Biblioth

National ibrary
du Canada

of Canada

il

Canadian Theses Service

Oftawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

It pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, anc
subsequent amendments.

NL-339 (r. 88/04) ¢

e nationale

Service des théses canadiennes

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
Cuniversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d’'un ruban usé ou si I'université nous a fait
parvenir une photocopie de qualit% inférieure.

La reproduction, méme partielle, a2 cette microforme est

soumise A la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

. Canadia

A Prototype of an ABL Syatax-Driven Editor
Supporting Software Development

Kenneth Finkelstein

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Congprdia gniversity
Montreal, Quebec, Canada

December 1988

(:) Kenneth Finkelstein, 1988

i+l

Bibliothéque nationaie

National Library
du Canada

of Canada

Canadian Theses Service

Ottawa, Canada
K1A ON3

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la theése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-51354-3

el

Canada

ABSTRACT

A Prototype of an ABL Syntax-Driven Editor
Supporting Software Development

Kenneth Finkelstein

A new set of ABL (Alternative Based Language) tools has
been designed which addresses the problems in the existing
ABL implementations, in particular with respect to the
user-interface. The ABL methodology was introduced by W.
M. Jaworski as a way to deal with the crisis in software

development.

This crisis had arisen because software systems were
getting increasingly large, and the previous techniques that
had been used for software development were just not able to
meet the demands created by these new large software
systems. In order to make large software systems more
manageable, the process of designing, implementing, and
maintaining them was broken down into discrete parts, which

were collectively referred to as the software lifecycle.

Using ABL tools, a number of software projects have been
designed and implemented, and the people involved have felt

that though there were problems with the ABL tools, the ABL

iii

methodology had been instrumental in the success of these

software projects.

The use of a syntax-driven editor goes a long way
towards creating an environment in which software systems
can be built without the use of paper and pencil. 1Its full
screen editing facilities, and quick response time, make it
possible to design software systems in a natural, intuitive

fashion.

iv

e T W AT e e

e TR

Acknowledgements

I would like to thank Professor W. M. Jaworski for
giving me the opportunity to work with the ABL methodology

professionally.

I would like to thank Professor J. Opatrny for
helping make this thesis a reality. It would not have been

completed without his guidance.

I would 1like to also thank Greta Nemiroff for
teaching me that it is alright to succeed, and for being

such a good friend.

I would like to thank my parents for their help and
understanding, and finally, I would like to thank Lecna
Heillig, who has had to put up with me as a student for
almost nine years. Let us hope that we will have more free

time together over the next nine.

TABLE OF CONTENTS

INTRODUCTION
CHAPTER 1. AN INTRODUCTION TO SOFTWARE ENGINEERING
1l.1. The Specification Stage
l.2. The Design Stage
1.3. The Implementation Stage
1.4. The Testing Stage
1.5. The Maintenance Stage
CHAPTER 2. AN INTRODUCTION TO THE ABL METHODOLOGY

2.1. An Informal Introduction
3.2. Building Software Systems with the ABL
Methodology

CHAPTER 3.

THE ABL METHODOLOGY IN INDUSTRY

3.1. Automating a Rail Finishing Milil
3.2. A Circuit Board Testing System

3.3. The
CHAPTER 4.
4.1. The
4.2. The
4.3. The
CHAPTER 5.
5.1. The
5.2. The
5.3. The
CHAPTER 6.

The

ER 7.

APPENDIX I.

APPENDIX II.

Telecommande en Ligne Project

THE USER-INTERFACES OF TBE ABL TOOLS
Oracle Implementation

dBASE III Plus Implementation

New ABL Tools

THE INTERNAL STRUCTURE OF THE ABL TOOLS
Oracle Implementation

dBASE III Plus Implementation

New ABL Tools

THE USE OF A DATABASE IN THE ABL TOOLS

T
6.1. Benefits of using a Database
6.2.

Structure of the Database Tables

CONCLUSION AND FUTURE CONSIDERATIONS

Towards an Implementation of a Complete System
Future Enhancements

BABL GLOSSARY
ABL REPORTS

vi

-

Wy
cCoOVvwVVL

14
19

26
27
31
34

39
40
42
53

80

80
83

93
93
96

102
102
105

114
120

R o i ot e A

- e

TR

Introduction

The first chapter explores the roots of software
engineering, from the reasons why techniques for building
small software systems are not adequate for building large
software systems, to the defining of the stages of the
software lifecycle, as a means of having guidelines in
building large systems, (which are both efficient, reliable,

and maintainable).

An informal introduction to the ABL methodology is
included in the second chapter. This is followed by a
discussion which shows some of the strengths of the ABL
methodology, and the benefits of designing and implementing

software systems using the ABL methodology.

The third chapter is devoted to presenting some of
the software systems that have been built using the existing
ABL tools. An attempt has been made to choose spftware
projects which would illustrate the different types of
applications that the ABL methodology is best suited to.
These applications fall into the categories of software
automation, software salvaging, and real-time process

control.

The first three chapters serve to lay the groundwork
for the remaining chapters, which concern themselves with
the implementations of the ABL methodology. Though the ABL
methodology has been recognized as a valid method for
designing and implementing large software systems, there has
been sharp criticism of the ABL tools, particularly in the
area of the user-interface. What is being presented here is
a prototype for a new set of ABL tools, which remedy the
major problems in the existing ABL tools, by changing the
user-interface from a hierarchical menu-driven data-entry
system to a syntax-driven full screen editor. Chapters four
through six address themselves to the various aspects of the
ABL tools, contrasting the existing implementations with the

prototype for the new ABL tools.

Chapter four examines the user-interface of each set
of ABL tools, with the emphasis placed on the editing and
navigational facilities. The user-interface should allow
the user to enter ABL processes in a natural, intuitive
fashion. It should also make sure that the ABL methodology
is adhered to (in a way that is unobtrusive to the user).
Chapter four pinpoints where the user-interfaces succeed and

fail on these points.

Chapter five discusses the choices that were made in

the design of the internal structure in all versions of the

ABL tools, and considers such implementation details as the

choice of computer language.

Chapter six looks at the underlying database found in
all versions of the ABL tools. The benefits of a database

are expounded on, and the principle database tables are

presented.

The seventh chapter is divided into two sections.
The first section lists the functions that the prototype
contains and discusses wha* features must be added before
the new tools can be used in industry. The second section
indicates the possibilities for future research. Though the
existing design for the ABL tools is sufficient for
designing and implementing large software systems, there is
still room for improvement. This section examines some of
the places where the ABL tools can be improved, and
discusses some of the possible ways that these improvements

can be made.

CHAPTER 1

AN INTRODUCTION TO SOFTWARE ENGINEERING

In the early days of software development, machines
were relativelv small and so were software systems. A
programme usually existed in a small, well-understood
environment or domain, and could be written directly frocm a
statement of need. Normally, this programme was written by
one individual, and it was not uncommon for most of the
design and implementation details to be kept in the

programmer's head.

The programmer would usually programme with respect
to a particular machine, and the mark of a skil'ed
programmer became the ability for the programmer to £find a
way to save a machine cycle, or reduce the overall size of a
programme by several 1lines, (not unlike the concept of an
"elegant" proof in symbolic logic), usually at the expense
of the understandability of the code. The importance of
good documentation was not appreciated, so there was no

real attempt to describe how a programme worked.

At the time, (late 50's till mid 60's), this method
for programming had some validity. Computer time was very

expensive and programmer time was not, and the memory of

computers was small, so the preoccupation with saving time

and space when writing a programme was understandable.

With the adven+t of third generation computer hardware
large applications that had been previously unrealistic
became feasible. The implementation of these applications
required large software systems to be built, and it soon
became clear that there were major inherent flaws in current
programming design techniques. 'The advances that had been
made with computer hardware were not being mirrored by
computer software. Sharon [33] (software design
environments marketing manager at Tektronix), notes that
computer speed and power are increasing by about 30 percent
per year, while the productivity of the typical software
developer is increasing by only about 4 to 7 percent per
year. "The current computer and software-development
situation is like building bigger, more powerful cars while

the world is running out of gas."

It was not just new scftware systems that were being
effected by this gap between hardware and software
development. As computer hardware became more advanced,
maintaining existing software systems involved transferring
them to new hardware. Because the software systems were not
designed properly this operation was very difficult, and

sometimes required redesigning and implementing the existing

software systemn.

The problems encountered in designing and implementing
large software systems are not simply scaled up versions of
the problems involved in writing small computer programmes.
The use of more structured high-level programming languages
helped, but did not alter the fundamental weaknr sses of the
conventional process used for developing software systems.
Programming languages couuld not be the only formal tool in

the development, validation, and maintenance of software.

The new large scale projects tended to be inundated
with design and implementation problems. The schedules for
these projects were unpredictable: a number of the projects
in the late sixties and early sevenvies were late, sometimes
by years, which led, naturally eroujh, to excessive costs.
When the project was finally compl<ced it tended to perform
poorly, quite often was unreiiable, and was difficult to
maintain. In order to narrow the gap between software
needs, (that have arisen from the increased power of
computers), and software production, new methodologies and
techniques had to be developed that are fast, flexible, and
allowed large software systems to be built without running
into the aforementioned problems (which collectively became

known as the 'software crisis').

Software engineering is a discipline that has emerged as
a means %tc deal with this ‘'software crisis'. Varying
definitions have been given for this discipline, but the
underlying theme behind all of them is its concern in
building software systems that are complex, (at least beyond
the scope of one individual), where the most important
attributes of the software system are reliability,
understandability, and maintainability. To this end, the

concept of 'the software lifecycle' was introduced.

There are five distinct stages that comprise the
period of development and usage known as the software life
cycle. The first stage is the specification stage. It is
here that the system constrai .s and the user requirements
of the system are specified. The second stage is the design
stage. Given the specification, it is at this stage that
the question of "how" is addressed. The third stage is the
implementation stage. The coding is done at this stage.
The fourth stage is the testing stage. Here the
implementation is tested to ensure that it meets the
requirements and constraints of the specification. Finally
there is the maintenance stage. This is where the system is
in operation, and any day to day events, (such as backups),

o. major modifications are performed.

1.1 THE SPECIFICATION STAGE

The importance of the specification stage cannot be
minimized. As systems get more complicated it gets
increasingly harder to understand them. In some large
systems up to 95% of the code had to be rewritten to satisfy
user requirements and also 12% of the errors discovered in a
software system over a three year period were due to errors

in the original system requirements [31].

The purpose of the specification stage is twofold.
First it gives the designer, (or system engineer), a kind of
buffer zone. Given how complicated a software system can
be, the specification gives the designer a concrete map of
the system to work with, instead of just having to start

directly with the design stage.

The second reason for the specification stage is to
serve as a means of developing a dialogue between the user,
(or customer), and the system engineer. This transfer of
knowledge is very important because quite often the system
engineer knows little about the application, and the user

knows little about software systems.

There are two classes of information that should be
included in the specification document. The first class of

information describes the functionality of the system, while

VAN TR R ReeT TR T e

the second class of information details restrictions imposed

by the users.

1.2. THE DESIGN STAGE

The design stage details how to accomplish
specifications defined in the specification stage. The
design is arrived at by analyzing the software requirements

contained in the specification document.

Since the design stage serves as the link between the
user specification and the implementation, it can be seen as
the most critical stage of the software lifecycle. How well
the design reflects the user specification, how
straightforward the design is to implement, and how easy the
design is to understand, will be the factors that ultimately

decide how reliable and maintainable the system will be.

1.3. THE IMPLEMENTATION STAGE

The third stage of the software lifecycle is the
implementation stage, where the design of the software
system is realized. There are certain guidelines that

should be followed when implementing a software system. The

guidelines cover such topics as the use of comments;
constants, types and variables; portable software; the use
of gotos; and testing. A discussion of these guidelines is
better suited to a critique on programming style, and there

are many books available on the subject.

l1.4. THE TESTING STAGE

Calling the fourth stage the testing stage is a bit
misleading, for it conjures up images of people running test
data and debugging the system. Actually, what is being done
here is more akin to an acceptance test. The customer or
user is examining the software system to ensure that it
meets the requirements and constraints of the o.riginal

specification.

There should actually be communication between the
customer and the system engineer from the design stage
onwards. Waiting till the end of the project can be
catastrophic in the case of either designing a system based
on incorrect specifications or designing a system where the

specifications had been misinterpreted.

1.5. THE MAINTENANCE STAGE

10

The maintenance stage actually encompasses more than
one would think. When we speak of maintenance with regard
to something like an apartment building, for example, we are
thinking in terms of repairs and upkeep. In the software
lifecycle, maintenance has a much broader definition.
Here, it is not just a matter of repairs. When we speak of
maintenance with regard to software systems, we mean: to
modify in the case of error OR in the case of having to
modernize. It is possible that whole subsystems of the
software system can become obsolete, perhaps due to new
equipment being installed, and consequently the subsystem
has to be completely rewritten. A significant and in most
cases a majority of Os&M, (operations and maintenance), costs
are due to product improvement as opposed to error

correction [36].

Because of the problems of maintenance, most of the
total cost of a software system occurs after the system is
delivered, and goes into debugging and maintenance. For
example, the estimated development cost for the software in
a U.S. Air Force F-16 jet fighter is 85 million dollars.
Yet the Air Force expects to spend 250 million dollars
maintaining that software over the jet's operational

lifetime [33].

11

When we consider the fact that maintenance accounts
for such a disproportionate amount of the costs of a
software system, we can appreciate how even a. small
reduction in maintenance c¢an dramatically improve the
overall costs of the system. In order to reduce maintenance
costs, however, we have to look to the other stages of the
lifecycle, for it is only by designing and implementing a
more reliable and more easily understood system that we can
hope to cut maintenance time and therefore, maintenance
costs. If the software quality assurance and
operation/maintenance issues continue to be ignored during
the development phase, a disproportionate amount of the life
cycle cost will continue to be assessed for operation and
maintenance (36]. The problem with this approach, is that
in a world where the lowest bid often wins the contract,
people are hesitant about applying rigorous methods that
increase the costs of software development, even if any
increased development costs directly result in a reduction
in maintenance costs and therefore an overall cost

reduction.

A basic theme common to all (phases of software
engineering cycle) can be summarized as follows : (1)
ensure that the performance or behaviour required by the
preceding state is met, and (2) minimize the errors passed

on the successor stage [36]. The software lifecycle can be

12

viewed as a series of ordered modules, (where each stage is
a module). Given a particular module, the starting point,
i.e., the input to the module, should be the previous

module's output, and the output of the module should be the

next module's input.

The progression from one stage to another stage is
usually from the general to the particular, (for example,
the general design to particular details of implementation),
and quite often, different languages are used at different
stages of the software lifecycle. The ramifications of this
is that a statement made at one stage can translate into

multiple statements at another stage.

When maintaining the system, if it is necessary to
make changes, then these changes should be first made at the
design level. If changes are made to the current stage of
the software cycle, without regard to the previous stages,
then the changes that are made amount to patchwork and the

system will no longer correspond to the original design.

13

PPN s £ e T 2
Ak

CHAPTER 2

AN INTRODUCTION TO THE ABL METHODOLOGY

2.1. AN INFORMAL INTRODUCTION

ABL, (Alternative Based Language), which is also known
as S0S, (Strategy Oriented Software), was designed by W. M.
Jaworski, as a means of expressing algorithms ([(16])}. It is a
framework by which a finite sequence of definite steps,
which may consist of one or more operations, can be carried
out systematically, (in a defined order), to solve a given
problem. The algorithm being expressed can pertain to
anything from filling out tax forms to baking cakes.
However, its wusefulness lies in its ability to express
algorithms that relate to software, both at the top level

(system design), and at the detailed level (programmes).

An ABL process combines two separate components, a
strategy, which can be thought of as a control flow model,
and an environment, which can be thought of as a data flow
model. This division is useful when implementing a software
system because the components can be reused or shared by
different ABL processes. For example, consider two ABL
processes which open a file, create a data packet from the
information found in the file, close the file, and send the

data packet to another process. Both these ABL processes

14

use the same decision 1logic or strategy. The only
difference lies in the data object (in this case the
different files) tha'. is being operated on. Because of the
separation of strategy and environment it is possible for
both ABL processes to use the same underlying strategy (or

environment).

An ABL process is made up of clusters, which is the
only control flow construct supported by the ABL
methodology. Every cluster has an ID number, and the
clusters are numbered from one to n, where n is the total
number of clusters in the ABL process. An ABL process
starts with cluster one, and termination of the ABL process

(if the ABL process terminates), is denoted by cluster zero.

The cluster construct is composed of alternatives
which in turn are composed of two elemental units, the
conditional, or boolean expression, and the assignment
statement. When designing a programme, the decision points,
(which are based on boolean expressions), can be seen as the
interesting events that take place in a programme because it

is here that the choice of what path is taken will be made.

