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Abstract

A Comparative Study of Quantization Procedures

Mohammed R. Karim

The problem of quantization is as old as gquantum mechanics
itself. For more than half a century many researchers worked on
quantization. Nowadays, we know different types of quantizations; for
example, geometric quantization, prime quantization. The
relationships between these quantizations have not been studied fully
in the literature.

In this thesis we study the general problem of quantization,
analysing it via geometric quantization and prime quantization. We

also give a comparative analysis of the two methods with examples.
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Introduction
Quantization refers to the process of forming a quantum mechanical
system from a given classical system. In other words, we can say that
it is a mapping between classical and quantum observables satisfying
the correspondence principle {i.e. when the Plank's constant h—o, the
quantum system changes to the corresponding classical system}. A
classical phase space is usually represented by a symplectic manifold
(M,») (a rigorous definition will be given later} and the observables are
the smooth functions on M. On the other hand, a quantum phase
space is represented by the rays in a Hilbert space & and the

observables are self-adjoint operators in &
The notion of quantization emerged in the early stages of the
development of quantum mechanics. For example, canonical
quantization (a quantization in which the classical observable.

represented by a function f(pp. Q™) of the canonical coordinates (py.

g™) is mapped to the corresponding quantum mechanical observable

.w O
through the operator f(-ih 5 o qM} was introduced by the originators
q

of quantum mechanics. Since then the problem of quantization has
been studied from different points of views. Nowadays. quantization is
a complete subject in its own right and there exist different
quantization schemes, e.g. geometric quantization, prime quantization
etc. In this thesis we wish to discuss the problem of quantization by

analysing it via two existing methods: 1) geometric quantization and 2)

prime quantization.




The pgeometric approach to the problem of quantization was
introduced by Kostant [1] and Souriau [2] independently. Kostant
discovered these techniques through his attempts to generalize
Kirillov's [3] result on nilpotent groups. Souriau's work was directly
related to the problem of quantization.

The next fundamental development of geometric quantization was due
to Blattner, Kostant and Sternberg [4].

Actually geometric quantization begins with the notion of a symplectic
manifold. In this method, one takes a symplectic manfiold as a
classical phase space (and the functions on this manifold serve as
classical observables) and constructs a Hilbert space #/quantum phase
space) and obervables (self-adjoint operators in &) for the underlying
quantum system in a geometric, coordinate-free way. The general
procedure for constructing a Hilbert space representation of an
algebra of classical observables is known as prequantization. The
Hilbert space constructed by prequantization may be too big to
represent a quantum system. So one has to cut down the
prequantization Hilbert space so that the representation becomes
irreducible (that is, no proper subspace of the Hilbert space is
invariant under its action). The way one reduces the size of the
Hilbert space is called a polarization, in the language of geometric
quantization.

The name "prime quantization” is due to S.T. Ali and H. D. Doebner (5]
following up an earlier work of E. Frugovecki [6). However, a very
similar type of quantization was developed independently by F.A,
Berezin [6] before them. This latter type of quantization is known as

Berezin quantization in the literature. In prime quantization, like in



any other approach to the quantization problem, a classical observable

is first mapped to a self-adjoint operator in a Hilbert space # Then to
have an irreducible representation of the classical algebra of
observables, one uses the techniques of the reproducing-kernel
Hilbert space [see the appendix B] i.e., by projecting down to one of
the various possible reproducing kernel Hilbert subspaces of # one
gets the quantized Hilbert space - a procedure which is reminiscent of
wolarization in geometric quantization. One of the remarkable features
of prime quantization is that it simulteneously provides the solution to
the problem of ordering of operators [8, 9] in quantum mechanics.

In chapter I, we define quantization in a manner general enough to
cover both geometric quantization and prime quantization. A detailed
discussion of geometric quantization and prime quantization with
examples, is given in Chapters 2 and 3 respectively. In the final

chapter we give a comparative analysis of the two methods and try to

find a possible relationship between them.




1. QUANTIZATION

In the introduction we have already given a brief r.on-mathematical
description of quantization. Now we want to define quantization
mathematically. We said that quantization is a mapping between a
classical and a quanturi phase space. But an arbitrary relationship
between classical and quantum observables will not define a
quantization. The mapping between these phase spaces must satisfy
certain conditions such as Dirac's quantum conditions [10]. According
to this condition, to each f ¢ ¥c C™(M) there corresporids an operator
f in # such that

1) Themapf- f islinear over R

2) g}A=(%-) If. 81 for each f, g £ C=(M) (1.1.1)

where {,] is the Poisson bracket and [,j is the commutator bracket.
But the these conditions alone will not uniquely determine a quantum
system from a classical one.

For this (a) ¥ must contain the constant finctions in C™ (M) and these
functions must be represented in # by the corresponding multiples of
the identity operator, b) we have to restrict the size of #i.e., the
operators in o must form an irreducible representation of some Lie
algebra of observables.

Let us therefore define quantization as:

Definition 1.1.1: Let Q be any manifold. Then a quantization of Q is a
map taking classical observables f (i.e., continuous function of (q,p) e

T*Q) to self-adjoint operators f on a Hilbert space #’such that,



(1) E+gr=f+8
(i) (D~ =Af,1eR

i) {f.gr = (1/) [, §)

~

(iv) 1 =1(

(1.1.2)

= constant function,
I = identity operator)

(v) §!and Pj act irreducibly on #.

Here §' and ﬁj are ith and jth component of position and momentum
operator respectively. By the word "irreducibility” we mean that no
proper subspace of # is invariant under its action.

Unfortunately there does not exist a quantization satisfying (i) - (v)
[16]. There may be a quantization satisfying only (i) - (iv) and this
quantization is known as prequantization. We have to relax the
condition (iii) i.e., (iii) would not be true for all fs and g's but only for

certain types of f's and ¢'s.



2 GEOMETRIC QUANTIZATION

2.1 Prequantization
The classical phase space M carries a natural volume element in terms

of the symplectic form:

Ot=0AOA --- A (n-times)
(2.1.1)

=dp; Adpy A --- Adp,, A dqlAdg?A --- Adg™
(in local coordinates)
so there is a Hilbert space & = L?(M) associated to M with the inner

product defined by

<‘P|¢>=IM§;7¢Q)“. Y, 0 € ¥ (2.1.2)
In local coordinates, we write

o = dPp d¥q.
For each f &€ C™°(M) there is an operator { such that

f(0) = -it X ¢, ¢est (2.1.3)

where Xy is the Hamiltonian vector field associated to f.
Although (2.1.3) satisfies the quantum condition, yet whenever df=0
(i.e., if f is a constant function), Xf = 0. So constant function will
correspond to the zero operator; which is contrary to definition
(1.1.1). We could correct this by writing

f(0) = -X (0) + f9 (2.1.4)
where f¢ acts by multiplication.

But this, in general, does not satisfy the bracket relation, since

[-hXp + 7, -thX, + g]

= - thi-ih) X, X - ihlXp, g] -ihlf, Xl + [, g]
(2.1.5)
= -ih(-hX | g t2lg) fge C= (M)

We could correct this by adding one more term to { ie.,



f0) = -ihIX/(0) - £xplorol + fo (2.1.6)
where 6 is a 1-form, defined in App. A).
(2.1.6) satisfies the Lie bracket as we can see from the following
calculation.

(£, B =171X 7, Xgl6 -0 (X s(g - Xg o) Xl - X6}

= -hif, g)"¢ 2.1.7)

But f, as defined in (2.1.6) depends on 6 and cannot be defined unless
o is exact i.e., when w=d6. The dependence of f on 8 can be avoided if
one applies a gauge transformation (i.e., 86— 68+du and ¢ — expliu/h)¢)
which amounts to choosing a line bundle (see App. A) over M. Hence
to give the construction of fa strong foundation, we are led to using a
H2rmitian line bundle over M, instead of starting simply with
functions on M.

2.2 @Quantizable Phase Space
Let (M,0) be a quantizable symplectic manifold i.e, w satisfies the
integrality conditon (A47). Let (L,t,M) be a Hermitian line bundle
over M with connection V. Then the prequantum Hilbert space o2 is
the space of all smooth sections seI'(L} of L for which the integral of
(s,s) over M exists and is finite. The scalar product on & is defined by

<s1|s9> =§(sl, s2)wf, s], Soedk (2.2.1)
Then the operatgr fcorresponding to a classical observable f ¢ C™(M)
is

fs = -ifi Vy; s + fs (2.2.2)
where s is in some suitable subset of # For example, if we take Q as a
configuration space of a classical system and M=T*Q, then the line

bundle is simply the trivial bundle (i.e., L=MxC) and the connection




Vs 18 defined by

Vs = Xfls) - % (Xflo)s (2.2.3)

Now if 8 = £ p; dgl we have

¥s .-.1} (Xrs) - (Xflo)s + fs

vy of 0 of o
where Xf = Y 30y 9q 9] O]

of 0 of o of
Xrlo=X{ - ) (Epidgl) = Tp; —
f" apj dgql oql dpy (Zp;da Pj

apj

Then (22.3) = fs =1 [z of 9 _of 9

9p; ag) gl op;
But when fj = §; = f(p;. @) = flp;.¢)) = py

= ﬁ_]s =ﬁ- [(ap" 9 -apj o s-inP—j-s+pjs
I "9p;aq) ddl ap, apy

= Pjs = -iﬁi—s = pj = -ih 9
dql

(2.2.4a)
aqi

Again, f(py. ¢))=q) when _?j =& and

‘ . agl 9 9 9 g
(2.2.3) = js=ﬁ[ - )S + s - pi——s
4 i 8Pj 3ql  3q) IP ds - py Jp;

4 (. j—)s + gls = (A —a-+qJ')s
i opj dp;
~ . a :
=q =th—+dg (2.2.4b)
apj
This can be viewed in another way:
Let f € C™(M) and 1 s € U(L*} (vector field on L*
1) Tt*(r]f) = Xf and
where ms: U(L*) - UM)

2)  npla = for

= L- {0}) satisfying

(2.2.5)



where o = 6/ + i dz/z is the connection form on L and : L - M is the
projection.

