l*l National Liorary Bibliothdque nationale
of Canada du Canada
Canadian Theses Service Service des thases sanadiennes
Oftawa, Canada
K1A ONd4
NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the gegree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in fuli orin part of th.< microform is governed
by the Canadian Copyright Act, R.3.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (r. 868/04) c

AVIS

La qualité de cette microforme dépend grandement de la

qualité de la thése soumise au microfilmage. Nous avons

:put fait pour assurer une qualité supérieure de reproduc-
ion.

S'il_manque des pages, veuillez communiquer avec
l'université qu: a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout siles pages originales ont été dactylogra-
phiées a I'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reprodurtion, méme partielle, de cetle microforme est
soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Il

Canada

ivl

Bibliothéque nztionale
du Canada

Mational Library
of Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it inay be printed or
otherwise reproduced without his/her per-
mission.

ISBN

Canadi

Service des théses canadiennes

L’auteur a accordé une licence irrévocable et
non exclusive permettant 3 la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour meitre des exemplaires de
cette thése & la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimeés ou autrement reproduits sans son
autorisation.

0-315-56040-1

A Case Study of the
Formal Development of an Object Manager

Patrice Chalin

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

December 1989

© Patrice Chalin, 1989

PRy W T e T W

ABSTRACT

A Case Study of the
Formal Development of an Object Manager

Patrice Chalin

In this thesis we motivate a formal approach to software development by discussing the
use of formal notations in software engineering. The formal development of software
consists of producing a series of formal specifications, where each specification contains
slightly more detail than the one that precedes it. All specifications but the first have an
associated proof of correctness that demonstrates that the specification satisfies the one that
precedes it. A memory manager for a LISP-like interpreter is chosen as a sample problem
for formal development. This leads to the formal development of an object manager
consisting of a requirements specification, two levels of ‘design specification’ and a
detailed specification of one of the allocation operations. All specifications are expressed in
the Z notation. We conclude by indicating possible improvements and extensions to the
object manager specifications and the Z notation.

Acknowledgements

I would like to thank my thesis supervisor, Dr. Peter Grogono, for his continued support
and guidance during the period of research that has lead to the present thesis and during my
undergraduate studies. Dr. Grogono has given me the opportunity to complement my
theoretical studies by the next two, most important ingredients — practice and experience.
From the beginning of my undergraduate studies, my involvement in the development of
BIAS (a Scheme-like interpreter) has given me the practice and experience which are
necessary for the appreciation of software engineering techniques. I am also thankful for
the many stimulating and varied discussions which we have had.

I am grateful to the Natural Sciences and Engineering Research Council of Canada, and
Concordia University for their financial support during my graduate studies and research.

Finally, I thank my wife, Sylvie, for her encouragement and support.

-iv -

Table of Contents

ACKNOWIEdBEMIENTSvuiirnieriiiiiiirinciciiiiieeetntisiitnorsscseistrsenstensesnrensssranses iv
1 IntroducCtion....c.cciiiiiiiiniiiiinienieniiiersniienmiensrestesiorecssaessensnnssanssnnneses 1
2 The Use of Formal Notations in Software Engineering.......ccccceveerniiceananennenes 2
2.1 Requirements Analysis and Definition.......coccuceiiieniniiiininnrinannnnnee. 2
2.1.1 Software Requirements Definitionc.ccceveniiinnnennnerennenn. 2
2.1.2 Software Requirements Specification........ccc.ueveuierneeecucnnneanes 3
P22 0 113 7 | T N 5
2.2.1 Architectural Desigh....ccccccciicerimnnnninecereeeeressssnssnnseseeses 5
2.2.2 Intermediary Design......ccoimieereinininnniiniinieieiesenennns 6
2.2.3 Detailed Design......c.coevvniiniiiiinririiniirntiniiiiieneeessecansranes 7
2.3 Implementation. . ..cccceiuiiiiiiiniiniiiiiieienieceneenierenniinnsneerserernsenses 7
2.4 Maintenanceo.uuiiierinenreiiireaneinieinierersnceiestaneereencereencsiannesns 8
3 The Formal Development of SOftwareccccveveienieiiiininininienineenerenranonnes 9
4 A Choice of Specification Language........ccecvvvererirnissrneenneenireeerensseecennns 11
S AnObJeCt Managercivueiiiuieiiinuiiirnnniienmiieneeseeerossecernesnnseessorsersnns 13
S.1 INtroduCHON ...vcviiiniiiiieiiiiiiieieiiiiiieeereratetiseenninsesernsenonnnes 13
5.2 Evolution of the Specifications......c..cccccvvvmenniniieiciieenerscnersnnens 15
5.3 Informal Description of the Object Manager.........cccecevrvecrvnviree vueees 15
5.4 Formal Specification of the Object Manager..........ccoceverinicnnrensacone 16
S:4.1 ObBJECtS..cuiiiniiiiiiiiiiiiitieiiniiniietiaisnisasissniecattssssnsensensas 16
5.4.2 The Object Manager State Space.......c.ccccevsrecsrersrsserssssenens 17
5.4.3 Object Manager OPperations.......cccccccecereerreireneerecsaceereeseses 19
6 AMemOTYy Managercuvireniiininiiiinieneniueiiuinsesasssiessssisesmeossesareassssns 25
6.1 Formalizing MEmOTY.....couvriiiinniieieiiuencnerenrnneseeesencnsassnacernesseses 25
S.1.1 The State SPaCe......ccveecenreriineereensnnnsiosressernoenstncsransnsssns 30
6.1.2 PropertiCs....ccuiuiiiiiiiiiieiiiiiiisiestiiniiiiiiniiiiiiasssnisees 31
6.2 Formalizing AllOCatioN.......cuevuieieniunernrenariiiieiiiiriiiennrerisieeees 36
6.2.1 The Staie SPaCe....ceuiiiuineirnriniecesienrrerieserinsrsesserossmaarennss 39
6.2.2 The Allocation Operationcceveverrrernisuiresecinscesiaciones 40

6.3 Refining Allocation........c.ceveeeeuiiiienieiiiiciiieeteiiiiiienniiiniiiiiiienne, 47

6.3.1 The State SPace.....cccceviiniiuinrianiiriiarnesocaiinistencecestonsenaes 48

6.3.2 Allocation Revisited.........ccooevieriiiiiiieiiiiiiieiiiiiniiieeenn, 49

6.3.3 Properties.............. eseesiereseetessensnssnnesisssssosssnisarennnnns 50

6.4 Refinement of Alloc_free....c.ccivvvnreiininiieinenniiiiininicninnen, 51

T ConCIUSION. . euiiiiiiiniiiiiiiiiiircie ettt s saisasssea s saresssesnasennsnnessnnnns 54
7.1 Immediate IMPrOVEMENLS..........cceveriernenrieiiecesssnniiracnranenereesencnns 54

7.2 Extensions and REUSC.......cceceveuiiiiiiiirrenriiniessoceniiucerneeecsnsacnses 55

7.2.1 A Heterogeneous Memory Managerccveevveveeceninranencnene, 55

7.2.2 Memory ANENMENt.......ccooivieiiiiiiiiriacermcniireseenernsecennesnnes 57

7.3 Remarks about Z.......cocceiieiiiiiiiiieniiniveniiecenieiinieseneanecesessnens 57

7.4 Further WOrK......cuueuiviiiiienimnniiiecinaninicreiineensniiisessanneresennesnns 58
ReEfEIENCES....iuiiiiiiiiiii et resrreee e estar e reae s e 59
Appendix A. Nonstandara Generic COnStantS.........oeuveeeriereenenierreenrenersnsenensnes 62
Appendix B. Selected LEmMmMAS ...c.c..cuuiiiiiiiniiiiiiriinieiirriieennrrieieentnerscesenssees 63

1 Introduction

One of the goals of software engineering is the produstion of quality software. One of the
most important software quality attributes is correctness. A software product is said to be
correct if it mects its requirements.

Software engineering arose out of a need. It was recognized that the development
techniques used for small programs could not be scaled up to be used in the production of
larger software systems [Sornmerville89]. Due to the size and complexity of larger
software projects, special attention to management issues and to the process of software
development is required [Fairley85). Software process models, also called life-cycle
models, have been developed which represent the development process as a series of
phases where each phase is associated with certain activities having a specific purpose and
with the goal of producing one or more deliverables [Fairley85, Sommerville89].

In section 2 we take a brief look at the current day use of formal methods in the various
life-cycle phases. The discussion sets the background for a formal software development
technique.

2 The Use of Formal Notations in Software Engineering

Most life-cycle models identify stages in software development which correspond to the
following general phases:

1. Requirements analysis and definition.
2. Design.

3. Implementation.

4. Maintenance.

In the subsections which follow we consider the activities that are performed in each phase,
the deliverables that are produced, and whether formal notations are used. We also discuss
the verification and validation activities used to assure the quality of the deliverables
produced. When possible, references are given to illustrate the use of formal notations in
the deliverables relevant to the phase.

Life-cycle models differ in the amount of development effort that is allocated to each
phase. In some models the phases may be performed more that once and in various orders
(other than the ordering presented above). In practice the phases are generally not
conducted one after the other but with a certain amount of overlap. For example, a
prototype model may have implementation as an initial phase during which a prototype
would be built. Prototype implementation would be performed during the early part of —
and hence concurrently with — the requirernents analysis and definition phase.

2.1 Requirements Analysis and Definition
2.1.1 Software Requirements Definition

The software development process is begun by the need for a system. That is, a customer
identifies a problem for which a software solution is desired. The customer and supplier
cooperate in the process of making explicit those environmental constraints and customer
needs which are relevant to the problem [IEEE84]. These needs and constraints are
documented in the form of requirements. A requirement is an unambiguous statement of a
single environmental constraint or customer need which is required of any system which is

to solve the problem. The requirements are brought together in a software requirements
definition document (SRDD) [Sommerville89].

The purpose of the SRDD is to describe completely and unambiguously (1) the problem
to be solved and (2) the properties or constraints which any system must satisfy in order to
be an acceptable solution to the problem. The desired quality attributes of the SRDD are:
completeness, consistency, unambiguity, maintainability, traceability, and verifiability. The
SRDD is the first formulation of requirements to be produced and it must be understandable
to both the customer and the supplier [[EEE84, Sommerville89]. Thus it is generally agreed
that the natural language used by experts from the problem domain is the most appropriate
language for expressing requirements in the SRDD. Another argument in favor ¢/ expertise
natural language is that most problem domains are too complex to be compietely
formalized. Thus, the rich and expressive vocabulary of expertise natural language is the
preferred language for requirements definition [Abbott81, Sommerville89].

It has been recognized that a natural language statement of requirements cannot be used
as a basis for design since the requirements tend to be ambiguous and incomplete
[Meyer85a, Sommerville89). Thus the requirements are subject to formal enalysis
[Sommerville89].

2.1.2 Software Requirements Specification

The next activity is the forrnal analysis and definition of some of the requirements in the
SRDD. In general, only the functional requirements car: be subject to formal analysis and
definition [Sommerville89]. In this activity, one or more formal notations are chosen and
an attempt is made to express the requirements using these notations. The act of formalizing
the natural language requirements will generally bring to light ambiguities and omissions i
the requirements [Meyer85a). During this process, as errors are found in the requirements,
the SRDD is reviewed and changed to correct the errors.