When a decision point is encountered a mechanism is
needed for deciding which path (or alternative) will be

chose.a. To this end, each alternative in a cluster starts

15

with a gquard. A guard is an unordered set of conditions.
Given a cluster with several alternatives, the guards for
the alternatives must be mutually exclusive as well as
exhaustive. They must ensure that an alternative can be
chosen, and at the same time, that only one alternative will

be chosen.

Once an alternative has been chosen, a set of
actions, known as the action flow, is executed or performed
sequentially. In general, the action flow of an alternative
should not contain any control flow statements. Every
alternative has a next or target cluster ID, and when the
action flow has been completed for an alternative, control
passes to the cluster that is referenced by the next cluster

ID.

To illustrate this, consider a cluster taken from an
interactive ABL process which has the task of guessing a
number by using a binary search. The range of the number
has been given using the data objects TOP and BOTTOM and the
midpoint of the range, which is used by the ABL process as
the current guess, is defined as MIDPOINT. The user
communicates with the ABL process by means of a data object
called USER_ANSWER. It is assumed that all of these data

objects have previously been initialized with valid values.

16

€2 Find User Number

A2 Guess is too low
IF USER_ANSWER is too low
assign MIDPOINT + 1 to BOTTOM
calculate ner .° DPOINT
display MIDP. ... as new guess
get USER_ANSWER
NEXT C2

A3 Guess is too high
IF USER_ANSWER is too high
assign MIDPOINT - 1 to TOP
calculate new MIDPOINT
display MIDPOINT as new guess
get USER_ANSWER
NEXT C2

A4 Guess is correct
IF USER_ANSWER is correct
display prompt for whether to guess again

get USER_ANSWER
NEXT C3
A5 Invalid response from the user
IF NOT USER_ANSWER is too low
AND NOT USER_ANSWER is too high
AND NOT USER_ANSWER is correct
display prompt for re-entering message
get USER_ANSWER
NEXT C2
The sample cluster has four alternatives (A2 - A5).
The first three alternatives have guards with a single
condition while the last alternative has a guard with three
conditions. The guards are exhaustive, since all
possibilities have been accounted for, and are also mutually

exclusive, because only one of the cluster's alternatives

will be chosen.

X

When a simple data object, like a string, is defined,

17

certain operations have also been defined, either explicitly
or implicitly. For example, it is possible to create a new
string by concatenating two existing strings, and it is also
possible to extract a substring from a string. A data
abstraction is the definition of a data object coupled with
all permissible (valid or legal) operations on that data
object. An example of a data abstraction would be a stack
combined with the operations push, pop, and initialize. An
environment can be defined as a set of reliated data

abstractions [16].

To summarize, an ABL process is defined in
terms of an environment and a strategy. An environment is
composed of data objects, actions, and conditions. A
strateqgy is composed of clusters and alternatives. An ABL
process maps the strategy onto the environment primarily

through the use of guards and action flows.

So far, what has been shown is an informal
introduction to the ABL methodology. For a more in-depth
treatment complete with examples, see Jaworski [14]([18][19],
and also consult the appendix which contains the gloscary of
ABL terms. What follows is a discussion of the strengths of
the ABL methodology in designing and implementing software
systems, and how the ABL methodology relates to the software

lifecycle.

18

WFTTETE TR T R A s e T

2.2. BUILDING SOFTWARE SYSTEMS WITH THE ABL METHODOLOGY

The ABL methodology was developed by W. M. Jaworski,
as an aid in designing and implementing large real time
software systems, soitware automation systems, and as a tool
for software salvaging. It =zZllows the user to design the
software system using & top down approach, a bottom up
approach, or a combintation of the two. The ABL methodology
can be used to describe the top level functionality of a
system, which can be followed by stepwise refinement and
hierarchical structuring. It is also possible to sta.rt with
the detailed specifications of the 1lower design levels and
work upward. This 1is especially useful for software
salvaging when there is inadequate documentation for the
existing software system. Working at the level of the
system's programmes, it 1is possible, using the ABL
methodology, to work from programmes to the subsystems to
the = sstem, in order to extract the design from the existing
system. The ABL methodology is capable of addressing all
stages of development and implementation with a single
integrated notation. Using the ABL methodology large
software systems can be built that are reliable,

understandable, and maintainable,

When designing software systems, the ABL methodology

19

allows the user to divide the design into two distinct
stages, where the first stage is machine and 1language
independent (and can be thought of as the specification for
the system), and the second stage is machine and language
dependent (and can be thought of as the implementation of
the system). The first stage permits specificationé to be
written in a natural language, but at the same time, imposes

structure ¢ the language.

One of the advantages of being able to design a
software system using a language independent environment, is
that implemen_ation details, such as choice of computer
language, d¢ not have to be decided until later on. The
specifications can be mapped to any computer language. This
is not meant to imply that a system can be implemented using
any computer language if the ABL methodology is used in
creating the specifications. Different computer languages
are appropriate for different applications. Furthermore,
though programmers using the ABL methodology have the
advantage of working with a detailed design that clearly
outlines the control flow of each programme, a working
knowledge of the computer language being used is still

necessary.

Because the first stage is machine and language

independent, it makes it possible for application experts

20

and software experts to be able to communicate effectively -
even though the application expert may not know anything
about software systems, and the software expert may have
little or no knowledge about the application. This is a
very desirable feature when first specifying a software
system. What makes this process so feasible is that the ABL
methodology is so easy to learn. An application expert can
be comfortable reading and writing using the ABL methodology
after just a few hours. Moreover, once the first stage of
the design has been worked out, the software experts can
then create the second stage directly from it. One of the
strongest features of the ABL methodology is that this
process works in both directions. If an error is found in a
programme, correcting the error automatically updates the
machine and language independent stage, which results in a

system that always corresponds to its specifications.

One of the reasons that people can communicate so
effectively using the ABL methodology is that differe
views can be generated for an ABL process. Some people may
be more comfortable working with a view that resembles a
computer programme, while other people might prefer

something that uses graphs or decision tables.

The use of decision tables as one of the views

available to ABL users is very important, because decision

21

tables are more flexible than ordinary source code[4][22].
Using the ABL methodology, any code segment can be reduced
to a tabular format. By allowing the code to be represented
as a decision table, it is possible to produce logically
correct code which can be checked for completeness and
consistency. As well, it is possible to optimise the ABL

process before, during and after code generation [23].

The ABL methodology is very useful for writing system
level designs, but it is particularly strong at the detailed
design level. Programmes that are written using the ABL
methodology actually have the detailed design incorporated
into them as comments. Examples of this can be found in the

report appendix.

The value of having a methodology which guarantees
that detailed comments (that always reflect the design),
exist, should not be minimised, given that any ten lines of
a computer programme can be mistaken for any other ten
lines, and that a fundamental problem when building and
maintaining a system is that the programmes usually do not
match the documentation. It is common practice for
programmers to document a programme after it is finished,
because they feel that since the programme will probably be
changed several times, the intermediate commenting will have

been done for no reason. The problem with this approach is

22

that it usually results in incomplete documentation, either
because there is no time at the end of the project, or
because, the programmers are already impatient to move onto
something new, and so do not comment in great detail.
Another problem with leaving the detailed documentation
until the end of the project is that very often a programmer
will not work on a project from beginning to end. If a new
programmer starts working on a programme while it is in an
intermediate phase it might be very difficult for the
programmer to understand the programme. This is not a

problem when the ABL methodology is used.

Aside from having detailed descriptions for every
data object used by a programme, there are three types of
comments that are automatically included in a programme that

has been designed using the ABL methodology.

3.2.1. Statement of Purpose

The first type of comment included in a programme
that has been implemented from an ABL design, acts as a
header or statement of purpose. Its function is to
describe, in approximately a sentence, what the function of

the programme is.

3.2.2. Top—-level Control Flow

23

The second type of comment that appears in an ABL
programme shows the top-level view of the control flow.
Without going into the details of the control flow, these
comments show the algorithm or strategy that the programme
has been based on. The main sections of the programme are

outlined here.

3.2.3. Detailed Control Flow

Every section of the ABL programme that is outlined
in the top-level control flow has two parts. The first part
consists of the strategy for the section as it appears in
the top-level view. This has been expanded to include the
detailed design. The second part of the section is the

actual code which corresponds to the detailed design.

The structure that the ABL methodology gives
programmes is useful for both seasoned programmers and
novices. The experienced programmer will be less likely to
use tricks when implementing a design, and this will lead to
more reliable and understandable programmes. At the same
time, the ABL methodology is not too restrictive, and will

not hinder the programmer's creativity.

The ABL methodology will not ensure that an

24

unqualified programmer will suddenly produce quality
programmes. Likewise, if the initial design is badly
thought out, an ABL implementation of the system will not
save the system. But it is still very useful for a novice
to be given a framework in which to programme within, and

the ABL methodology provides just such a framework.

25

CHAPTER 3

THE ABL METHODOLOGY IN INDUSTRY

While the ABL methodology has been in existence for a
number of years, it has only been in the past three years
that it has been applied to the specification and
implementation of large software systems. Most of these
projects have been carried out by a small, Montreal based,
software company which decided to convert to the ABL
methodology [15) in 1985. The company works on a contract
basis with large corporations that need specialized software
such as turnkey systems, or that require software consulting
services. The software systems provided are for industrial
applications and includes the categories of plant
automation, process control, data acquisition systems, data
communications, and software salvaging. The underlying theme
common to all these categories is that they are real-time

embedded systems.

The company has designed and implemented a number of
software projects using ABL tools, and the people involved
have felt that the ABL methodology had been instrumental in
the success of these software projects. The projects have
been implemented on different computers, (for example, a

PDP-11, a VAX, a HP 1000, and an IBM AT), and the software

26

for the projects have been written using different computer
languages, (which include several dialects of Fortran, C,
and Pascal). Not only have the computer environments been
different from project to project, but the applications have
been varied as well. Some of the projects that were
designed and implemented, in part or in whole, using the ABL
methodology include, the automation of a rail finishing
mill, an earth station for a satellite, a system to monitor
power lines, a system to monitor phone 1lines, and the
salvaging of software from an outdated hardware environment,
and its conversion to and implementation on a newer machine.
A few of the projects which were completely designed and
implemented using ABL tools are presented here. These
projects help to illustrate the areas in which the ABL

methodology has proven useful.

3.1. AUTOMATING A RAIL FINISHING MILL

A steel company required a newly built rail finishing
mill to be automated [17]. The mill had to be able to
operate a paperless tracking and recordkeeping system that
would also provide long-term storage of rail characteristic
data. All rails entering the rail finishing mill were given
the highest classification, and as the rails journeyed
through the mill, they were tested and subsequently

re-classified according to defects and imperfections that

27

were discovered. Testing was conducted manually and with
the use of special machines. All information regarding the
rails were sent to the MIS computer wher the rails left the

mill.

After the rails had cooled in a cooling tank, they
were sent to a straightener before being inspected. It was
at this point that the system »)jecame aware of the rails.
The outside of the rails was inspected manually with the
help of ultraviolet lighting, and the inside of the rails
was tested for imperfections by an ultrasonic tester. Each
rail was cut with special saws, sorted according to

classification, and shipped out.

The software system was implemented on a PDP-11
computer (called the rail finishing computer), that ran
under the RSX11M+ operating system, which had seven
terminals and three printers connected to it. As well there
were three VAX computers that the rail finishing computer
communicated with using DECnet. There were also sensors and
switches on the rail beds that were used to monitor and
control the path that the rails took to traverse the mill.
These sensors and switches were under the dominion of a PLC
(programmable logic controller) which communicated with the

PDP-11 through common memory.

28

Operators can read and update information regarding
the rails using one of seven workstations. These
workstations are capable of displaying gquality control
information, notifying the user of alarms and significant

events, and supplying general reports on the status of the

rails.

The first workstation in the rail finishing mill is
the straightener. The straightener console displays data
regarding how to adjust the straightener for the current
rails. When the rails have passed through the straightener

they are sent to the visual inspection workstation.

As well as examining the rails for defects, the
operators at the wvisual inspection workstation are
responsible for deciding if *he current rails require more
straightening. Normally the rails are routed to the
ultrasonic tester workstation from here, but if the rails
need further straightening they are routed to the hydraulic
gag press workstation first. The rails that are sent to the
hydraulic gag press workstation are re-straightened and sent

to the ultrasonic workstation.

The ultrasonic tester workstation has a dedicated VAX
which controls the ultrasonic tester machine. The machine

checks the internal structure of the rails and the VAX

29

computer passes the information to the rail finishing

computer.,

The rails have to be sorted according to the status
contained in the rail finishing computer. However, it is
possible th:i.t there are additional cuts that must be made to
the rails (perhaps due to defects). If there are rails that
have to be cut, they are automatically routed to the saw
number 3 workstation. The rails are then routed to a
sorting bed by the rail finishing computer. A loader is
responsible for unloading rails from the sorting beds. This

is where the rails leave the system.

This is one of the largest software projects, if not
the largest, that the ABL methodology was used in. The
project took almost two years to complete, from the
specifications to the final acceptance tests, and involved

approximately eight system engineers.

The ABL methodology was used to create a detailed and
comprehensive specification which was developed in
conjunction with the client. This specification became the
contractual agreement between the company implementing the
software system and the client. By designing and
implementing the system using the ABL methodology, monthly

progress reports were produced automatically and sent to the

30

client.

Since every line of code was written using the ABL
methodology, all the subsystem documentation and their
ccrresponding programmes had a homogeneous 1look to them.
Because of this, a system specialist who had designed and
implemented one subsystem was able to, without much
difficulty, understand another subsystem. This became very
important during the commissioning stage (when the system
was being installed and tested on-site), because it was not
always possible to have everybody who was involved with the
project on-site at the same time, owing to the fact that the

rail mill was hundreds of miles away from Montreal.

3.2. A CIRCUIT BOARD TESTING SYSTEM

The need for software salvaging is becoming more
prevalent in the computer industry. Computer systems are
getting older, maintenance is becoming more expensive,
especially in the case of systems that were not designed
properly. Also, with the advances that have been made in
computer hardware, existing systems quite often are unable
to meet the current needs of users. One solution to these
problems is to build new systems. However, in many
instances the users are unwilling to give up their current

system, because they are so dependent on then.

31

The idea behind software salvaging is to implement a
software system which is functionally equivalent to the
system that now exists. The new system should even
faithfully reintroduce any bugs that might have existed in
the original system. The changeover should be completely
transparent to the user, although there might be slight
differences for such things as backups, in the case where
the software system is being transferred to a different type

of computer.

One of the problems with software salvaging is that
quite often there does not exist proper documentation for
the existing system. In this case, the specifications for
the system must be extracted from the existing code, in
contrast to the usual system design, which involves working

from the specifications to the code.

When extracting the design from the existing
implementation there are two strategies that can be
employed. The first is to just map the old code to the new
code, and the second strategy is to try and redesign the new
code so that it better implements the design which is
extracted from the existing code. The second method is
preferable because the result is a better defined software

system, but in order to use this method, a complete

32

understanding of the existing system is necessary. This is
not trivial, especially when the existing code is written in
one language and tne new code is written in another

language.

The circuit board testing system [29][30] was running
on a PDP-9, only one of two such computers still cperating
in the world. All the programmes were written in assembler
code. The software salvaging project consisted of
converting this system to an HP-1000 computer with the
programmes written in the C language. The existing system
also used custom designed hardware which communicated with
the PDP-9. Thes communication protocols had to be mapped to

the new system also, so that existing test programmes would

still function.

There were approximately 10,000 lines of assembler
code in the existing system, and the only programmer's
documenrtation was comments imbedded in the programmes. Aside
from the difficulties of reading and understanding assembler
code, and the problems inherent in translating a programme
from one language to another, the word sizes of the two

computers were not the =ame.

The first stage of the conversion process involved

studying the assembler code in order to extract informal

33

R T gty T W Tt

algorithms. Programmes were then grouped into a hierarchy
of ABL processes, and the informal algorithms were converted
to the narrative descriptions used in the ABL methodology.
At this stage, some of the verification tests which checked

for consistency and completeness were able to be conducted.

Once the strategies for the ABL processes were
complete, C code was added to the environment, and then
programmes were generated for each ABL process. The system
was tested and debugged module by mocdule, and in general,

there were few problems.

This project took sixteen months to complete and
involved approximately five system engineers. It was
generally acknowledged that the ABL methodology was
invaluable to the process of software conversion,
particularly as an aid in arriving at the semantic
understanding of an existing module. As well, by u5'~g the
ABL methodology, a hardware independent design of the

software system was produced.

