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ABSTRACT . *

SYNTHESIS OF A CLASS OF. MULTIVARIABLE NETNdﬁK FUNCTIONS AS
CASCADE OF SINGLE-VARIABLE LOSSLESS TWO-PORTS

v e -
‘Concordia University, 1978

This study is concerned w%;h the problem of realization
of a multivariable positivé real function (MPRF) of arbitrary degree -
in each variable as-a terminated cascaqe_structu;e of single-variable
lossless two-port networkg. The proposed technique of realization is
based on cascade-separability of MPRFs into single-variable functions,

and on the app11cab111ty of the method of s1ngle-var1ab1e Darlington

synthes1s to mu]tivar1ab1e functions.

Conditiqu‘for the realization of an m-variable positive
real function (PéF) s the driving-point impediPCE‘of a sing1e-v§riab1e
lossless two-port network terminated by an impedanée function of the
remaining {m-1)-variables are developed. It is shown that augmentation
as in the case of single-variable Darlington synthesis is not possible
fqr'multivariable functions. Consequently, the extracted lossless

two-port is non-reciprocal unless certain even part condition is satisfied.

imIt,is established that when the extraction of a single-variable lossless

two-port network is possible in more than one variable, the choice of any
\ .

one variable over the others is not to be preferred.
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detail when any one of the lossless two-ports takes the form of a

-jy-

. !
Using the result of cascade extraction of a singie-variable

lossless two-port, realization techniques for a class of ladder networks

are proposed. In particular, realizability conditions for a multivariable

ladder structure with or without a resistive termination which is cascade

of several single-variable lossless ladder networks with all of their .
transmission zeros at the origin or at infinity are derived. Also, using

)
a real part condition, an explicit solution is provided for the realization

of a.class of multivariable resistively-terminated Tossless ladder
ﬁetworks with all of their transmission zeros at the origin or at infinity.
The reactive elements of these ladder networks do not follow a sequence

which is dependent on’the types of the elements.

Some properties of a cascade structure of sing1e:va¥iab1e
lossless two-ports, each in a distinct variable, and terminated by a.
single-variable impedance function are investigated from the partial

derivative point of view. These properties are studied in greater

-

-

ladder network. In pariicular, conditions involving partial derivatives
\ . : - g
for the extraction of a single-variable lowpass or highpass ladder

network from a multivariable function are derived.

Conditions are developed for the realization of the voltage
transfer function of a resistively-terminated cascade of p,- and Py~

variable lowpass or highpass Vadder networks. The solution is provided

by converting the problem af a transfer function realization to the

problem of two-variable impedance function realization. It is shown
that these ladder networks can be transformed into wave digital filters

)
realizing a class of digital transfer functions.

-----
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CHAPTER 1

 INTRODUCT ToN

1.1 GENERAL

The theory of rational functions of several complex variables,

though not new:‘has only recen;]y fpund exteﬁsiveﬂapplications in many
compiicéted systéms-[1]. 'Thé’behé&iour of space-invariant multi-
dimensional optfca1 processing systems has been characterized Sy
rational transfer functions of several variables [2], [3]. Multi-
dfmensiona]:digital filters have used the principles and mathematical

tools of multivariable theory [4]-[8]. - It has been shown that the

. theory of multivariable positive real functions (MPRFs)iprovides an

effective means of dé&}ing with the problems of variable parameter
networks [9], [10]. * For networks consisting of lumped reactances, in
addition to commensurate or non-commensurate 1epgths of transmissfon
lines, the network functions become irratioﬁal. IQ such cases,q,the
theory of single-variable lumped networks is not direét]y applicable
due to the transcepdenta] nature of the network functions. However,
the realization problem of {Lese mixed Tumped-distributed netwﬂrks is
investigated by the conversion~o¥‘the transcendenta’l fun;tjons of

s = o+ju 1into polynomial functions of several variables, and as a
result the network functiéns become rational functions of several
variables. With this approach, the system functions of mixed lumped-

distributed networks can conveniently be compared with those of lumped

networks., Thus, it has been possible to extend many single-variable

L

oy
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conceﬁts to multivariable functions, and to determine where- the
teghpiques of the lumped network synthesis is applicable directly or
iﬁdirectly to mu1tivarjab1e networks. A review on thé‘simi]arities
and dissimilarities between single-variable and two-;ariable reactance

functions may be found in [11].