Then if L=Mx C, m; is given by

d
lz(-A— 2.2.6
h oz (2.2.0)

nf=Xf-%—z.(f-A)§Z-+
where A = Xf_lee C™”(M) is the "action" function of f and 6 is the
symplectic potential.
Thus we heve already constructed a representation of the Lie algebra
C*(M) by Hermitian operators in o
For each feC*>(M) we would have an operator fin #and the domain of
fis a dense subset of # If all these domains do not have a common
intersection, we cannot construct f. So the domains of definitions of
these operators are some common dense subspaces of &
The representation we constructed is not irreducible. So our next job
is to reduce the space on which sections will be defined. This can be
done by choosing a suitable "polarization" which we now introduce.

2.3 Polarization
The problem of reducing the space of sections involves the idea of
Lagrangian submanifolds of symplectic manifolds. Let M be a 2n-

dimensional symplectic manifold. Then a submanifold PcM of M is

said to be a Lagrangian submanifold if P has the following properties:

1) dimP=n
(2.3.1)
2) oX,Y)=0; X, Ye UP

where U(P) is the space of vector fields on P.
A real polarization (complex polarizations will be introduced later) of a
symplectic manifold (M,w) is a foliation of M by Lagrangian

submanifolds. That is, it is a distribution having the following
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properties: (Note: For definition of foliation and distribution, see App.

A).
1) Pisintegrable : if X, Y ¢ Up(M), then

X. Yl Up(M). where

U,M) = (XeUM) | XePp, YmeM} and

for each meM, P, c T M.
2) Pis Lagrangian: for each meM, P is a Lag.angian subspace of

T, M.
A vector field Ee Up(M) is characterized by the condition

E(foPr) = 0 V fe C(Q) (2.3.2)
where Pr: M= T*Q — Q is the natural projection, 6 has the further
property

Elo=0 (2.3.3)
where 6 £ Q(M) is the canonical 1-form (symplectic potential).

Then for &, ne Up(M).

(€.n] (foPr) = EM(foPr)) - 1 (E(foPr)) =0 V f e C™(Q) by 2.3.2) (2.3.4)
so that [En] < Up(M). That implies P is integrable.
Also (En) = & () - n(&le) - E,nle
= 0 (by (2.3.3) and (2.3.4))
l"ownlM =T*Qand L=MxC
fs = -th fo s + fs (Eq. (2.2.2)) can be written as

fs = hiX;s - %(XfJG)s] + fs.

But upon polarization
Xplo =0 (by(2.3.3)
So then fs = -iﬁst + fs (2.3.5)
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For M = T*Q. the vector fields é% define the vertical polarization. and

the space of leaves can be identified with Q.
If M = R2?, the vector fields 521— define the horizontal polorization.
q
In the case of a general cotangent bundle, these fields cannot be
naturally extended from Q to the bundle.
Let us consider the vertical polarization on M = RZD So is a unit
section and 6 is the symplectic potential, then
Vx¥(p.a)so = X(¥(p.alls, - 3 (X10)¥ (p.q)
= X(¥(p.q)) so since X8 =0
where X = {-—a—- , —a——}.
ap; ag)
0¥(p.q) d¥(p.q)
apj an

= |

)(So)

= VQ/3pj¥(p.q)se = (bR
apj

This will vanish for each j if ¥ depends only on gq. In this case

(2.3.6)

¥(p.q)so = ¥(q)so (2.3.7)
Hence the quantum operators are:
(¥ (g)so) = g ¥(a) so

o . (2.3.8)
pj(¥(q)se) = -th (0¥ /9q))s,

which is the usual Schrodinger representation.

Now we want to introduce complex polarization. But this is usually

associated with an important class of symplectic manifolds, known as

Kidhler manifolds. Before defining complex polarization we should
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have some idea of Kdhler manifolds. A Kiahler manifold is a triple
(M,0,J), where
1) (M, o) is a symplectic manifold;
2) Jis a tensor field on M i.e., for each meM,
J. TyM - T M

is a linear map having the following properties:

a) J%2=-1 (2.3.9)
b)  The bilinear form g defined by
gEm) = wE.Jn); &ne T, M (2.3.10)

is a positive definite Riemannian metric.
c) For each meM,
oW, Jn) = wlfn) . V& ne T M (2.3.11)

In local complex analytic coordinates (z)} one can introduce

RTACR VNI WA R W (2.3.12)
0z} 0z} 72 0z}
It is possible to find [11) a smooth real function f such that
01 25 gd n azk (2.3.13)
dz)dzK o

A complex polarization on a symplectic manifold (M,») is a complex
distribution P having the properties:

1) Pp, for each meM, is a complex Lagrangian subspace of THM |

2)  Pis involutive, that is, for X, YeUp(M), [X, Y] € Up(M).

3) Dy =Py 0 Pm N Ti,M must have a constant dimension for each

meM. Here Pp, is the complex conjugate of P,

A Kihler manifold has two natural polarizations:

1) holomorphic polarization P,

2)  antiholomorphic polarization Py




————E
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In the local coordinates {zjlj=1 n P, is the linear span of the set

{9/9Z;) of antiholomorphic coordinate vectors at m and Pp, is spanned
by the holomorphic coordinate vectors {9/0zl. In this case

D, =Pmm§;= {0}, v me M.
2.4 Examples
Example 1
Let us consider a free particle moving in the space @ =R. The
corresponding phase space is M = R? with the symplectic form

o = dp A dq (2.4.1)
where q is the coordin4ie on R and p is the corresponding
momentum.
o can be written as

« = d6, where 6 = pdq (2.4.2)
so that (M,w) is quantizable. In particular: the line bundle (L, T, M) is
simply the trivial bundle (i.e. L= Mx C) , the space of sections I'(L} is
identified with C(M) and the connection V is defined as

V¥ = X(¥) - i (X0}, XeUM), YeC™(M) (2.4.3)
where © is the canonical 1-form defined as in (2.4.2). The
corresponding connection form is

o = pdg +1dz/z (see Appendix A) (2.4.4)

Any vector field on TM (tangent bundle on M) will be of the form:
10 , .20
E=8 —+E& — and let
: Jp : aq

TM>1 =n1—-a——+n2—a-— (2.4.5)
op dq
Then for &, ne P,,cT M, meM,
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o 1) = &2 -gm! =0
This is only possible when:
A) each § e T,M is of the form

14
=gl
Jp
B) each £ e T;M is of the form
20
=&°—
¢ ”
and
1 1
102 - ¢201 o5
C &n —gn = e,
) 2 n2

(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)

that means all the vectors in T ;M will be scalar multiples of one fixed

vector.

Therefore, M = R2 admits two naturally defined polarizations. The

)
polarization spanned by ’a—g will give us the vertical polarization and the

polarized Hilbert space J%V = L2(R, dq). The polarization spanned by

q

space
%, =L°R, dp).

5—- is known as horizontal polarization and the corresponding Hilbert

If we introduce analytic complex coordinates z = x + iy on M = RZ,

then
2_a___a_-]-a_
dz dx oy
Jd 0 J

(2.4.10)

(2.4.11)



also w(-a—,—q—)= (—-a— -‘2-)-0 (2.4.12)
dz 0z 0z 0z

Hence M = RZ has two natural Kihiler polarizations:
A) One (P,,) spanned by the antiholomorphic coordinate vector
(0/0%Z),, is known as holomorphic polarization.

B) Another (Py,) spanned by the holomorphic coordinate vector
(9/02),, is known as antiholomorphic polarization.

The Hilbert space corresponding to Kahler polarization is
;q,kcxﬂ (R?, dp dq).
Example 2: Quantization on a sphere.

Let M = { (x1, x2. X3) € R3| x¥ + x4 + x3 = r2) (2.4.13)
be a two dimensional sphere with radius r with centre at the origin.
In polar coordinates. we have

X, =rsinBcos¢, x, = rsindsing, x; = rcosb (2.4.14)

where 0 €0 < T, 0<¢<2m, (ris fixed). L %2

Then surface element is dA = rzsinededo (2.4.15)

Figure 1

Here 6 = 0 and 6 = are the bad points. We can construct a mapping
(x,, X9, X3) = (6, ¢)

everywhere on the sphere except

at 8 = 0, t. Interchanging the

coordinate axes we can also construct another mapping
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(x;. %y X3) 2 ©!, ¢l on everywhere except 6! = 0, T. The two

mappings would cover the whole sphere
We can take dA = o = r2sin8d0Ade (2.4.16)

where o is a 2-form. But in this basis the corresponding matrix would

rniot be [(‘; (l)]so we need a transformation.
Let u=rcosé, v=rd, then  =duAdyv (2.4.17)

Let P be the one-form such that
dp = -0 = B = récos8dé = udv (2.4.18)
The integrality condition:

!
J o=2nm,ne Z {over any closed oriented 2-surface)

= [r2sineded¢ = r2.2n [Jsinede = 2n r2cosel;

= 4mr2,
anr? = 2nn = 12 = g-

So we can quantize only those spheres with radius r such that

21
r 2 (2.4.19)

Let f be a classical observable and X, and V, be the corresponding

Hamiltonian vector field and connection respectively.