3.3. THE TELECOMMANDE EN LIGNE PROJECT

When there is a break in a power line, it can take a
great deal of time and effort to localize the break,

particularly if the power lines effected are in a remote

34

wYRn ST Tem TATEE T Y v e T

region. In order to minimize the time between becoming
aware of a break and locating it, the Telecommande en Ligne
project [9]) was conceived. The Telecommande en Ligne
network consists of master stations and remote stations,
where the master stations monitor and control remote
stations, which in turn are responsible for a certain
geographical region. Within these regions, the power lines
have been grouped '1to segments. By examining the segments
in a region, it is possible to quickly determine where a

break has occurred,

The Telecommande en Ligne project was broken into
several projects which were designed and implemented by
different companies over a two year period. The project
dealing with the software system for the master stations was
completely designed and implemented using the ABL

methodology.

The Telecommande en ligne project is a multitasking
system, running on a VAX computer under VMS version 4.4, in
which there does not exist any central or controlling
process. The system is divided into subsystems based on
their functionality. The project consists of three main
components, communication with the remote stations, a
workstation interface for an operator, and maintenance of a

database that is a repository for information concerning

35

both the workstation itself, and information about the

remote stations.

The subsystem responsible for communication with the
remote stations transmits and synchronizes "telecommands"
using polling and interrupts. Changes in the status of the
remote stations are monitored, measurements from the
stations are received and validated, and the 1latest

information available is kept in memory.

The workstation's purpose i~ to connect an operator
with the system; it consists of a regular keyboard
supplemented by function keys. All operator requests are
decoded and validated by the workstation. Through the
workstation, an operator can get access to alarms in the
system, as well as the status of any remote station. Both
static and dynamic statistics are available on demand, both
of which can be stored for several weeks. A manual override
is available allowing decisions about the state of a remote

station to be set by the operator.

The database contains information about each remote
station, for example the name and ID number, whether the
station is on-line or remote, and any alarms or status codes
attached to the station. The subsystem in charge of the

database allows certain measurements to be stored in timed

36

R

intervals, (for example, every 15 minutes). The data in
memory is synchronized with the data on disk in case of an
emergency such as a power failure. It is possible to get a
hardcopy of a screen or section of the database, and all
information that is received from the remote stations are
printed chronologically. There is also a way for a
supervisor to be allowed to change any object in the

database including the actual names of the stations.

The staff involved in this project consisted of two
system specialists from the company, and one engineer from
the client. One of the main purposes of the project was to
give the client's engineer a chance to familiarize himself

with the ABL methodology.

The original functional specifications were
translated into the ABL methodology. All specifications,
documentation and the subsequent code were written using the
ABL methodology. The client found that the system was
clear, consistent and had precise documentation at every
level; so precise, in fact, that by applying the
methodology, errors in the origiaal functional
specifications, (due to being vague and unclear), were

discovered and modified.

As is often the case, it was necessary to perform

37

some modifications on some of the subsystems. The
methodology proved to be invaluable for two reasons. To
begin with, because of the methodology, it was easy to
understand the logic behind the subsystem, so the changes
were made in a well defined manner. This is, of course, not
unique to the methodology, but would be the result given any
well defined, well documented system. However, the second
reason was more unique to the methodology. Each line of
code in a programme developed using the ABL methodology has
a corresponding line of text. It is this text which forms
the detailed design level, and when the design is changed,
the code gets changed also. Conversely, when a programme
gets changed, the changes are instantly reflected in the
documentation. This not only saves time, (the project was
finished on schedule), but results in a programme which
always matches the documentation, which is almost never the

case in other programming environments.

38

CHAPTER 4

THE USER-INTERFACES OF THE ABL TOOLS

There are two main versions of ABL tools that have been
used to design and implement software systems in industry.
The first version is called SAM I (the Oracle
implem.atation), and the second version is called SaM 1II
(the dBASE III plus implementation). The ABL methodology is
extremely useful for designing and implementing software
systems in industry, but there are major shortcomings in the
existing ABL tools, which were noticed by the author of this
thesis (as well as other system designers) while

participating in the aforementioned projects.

To correct the problems encountered with the existing
ABL implementations required an entirely different approach.
The result is a prototype for a new set of ABL tools which
allows the user to work with a syntax-driven wordprocessor

instead of using data-entry forms.

In order to understand the necessity for a new set of
ABL tools, the rest of the thesis concerns itself with
discussing the problems with the existing tools, and showing

how the prototype for the new ABL tools resolves these

problems.

39

4.1, THE ORACLE IMPLEMENTATION

It is almost mandatory for a user of the Oracle
version of the ABL tools to have a working knowledge of the
Oracle database management system because the Oracle version
is so primitive. BAside from the problems with the
data-entry screens, and the ABL operations that have to be
performed manually, Jjust starting the system requires
several Oracle commands. These commands have not even been
placed in a batch file, which would have at least hidden the
details (various switches and qualifiers) of the Oracle

command lines from the user.

Once inside the ABL editor things are not much
better. In order to design a process, the user is obliged
to enter column after column of ID numbers. For example, the
alternative screen consists of several sections, where one
section is for the alternative's guard, and another section
is for the alternative's action flow. The guard table is
made up of two fields, an ID field for a condition, and a
condition value field which denotes whether in this
instance, the condition should be considered true or false.
The action flow table is also made up of two fields, where
one field is an ID field for an action, and the other field

is the position of the action in the action flow. To be able

40

to fill in these tables, the user must have a list of
actions and conditions with the proper ID numbers. It is
almost impossible to do this without a copy of the ABL

objects and their corresponding ID numbers.

It was necessary for the user to periodically drop
all the indices and recreate them again. For this task, the
user had to have a knowledge of Oracle, as well as an
understanding of the relational model of the ABL
methodology, as represented by the Oracle tables and
indices. There also existed tasks that the user had to
write queries for because there was no support for them in
the ABL system, for instance, the ability to renumber.either

cluster or alternative IDs.

What became common practice amongst users of the
Oracle tools, was to use an Oracle utility that would allow
the database tables to be exported to ASCII files, use a
wordprocessor to manipulate the data, and then use an Oracle
utility to reload the database from the updated ASCII files,
overwriting the database in the process. This "back door"
approach was used for two main reasons, the first of which
was speed. Oracle was very slow, and the system was made
slower because the forms were so cumbersome to use. By
contrast, a wordprocessor was able to keep up with the user,

and tue export and import utilities could be performed in

41

batch mode. The second reason that the "back door" approach
was used was because the Oracle system was not really
useful, other than for its report generation abilities.
Accessing the tables directly was not very different from
using the special ABL forms, and it could be done faster,
which is certainly important to people working under the
pressure of having to produce a system by a gertain

deadline.

These practices employed by users of the Oracle
system contravene the spirit of the ABL methodology. It was
felt that for a user to load the database into ASCII files,
and then reload the database after manually manipulating the
data in the tables, was undermining the use of a database,

by treating the information stored in it as simple text.

With the Oracle version of the ABL tools it was
almost a necessity to understand the details of the database
structure, and to have a working knowledge of the Oracle
database management system. This was not as important with
the dBASE III PLUS version of the ABL tools, but it was
still difficult to use them to properly design a software

system.

4.2. THE DBASE III PLUS IMPLEMENTATION

42

The user-interface of the dBASE III PLUS version of
the ABL tools is a hierarchical menu system, which csntains
two types of displays. One type of display is a read-only
menu, and the other type of display is a data entry form.
At the bottom of both types of displays are a list of
options available for the current display, and the user can
select an option by typing its first letter. However, it is
not always clear what functions will be performed by
choosing an option. In the process menu, for instance, a
user is given the option of an edit function or a modify
function. Though both options sound similar they allow the
user to perform very different tasks. The modify option
allows the user to make changes to the various fields of the
form which contains the process name, while the edit option
allows the user to navigate to the various components that

make up a process, (clusters, alternatives, etc).

This example helps to underline one of the weaknesses
of the tools - its commands have their roots in the dBASE
III PLUS management system. In dBASE III PLUS, the edit
command is used to update information in a database table,
wnile the modify command is used to change the structure of
a database table. Another more obvious example of how the
tools reflect the environment in which they were implemented

has to do with record numbers.

43

Every record in dBASE III PLUS has a corresponding ID
number. This ID number has absolutely no bearing on the ABL
methodology, it only pertains to database storage. Yet
throughout the ABL editor, there are places where it is
possible to access an ABL object, such as a cluster, by
using the record ID. This is in spite of the fact that the
record 1D has no relation to the cluster, which only serves
to confuse the issue for a user, particularly since
sometimes the cluster ID matches the record ID number, and

sometimes it does not.

Navigating from display to display .n the dBASE III
PLUS tools is a problem both because the navigation commands
are clumsy to use and slow in their response, and also
because the navigation commands make it difficult for the
user to conceptualize the ABL process that is being

designed.

Consider the example of a user who has entered the
strategy, (the clusters and alternatives) of a process
during a previous session, and is now ready to add some
actions to the action flow. Upon entering the ABL editor,
the user is confronted with the opening menu. The process
menu is chosen next, followed by the cluster menu, which is
a split screen display where the top half of the screen

contains clusters and the bottom half of the screen contains

44

alternatives. (It should be pointed out here, that even
though the information on the display contains the clusters
and alternatives for the process, it is not presented to the
user in such a way as to resemble a strategy report - this
would have been a big step towards allowing the user to
conceptualize at least the top-level algorithm, and would
not even have beer difficult to do. This is a graphic
example of how the tools do not reflect even the minimal
needs of the user). A cluster is chosen from the cluster
menu, and then the user navigates to the bottom half of the
display which contains the alternative menu. An alternative
is picked and the user then chooses the action flow option.
A new split screen is displayed, where this time the top
half of the display is the action flow of the alternative,
and the bottom half of the display is the action list menu.
It should be noted that each menu or submenu which is
navigated to requires the system to generate a new screen,
and the information that is contained in each screen must be
taken from the database. The action flow is added, the user
navigates back to the alternative menu, chooses another
alternative from the current cluster, (or has to navigate
first to the cluster menu in order to choose a new cluster
and then back to the alternative menu), and then chooses the

action flow option. This is an extremely slow process.

Speed is not the only problem here. It is very

45

difficult to design an ABL process using the dBASE III PLUS
implementation. To illustrate this, the process of adding
actions to the action flow will be examined. First new
actions will be considered, followed by the process of
adding existing actions to the action flow. When adding a
new action or actions tc the action flow, the action flow
menu disappears and is replaced by an action form. The form
is filled out, and the user has the option of either adding
more new actions to the action flow or of going back to the
action flow menu. These actions are added in isolation. The
user is filling out a form that resembles a form found in a
database mailing system. There is no connection with the
ABL process, or with the alternative the action flow belongs
to. 1In fact, the user cannot even see the action or actions

in the action flow until he is finished adding the action/s.

The second scenario involves adding actions to the
action flow that already exist in the =znvironment that
belongs to the process. The user navigates to the action
list which is the bottom half of the display. This display
is read-only. The user can examine several actions at a
time, and is allowed to choose the current ar.ion. Existing
actions are added to the action flow either by repeatedly
navigating to the action list display, making an action
current, navigating back to the action flow part of the

screen, and adding the current action in the desired place,

46

or be forced to use the ID numbers of the actions. The
action flow menu has an option that allows the user to enter
a string of action ID numbers which results in +the

referenced actions being added to the current action flow.

Because of user complaints, a second method was
introduced which allowed for much faster navigation through
the system. Most displays were given a new option called
the 'where' option. What 'where' allows the user to do is
to go directly to a menu several levels either aSove or
below the current menu, without having to traverse any
intermediate menus. So, if the current display is the
cluster menu, then the user can immediately navigate to the
action flow menu corresponding to any valid alternative in
the ABL process. While the where option certainly makes it
easier and faster to enter in action flows and other ABL
objects, there is a price that must be paid for these
benefits. The 'where' option sabotiges the ability that the
ABL tools had to impose a hierarchical structure on

designing an ABL process.

Another way that the tools work to defeat themselves
is in the way the system allows an ABL process to be built.
Using the process menu as a starting point, the clusters and
alternatives (the top-level strategy), should be entered,

and then the guards should be added for each cluster,

47

followed by the action flow for each alternative. However,
in addition to this method of using the process menu (along
with its submenus), the system provides its own "back door".
It is possible to manipulate the components of a strategy
and an environment directly via the strategy and environment
menus (and their submenus). The implications of this, is
that a user tends to design an entire ABL process on paper,
break it into its components, and enter it into the ABL
tools using the strategy and environment menus. The
submenus of the process menu aie then used to quickiy link
the strategy and environment by using the ID numbers of the
objects that have already been entered. This is hardly
promoting the idea of designing software systems using a

computer.

References have already been made to the data entry
forms that are used to enter ABL cbjects into the ABL
process. Most of these references have been with respect to
the inappropriateness of designing something as dynamic as
an ABL process using such a static method. However, ever if
these objections were put aside, there are other problems

with the data entry forms that make them untenable.

To illustrate this point, it is only necessary to
take the example of the code field for an action, (though

this example applies equally to other ABL objects which have

48

ccde fields as well as other fields in the forms which have
similar problems). The first objection to this field is
that it requires the user to enter the code for an action
into a rectangle. This means that as the user types the
code, it will get automatically wrapped around, very often
cutting variable names, which makes it hard to read the code
corresponding to an action. The second objection is that if
the user requires that the code for an action occupy two or
more lines, then the user places a backslash (\) where he
would like a linefeed to occur. It is only when a report is
generated that the backslash gets replaced with a linefeed.

This makes it very awkward to examine the code.

It could be argued that these objections simply have
to do with aesthetics, and are therefore not important.
Leaving aside the issue of whether or not these objections
are simply aesthetic considerations, (and also avoiding a
discussion on the importance of aesthetics in either case),
there is still a third objection, which on its own, raises
serious questions about the wvalidity of the entry form
approach. This objection deals with the restriction imposed
on the size of the code field. In almost every project (and
perhaps even every project), where the ABL methodology was
used, at some point the coude field was found to be too
small. The only solution available to the user is to

shorten the code, which is not always easy to do. Usually

49

what this involved was putting extra constraints on the
length of names given to function callis and variables. To
have to work with these kinds of constraints when
implementing a software system simply because the tools that
are being used do not reflect the needs of the user is
unacceptable. 1Instead of using data entry forms, the tools
need some method of representing ABL objects that do not
restrict the user, cotherwise the tools will only have

limited value.

Unlike the Oracle version of the ABL methodology, the
dBASE III PLUS version allows the user to renumber the
alternatives and clusters of a process without having to
make the user write separate stand-alone functions to
perform this task. However, this function is not automatic.
It is necessary for the user to navigate to the appropriate
menu, and pick the renumbering option. The renumbering is
performed directly on the database, and the user must wait

while this is being u.ne.

Aside from problems with navigation and data entry,
the dBASE III PLUS version of the ABL tools has other
drawbacks. One of these drawbacks is the restrictiops that
are p>aced on the user by the tools. For the most part,
these restrictions have been arbitrarily decided by the

person implementing the tools, and are not a consequence of

50

the ABL methodology, the user's needs, or the tools

themselves.

It is obvious that any computer system will have some
restrictions. 1ID numbers, for example, cannot be infinite,
at the very least, they depend on the size of the underlying
data object used to represent them in a computer. There is
also some validity in imposing some restraints on the size
of ABL objects. The dBASE III PLUS implementation has a
limit of thirty-six alternatives for a cluster and
ninety-nine alternatives for a strategy. Though these
numbers appear to be arbitrary, it could be argued that ABL
processes tend to be too unmanageable and hard to understand
as they get very large, and so, certain constraints are
justified. However, certain restrictions that are placed on
the user by the ABL tools serve no purpose and actually
hinder the user on occasion. A good example of this.is the
previously mentioned problem with the code field of data

entry forms which restricts the size of a line of code.

Another example of a restriction that the ABL tools
impose on the user is that the dBASE III PLUS tools only
allow ten conditions to appear in a cluster's guards.
Though this might * e been done because it was feltv that
allowing more than ten conditions would result in unwieldy

guards, nevertheless, *there are times when this limit is not

51

adequate. The most common example of this is a function
which has the task of monitoring a %eyboard. This function
will probably require guards which contain well over ten
conditions, and this is a case where the addition of extra
conditions should not interfere with the ability of the user
to understand the logic of the ABL process. The solution in
this case, would be for the user to arbitrarily break up a
cluster into two or more clusters. This actually makes the
ABL process harder to understand because the reports do not
show any reason for having several clusters. 1In fact, it is

only done to accommodate the tools.