Formal notations permit precise analysis of the requirements through proofs.
Theoretical issues such as consistency can be considered. A set of requirements is said to
be consisi-at if there exists at least one system which satisfies those requirements.
Requirements may also be validated, that is, they may be checked against actual customer
needs and environmental constraints. Validation may be performed by establishing proofs
of properties which the customer expects to be true. Research is being conducted in the area

-3-

of animation of specifications {Jones88a} which will provide another means by which
requirements may be validated.

The activity of requirements specification serves as a development aid for the
formulation of the natural language statement of r-quirements of the SRDD [Meyer85a].
This activity helps one achieve the quality attributes of completeness, consistency and
unambiguity. Although completeness and consistency are theoretically achievable they are
generally impossible to achieve in practice [Rich88). This should not discourage us from
trying to come as close as possible to achieving them. The results of the formal
requirements specification are brought together in a software requirements specification
document (SRSD). This document provides a formal basis from which a software design
may be derived [Sommerville89].

Formal specification languages such as Z [Spivey89] and VDM [Jones86] can be used
for the formal definition of software requirements. A collection of software requirement
specifications written in the Z notation for various systems is presented in [Hayes87].

Althcugh we have described the SRDD and SRSD as being two separate documents
they are sometimes merged to form a software requirements document (SRD)
[Sommerville89]. One may ask why it is important to put so much effort into the
production of the software requirements. It is because the later in the life-cycle an error is
caught the more expensive it is to correct. Also, the SRD acts as a contract between the
customer and supplier [Sommerville89]: the customer agrees to accept any system which
satisfies the SRD — that is, the requirements set forth in the SRD — and the supplier
agrees to produce a system satisfying the SRD.

Note that the SRDD and SRSD (and hence the SRD) are descriptions of a problem. In
the phases that follow requirements analysis and definition, the deliverables which are
produced are descriptions of a solution to the problem identified in the SRD.

2.2 Design
2.2.1 Architectural Design

The software requirements, as captured by the SRD, are used as a basis for design. A
preliminary design, called the architectural design, is conceived which identifies the general
structure of the software to be developed [Pressman82]. The syster structure is expressed
as a collection of modules where each mcdule has a specific purpose. Although the
functional requirements determine what the modules will do, other requirements (such as
performance constraints) constrain the ways that can be used to do it.

Architectural design is generally not expressed in a formal notation, possibly because
there has been little research on the development of specialized formal notations for
architectural design. General notations such as Z and VDM can be used.

Regardless of whether a formal notation is used, the architectural design must be
shown to be adequate with respect to the SRD. The functional adequacy of the architectural
design may be established by showing that the combined functionality of the design
components meets the desired system functionality as expressed by the SRD. At this level
of design it is not possible to determine if all requirements have been satisfied (e.g.
performance requirements). Verification of the adequacy of the architectural design is
established by design reviews and these are conducted usirg informal methods
[Pressman82].

During architectural design, errors may be found in the SRD which may require the
SRDD and consequently the SRSD to be reviewed and changed. Hence a certain amoun:
of the project development effort may have to be reallocated to the requirements analysis
and definition phase. While the SRD is being updated, work on the architec:ural design
may continue or it may be halted. Some life-cycle models do not permit reiteration of the
requirements analysis and definition phase. In most situations it is practical to reiterate to
this phase only a small number of times [Sommerville89].

e ke,

2.2.2 Intermediary Design

The architectural design may be refined in zero, one or more design steps. Each step results
in the production of an intermediary design document. Each intermediary design document
builds upon the design document which precedes it by adding more detail [Jones86,
Sommerville89].

Although some authors admit no intermeciary design steps [Pressman82], it seems
impractical for most software projects to proceed from architectural design directly to
detailed design. There is too large a gap between the two levels of design. Such an attitude
is reminiscent of the times when it was thought that the design activity could be omitted
altogethier [Pressman82]— that is, implementation would commence immediately after
requirements definition.

Much research has been devoted to the development of formal notations for
intermediary design [Abbott81]. Some of these notations include: algebraic specification
notations, grammars, and state-based specification notations. Examples of algebraic
specification notations include Clear [Burstall80], OBJ [Goguen79] and NUSL [Jiang88].
These are simple notations which can be executed directly and are generally used to express
abstract data types and simple interfaces [Sommerville89].

G.ammars are formal notations which are used to describe the syntax of languages.
Parsers for certain kinds of languages can be constructed automatically from a grammar for
the language. One popular parser generator is YACC [Aho86]. Language semantics can be
expressed in part by attribute grammars [Aho86]. Attribute grammars are also being used
as a notation for the formal specificatio: of structure editors [Ritchie88). Tools now exists
which generate a structure editor for a specific language given an attribute grammar for the
language.

The general state-based notations Z and VDM can be used to express intermediary
design although VDM appears have been developed specifically for systzm design.

As is illustrated in [Meyer85b], it is not necessary’ to restrict oneself to the use of formal
notations that exist or that have a large user community. It is possible to invent a formal
notation based on, as in [Meyer85b] for example, first order predicate logic.

Generally only part of the design is formalized, thus formal verification of intermediary
designs is not possible for the entire design. The first intermediary design is verified
against the architectural design and subsequent intermediary designs are verified against the
intermediary design which precede it. Verification is done by design reviews and is
generally conducted using informal methods.

A presentation of the formalization of the design of a display-oriented text editor written
in Z is given in [Sufrin82].

2.2.3 Detailed Design

The last intermediary design or the architectural design (in the case where no intermediary
design was produced) is refined into a detailed design. The detailed design is a generalized
image of the source modules which will eventually be produced. Thus, all data structures
are defined and all algorithms are explicitly expressed in a detailed design [Fairley85].

A semi-formal approach is generally taken to detailed design. There exist graphical
notations for detailed design but these are equivalent to program design languages (PDL).
A PDL is usually a derivative of a programmung language. There are PDL's based on
Pascal or ALGOL-like languages [Pressman82], Ada [Sommerville89], C, and Eiffel
[Meyer88]. In any case, the detailed design language is usually different from the
language(s) used in the intermediary design.

The detailed design is verified against the design from which it was derived. Again, this
is done by design reviews and is conducted using informal methods such as inspections
and walkthroughs [Pressman82, Fairley85].

- During the intermediary or final design stages errors may be found in the previous
designs or in the SRD. This may require that the previous designs or the SRD be reviewed.

2.3 Implementation

The process of implementation consists of translating a detailed design into source modules
written in one or more programming languages [Fairley85]. Much research has been done
in the area of programming language semantics [Abbott81, Schmidt88]. Most common

programming languages have a formally or informally defined semantics [Ghezzi87].
Thus, programming languages can be considered as formal notations and source modules
as formal documents. Hence, potentially, one can prove that a program unit (e.g. function
or procedure) meets it specification. Although proofs are the ideal verification technigne it
is practical to prove the correctness of only small program units. The difficulty of such
proofs is in the large amount of detail involved [Pressman82]

An implementation can be verified against the detailed design by review teams which
conduct source code inspections and walkthroughs [Fairley85, Sommerville89,
Pressman82]. Since programming languages are executable, partial verification of the
implementation is also possible by unit testing and (after system integration) system testing
[Fairley85, Sommerville89, Pressman82]. Verification by testing is partial since, as
Dijkstra has said, testing can show the presence of errors but it can not establish their
absence.

Similarly, since programming languages are executable, validation of the system or of
its corponents is possible [Pressman82].

As was the case in the previous phases, errors may be found during implementation
which have their origin in the SRD or any one of the design documents. If the error
originates from the SRD then the SRD will need to be reviewed and any changes which are
made may induce changes in the design documents and finally the implementation.

2.4 Maintenance

Maintenance involves a possible reiteration of the phases of requirement analysis and
definition , design ~nd implementation due to errors found in the software or changes in
customer needs or environmental constraints [Fairley85, Sommervillc89].

3 The Formal Development of Software

From the exposition above on the use of formalism in the software development process
we see that formal notations exist which can be used in the production of deliverables for
each of the phases. Thus there is a potential for the formal derivation of software.

An approach to software development which we will call formal development consists
of using a formal notation for the derivation of a software system from the software
requirements specification through to detailed design or implementation [Jones86,
Spivey89]. The research described in this thesis is a case study of the formal development
of an object manager using the Z notation.

The approach of formal development consists in producing a series of formal
specifications Si, S2, ..., Sp. The first specification serves the same purpose as the
software requirements specification document. It is a formal description of the functional
requirements of a desired system. The last specification is a detailed design or
implementation. Each specification Sj4] in the series contains slightly more detail that the
specification S; that precedes it. Along with each specification Sj, there is a proof
obligation: the specifier must prove that the specification Si41 satisfies the specification S;,
that is, the system’s functional behavior as expressed by the specification Sj is preserved
by Si+1 [Jones86].

The method of formal development has the potential for guaranteeing the functional
correctness of the implementation [Sommerville89). The first specification is the definition
of the behavior of the desired system. Each subsequent specification is proven to respect
the functional behavior as described in the specification which precedes it. Thus, by

_transitivity, the implementation must behave according to the initial system specification

(provided, of course, that all of the proofs are correct). The correctness proofs that arise are
of manageable size and complexity since each specification is a slight refinement of its
predecessor [Sommerville89, Jones88a]

The formal development approach also has the potential for reducing the cost of
development and maintenance. The refinement of an inadequate design is a common cause
of the wastage of development effort, The situation arises because refinement of the design
is done before the adequacy of the design has been proven. Formal development

encourages developers to do proofs of correctness of a specification before proceeding to
its refinement [Jones86, Jones88a). Thus, errors in functionality should not get beyond the
specification in which they were introduced. A product may be correct without being valid,
that is, without satisfying actual customer needs. Such a situation arises because the
software requirements do not correspond to actual user needs. The formal development
approach is technically no better than other development methods with respect to the
production of valid requirements. The proofs of correctness of the specifications
establishes a dependency graph between the information contained in the specifications. It
is therefore possible to know what effect a change in a specification Sj will have on the
specifications S; for j 2 i [Jones88a].

The reuse of source code has not been as successful as anticipated [Meyer88]. This is
mainly due to the application-specific nature of program source. Although object-oriented
languages seem promising in this respect [Meyer88), it seems that the formal development
of software is most likely to produce deliverables that are reusable. As formal methods
become more popular we should see the emergence of abstract theories which provide
useful properties for sets, sequences, bags, trees, stacks, etc [Jones88a].

Formal development is not widely used and probably will not be used by industry for
some time. The main reasons are the large amount of proof's generated by the approach and
the lack of automated tools to assist developers in the construction and management of
proofs. Providing computerized assistance for formal software development methods is an
active area of research [Jones88a). Prototype systems have already been developed and
major projects are near completion but tools are not yet available [Jones88a, Jones88b].

-10 -

4 A Choice of Specification Language

For formal development to be possible there must exist a formal notation which can be used
to express everything from a system’s requirements to its detailed design. Two general
purpose notations which can be used are VDM [Jones86] and Z [Spivey89]. In this section
I explain my choice of Z for the case study.

