Class.InheritList;

else

parents_list = class->Tag.Class.ExtendList;

/* Inherit attributes from each parent specified. */
vhile ( parents_list ) {

if ( parents_list->Tag.List.Node->NType == Class )

SA_InheritFromOneParent
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( parents_list->Tag.List.Node, inherit_type );
parents_list = parents_list->Tag.List.Next;
} /* end while */

static void SA_InheritFromOneParent ( parent, inherit_type )

AST parent; InheritType inherit_type;

{

register AST attribute_list =
parent->Tag.Class.Attributelist;

register AST attribute;

while ( attribute_list ) {
attribute = attribute_list->Tag.List.Node;
attribute_list = attribute_list->Tag.List.Next;

switch ( attribute->NType ) {

case Var : {
HashIndex var_name =

attribute->Tag.Var.VarType->Tag.Signature.Sigld;

if ( SA_HashTable [var_name] == NULL ) {

SA_InheritOneVar ( parent,

attribute, inherit_type );

}
else {

switch ( SA_HashTable[var_name]->

Tag.Var.AttributeSource ) {
case FROMSELF :
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SA_RedeclareVar ( attribute, inherit_type );
break;

case FROMPARENT :
SA_VarWithMultiParents ( attribute );
break;

break;

case Method : {
HashIndex method_name =

attribute->Tag.Method.MethName;

attribute->Tag.Method.FromBodyType = BodyUnknown;
if ( SA_HashTable [method_name] == NULL ) {

SA_InheritOneMethod ( attribute, inherit_type );
}
else {

switch ( SA_HashTable[method_name]->

Tag.Method.AttributeSource ) {
case FROMSELF :
SA_RedeclareMethod ( parent,
: attribute, inherit_type );

break;

case FROMPARENT :

SA_CheckMethInherit ( parent,
attribute, inherit_type );

94



break;

case FROMCLAUSE :

/*
* Don’t mind having another parent with the
* gsame method. The from clause has already
* been resolved. However, the signatures have
* to conform.
*/

SA_MethSigConform ( attribute,

SA_HashTable[method_name]);

break;
}
}
break;
}
default :

SA_FatalError ("Non attribute in attribute list.");

break;

} /* end switch */
} /* end while */