Perhaps the most serious drawback of this version of
the ABL tools is that of side-effects. These are changes
that the system implicitly makes to an ABL process which are
done without the user's knowledge. A prime example of a
side-effect occurs when a user wishes to make a copy of an
ABL process. Many users, (both experienced users and
novices), have tried to make a copy of an existing ABL
process by making copies of its components (environment and
strategy), only to find that the new ABL process is
different from the original one. This is because when the
dBASE III PLUS version of the ABL tools copies an
environment or a strategy, it will very often change the ID

numbers of the ABL objects contained in these components.

52

The rationale behind this decision to modify these ID
numbers, is that since the ID numbers have no bearing on the
ABL methodology, it should make no difference if the system
decides to change them. There are two major flaws with this
line of thinking. For one thing, there is something wrong
with a system that requires a user to manipulate objects
using their ID numbers, then changes these ID numbers
without being instructed to, and without even notifying the
user, on the basis that the ID numbers are not important.
Even more important, is that this side-effect creates a
conflict between the ABL tools and the ABL methodology.
Given that a process is composed of a strategy and an
environment, two processes with the same strategy and
environment should be functionally equivalent. Yet because
the system potentially changes a strategy and an environment

when a duplicate is made of them, this no longer holds.

4.3. THE NEW ABL TOOLS

In order to address the various problems .in the
existing ABL implementations, in particular with respect to
the user-interfaces, a prototype for a new set of ABL tools
has been implemented. The following sections describe the

user-interface of the prototype.

4.3.1. Process Window

53

1 < CLUSTERX
FROCESS
Al <ALTERNATIVE > - 0 WINDDW
IF <{CONDITION"
AND NOT <CONDITION:
<ACTION:
~.PROCESS - ~DESCRIFTION SYSTEM
WINDOW

e} INSERT “BLOCK IS ON - AFL:

~8YSTEM MESSAGES -

figure 4.1

p aiac tl Jank -ak e el odh it A

The user interface of the prototype for the new ABL tools
consists of a standard screen twenty-four lines long, and
eighty columns wide (see figure 4.1). The first twenty-one
lines of the screen is the process window. It contains the
ABL process that is being edited by the user. The remaining
three lines make up the system window, which is used by the

system to communicate with the user.

The process window has four types of lines, a cluster
line, an alternative line, a condition line and an action
line. The fields of each line type are described from left
to right as follows. The cluster line has two fields, the
cluster ID field, and the cluster description (or narration)
field. Thes alternative line has three fields, the
alternative ID field, the alternative description field, and
the next cluster ID field, which is preceded by an arrow.
The condition line has three fields. The first field is the
condition prefix. For the first condition in a guard, the
condition prefix will be "IF", and for subsequent conditions
in a guard the condition prefix will be "AND". The other
fields belonging to the condition line are the condition
value field, which is either blank or "NOT", and the
condition description field. The action line just contains

an action description field.

55

With the exception of the next cluster ID number, the
ID number fields are not accessible to the user. Both the
cluster IDs and the alternative IDs start at ID number one,
and continue in ascending order until there are no more
clusters or alternatives. If a cluster or an alternative is
added or deleted, all the relevant ID numbers are updated

automatically.

There are only three field types that the user has

access to,

the description fielcés (for all line types)
the next cluster ID field in the alternative line

the condition value field in the condition line

Normally the cursor stays on the description field of
whatever line it is on. In order to access the next cluster
ID field or the condition value field, it is necessary for
the user to press the shift-tab keys. If the cursor is on a
condition line and the user presses the shift-tab keys, then
the condition value field is toggled between "NOT" and
blank, (where blank signifies true and "NOT" signifies
false). If the cursor is on an alternative line and the
user presses the shift-tab keys, then the user can change

the value in the next cluster ID field.

56

SV IR YL W TR X W53 -l ST g7 o AT TOTTIAA TR i ST e

The first thing that happens when a user presses the
shift-tab keys while on an alternative 1line, is that the
next cluster ID field changes to reverse video. By pressing
the down arrow key or the up arrow key the user can increase
or decrease the value of the next cluster ID. The range of
the next cluster ID is between 0, which designates exit
process, and a value one greater than the largest cluster ID
number. When the user is finished choosing a new ne:ixt
cluster ID, pressing the shift-tab keys changes the next
cluster ID field back to regular video, and allows t e user
to resume editing from the alternative description field. If
the new next cluster ID has a value one greater than the
largest existing cluster ID number then the system
automatically creates a new cluster at the end of the ABL

process (with alternative).

One of the by-products of changing the next cluster
ID number, is that the cluster that was referenced by the
original next cluster ID number might become orphaned; it is
possible that there is no longer a path leading to that
cluster. If this is the case, then the system will warn the

user that a cluster has been orphaned.

It could be arqued, that for consistency sake, when a
cluster has been orphaned it should be deleted

automatically, given that when a next cluster ID references

57

a new cluster it is automatically created. However, from the
point of view of the user, it is better to have the orphaned

cluster deleted explicitly.

4.3.2. System Window

Line twenty-two is the first line belonging to the
system. It is in reverse video and contains two fields. On
the left hand side of the line is displayed the name of the
process that is being edited, and on the right hand side of
the line, a process description, which can be up to sixty

characters in length, is displayed.

The twenty-third line of the screen has three fields.
The first field is the relative column position, the second
field is the insert key indicator and the third field is the

block buffer status field.

The column position is referred to as the relative
column position because it does not give the user the column
position from the beginning of the line on the screen, but
rather, the position from the beginning of the current ABL
object. Though each ABL object starts at a different
column, the start of each ABL object is designated as column

one by the relative column field.

58

The insert key indicator will either display the word
"Replace" or the word "Insert". When the insert key
indicator is set to Replace, any character that the user
enters will overw.:te the character at the cursor location.
If the insert key indicator is set to Insert, the character
at the cursor location will not be overwritten, instead it
will make room for tne new character. The cursor will be
represented by an underscore character in Replace mode, and
a rectangle character in Insert mode. By pressing the
insert key, the insert key indicator is toggled between the

two values. The default value is Replace.

The blcck buffer status field indicates whether or
not there is any object in the block buffer. 1If the buffer
is empty then the block buffer status field is blank. When
a block 1is created, the message "BLOCK IS ON - XXX" is
displayed in bold letters, where XXX will be CLS, ALT, GRD,
AFL, CND, or ACT, which denote cluster, alternative, guard,

action flow, condition, or action, respectively.

The last line of the display is reserved for system
messages to the user. These messages are displayed on the
left-hand side of the line in bold letters, and are
sometimes accompanied by a beep. On occasion, the system
requires the user to press a key after reading the message,

in order to continue, or to enter a yes or no answer in

59

response to a question. Some examples of system messages
are,
"Undefined key"
"Are you sure? Type y or n"

"Loading strategy into memory".

4.3.3. Navigation

Like all full-screen editors, the ABL editor allows
the user to navigate both horizontally and vertically.
Horizontal navigation moves the cursor without leaving the
current line, and vertical navigation moves the cursor to a
different line, sometimes causing the display to change in

the process.

It is possible to move to the beginning or to the end
of the line that the cursor is currently occupying.-A line
can be traversed eight characters at a time by pressing the
tab key, or the cursor can be moved one character to the
left or one character to the right by pressing the left
arrow key or the right arrow key. Note that the shift-tab
keys can be viewed as horizontal navigation keys which allow
the user to navigate to fields that could not otherwise be

accessed.

It is possible to move to the top or to the bottom of

60

the ABL process. If the top (or bottom) line is on the
current screen then the cursor is moved to it, otherwise the
first screen (or last screen) is displayed, and then the
cursor is moved to the top (or bottom) line. It is possible
to move the cursor up a line or down a line with the up
arrow key or the down arrow key. It is also possible to
page through the process, forwards or backwards, one screen

at a time, by pressing the PageUp key or the PageDn key.

4.3.4. Editing

There are two types of editing that is performed by
the ABL editor. There is editing that is performed by
adding and deleting characters on the description field of
the current line the cursor is on, which can be considered
horizontal editing. There is also editing that effects the
size of the ABL process, by adding and deleting ABL objects,

which can be considered vertical editing.

Of the two types of editing, the horizontal editing
is much more straightforward. If the key that the user
presses is not a command key then it is taken to be data,
and is added to the current description field (with the
insert key status taken into consideration), provided it is
not full. If the DEL key or the backspace key is pressed

then a character is deleted, provided there is a character

61

to delete. It is also possible to erase the contents of the
current description field entirely, or to erase the contents

from the cursor to the end of the description field.

Things become wmore complicated when we enter the
realm of vertical editing. Unlike a normal wordprocessor,
where every line is considered a separate entity, the ABL
editor deals with ABL objects, some of which are complex
objects. When a cluster is added or deleted from a process,
the alternatives that belong to it are also added or
deleted, and in addition, the guards and action flows which
belong to the cluster's alternatives also get added or
deleted. Furthermore, there are certain restrictions as to
how an ABL object can be deleted, and also where a new ABL

object can be added.

Up until now, most of the functiens that the ABL
editor performs automatically, are functions that are
designed to help make the task of creating ABL processes
easier for the user. For example, when a next cluster ID
number is assigned a cluster ID number which does not exist,
the editor will create the cluster automatically, thereby
relieving the user of the necessity of creating the cluster
later on. However, not only must the ABL editor serve the
user, it must also be responsible for making sure that it

remains faithful to the rules of the ABL methodology. The

62

ABL editor cannot allow a user to insert an action flow in

the middle of an alternative's guard, for instance.

To allow the user to do something at the expense of
the ABL methodology would be an error of the same magnitude
as was made in the previous versions, where it was felt that
the ABL methodology was first and foremost, even at the
expense of the user. This issue is being addressed now,
because it is with vertical editing that the editor becomes

an ABL editor, rather than a glorified data-entry system.

4.3.5. Adding an ABL Object

There are two ways to add an ABL object in the ABL
editor (not including copying a block). The first method is
more natural for the user, but it cannot be used all the
time. The second method is more complex, but there are

times when it is necessary to use it.

Quite often when creating an ABL process, the next
line to be added is of the same type as the current 1line
that the cursor is on. For example, when working on a
strategy report, there are almost always several
alternatives for each cluster, and when working on a process
report, alternatives have several conditions in their

guards, and several actions in their action flows.

63

When the user presses the return key, the ABL editor
will create a new object below the current line that the
cursor is on, of the same type as the current line. If the
cursor happens to be on the cluster with ID number one,
which is always at the top of a process, then the user is
given the choice of either creating a new cluster below
cluster one, or having the new cluster itself become cluster

one.

One of the basic rules of the ABL methodology, is
that every cluster must have at least one alternative
associated with it. To this end, when a cluster is created,
an alternative is automatically created also, with a next

cluster ID of 0.

When a new ABL object is created, the description
field is automatically initialized with the name of the
object type in angle brackets. Fcr example, if the object
being added was an alternative tnen the description field
would be <alternative>. This "place holder" is useful to
the user, for without it blank description fields could
become confusing. Thifs, is particularly true of actions

because there is no other field in an action line.

Though the addition of ABL objects through the use of

64

the return key is very natural to the user, it is not
sufficient. If it were the only method for adding objects,
then it would only be possible to have a strategy report,
and never a process report because there would be no way to
add a first condition or a first action to the process. 1In
order to add an ABL object that is different from the object
type of the line the cursor is currently on, the user

presses the F9 key.

Pressing the F9 key causes a window to open on the
screen, with four choices, cluster, alternative, condition,
action, labeled one to four. The user can either move the
cursor, (which is the size of the choices), to the desired
choice by using the left or right arrow keys, and then press
the return key, or can simply enter the number which is
beside the desired choice. 1If the user decides to abort the
operation, pressing the escape key will close the window.
Otherwise the editor will create the new ABL object below
the current line, providing that the rules of ghe ABL

methodology are observed.

In order to add a cluster to the ABL process the
following rules have to be observed. To begin with, a
cluster cannot be added after a 1line which is of type
cluster. If this were allowed, then the existing cluster

would no longer have an alternative, because directly after

65

the cluster would be another cluster. Likewise, in order to
add a cluster after a line of type alternative, the
alternative cannot have any conditions or actions.
Otherwise the conditions and actions would end up cut off
from the alternative they belonged to. The other
restrictions to adding a cluster apply to conditions and
actions. For a cluster to be added after a condition, the
condition has to be the last condition in the guard, and
there must be no action flow for the alternative. Finally,
for the cluster to be added after an action, the action must

be the final action of the action flow.

If the user wanted to add an alternative, there would
be no problem if the current line type was a cluster. There
is nothing wrong with adding an alternative between a
cluster and i*s first alternative. If the current line type
was an alternative, however, there could not exist any guard
or action flow for the current alternative. Just as in
adding a cluster, if the current line type is a condition
then there can be no more conditions, and no action flow,
and if the current line type is action, then the action must
be the final action of the action flow. All alternatives

are created with the next cluster ID set to O.

There are only two places that a condition can be

added. The type of the current line has to either be a

66

e RS

gy

condition, in which case the new condition is added to the
guard, or the current line has to be of type alternative, in
which case the condition becomes the first, and possibly
only element of the alternative's guard. The condition
value field of the line containing the condition is

initially blank (new conditions are originally set to true).

The final ABL object that can be added is an action.
(While it is possible to block and copy a guard or an action
flow, it is not possible to create an empty guard or an
empty action flow). The 1legal types for the current line
when adding an action are alternative, condition, or action.
If the current line is an alternative, then the alternative
cannot have a guard, because an alternative cannot have an
action followed by several conditions. Likewise, an
alternative's guard cannot have an action imbedded in it, so
if the current line type is condition it must be the last
condition in the guard. There are no restrictions when the

current line type is an action.

If the ABL object that has been added is either a
cluster or an alternative, then it is quite possible that
some ID fields will have to be renumbered. In the case of
an alternative, renumbering alternative IDs is quite simple.
If the new alternative is not the last alternative in the

ABL process, then all remaining alternatives will have their

67

ID numbers incremented by one. However, in the case of
adding a cluster, there is a little more work to do. Aside
from adjusting the cluster ID numbers, there is also the
matter of the next cluster IDs. They must also be adjusted,
or else they will no longer provide the path that the user
originally intended. Furthermore, if the block buffer is
not empty, and the block contains any alternatives, then the
next cluster ID of each alternative in the block must also
be examined, and adjusted where necessary. All 1ID
renumbering is done automatically by the ABL editor, and is

transparent to the user.

4.3.6. Block Commands

An ABL object can be also be added to a process by
appending the contents of the block buffer after the current
cursor position. There are three block commands that are
available to the user, make a block (alt-b), copy a block
(alt-c), and undo a block (alt-u). The rules which govern
where the contents of the block buffer can be added in a
process are identical to the rules which have been outlined
in the preceding section on adding an object using the F9

key.

The block commands in the ABL editor functions in a

similar manner to cut and paste commands found in many

68

ordinary editors, except that, normally when a block of text
is cut, thereby initializing the block buffer, the block is
removed from the original text, but in the ABL editor, the

original text remains unchanged.

When the user presses the make block keys, the block
buffer is initialized with the ABL object contained in the
line that the cursor is presently on, and the block buffer
status field displays the message "BLOCK IS ON - xxx", where
xxx is a three letter mnemonic representing one of the ABL
objects (CLS, ALT, GRD, AFL, CND, and ACT). 1If the buffer
block has already been initialized, it will be necessary for
the user to uninitialize the buffer block by pressing the

undo block keys.

If the block buffer is being initialized with a
cluster or an alternative, then the buffer will contain the
complete ABL object. 1In the case of a cluster, all of its
alternatives (along with guards and action flows), will be
contained in the buffer, and likewise, in the case of an
alternative, the guard and action flow (if any), will also
be in the block buffer. When the block is copied to a
process, the ID numbers for the clusters alternatives, and
next clusters will be replaced according to where in the

process the buffer is being added.

69

If the user presses the make block keys, and the line
that the cursor is currently on is an action or a condition,
the system will display a prompt which will allow the user
to choose between initializing the block buffer with the
simple ABL object (the action or the condition), or the

complex ABL object (the action flow or the guard).

So far, adding an ABL object to a process using the
block commands, seem to be identical to adding an ABL object
using the F9 key, with the sole difference being that the
block commands are the only way for the user to be allowed
to add an action flow or a guard. However, there is a very
important distinction to be made between the two methods
when adding an action, or a condition, (and an action flow,

or a guard), to a process.

Consider the example of a cluster which has two
alternatives. One of the alternatives will be chosen in the
event that the variable status is equal to the value of the
constant SUCCESS, while the other alternative will be chosen
if status does not have the value of the constant ShCCESS.
In this example, it would not be appropriate to use the F9
command for creating the two guards because this would lead
to two copies of the condition "status is successful". What
would be preferable, would be to have one copy of the

condition "status is successful" with one alternative's

guard referencing the condition as true, and the other
alternative's guard referencing the same condition, only

this time, with the value false.