A1thoughla great deal of work has-already been done in the
area of multidimensional systems [1], it is not established that positive
14

realness of a muitivariable impedance function, 1ike that of a single-

variable function, is in general a necessary and sufficient condition for

~its realization as a linear, passive network. For instance, it is always

- possible to synthesize a given two-variable reactance function or matrix

(123-[14], but in the present state of art, it has not been possible to

realize a given MR@F‘[]S], [16].
P A
Restricting the discussion to multivariable synthesis with

constrained topology, it has been shown tpat even though an ar%{trary two-
variable reactance matrix can be synthesized, 'the same cannot be

realized with a prescribed topology. In this case, ‘the function requires
some conditiens in addition to the two-variable reactance property.

The realization of a cascade of commensurate transmission fines and

lumped reactances terminated in a resistance requires a set of coﬁditions
on the input impedance [17]. It is also known that if the even part

of an MPRF is prescribed, it is not always possible to generate the

function [18]. This means that if a multivariable voltage transfer

function is given, it may not be possible to realize it as a reactance

network terminated in a resistance. *



It is clear from the foregoing discussion that special
studies have to be carried out whenever realizations of multivariab1e_<:{

network funqtion; with constrained topologies are to be investigated.

1.2 REALIZATION OF MULTIVARIABLE CASCADE STRUCTURES

‘Extensive work has peen done on the problem of multivariable
gynthesis of resi;tivély—terminated cascade of commensurate or non-
commensurate uniform lossless transmission lines and lumped passive .
lossless two-port networks. With growing interest in integrated
circuits, these kinds of structures have become partiEuIar]y useful

Y
in the design of microwave filters using TEM mode with or without lumped

discontinuities, and networks containing semiconductor elements and
commensurate transmission iines. Applications of multivariable cascade
structures grevalso found in the desfgn of multidimensional digjta]
filters and acousfic filters. Various authors have-studied these cascade
structures, and each hgs given necégsary and sufficient conditions for
the structure with 3 presumed topology. A brief review of their work

follows in the subsequent paragraphs of this_section.

Anse{] [19] has established the realiza6?1{ty condipjéns: :
for a symmetrical two-port consisting of a cascade ofiﬁdmmeﬁéﬂ;ate
unit elements (UEs) with a lumped shunt capacitor at its center.
Saito [20] has, via an extension of Richards' transformati::: derived
the necessary and sufficient conditions for the realization of fhree
different'structures:b (i) cascaded commensurate UEs terminated by a
Tumped reactance, (ii) cascaded non-commensurate UEs terminated by a

resistance, and (iii) cascaded commensurate UEs terminated by a resistance

-~
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and shunted by 1umped.reactances. Scanlan and RhodesﬂLZ]J haye )
investigated the problem when a multivariable.impedance function may
be realized by means‘;f a cascade\ of passive, Tumped, lossless, two-
port networks connected by means pf a non-commensurate'transéission
Tines and fermfnated in a resistor. -Shirakawa, Takahashi and Ozaki [22]

have considered the synthesis of cascaded transmission-1ine networks

of non-commensurate UEs with the following structures:

(1) A cascade connection of m transmission lines
Ni(i=1,2,...,m) in a prescribed order, each N{
being a transmission Tine with open ended stubs

composed of UEs of single-variable p,

(i) A transmission line with open ended stubs composed
of UEs of Py connected in cascade between two

transmission lines of UEs of p,

(ii1) A cascade connection of m transmission Tines
Ni(i=],2,...,m? in an arbitrary order, each N,

being a UE of variable Py » and

(iv) A transmission line composed of commensurate UEs
with open ended stubs, partitioned from a multi-

variable network.