Z is a mathematical specification notation based on typed sct theory [Spivey88,
Spivey89]. Itis a gencral notation which can be applied to a wide range of problems at
varying levels of abstraction — e¢.g. [Delisle89, London89, Woodcock89]. The Z notation
is centered around the concept of schema. A schema combines the declaration of variables
and predicates over these variables. The conjunction of the predicates defines a properry.
Schemas are used to describe both the static and dynamic aspects of a software system, The
static aspects in..lude the svstem state-space and initial states. Dynamic aspects include
operations wiich transform the system states. Schemas are also used to describe the
relationship between an abstract system state and a concrete implementation of the system
state [Spivey88]. A Z specification consists of a series of paragraphs of formal text
interleaved with informal prose which introduces and explains the content of the formal
paragraphs.

Another general notation for writing specifications is the notation used for the Vienna
Development Method (VDM) [Jones86). The VDM notation is quite similar to Z but there
are important differences.

For example, these two notations differ in their approach to undefined terms that occur
in predicates. Consider the predicate 3/0=1 A 3<2 in which the term 3/0 is undefir.ed.

_ Predicates in Z which contain undefined terms are called undetermined predicates

[Spivey89]. Undetermined predicates have a truth value — they are cither true or false —
but it may not be possible to determine which value it is. This approach pemits the use of
classical two-valued logic. Thus, the predicate 3/) = 1 A 3 <2 is false because its second

conjunct is false, regardless of the (undetermined) truth value of 3/0 = 1.

VDM uses a three-valued logic. In addition to the usual truth values of true and false a
new ‘non-value’ is used [Jones86]. The usual logical connectives, A, v, =, and <>, must

be redefined over these three values. The result is a logical system — called the logic of

partial functions (LPF) — in which classical tautologies, such as the law of excluded
middle, no longer hold. LPF has its advantages; in particular, it is complete [Jones86].
Being most familiar with classical logic I prefer the two-valued logic of Z.

Operation specification in VDM tends to be more explicit than in Z. The VDM notation
for operation specification requires the specifier to declare explicitly which components of
the system state are being used along with the pre- and post-conditions of the operation. In
Z, this information is usually implicit and can be derived if needed. For example,
operations in Z are defined by a single property (i.e. conjunction of predicates). From this
property is it possible to determine which components of the system are being used and
what the pre- and post-conditions are [Spivey88].

I do not believe that a specification notation should force one to express information
that can be derived. Being explicit tends to be the safer approach to specification, but only
at the appropriate level of abstraction. One can be as explicit in Z as in VDM but one is free
to be only as explicit as is deemed necessary.

The use of schemas allows Z specifications to be developed incrementally in a natural
way [Spivey89]. For example, schemas can be used to define a complex state-space or
operation as separate components and subsequently combine them. VDM does not have
similar capabilities. This has prompted some authors [Sommerville89] to choose Z over
VDM.

-12-

5 An Object Manager

In this section we present the formal specification of an object manager. This is the first
step in its formal development.

5.1 Introduction

An important part of interpreters for LISP-like languages is the memory management unit.
LISP systems are avaricious consumers of memory. Generally, the most complex
subsystem of such a memory manager is the garbage collector. A garbage collector is
concerned with reclaiming previously allocated but no longer needed memory so that it can
be reused. Although memory reclamation is an effective means of managing memory, it is
generally insufficient since repeated allocation of memory will cause fragmentation: at some
point, an allocation request may fail because there is no single contiguous block of memory
which is large enough, even though the total amount of free memory exceeds the amount
requested. Thus, another activity of the garbage collector is memory compaction. The
purpose of compaction is to bring the recycled memory into one contiguous block. The
process will require the relocation of memory blocks and consequently the pointers
referring to these blocks must also be changed.

Thus, LISP memory managers are non-trivial systems. I was responsible for the
development of an interpreter for a Scheme-like language called BIAS [Grogono87] and
was faced with the problem of implementing a memory manager. Following a traditional
development method did not seem appropriate since this would mean that system validation
could only be done by testing and adequate testing is impossible for a LISP memory
manager — not to mention debugging! Thus the problem of memory management scemed
like an excellent candidate for a case study of the formal development of a software system.

Grogono proposed a general mark-and-sweep memory allocation algorithm which was
to be used in BIAS. The algorithm has three general phases which can be briefly described
as follows:

1. Attempt allocation from frec memory. If this is not possible then
2. recycle (i.e. collect) unused memory and retry allocation. If allocation is not
possible then

3. compact all free nemory into one block and retry allocation. If allocation is still not
possible then allocation fails.

A memory manager controls the use of memory. Memory can be partitioned into active
and inactive memory. Active memory is the memory that is currently in use by the LISP
system. Inactive memory is the rest of memory and it is from this memory that new
allocation requests are satisfizd. Inactive memory can be partitioned into free and garbage
memory. Free memory is the inactive memory that is readily available for allocation.
Garbage memory is the allocated memory which is no longer needed but has not been
recycled yet. Garbage memory, once recycled, becomes free memory.

A LISP interpreter uses memory to build S-expressions and other internal structures.
These objects are made of discrete elements called rndes which are linked together by
pointers. Nodes may contain values (such as integers, reals, strings, etc) and pointers.
Conceptually, a LISP interpreter uses memory to construct a representation of a graph. The
only information that is conveyed by a graph is the relationship that exists between the
nodes of the graph. Consequently, the arcs that relate the nodes have no meaningful value.
Said another way, the value of a pointer has no meaning; its only purpose is to link one
node to another.

As mentioned above, memory must be periodically scanned for garbage that can be
recycled. The memory manager needs a means of distinguishing active memory from
garbage memory. For this purpose, memory managers usually contain a pointer stack. A
node is considered to be active if and only if it is directly or indirectly accessiblc from a
pointer on the pointer stack.

Memory must also be periodically compacted. Compacting involves the relocation of
nodes. The relocation must be done is such a way that the graph, as seen by the LISP
system, remains the same. This implies that when an active node is moved, all pointers to it
must be updated to reflect the new location that the node will be moved to. Thus, for the
purpose of compaction, the memory manager must be able to identify all pointers to active
nodes. In many implementations it is assumed that the pointer stack is the only structure to
contain pointers to active nodes. In those cases where the memory manager is called as a
subroutine (as opposed to a coroutine) it is ‘safe’ to make copies of pointers from the
pointer stack to local variables provided these variables are only used in between calls to the
memory manager. If a pointer is kept in a local variable across a call to the memory

-14-

manager the variable may be left with a pointer to arbitrary memory. Therefore, use of
memory and the pointer stack must be carefully cont:olled.

§.2 Evolution of the Specifications

Initially my cbjective was to specify formally and derive an implementation of a memory
manager with 2 single operation for allocation. Time was spent searching for an appropriate
model for the memory manager state and trying different formulations for an allocation
operation. I continued with the refinement of the allocation operation which was to
resemble the algorithm outlined above. The specifications went through numerous
revisions as I learned the Z notation and found concisec means of expressing important
concepts.

As mentioned above, a very controlled use of both memory and the peinter stack must
be made if the memory manager is to function properly. Thus, I realized that the memory
manager specification needed to be extended to include operations which would allow for a
disciplined use of memory and the pointer stack. At the same time I was also looking for an
abstract model that would describe the behavior of the memory manager without concern
for memory. The resulting model is that of an object manager which is presented in the
sections which follow.

5.3 Informal Description of the Object Manager

At the heart of the matter is the definition of an object. An object is an entity whi<h contains
data. Two kinds of data are of concen:: values and references®. A reference is a link which
relates one object to another. Any other data that is not used as a reference is a value.
Without loss of generality, we assume that an cbject contains a single value and an ordered
collection of zero or more references.

The purpose of the object manager is to permit an application to construct arbitrary
labeled and ordered multidigraphs — a multidigraph is a directed multigraph [Roberts84)
— without concern for memory management issues. We will use the term graph to mean
labeled and ordered multidigraph. Each vertex in the graph corresponds to an object and the

* At this level of abstraction we avoid the use of the term *pointer’ ar ase the term ‘reference’ instead.

-15-

vertex label corresponds to the value contained in the object. An arc exists from an object A
to an object B if and only if A contains = reference to B.

The object manager does not permit the direct manipulation of references. Instead it
provides operations that permit the manipulation of an ordered collection of rooted
subgraphs called the reference stack.

To summarize, the object manager maintains a graph which is constructed, altered and
inspected by the intermediary of a reference stack. The object manager provides the
following operations:

1. Push onto the reference stack:
(a) by creating a new objec*
(b) a reference already on the stack
(c) a reference contained within another object.
2. Pop the reference stack.
3. Change the contents of the reference stack by assigning a reference from one
location in the stack to another.
4. Change
(a) the value of or
(b) a reference contained in an object.
5. Get the value of an object.
6. Get the number of references contained in an object.
7. Compare references for equality.

5.4 Formal Specification of the Object Manager
5.4.1 Objects

An object contains a value and an ordered collection of zero or more references. The object
manager specification can be expressed independently of the representation of the values or
references contained in objects. We therefore assume that we are given two sets named
VALUE(and REFERENCE o which represent the set of all values and the set of all
references, respectively, which an object can contain. In Z, sets like these are -alled given

-16 -

sets (or basic types) and they are introduced into a specification by listing their names in
between sc.are brackets.

[VALUEQ, REFERENCE()

By the following schema we define an obje.i as containing two components: a value and a
sequence of references.

OBJECT
value : VALUEQ

next : seq REFERENCE(

When used as an expression, the schema name OBJECT represents the schema type
OBJECT which is the set of bindings which have two components named value (of type
VALUE() and next (of type seq REFERENCE(). Bindings can be thought of as the values
of Pascal-like record types. If b is a binding of the schema type OBJECT then b.value
denotes the value of its value component and b.next denotes the value of its next
component.

5.4.2 The Object Manager State Space

The object manager will maintain a reference stack (represented by a sequence of
references) and a graph (represented by a partial function from references to objects).
Given a reference r, if the object referenced by r contains a reference s, then we say that s
is a next of kin of r. The object manager state space is defined by the schema OBJ_MaN:

__OBJ_MAN
m : REFERENCE(Q -+> OBJECT

stack : seq REFERENCE(

Next_of_kin : REFERENCE(Q > REFERENCE(

Next_of_kin* {ran stack) ¢ dom m
V r,s : REFERENCE) °* Next_of kin(r,s) &

{r,s} cdommA s € ran (m r).next

-17 -

A schema has two parts: a declaration part which is above the dividing line and a predicate
part which is below the dividing line. The declaration part contains the declaration of one or
more identifiers. The predicate part contains zero or more predicates separated by
semicolouis or line breaks. The predicates describe a property of the declared variables of
the schema. For schemas representing a system state space, this property is called the
system state invariant. If the predicate part is empty then the property is considered true,
by convention.

The expression REFERENCEQ -+> OBJECT denotes the sctof all partial functions
of references into objects. In the schema OBJ_MAN the variable m is declared to be one of
these partial functions. The expression REFERENCE(Q ¢ REFERENCE(denotes the set
of all binary relations over references. Next_of_ kinis declared to be arelation over
references.