This is what happens when the block commands are used
with actions or conditions (or action flows or guards). The
block will not create a new condition or action. It will
only create a member of a guard or action flow that will
reference the action or condition that was originally
blocked using the block command. Therefcre, when taking a
strategy report, (which just describes the top level
algorithm of a process), and extending it into a process
report (which describes the algorithm of the proc3ss in
detail, complete with actions and conditions), the method
that is the most consistent with the ABL methodology would
be to create the guard for the first alternative in the
cluster, block the guard using the block command, then copy
the guard, (using the block copy command), to the other
alternatives in the cluster, changiang the condition wvalue

fields to ensure mutual exclusiveness between the guards.

While this technique is not as important with respect
to actions, it is still in keeping with the philosophy of
the ABL methodology to not have identical actions in a
process. Instead, there should only be one copy of an

action which can be referenced several times by an action

71

flow or by different action flows. It is only with use of

the block commands that this can be done.

4.3.7. Deleting an ABL Object

In a regular wordprocessor deleting a line of text is
done by invoking the delete command while the cursor is on
the line of text to be deleted. The wordprocessor removes
the deleted line from the display, and places the- cursor
either on the line above or below where the deleted line

used to be.

Deleting an occurrence of an action or a condition
from an ABL process is done in much the same way. The use
of the word occurrence is significant, because the action or
condition might be used in several places. It is only when
the last reference to an action or condition is deleted that
the action or ccndition itself is removed from the process.
A field will eventually be added to lines containing actions
and conditions which show the user how many times the

current action or condition is referenced in the proress.

Aside from actions and conditions, deleting ABL
objects is not as simple as deleting a line of text from a
wordprocessor. There are two major differences from regular

text. The first difference is that since most ABL objects

72

are complex, we are dealing with an object that potentially
spans several lines, and so the ABL editor has to be able to
determine the extent of the object to be deleted. The
second difference, is that with a regular wordprocessor, the
line of text that the user requests to be deleted can always
be deleted. 1In the ABL methodology certain rules must be
followed, and the ABL editor must make sure that the user
request is legal. For example, as stated earlier, one of
the fundamental rules of the ABL methodology, is that every
cluster must contain at least one alternative.
Consequently, if a wuser makes a request to delete an
alternative, and the alternative is the only alternative in
the cluster, then the ABL editor, rather than deleting the
alternative, must display a system message telling the user

that the only alternative of a cluster cannot be deleted.

Before a user request to delete a cluster can be
carried out, certain checks have to be performed by the ABL
editor. For one thing, the minimum requirements for an ABL
process is to have one cluster which in turn has one
alternative. The guard and action flow of the alternative
can be empty, and the next cluster ID can have a value of 0.
(If code were generated for this process then the programme
would be the equivalent of an exit statement). If such a
process existed, and the user requested that the cluster be

deleted, the ABL editor would not allow it.

73

In the ABL methodology, whenever an alternative is
chosen, its next cluster ID will determine the path that the
programme will take. If the user requests the system to
delete a cluster which is referenced by an alternative's
next cluster ID, (where the alternative does not belong to
the cluster to be deleted), then the editor would not allow
the cluster to be deleted. As an extension of this, if the
cluster to be deleted is referenced by an alternative's next
cluster ID in the block buffer, then the editor would also

not be allowed to delete the cluster.

The reason for this decision lies in considering the
other options available to the system. One possible
solution is to keep the alternative's next cluster ID number
as it is and delete the cluster. The problem with this is
that we now have an alternative whose next cluster ID does
not lead to the cluster that the user intended it to, and
the user is not even aware of the change. Furthermore, if
the cluster that was deleted was the last cluster in the
process, then the next cluster ID does not even point to a

cluster ID that exists.

Another option available to the system would be to
change the next cluster ID and then delete the cluster. Two

possibilities immediately come to mind. Either set the next

74

cluster ID to 0, or have a reserved ID (such as -999) which
would signify that the next cluster ID is no longer valid.
However, what is happening here is that the system, unknown
to the user, is making changes to the process. It is
important for this kind of side-effect to be avoided. The
user should always be in control of changes to the control
flow of the process. Also, by forcing the user to change
the next cluster ID, manually prior to deleting the cluster,
makes the user reflect on the implications of his actions.
If the alternative will no longer lead to the cluster that
is being deleted then the user will have to decide on the
new path. Perhaps the alternative will no longer be needed
and the user can delete it, or maybe after the user has
examined the process from the point of view of the
alternative, whose next cluster ID references the cluster
slated to be deleted, the user will realize that the cluster
should not be deleted. Deleting a cluster that is actually
necessary to the process can cause a lot of inconvenience to
the user because it can be quite large, what with
alternatives and guards and action flows. In the final
analysis, its best to only delete clusters that have been

orphaned.

Once the system has established that the cluster is
an orphan, and that there exists at least one other cluster

in the process, then the cluster will be deleted, along with

75

all of its alternatives. The cluster IDs, the alternative
IDs and the next cluster IDs, (in the block buffer also),
are all adjusted accordingly. The display is updated or
completely redrawn, and the user is warned that a cluster
may have become orphaned, (because the deletion of a next
cluster ID belonging to one of the alternatives that was
deleted along with the cluster may have been the nnly path

to a cluster).

The only case in which an alternative cannot be
deleted is when it is -2 only alternative belonging to a
rluster. Otherwise an alternative can always be deleted.
When an alternative is deleted, the guard and action flow
associaced with it, if any, are also deleted. The remaining

alternative ID numbers are updated automatically.

When an alternative is deleted, ihe system checks to
see whether the next cluster ID o the alternative was the
only path to the cluster it references. If so, the system
displays a message warning the user that a cluster has been
orphaned. It is necessary to allow the user to orphan
clusters, because in order to delete a cluster, it must be

an orphan.

There is no facility for deleting either guards or

action flows. Normally these will not be very large, and

76

the user can delete them by deleting their individual

components, (conditions and actions).

4.3.8. Report Generation

In the Oracle version of the ABL tools, the user
generates a report from the DOS prompt. The dBASE III PLUS
version has the report generator integrated into the ABL
system, but it is necessary for the user to navigate to the
report menu in order to generate a report. In contrast to
the existing implementations of the ABL methodology, the new
tools have the report generator included in the ABL editor.
Report generation in tle new tools is akin to printing a
file from a regular wordprocessor. The user presses the
report generator key (F7), the system opens a window in the
display which prompts the user for a report type, and «

report is generated.

There are certain report options which the user will
be able to set by pressing the configuration key (F10). For
example, it will be possible for the user to choose whether
the reports are to be sent to a file or to the printer. If
the file option is chosen, it will be possible for the user
to rename the deastinat.on files, as well as choosing the
disk that the file will be written to. Whatever the

destination of the reports, it will be possible for the user

7

i g

key

Description

[INSERT
right arrow

“ left arrow

up arrow

down arrow

DEL

ﬂ CTRL-baclkspace
backspace

Toggle between insert and replace mode L
move cursor one to the right
move cursor one to the left
move cursor up one row

move cursor down one row
delete character cursor is on
delete current line

delete character left of cursor

RETURN add new obiect (same type as current)

PGUF .display previous screen

FGDN display neut screen

HOME move cursor to beginning of line
i END move cursor to end of line

CTRL-HOME move cursor to op of process

CTRL~END move cursor to end of process

TAR move cursor B spaces right

SHFT-TARE toggle NOT or set Next Cluster

F4 quit without saving

FS clear line (line sti1ll exiets)

F& clear line from cursor

F7 generate roport

F9 add new obiect (specify type) q
figure 4,2

78

to chocse from among several page sizes.

The prototype is only capable of generating two
report types. One report is the strategy report, a report
which consists of just ciuster and alternative descriptions
(along with the next cluster IDs), and the other report is
the process report, which has, in addition to the clusters
and alternatives, includes the guards and action flows of a
process as well. Sample reports have been included in the
appendix. There are several types of reports that the
system will be capable of generating, and more types can be

defined to suit the individual user's needs.

A summary of the functions and the corresponding keys

for the ABL syntax-driven editor is given in figure 4.2.

79

CHAPTER 5

THE INTERNAL STRUCTURE OF THE ABL TOOLS

5.1. THE ORACLE IMPLEMENTATION

The Oracle implementation will not be considered here
in any detail, because it does not really have a clearly
designed internal structure. Tte user enters information
via forms created by the Oracle form generator, and
generates reports via the Oracle report generator. These
generators are manually invoked by the user. The Oracle
implementation was not designed with any attempt at

integrating its various components.

5.2. THE DBASE III PLUS IMPLEMENTATION

In contrast to the Oracle implementation, the JdBASE
III PLUS implementation presents the user with ‘a more
integrated system. But the internal structure of the tools
is weak, and this is partly to blame for a user-interface
that is unacceptable, (which is discussed in the section on
the user-interface). There are two main factors that are
responsible for the weak internal structure, the dBASE III
PLUS computer language that is used, and the overall design

strategy.

80

The dBASE III PLUS programming language is not really
suitable for implementing a project concerned with creating
an environment which allows the user to develop and maintain
software. Its prime capability, not surprisingly, is to
allow people to have access to the database. The language
makes it easy to create tailor-made screens, to get
information from the user, and to read and update the
database. It was designed, not so much as a programming
language, but rather, as a means of automating database
gueries that were frequently needed by the user. It is
ideally suited to an application like a mailing system, or
an inventory system, or any application that requires the

filling out and printing of forms.

The problems involved in trying to use the dBASE III
PLUS programming language instead of a regular high-level
language become more obvious when we consider the
limitations of its data objects and the data structures that
are available to the programmer. The first major flaw is
that data objects cannot be declared. If you want to use
the variable temp, and you want temp to be of type integer,
the only way to do this is to assign an integer value to the
variable temp. This goes against one of the fundamental
principles of good programming practice, that is, that all
data objects used by a programme should be explicitly

declared.

81

Another major drawback in the programming language is
that it does not support data structures, (other than those
pertaining to the database). Even arrays do not exist in
this language, which is unfortunate, because normally an
array could be used to create more complex data struptures,
for example, 1linked lists, or stacks. However, even if
arrays did exist, most data structures could not be defined,
because the 1language does not allow the user to create a
data type. The only legal data types are the ones that are
built into the language. It should be clear that the JdBASE
III PLUS programming language is not an ideal choice for

developing software systems.

While the dBASE III PLUS programming language was
certainly a contributing factor to the weakness of the
tool's internal structure, it was not the only determining
factor. The overall design strategy, or lack thereof, also
was at fault. Originally, the dBASE III PLUS version
started out as a pilot project to test the feasibility of
creating a cheap version of the ABL tools that was more than
just a data-entry system (as in the Oracle version). It was
well known by the people who used the Oracle version, that
it was much too slow and did not even have proper facilities

for entering processes.

82

Given the time constraint, and considering tﬁat the
tools were a one person project, it must be conceded that
the prototype for the dBASE III PLUS version would not have
been realized using normal software design techniques.
However, because the person working on the tools was a dBASE
programmer, and he started with thz Oracle database tables,
the tools ended up being a dBASE application programme with
a hierarchical menu structure. From the point of view of
the people who worked with the ABL tools, this was not
substantially better than the Oracle version. Unfortunately,
development never proceeded past the prototype stage.
Instead, the prototype became the new ABL tools, and the
person who wrote the dBASE version became the person in

charge of maintenance.

5.3. THE NEW ABL TOOLS

The internal structure of the new implementation of
the ABL methodology is completely different from any of the
preceding implementations. But it is not just the structure
that is different, the entire process of designing and
implementing the new tools involved a radical departure from

previous efforts.

The most noteworthy difference between the new

version and its predecessors is that the new version has

83

been completely designed and implemented using the ABL
methodology. What better way can tliere be to show the
capabilities of the methodology then to implement the tools
supporting it in the methodology itself? Eventually, the
tools will be integrated into the ABL database so that
future versions of the tools will be modified using the
tools, with the final code generated from the database.
This is not unlike having a Pascal compiler, that is in

itself, written in Pascal.

The specification phase of the new ABL tools started
by dividing the system into two parts, the ABL database and
the user-interface. By considering the system in parts
rather than in .ts entirety, it was hoped that the previous

flaws in the user-interface could be avoided.

The decision to use a database made sense, (see the
discussion in the database section),and the design of the
ABL database was straightforward owing to the work that had

been done in the previous versions.

With the requirements needed to represent the ABL
methodology using a relational database clearly defined, the
next step was to create the requirements for the
user-interface. This is where the ne. Jols would differ

drastically from the existing tools. The most natural way

84

to create a programme is with a full screen editor, and
therefore, it was necessary to have full screen editing
facilities for the ABL tools, because anything less would be
awkward to use for designing and implementing software

systems.

In the previous ABL tools, when a process was edited
by the user tiie database was updated immediately. However,
in order to support full screen syntax-driven editing
facilities, this would have to be changed. To keep the
process decomposed in the database and have to continually
access the disk is not efficient enough for a full screen
editor. Instead, at the beginning of a session, the process
to be edited must be read from the database tables and
loaded into memory structures. The database must only be
updated with changes made to the process when the user
explicitly requested it, much the way a word processor

works.

At this stage, the functionality of the new ABL tools
was specified, and the data objects, (the database and the
memory structures), had been defined. The next step was to
make a detailed design. The system was divided into
subsystems according to specific functions that needed to be
performed. There were five subsystems in all, as well as a

group of general purpose utilities which could be used by

85

all the subsystems. The general purpose utilities touintained
such functions as an error handling routine. Each subsystem
has a three letter mnemonic, and a function beloniing to a
subsystem would start with the subsystems three letter

mnemonic.

5.3.1. Build Subsystem - BLD mnemonic

The Build subsystem has two main functions. The
first function invoives the database. When a process is to
be lcaded into the ABL tool, the Build subsystem is given
the ID number of the process. Using the process ID number,
it is the task of the Build subsystem to gain access to the
database, in order to extract the records belonging "to the
process. If there are I/O problems with the database
tables, then the Build subsystem notifies the system so that

it can exit gracefully.

The second function of the Build subsystem is to
build the structures in memory that will hold the process,
and to load the process into these memory structures. It is
possible that there will not be sufficient dynamic memory to
hold the process, (but tests run on a PC computer show that
this is unlikely), in which case the Build subsystem
notifies the system so that it can take appropriate action.

If the process that was being loaded was the first process

86

in the ABL tool, then it will exit gracefully, otherwise it
will advise the user that there are too many processes

loaded in memory at one time.

5.3.2. Screen Subsystem - SCR mnemonic

The Screen subsystem, as its name implies, has the
function of looking after the user screen. Any data that is
to appear on the screen, with the exception of user
messages, must go through the Screen subsystem. Any time
that an object is added or deleted from the screen, or a
PageDn or PageUp is requested, ovr a vertical arrow key is
pressed, or any other navigational command is invoked, the
Screen subsystem will make sure that the screen is updated

or redrawn, if necessary.

As well as updating the screen, the Screen subsystem
has the further responsibility of maintaining certain data
objects related to the screen. There is a screen map, which
contains the contents of each line that is on the screen, as
well as the type of each line, where a line can be either
cluster, alternative, condition, or action. It must keep
track of the information pertaining to the cursor, the row
and column offsets for the cursor, whether the cursor is
visible or invisible, whether the cursor is in replace mode

(underscore), or insert mode (block). When the cursor is

87

moved, it is responsiible for updating the relative column
number. It must keep track of the current line that the
cursor is on, including the type of line it is on, and what

attributes the line possesses (reverse video, bold, normal).

5.3.3. Report Subsystem - RPT mnemonic

The Report subsystem has the function of generating
reports. The present version of the tools only allows
reports to be generated from the editor, but eventually the
report generator will also work in batch mode. Aside from
generating reports, it also generates programme code for an
ABL process. Though tests have been performed with the code
generator, the prototype does not create a programme code

report.

The Report subsystem allcws the user to choose from
certain options when generating the reports. It 1is
possible, for instance, to choose from among several column
settings, (80 columns, 96 columns, or 136 columns). As well
as changing certain characteristics of the reports, it is

also possible to choose their destination.

A report can be sent to eitner the printer or a file,

where the default setting is for a file. The file resides

88

in the default directory, but it is possible to choose

another directory, or even another disk drive.

The idea behind these options is to allow the user to
customise the development environment. The system is set up
in such a way that normally the default settings will be all
that is neeied. 1In the future it will be possible to change

the default settings.

5.3.4. Modify Subsystem - MDF mnemonic

When an ABL object is added or deleted there are two
separate operations that must be performed. The screen must
be updated, which is hani.ed by the Screen subsystem, and
the memory structures must be mod.fied, which 1s handled by

the Modify subsystenm.