0 d
Xr=Xfyy—+ Xfy —
Let f fuav fvav (2.4.20)
Then Xflo = -df = o Gu + —a—idv (2.4.21)
du ov

Xfudv - Xfydu = %{— du + of dv

ov
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of of
DX =— , Xfy=--—
fu du v du (2.4.23)

2 9f 4, .9f
ande- ~ dv ~ du

Now f—o-i fo + f (2.4.24)
iVyso = (XIB)sp  (where sg is a unit section)

- Xy O 4 X, O
= (Xu au + XV aV)JUdV

= WAySo
= Viso = -iuXysg {2.4.25)
Let S = yso be any other section, then
(fo)r;So) = Xf(x)so - juy Xyso

= 3 3y 5;5 e (2.4.26)

Now (2.4.24) implies that
fs=- iVst + fs

g °fo af o, 9
o v avau)s uau+fs

~ ,a ~ . a
o U= -i—andV = i—+v (2.4.27)
ov ou

Here one can define two polarizations:

1)  When V 3s=0, that is, it is spanned by 9d/dv and the
au

corresponding Hilber: space is (L2([O,2n’r]. dv} (this polarization is
independent of 6).
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2) When V 3s=0, that is, it is spanned by d/du and the
ov

corresponding Hilbert space is L2 ([-v, r]. du). This polarization is
independent of ¢).

2.5 1/2-Densities, 1/2-P-density, 1/2-P-form
What we have discussed in the previous sections is not all about the
geometric gquantization scheme. We still have something more to
discuss, to give this scheme a strong foundation by overcoming some
serious drawbacks and ambiguities.
Let us go back, for example, to the case where the phase space (M,0)
is the cotangent bundle (i.e., M = T*Q) of some configuration space Q
and we use the vertical polarization to pic't out the sections of the
prequantum bundle that depend only on the position coordinates (i.e.,
they are constant on the fibres on T*Q). These can be thought of as
wave functions in the configuration space. The scalar product of these
sections with respect to the volume element o™ will diverge. To
overcome this situation we should construct the quantum states with
the help of 1/2-densities. A very brief description is given below.
Definition 2.5.1 Let reR. An r-density of a vector space V is a function
v that assigns to each basis (X} in}y a complex number v{X;} such that

v(iX5 Al = al'vixg) (2.5.1)
Where 4, is the determinant of A. The set of r-densities form a one-
dimensional vector space and this is equally true for a manifold. There
is a natural scalar product <. | .> o2 the space of 1/2-densities.
If ® and ¥ are 1/2-densities, the product ®.¥ is a density (i.e., r = 1)
and the scalar product is defined by integrating the product ®.¥ over

Q. The square integrable 1/2-densities will form the prequantum
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Hilbert space corresponding to the configuration space Q. In the
general case, that is, when M = T*Q for a general configuration space
Q or P is not a vertical polarization, we have to find 1/2-densities on Q
with some suitable objects on T*Q, the 1/2-P-densities.

Let BY, be the set of all bases for

Pmc(’l‘mM)C atm = (g, p) e M = T*Q and

BFTQ = U (m) x BY, (2.5.2)
meT*Q

is called the frame bundle of P and it is a principal GL(n, C) bundle.
Definition 2.5.2 A 1/2-P-density is a function
v: BP(T*Q) — C, such that
vog = lAgl'%v (2.5.3)
where g: BP(T*Q) — BP(1*Q); g ¢ GL (n. ©).
Each basis 1, Ny, .... N, € (BGQ) at qeQ defines a basis &, &, ..., £, at
m = (q,p) such that
3 Jo + Pr* (o) = 0 (2.5.4)
Where Pr: M = T*Q — @ is the natural projection and P¢* is its
pullback (see App. A).
Therefore each 1/2-density pu on Q defines a 1/2-P-density v, on
™Q given by
vulm, &y, --, &) = u (g, ny. ==~ np) (2.5.5)
But not every 1/2-P-density is a 1/2-density on Q. The 1/2-P-
densities v which are of the form v = vy for some 1/2-density
{ on Q must satisfy 2tv =0 (2.5.6)
(where .‘ét is the Lie derivative (see App. A) with respect to {) for every

locally Hamiltonian vector field £ ¢ Up (T*Q).
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So the wave functions of the Schrodinger prescription are the
1/2-P-densities which are constant on the integral surfaces of the
vertical polarization.
By analogy, in the general case, the Hilbert space of a quantizable
symplectic manifold should be constructed from the products of
sections of L with the 1/2-P- densities of some polarization P, a subset
of these which is constant in the direction P will have a natural pre-
Hilbert space structure. This construction can be done in a better way
if we use 1/2-P-forms instead of "1/2-P-densities".
Definition 2.5.3 A 1/2-P-form on a symplectic manifold (M, o) with
a polarization P is a function

v BP(M) — C such that

vog = (ag) Y/ 2v; (2.5.7)

where g: BP(M) —» BP(M), geGL(n, C).
In (2.5.7) we have an ambiguity in the square root and this can be
overcome by replacing the general linear group by its double cover,
the metalinear group and in this case one takes the square root rather
than the determinant.
The metalinear group ML(n,C) is the subgroup of GL(n+i,C) of
matrices of the form

&0 g cLin, ©), 22 = ag (2.5.8)
The covering
g0
c: ML(n, C) — GL(n, C) is given by 0([ o z ]) =g (2.5.9)

and the double cover

. geGLin, C), z = (A2 (2.5.10)

-,

0
o l(g = {g
0
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4

There exists also a natural homomorphisin yx: ML(n, C) — C*
g O
(C* = C - (0) defined by X {5 ;) =2

for which the following diagram will be commutative and hence X will

be a well defined "square root of the determinant".
22

ML(n,C)
| T c
GL(n,C) /’Ag//

Note that the 1/2-P- forms are functions defined not on the frame
bundle BF(M), but on a double covering ﬁP(M). known as a metalinear
frame bundle. For P a metalinear frame bundle

Pr: §P(M) — M is a principal ML(n, C) bundle together with a
covering map p: B7(M) — BP(M) which makes the diagram

f}}(’M) x ML(n, C) —» ﬁP(M)

L

BP(M) x GL(N, C) » BP(M)
commutative.
Alternatively, 1/2-P-forms can be regarded as sections of the line
bundle

LY 5> Mwhere lP = U {m) xLPm
meM

and qu is the set of functions

'S ﬁ& - C (ﬁfn is the set of meta-frames at meM)

such that
v(bB) = %@L vib): b e Bh, , B e ML(n, C)
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Now to construct the Hilbert space for the quantum system one has to
use sections on L ® LFP (where L. ® LP is the tensor product of L and
LP) that is from the space I'(L ® Lp) of

s.v; seI(L) , vel (LP) such that (¢s).v = s.(0v); ¢ € CT(M).
To have the analogy with the Schrodinger prescription one has to
define, at this stage, the Lie derivative (App. A) of a 1/2-P-form along a
vector field m which preserves P. Since the double covering
I~3}()m) — Blm) is a local diffeomorphism, one can define Lie derivative as

v =n'v, neBP(M), n'e By (2.5.11)
where v: BP(M) - C is a 1/2-P-form. But for a locally Hamiltonian
vector field £ to be in Up{M) one must have

¥ v=o0and Vgs:ofor‘P:s.veF(L@LP). (2.5.12)
The set of all the sections WeI'(LxLF) satisfying (2.5.12) form a complex

vector space. We shall denote this space by wP.
Then we define the scalar product <¥,|¥,> on wP by integrating

(¥, ¥,) over Q, that is,
<¥1l¥e> = [ (¥1, ¥2), ¥1, ¥2 e WP (2.5.13)

The subspace of WF of wave functions ¥ for which <¥|¥> is finite
forms a pre-Hilbert space HS and the completion of this pre-Hilbert
space will be the quantum Hilbert space HF.

Now question may arise: to what extent is the quantization procedure
independent of the choice of polarization? Is it possible to relate two
or more sections which are associated with different polarizations?

In the general case, at the present state of knowledge of the subject,
the answer is no. If we ignore some problems such as problem of

convergence, the answer is yes for real polarizations. Under certain
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conditions it is possible to write down an expression for the unitary

isomorphism U: H'! - H2 which will generalize the familar Fourier

transform between the p and q representations of elementary

quantum mechanics.