We say that a reference r is activeif r is on the stack or if r is the next of kin of an
active reference. An object referred to by an active reference is called an active object. The
expression Next_of_kin™ denotes the reflexive-transitive closure of Next_of_kin. If
R is a relation between X and Y and S is a subset of X, then the relational image of S
through R is the set of all y’s related by R to some x in S and is denoted by R {(S) . Thus,
Next_of kin™ (ran stack) is the set of active references. The first predicate of the
schema OBJ_MAN constrains the partial function m to be defined over at least the set of
active references.

As part of the object manager specification we must identify the initial states of the
system. This is accomplished by the schema InitOBJ_MAN.

__InitOBJ_MAN
OBJ_MAN

stack = ()

The initial states of the system have an empty reference stack and hence contain no active
objects.

-18-

5.4.3 Object Manager Operations

To create a new object one must specify the value it will contain and the objects it will be
related to (that is, its next of kin). The operation Push_new creates a new object and
pushes the reference to this object onto the refererce stack.

Push new
AOBJ_MAN
value? : VALUEg

next? : seq(INDEX v {0})

ran next? ¢ dom stack v {0}
J r : REFERENCEg \ (dom m)
stack! = (r) * stack A
m/’ =m&® {(r|-» | OBJECT |
value = value? A

next = stack’/ ¢ succ ° next?}

The next of kin of the object to be created are identified by their position (or index) in the
reference stack. The set INDEX is defined as an abbreviation for the domain of sequences,
that is, the set of natural numbers — see appendix A.

The schema AOBJ_MAN in the declaration section alerts us to the fact tiiat the
Push_neuw operation changes the object manager state. This A-schema introduces the
identifiers m, st ack,Next_of _kin,m’, stack’,and Next_of_kin’. The first
three identifiers are observations of the object manager state before the Push_new
operation and the last three are observations of the object manager state after the operation.
Both sets of identificrs are constrained to satisfy the object manager state invariant. It is a
convention in Z to decorate input variables names with a question mark.

In Z, relations are modeled by their graphs. That is, arelation is represented by a set of
ordered pairs. A function is a special kind of relation which relates each element in its
domain to a single clement in its range. The set { (1, 2), (2, 3), (3, 4)}
represents a function — it is a subset of the successor function — and can also be denoted
as{l|— 2, 2|> 3, 3|2 4}. Theexpression x |- yis called a maplet and itis an

-19-

abbreviation for the ordered pair (x,y). A sequence is modeled by partial function from
the set of positive integers into an element set. The function presented above is a sequence
and can be written as (2, 3, 4). The symbol ‘~’ is the infix operator for sequence
concatenation. The domain (dom) and range (ran) of a sequence are the set of indices over
which it is defined and the set of elements it contains, respectively. Thus dom{2, 3, 4)
= {1, 2, 3)and ran{2, 3, 4) = {2, 3, 4).

If £ and g are functior then the expression f @ g is a function which has as domain
the union of the dom: ins of £ and g. Over the elements in the domain of g, £ @ g has the
same value as g. Over the elements in the domain of £ that are not in the domainof g, £ ®
g has the same value as £. Therefore the predicate m’ = m@® (r |- cki) says that the
ranetion m’ has as domain (dom m) U {r}. For eacn clement s in this domain, m’ (s)
isobjif s =r andm(s) otherwise. The expression @ OBJECT | value = VA
next = n denotes the unique binding of the schema type OBJECT whose value
component is equal to v and whose next component is equal to n. Finally, the symbol ‘\’
is the set difference operator and ‘o’ denotes the functional composition operator.

The following operation pushes a reference to an object that already exists. The
reference must be somewi ~re in the reference stack. ‘which?’ is the stack index of this
reference.

Push old
— |
AOBJ_MAN
which? : INDEX

which? € dom stack
stack’ = (stack which?) ~ stack

m’ =m

If £ is a function then £ (x) and £ x both denote the function £ applied to an argument
x. The expression f (x) actually dencies the application of the function £ to the argument
(x) and (x) issimply x.

The Push_kin operation pushes « reference which is the next of kin of a reference in
the reference stack. If an object has next of kin, then each of its next of kin has a specific

-20-

position in the sequence of references next, contained in the object. The kinship of a next
of kin is the index of the next of kin in the sequence next.

__Push_kin
AOBJ_MAN
which?, kinship? : INDEX

which? € dom stack
kinship? € dom (m(stack which?)).next
stack’ = {(m(stack which?)).next kinship?) * stack

m' =m

The Pop operation is used to remove the top-most reference from the reference stack.
The empty sequence is denoted by (). If a sequence is not empty then its head is the first

element of the sequence and its zail is the sequence that results when the head is removed.

Pop
AOBJ_MAN

stack # ()
stack’ = tail stack

m Cm

The followirg operation is used to assign a reference from ornie location (from?) in the
reference stack to another location (to?).

-21-

__Assign
AOBJ_MAN
from?, to? : INDEX

from? # to?
{from?, to?} ¢ dom stack
stack’! = stack @ (to? | stack from?}

m' = m

Given the index (which?) of a reference in the reference stack and a value (value?),
the operation Change _value changes the value of the object referenced by stack
which? to value?.

__Change_value
AOBJ_MAN
which? : INDEX
value? : VALUEQ

which? € dom stack

m =m @ {stack which? |- B OBJECT |
value = value? A
next = (m(stack which?)).next]}

stack’ = stack

The Change_kin operation is used to change a next of kin of an object. To make the
operation specification more readable we introduce the local variable obj as a shorthand
for m(stack which?).

-22.

__Change_kin
AOBJ_MAN
which?, kinship?, new_kin? : INDEX
obj : OBJECT

{which?, new_kin?) ¢ dom stack
odbj = m(stack which?)
kinship? € dom obj.next
m’ =m ® (stack which? {- B OBJECT |
value = obj.value A
next = obj.next @
{kinship? |- stack new_kin?}}

The Get_value operation is used to extract the value contained within an object. The
Z convention is to decorate output variable names with an exclamation mark.

Get_value

Z0BJ_MAN
which? : INDEX
value! : VALUEQ

which? € dom stack

value! = m(stack which?)).value

The Get_num_kin operation is used to obtain the number of kin that an object has.

__Get_num kin
Z0BJ_MAN
which? : INDEX

num kin! : N

which? € dom stack

num kin! = #(m(stack which?)) .next)

-23.

The Compare operation is used to compare two references on the reference stack for
equality. The result of the operation is of type COMPARISON which consists of the finite
set {Same, Different}.

COMPARISON ::= Same | Different

Compare
[
=0BJ_MAN
i?, 3? : INDEX
result! : COMPARISON

{i?, j?} € dom stack
stack i? = stack j? = result! = Same
stack i? # stack j? = result! = Different

It is important to notice that the manipulation of references is confined to the object
manager: none of the object manager operations accept references as input or return
references as output. It is this controlled use of references that permits a practical object
manager to be built. Since Push_new is the most difficult operation to implement,
subsequent development is concerned with the refinement of this operation.

-24.

6 A Memory Manager

In this section we present a series of specifications. Each specification builds upon the
previous one and gradually introduces a memory manager which will satisfy the object
manager specifications. The sequel does not contain proofs of correctness. Instead the
specifications are carefully derived — a method that is called design by decomposition
[Jones86) — and emphasis is placed on proving properties of the specifications.

Section 6.1 presents basic concepts and terminology for the formalization of memory
and the most elementary specification of the memory manager state space. Section 6.2
builds upon the specifications of section 6.1 by introducing the concepts of active and
inactive memory which leads to a more detailed specification of a memory manager state
and the definition of an allocation operation. Section 6.3 introduces free and garbage
memory as two kinds of inactive memory. This permits allocation to be decomposed into
three separate steps: allocation from free memory, garbage collection, and compaction of
free memory. The operation of ‘allocation from free memory’ is refined in section 6.4.

6.1 Formalizing Memory

A memory manager controls the use of memory. Thus, our first objective is to describe
what memory is. We provide an abstract model of memory which has those properties
which are of interest to us in the description of the memory manger.

Memory is modeled by a finite partial function. The domain of the function is a set of
elements called references. We have chosen to represent references by natural numbers.

REFERENCE == N

The paragraph above introduces the identifier REFERENCE into the specification as an
abbreviation for the set of natural numbers (N). References are mapped into elements called
nodes. A node contains a value and an ordered collection of zero or more references.

{VALUE]
NODE # ([value : VALUE; next : seq REFERENCE]

The form of the values contained in nodes is unimportant, hence VALUE is introduced as a
basic type. The definition of the schema NODE is an example of the use of the horizontal
form for schema definitions. Like OBJECT, NODE is defined to have the two components
named value and next.

MEMORY == REFERENCE ~+-> NODE

The identifier MEMORY is used as an abbreviation for the set of finite partial functions from
references into nodes.

If ris areference, n is a node and m is a memory such that m r = n then we say nis
the node referenced by r under m. A reference is valid with respect to a given memory if

and only if it is in the domain of the memory.

valid_reference : MEMORY ¢» REFERENCE

l valid reference(mem, ref) & ref € dom mem

It will be convenient to have a type which groups together a reference and a memory
such that the reference is valid with respect to the memory. The following schema will
serve this purpose.

REF

mem : MEMORY

ref : REFERENCE

valid_ reference (mem, ref)

If r is a binding of type REF then we may say n is the node referenced by r when we
mean n is the node referenced by r . re £ under r . mem. The Z notation does not include
syntax for constants of schema types, hence we define a constructor function for bindings
of type REF.

-26-

mk_REF : MEMORY X REFERENCE -+> REF
node : REF — NODE

mk_REF = {REF * (mem, ref) |- OREF}

node r = r.mem r.ref

The use of the schema name REF inside the set expression is an abbreviation for the text of
the schema. Thus

{REF * (mem, ref) |9 6REF)} = {mem : MEMORY; ref : REFERENCE |
valid_reference (mem, ref) °* (mem, ref) |- OREF)

The expression OREF denotes a binding whose component values are taken from values of
the corresponding variables in the surrounding scope. Hence the binding mk_REF (m, r)

can also be expressed as |t REF | mem = m A ref = r,thatis, the unique binding
of type REF whose mem component is m and whose re £ component is r. ‘node r’ is
defined to be the node referenced by r.

A memory can be used to store only a finite number of nodes. This is because
memories are of finite size and each stored node occupies part of the available space. We
assume that every node has a unique positive integer as its size and that any two nodes
containing the same value and the same number of references have the same size. These
assumptions are captured by the following function.

size : NODE — N;

V ny,n, : NODE |
n;.value = ny.value A

#n,.next = #n,.next °

size n; = size n,

N denotes the set of positive integers. The predicate V x:T | P « Qis true if and only if
for all x of type T such that the predicate P is true, the predicate Q is also true. Thus
V x:T | P » Qis logically equivalent to V x: T » P = Q. Similarly the predicate 3 x: T
| P e Qis true if and only if there exists an x of type T such that P and Q hold. This
predicate is equivalentto I x: TP A Q.

-27-

The memory space occupied by a node will be represented by an interval of references
called a block. The lower bound and upper bound of a block are the smallest and largest
values of the interval, respectively. The set of blocks is BLOCK and the set of nonempty
blocks is BLOCK1.