The Modify subsystem is in charge of all the
pointers, including the block buffer pointer, that point to
the various memory structures that contain a process. It is
also responsible for keeping track of which object in which
structure is the current object that corresponds to the

current object on the screen.

5.3.5. Save Subsystem - SAV mnemonic

89

Given a process ID number, the purpose of the Save
subsystem is to find all the information in the memory
structures that belong to the process with the process ID

number, and to update the database with the information.

As in most word processors, the ABL tools have two
options for saving, save and continue, or save and exit.
When either of these commands are requested the Save
subsystem is invoked. It should be noted that the prototype

does not use the Save subsystem.

Both the older versions of the ABL tools and the new
version are implemented on an IBM PC compatible computer
running under the DOS operating system. However, the
programme environment £Lfor the new ABL tools is completely

different from that of the previous implementations.

The fundamental reason for designing a new version of
the ABL tools was that the user-interface did not meet user
requirements. For designing and implementing software
systems, what is needed is an environment which has a full
screen editing facility. In order to create such a
facility, it was necessary to be able to use certain data
structures. There were data structures needed for the
screen, and data structures to hold the ABL process in

memory. While the older versions of the tools have been

90

implemented using a database management system, the
capabilities of a database management system was just not
good enough for building these data structures, and so a

high-level programming language was needed.

The new version of the ABL tools has been implemented
using the Lattice C compiler version 3.2, (large programme,
large data model), with the addition of two libraries. The
compiler uses the Lattice dBC III 1library, a library that
allows a programmer to create, modify, and delete 4BASE III
PLUS files, (database, index, etc.), and the ESI Utility
library. The ESI Utility 1library contains functions for
quick screen access, which is essential for a £full screen

editor.

Even though a database management system was not
powerful enough to implement the system, the use of a
database was still a high priority for the ABL tools. The
choice of high-level programming language had to be one,

such that, it had support for gaining access to a database.

Another reason for using the C language instead of a
database management system is the portability. The
programmes which make up the new ABL tools have adhered to
the proposed ANSI standard for the C 1language whenever

possible. There will have to be changes made to the

91

programmes, (in particular, the libraries will have to be
replaced), but the programme segments which are not portable
have been well defined. Eventually, the new ABL tools will
be transferred to other computer systems, such as the
Macintosh, workstations, the Novell network, and perhaps
even a VAX mini-computer. The current design will have to be

modified in the case of multi-user systems.

92

CHAPTER 6

THE USE OF A DATABASE IN THE ABL TOOLS

6.1. BENEFITS OF USING A DATABASE

In each of the implementations of ABL (both néw, and
existing [26][32]), the components that make up a process
are represented relationally and stored in a database.
Keeping a process decomposed in this manner allows multiple
views of the process to be extracted. The views, or reports,
may be produced at any time and in a variety of formats
including a tabular and a graphic format. One of the views

is code for the programme.

The programmes that will be produced from the
database can be modified to suit the individual tastes of
the user without having to edit or change individual
programmes, since the programmes are assembled from the
database using a report generator. When developing a
system, programmes can be generated which produce a trace
during execution. What is especially useful about this
feature is that the trace that is produced reflects the
design logic; by showing what alternatives have been chosen
from a cluster, the designer is actually seeing the
specification being executed. This has proven to be an

invaluable aid in system development [17].

93

The database allows for static verification and
consistency checking as well as dynamic testing and
debugging techniques. Every cluster can be checked for
completeness and consistency. Because the processes reside
in a database the static tests can be performed either in

batch or interactive mode.

By allowing the reports to be generated, instead of
having to document manually, and by having the lines of code
in a programme correspond to lines of description, the
documentation remains complete and consistent. This is an
extremely rare phenomenon in software development. Normally
documentation is produced after the fact, and quite often
changes that were made to a system, particularly late in the
implementation stage, are either documented in an incomplete

manner, or else do not show up at all in the documentation.

Another benefit derived from keeping a process
decomposed is that the components are reusable. Quite often
a subsystem will contain programmes that operate on the same
data objects or perform the same task on different data
objects. Rather than starting from scratch, it is possible
to make use of the existing components either by making a
new copy of the environment (or strategy), or by sharing an

environment (or strategy) between two processes.

94

In previous implementations [26][32], a strategy or
an environment could be shared between two or more
processes, but in this version, it is only possible to make
separate copies. While in theory shared environments or
strategies seem like a good idea, in practice certain

problems arise.

One problem encountered with shared components is
that of side-effects. A programmer makes a change to a
process with a shared environment by deleting an action. It
is very likely that the action that was deleted was in fact
needed by another process, and that now the other process
will not work properly. There is no indication that an
object is shared, the only information available is a list

of the objects contained in the shared environment.

Another problem stemming from shared components
occurs when generating code for a programme. Unlike actions
and conditions, which only appear in a process if explicitly
referenced in an action flow or guard, every data object
that is declared in an environment is included in a
programme. As a consequence, if two processes are sharing
an environment, and one process uses variable temp, then the
code generated for both programmes will contain the

declaration for variable temp. It is for these reasons that

95

shared components are not allowed in this implementation.

6.2. THE STRUCTURE OF THE DATABASE TABLES

Though the databases that are used for each
implementation are not identical, the differences between
versions are minor. Perhaps one version has a table with
just one index, while another version has the same table
with more than one index. The size of an ID field might
differ, or there might be a field, such as a time stamp,
that appears in one version's action table, but not in

another.

Another difference that exists from version to
version is the use of tables or fields (or even variables
which are kept on the disk), which help to facilitate
"housekeeping"” but do not have anything to do with the
methodology. There might exist a system table that has such
information as the last process that was in the system when
the user exited, in order to allow the user to automakically

continue with the same process on re-entering the editor.

The only change to the database that affects the ABL
methodology has to do with the use of goals. In the new
implementation, goals are not supported. The main reason

that goals have not been supported is that they are just not

96

needed. If the aim in using clusters as the only acceptable
construct in programme design is to simplify programming,
then the use of goals complicates things unnecessarily. One
set of decision points suddenly becomes two, and the
conditions that are tested at the level of the goal can
easily be included in the guards for the alternatives of the

next cluster.

Another reason for not including goals in the new ABL
tool, is that they are rarely used. The ABL methodology has
been used in software projects for over three years now, and
in that time, almost all the projects were implemented
without the use of goails. Furthermore, when new users first
start using the ABL methodology, if given the choice, they
would rather work without goals, because they find them

confusing.

By examining the tables, and considering the
relationships that exist between the tables in the database,
one can see the underlying data model for the ABL
methodology. For example, the action flow table relates the
action table with the alternative table. The tables also
show what objects belong to a process, and what objects

belong to the strateqy and the environment.

Without considering the goal table, because it is no

97

longer being used, (and because it is identical in structure
to the guard table), we see that the ABL tools, regardless

of version, principally use the following tables :

Process table
Environment table
Strategy table
Cluster table
Alternative table
Action table
Condition table
Object table
Guard table

Action Flow table

We know that a process is composed of a strategy and
an environment. The process table defines a process using
an environment ID number and a strategy ID number. The
environment and strategy tables describe the environment and
strategy respectively, and the occurrence of their 1ID
numbers in other tables defines their domain. The cluster
table and the alternative table both have a strategy ID
number. The action, condition, and object tables each have
an environment ID number, and the guard and action flow

tables have a process ID number.

98

TATTTR R AR TR T =T

Taken alone, the tables with a strategy ID number
describe the top level view of a process. The strategy
report, in fact, is composed of clusters and alternative
descriptions. The alternative table completes this view by
containing the source cluster ID number and the destination

(next) cluster ID number associated with an alternative.

The tables with an environment ID number define the
objects found in the environment, and the operations that
can be performed on them. The object table contains the
data object definitions, and the action table and condition
table are composed of elements from the object table

combined with their operators to form expressions.

It is the guard table and the action flow table which
actually define the relationship between the strategy table
and the environment table. The action flow table has an ID
number for an alternative, an ID number for an action, and a
position number. For example, an entry in the action flow
table might have an alternative ID number of 5, an action ID
number of 200, and a position number 3. This would mean
that in this particular process, there existed an
alternative 5 which had an action flow, such that, the third
element of the action flow could be found by examining the
action in the action table whose ID number was 200 (given

the correct environment 1ID). The guard table works in a

99

similar fashion, using conditions instead of actions, with
the following changes. First of all, the conditions are not
an ordered list and so the guard table does not have a field
for the position number. However, it is necessary to keep
track of the condition's value for the particular guard.
The quard table has a value field to denote whether, in this
instance, the condition referenced by the condition ID

number, should be regarued as true or false (or yes or no).

One place where the new ABL tool differs from the clc
ABL tools is with regard to the use of ID numbers. In
particular, in the older versions, the ID numbers for
actions and conditions are used by the user. In fact, in
the Oracle version, the only way to map the actions and the
conditions to the alternatives is by filling in their ID
numbers in the action flow and guard flow forms. In the
dBASE III PLUS version, it is possible to avoid the use of
ID numbers, but to do so entails such a convoluted process,
that the ID number method of entry is really the only option

available.

In the new version of the ABL tools, there still
exist ID numbers for actions and conditions, but they are
transparent to the user. The ID numbers are stored in the
tables to maintain the relationships, to serve as a gquide

when loading a process into memory. However, they can be

100

likened to addresses in machine code and are not seen,
modified or used by the user. Getting rid of ID numbers is
one step in creating an environment that allows de: elopment

of software systems without the use of paper and pencil.

101

CHAPTER 7

CONCLUSION AND FUTURE CONSIDERATIONS

7.1. TOWARDS AN IMPLEMENTATION OF A COMPLETE SYSTEM

A prototype of new ABL tools with a syntax-driven
full screen editor has been implemented. This prototype
serves to demonstrate that it is pcssible to have full
screen editing facilities for designing and implement.ng
software systems using the ABL methodology. The editor
makes it easier for the user to create ABL processes that
adhere to the methodology, in a way that is unobtrusive to

the user.

Testing of the prototype was conducted in an informal
manner. People were asked to enter a small ABL process
using the prototype and using SAM II. This simple test was
sufficient in illustrating the value of a syntax-driven
editor over a form oriented data entry system. Not only was
it immediately apparent that the prototype was extremely
fast and easy to use in comparison with SAM II, but in some
cases, people were unable to enter and edit a simple ABL

process using the SAM II system without extensive coaching.

The prototype currently has complete line editing and
line navigating facilities, including the option of entering

102

text in insert or replace mode. It supports full screen
navigation, such as page up, page down, arrow up, and arrow
down, as well as navigating to the top or bottom of an ABL
process. It is possible to add or delete an ABL object, and
all 'housekeeping', such as renumbering of ':D numbers when
an ABL object is added or deleted, 1is performed

automatically.

The following functions are either incomplete or are
completely missing from the prototype, and are necessary in

tools that are used for building software systems.

7.1.1. ABL Reports

The prototype is capable of gernerating two reports, the
strategy report and the process report. There are several
reports that should be added here, the most important being

the code report.

7.1.2. Block Commands

In order to share actions and conditions, block
commands are needed. The block commands have been designed

and coded, but have not been tested.

7.1.3. Code Editing

103

Though there is no working model of an editor in code
mode, the structures in memory, in addition to supporting
the narration mode, has support for the code mode. The
prototype is capable of representing code using multiple
lines which are variable length. The database has also been

extended to allow for representing the code.

7.1.4 System Level Facilities

The editing facilities in the prototype operate only
on the level ¢of an ABL process. It is necessary to have
access to details at the system level, such as the ABL
processes and the design level specifications that comprise

a system.,

7.1.5. Analysis and Verification

The prototype already performs some analysis ana
verification on ABL processes, (for example, ensuring that a
cluster exists if it is referenced in an alternative's next
cluster field, and also, notifying the user when a cluster
becomes orphaned), but these features only cover some. of the
possibilities. There exist other analysis and verification
techniques that the ABL methodology can support, but which

were not implemented because they do not fall under the

104

realm of full screen editing.

7.2. FUTURE ENHANCEMENTS

So far the additions that have been proposed can be
seen as features that are necessary in order to elevate the
existing prototype to the status of a full fledged designing
tool for large software systems. Assuming that these
additions are implemented, there is still room for making

improvements to the ABL tools.

7.2.1. Multiple Prccesses

It would be very convenient if the user could have
access to more than one ABL process at a time. It would
then be possible, for instance, to block off a cluster in
c¢1e ABL process, and then toggle to another ABL process in

order to copy the block.

7.2.2. Enhancements for Editing

Though the prototype for the ABL tools has full
screen editing facilities, there are still some editing
functions that are missing. For example, there is at
present no way to make a global change. Most word

processors allow the user to replace all (or some)

105

occurrences of one string by another string.

There should also be a way for directly accessing ABL
objects. The user should be able to specify a cluster or an
alternative, at least by ID number if not by description,

and have it become the current line,

7.2.3. Tracing the Path of an ABL Process

One enhancement which would be useful to include,
would be a function that would allow the user to step
through an ABL process. The user would choése an
alternative from the current cluster, and the editor would
automatically navigate to the cluster which is referenced by
the alternative's next cluster field. 1In this way the user
could perform a manual trace through the various paths that
the ABL process would allow without actually executing the

process.

7.2.4. Different Views of an ABL Process

Another feature that could be included in the ABL
editor that would be helpful in designing an ABL process,
would be to allow the user to choose various views of a
process without having to generate a report. Currently, the

present ABL editor only supports the standard strategy and

106

process views. While this is sufficient for designing an
ABL process, some people prefer to work with the tabular
view. All the information that is needed for the tabular
view is already present in the standard process view. It
would only be necessary to work out the details of how to
represent the information in a tabular format on the screen,
as well as keeping track of which view is currently being

displayed.

7.2.5. Multiple Users

The current ABL tools can only be used by one person
at a time. Either people in a project take turns using the
ABL tools or else each person in the software project has
access to a computer running a separate copy of the ABL
tools and its underlying database. An important feature
that could be added in some future implementation of the ABL
tools would be to allow several users to work concurrently.
In this way it would also be easier for a project supervisor

to monitor and control the progress of a software project.

7.2.6. Maintaining Existing Software Systems

The ABL tools help software experts design and
implement new software systems. While this certainly

fulfills a need in the software community, the ABL tools

107

ignore a large segment of software engineering which is
concerned with the problem of maintaining existing software
systems. What would be instrumental in allowing the ABL
tools to be able to work with these existing software
systems, would be some utility that enables users to import

non-ABL programmes into the ABL tools.

Some work has already been done in this direction. A
small system was designed [7] to perform a static analysis
of non-ABL programmes (written in Fortran), in order to
extract control flow information. Using this control flow
information, rudimentary clusters could be defined, and
lines of code which were not able to be referenced could be
identified. Another small system [8][10) was designed in
order to partially automate the process of converting a

large software system into the ABL format.

7.2.7 Data Considerations

It should come as no surprise that the ABL
methodology excels in its ability to describe the control
flow of a programme, because its strength lies in being able
to specify algorithms. This does not mean that the ABL
methodology has no means of dealing with the data flow and
the data objects of an ABL process, but that the main

emphasis of the ABL methodology is placed on the control

108

flow of an ABL process. One need only consider that an ABL
process is comprised of an environment as well as a strategy
in order to attest to the fact that the data flow and data

objects have beesn provided for in the ABL methodology.

There is, however, much work that can be done towards
improving the ABL tools when it comes to operations that do
not pertain to control flow. For instance, ensuring or
verifying that every data object is defined, along with the
drudgery of actually having to define each data object is
something that the user must presently be responsible for.
It is possible for future implementations of the ABL tools
to be able to relieve the user of either part or all of this
burden. There is also no facilities included in the ABL
tools for designing a software system using data flow and

data models.

A central data dictionary can be created by the ABL
system. While the user is entering an ABL process using the
ABL editor, it is possible to extract data objects using
simple lexical analysis and parsing techniques. The user
can then have access to the data dictionary in order to
perform such functions as binding the data objects to a
certain type. Though this strategy is very simple, and does
not address all the needs of the user, it would still be a

vast improvement over present facilities available to the

109

user.

A more comprehensive approach to the problem of
strengthening the ABL tools with respect to operations not
involved with control flow, would have to include a facility
that would allow the user to design a software system using
data flow and data models. This could either be done by
designing new data oriented facilities, or integrating
existing data oriented tools into the ABL environment. The
ABL design philosophy is flexible enough to be used in
conjunction with other software development tools and
methodologies. This approach, either by itself or combined
with the central data dictionary option, will make the ABL

tools much rore comprehensive.

Ultimately more data facilities will be added to the
ABL tools. The result will be that the user will have a
more powerful and more flexible set of tools to work with.
More importantly, the addition of data flow and data model
facilities will enable the ABL tools to come closer to being
a complete CASE environment for designing and implementing
large software systems, whether these software systems fall
into the domain of real-time and process control, or

business and MIS applications.