If P, and P, are real and transverse i.e., they span the whole tangent

space T,M at each point meM, it is possible to construct a "pairing”
W x W2 5 (M) 1 (¥, W,) o ¥, MW,

This mapping is linear in ¥,, antilinear in ¥, and is related by

¥i* ¥q =W¥o* ¥, where "~ " indicates complex conjugate (2.5.14)
1f W'l and W'? are finite dimensional, then it is possible to define the
following unique linear transformation

Up, py Wh o wh2

which satisfies:
<¥1|¥o> = [, ¥1U¥D.0" V ¥ € WP (2.5.15)

where <.|.> is the scalar product in W'!,

The above transformation is known as BKS transform. For the infinite
dimensional case it is very difficult to say whether or not U exists
and it can only be dealt with case by case [4].

P1P2

Example 3 We have again consider the case where Q = R as in
example 1, chapter 2. We have already seen in the aforecited example

that M(= T*Q = R2) admits two naturally defined polarizations
A) The vertical polarization P, spanned by d/dp

B) The horizontal polarization P,, spanned by —a%
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Here P, and P, have only the trivial joint metalinear structure: the

vector field d/dp defines a global trivialization of BPI(M) and so any

point of BpllM) can be represented by a pair
go) [g0
(m, [O Z]) : [0 2]8 ML(n, C) (2.5.16)

The ?12- - Pi-form v, is defined by

v1(m, [; ‘;]) =1V meM (2.5.17)
does not vanish anywhere and it is constant along P,. Therefore any
wave function ¥, € W' can be written as

¥, =0,.v; 5 9, CTM) (2.5.18)
where Veo) = €01 =0V & e Up,(M) (2.5.19)
Note that ¢, is independent of p.
Similarly, any ¥, € w2 can be uniquely written in the form

Vo =0g.Vy (2.5.20)

where v, is the 1/2-P,-form on BP1(M) defined by

. 10]:1 V meM
v;(m.[O]) me

and Ved2=Ed2-1(E8).02 = OV EeUPa(M)
Here 6 = pdq, so ¢, = exp +i p q). x4(p) (2.5.22)

(2.5.21)

where x,eC*(M) is independent of q.
Since Vv,.v,(m) = 1V meM so the pairing WP x wP2 C™”(M) will be
given by

¥1*¥2(q. p) = exp (+ é—).exp (ipq).¥1(q).x2(p) (2.5.23)

From(2.5.23) it follows that the BKS transform is given by
¢1 = %o = F(0;) where F is the Fourier transform.



3 PRIME QUANTIZATION

In the prime quantization program, like any other quantization
scheme, one constructs a quantum system from a given classical
system. The additional feature of this program is that it provides a
solution to the problem of ordering of operators [8, 9] in quantum
mechanics. In this program the quantization is effected by two steps:
1) Realizing a classical observable as an operator of multiplication
on the Hilbert spaces of {phase space functions) L2(1).

2) Projecting down to one of the various possible reproducing-
kernel Hilbert subspaces (see App. B) of L2(I') which carry an
irreducible representation of the appropriate kinematic group.

The step 1 can be considered as sorae sort of a prequantization and
the step 2 as a polarization in the language of geometric quantization
(Chapter 2).

To study prime quantization one needs the idea of ordering of
operators in quantum mechanics. One can state this as follows:
Definition: 3.1 An ordering of operators on L2(1), corresponding to

the classical algebra of observables L™(I'), is a positive linear map

ki L0 — AH) (3.1)
such that

k() = B FC B fe L™ (3.2)
where (F¢¥) (p.q) = fla.p)¥(q.p), WeL?(I) (3.3)

and &, = P, L%(I) is a reproducing-kernel Hilbert space, with kernel K

and associated projector 2.

If we consider, for example, a classical observable (on the phase space
I = T*R = R?)
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flq. p) = E Cmn q™ pn (3.4)

m.n=0

which is a finite-degree polynomial with coefficients Cm,nv then its
quantized version F {s, in general, again a polynomial in the operators
QandP,

F= Y Cman@QmP" (3.5)

m,n=0

and Q and P would satisfy the canonical commutation relations

Q. P] = 1§, h=1)
We have to decide a certain ordering (e.g. normal, antinormal etc.) of
the non-commuting operators Q and P when their product appears in
(3.5).
Let us suppose that a classical system is moving on the manifold M. Its
phase space I' is the cotangent bundle T*M and its classical algebra of
observables & is the s<t of all complex continuous functions on T*M,
vanishing at infinity. Then & is a commutative C* algebra [18].

In this program the quantization map ©* is defined, exactly in the

same way as we did in definition (1.1.1), from &, to the set of all

bounded operators on a Hilbert space.
That is s, o L( ) (3.6)

Like definition (1.1.1), n* would satisfy w™*{1) = I, where 1 is a
constant function and 1 is the identity operator in ¥( &#). Unlike

definition (1.1.1), (3.6) is silent about bracket relation and it has one
additional property: the C* algebra generated by the set n*(s,) should

be dense in ¥( #) (nondegenaracy condition).
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The map (3.6) gives some ordering of the operators Q and P. This can
be understood from the following example:

If we consider the antinormal ordering i.e., z™Mz*? s aMa*M where z =
(?12-—) (g + ip), (@.p) € T*R and a is the annihilation and a* the creation

operator. Then this ordering of operators can be characterized (9] by
a one-dimensional projection operator in the Hilbert space of the
system

2m Tala.p) = lq.p><q.p| (3.7)
where lq.p> is a Glauber coherent state [12] which satisfies

alq.p> =zlq.p> .z =1/ {(q+ip) (3.8)
When written in terms of the operator Ta, the antinormal ordering

assumes the following fcrm

f=Fa=[[" Tala.p)f(a.p)dqdp (3.9)
for each f & &,
F, in (3.9) can be written as F = F,(Q.P) i.e.. @ and P are antinormally

ordered. (3.9) will define a quantization map if we set
malN = ||~ Tala.p)f(q.p)dadp (3.10)

Since ma is linear (because of its integral representation), from the
properties of coherent states it follows that na(l) =1 and as proved by
S.T. Ali and E. Prugovecki [13] the classical position and momentum
observables q and p on T*(R) are mapped by Ta to two operators
which satisfy the canonical commutation relations.

[Talg), Ta(P) = il (3.11)
Finally the C* algebra generated by nI\(.qfc ) is dense in £Z( &) (follows

from the theorem 3.1 given below).
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f — FIlQ.P) also sets up a mapping from the states p of the quantum
system i.e., normalized density matrices to normalized measure p on

the phase space according to the relation.

tr[F(Q.Ppl = tr(nx*(fpl = [ [ f(q.p)du(q.p) (3.12)
For the antinormal ordering TA. the measure u, corresponding to any

density matrix p will be positive and in this case

dualg.p) = tr[TA(q.plpldqdp

dqd
<q.plpla.p> —521—7[3 (3.13)

The positivity condition imposed on p can be interpreted in terms of
localization on phase space [14]. In fact, if the system is localized in T,
then for any Borel subset A of T' representing a localization volume,
there exis.s an observable a(d) € £(7¥) such that tr{a(A)p] will give the
probability of finding the quantum system (in the state p) localized in
the volume A of phase space.

If we insist on the probability interpretation of tr[a(A)p] we must have
(after comparing with (3.13))

trla(A)p) = [xalQ)du(g) = u (4), LeT (3.14)

ur) =1 (3.15)
where x5 is the characteristic function of the set A. Therefore p is a
probability measure.

The phase space I' can be equipped with a natural positive measure v
fwhen T considered as the spectrum of &), as the volume form on
T*M) (given earlier). Moreover, if the number of quantum particles
in a unit phase space cell is finite, then it is possible to prove the

existence [13, 14] of a positive operator-valued function.
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T: T = L #) (3.16)
such that

a(a) = [, T(L) dv(g) (3.17)
Therefore

du(f) = tr(TE)pldv(E) (3.18)
(by comparing (3.14} and (3.17))
A comparison of (3.13) with (3.17) gives us

aa(d) = 5[, la.p><q.pldadp (3.19)

which are clearly positive and which defines a positive operator valued
(POV) measure.

Written in terms of tae POV measure a, the quantization map
(8.6) becomes

() = [fQdal) = [TESEdv(E) (3.20)
which is clearly the generalization of the antinormal rule of ordering
(3.9).
The mapping T* may be given an alternative mathematical description
which is more useful in some sense. Let 9 &) be the Banach space
of the trace-class operators on # Then ¥ (J¢), equipped with the
strong operator topology, is the Banach space dual of 9 &). Also if
L*(T,v) is the dual of the Ranach space LY(T,v), then the measure p has
a density (follows from (3.18)) which is an element of L!(I',v). Hence
for a fixed POV measure a, the relations (3.17) and (3.18) imply a
mapping 7t from 71 )" to L1(I".v), the dual of which is ©* (and hence
the notation),

n: F1#) - LYWV (3.21)
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The dual,

*: L®(C,v) » L&) (3.22)
is the bounded linear map which in {(4.20) defines an ordering of
operators. Given a POV measure a and its extension P, we can write
the guantization (3.20) in terms of P:

P() = [.S(Q)dP(). Sest (3.23)
the integral on the right is weakly defined. Comparing (3.20) and
(B38) the quantization map 7* can be written as

f - n*(f) = PP()? = Wr*(f)W"! (3.24)
Quantization Map
We first embed &, into an algebra of operators on L2(r.v) using the PV
measure P such that

[PAYPI(L) = xA(Q)W (L), We &% (3.25)
The domain of P may be extended to the set L™[I,v) of all bounded v-
measurable functions of I' and its range to a commutative von Neumann
algebra. For any v-measurable function feL*°(T,v) we have

P() = [ F(QAP(L) (3.26)
In this case K.=C, for all (eI, the direct integral (B10) so that % =
L2(Tv).