BLOCK, BLOCK1 : P (P REFERENCE)

BLOCK = {r,s : REFERENCE + r..s)
BLOCK1 = BLOCK\ (D}

P x denotes the power set of X. If a and b are integers then a .. b is the set of all
integers betweer o and b inclusive.

Given a binding r of type REF, we define the block (of memory) occupied by the node
referenced by r to be the interval r.ref .. (r.ref +size (noder) -1). The
function b1ock maps bindings of type REF to their blocks and the functions 1ower and
upper map bindings of type REF to the lower bound and upper bound of their blocks,
respectively.

block : REF — BLOCK1
lower, upper : REF — REFERENCE

block r = lower r .. upper r

lower r = r.ref

upper r = lower r + size(node r) - 1

Two bindings of type REF are said to share memory if their blocks overlap.

share : REF & REF

I share(r,s) & block r N block s # @

Two bindings of type REF are said to be adjacent if their blocks are side-by-side.

.28 -

adjacent : REF & REF

adjacent (r,s) <«
-+share(r,s) A
block r U block s € BLOCK1

The functions block, 1ower, and upper and the relations share and adjacent
accept arguments of type REF. Recall that a binding of type REF has as components a
reference and a memory over which the reference is valid. As part of the schema describing
the memory manager state space (to be defined below) there will be a memory represented
by the variable mem. In most situations (e.g. when defining memory manager operations or
in lemmas and proofs), bindings of type REF will be used as arguments to the above
mentioned functions and relations, and we will want the memory component of the
bindings to be equal to mem. Hence we define the schema MEM which has as components a
memory called mem and functions and relations (corresponding to block, etc.) which
accept arguments of type REFERENCE.

MEM

mem : MEMORY

Block : REFERENCE -+> BLOCK1

Lower, Upper : REFERENCE -+> REFERENCE
Size : REFERENCE —-+> N;

Share : REFERENCE ¢« REFERENCE
Adjacent : REFERENCE ¢ REFERENCE

dom Block = dom Lower = dom Upper = dom Size = dom mem
V r : REFERENCE °
Block r = block(mk_REF (mem,r)) A
Lower r = lower (mk_REF (mem,r)) A
Upper r = upper (mk REF (mem,r)) A
Size r = size(mem r)
V r,s : REFERENCE *
Share(r,s) ¢ share(mk_REF (mem,r}, mk REF (mem,s)) A
Adjacent (x,s) &

adjacent (mk_REF (mem, r), mk_REF (mem,s))

-29.

For example, B1ock maps a reference r, which is valid with respect to mem, into the
block occupied by the node referenced by r under mem. Block, Lower, and Upper are
partial functions since they are defined only over those references which are valid with
respect to mem — that is, they are defined over the domain of mem. The schema MEMisa
key schema of this section and those that follow. Lemma MEM 1 in Appendix B identifies
expected properties of the functions and relations defined in MEM: for example, Block r =
Lowerr .. Upperr.

6.1.1 The State Space

In the first description of the memory manager state space the following observations are
captured:

1. The content of memory depends on an interpretation. The interpretation (meaning)
function is mem. It identifies which refercnces are valid and which nodes are related

to the valid references.

2. Memory is finite. The variable memory_z represents the size of memory and mem
is a finite partial function.

3. Memory consists of one block. The block is represented by the variable
mem_block. The bounds of the block are given by the variables 1lower_bound

and upper_bound.

4. For every node, the block occupied by the node is completely contained within the
memory bounds.

5. No two nodes can share memory.

The state space schema is MM:

-30 -

MM

MEM

memory z : N,
lower_bound, uppex_bound : REFERENCE
mem block : BLOCK

upper_bound = lower bound + memory z - 1
mem block = lower_bound .. upper_bcund
dom mem ¢ mem block

V r : dom mem ¢ Block r ¢ mem block

V r,s : dommem | r#s * —Share(r,s)

Let S and T be schemas such that T includes the schema name S in its declaration
section. This has the same effect on the declaration section of T as textually including the
declaraticns of S in T. The property of T is the conjunction of the predicates in S and T.
Thus, the schema MM implicitly declares components Block, Lower, etc and their
behavior is described by the property of the schema MEM.

In initializing the memory manager we are presently only concerned with assigning a
definite value to the memory block.

_InitMM
MM

memory_z? : N,

lower_bound? : REFERENCE

memory z = memory_z?

lower_bound = lower_ bound?

6.1.2 Properties

One of the advantages of formal notations is that we can ask precise questions ar.d (in most
cases) get precise answers. In this section we present properties — and their proofs — of
the functions defined above and of the formalization of the memory manager given so far.

-31-

There is a large gap between a concept and a statement which is meant to express the
concept. It is for this reason that it is important to state properties of a specification which
are expected to be true and to prove them. By proving properties of a specification we can
increase our confidence in its correctness: proofs are an indispensable validation tool.

It would seem obvious, for example, that the size of the block occupied by a node
should be the same as the size of the node because this corresponds to our intuitive
understanding of a node’s size. Thus the following property — stated formally as a lemma
— should be true:

Lemma Block_size.
V r : REF * #(block r) = size(node r)
Proof
Let r be a binding of type REF — thatis, r : REF.
1. 1 S size(node r) [ran size = N;]
2. lowezr r £ lower r + size(node r) - 1 (1,arithmetic)
3. lower r < upper r [2,definition of upper]
4, #(lower r .. upper r)
= upper r - lower r + 1 [3,property of _.._]
5. = lower r + size(node r) - 1 - lower r + 1 [def’n of upper]
= size(node r) [arithmetic]
#(block r) = size(node r) [6,def’n block]
QED

The given proofs are rigorous rather than formal. Proof lines are followed by comments in
brackets which justify them. If a proof line is dependent on another, then the line number
of the latter will be part of the comments which justify the former.

The above lemma confirms the relationship that should exist between the functions
block and size. Corollary Block_size demonstrates that the same relationship holds
between the corresponding functions Block and Size.

Corollary Block_size.
MEM |- V ref : REFERENCE | valid_reference (mem, ref) °
#(Block ref) = Size ref

-32-

Proof

Assume MEM; ref : REFERENCE | valid reference (mem, ref).

valid reference (mem, ref)

= ref € dom mem (def’n valid reference]
= dom Block [MEM]
= dom Size (MEM]

Thus Block ref and Size ref are well-defined expressions.

(Block ref)

= #{block mk_REF (mem, ref)) [MEM)

= size (node mk_REF (mem, ref)) {Lerma Block_size)

= gize (mem ref) [def’n node, mk_REF]

= Size ref [MEM)
QED

As was mentioned in section 4, it is possible for an expression to be undefined and hence
for a predicate to be undetermined — i.e. have an unknown truth value. As is demonstrated

in the proof above, care must be taken when writing proofs to insure that expressions are
well defined.

The following lemma confirms that the size of the memory block is equal to the
memory size.

Lemma Mem block_z.

MM |- #mem block = memory_ z

Proof
memory_z 2 1 {MM]
= 0 €< memoxry_z - 1 (azith.)
= lower_bound £ lower_ bound + memory_z - 1 {arith.]
=> lower_bound § upper_bound [def’n upper_bound]

=> #(lower_bound. .upper_bound)

= upper_bound - lower_bound + 1 {property of _.._]

= memory_ = [def’n of memory_z]

-33-

=> #mem_block = memory 2z [def'n of mem block]
QED

A property which will be used often in subsequent proofs is that fact that the function
Block is injective. The expression REFERENCE >+> BLOCK1 is the set of partial
injections from references into nonempty blocks.

Lemma Block_injective.
MEM |- Bloch € REFERENCE >+> BLOCK1

The notation ‘p.116#9’ used .n the proof of lemma Block_injective indicates that the ninth
‘law’ on page 116 of [Spivey89] is used to justify the proof line. A collection of ‘laws’,
such as the one found in [Spivey89] was found to be very helpful in the development of
proofs. Some lemmas used in this section are given in Appendix B.

Proof of Lemma Block_injective.
Block € REFERENCE >+> BLOCK1l
=
Block € REFEREKCE =+> BLOCK1 A
1, V r,s : dom Blcck » Block r = Block 8 = r = 3 [def’n >+>]

Since MEM |- Block € REFERENCE -+> BLOCK1
we need only prove the other conjunct (1).

2. Assume r,s : dom Block | Block r = Block s

ran Block ¢ P, Z = dom min so hat min(Block r) and min(Block s) are

well defined. Therefore,

min(Block r) = min(Block 3) (2]

= min(Lower r .. Upper r) = min(Lower 8 .. Upper s){def’n Block]

=> Lower r = Lower 8 [property of min:p.116#9]

= r =3 [property of Lower:Lemma Mk "_1]
QED

-34-

The inverse of an injective function is also injective. The relational inverse of Block is
Block~.

Corollary Block_injective.

MEM |- Block~ € BLOCKl1 >+> REFERENCE (p.109410)

An important property to be verified is that no two distinct blocks in memory can
overlap. The predicate disjoint_sets S (see Appendix A), which is used in the next
lemma, holds if and only if all pairs of distinct elements of S are mutually disjoint sets.

Lexma Disjoint_Blocks.
MM |-V s : P(dom mem) * disjoint_sets(Block{S))
Proof

1. Let S : P(dom mem),thatis, S ¢ dom mem.

disjoint_sets(Block(S)) <«

2. V b,c : Block(S) | b#tc * bnc =@ (def’n disjoint_sets]
Thus we prove (2).

3. Assume b,c : Block(S) | b # c.

4, Since {b,c} < ran Block = dom Block~,

Block~ b and Block~ c are well uefined.

5. Block~ is an injective function. [corollary Block_iujective]
6. b#c [3]
7. Block~ b # Block~ ¢ {5,6]
8. ran Block~ = dom Block = dom mem,
so Block~ b and Block~ c areelements of dom mem

9. V r,s : dom mem | r#s ¢ -Share(r,s) [MM]
10.] =Share(Block~ b, Block~ c) (7,8,9]
11.] =(Block(Block~ b) N Block(Block~ c) # @) (10, Lemma MEM_1)
12.] Block(Block~ b) N Block(Block~ c) = @ [11)
13. (Block © Block~) b N (Block © Block~) c = @ [12, p.9747]
14, Block © Block~ = id(ran Block) [p.1054#1)
15.] id(ran Block) b N id(ran Block) ¢ = @ (13, 14)
16] bnNnc=0 [15]

QED

-35-

e

el er

et 2l o

As an immediate corollary we have:

Corollary Disjoint_Blocks.
MM |- disjoint_sets (Block {(dom mem))

We next verify that all blocks in memory are contained within the memory block.

lemna Mem block_contains_blocks.
MM | U(Block(dom mem)) < mem block
Prooft

Assume b : Block{dom mem)

Block~ is a function, [corollary Block_injective]
b € ran Block = dom Block~ thus [property of ~]
Block~ b is well defined and

ran Block~ = dom Block = dom mem [MEM)
V r : dom mem * Block r ¢ mem _block [(MM]

thus in particular for Block~ b = dom mem we have
Block (Block~ b) ¢ mem blc¢nk
= (Block o Block~) b
= jd(ran Block) b [p.105#1]
= b
< mem _block

Therefore V b : Block {dom mem) ¢ b ¢ mem block

hence U(Block (dom mem)) ¢ mem block [p.94#5)
QED

6.2 Formalizing Allocation
We build upon the specification of the previous section and define a new state space

schema for a memory manager. By introducing the concepts of active and inactive memory
into the specification, it is possible to express a memory allocation operation.

