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ABSTRACT

A Markov Chain Approach To
The Problem Of Runs And Patterns

Zhiying Liang

The analysis of exact distribution for randomly arranged repetitive
runs and patterns in repeated Bernoulli, decimal, alphabetical or
other types of sequences have been studied since 1940’s. They can
be classified into four types.

In this thesis, we propose a different approach to the problem of
runs and patterns than the approaches taken by all the other au-
thors on this topic by converting it into the problem of Markov
chain with discrete state space. We derive methods to compute the
exact probabilities and to derive the asymptotic distributions of the
number of occurrence of runs and patterns of any kinds of length.
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INTRODUCTION

The purpose of this thesis is to propose a approach to the
preblem of runs and patterns different from the approaches consid-
erations of all the other authors on this topic by a conversion into
the protlem of Markov chain with discrete state space is used. We
shall find ways to compute the exact distributions and to derive the
asymptotic distributions of the number of occurrence of runs and

patterns of length & for all £ > 1 are found.

To be more precise, we explain in details the case with a
binary sequence. Let n > k > 1 be two fixed positive integers.
For a given sequence of n randomly arranged S (success) and F
(failure), we are interested how to count the number of occurrences

of the pattern SS---S (a run of k£ S) in a total of n trials.

There are many ways of counting the number of runs of S of

length k. They can be classified into four types as follows:

Type I: A run of S of length k means a string of exactly k S
followed by an F.

Type II: A run of S of length k means a string of uninterrup-

1



ted k or more S.

Type III: A run of S of length k£ means a string of exactiy k
S with recounting starting immediately after a run
occurs.

Type IV: A run of S of length £ means a string of exactly k£ S

allowing overlapping runs.

For example, consider a realization of a sequence S and F such

as

S-5-S-S-F-S-S-S-F-F-F-S-5-S-S-S-S-F-F-F-F-S-S.

In this sequence n = 23. If we take k = 3, then there is only one
run of three S of type I; there are three runs of three S of type II;

four runs of three S of type II1 and seven runs of three S of type

IV.

Runs of type I are the most restricted one. In a narrow
sense, the word “pattern” means this type of runs. In linguistics,
a literary text can be viewed as sample sequences drawn from a
population of possible texts from an author. (See Yule (1944).)

Counting the number of occurrences of a particular pa.tern {a clus-



ter of letters or words) in a randomly selected text of an author
is equivalent to counting the number of “runs” of type I of such a

pattern. (See Brainerd and Chang (1982).)

Runs of type II are a natural way of counting runs and are
the ones most commonly accepted in the classical literature before
Feller (1968) came up with the definition of type III runs. In
the literature, runs of type II have often been referred to as “ the
classical way of counting” runs. In statistics, one often wanis to
know whether a set of observed data available for some statistical
analysis is random. To test the randomness in this situation one
method is to use the total number of runs above and below the

median in the set of data. The “runs” in the runs test are runs of

type II for £ = 1. (See Mood (1940).)

In reliability, a “consecutive-k-out-of-n:F system” consists of
n linearly ordered components. The failure times of the compo-
nents are assumed to be independent and identically distributed.
The system fails if and only if at least k& out of its n compor- -
fail. (See Chiang and Niu (1981).) The study of the reliability

of such a system is reduced to the study of the number of type II



runs with “failure” substituting for “success”. The reliability of
the consecutive-k-out-of-n:F system is the probability that a run of

“failures” of length k of type II has never occurred.

An extension of the consecutive-k-out-of n:F system is a sys-
tem with m — 1, m > 2, identical back-up systems. Such a system
is known as “m-consecutive-k-out-of-n:F system”. (See Griffith
(1986) and Papastavridis (1991).) For such a system to fail, it is
necessary to have m or more repeated runs of failure of length &
of type II. Therefore, the reliability of the m-consecutive-k-out-of-
n:F system is the probability that there are at most m — 1 runs of

failures of length k of type II.

Feller (1968) proposed runs of type III from the point of view
of renewal process. Thus runs of type III have been called “Feller’s
way of counting” runs in the literature. As Feller noted (1968,
p.279) that “If we are to use the theory of recurrent events, then
the notion of runs of length k& must be defined so that we start from
scratch every time a run is completed. This means adopting the
following definition. A sequence of n letters S and F contains as

many runs of length k as there are non-overlapping uninierrupted



successions of exactly k letters S. In a sequence of Bernoulli trials
a run of length k occurs at the n-th trial if the n-th trial adds a

new run to the sequence.”

We believe that Feller is the first person to consider the prob-
lem of “runs of length k”. Before him, people were only cuncerned
with the problem of “runs”, i.e. “runs of length 1 or more”, as the
“runs” defined in the runs test based on the total number of runs.
His definition appeared in the first edition of his book (1968) which

was published in 1950.
Three interesting examples of type III runs are:

Example A. (See Aki (1985).) An urn contains w white and r
red balls. Let k be a fixed integer such that £ < r. A ball is drawn
at random. If it is a white ball, it is replaced into the .'rn, if red
it is laid beside the urn. Another random drawing is made from
the urn. If the ball is red it is laid beside the urn and the drawing
continues. But when a white ball is drawn, the white ball and
all the red balls which have been accumulated beside the urn are
replaced into the urn at the same time. The procedure is repeated

in identical manner as long as the red balls accumulated outside



the urn is less than k. If the number of red balls outside the urn
reaches k, all the k£ red balls outside the urn are replaced into the
urn and the process starts anew. A binary sequence is obtained
by recording S or F for each random drawing according to whether
it is a red or a white ball. In this example, the occurrence of
consecutive k successes means that the number of red balls outside

the urn has reached the value k.