Definition 3.2: A prime quantization (hence, an ordering of operators)
of the classical algebra & is a positive linear map

*: L7(C,v) = P #) (3.27)
such that

1) the C* algebra generated by the set,

nHat ) = mr(f) | fest, ) (3.28)
is weakly dense in £( #);
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2) &= H is a reproducing kernel Hilbert subspace of L2(I,v).
that is, the projection operator P should have kernel K: I'xsT" — C,

which is separately continous in each variable, and
n*(f) = PP(P,  feL™(I\v) (3.29)

where ©* depends on the kernel K.

According to our discussion at the beginning of this section we can say

that any prime quantization gives rise to a POV measure a, (B32) on
the Borel sets of the I', for which

() = [fQdak) = [ FOEL* Efdv(E) (3.30)
Moreover, & and ag determine L2(I',v) uniquely in the sense of
Theorem (B5).

The constant function f({) = 1, {cI" is mapped to the identity
operator on & since m*(1) = ak(l') = 2. The condition which will
ensure the nondegeneracy of the map n* is stated in the following
theorem.

Theorem 3.1. If the phase space I', considered as a topological space,
has no discrete part, then the prime quantization map 7* is
nondegenerate.

For proof see Ref.[5].
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Example:
Let a free particle be moving in the configuration space R3. Then its
phase space is I'=T*(R%)=R® and kinematical group is the extended
Galilei group G. The reproducing kernel Hilbert space & should
carry an irreducible representation of G and the kernel would be G
covariant.
Let us suppose that C*(I') is the set of all continuous functions on T
vanishing at infinity. Note that then C™(I') is a classical C* algebra. If
dqdp is the Lebesgue measure for a measure v on I' and 6 is the phase
subgroup and T the subgroup of time translations of G, then

I'= G/6®T®S0(3) (3.31)
is a homogeneous space and dqdp is the corresponding invariant
measure [15) on T
Let &= LR, dqdp) (3.32)
be a Hilbert space. We need to construct a —ibspace J¢;, | of 5% which

admits a reproducing kernel K.,. If e is a square integrable,
rotationally invariant function R3 such that
[gal et | %dk = 1, (3.33)

e(Rk) = e(k), ReS0(3) (3.34)

Then we define
Key (@.piql.pl) = %_zu)_; [gaexplik.(g-q1)]
s

Hk-pl] |1k-p1]] (3.35)
x e(k-p) e (k-pHdk
(=0,1.2. 3. ...

where T, is a Legendre polynomial of order (.
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Then K, | is G covariant [15] and satisfies all the properties (App. B) of

a reproducing kernel. If P, | is the projector operator

(Pe.¥)(q.p) = I Ke(a.p; ql.pl¥(gl.pNdqldpl. ¥ e H  (3.36)
RG

and g, = =2, )L*RC dqdp) (3.37)
then by using (3.35) we have
Ve l=P (V. Ve (3.38)

where ¥, | is the projected continuous functions in & |. Also &,

carries a unitary irreducible representation [15] of the extended
Galilei group G corresponding to a particle of mass m and spin; , In
particular when 1 = 0 and

e(k) = 13/ exp(-k?/2) (3.39)
we would have antinormal ordering (discussed earlier). Here we want
to explain the different ordering possibilities when e may assume
some other form rather than (3.39).
If we define fl(q.p) = ¢ and glq.p)=p'.j=1, 2 3 (3.40)

Then the corresponding quantum operators

Q“ = TQ'L AIS(fJ) fPe'L = q’ + ia_a_j and
q

(3.41)
P =2 P2, =-id/dd

would satisfy the canonical commutzation relation
Q). P¥] = iyl (3.42)

on a stable dense domain P . Further, using (3.25), for ¥ e &, we

can show that

[ac,(A) ¥ ] (q.p) = jRSKéL (q. p; ql.p)¥iql,pl)dqdp (3.43)
where a, = %, P(A) 7, (3.44)
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is the POV measure canonically associated to Koy {(see App. B) and

K2 \(a.p: q1.pY) = [, Ke,(@.p: q".P"Ke(q".P": q1.p1) dq'dp” (3.45)
If we use the notation FC'L(Q,P) for the quantized form of the classical
observable f(q.p) then in view of (3.41) we can write

Fo(@.P) =%, P P, (3.46)
We can also see from (3.40) and (3.41) that F, gives an ordering of the

operators Q and P in the quantization of the classical observable f.
Now we want to explain what a Galilean covariant ordering is. We have
already seen that &%, | carries an irreducible representation of G,
corresponding to a particle of mass m and spin L. Moreover, it can be
shown [15] that the representation in question is given by the unitary
operators Ul(g), g = (6,b,a,v.R) € G, on &,

[U(g)gl(q.p) = explil6+(p2/2m)b+mv.(q-a]}

x ¥(R'}(q-a), R'}(p-mv)), (3.47)
where 0 is the phase translation, b the time translation, a the space
translation, v the velocity boost, R the spatial rotation, and

P2 = .V5 (3.48)
This representation is highly reducible and each %%,L c & carries an

irreducible subrepresentation U, of U and # is the direct sum of

the subspaces & | that is, #'= @ Z;, ; 7% L.

If we consider only the isochronous subgroup (i.e a subgroup of G
when t is fixed = 0) G' of G, then it can be shown [15] that

Ue.t(8) ae ) (4) Ug  (@)* = a.  (glA]) (3.49)
where g[A] is the translation of the set Ae@(') by g and the action of
gsa on (q.p) eT'(=RY) is given by

g(q.p) = ( Rg+a, Rp+mv) (3.50)
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For a classical observable f if we define

glfl (a.p) = f(g'(q.p)) (3.51)
then (3.46) would imply that
Ue @F¢ U, @1 = P PP VgeC (3.52)

So the Galilean transformed classical observable (glf])

corresponds to the Galilean- tranformed quantum observable

(Ue.L(g)Fe,L[Ue.L(g)]* and hence establishes the Galilean covariance of

the ordering procedure (3.46).



4 CONCLUDING CHAPTER

We observed in Chapter 2 that geometric quantization proceeds in two
stages:

1. Prequantization:

In this stage a map is found from a classical algebra of observables to
the self-adjoint operators in a Hilbert space. In other words, at this
stage one constructs the Hilbert space representation of an algebra of
classical observables.

2. Polarization:

At this state, the size of the prequantum Hilbert space is reduced to

have an irreducible representation of the set of quantum observables.

In Chapter 3, we have seen that a prime quantization is also effected
in two stages:
1. Realizing a classical observable as an operator of multiplication

on a Hilbert space.

2. Projecting down to one of the various possible reproducing -
kernel Hilbert subspaces, consisting of phase space functions, and
carrying an {rreducible representation of the quantized observables.
So the choice of a reproducing-kernel Hilbert space is analogous to
the choice of a polarization.

Therefore to find an explicit relationship between geometric
quantization and prime quantization one has to find the relationship
between the polarization and the corresponding reproducing-kernel

Hilbert space. It is our intention to proceed in this direction.
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Appendix - A

This appendix contains an amalgamation of various objects from
Differential Geometry and Hamiltorian Mechanics, required to
describe geometric quantization.
1. Symplectic Manifolds: Some Properties
Symplectic manifolds play an important role in studying the problem
of geometric quantization. It would not be an exaggeration to say that
the scheme of geometric quantization begins with the concept of a
symplectic manifold. Let M be a smooth manifold of dimension 2n. A
symplectic manifold is a pair (M,®w) where o is a bilinear 2-form on M,
that is , for each meMw defines a mapping
(O ThmM x T,M - R which is antisymmetric and non-
degenerate. If x, y, z are vector fields on M, then o satisfies:
1) do = 0 (closedness)
2)  oX Y =-off, X) (antisymmetry)
3) ofX Y) =0, for fixed vector field X and all Y = X = 0 (non-
degeneracy).

One of the simplest examples of a symplectic manifold is M = R2" with

n
the symplectic form o = z dpk Adgk, where (q!, g2, ---gn,; P;. Py, -,
i=1

p,) are the canonical coordinates.

If w is a symplectic form on M there is a basis [17] {Uil 1<i<2n) for M

' (A2)
where {U*|1<i<2n} is the dual basis for M*. We call such basis

symplectic. The matrix of w with respect to a symplectic basis is
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[‘?n Iﬂ (A3)
where I, is the n xn identity matrix.
If Q is any manifold and M = T*Q its cotangent bundle, then one has
the natural projection map T(M) - M = T*Q from tangent bundle
T(M) of M to the cotangent bundle T*Q of Q and né: T*Q — Q from the
cotangent bundle T*Q of Q to Q. The derivative of T‘I(‘; is the tangertc
linear map: Mé: T(M) = TI(Q).
Now, points in M conists of pairs (q,p), where qeQ and p is a covector
at q, i.e., peT*(Q). Let X be a vector field on M. Then we define the 1-
form 6 on M (by giving its action on vector fields X on M) as:

8(q.p) (X) = plTrG(X) (A4)
considering -a-aaj- and 5%] as tangent vectors in T(q'p)(M) we have

0(ad. p))(0/39)) = (3 pylda))(3/3¢) = pj (A5)
and 8(q).py)(3/9p)) = (3, pyldgh)(2/apy) = O (A6)

(A5) and (A6) together imply that

Il
y=1

This 1-form 6 is called the symplectic potential. Then o is given by

(A7)

n
®=d8= d) pjdqgl
J=1

n
= w0 =) dpjadg
J=1

which is exact, hence closed.