-36-

Inspired by the discussion of section 5.1, we identify two kinds of memory: active and
inactive memory. Active memory is the memory that is currently in use. Inactive memory is
the rest of memory. For any given memory mem, we define active to be the set of active
references, active_r to be active memory, and active_z to be the size of active
memory.

__Active
MEM

active,
active_r : P REFERENCE

active_z : N

active ¢ dom mem
active_r = U(Block {active))

active_z = #active_r

If s is a set of sets then US is the union of the sets contains in S. If S is empty then so is
Us.

For any given memory mem, we define inact ive to be the set of inactive references,
inactive_r to be inactive memory, and inactive_z to be the size of inactive
memory.

__Inactive

MEM

inactive,
inactive_r : P RERERENCE

inactive_z : N

inactive € dom mem
inactive_r = U(Block(inactive))

inactive_z = #inactive_r

-37-

Guided by the definition of next of kin in section 5.4.2, we define the following. Given
a memory m and a reference r which is valid with respect to m, if the node referenced by r
under m contains a reference s which is also valid with respect to m, then we say s is a next

of kinof r.

next_of_kin : MEMORY — REFERENCE ¢> REFERENCE

next_of kin mem (r,s) <«

tr, 8} & dom mem A

s € ran (mem r) .next

The relatives of a reference r are its next of kin, and the next of kin of its next of kin, etc.
A reference r is said to be related to a reference s if s is arelative of r.

related : MEMORY -» REFERENCE > REFERENCE
relatives : MEMORY -—» REFERENCE — P REFERENCE

V mem : MEMORY -

related mem = (next_of_kin mem)* A
V r : REFERENCE °

relatives mem r = (related mem) ({r})

The relation. Next_of_kin and Related behave like next_of_kin and related
respectively except that the former use the memory mem defined in scope.

MEM1

MEM

Next_of_kin : REFERENCE ¢ REFERENCE
Related : REFERENCE & REFERENCE

Next_of kin = next_of_kin mem

Related = related mem

-38-

6.2.1 The State Space

Observations captured by the formulation of the memory manager state space presented in
this section are:

1. The active references are the references on the reference stack and their relatives.

2. Every valid reference (with respect to mem) is either an active reference or an
inactive reference (but not both).

3. Active memory and inactive memory accounts for all of memory.
The new state space schema is MM1:

MM1

)

MEM1
MM

Active
Inactive

roots : seq REFERENCE

active = (Next_of_kin*) (ran roots)
{(active, inactive) partition dom mem (1)

active_z + inactive_z = memory =z (2)

A reference on the reference stack can be thought of as a root of a connected component of
the graph represented by the memory mem. Thus the reference stack has been named
roots. Notice that act ive could have been defined as

| active = ran roots U Related{ran roots)

The predicates (1) and (2) of MM1 are independent — there exist situations in which
only one of the predicates is satisfied. Both predicates are necessary to ensure that the third
observation mentioned above is respected.

-39.

. L AR AT b— £ e o At w

Initial memory manager states have no active memory since the reference stack is
empty.

__InitMMl
InitMM

roots = ()

The state change schema AMM1 is made more strict than is usual for a A-schema: the
operations which change the memory manager state can not resize or move the memory
block.

AMM1

S

MM1
MM1'’

mem_block’ = mem_ block

The EMM1 schema has its usual definition:

=MM1
—
AMM1

6MM1 = OMM1‘

6.2.2 The Allocation Operation

It is now possible to define an allocation operation which behaves like the Push_new
object manager operation. As a first step towards this goal we define the schema
Allocate0.Let R be a relation and S a set then S <|R is the largest subrelation of R
whose domain is contained in S. ‘<[’ is the domain restriction operator.

__Allocate0
AMM1
value? : VALUE

next? : seq(INDEX U {0})
ref : REFERENCE

ran next? ¢ (dom roots) U {0}

ref ¢ active

roots’ = (ref) * roots

(active’\{ref} < mem’) = (active <] mem)
mem’ ref = U NODE |

value = v? A next = roots’ © succ 9 next?

The memory which was active before the A1l1ocate0 operation is not affected by the
operation. Therefore, due to fragmentation of the memory space, Allocate0 may fail
even though the total amount of inactive memory exceeds the amount needed for allocation.
In situations where fragmentation occurs it may be possible to satisfy the allocation request
if nodes are moved.

Since the use of references is confined to the memory manager, it is possible to change
systematically the references in the memory manager without any perceptible effect to the
memory manager state from the point of view of a system using the memory manager. Our
choice of a graph as an abstraction for active memory provides a simple way to formalize
this: two memories are equivalent if the graphs they represent are isomorphic. If A and B
are sets then A >->> B denotes the set of all bijections from A into B.

equiv_mem : MEMORY ¢ MEMORY

equiv_mem (m,,m;) <
3 £ : REFERENCE >->> REFERENCE |
fe domm >>> domm, *
Vr:domm -

(m; r).value = (m, (f r)).value A

£ ° (m r).next = (m, (f r)).next

-41-

If a reference is considered as a root to a connected component of a graph, then we may
say that two references are equivalent if the subgraphs they identify are equivalent.

equiv_ref : (MEMORY X REFERENCE) ¢ (MEMORY X REFERENCE)

equiv_ref((memr, r), (mems, s)) &

equiv_mem(relatives memr r <| memr,

relatives mems s <| mems)

Memory manager states MM1 and MM1’ are equivalent if they have the same number of
(references to) rooted subgraphs on the reference stack and if the corresponding subgraphs
are equivalent.

EQUIV_ACTIVE
— -
AMM1

#roots’ = #roots
V 1 : dom roots ¢

equiv_ref ((mem, roots i), (mem’, roots’ i))

We now define an operation Allocate_MM1 which first does allocation like
Allocate0. If Allocate0 fails, the memory manager relocates active blocks and then
tries Allocate0 again.

Allocatel & AllocateO\ (ref)
Allocate MM1 & Allocatel v (EQUIV_ACTIVE ; Allocatel)

The operation Allocate_MM1 corresponds to the object manager operation Push_new.
Allocation is the most difficult operation to implement. Memory manager operations
corresponding to the other object manager operations can be easily derived and are omitted.

6.2.3 Properties

The proof of Allocatel |- active_z’ =active_z + Size’ ref >active_z
helped us discover that ref € active is a necessary precondition to Allocate0.

-42-

This is an example of how proving apparently trivial properties is a vital part of
specification validation.

Ramark Active_inactive_r_ 1.

Recall that
active_r = U(Block{active)) and [Active)
inactive_r = U(Block (inactive)) (Inactive)

Hence by lemma Partition_vnion_block (in Appendix B),
(active_r, inactive_r) partition U (Block (active U inactive))
Under MM1, active and inactive partition dom mem,
hence active U inactive = dom mem. Therefore
(active_r, inactive_r) partition U(Block (dom mem))
hence also

#active_r + #inactive_r = #U(Block(dom mem))
End

Although we might expect U (Block (dom mem)) = mem_b1lock, this is not
immediately obvious. In particular, the next lemma — which proves a slightly more general
property — shows that this equality depends on predicate (2) in the memory manager state
schema MM1 of section 6.2.1.

Lemma Partition_mem block.
MM1 |- Block (dom mem) partitions mem block
Proof
1. Elements of Block {dom mem) are . ..joint. This follows from lemma Disjoint_Blocks.
2. Next we must show that
U(Block {dom mem)) = mem block.
It has already been established that
U(Block (dom mem)) < mem_block
(by lemma Mem_block_contains_blocks). To prove equality it is sufficient to show that
(U (Block (dom mem))) = #mem block
#mem_block

= memory z [Lemma Mem block_z]

= active_z + inactive_z (MM1]

-43-

= factive_r + #inactive_r [def’'n a_z]

= % (U(Block (dom mem))) [Remark Active_inactive_r_1]
QED

As was claimed above, active and inactive memory account for all of memory.

Lemma Active_inactive_r_partition.
MM1 | (active_r, inactive_r) partition mem block
Proof

(active_r, inactive_r) partition

U (Block {dom mem)) [Remark Active_inactive_r_1)
U(Block {dom mem)) = mem block [Lemma Partition_mem block]
(active_r, inactive_r) partition mem_block [1,2]

QED

We next show that equiv_memis an equivalence relation.

A U s W N

10.

Lemma Equivalence_of_equiv_mem,
equiv_mem is an equivalence relation.

Proof

Reflexivi

Let m : MEMORY and
f = id REFFRENCE
f € REFERENCE >->> REFERENCE [3,p.109%2]
dom m ¢ REFERENCE

f e domm >>> domm {4,5]

Let r : dom m then

(m r).value = {(m (f r)).value [3]

f o (m r).next
= (m r).next [p.97#5]
= (m (f r)).next [3]

Thus equiv_mem(m, m).

11.

12,
13.

14.

15.

l6.

17.

18.

19.

20.

21.

22,

Symmeiry

Assume my, m, : MEMORY | equiv_mem(m;, m,)

3 £ : REFERENCE >~>> REFERENCE |

Vr:domm-e

(m r).value = (m; (f r)).value A

f e domm >>> dommy *

fo (m r).next = (m (f r)).next {12}
We must show that
3 g : REFERENCE >->> REFERENCE | g € dom m; >->> dom m; *
Vr:domm *
(m; r).value = (m; (g r)).value A
go (mp r).next = (my (g r)).next [12)

We will do so by assuming that there exists a bijection £ satisfying the quantified predicate [13].

Let g = f£~, Since fis a bijection,
g € REFERENCE >->> REFERENCE
g € dom m, >->> dom m

Let r : dom m,.

(m; r).value

= (m, (id REFERENCE r)).value
= (m, ({f © £~) 1)) .value

= (m; (f (g r))).value

= (m; (g r)).value

(m (g r)).next
= jd REFERENCE ¢ (m; (g r)).next

(f~ © £) © (m (g r)).next

g © (f 9 (m (g r)).next

g ° (m (f (g r))).next

g ©° (m ((£° £f~) r)).next

g 9 (mp, r).next

Thus equiv_mem(m;, my).

Transitivi

-45-

[15)

(15]

[(p.107#2]

(13)

[p.9745]

{p.10742)
[assocliativity of 9]
[13]

[p.10745])

23. Assume m;, my, my : MEMORY | equiv_mem(m;, m,) A equiv_mem (m;, m;)
24. 3 £ : REFERENCE >->> REFERENCE | £ € dom m; >->> domm;, «
Vr: domm «

{m; r) .value = (m;, (f r)).value A

£fo(m r).next = (m (f r)).next [23]

25. dg REFERENCE >->> REFERENCE | g € dom m, >->> domm; e«
Vr: domm *
(m; r) .value = (m; (g x)).value A
g (my; r).next = (m; (g r)).next [23]
26.] We must show that
27, 3 h : REFERENCE >->> REFERENCE | h € dom m; >->> domm; °
Vr: domm «
{m; r) .value = (m; (h 1)).value A
ho(m r).next = (m;y (h r)).next
We will do so by assuming that there exists bijections £ and g satisfying the quantified predicates
[24] and (25).