Kamp and Neirynck [23] have derived the conditions under

which @ multivariable transfer matrix can be synthesized as a cascade

connection of lossless non-commensurate transmission lines. Later,

Kamp [24] generalized these results for a cascade structure of non-

commensurate transmission lines with parallel or series stubs, consisting

<
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of dpen-circuited or short-tircuited single 1ines. N
'Youla and Ott [Z?J‘gaVe the realizability conditions for a

cascade structure containin Jat most two commensurate UEs and three
/iever, is difficuIt_to éxtend to cascade

structures with more number of élemgnés. Uruski and ﬁiequski tz&]
have discussed the cond%iions on the driv1ng—point.adm1ttance of a-'

resistively-terminated stiucture which is a cascade of commensurate

UEs separafed by shunt lumped capacitors or series lumped inductors.
7 .

They have obtained.these results by making use.of the theory of

r

bigradient arrays. ‘ #

b

‘-
T

Premoli [27] derived the conditions -for the synthesis of
cascaded non-commensurate UEs terminated by a resistor from the study
- - -

of the impedance function in special set of points without using the

concept of positive real function. Subsequently [28], he extended

" this method to structures considered by Scanlan and Rhodes.[21],

namely, the networks of cascaded non-commensurate UEs shunted by lumped
capacitances, He has also shown that Sa1to'§ realizability condition

[20] of real positivity for the input adﬁittance of a network composed
of cascéded non-commensurate UEs, closed on a resistance is par{ia11y :

rédundant and can be replaced by a much simpler condition [29].

-
¢ .

q

Xamp [30]-[32] has prasented the necessary and sufficient
conditions undér which an MPRF of arbitrary degree in each variable
can be fealized as the driving-point impedance of a cascade of non-

commensurate UEs terminated in a finite positive resistance. He has,
. " . '/

I3
v
7
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by transforming the multiyariable {mpedance into a single-variable
trangbendental function, shown that these conditions are equivalent to
those of Kinariwala's [33]. He has also derived the conditions for the
realizability of an MPRF of the‘first degree in all variables except
one, as the input impedance of a.resistive1y—term;nated cascade of

lossless two-ports separated by non-commensurate series and shunt stubs

[34], Furthermore, unlike Saito [20], he gave the realizability

conditions for a class of multivariable reactance functions.

Koga [35] has presented a general_solution to the problem
of synthesizinéya passive two-port consisting of a cascade of commensur§te
or non-commensurate UEs, and Tumped passive lossless. two-ports in an
arbitrary sequence witﬁ a resistfve termination at the receiving end.
However, Rhodes and Martson [36] have, through an example, shown that
Koga's conditions are not sufficient to guarantee a canonic, passive
nétwork in a cascade configﬁration. |

Rao and Ramachandran [37] ﬁave given the necessary and

™ .
sufficient conditions for an MPRF of arbitrary &egree in each variable

to be realizable by a cqsc}de of non-commensurate UEs separated by
) : v,

1uﬁhed Tossless two—portQ'(a11 of the same single variable) terminated

in 1@ resistor in terms of multivariable reactance functions generated

‘from the even and odd polynomials of the given. function. In a subsequent

paper [38], they have presented the conditions for the realizability

of a two-variable function by a“resistively-terminated cascade of
commensurate UEs separated by series lumpedqfnductors on one side and’
shunt lumped capacitors on tﬁe other side.. They achieved this by showing

an equivalence reJation between such a structure and a two-variable
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‘reststively-terminated Jowpass Tadder network, S

" Youla, Rhodes and Marston [3§jlhave presénted en-exp]itit
solution with the atd of two-variable.positive-real cohceet'fb; the
_“rea11zab111ty of resistive1y terminated cascade of commensurate UEs
separated by Tumped, passive, 1oss1ess, two;pqrt,networks. Later these
7 téuthors-advanced a complete and compact so1qtion for'the‘prob1em 7],
f40]. IA significant point of their.later‘so]qtion is that the difficulty
of testing a two-variable po]ynpmiaT‘for positive realness is replaced

by relatively simpier tests.