110

10.

11.

12.

13.

14.

References

Ashton-Tate. Using dBASE III Plus reference manual.
Ashton-Tate.

Auto-Asyst software package by Atkinson-Trembly.
CASE 2000 software package by Nastec Inc.

Chvalovsky V. ‘"Decision tables". Software — practice
and Experience 13 (1983). pp.423 - 429,

Consultech Canada. "Proposal for SAM III". Internal
document of Syslog Inc. Montreal.(1987).

ITC. "A guided tour of Excelerator". 1Index Technology
Corp. Cambridge, MA. (1985).

Finkelstein K. "A design for a static analyzer". A
project for the graduate course "Computer-aided
Design and Research" at Concordia University.
(1986).

Finkelstein K. ‘"Programmer's Guide for SAM II Import
Utility for Programming Languages". Internal
document of Syslog Inc. Montreal. (Feb. 1987).

Finkelstein K. "The Telecommande en Ligne project".
Internal document of Syslog Inc. Montreal.
(1987).

Finkelstein K. "User Guide for SAM II Import Utility
for Programming Languages". Internal document of
Syslog Inc. (Feb. 1987).

Hamilton M. and Zeldin S. "Higher Order Software: A
methodology for defining software". IEEE
Trans. Soft. Eng. SE-2: 1 (Mar. 1976) pp.71 -
79.

IDE software package by Interactive Development
Environments.

IEW (Information Engineering Workbench) software
package by KnowledgeWare Inc.

Jaworski W., Ficocelli L., and O'Mara K. "ABL/W{,
A language-independent environment for software
science". Concordia University. Montreal.
(1983).

111

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Jaworski W. and Virard M. "Converting a software
company to a new technology". Proceedings of
the 1986 Canadian Conference on Industrial
Computer Systems. Montreal. (1986). pp.12-1 -
12-7.

Jaworski W. ‘"Computer-aided design and research course
notes". Concordia University. Montreal. (1986).

Jaworski W., MacCuaig I., Marinelli T., and Nyisztor T.
" 'Executable' specification for a large
industrial process". Proceedings of the 1986
Canadian Conference on Industrial Computer
Systems. Montreal. (1986). pp.60-1 - 60-5.

Jaworski W. M. "Introduction to ABL/W4: A software
development system". Research Report Concordia
University. Montreal. (1984).

Jaworski W., Ficocelli L., and O'Mara K. "The ABL/W4

approach: A view of representational distortion,
documentation and software pragmatics". Research
Report Concordia University. Montreal. (1984).

Lejderman J. "CASE: The technology transfer issue".
Computing Canada. (July 1987). pp.18 - 19.

W. M. Jaworski and H. Hinterberger. "Controlled Program
Design by use of the ABL Programming Concept".
Angewandte Informatik (Applied Mathematics).
Wiesbaden, Germany, 302-310. (1981).

McMullen W. structured decision tables". SIGPLAN
Notices 19: 4. (Apr. 1984). pp.34 - 43,

Myers H. J. "Compiling optimized code from decision
tables". 1IBM Journal of Research and Development
16: 5 (Sept. 1972). pp.489 - 503.

Oracle Corporation. "Database Administrator's Guide".
Oracle Corporation. (1984).

ProMod software package by ProMod Inc.

Syslog Inc. "SAM II User's Manual vers. 1.22".
Syslog Inc. Montreal (Dec. 1987).

Robillard P. "Schematic Pseudocode for program

constructs and its computer automation by
SCHEMACODE". Communications of the ACM 29: 11
(Nov. 1986). pp.1072 - 1089.

112

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Small C. "Automated decision logic verification in a
CASE system". Internal document of Syslog Inc.
Montreal (1987).

Small C. "Circuit board testing system converted using
SAM tools". Internal document of Syslog Inc.
Montreal (1986).

Small C. "Software conversion using an automated
development methodology". Technical Proceedings
HP1000/ 9000. Proceedings of the 1986 INTEREX
Conference (Detroit, Sept. 28 - Oct. 3, 1986).
International Association of Hewlett-Packard
Computer Users. pp.1003-1 - 1003-29.

Sommerville I. Software Engineering. Addison-Wesley,
London. (1982).

SOS software package by Syslog Inc. Montreal
Suydam W. "CASE makes strides toward automated

software development". Computer Design.
(January 1, 1987). pp.49-70.

Syslog Inc. '"An SOS Glossary". in seminar on Syslog
Automation Methodology. Syslog Inc. Montreal.
(1986).

Teamwork software package by CADRE Technologies.

Vick C. R. "A software engineering environment".
Handbook of Software Engineering. C.R. Vick
and C.V. Ramamoorthy, Eds. Van Nostrand Reinhold
Company. New York. (1984).

Virard M. A. "Transfer of Engineering knowledge".
Engineering Digest. (Sept. 1986). pp.32 - 33.

Wirth N. Systematic Programming: An Introduction.
Prentice-Hall, N.J. (1973).

Small Charles. "Position Paper". First International

Workshop on Computer-Aided Software Engineering.
Cambridge, Massachusetts. (May 27 - May 29) 1987.

113

APPENDIX 1

ABL GLOSSARY

ACTION

Actions are constituents of environments. They are of three
types: compound, simple and complex.

A compound action may be decomposed into a non-empty ordered
sequence of actions, where the order defines the sequence of
execution of the actions. All actions referenced in a
compound action must themselves be constituents of the same
environment as the compound action. The constituent actions
may themselves be of any type: compound, simple, or
complex. Compound actions are not primitive, in the sense
that they are not associated with source code in an
implementaticn language.

Simple actions are not decomposable into other actions.
They correspond with and are associated with source code in
an

implementation language -- typically, executable actions or
sequences of them (In practice, simple actions may be
translated into implementation language code which contains
loops or condition tests, as well). A simple action can be
seen as composed of primitive objects in the environment of
the action together with functional operators which access
or manipulate the walues of those objects.

Complex actions, like simple actions, are not decomposable
into other actions. They are also associated with source
language code -- in this case, typically, procedure calls.,
Execution of a complex action corresponds to the invocation
of another process, with its own strategy and environment,
at the point at which the complex action is executed. In
the context of the environment in which it occurs, the
complex action which corresponds to a process appears as a
"black box". This facility allows systems to be structured

‘as hierarchies of processes.

ACTION FLOW

Action £lows are defined with respect to processes, since
they relate alternatives (of a strategy) with actions (of an
environment). The action flow for an alternative is an
ordered sequence (possibly empty) of actions, each of which
must e defined in the environment of the process with which
the alternative is associated.

Action flows define, for an alternative, the sequence in
which the actions associated with it are to be carried out,

when the alternative is chosen for execution.

An action may occur any number of times within a given
action flow —-- that is, the same action may be carried out
more than once for a given alternative, at different points
in the sequence of execution of the alternative's actions,.

ALTERNATIVE

Alternatives are (along with clusters) the constituents of
strategies. Each strategy may have any number of
alternatives (although in practice strategies with more than
25 or so

alternatives tend to become unwieldy). Each alternative is
associated with:

a) an alternative number, unique within its strategy;

b) the number of the cluster within its strategy which is
the STARTING cluster for the alternative;

c) the number of the cluster within its strategy which is
the NEXT cluster for + . alternative;

d) (optionally) the number of a cluster within its strategy
which is the EXCEPTION cluster for the alternative.

An alternative defines a path from one decision point to
another. The path ordinarily goes from STARTING cluster to
NEXT cluster, but may also go from STARTING cluster to
EXCEPTION cluster.

During execution, the alternatives starting at a cluster
define the options, or possible paths, to be taken from that
point. Where (as is normally the case) there 1is only a
single non-concurrent processor, only one path from a
cluster must be chosen.

Implicitly, some set of conditions must be evaluated to
determine which path to take. Implicitly, also, taking the
path means executing some sequence of act: wns. However,
these conditions and actions are not defined in the
strategy, but in the environment of a process with which it
is associated.

Where the execution of the actions of an alternative is
successful, execution will proceed to the NEXT cluster.
Where it is not, execution will go to the EXCEPTION cluster
for error handling. Success of an alternative is determined
by evaluation of another set of conditions known as GOALS,
which are also defined in the associated environment.

Within a strategy, alternatives are ordinarily numbered
sequentially from 1. However, the assignment of numbers is
arbitrary. That is, the numbers need not be consecutive,
and no particular scheme of sequential assignment is
required.

CLUSTER

Clusters are one of the components of strategies. Each
strategv may have any number of clusters (although in
practice strategies with more than eight or so clusters tend
to become unwieldy). Each cluster is a decision point which
may be designated as the STARTING cluster, NEXT cluster or
EXCEPTION cluster for any of the

alternatives of the strategy.

During execution, when each cluster is reached, the values
of the conditions associated with the alternatives which
start at it are tested, and a single alternative is chosen
for execution from among those starting at the cluster. By
convention, clusters are numbered sequentially within each
strategy, starting from 1. Cluster 1 is an unconditional
start point (process entry) and cluster 0 an unconditional
stop point (process exit or

termination). Cluster 0 can never appear as a starting
cluster.

CONDITION

Conditions are components of environments. They are of two
types: compound and simple.

A compound condition may be decomposed into a (possibly
empty) ordered sequence of actions (where the order defines
the eequence of execution of the actions), followed by a
sin¢ 2 simple

cona.tion. All actions and conditions referenced in a
compcund condition must themselves be constituents of the
same environment as the compound condition. The constituent
actions may themselves be of any type: compound, simple, or
complex. Compound conditions are not primitive, in the
sense that they are not associited with sovrce code in an
implementation language.

Simple conditions are not decomposable into conditions and
actions. They correspond with and are associated with source
code in an implementation language -- typically, conditions
to be tested. A simple condition may be seen as composed of
primitive objects in the environment of an action together
with functional operators which access the values of those
objects and relational operators which test them.
Ultimately, a simple condition returns a single Boolean
value (T or F). It may contain embedded functional
operators used in evaluation (+, -, *, etc.) provided no
values of objects are altered by these operators. Simple
conditions may in practice contain arbitrary parenthesized
combinations of ANDs and ORs. Conventional rules govern the
priority of the evaluation of these.

ENVIRONMENT

An environment is the data flow component of a Process. It
is represented as a set of Objects, a set of Actions, and a
set of Conditions. Simple Actions and Conditions can
themzelves be decomposed into Objects and Operators which
act on tnem (in the case of Actions) or test their wvalues
(in the case of Conditions). Actions may also be complex, in
which case they correspond to the invocation of another
Process with its own Strategy and Environment at the point
at which the Action is executed.

An environment may be created and edited independently of
any process or strategy, but its components can only be
accessed and activated during execution by a process with
which it is
associated.

GUARD

A guard . . a function of the interaction of a strategy with
an envircnment, and is therefore defined with respect to a
process. Guards define, for a process, the circumstances
under which a particular path will be chosen at a decision
point (or, in other words, the circumstances under which a
particular alternative will be selected for execution at a
cluster). Each gqguard is associated with:

a) an alternative in the strategy of its process;
b) a condition in the environment of its process;
c) a required value (T or F) for that condition.

Each alternative of a strategy may be associated with 0 or
more guards. During execution, all the guards fcr all
alternatives starting at the current cluster are selected,
and, for each guard, the current vaiue of its condition is
compared with the required value (T or F) in the guard. If
the current and c¢equired values of all guards for an
alternative match, that alternative is selected for
execution.

Guard values must be chosen in such a way as to ensure that
in all cases one and only one alternative starting at a
cluster will be chosen for execution. This implies that the
guards for a cluster define a complete, consistent and
mutually exclusive set of alternatives.

GOAL

A goal, like a guard, is a function of the interaction of a
strategy with an envircnment, and is defined with respect to
a proc ss. Goals define, for an alternative, the
circumstances under which execution of the actions of that

alternative will be considered successful and when it will
be considered unsuccessful. This evaluation determines, in
turn, whether execution will proceed to the NEXT cluster for
the alternative or the EXCEPTION cluster.

Each goal is associated with:

a) an alternative in the strategy of its process;
b) a condition in the environment of its process;
c) a required valus (T or F) for that condition.

Each alternative of a strategy may be associated with 0 or
more goals. If no goals are present, execution always
proceeds to the NEXT cluster. Otherwise, for each goel, the
current value of its condition is rzpared with the required
value (T or F) in the gozl. If the current and required
values of all goals for an alternative match, execution
proceeds to the NEXT cluster. If any condition dces not
have the value required for it in the goal, execution
proceeds to the EXCEPTION cluster.

OBJECT
Objects are of three types: complex, simple and primitive.

Complex objects are components of systems and may be
decomposed into simple objects and other complex objects.
They are not associated with values and are not represented
by source language code in any specific environment. They
do appear, however, as entries in the global data dictionary
for the systen.

Simple objects, like complex objects, appear as entries in
the global data dictionary and are not associated with
values or represented by source language code 1in any
environment. +owever, unlike complex objects, they are not
decomposable. Each simple object in the data dictiorary
corresponds to at Jeast one primitive object in some
environment of the system. It may in fact

correspond to nbjects in many different syztem environments.
In each of these it will be classified as either of type
INPLT or type OUTPUT. A simple object may not correspond to
more than one object in any given environment.

A simple object which corresponds to a primitive object in
only one environment is said to be LOCAL to that
environment. A simple object which corresponds to primitive
objects in more than one environment is said to be GLOBAL to
all those environments.

Primitive objects are components of specific environments.
They do not appear in the global data dictionary, and are
not decomposable. Each primitive object, however,
corresponds to some particula: simple object in the global

data 3lictionary. Primitive objects are associated with
values or sets of values of defined types. Like actions and
conditions, they are represented by source 1language code
(object declarations, typically) in some implementation
language. Primitive objects may be combined using
functional operators (+, -, *, /, assignment, MOD, max,
exponential, square root, etc.) to produce actions or
relational operators (>, <, >=, <=, =, <>, AND, OR, NOT) to
produce conditions.

PROCESS

A process is a unit of execution within a system, It is the
execution of a strategy within an environment. A process
begins executing when it is invoked, either by a user or by
another process. It begins at its entry point (by
convention, clusver 1) and continues until cluster 0 (the
exit point) is reached.

STRATEGY

A strategy is the control flow component of a process. It
is represented as a set of clusters and a set of
alternatives, where the clusters represent decision points
and the alternatives represent paths connecting the decision
points. A strategy may be created and edited independently
of any process or environment, but can only be executed by a
process with which it is associated.

SYSTEM

A system is a network of related processes. The processes
in a system may be:

a) Hierarchically related, with a single thread of
execution. b) Communicating processes with multiple threads
of execution. c) Processes related in neither of these ways
but only

conceptually.

d) Combinations of a), b), and c).

APPENDIX 2

ABL REPORTS

The following pages contain samples of ABL reports.
The first report is the code report, which has the detailed

design level embedded in it.

The second report is a strategy report. It is

followed by a segment of a process report and a tabular

report.

120

7
;
;
.
i
¥
T
y’I
€
¢
¢

#include <stdio.h>
#include <stdlib.h> /* malloc
#include <string.h> /* stremp,strncpy,strecat

»

#include "global.h"
#include “scrnglbl.h®
#include "extern.h"

int bldactbl (penv,acth,acte)

char penv[IDSIZE + 1}; /* environment id for actions
struct actntbl **actb; /* beginning of action table
struct actntbl ¢tacte; /* end of action table
/i

file bldactbl.c Written by K. Finkelstein

LAST MODIFIED : Sept 14 1988. '
- Dynamic code field added

This function builds a table of actions for the requested
environment -~ the table has a pointer at its beginning and
end (actb and acte).

ASSUMPTIONS : Action 1 exists {if any actions for this env.).
Actions are ordered 1 .. n,
Actions are reused when saved; i.e., if action x
is INACTIVE then there is no action x.
The above assumption translates to mean that if
action 1 is INACTIVE then there are no actions.