28. Let h = g © £ then
29. h € REFERENCE >->> REFERENCE [28]

30. h € dom m; >~>> dom m, [28]

Let r : dom m,.

31. {m3 (h r)).value
= (m3 ((g ° £) r)).value (28]
= (my (g (f r))).value [p.97%#7)
= (m; (f r)).value [25]
= (m; r).value [24]

32. h ¢ (m; r).next

= (g © £) © (m r).next [28]
=g @ (f° (m r).next) Jassociativity of ©]
=g o (m (f r)).next {24]
= (m3y (g (f xr))).next (25]
= (m3 ((g ® £f) r)).next [associativity of)
= (m3 (h r)).next (28]

- 46-

33, Thus equiv_mem(ml, m3).
QED

6.3 Refining Allocation

In the previous section we noted that it may be n¢ . ~ssary to move nodes in memory in
order to be able to satisfy an allocation request. In this section we refine the allocation
operation by defining when and how nodes will be moved in memory.

Again, following the discussion of section 5.1, we identify two kinds of inactive
memory: free and garbage memory. Free memory is the inactive memory which is readily
available for allocation. Garbage memory is the rest of inactive memory. Intuitively,
garbage is memory that has been active, is no longer active, but has not yet been reclaimcd.
For any given memory mem, we define £ree to be the set of references to free nodes,
free_x to be free memory, and £ree_z to be the size of free memory. Notice that there
is a special constraint on free nodes: no two distinct free nodes can be adjacent.

Free
MEM

free,
free_r : P REFERENCE

free z : N

free C dom mem
free_r = U(Block (free))
free_z = #free_ r

V r,3 : free | r#s * —Adjacent(r,s)

Given any memory mem, garbage is the set of references to garbage nodes, garbage_r
is garbage memory, and garbage_z is the size of garbage memory.

-47-

Garbage
—
MEM

garbage,
garbage_r : P REFERENCE
garbage_z : N

garbage ¢.dom mem
garbage_r = lUJ(Block {garbage))

garbage_z = #garbage_r

6.3.1 The State Space

The memory manger state MM2 expresses the fact that inactive memory is partitioned into
free and garbage memory.

MM2

—

MM1

Free

Garbage

(free, garbage) partition inactive

free_z + garbage_z = inactive_z

The initial states of the memory manager contain no garbage memory:

_ InitMM2
InitMMl

garbage = @

Since the initial memory manager states are also constrained not to have any active memory
(by the InitMM1 schema) this implies that all of memory is free memory.

-48 -

The state change schema AMM?2 still requires that the memory block remain unaltered:

6.3.

AMM2 & MM2 A MM2’ A AMM]

2 Allocation Revisited

Recall the proposed memory allocation strategy given in section 5.1:

1
2
3.
4

. Try to allocate space from the free memory.

. If step 1 fails then collect all garbage memory and try step 1 again.

If step 2 fails then compact the free memory into one block and try step 1 again
. If step 3 fails then allocation fails.

Step 1 is stated formally as the operation Alloc_free0. This operation extends
AllocateO by cnsuring that garbage memory is not affected by the operation.

Alloc_freel

Allocate(
AMM2

garbage’ = garbage

(garbage’ <} mem’) = (garbage <| mem)

The operation Col lect specifies garbage collection: it ensures that there is no garbage
memory after the operation is complete and that active memory is not asfected.

—

EQUAL_ACTIVE

AmMl

e

rcots’ = roots

{active’ < mem’) = (active <] mem)

-49-

__Collect

EQUAL_ACTIVE
AMM2

garbage’ = @

Given that there is no garbage memory, compaction consists of bringing all inactive
(free) memory into one block.

__Compact
EQUIV_ACTIVE
AMM2

garbage = J = garbage’
free_r’ € BLOCK

The memory allocation strategy described above is captured by the schema
Allocate_MM2.

Alloc_free & Alloc_freeO\ (ref)
Allocate MM2 # Alloc_free v
(Collect ; Alloc_free) Vv

(Collect ; Compact ; Alloc_free)
6.3.3 Properties

After allocation the 2mount of free memory must decrease by an amount equal to the size of
the allocated node.

Lemma Free_z_dec.

Alloc_free0 |- free_z' = free_z - Size’ ref

Under MM2 free and garbage memory constitute all of inactive memory.

-50-

Lemma Free_garbage r_partition.
MM2 |- (free_r, garbage_r) partition inactive_r

Proof

1 free N garbage = (MM2)
2, free_r = U(Block(free)) [Free)
3 garbage_r = U(Block{garbage)) (Garbage]
4. free U garbage = inactive [(MM2)
5. inactive_r = U(Block{inactive)) [Inactive)
6 inactive_r = U(Block(free U garbage)) [4,5])
7 (U (Block {free)), U(Block {garbage))) partition

U (Block {free U garbage)) [{Lemma Partition_union_block]
8. (free_r, garbage_r) partition inactive_r {2,3,6,7]

QED

The above result is needed for deriving a refinement for Alloc_free.

6.4 Refinement of Alloc_free

In this section we examine the consequences of the definition of Alloc_free and use
these to guide us in the formulation of a refinement for the operation. We begin by proving
that after allocation, the free memory prior to allocation is partitioned into the block that was
allocated and the free memory that is left.

Lemma Block_and_free_parition_free.
Alloc_free | (Block’ ref, free_r’) partition free_r
Prootf
Assume AMM2.
1. (active_r, inactive_r) partition mem block (M1, Lemma
Active_inactive_r_partition]
2. (free_r, garbage_r) partition inactive_r {MM2, Lemma
Free_garbage_r_partition]
3. (active_r, free_r, garbage r) partition mem block (1,2)
Similarly
4. (active_r’, free_r', garbage_r’) partition mem_block’
5. mem block’ = mem_block (AMM2])

-51-

6. free_r = mem _block \ active_ r \ garbage_r [3)

7. {iref}, active) partition active’ [Allocate0]
8. {(Block’ ref, active_r) partition

activo_x’ [7,Lemma Partition_union_block]
9. garbage’ = garbage [Alloc_free]
10. garbage r’ = garbage_ r [9,Garbage]

11, (Block’ ref, active_r, free_r’, garbage_r) partition

mem_block [(4,8,10]
12. (Block’ ref, free_r') partition

(mem _block \ active_r \ garbage_r) (11}

13. (Block’ ref, free_r'’) partition free r (6]
QED

No two distinct free blocks are adjacent, therefore if a block is allocated from free
memory it must be allocated from a single free block. If allocation succeeds then there must
be a free block whose size is equal to or larger than the size of the block to be allocated and
the reference to the allocated block will be contained in the free block. That is,

Alloc_freel |-
I f : free | Size £ 2 Size’ ref o
ref € Block £

If the size of the free block and the block to be allocated are equal then the reference to
the allocated block must be equal to the reference to the free block. Otherwise the allocated
block must be chosen as a subblock of the free block. Since we want to reduce
fragmentation we choose to divide the free block into two parts. If the allocated block does
not entirely consume the free block from which it is allocated, then under the
Alloc_free(0_1 schema, it will be allocated as either the first or the last part of the free
block.

-52-

r__Alloc_freeO__l
Alloc_£free0

3 £ : free | Size £ 2 Size’ ref -
(Size £ = Size’ ref =
ref = £f) A
(Size £ # Size’ ref =
(Block’ £, Block’ ref) partition Block £)

In the final refinement we include the effects of the allocation operation on £ree and
we (arbitrarily) choose, in those cases where the free block must be divided, to make the
allocated block the last part of the free block.

__Alloc_freel_ 2
Alloc_free0

3 f: free; z : Ny | z = Size £ ~ Size’ ref 2 0

(z=0 =

ref = £ A

free' = free\(f}) A
{(z# 0 =

ref = £ + z A
free! = free A

Size’ £ = z)

-53.

7 Conclusion

Whether formal or informal methods are used to develop software, experience shows
[Knuth89] that there will always be errors to discover and improvements to make to the
software product (as well as to the software development process).

Software may be correct without being valid, that is, without satisfying customer needs
or environmental constraints. It is accepted that it is inherently impossible to prove that a
system meets its informal requirements [Jones86). Thus, although we may someday be
able to produce correct software, we may never be quite sure whether the produced
software is valid.

Based on my experience with the development of the object manager, I suggest
improvements that could be made to the specifications and to the Z notation. Also discussed
are the possibility of reuse of the specifications and various extensions.

7.1 Immediate Improvements

Early in the specification of the memory manager the schema type REF is introduced. A
binding of type REF has as components a memory and a reference which is valid with
respect to the memory. The REF type allows us to define block, lower, and upper as
total functions and share and adjacent as relations. These functions and relations are
practically never used after the definitions of Block, Lower, etc in MEM. In fact, the
definitions of the components of MEM were motivated by the awkward statements that
resulted with the use of block, lower, upper, share and adjacent. Thus, in
retrospect, the specification would clearly be more readable and understandable if the type
REF was not introduced and if the global variables block, 1ower, etc were replaced by
the definitions in MEM.

A second improvement would involve significant modifications to the memory manager
specification. This change has been inspired from the object manager specification and
from my attempts at refining the operations Collect and Compact. Conceptually
memory is used for two different purposes. Most importantly, part of memory is used to
hold nodes which make up the graph that the object manager requires. The rest of memory
is the free pool out of which nodes are built. Let us call these two kinds of memory

allocated and free memory, respectively. Note that the use which is made of allocated
memory is independent of the manner in which free memory is managed. The use which is
made of allocated memory determines the structure of nodes and the manner in which free
memory is managed determines the structure of free memory blocks. Consequently,
memory is used for two different and independeni purposes and this fact should be
reflected in the memory manager model.

A possible solution would be to have two ‘memories’ as part of the memory manager
state space. These memories would be represented by partial functions from references into
nodes, but the node types would differ. The blocks belonging to these two memories
would still partition (and hence account for all of) the memory block.

The present formulation of the memory manager specification is certainly adequate for
pursuing with the refinements of the Collect and Compact operations but the resulting
refinements would be more readable and understandable if the specification were changed
as described above.

7.2 Extensions and Reuse

The object manager specification is in essence the requirements specification for the
memory manager, and section 6.1 is a collection of formal definitions of various concepts
relevant to memories. Thus, the specifications which precede section 6.2 are independent
of any particular allocation strategy and could be reused to describe other garbage collection
algorithms.

In the sections which follow we discuss a simple extension that could be made to the
memory manager specification and why the concept of alignment was not introduced into
the specification.

7.2.1 A Heterogeneous Memory Manager

Let us say a node is homogeneous with respect to a given memory if it contains only valid
references (with respect to the memory) and say it is heterogeneous otherwise. Formally

-55.-

homogeneous_node : MEMORY +» NODE

I homogeneous_iiode (mem, node) & ran node.next ¢ dom mem

We say a memory manager is homogeneous if it only permits the construction of
homogeneous nodes. Otherwise we say it is heterogeneous.