Fxample B. (See Aki (1985).) An electric bulb is lighted. It
is checked whether it has failed or rot at the end cof each day. If it
is found te be burnt out, then a new one is replaced immediately.
If a bulb has been lighted for k consecutive days, it is replaced
with a new one even if it has not failed. Define a binary sequence
by recording S and F every day, according to whether the electric
bulb is in working condition or has failed. In this example, the
occurrence of consecutive k successes means that an electric bulb

which has not failed will be replaced by a new one.

Example C. (Counters of Type I). A sequence of Bernoulli
trials is performed. A counter is designed to register successes,

but the mechanism is locked for exactly k — 1 trials iollowing each



registration. In other words, a success at the n-th trial is registered
if, and only if, no registration has occurred in the preceding k — 1
trials. The counter is then locked at the conclusion of trials number
n,-++,n+k—1, and is freed at the conclusion of the (n+k)-th trial
provided that this trial is a failure. However, whenever the cou.iter
is free (not locked) the situation is exactly the same, and the tr als
start from scratch. In this example, the occurrence of consecu .ive
k successes means that the counter is locked for a period of k trials,

including the initial trial which locked the counter. (See Fella

(1968).)

Type IV runs was recently defined by Ling (1988, 1989) in
conjunction with binomial and negative binomial distributions of

order k. The following example is a natural one for type IV runs.

Example D. (Counters of Type II). Same as Example C ex-
cept that each success locks the counter for k time units (k—1 trials
following the success) so that a success during a locked period pro-
longs that period. For example, take k > 2, if a success at the n-th
trial is registered Bwhich lecks the counter to the (n + k — 1)-th

trial, and another sucess at the (n + 1)-th trial is again registered,



then the locking period of the counter is prolonged to the (n+ k)-th
trial. In this example, the occurrence of consecutive k successes
means exactly the same as in the previous example, but allowing

overlapping in counting of runs of length %. (Feller (1968).)

In our view, “pattern” is a special case of “runs of length k”
for some k > 2. Therefore in the sequel we treat the whole prob-
lem of runs and patterns simply as the problem of runs. Further

illustrative examples of our view will be given in Chapter One.

Throughout this paper, we adopt the usual convention of de-
noting “1” for “success” and “0” for “failure”, and vice versa. Let
X1, X2, -+, X, be a sequence of Markov Bernoulli random variables

with the following stationary transition probabilities

(1)

0 -
[1 @ @ ], 0<apf<l,

B 1-5

and the initial probability

P(X1=1)=p=1—P(X1=O), O_<_p§1



It is well known that the above model contains the following

two special cases:

1). If p=a/(a+p), then X is completely stationary in the
sense that P(X; =1) =pforalli=1,2,---. It is known that the

transition matrix for this model can be expressed as

0 1
0 [1-(1-mp (1-mp
1 (1-m)(1-p) Q-mp+n]’

where 7 is the correlation coefficient of X; and X;,;. (See Edwards

(1960).)

2) f« = pand 8 =1 - p, then X is the ordinary sequence

of 1.i.d. Bernoulli variables.

Now, we define IV} to be the number of occurrences of consec-
utive k successes of type I. The other three counting variables Ny,
N1y and Npy are defined accordingly. (For brevity we suppress the
d-nendence of all four counting variables N on k and n.) Evidently
we have the stochastic ordering of Ny < Nj; < Npjp < Nyy, i.e. for

fixed w in the sample space, Ny(w) < Nyr(w) < Nipp(w) < Niv(w).




If Kk =1, then N;; is the number of transitions from F to S and
Niyp=Ny =8,=X,+---4 X, is the occupation time of S. The
exact distributions of the four counting variables and related topics
have been a subject of study in recent history, especially in the last
decade. Some relevant references on this topic, in addition to the
references cited so far, are von Mises (1921), Rajarshi (1974), Aki
(1985), Hirano (1986), Philippou and Makri (1986) and Hirano et
al (1990). The literature on this topic is very numerous. Some of

the recent articles are listed in Godbole (1991).
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CHAPTER ONE

MARKOVIAN STRUCTURE

Let us consider the consecutive k-out-of-n:F system. It has
been shown that such a system forms a Markov chain with k + 1
states. (See Chao and Fu (1989).) The state O is interpreted as
that the system is functioning flawlessly with all the n components
in perfectly working condition. The states 1 to k — 1 denote levels
of deterioration of the system, such that state 7, for | <7 < k-1,
indicates that the system is functioning with ¢ of its n components
out of order. The state k indicates that the entire system breaks

down.

We shall extend this fact a step further for all the four types
of runs. In what follows, we shall let {Y; : ¢ = 1,2,-.- } be the
induced Markov chain of the Markov Bernoulli sequence {X;:i =
1,2,--- }. Strictly speaking, there are four induced Markov chain
{Y; : i = 1,2,-.- } for the four types of runs, but we shall not

distinguish them at the moment. Which of the induced Markov

11



chain belongs to which type of the runs shall be clear in the text.