RETURN STATUS : 0 SUCCESS
1 Out of Memory error (Warning)

-1 Database Error (Fatal)

-2 No actions exist (Warning)
#include <dbc.h> /* dbc routines, variables
#include "action.h" /* action table

extern dBopen{),dBiopen{},dBgetnr(),dBgetrk({),.dBclose(),dBiclose();

#define ACT1 * 0001" /* action 1
#define BGNENV 0 /* start of environment (strinso)
#define WHOLE 0 /* type whole for asci_to_number

ARRRRARAARANRARAARAR AR AR R AARRRARAARARARARR RN ARRARNRRAARARAANARRARKAARAARRARNARA
1 Initialize

Al Initialize -> 2
2 Open Index file

A2 Open Index file -> 3
A3 Error opening database file -> 0

3 Get First Action

A4 Get first action -> 4

AS Error opening index file => 0
4 Get Memory for First Entry

A6 Get memory for Top -> 5

A7 Deleted Action -> 0

A8 No action exists -> 0

A9 Error reading database -> 0
5 Initialize First Action

Al0 Initialize first action -> 6

All No memory available -> 0
6 Get Environment from record

Al2 Get environment from record -> 7

Al3 Deleted Action -> 6

Al4 End of actions -> 0

AlS Error reading database -> 0
7 Get memory for entry

Al6 Get memory for entry -> 8

Al7 End of actions -> 0
8 Initialize Current Action

AlB Initialize current action -> 6

Al9 No memory available -> 0

RRRARARANARARARR AR R ARARRR R AR AR A AR AR A AR AR AR AR A ARARRRR AR ARAR N R AR AR A AR AR AR NRAR

struct actntbl *tmptr; /* temporary pointer for new nodes
struct actntbl *curptr; /* current pointer in action table
struct xactlst *item; /* current pointer for action's code
char key[ACTENVLT + ACTACTLT + 1); /* key env + act

char status; /* record status: ACTIVE or INACTIVE
char *tmpcode; /* temp. ptr - holds code for action
int error; /* dbc routines status variable

int i_num; /* temp. integer for asci_to_number
int match; /* status of string comparison

int rcode: /* return status for function

double £_dummy; /* dummy double for asci_to_number
Clus0l:

RARAR AR R AR RARR AR R RRRR RN R AR AN AR R R AR AR RARR AR R AR RA AR R R AARRRANRRRARRR R AN ARRARA

Cl Initialize

Al Initialize
Clear Pointers
Open database file
next 2

RRARR AR AR R R AR AN R A AR R R R R R A AR AR AR R AR AR A AR AR A AR ARARR R AR R AR R AR R AR R AR R AR R AR ANRNRARAR

/* Al Initialize
*actb = NULL;

*acte = NULL;
error = dBopen{DBACTION,sDaction);
Clus02:

/tlittt.ttlﬁﬁilttii*tttﬁttitttitﬁitﬁ*QQttttﬁﬁttai*ittttiitiiﬁttﬁiittt*tttttit
C2 Open Index file

A2 Open Index file
IF successful database access
Open index file
next 3

A3 Error opening database file
IF NOT successful database access
Handle error
Set return status
next 0

ANRRRARAR AR AR AR RN RRR A AR AR R AR AR R AR R R R AR AR RN AR AR RR R AR R R AR AR AARNRRAR A AR A A AR ARR

if((error == SUCCESS)

/* A2 Open Index file
error = dBiopen(IXACTION,slaction):
goto Clus03;

else

/* A3 Error opening database file
errhndlr(14);
rcode = -1;
)goto Clus00;

Clus03:

RAREARARRRAAARARARARARR RN RRARARARARRAARRRARARRARAARAARRARAARRAARRRARNARARNARRNRARRRAR
C3 Get First Action

A4 Get first action
IF successful database access
Construct key for indexed read
Read action from database (indexed)
next 4

A5 Error opening index file
IF NOT successful database error
Handle error
Close database file
Set return status
next 0

ARREAARAANRAAARARAR AR ARRRRA AR AARRARRRAARRRAARKRARARRARARRARAAARRRARAAAARANRAAR

if (error == SUCCESS)

/* A4 Get first action
strasgn(ACT1,key):
strinso(key,BGNENV, IDSIZE,penv);

error = dBgetrk(Daction,laction,key,Actrec,&status);
goto Clus04;

else

/* AS5 Error opening index file
errhndlr(15);
error = dBclose(Daction);
if (error != SUCCESS) errhndlr(18);
rcode = ~1;
)goto Clus00;

Clus04:
/tiitt*t*liiiilttlitt*ittliiitttﬁﬁttitltiﬂtﬁi*tt*ﬁﬂ*iiitﬂtitiiiﬁiaittiﬁiittit
C4 Get Memory for First Entry

A6 Get memory for Top
IF successful database access
AND ACTIVE record
Get memory (First)
Get memory for action code
next 5

A7 Deleted Action
IF NOT successful database access
AND NOT ACTIVE record
Close database file
Close index file
Set return status
next 0

A8 No action exists
IF no record
Close database file
Close index file
Set return status
next 0

A9 Error reading database
IF NOT successful database access
AND NOT no record
Handle error
Close database file
Close index file
Set return status
next 0

RARRRARRARARRARRRRARRRRANAR IR ARAARRARRARNRARRARANRRAIAANARARRARAARARA AR AR AR A A RRAR
if((er:or == SUCCESS)

if (status == ACTIVE)

/* A6 Get memory for Top
*actb = (struct actntbl *) malloc(sizeof(struct actntbl));
item = (struct xactlst *) malloc(sizeof(struct xactlst));
goto Clus05;

el%e

/* A7 Deleted Action
error = dBclose(Daction);
if (error != SUCCESS) errhndlr(18);
error = dBiclose(laction);
if (error != SUCCESS) errhndlr(19);
rcode = -2;
goto Clus00;

)

else
if{((error == d_NOKEY) || (error == d_ENDKEY))

/* A8 No action exists
error = dBclose(Daction);
if (error != SUCCESS) errhndlr(18);
error = dBiclose(laction);
if (error t= SUCCESS) errhndlr(19);
rcode = -2;
goto Clus00;

else

/* A9 Error reading database
errhndlr(16);
error = dBclose{Daction);
if (error |= SUCCESS) errhndlr(18);
error = dBiclose(laction);
if (error != SUCCESS) errhndlr(l9);
rcode = -1;
goto Clus00;

Clus05:
/*ﬁtﬁiliittiﬁﬂ***tllti*ﬁﬁ**ittt.ﬁtii.ﬁti*ﬁtiﬁit*(AR RRARRRRRRARRARRA AR AR ARRRA KA

C5 Initialize First Action

Al0 Initialize first action

IF memory available

Set extended action to NIL

Set code to NIL

Attach code pointer to action table
Get code

Get blanks

Copy code without blanks

If successful attach code to action table
Get narration

Get id number (Ascii to Integer)

TEHP AT T R TR Tscae

Initialize current pointer to action
Initialize bottom of table to action
Set next to NIL
Set previous to NIL
Read next action from database

next 6

All No memory available
IF NO memory available
Handle error
Close dacabuse file
Close index file
Set return status
next 0

RERAEARARRRRAR AR AAKRRRNRAR A R AN KR ARR AR ARARA AN ARRARNARARNANARAARARKA AR R ARANA AR AR AN

if ((*actb != NULL) & (item != NULL))

/* Al0 Initialize first action
item->next = NULL;
item->cod = NULL;
(*actb)->xact = item;
error = gtsbstr(Actrec,ACTCCDST,ACTCODLT,Act_cod);
if (error != SUCCES3) errhndir(17):;
asci_to_number (Actrec,ACTBLNST,ACTBLNLT,WHOLE, §Act _bln,sf_dummy);
error = gtdynstr(Act_cod,étmpcode, ACTCODLT,Act_bln);
if (error == SUCCESS) ((*actb)->xact)->cod = tmpcode;
error = gtsbstz (Actrec,ACTNARST,ACTNARLT, (*actb)->nar);
if (error != SUCCESS) errhndlr(17);
asci_to_number (Actrec,ACTACTST,ACTACTLT,WHOLE,&i_num,&f_dummy); .
(*actb)~>id = i_num;
curptr = *actb;
*azcte = *actb;
(*acte)~>dwn = NULL;
(*acte)~>up = NULL;
error = dBgetnr(Daction,laction,Actrec,éstatus);
goto Clus06;

else

/* All No memory available
errhndlr(4);
error = dBclose(Daction);
if (error != SUCCESS) errhndlr(18):;
error = dBiclose(laction);
if (error != SUCCESS) errhndlr(19);
rcode = 1;
}goto Clus00;

Clus06:

/tiﬁﬁtﬁtitiﬁtﬁﬁitttﬁtttt*tiiﬁﬂdt.tiitiﬁﬁ*tttitit.tt*ithtthtlitiﬂiiiiﬁti.ﬁtiit
C6 Get? Envirc- ment from record

Al2 Get environment from record
IF successful database access

AND ACTIVE record
Get environment from record
next 7

Al3 Deleted Action
IF successful database access
AND NOT ACTIVE record
Read next action from database
next 6

Al4 End of actions
IF end of database
Close database file
Close index file
Set return status
next 0

AlS Error reading database
IF NOT successful database access
AND NOT end of database
Handle error
Close database file
Close index file
Set return status
next 0

AANARRRR R AR AR RARARNARARARAARRAA AR AR N R AR ARRR R AR ARRARAANRARANRAARAARRRARRARAARAARAR

if (error == SUCCESS)
if (status == ACTIVE)

/* Al2 Get environment from record
error = gtsbstr(Actrec,ACTENVST, ACTENVLT,Act_env):
if (error != SUCCESS) errhndlr(l7);
match = strcmp(penv,Act_env);
goto Clus07;

else

{
/* Al3 Deleted Action
error = dBgetnr(Daction,laction,Actrec,éstatus);

)goto Clus06;
)

else

1f (lerror == 3_NOKEY) || (error == d_ENDKEY))

/* Al4 End of actions
error = dBclose{Daction);
if (error != SUCCESS) errhndlr(18);
error = dBiclose(laction);
if (error != SUCCESS) errhndlr(19);
rcode = 0;
}goto Clus00;

else

/* AlS Error reading database
errhndlr(16);
error = dBclose(Daction);
if (error != SUCCESS) errhndlr(18);
error = dBiclose(laction);
if (error != SUCCESS) errhndlr(19};
rcode = -1;
goto Clus00;

}
Clus07:

/*ttiﬁttttitii‘ﬁtt*ttﬁtit.tttttttit*ttﬂttttttt.Qtttﬁﬁtitt*ﬁﬁti*iﬁﬁﬁﬁtﬂiitﬁttt
C7 Get memory for entry

Al6 Get memory for entry
IF action in program environment
Get memory
Get memory for action code
next 8

Al7 End of actions
IF NOT action in program environment
Close database file
Close index file
Set return status
next 0

RARRRRARRR AR R RN AR R AR R AN A AR AR A A AR AR R AN AR RN RN R R AR AN R A AR AR AR AR R AR AR AR R AR AR R R A A AR
if (match == SUCCESS)

/* Al6 Get wemory for entry
tmptr = (struct actntbl *) malloc(sizeof{struct actntbl));

item = (struct xactlst *) malloc(sizeof(struct xactlst));
goto Clus08;

else

/* Al7 End of actions
error = dBclose(Daction);
if (error 1= SUCCESS) errhndlr{l18);
error = dBiclose(laction);
if (error != SUCCESS) errhndlr{19);
rcode = 0;
}goto Clus00;

Clus08:
/tﬁﬁtttittit.t.tttttit*tt*ilttitﬁttiﬂiiilttﬁiiﬁitttlittiﬁ*iii.tﬁitiiittﬁtﬁﬂt.

C8 Initialize Current Action

Al8 Initialize current action
IF memory available
Set extended action to NIL
Set code to NIL

Attach code pointer to action table
Get code
Get blanks
Copy code without blanks
If successful attach code to action table
Get .arration
Get id number (Ascii to Integer)
Set current pointer -> dwn to temp. pointer
Set temp. pointer -> up to current pointer
Initialize current pointer to action
Initialize bottom of table to action
Set next to NIL
Read next action from database

next 6

AlS No memory available
IF NO memory available
Handle error
Close database file
Close index file
Set return status
next 0

RANR R RN AR AR R R R AN R AN R AR AR AR KR AR AR AR AR A AR AR R AR AN R AR AR AR AR AR R AR AR R R ARARRANRARA
if(((tmptr != NULL) && (item != NOULL))

/* Al8 Initialize current action
item->next = NULL;
item->cod = NULL;
tmptr->xact = item;
error = gtsbstr(Actrec,ACTCODST,ACTCODLT,Act_cod);
if (error != SUCCESS) errhndlr(l7);
asci_to_number (Actrec,ACTBLNST,ACTBLNLT,WHOLE, sAct_bln,&f_dummy);
error = gtdynstr(Act_cod, stmpcode, ACTCODLT,Act bln),
if (error == SUCCESS) (tmptr->xact)->cod = tmpcode;
error = gtsbstr(Actrec,ACTNARST,ACTNARLT, tmptr->nar);
if (error != SUCCESS) errhrdlr(17);
asci to number(Actrec,ACTACTST ACTACTLT,WHOLE, §i_num, sf dummy),
tmptr->Id = i_num;
curptr->dwn = tmptr;
tmptr->up = curptr;
curpt: = tmptr;
*acte = tmptr;
tmptr->dwn = NULL;
error = dBgetnr(Daction,laction,Actrec,&sstatus);
goto Clus06;

else

/* Al9 No memory available
errhndlr(4);
error = dBclose(Daction);
if (error t= SUCCESS) errhndlr(18);
error = dBiclose(laction);
if (error 1= SUCCESS) errhndlr(19);
rcode = 1;
goto Clus00;

Clus00:

/tﬂﬁit*tttﬁtttﬁttﬁittiﬁttk*ktitiiitittti*iﬁ*ttit.tttttt*t***itttQiﬁtﬁttﬁﬁttﬁt
Exit with Status

RRAARARRARRRARRRAARRARAARRARRRAARRKRAANRRARRANRRAANARRNARRA AR PR AAARARARARARARRRAANAR
return(rcode);

Strategy Report

This function builds a table of actions for the environment

PRC : bldactbl STR : bldactbl ENV : bldactbl
Iinitialize
Al Initialize -> 2

Open Index file

A2 oOpen Index file -> 3
A3 Error opening database file -> 0

Get First Action

A4 Get first action -> 4
AS Error opening index file -> 0
Get Memory for First Entry

A6 Get memo., for Top -» 5
A7 Deleted Action -> 0
A8 No action exists -> 0
A9 Error reading database -> 0
Initialize First Action

Al0 Initialize first action -> &
All No memory available -> 0
Get Environment from record

Al2 Get environment from record -> 7
Al3 Deleted Action -> 6
Al4 End of actions -> 0
AlS Error reading database -> 0
Get memory for entry -
Al6 Get memory for entry -> 8
Al7 End of actions -> 0
Initialize Current Action

AlS Initialize current action -> 6
Al9 No memory available -> 0

Process Report

This func.ion builds ¢ table of actions for the environment

ENV : bldactbl

PRC : bldactbl STR : bldactbl
Initialize
Al Initialize

Clear Pointers
Open database file
NEXT 2
Open Index file

A2 Open Index file

IF successful database access
Open index file
NEXT 3
A3 Error opening database file

IF NOT successful database access
Handle error
Set .ev.orn status

NEXT 0
Get First Action
A4 Get first action
IF successful uatabase access

Construct key for indexed read
Read action from database (indexed)
NEXT 4

A5 Error opening index file
IF NOT successful database error
Handle error
Close database file
Set return status
NEXT 0

Get Memory for First Entry

A6 Get memory for Top
IF successful database access
AND ACTIVE record
Get memory (First)
Get memory for action code
NEXT S

A7 Deleted Action
IF NOT successful database access
AND NOT ACTIVE record

s |

PRC : bldactbl

CLUSTERS
Al A2
X

CONDITIONS

1.

wwwwwwwww
w

LI I I T T T R S T T S S R S S N S))

X

e o o o o e e o s o o]

® ® s e s s 8 0 8 s ® e s 8 6 e e 8 e & s % pte o

>
w

o s e

¢« e a s o s s s s s o "

e 5 o e v e e 6 s s % s s » s e v e e 2 NP s

>
s

o e s

e e s s s s s e s e s 1

e ¢ o o 6 e s e s 8 & 2 8 s s s s e N)Ile e o o o

A5

« Mo o

e e s o o s e s s s s MM

© s s+ o e 8 8 s s 8 s e e 2 e e N> s ke e o

This function builds

A6

“ e e s $IHF D o o

e ® e e o s e s o s s s 0 NI = o

a

e s 8 e e o+ e o o e o &

¢ & & & & o & e 8 e e 8 2 e 8 s s e e s 8 e e s o

Tabular Report
table of actions for the environment

ENV : bldactbl

. C 1 1Initialize
. C 2 Open Index File
. €C 3 Get First Action
. C 4 Get Memory For First Entry
. B 1 successful database access
. B 2 ACTIVE record
. B 3
. B 4
. BS
. B 6
. B 7
. B8
. B9
. B1O
. Bl1
Bl12

1 Clear Pointers
A 2 Open database file
A 3 Open index file
A 4 Handle error
A 5 Set return status
A 6 Construct key for indexed read
A 7 Read action from database (indexe
A 8 Close database file
9 Get memory (First)
Al0 Get memory for action code

>
-
~