The memory manager presented in section 6 is homogeneous, but its specification has
been carefully designed to allow it to be easily made into a heterogeneous ;system. This is
possible because of the definitions of Act ive, next_of_kin and equiv_mem.

Care must be taken in making the change. In particular, one should not permit nodes to
contain references which are within the memory bounds and not valid with respect to the
memory. The reason for this is not that the resulting specification would be inconsistent but
that it would be impractical to implement.

Hence we introduce a set of references called special_refs. By changing the
definition of Active to the one of Hetero_active presented below, the resulting

memory manager is heterogeneous.

__Hetero_active

MM

special_refs,
active,
active_r : P REFERENCE

active_z : N

disjoint (special_refs, mem block)
active ¢ dom mem U special_refs
active_r = U(Block{active))

active_z = factive_r

Why a heterogencous memory manager is desirable becomes apparent when we
consider the use of special pointer values such as nil in Pascal or O (often denoted by
NULL) in C.

-56-

7.2.2 Memory Alignment

It is possible to incorporate the concept of alignment in the memory manager specification.
This can be done by constraining the ‘values’ which references may have. For example, the
addition of a single predicate to the MM schema ensures that nodes are aligned at even
boundaries.

MM with_alignment

MM

dom mem ¢ {r : mem block | (r mod 2) = 0}

This additional constraint implicitly imposes restrictions on the function size.

For the development of the BIAS memory manager I had decided to use C as
implementation language. It is possible to write portable C code which handles alignment
[Kernighan78]. Hence there was no need to complicate the specification with a concept that
can be handled (and should be left to) the implementation language.

7.3 Remarks about Z

The Z notation has proven to be both expressive and practical but there are certain aspects
of the notation which need to be improved.

Before one can consider the meaning of a Z specification one must verify that it is well
formed. In particular, for a specification to be well formed it must conform to the type rules
of the Z notation. The type rules are separate from the underlying mathematical logic. For
example, in V x:T ¢ P the variable x is declared to be of type T — that is, x is an
clement of the set T — but this is fype information and it is not part of the logical calculus.
Even though it may seem intuitively obvious that if x is of type T (x : T) then x must be an
clement of T (x € T), there are no inference rules in Z which permit us to make this
deduction. Hence separate ‘inference rules’ for types are necessary to permit reasoning
about types within predicates. As an example of what such a rule could be, consider:

-57-

VYV x:T » P
Vxx:T|x€T-e?P

These type ‘inference rules’ are an apparent omission from [Spivey89], the Z language
reference manual.

Z lacks a notation for defining specifications as separate modules that can be combined
and reused, like classes in object oriented languages, for example. To be practical it should
be possible to write generic specifications. A simple solution would be to view the basic
types of a specification as generic parameters. Given that a specification can be named, one
could subsequently instantiate it and the instantiation would bind the actual parameters to
the basic types. This simple scheme would not handle name clashes for which some
renaming mechanism would be required. If Z is to be applicable to large-scale development
then the notation will need to be adapted to allow for specifications to be built as separate
modules.

7.4 Further Work

Even if specifications are produced only during the first stages of software development,
the benefits will certainly be a clearer and more complete understanding of the problem to
be solved and of the solution which has been chosen {Jones86]. The formal development
of the object manager includes a requirements specification, two levels of ‘design
specification’ and the detailed specification of one of the allocation operations. Several
important properties of the specifications are proven. The object manager needs to be
strengthened with proof's of correctness. The construction and maintenance of such proofs
is a major undertaking — especially by hand. Thus, I intend to continue my research in the
arcas of development of notations for formal specification and automated support for
formal reasoning as related to software development.

-58-

References

[Abbott81]

[Aho86]

[Burstall80]

[Delisle89]

[Fair'ey85]

[Ghezzi87]

[Goguen79]

[Grogono87]

[Guttag82]

[Hayes87]

Abbott, R. J. and D. K. Moorhead. Software requirements and
specifications: a survey of needs and languages. The Journal of Systems
and Software , 2, 297-316 (1981)

Aho, A. V. et al. Compilers, Principles, Techniques, and Tools.
Addison-Wesley, 1986.

Burstall, R. M. and J. A. Goguen. The Semantics of Clear, a
Specification Language. In Abstract Software Specification, Springer,
LNCS 86, 292-322, 1980.

Delisle, N. and D. Garlan. Formally Specifying Electronic Instruments.
ACM SIGSOFT Software Engineering Notes, 14, 3, 242-248 (1989)

Fairley, R. E. Software Engineering Concepts. McGraw-Hill, 1985.

Ghezzi, C. and M. Jazayeri. Programming Language Concepts. John
Wiley & Sons, 1987.

Goguen, J. A. and J. J. Tardo. An introduction to OBJ, a language for
writing and testing softw: re specifications. In Specification of Reliable
Software, IEEE, 1979.

Grogono, P. BIAS User Manual. Technical Report, PLSG-9,
Concordia University, 1987.

Guttag, J., J. Horning and J. Wing. Some notes on putting formal
specifications to productive use. Sci. Comput. Programming, 2, 53-68
(1982)

Hayes, 1. (editor). Specification Case Studies. Prentice-Hall
International, 1987.

(IEEE84]

[Jiang88]

[Jones86]

[Jones88a]

[Jones88b)

[Kernighan78)

[Knuth89]

[London89]

{(Meyer85a]

[Meyer85b]

IEEE Std 830-1984. IEEE Guide :0 Software Requirements
Specification.

Jiang, X. and X. YongSen. NVISL: an executable specification
language based on data abstraction. in Bloomfield et al., editors,
VDM'88: VDM — The Way Ahead, Springer, LNCS 328, 124-138,

- 1988.

Jones, C. B. Systematic software development using VDM. Prentice-
Hall International, 1986.

Jones, C. B. and P. A. Lindsay. A support system for formal
reasoning: requirements and status. In Bloomfield et al., editors,
VDM'88: VDM — The Way Ahead, Springer, LNCS 328, 139-152,
1988.

Jones, C. B. and R. Moore. Muffin: a user interface design experiment
for a theorem proving assistant. In Bloomfield et al., editors, VDM'88:
VDM — The Way Ahead, Springer, LNCS 328, 337-375, 1988.

Kemighan, B. W., and D. M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

Knuth, D. E. The errors of TEX. Software Practice and Experience, 19,
2, 607-685 (1989)

London, R. L., and K. R. Midsted. Specifying Reusable Components
Using Z: Realistic Sets and Dictionaries. ACM SIGSOFT Software
Engineering Notes, 14, 3, 242-248 (1989)

Meyer, B. On formalism in specifications. IEEE Software, 2, 1, 6-26
(1985).

Meyer, B., J. Nerson and H. K. Soon. Showing programs on a screen.
Sci. Comput. Programming, 5, 2, 111-142 (1985)

[Meyer88]

(Pressman82]

[Rich88]

[Ritchie88]

[Roberts84]

[Schmidt88]

[Sommerville89]

[Spivey88}

[Spivey89]

[Sufrin82]

[Woodcock89]

Meyer, B. Object-oriented Software Construction. Prentice-Hall, 1988.

Pressman, R. S. Software Engineering: A Practitioner’'s Approach.
McGraw-Hill, 1982.

Rich, C. and R. C. Waters. Automatic programming: myths and
prospects. JEEE Computer, 21, 8, 40-51 (1988)

Ritchie, B. The Design and Implementation of an Interactive Proof
Editor. Ph.D. thesis CST-57-88, Dept. of Comp. Sci., University of
Edinburgh.

Roberts, F. S. Applied Combinatorics. Prentice-Hall, 1984.

Schmidt, D. A. Denotational Semantics: A Methodology for Language
Development. Wm. C. Brown Publishers, 1988.

Sommerville, 1. Software Engineering. Addison-Wesley, 1989.

Spivey, J. M. Understanding Z: A Specification Language and its
Formal Semantics. Cambridge University Press, 1988.

Spivey, J. M. The Z Notation: A Reference Manual. Prentice-Hall
International, 1989.

Sufrin, B. Formal specification of a display-oriented text editor. Sci.
Comput. Programming, 1, 3, 157-202 (1982)

Woodcock, J. C. P. Calculating properties of Z specifications. ACM
SIGSOFT, 14, 5, 43-54 (1989).

-61-

Appendix A. Nonstandard Generic Constants

This appendix contaiss nonstandard generic constants that are used in the specifications.

Property X == P X

The standard predicates disjoint and partition are defined over indexed collections

PR SN

of sets. Here are definitions for disjointness and partition for sets of sats.

(X1

—
disjoint_sets : Property(P(P X))
_ partitions _ : P(P X) & P X

disjoint_sets Ss
Vsa,t:88*3+xrt=>snNnt=0
SS partitions § &
disjoint_sets 55 A
Uss =s

INDEX = N

The identifier INDEX is defined as an abbreviation for the domain of sequences, that is, the
set of natural numbers.

Appendix B. Selected Lemmas

The following lemma identifies alternative formulations of the func ‘ons Lower, Upper,
Share and Adjacent.

Lemms MEM 1.
MEM |- V r : REFERENCE -+
Lower r = A

Upper r = Lower r + Size r - 1

V r,s : REFERENCE ¢
Share(r,s) & Block r N Block s # @ A
Adjacent (r,s) &

—Share(r,s8) A

Block r U Block s € BLOCK1

Lemma Block_partition_union is used in the lemma Partition_u:ion_block which follows

it.

Lemma Block_partition_union.
MM -V AB : Pldommem) | ANB =@ -«
(Block {(A), Block(B)) partition Block (A U Bj
Proof

1. Disjointness
Let A,B : P(dommem) | AN B=0@

Assume b € Block(A) N Block(B) then

b € Block(a)

b € Block(B)

b € ran Block = dom Block~ hence Block~ b is well defined.
Block~ b € A

Block~ b € B

Block~ b€ ANB = @

false

o

Thus our assumption was false and hence
Block {A) N Block(B) = O

2.Covers

Block{a u B) = Block({A) u Block{B) {p.101#5)

QED

Lemma Partition_union_block is used in sections 6.2.3, 6.3.3, 6.4.

Lemma Partition_union_block.
MM |-VAB: P(dmmem) | ANB =@ »
(U(Block (a)), U(Block(B)))
partition U(Block(a U B))
Proof

1. Disjointness

U(Block (A)) N U(Block(B))

= Uf{a : Block(A) * a n U(Block(B))] [p.92#5]
= UJ{a : Block(n) -
U{b : Block(R) « a N b}} [p.92#5]

=~ (")

Since A and B are disjoint, Block(a) and Block{B) are disjoint (by lemma
Block_partition_union). Hence a # b forany a in Block{(A) and b in Block{B).By
lemma Disjoint_Blocks we know that any two distinct blocks are disjoint, hence

{*) = U(a : Block{a) « U{b : Block(B) + @))
= U{a : Block(ar) +« O}
-

2. Covers

U(Block (A v B))

= U(Block(a) U Block(B)) [Block_partition_union]
= U(Block {A)) v U(Block(B)) (p.9141)
QED