§1.1 For type I runs

We denote the state space § by {0°, 0, 1, ---,k,k' } where
state j for 0 < j < k indicates that there are j consecutive S,
preceded by an F. State k' denotes that a run of type I has been
completed. That is to say a sequence of consecutive & S followed by
an F. The state 0’ is for the sequence of k 4+ 1 or more consecutive

S. Therefore, initially

PVy=1)=PX,=1)=p=1-P¥; =0). (2)

And the transition probabilities are, for z > 2,

J' P()ﬁ = 1‘Xi._1 = 1), for 2 < _7 < k.
PY,=jlYim=j-1) =
| P(X; =1

A:i—l = O), for ] = 1.

(P(X, = OIXi—l = 1), for 2 S j < k.
PYi=0Yii,=j—-1) =

\P(X,’ - OlXi—l = 0), fOI‘ j = 1.
P( Y', = k' I }';;_1 =k ) = P(X, = OI‘X’z—l = 1)

P(Y:=0|Yioi=k) = P(X;=1Xi,=1).

12



P( K=O’ | }';_1=0’ ) = P(‘X’i——‘ lll'\ri_l =1)

P(}/;':Ol}/,_l:O') = P(Xi=0|X,-_1=1).
P(Y:=0|Yi.i=kK ) = P(X;=0|X;; =0).
P(Yi=1|Yi,=k) = P(X;=1|Xi; =0).

For k = 3, (a run means exactly three S followed by an I),

the transition matrix can be expressed as follows:

0’ 0 1 2 3 3
o [1-8 B 0 0 0 0]
0 0 l-a « 0 0 0
1 0 I} 0 1-7 0 0 (3)
2 0 G 0 0 1-8 0|
3 1-p3 0 0 0 0 B
3 [ O l—-a «a 0 0 0.

§1.2 For type II runs

The state space S for the type Il runsis { 0, 1, .-+, k, k' }
where state j for 0 < j < k indicates an F followed by j consecutive
S. State k' means there are at least k+1 consecutive S. The initial
probability of {Y;} is the same as (2). The transition probabilities
can be seen to be, for i > 2,

13



P(Xi=1|X;; = 1),
P(Yi=jlYim=4-1) =

P(X, = ]-IXi—l = 0),

P(X;=0|X;-, =1),
PY;=0Yii=j—1) =

P(X; = 0|X;_; = 0),
P(Yi=K|Yio =k) = PX;=1[Xi=1).
P(K=O|K-l=k) = P(X3=OIX1_1=1)

P(Y,=k|Y =k) = PX;=1Xi =1).

P(Y;=0|Yi,=k) = P(Xi=0]Xi;=1).

for2 <j<k.
for 3 = 1.
for2 <j<k.

for j = 1.

For k = 3, (a run means a string of three or more consecutive

S), the transition matrix is as follows:

o 1 2 3 3
0 [l—a a 0 0 0
1 B 0 1-8 0 0
9 B 0 0 1-8 0 |.
3 B 0 0 0 1-7
3 B 0 0 0 1-7

§1.3 For type III runs

(4)

The state space S for the type Ill runsis { 0, 1, .-+, k }

14



where state j, for 0 < j < k, it means that an F is followed by m
consecutive S with m = 7 mod(k + 1). The initial probability of

{Yi} is the same as (2). And the transition probabilities are, for

i>2,

(P(X;=1|X;.1=1), for2<j<k.
P(Yi=jlYici=7—1) =
LP(Xi=1|Xi_1=O), fOI‘j=1.

'P(Xi=0|Xi_1= 1), fOI‘2S]Sk+1
P(Y;i=0Yioi=j—1) =

LP(JYi = OlXi—l = 0), fOI‘j = 1.

P(Yi=1|Yoa=k) = P(X;=1|X;1=1).

For k = 3, (a run means a string of three consecutive S with
recounting starts right after a run occurs), the transition matrix is

as follows:

0 1 2 3
a

0 1- o 0 0

1 1§ 0 1-8 O (5)
2 B 0 0 1-081"

3 Ie; 1-8 O 0

15



§1.4 For type IV runs

The state space § for the type IV runsis {0, 1, ---,k }
where state z, for 1 < i < k, indicates there are i consecutive S
which is preceded by an F. State k denotes there are at least k
uninterrupted S preceded by an F. The initial probability of {Y;}

is the same as (2). And the transition probabilities are, for ¢ > 2,

JP(X,- =1|X;-1=1), for2<j<k.
PYi=jlYia=j-1) =
L P(X, = llXi—l = O), for j = 1.

'P(X,'=0|Xi_1=1), for 2 _<_] < k.
PlYi=0Yi.;=j-1) =

| P(X; =0|X;_; =0), forj=1.
P(y’,‘=le;_1=k) = P(Xi——-llXi_l:l).

P( )’;;=O|Y;;_1=k ) - P(Xi=OIX'_1=1).

For k = 3, (a run means a string of three consecutive S allow-

ing overlapping runs), the transition matrix is as follows:

16



1-8 0 | (6)

O N O
o™ |
oo o

o

[y

|

»

It is easy to verify that for k£ = 1, the transition matrices of

types III and IV runs are identical.

In passing we would like to make two remarks. One is that
in the completely stationary and the i.i.d. cases, all four induced
Markov chains have much simpler structures, because it invclves
less parameters. Most of the results in this area deal with these

two special cases.

The other is that the binary sequence we considered here can
be easily extended to multivalent sequences, such as the decimal
sequence with numbers 0, 1, ---, 9, or the alphabetical sequence
with 26 letters; or to mixtures of several types of runs, such as a
run of k; S of type I followed immediately by another run of k, F

of type II, etc.