(A8)
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2 Poisson Brackets
On any symplectic manifold (M,0) the symplectic form © defines an
isomorphism

TpM = TmM : X - Xlo (A9)
between the tangent and the cotangent spaces at each point meM.
Physically, a symplectic manifold (M.w) represents the phase space of
a classical system and a smooth real-valued function on M represents «
classical observable. In classical mechanics, an observable plays two

roles:

1) It is a measurable quantity, represented by a smooth function on

the phase space.
2) It generates, at least locally, a one-parameter family of canonical
transformations.
Let (M,0) and (N,p) be symplectic manifolds. Then by a canonical
transformation we mean a C™-mapping F: M—N such that F*p = w,
where

F*: T*N —» T*M is given by

(F*¢)x = (poF)x, ¢¢TM and xeM.
The roles played by a classical observable are connected geometrically

by the following relation: for fEC;(M) the Hamiltonian vector field
X €U(M) determined by X lo + df =0 (A10)

preserves o in the sense

Lo = Xpldo + dX o) = -dd) =0 (A11)
where % [ is the: Lie derivative of o with respect to the vector field
Xf'
[Before defining Lie derivative one needs to define a local one-

parameter group action or flow on a manifold.
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Definition: Al: A local one-parameter group action or flow on a

manifold M is a C* map F: N-M, where N c R¥xM is an open set,
which satisfies the following two conditions:

1) &5(p) =p V peM

2) For all s, teR, peM, ®,09(p) = ¢ (p) = ®,00,(p).

Each 1l-parameter group of transformation @ = (&) induces a vector
field X as follows. Let xeM. Then X(x) is the tangent vector to the
curve t—®,(X) (called the orbit cf x) at x = ®4(x). Hence the orbit
®¢(x) is an integral curve of X starting at x. X is called the infinitesimal
generator of ®;. Let X be a vector field on M and ®; a local 1-

parameter group of local transformations generated by X. Then we
define the Lie derivative %, Q of a k-form Q with respect to X as

follows:

lim .
(£Q)q.p) = o (1/8(Q(q.p) - (@ Q)}q,p)] (A12)

{q.p)eM, where for each teR, d>:t:AM — AM is an automorphism of the
exterior algebra AM.
We know that an anti-symmetric covariant tensor field of degree p on
a manifold M is a differential form of degree p [17]. The set APM of all
such forms is module over C*(M). If weAPM and 1A9M, we define the
exterior product wAte AP*IM by

(wAT)(x) = wix) A 1(x), XxeM (A13)
If we set AM = @’S’LO APM, where dim M=m, then AM is an associative
algebra such that

wAT = (-1)PA1A0, weAPM, teAdM;
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AM is called exterior algebra on M. Here by automorphism on AM we
mean a mapping AM—AM preserving the algebraic structure of AM.]
Then the flow

®s: UM) c MxR - M (A14)
generated by X¢ will define a local 1-parameter family of canonical
transformations of M. @y is called the canonical flow and Xy the

Hamiltonian vector field generated by f.
In local coordinates [pj q’} we have

W= 2 dpjadg)  (see (A3)) and
J=1

df = Zﬁ—f—d agj dpy (A15)

Now subshtutmg (A15) m (Al 1) we obtam
Xf_lz dp; A dgl + z dq! + dpj

af @ df 9

(usmg J dpAdq = dq etc.)

Definition A2: Let f,geCg(M). Then the Poisson bracket of f and g,
denoted by [f, gl. 1s a function defined by

If. g] = Xrl(g) (A17)
Some properties of Poisson brackets:
P1) In the local coordinates {q]. pj} we can write using (A16) and

(A17)

af dg dg of

(2L 2B 2B o) )
Z ap, 9a) ~ 9p; ag) (A18)

which is the familiar form of Poisson bracket.

P2) [f.g] = Xflg) = 20X 7, Xg) (A19)
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Proof: If, g = X(lg) = -XfJ(XgJ‘i‘)
= 20X/, Xg)
= Xrlg) = 20Xy, Xg)
(A19) implies that the Poisson bracket is antisymmetric (since o is
antisymmetric).
P3) (X5, Xgl = X|f, gl ; f. 8 eCgr

To prove (P3) we need to use the following two relations and two

lemmata.
% = ¢id +dgd (A20)
[Enl = Al - nls (A21)

where 1, { € UM) (U(M) denotes the space of vector fields on M).
Elements of U(M) corresponding to closed 1-forms are called locally
Hamiltonian vector fields and those corresponding to exact 1-forms
are called globally Hamiltonian vector field.
Lemma Al: IfneU(M) then n belongs to locally Hamiltonian vector
fields ( L(M) on M if and only if £ = 0.
Proof: ne M) & dindw) =0

= %o -nldo = 0 (using (A15))

RES .‘fnm = 0 (since w is closed)
Lemma A2: If {,n¢e {(M), then

[, n) = 2§w(§.n) e gM) (globally Hamiltonian vector fields on M)

Proof: (g o = .%(n_lm) - 1] w (using (A21))

= d(g (o) + ¢ldnlw)
(using (A20) and Lemma Al)
= 2d(e(n, b)) = 28y o
=6l = 284, 1) (A22)
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Proof of P3 :
X7, Xg] = 2X(1)(Xf. Xg) (using A22)
= [ Xf’ Xg] = XU- gl (USing P2)

From (P3) we can conclude that the map
JF-X f preserves brackets.
P4) The Poisson bracket satisfies the Jacobi identity. That is,
Zif. g, hl} =0 (A23)
where £ denotes cyclic summation over f, g, h € C*(M).
Proof: Since o is closed, we can write
do(Xf, Xg Xp)=0: f.g he C™(M)
= Z(Xf(w(Xg. Xn)) - m([Xg. Xnl Xsll =0

but  (Xg Xu) = Slg hl
1 _1
and  Xs(lig B) = 17, lg n) oy P2)

= Jz-zuf. g hll-llg.h,fh=0
= X if, g h]] =0.

3 Line Bundles and Sections
A line tundle over a smooth manifold M is a triple (L, T, M) where:

1) L is a smooth manifold and = is a smooth map of L onto M.

2) For each meM, Ly, = 7t~ }(m) has the structure of a one dimensional
complex vector space. L., is called the fibre over m.
3) There is an open cover {Ujl jeA)} of M(here A is some index set) and

a collection of C* maps

Sj : Uj — L such that
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T

£

L S5
Figure 2 Me(Ulienl

a) For each jeA, non = IUj (the identity map on Uj)
b) For each jeA, the map

it ij C- n'l(Uj): (m, z) — z.Sj(m)
is a diffeomorphism.
The collection {Uj, Sj} is called a local system for L. A smooth map
S: UcM - L from some subset of M into L which satisfies oS = I;; is
called a local section. When U = M it is called simply a section.

The simplest example of a line bundle is the bundle with L = M x
C (Cartesian product) and the map n: L = MxC — M the projection onto
the first factor. This bundle is some times called the "trivial bundle"

or "product bundle".

As a local system for L, we can take the set {(M, Sy)} where S,: M-L
s.t. Sy(m) = (m, 1) is the unit section of L and any section can be
identified with a function ¢: M — C, since any other section S is
uniquely of the form
S = ¢S, = (m, ¢(m)) for some ¢eC*(M) (A24)

i.e., it is obtained by changing smoothly in the fibre. In order for a line
bundle to be used in geometric quantization it needs to have two
additional structures:

1) A Hermitian metric

2) A connection
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1) A Hermitian metric: On each fibre there is a Hilbert space
metric <-|-> (C is considered as a 1-dimeasional Hilbert space) such

that for any two sections S,, S, the function
<S,|8,> defined by <S,[Sy>: M — C
: m - <S;(m)|Sy(m)> (A25)
is smooth.
Here we denote by I'(L) the set of smooth sections on L.
2) A connection: There is a map V which assigns to each vector field

£eU(M) an endomorphism (i.e. a structure preserving map)
VC: I'(L) - I'(L) satisfying

i) VC+T\S = VCS + VT\S (A26)
ii) V¢-CS = ¢V€s (A27)
iii) Veld.8) = (Co).s + ¢"VCS (A28)

for each sel’(L), £, neU(M) and 6eC*(M).

In addition we need compatibility of these two structures. They
are said to be compatible if for each real {eU(M) we have

(<8 189> = <5,V Sy> + <V;S,[S,> (A29)

for all 5, S, e I'(L).