17



CHAPTER TWO

THE PROBABILITY DISTRIBUTIONS

OF THE COUNTING VARIABLES

We begin this chapter by considering a general homogeneous
Markov chain ¥={Y; : ¢ = 1,2,.--} with transition matrix P =
(pij) and countable state space § = {0,1,---,s.}. Some of the
procedures to be described next can be found in many books on

Markov chain, e.g. Chung (1967) or Cinlar (1975).

Let k € S be a fixed state and N) be the total number of
visits to state k by the process ¥. Denote {V,,} to be the sequence
of the arrival times at the state k, so that if V, = k; and V,,; = ks,
then k; < kyand Yy, = k=Y, but Y; # k for all k; < j < ks.
If N® = m < oo, then Vipyy(w) - Vin(w) = Vigo(w) — Vi (w) =
-+ =00. DenoteT; = V;-V,_; (take Vj = 1) to be the sequence of
the interarrival times into state k. The Markovian property of the

process Y guarantees that the interarrival times 7; are mutually

18



independent. Furthermore because the transition probabilities are

stationary, T;, for 7 > 2, are identically distributed.

Denote
fak(fc) = P(Tl = 213|Y1 = a)
to be the probability that the process ¥ starts at thec state a and

reaches the state k for the first time in  steps. Given the transition

matrix P, the computation of the probability fu;(z) can be done

as follows:

For z =1,

fak(l) = P(Y2 = klyl = a) = Pak - (7)
For z > 2,

fak(fc)

= EP(Y2=b|}/1 = a)P(Y" 76 k,---,Y,,;l‘-' k7Yz+1 =k|Y2 :b)1
bk

= Y pafor(z - 1). (8)

bk
Thus given two states a and k and the transition matrix P,

fak(1) is the a-th entry of the k-th column of PP. Denote the column

19



vector vi(z) by

'Uk(m) = (fOk(m)’ flk(m)’ T fak(m))'a

so that fi(z) is the a-th entry of vg(z), and v, (1) is the k-th column

of P. It follows from (8) that

ve(z) = @ruk(c — 1), forallz > 2, and k € 8, (9)

where @, is the matrix obtained from the transition matrix P by

deleting its k-th column and replacing it with a zero vector.

Let n > 1 be a fixed finite integer, consider the first n steps

{Y1,Ys,---,Y,} of the process Y. Define

IN = the total number of visits to state k by {Yi, Y, -+, Y, }.

For a and k in §, and let for(z) and fir(z) be defined by (7) and
(8) for all £ > 1, except that for computational convenience later,
we shall let f,x(0) = O for all a and k, even for a = k, which is often

taken to be 1.

Denote

g;k(m)‘:fak(m), fOI‘:E:l,Q,...,n_l



and for m > 2

-1
g =gl * gV,

where gf,',:'_l) is the (m — 1)-th convolution of fix. Thus g‘(;,:') is the

convolution of gl, and gt~ .

Define

n—1
hak(y) = Z g‘(ll;lc)(m)’ for y= 1’2" . ',Kv
z=0

where K is the maximum possible run of length & in first n steps
of the process ¥ which depends on the initial state a, the duration

of the time n and the type of runs in question. For the type |

runs K = [77;‘__'_—(11], for type Il runs K = [ﬁ_—ﬂ, for type III runs

K = [n_—%], and for type IV runs K =n—k +a Itisevident

that

P(W2y|X1=a)=hak(y), fory=1a2a""K- (10)

Thus (10) is the conditional probability that starting from
state a at time 1, the process ¥ has visited state k at least y times

in its first n steps. From (10) it follows that

21



( hak(y) - hak(y+ 1)’ for y= 1)2a"',K - 1’

P(N = y|X, = a) =1 ha(K), fory = K,

L 1 = hax(1), for y = 0. 1)

Theorem 1. The probabilities of V;, the number of occur-
rences of success runs of length k of type ¢, for ¢ =I, II, III, IV,

are

0, for 7 > K,
(12)

where P(N; = j|X; = a) is obtained by (11) with the transi-
tion probabilities for each type of runs as defined in Sections 1.3.a

through 1.3.d.

Now for each a and k in S, we define
¢ak = z—:l fak(m) . (13)

So that ¢, is the probability that starting at state a the process

22



Y will ever visit state k. Sumiming over z in (8), we get

Gak = Pak + _ PabPbk- (14)
bEk

Equation (14) defines a relation between the ever-reaching

probability ¢.; and the transition matrix P.

Denote the column vector vr = (Pok, P1ky -~ s Psk)'s

vk = V(1) + Q@ Uk, forallk € S, (15)

where @, is defined as in (9) and vg(1) is the k-th column of P.

The linear equation (15) can be used to solve for v, for all k € S.

Note that IV®) is the total number of visits to state k by the
process Y so that IV (!) = m if and only if the interarrival times
T; < oo for i < m and T; = oo for i > m. As mentioned before the

interarrival times T,T5, - -+, Tjns1 are independent and

P(Tl < OO|Y1 = a) = Qat,

P(Tj<00)=¢kk, forj=2,---,m,
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and

P(Typy1 = 00) =1 — .
We conclude that, if ¢, < 1, then

P(N® = m|Y, =k) = (1 - pu)dis D, form=1,2,--+, (16)

and for a # k,

Jl—%k, for m = 0,

P(IN®) = m|Y; =a) =

l¢ak(1 - d)kk)qﬁs::—l),for m=1,2,-.
(17)

If ¢rr = 1, then the process ¥ will return to state k after
leaving it with probability one. By the Markovian property, it
will return over and over again, so that P(N(*) = c0) =1 and the

probabilities in (16) and (17) are all zeros.

The numbers obtained by solving the linear equation (14) are
of great significance. It determines whether or not a state k is
visited infinitely often. If ¢yr = 1, then the state & is recurrent.

If ¢pr < 1, then almost surely the state will be visited only finitely
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many times, and the state k is transient.

In all the four cases, if « = 0 and 5 # 0 in the Markov
Bernoulli model (1), state 0 of the induced Markov chain ¥ is an
absorbing state and is recurrent. Siuce, in all the four types of
runs, state O is accessible from any other states, all other states are
transient. Therefore, looking at the induced process ¥ {rom a long
term point of view, i.e. n = oo, state k will be visited only finitely
many times, and all the probabilities of the four counting variables

are well defined.

To compute their probabilities, we need to compute ¢qk (Par',
in case of type I runs) for a = 0,1, and & (k' for type I runs) and
then apply (16) and (17). Their values for « = 0 and 3 # 0 are

summarized as follows:

For type I runs:
boo=1, ¢ =(1- ﬁ)k—lﬂ, and G = 0.
For type II runs:

do=1 ou=0-B)%" and u=0.
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For type III runs:

po=1, du=1-8)"", and o¢u=01-78)"

For type IV runs:
do=1, u=>1-06)*", and ¢u=(1-7).

The computations of ¢q¢ are relatively straight forward. We
shall briefly show the derivations of ¢ix and ¢;; for type II and
type I1I runs, the values of ¢ and ¢y for other two types can be

derived in an identical manner.

For type Il runs; we see that ¢po = 1 and ¢y, = 0 for all 7 # 0.

From (14) it follows that
Grk = 0+ Boor + (1 — Bder = (1 — B)dw,
which implies that ¢ = 0. Thus

Gee = 0+ Bobor + (1 = B)dpr = (1 — B)drr = 0.

And we also have

¢12 = (1 —=08)+Bdor=(1-7),
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23 = (1-P0)+Bdos=(1-0),
b13 = 0+4PBdos+ (1~ PB)d2=(1-PB)ds=(1-p),
k-1 = (1 —PB)+Bdoe =(1-B),
brak = O-+Bdok+ (1 —B)dr-1=1(1—B)r-1 = (1-B)%,
b = O0+PBdor+(1—0B)bsw=(1-PB)a =(1-P) 72,
D1k

0+ Bdor + (1 = B)par = (1 — B)dar = (1 — B)*,

For type I1I runs; by repeatedly applying (14) and using ¢go =
1 and ¢p; = 0 for all 7 # 0, we have

$12 = (1-P0)+Bdo2=(1-0),
d23 = (1-P0)+Bdos=(1-p0),
13 = 04 Bdos+ (1 —PB)das=(1—B)gaz=(1-B)>,
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be—1k = (1—=PB)+Bdo=(1-0),
Srar = 0+ PBpu+(1=08)Pr-14=(1-B)dr-14 = (1 —B)%

b = 04 Boo+(1-PB)par=(1-PB)da = (1~ p)2,
b1 = O+ Bdor+(1-B)da=(1-PB)pa =(1-p)1,
S = 0+ Bgor+ (1-B)pu=(1-Fou=(1-0)"

Conditioning on X;, we have the following theorem.

Theorem 2. If a = 0, 8 # 0 and n = oo, the distributions

of the four counting variables are:

p(1 — B)*-1p, for m =1,
P(NI = m) =
1 —p(1- P18, for m = 0.
p(1 - B)*1, for m =1,
P(N” = m) =
1 —p(l-pB) 1, for m = 0.
1-p(1-pB)F1, for m =0,
P(Npp=m) =
p(1-B)* 11— (1 -B)¥1 - pB)m bk form=1,2,---.
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and

1—p(1 - B)*1, for m = 0,
P(NIV = m) =

p(1 =B 11 -(1-8))1-p)"form=1,2,-..-.

If a > 0, the induced Markov chain ¥ is ergodic and all states
are recurrent. Therefore @or, d1x, and Pk ( o', D14 and @k, in
case of type I runs) equal 1 in all the four cases and P(N; = o0) =1

for i = I, 11, III and IV.

For a sequence of Bernoulli random variables X, X», -+, Xy,
if the number of cumulative counts of “1” is to converge in any of
the four types mentioned in the Introduction Chapter or any other
ways of counting, a dominating condition is that the number of
transitions from state O to state 1 must be very moderate, relative
ton ( asn — o0). That is to say that nec, the mean number of
transition from state 0 to state 1, must approach a finite constant
as n — oo. It was proved in Wang and Ji (1993) that in fact it
is the only condition needed to assure the existence of the limiting

distribution of the number of cumulative counts of “1”. The other
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two parameters p and 8 can have their own limit behaviors, such as
p— manl B — p,as n — oo for 7, p € (0,1), but will not affect the
existence of the limiting distribution of the number cf cumulative

counts.
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CHAPTER THREE

THE ASYMPTOTIC DISTRIBUTION

OF THE COUNTING VARIABLES

In this chapter, we shall derive the limiting distributions of
the four counting variables under the structure that the original
sequence X is a sequence of i.i.d. Bernoulli random variables. For
X having a Markov Bernoulli model (1), the results are recently

obtained in Wang and Ji (1993) using a different approach.