For the trivial bundle we have the natural metric:
(Sy, Sg) = <81|82>m = <Sl(m)!82(m)>
= S1(m) Sy(m) (A30)
Let o be a smooth one-form and S, the unit section coming from the
local trivialization, then
VS = Vi(0Sg) = £0)S, - 10(L]w)S, (A31)
where Sel'(L), 6eC™(M) and S = ¢.S,. constitute a connection, since it

satisfies all the conditions required to be a connection. Indeed,
a) Vi, 0Sy = (G+m) (0)S - iol(g+n)elS,
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= ({0)Sqy + (MO)S, - 10(5]0)S, - iv(nla)S,
= Vinl9Sg) = (Vi9)Sg + (V015
b) Vi S = V,0S,) = (folo)S, - i0(fotla)S,
= fL0)S, - 1/0(CI)S,
= fI0)S, - i0(Jo)S)]
= V; 8 = fV;s for each Sel(L), {eUM), feC(M).
o) Velf-8) = (§f0)S, - ifo(G S,
= f§0)S, + 0(LNS, - 1f0(La)S,
= (£f)9Sq + f1EO)Sg - 19(LJa)Sy)]
(LNS + fV,S
The o in (A31) is called the connection form. Note that this will be

compatible with the natural Hermitian metric if and only if o is real.
In general
LUf*g) = <V (fSo)lgSe> + <fSol Vi(gSy)>
+ I tlovg - i glag (A32)

Note that locally any counection on a line bundle (not necessarily
trivial bundle) has the form (A31). To see this, let {(Uj, Sj)} be a local

system for L and for each j let us define the map

\Y
UM) - C°°(UJ) (- - — (A33)
Clearly the map defined in (A33) is linear in {(since V, is linear in {)
and so we can define a 1-form 0 on Uj.

Now using (A28) we can write
where S = ¢;-Sj e (L) and o € (‘°°(UJ-).
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To find the connection form on a nonempty intersection Uijk one
needs the idea of transition functions. Let (Uj. §)) and (Uy. Sy} be two
local systems of L. Then the function Cye C“(UJmUk)deﬁned by

Sylm, 2z) = Cjk(m) Sj(m.z) (A35)
is called the transition function between (UJ. Sj) and (Uy, Sy ). On
UJmUk we can write

S, = Cjk Sk (A36)
where CjkeC™(U; nUy) is the transition function. Then it can be

shown (1] that o, and oy, are related by

C
% on UjnUy (A37)

o = Oy + 1
J K Cjx

and any o4 in (A37) will define a connection on L.

Choosing new coordinates z a given connection form can be extended
[1] to ijC* (C* = C-{o}) as follows:

0 = 0 + idz/z (A38)
Then it is possible to define a global connection form.
4. Curvature
Let (L, 7, M) be a line bundle with a connection V. If {, ne U(M), then
the -orresponding operators VC and V, do not, in general, commute
and the connection will have a curvature.

Curvature, denoted by Curv(L, V), is defined by

Curv(L.V) (€, n)(S) = 1 (IVy, Yyl - VIL, nDS (A39)
where {,n € UM) and S e I'(L).
The right hand side of (A39) is skew symmetric and linecar in , n, so
defines a 2-form. Hence we can write

Curv(L, V), n)(S) = w(f, n)S (A40)

where weQQ(M) is a 2-form on M
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Also wIUj = doy where oy is connection form on Uj [1]. (A41)

Let (L, ®, M) be a line bundle with connection V and Hermitian metric
<-|-> and let y:[a,b] = M be a smooth curve with tangent .
A section S over vy is said to be parallel if VcS = 0. In the local
system (UJ' S) with unit section Sy and connection form o we have
VS = (£0)S, - 10(C]S, (A42)
where S = ¢S,.
then V, S =0 = ({$)S, = 19(CJor)
=0= i6(¢Jo) (since Lo = 0, ¢ is a tangent)

= % =1 (o) (A43)

Now integrating (A43), assuming that vy is a closed curve, we have

o(b) _ exp[@y(z;(t)Ja)dt] = exp(iy0) Aad

¢(a)

If the curve lies in one patch Uj we can write using Stoke's
theorem [17]
¢(b)/ p(a) = expli Lfl da) (A45)

Figure 3.

Note that this is well defined also if we require more than one patch,

since at transitions,

dc
X = oy + idllog Cyy) (A46)

oy = Oy, + 1

and doy = doy
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So, if the surface is closed this should be true for either part £, or I,
(see Fig. 3). Then using da = o (equation (A41)) (A45) can be written
as

¢(b)/ ¢(a) = eXP(i{ZIw) = exp(-ijzzm)

= exp(JZlUZQ 0 =1

= ‘LU, o =2nw, ne Z (A47)
(A47) is known as integrality condition.
Actually geometric quantization begins with the converse of this result
and it is known as Weil's Theorem.
Theorem of Weil [11]
If 0 is a closed real integral 2-form on a manifold M then there exists a
line bundle (L, 7, M) with a Hermitian metric <.|.> and a compatible

connection V such that Curv(L, V) = w.

Foliation: A foliation of dim-k on an m-dimensional manifold M is a
decomposition of M into disjoint connected subsets F = [Lalw:/\} (A is

some index set) called leaves of the foliation, such that each point of M
has a coordinate chart (U, X') [17] such that for each leaf Ly. the

components of L,nU are locally given by the equations

xK+1 - constant. .... . X™ = constant.

Distribution: Let M be a manifold of dimension m. A k-dim.

distribution D on M is a choice of a k-dim, subspace D(x) of T,M for

each x in M.




Appendix B

In this appendix we have described the mathematical preliminaries

required for the formulation of prime quantization.

Borel set: An algebra &/ of sets is called a o-algebra if it is closed

o0

under countable union of sets; that is, U A, is in &whenever the
i=1

countable collection {Aj} of sets; is in & The c-algebra generated by
the family of all open sets in R, denoted by %, is called the class of
Borel sets in R. The sets in & are called Borel sets in R.

Let #be a separable Hilbert space, £( #) the set of all bounded
linear operators on # £( #)* the positive cone (i.e., the set of all
positive operators}) of ¥ (#), X a locally compact., separable
topological space, % (X) the Borel sets of X, pu a regular positive Borel
measure on X such that its support is the whole of X. Whenever p is
the measure of the topologial space T one defines the support of y as
the closed set

Support(u) = X \ U{V:VeT and u{V) = 0}.

Definition B1l: A normalized positive operator-valued (POV) measure

on X, with values in %( &), is a map

a: D (x) » L(H#)F (B1)
such that
(1)  a(d) =0, where & denotes the null set (B2)
(2) a(x) =1, Iis the identity operator on &% (B3)
(3) a( U A= X alpy) (B4)

ked ked
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wnere J is a countable index set, and for k. 1 € J. k«l, ANA = 0. The

sum is (3) is assumed to converge weakly. A sequence (X} of

elements of E is said to be weakly convergent to the element XeE

when lim f(Xn) = f(x) for every bounded linear functional f
n-— o
defined on the given space E. An — A if and only if, for &, ¥ ¢ 7%

<®|A P> — <d|AY>.

A POV- measure which satisfies the additional property
ald) = a(a)* = [a(A))2 (B5)

is called a projection valued (PV) measure.

Example of a POV measure on &= L2(R, dx)

Let y, be the characteristic function for each

AeST (R) Le.. yy00 = { lixed (B6)

Then the map A—P(A) defined by

(P(A)Y)(x) = 3, (X)¥(x), V¥eL3(R, dx) (B7)
for almost all xeR is a normalized PV measure. This is verified below:
(1) (P@WIX) = 1ex)¥(x) = 0,&0-null set, YeL?(R, dx)
(2) (PR)Y) () = xg®¥(X) = ¥(x) = PR) = I, ¥eL2(R. dx)
(3) LetAj, Ay, e ZRjand A;NA, =, then

(P(A, UAIWIX) = 25 uaqg(®) WK} = x4, (X)W (X) -+ %y, (%) (x)

= (P(a)¥)(x) + (P(A,)W)(x).

(4) <PA)VY]E> =f

P(A)Y (x)&(x)dx = [ yalxX)W¥(x) E(x)dx
A

A
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=J ;(X)XAE(X)C]X = <¥|P(A)E>
A

= P(4) = P(a)*
and (P2(A)¥)(x) = P(P(A)¥)(x) = Ply,(x)¥(x))
= 1 oK) ((AKIY (X)) =y (x)¥(x)
= (P(A)¥)(x)
= [P(a)]2 = P(a).
The POV-measure a is said to admit a bounded positive p-density if
there exists a p-measurable function

F: X —» £( 5)* such that
aly) = IA Fx)du(x) , V Ae % (x) (B8)
the integral being assumed to converge weakly.

The Direct Integral Space

Let X be a Borel space equipped with a o-finite Borel measure’ u. A
measurable field of Hilbert space on {X, u} is a family (K,: xeX} of

Hilbert spaces index by I' together with a subspace M of the product
vector space I,y K, with the following properties:

(1) For any {eM, the function xeX — ||{(x)|| is p-measurable.
(2) For any nell, .y K, . if the function

xeX —» <C(x)In(x)> ¢ C is p-measurable for every {eM, then n

belongs to M.

1. If E is a Borel set, then E is said to be of 0-finite Borel measure if E is the union of a
countable collection of measurable sets of finite measure.
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(3) There exists a countable subset {{}, ---, {j. ---} of M such that
for every xeX, {{,(x): n= 1, 2, ---] is total in K,.