We shall create another induced Markov chain Z= {Z; : i =

1,2,--+,} from Y by

Z; = I(Y; = k), (18)

so that Z; is the indicator function of the event that a run of length
k occurs time at i. (For type I runs Z; = I(Y; = k')). With Z; as
defined in (18) it follows that the limiting distributions of N; are

the limiting distributions of Z; + Z; + - -+ + Zy.
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The new process Z is a Markov Bernoulli chain with initial
probabilities P(Z, = 1) = p =1 - P(Z; = 0) and transition proba-
bilities

P(Z;=1|Ziy = 1) P(Y; = k|Yi_; = k),

= 1-P(Z =0Ziy =1).
(19)
P(Z;=1|Z;.,=0) = P(Yi=k|Yi.1 # k),

= 1= P(Z =0|Zi_, =0).

Obviously we have P(Z; = 1|Z;_; = 1) = 0 for types I, I, and III
runs and P(Z; = 1|Z;_; = 1) = p for type IV runs. To compute
P(Z; =1|Z;-; = 0), we use

P(Y = k) - P(Y; = Yie1 = k)

P(Z:i =112 = 0) = 1- P(Yi, = k)

For i > k+ 1, we have P(Y; = k) = p*(1 — p) for type I runs and
P(Y; = k) = p* for the other three types. P(Y; =Y;_; = k) = 0 for
types I and IIl runs and P(Y; =Y,y =k) = p*t! for the other two
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types. The transiticn matrices of Z for the four types of runs are

summarized as follows:

For type I runs,

0 1
_ 0 1'—C¥1 (0 3}
where o) = p*(1 — p)/[1 — p*(1 - p)].
For type II runs,
0 1
_ 0 l1—ay oy
An—l l ] O]’ 0<ap <1,
where a = p*(1 — p)/(1 — p%).
For type III runs,
0 1
_ 0 1- Q3 QO3
Amr= | [ ! 0}, 0<a3<1,

33




where a3 = p*/(1 - p*).

For type IV runs,

0 1
0 1—014 Qg
A= | [l—p p]’ 0<as<1,

where aq = p*(1 — p)/(1 - p*).

Strictly speaking the above four transition matrices hold only
if 2 > k+ 1. Since in this chapter we are interested in the limiting
distributions of the four counting variables, without loss of gener-
ality, we shall assume all the tour transition matrices hold for all

i > 1.

We present the next lemma without proof. It can be derived

from the results in Wang (1981) and Gani (1982).

Lemma 1. Let {X;: 7 =1,2,.--} be a sequence of com-
pletely stationary Markov Bernoulli random variables. If nP(X; =

1|X,.; = 0) = A, P(X; =1]X,.;=1) = 0, and P(X; = 1) — 0, as
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n — oo, then the distribution of the sum S, = X;+ Xo+-- -+ X,

converges to the Poisson distribution with parameter ).
The next theorem follows from Lemma 1.

Theorem 3. Let {X;, X5, ---} be asequence of i.i.d. Bernoulli
random variables. If np* — X, as n — oo, then the limiting dis-
tributions of all the four counting variables Ny, Ni7, N1, and Npy

are Poisson with parameter A.

Even though the limit conditions are the same in all the four
cases, for approximation purpose one should use A\, =na; for i =

1,2,3, and 4, where each q; is as specified above.

In the i.i.d. case, the exact distributions of N;; and Ny
have recently been derived by Hirano (1984) and Ling (1988), and
are called the type I binomial distribution of order k and the type
IT binomial distribution of order k, respectively. Their probability

mass functions are:

k-1 ‘e Ti+-+T
PN =2)=5% S ,(:m+ +mk+m)pn (g) ,

1=0 Z1,"*"Tk ml? T, mk) z p
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where the summation ¥' is over all nonnegative integers z1,---,Zg
with £; + 222+ -+ -+ kzx =n — i — kz, and ¢ = 1 — p. (See Hirano

(1984).)

?

T + ces + mn) pn (g) Tyt ton

ml,n.-,mn p

P(Nyw=g)=3 ¥ "(

1=0 Z1,"*"}Zn

where the summation ¥" is over all nonnegative integers i, - -, Tk

with z; + 222+ - +nze, = n—1, and maz{0,i —k+1}+ > (j—
j=k+1

k)z; = z. (See Ling (1988).)

We have used Theorem 1 and the two expressions of Hirano
and Ling above to compute the exact probabilities of Nyjy and Ny
for n = 20, k = 2,3,4,5, and p = 0.05,0.1. As expected the
probabilities computed by using Theorem 1 and the two expression
above are identical. For comparison purpose, we also use Theorem
1 and Theorem 3 to compute the Poisson approximation of types I1I
and IV runs for n = 50, 70,100,500, k£ = 2,3,4,5,and p = 0.05,0.1.