Let % be the collection of measurable vector fields  such that

g = [ 1Tt Pdptxfic e (B9)
where <{| n> = Jx<(,(x)|n(x)> du(x), ¢, n € &, is the scalar product in
K,

We would identify two vector fields {, 1 e Zif {(x) = n(x) p-almost
everywhere. We call this Hilbert space # the direct integral of

measurable fields of Hilbert spaces and denote it by

®
= f Kxdu(x) (B10)

X

The elements @& are equivalence classes of mappings xeX — g)(x)e}{x.
which are p-measurable and satisfy
J! | ()| lidu(x) < oo (B11)

where |]...[|, is the norm in K,.
Let Tl,.x Ky be the cartesian product space of Ky for each xeX and #
a fixed subspace of 3
Definition B2:

A p-selection o for H ¢ # is a linear map

0:H- Iy Ky (B12)

which associates to each p-equivalence class [f] of functions in H, a
function x - o({f])(x) in M,y Kx such that [f] = [o([f]] (B13)
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Let L(Ky, Ky) be the set of all bounded linear maps from Ky to Ky. For
any A £ L(K,, Ky), its adjoint A* is again a bounded linear map, in L(Ky.
K,). Thatis, <V|Au>, = <A*|U>, V Ue K, (B14)

y
and V e Ky, where <-| > is the scalar product in Ky, xeX.

Definition B3:

A reproducing kernel K on Fis a mapping,
y)eXxX > (Kix, y) € L(Ky, K) such that

1) Kix,y) =Ky, x)*, x,y) e Xx X (B15)
1) <UlK(x, x)U> >0, ¥ UeK,, U=0, VxeX (B16)
I11) the integral operator 7, on 2% such that

(PP)X) = f Kix.y) ¥ Wduy) V¥ e (B17)

exists and is bounded.
IV}  for all UeK, and VeK,

f (UK, yKly.2viduly) = (UIKK, 2V V (x, 2 e Xx X (B18)
X

Lemma B1:
The operator P, in (B17) i{s a projection in £( &%), that is,
Q)k=_rﬂ‘{___11k2 (B19)
Proof:

(P¥)x) = f Kix, y)¥{y)duly), ¥ ¢ 5%
X

Then

(Tk\?l@) - f W (2)b(2)dz

X




r ~
= Kx, y)¥duly)®(z)dz
Jx Jx

=J jr Kly, x) Q(y)g(z)du(y)dz
X

p —-—

= ;(Z)k(x. y)cs(z)du(y)dz

JXX

[ =~ ~
= ‘P(Z)J K(z, x)®(y)dudz

Jx X

- J ¥(2) (Ped)2)dz = <¥| Prd>
X

= Pg = Pk (B20)
Again,

(P(Pr¥N) = f Kx, 2(Pg¥)(z)dp(z)

X

= | Kix. 2) f K(z, y)¥(y)du(y)du(z)
X X

= f jK(x, z)K(z, y)du(z)q’(y)du(y)

L)

f ~
= | Kix, y)¥({x)duly) (by B18)
x
= (Pg¥)(x)
= B2 = (B21)
From (B20) and (B21) it follows that Px = P* = TKZ, which completes

the proof of the lemma.
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Let 74 < & be the subspace onto which P projects

¥ = Pyt (B22)
Definition B4:
A reproducing kernel Hilbert space is a subspacc & of &%, for which
the projection P is defined via a reproducing kernel K.
If d(x) is the dimension of the Hilbert space Ky, Vi, i =1, 2, .., d(x) an
orthonormal basis in Ky. Then for a fixed vector VeKy, the vector
K(., y) V is an element of 5. Hence let us define {y(X) ¢ 5, for given
yeX and VeKy. v =1as

LX) = Kix, y)V (B23)
Let G ={{ye &lyeX, VeK,. [IV][ = 1) (B24)

G = Ly e Gl B(xIVY, 1 = 1, 2, ... diy) (B25)
Lemma B2:

The set of vectors Gi is over complete ;.
Then writing K;;(x, y) = <Gl Gy>ot (B26)

We may express K(x, y) in terms of the generating ~ t Gf{ of Gy as

d(x) dly)

Kix, y) = >, Y [VEKijx, y)<vil (B27)
i=1 j=1

Theorem B1:

There exists a p-selection o on %, such that, for each xeX, thc linear
mapping E¥: %, — K,. defined by

EXWYg) = o([¥, (%), ¥y e & (B28)
is continuous and has dense range in K,.

Also

o([Yx)(x) = J Kx. y)¥x(y) duly) (2.29)
X




and K, y) = EXEX (B30)
where Ef : Ky - 5%; is the adjoint of Ej .
The map E¥ & — K, defined by (B28) is called an evaluation map.
Lemma B3:

The expression,

Filx) = Ef Ef xeX (B31)
defines a bounded positive operator on &, such that A — ag(a),
Ae & (X), where

agla) = j Fg(x)dp(x) (B32)
A

defines a normalized POV-measure on &, having u-density x -Fy(x).
The nomalized POV-measure ag in (B32) is said to be the canonically
associated to the reproducing kernel Hilbert space ;.

Remarks:

I) We may also write E§ and E}é‘ interms of the set G;( in (B25) and

the basis sets Vi ,i=1, 2 .., d(x) as

d(x)
Ef= Y |Vis<tl (B33)
I=1
d(x) ,
and E¥ =Y |Go<Vi (B34)
i=1

I}  In the special case where K, is isomorphic to
K.V xeX EX (¥,) = ¥, (x) (B35)

I1I) Using (B33) and (B34) we can write

dx)
Fx() = Y 145<Gl, since [VIIg =1 (B36)
i=1
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Theorem B2:
(Extension Theorem of Naimark)
Any normalized POV measure a on an abstract Hilbert space &#can be
extended to a projection valued (PV) measure P on a larger Hilbert
space &%, in the following sense. If & (') is the set of all Borel sets of T,
then there exists
I) A Hilbert space &% on which there is defined a PV measure P(A),

Ae Z(T).
I} A subspace 3% of % , with projection operator P such that

P = 5 (B37)
I11) A unitery map

W: #— &% such that

PP(A)P = Wa (A)W!, Ae B e(l) (B38)
Moreover, & may be chosen to be minimal in the sense that every
other extended space F having properties (B37) and (B38) contains a
subspace which is unitarily equivalent to X.
As before, let #be a separable Hilbert space and a as in (B8). For each
xeX, the operator F(x) is bounded and positive, and hence its square
root F (x)% exists.
Let Ny denote the null space of F(X)%.

Ny = (@ed#|F(xFd = 0) (B39)
Then K, is obtained by closing the quotient space & /Nx with respect
to the scalar product

<[¥ix | [@lx>x = <¥|F(x)D> 4 © (B40)
where [¥]y and [®]y are the equivalence classes in & /N, of ¥ and ®

respectively.




T
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For each x e X, let U(x) be a unitary operator on K, and let the
operator valued function x — U(x) € L{k) defined by x — <ulU(x)v>y for
each u, veK be p-measurable.
Theorem B3:
The mapping Wy: #- %, defined by

(Wg®)x) = Oilx) = UKD, x e X (B41)
for all e is a linear isometry between #and a proper subspace & of

A

Lemma B4: the following norm estimates hold:

K& vl = | IFx)3 Fiy)z! | (B42)
HEk ! = 1D = HKx 7= TIFx)| 2 (B43)
Theorem BbH:

A subspace #4; of # is a reproducing-kernel Hilbert space if and only if,
for every xeX. there exists a continuous linear evaluation map

E: 5%, — K, with dense range in K,. In this casc, &is
the unique minimal extension of ;. in the sense of Naimark, for the
canonically associated POV measure ay.
Theorem B6:
Let ##be an abstract, separable Hilbert space, on which there exists a
normalized POV measure a, defined on the Borel sets of a locally

compact space X, and admitting a p-density F. Then there exists a

reproducing kernel Hilbert spe e &%, with canonically associated POV
measure a,, and a unitary map Wy such that
Wyd¥= 5% (B44)
Wiald) W = ay(d), e (x) (345)
WiF(x) Wi = (E¥)*EE. xeX. (B46)
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Strong and Weak operator topology:
Let & be a Hilbert space and £ ( #) the set of all bounded linear
operators on £ Then the strong operator topology is the locally
convex topology determined by the seminorms:

xe L(#) - |Ixtl]. (e
The locally convex topology determined by the seminorms:
x e L(#) - |<xlIn>1, ¢ n e s, is called the weak operator topology.
Von Neumann Algebra :
Let M be any subset of £( 7). We shall name the commutant of M, to
be denoted by M. the set of those elements of ¥ ( #) that commute
with all the elements of M. We denote (M)’ = M" (the double
commutant). If a subalgebra of () is invariant under the *-
operations then it is called a *-subalgebra of £( 7).
Let £, ne X( ) and ae C, the the *- operations have the following
properties:
(1) E*)* =&
(1) (E+m)* = &* +n*;
(iii) (a&)* = a&* (T denotes complex conjugate)
(iv)  (En)* =n* &*;
(v) eIl = [l
Definition B5: A von Neumann algebra on #is a *-subalgebra M of

F(H ) such that

M = M".
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Trace class operator
1 1
Let | |All] = tr(lA*A]) = £ <ol (A*A)V®,>
where {¢1] is an orthonormal basis. If [|A] |1 < o then it is

independent of choice of orthonormal basis. Then | Al |1 is called the

trace norm of A and A itself is called a trace-class operator,