Their result are compiled in the following tables.
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APPENDIX

Table A. Comparison the Exact Probability of Counting Variable
for Type IIT and Type IV Two S Runs
with Poisson Approximation
k=2
I11 IV
n p N .Ex‘act Poisg;on . Exact Poisgon _
Distribution | Approximation | Distribution | Approximation
50
0.05
0| 0.88942 0.88803 0.88942 0.88777
1| 0.10458 0.10545 0.09969 0.10569
21 0.00579 0.00626 0.00994 0.00629
3| 0.00020 0.00025 0.00088 0.00025
4 | 0.00000 0.00000 0.00007 0.00000
0.10
0| 0.63633 0.63766 0.63633 0.63474
1| 0.29138 0.28692 0.26516 0.28852
2 | 0.06291 0.06455 0.07616 0.06557
3| 0.00851 0.00968 0.01787 0.00994
4 { 0.00081 0.00109 0.00366 0.00113
o | 0.00006 0.00010 0.00068 0.00010
6 { 0.00000 0.00000 0.00012 0.00000
71 0.00000 0.00000 0.00002 0.00000
70
0.05
0| 0.84792 0.84684 0.84792 0.84648
1| 0.14036 0.14079 0.13375 0.14108
2| 0.01113 0.01170 0.01642 0.01176
3 | 0.00056 0.00065 0.00173 0.00065
4 | 0.00002 0.00003 0.00016 0.00003
o | 0.00000 0.00000 0.00001 0.00000

43




k=2

I11 1AY
Exact Poisson Exact Poisson
n P N Distribution | Approximation | Distribution | Approximation
0.10
0] 0.52928 0.563263 0.52928 0.52921
1} 0.34113 0.33552 0.31027 0.33677
2| 0.10546 0.10568 0.11555 0.10715
3] 0.02082 0.02219 0.03395 0.02273
4 | 0.00295 0.00349 0.00854 0.00362
5| 0.00032 0.00044 0.00192 0.00046
6 | 0.00003 0.00005 0.00039 0.00005
7| 0.06000 0.00000 0.00008 0.06000
8 | 0.00000 0.00000 0.00001 0.00000
100
0.05
0| 0.78927 0.78860 0.78927 0.78813
1| 0.18742 0.18729 0.17856 0.18765
2| 0.02160 0.02224 0.02807 0.02234
3| 0.00161 0.00176 0.00363 0.00177
4 |1 0.00009 0.00010 0.00041 0.00011
5 | 0.00000 0.00000 0.00004 0.00000
0.10
0| 0.40151 0.40661 0.40151 0.40657
1| 0.37117 0.36591 0.33746 0.36591
2| 0.16669 0.16464 0.16869 0.16466
3| 0.04845 0.04939 0.06425 0.04940
4| 0.01025 0.01111 0.02048 0.01111
5| 0.00168 0.00200 0.00573 0.00200
6| 0.00022 0.00030 0.00145 0.00030
7| 0.00002 0.00004 0.00034 0.00004
8 | 0.00000 0.00000 0.00007 0.00000
9| 0.00000 0.00000 0.00002 0.00000
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k=2

111 v
n p N . F,‘x.act. Pois§on ' .Ex.act_ Pois§on _
istribution | Approximation | Distribution | Approximation
500
0.05
0 | 0.30351 0.30498 0.30351 0.30408
1| 0.36315 0.36217 0.34585 0.36200
2 | 0.21598 0.21504 0.21241 0.21547
3 | 0.08514 0.08512 0.09300 0.08551
4 | 0.02502 0.02527 0.03245 0.02545
5 | 0.00585 0.00600 0.00958 0.00606
6 | 0.00113 0.00119 0.00248 0.00120
7 | 0.00019 0.00020 0.00058 0.00020
8 | 0.00003 0.00003 0.00012 0.00003
9 | 0.00000 0.00000 0.00002 0.00000
0.10
0 | 0.01009 0.01111 0.01009 0.01062
1] 0.04698 0.05001 0.04268 0.04825
2 | 0.10876 0.11251 0.09371 0.10966
3 | 0.16691 0.16874 0.14206 0.16616
4 | 0.19101 0.18982 0.16696 0.18881
5 | 0.17387 0.17082 0.16200 0.17165
6 | 0.13112 0.12810 0.13497 0.13004
7 | 0.08427 0.08234 0.09918 0.08444
8 | 0.04711 0.04631 0.06553 0.04798
9 | 0.02327 0.02315 0.03951 0.02423
10| 0.01029 0.01042 0.02199 0.01101
11| 0.00411 0.00426 0.01139 0.00455
12| 0.00150 0.00160 0.00554 0.00172
13| 0.00050 0.00055 0.00254 0.00060
14| 0.00015 0.00018 0.00111 0.00020
15| 0.00004 0.J0005 0.00046 0.00006
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k=2

II1 IV
N .Ex_act. Pois§on ' .Ex.act. Poisson '
Distribution | Approximation | Distribution | Approximation
16| 0.00001 0.00001 0.00018 0.00002
17| 0.00000 0.00000 0.00007 0.00000
18 0.00000 0.00000 0.00003 0.00000
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Table B.

Comparison the Exact Probability of Counting Variable
for Type III and Type IV Three S Runs

with Poisson Approximation

k=3
1 IV
n p N 'Ex.act . Pois§on ' .Ex.act' Poisgon .
Distribution | Approximation | Distribution | Approximation
50
0.06
0 0.99431 0.99408 0.99772 0.99438
1| 0.00568 0.00590 0.00216 0.00561
2 | 0.0C001 0.00002 0.00011 0.00002
0.10
0| 0.95750 0.95600 0.95750 0.96031
11 0.04167 0.04302 0.03763 0.03889
2| 0.00082 0.00097 0.00433 0.00079
3| 0.00000 0.00001 0.00049 0.00001
4 | 0.00000 0.00000 0.00005 0.00000
70
0.056
0] 0.99195 0.99172 0.99759 0.99213
1| 0.00802 0.00824 0.00229 0.00783
2| 0.00003 0.00003 0.00012 0.00003
0.10
0| 0.94036 0.93894 0.94036 (0.93888
1| 0.06795 0.05915 0.05228 0.05921
2 | 0.00166 0.00186 0.00647 0.00187
3 | 0.00003 0.00004 0.00078 0.00004
4 | 0.00000 0.00000 0.00009 0.00000
5 | 0.00000 0.00000 0.00001 0.00000
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k=3

II1 IV
Exact Poisson Exact Poisson
n P N Distribution | Approximation | Distribution | Approximation
100
0.05
0| 0.98842 0.98820 n.99753 0.98878
1] 0.01152 0.01173 0.00234 0.01115
2 | 0.00006 0.00007 0.00012 0.00006
0.10
0| 0.91523 0.91393 0.91523 0.91393
1| 0.08124 0.08225 0.07326 0.08225
2 | 0.00343 (.00370 0.00999 0.00370
3 | 0.00009 0.00011 0.00132 0.00011
4 | 0.00000 0.00000 0.00017 0.00000
5 | 0.00000 0.00000 0.00002 0.00000
506
0.05
0| 0.94255 0.94235 0.94255 0.94235
1| 0.05579 0.05595 0.05301 0.05595
2 | 0.00163 0.00166 0.00412 0.00166
3 | 0.00003 0.00003 0.00031 0.00003
0.10
0] 0.63781 0.63763 0.63781 0.63734
1| 0.28745 0.28693 0.25900 0.28709
2 | 0.06415 0.06456 0.07774 0.06466
3 | 0.00945 0.00968 0.01976 0.00971
4 | 0.00103 0.00109 0.00451 0.00109
5 | 0.00009 0.00010 0.00095 0.00010
6 | 0.00000 0.00000 0.00019 0.00000
7 | 0.00000 0.00000 0.00004 0.00000
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Table C.

Comparison the Exact Probability of Counting Variable

for Type III and Type IV Four S Runs
with Poisson Approximat® .n

k=4
I11 IV
n p N -Ex.act . Poisgon . 'Ex.act. Pois:son '
Distribution | Approximation | Distribution | Approximation
o0
0.05
0| 0.99972 0.99970 0.99972 0.99970
1| 0.00028 0.00030 0.00027 0.00030
2 | 0.00000 0.00000 0.00001 0.00000
0.10
0| 0.99577 0.99551 0.99577 0.99551
11 0.00422 0.00448 0.00381 0.00448
2 | 0.00000 0.00001 0.00038 0.00001
3| 0.00000 0.00000 0.00004 0.00000
70
0.05
0 0.99960 0.99958 0.99960 0.99958
1| 0.00040 0.00042 0.00038 0.00042
2 | 0.00000 0.00000 0.00002 0.00000
0.10
0| 0.99398 0.99372 0.99398 0.99372
1| 0.00601 0.00626 0.00542 0.00626
2 | 0.00002 0.00002 0.00055 0.00002
3| 0.00000 0.00000 0.00006 0.00000
100
0.05
0| 0.99942 0.99941 0.99942 0.99941
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k=4
II1 IV
n p N _Ex.act' Pois§on ) _Ex.act. Pois§on _
Distribution | Approximation | Distribution | Approximation

1| 0.00058 0.00059 0.00055 0.00059
2 | 0.00000 0.00000 0.00003 0.00000

0.10
0 0.99129 0.99104 0.99129 0.99104
11 0.00867 0.00892 0.00781 0.00892
2 | 0.00004 0.00004 0.00080 0.00004
3 { 0.00000 0.00000 0.00008 0.00000

500

0.05
0| 0.99705 0.99704 0.99705 0.99704
11 0.00294 0.00296 0.00280 0.00296
2 | 0.00000 0.00000 0.00014 0.00000

0.10
0] 0.95623 0.95600 0.95623 0.95599
1| 0.04281 0.04302 0.03854 0.04302
2 | 0.00095 0.00097 0.00461 0.00097
3| 0.00001 0.00001 0.00055 0.00001
4 | 0.00000 0.00000 0.00006 0.00000
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Table D.

Comparison the Exact Probability of Counting Variable

for Type III and Type IV Five S Runs
with Poisson Approximation

k=25
111 IV
n p D.Ex_act. Poisson .Ex_act . Poisson
istribution | Approximation | Distribution | Approximation
o0
0.05
0.99999 0.99999 0.99999 0.99999
0.00001 0.00001 0.00001 0.00001
0.10
0.99959 0.99955 0.99959 0.99955
0.00041 0.00045 0.00037 0.00045
0.00000 0.00000 0.00004 0.00000
70
0.05
0.99998 0.99998 0.99998 0.99998
0.00002 0.00002 0.00002 0.00002
0.10
0.99941 0.99937 0.99941 0.99937
0.00059 0.00063 0.00054 0.00063
0.00000 0.00000 0.00005 0.00000
100
0.05
0.99997 0.99997 0.99997 0.99997
0.00003 0.00003 0.00003 0.00003
0.10
0.99914 0.99910 0.99914 C.99910
0.00086 0.00090 0.00078 0.00086
0.00000 0.00000 0.00008 0.00000
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k=5

III IV
n p N D.Ex'act. Pois:son . .Ex'act. Poisg;on )
istribution | Approximation | Distribution | Approximation
450
0.05
0.99987 0.99987 0.99987 0.99987
1| 0.00013 0.00013 0.00013 0.00013
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