Fujimoto and«Ishii [41] have established the realizability
conditions for a‘resistive1y-termindted cascade structure of passive,
lossless, lumped two-ports-separated by commensurate UEs. - In addition
to the test of the-positive-reality of the two-variable impedance
: '

function, their realizability conditions require certain tests on

single-variable functions.

Phan [42] has considered the synthes1s problem of a class of
networks made up of non commensurate UEs separated by passive, Tumped,
10551ess two-ports, and terminated in a pa551ve lumped network by emplaying
a direct and explicit approach which eliminates the‘prenequisite of
mu1tivariat1e positive-realtty condition in favour of some simpler

one-variable type condtions,

+ .

Some -work has also geen done 6n the realization of MPRFs
as cascade structures of lumped building blocks involving single-variable

functions [42], [43]. Phan [42] has derived the realizability conditions
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from the chain parameter characterization of passive, 1umped 1oss1ess

-two ports In [43] the deve10pment of the realizabi1ity conditions
| 15 hased on the single-variable Darlington theoryfénd ts restricted

‘to reciprocal rea112at{ons. ) / )

In -the above cited literature, most of the synthesis is
carried out in terms of.cascade of lumped,lossless two-ports and
ransmission Tines, terminated in positive resistances. Naturally,
ther® could be many othg; cas;éde structureﬁ, each of them having

differsnt interconnection of lumped and distributed elements. It may

" be pé%nted odt that in the cascade synthesis, the problem of realizing

an MPRF, where the degree of -each variable is arbitrary, as a tandem
connection of resistivélyétenminated commensurate or non-commensurate
UEs separated by lossless two-ports has-been solved only for the case’
of two-variable functions. Also, most of the realization techniques

make uyse of Richard's transformation on the driving-point function or
O . cr t1 s
the reflectfon coefficient. Finally, it is noted that the realizability

conditions are frequently given in terms of the even parts of impedance

" functions, and therefore, they- are-restricted to non-reactance functions.

1.3 SCOPE OF THE THESIS

This thesis aims at the study of multivariable structures of
cascade of single-variable lumped lossless two-ports terminated by positive
rea] impedances., Realization technique for these structures is given
withoéfltaking recourse to Richard's transformation. The synthesis is

based on cascade-separability of MPRFs of arbitrary degree in each *

\



.

variable into siﬁg]e-variable’functions and on the util{zation of
sing1e-variéb1e Darlington theory of resistively-terminated lossless

networks.,

In Chapter II, necessary and sufficient conditions are
developed f;r the realization of an MPRF as the driving-point function
of an extracted sjngle-variable lossless two-port terminated by a
driving-point function which is an MPRF in the rest of the variables.
Conditions are also der%ved for the casé when the extraction of a
lossless two-port is possible in either of the two variables p. or

1

p. . Some special cases where both the p,- and,pj-variabie two-port

J

networks reduce to simple series or simple shunt branches are discussed.
Chapter III stidies some special cases of the cascade structures

of Chapter II. Realizability conditions for a resistively-terminated

cascade of m single-variable {:ssless two-ports, where eéch two-port

is eithe;Ja 1adde+ network with all of its transmission zeros at the

origin or at infinity or a Fujisawa-type lowpass ladder network are

derived. Also, for a class of MPRFs, an even part condition is developed

for the realization of a resistively-terminated 1adder'network with all

of its trénsmission zeros either at théxorigin or at infinity, whe;e

the reactive elements are not ordered according to their types.

In Chapter IV, some partial derivative properties of the
impedance fuqction of a‘cascade‘structure ofJ (m-1) lossless two-ports
of variables " to P terminated by a network of variable P
are studied. Those cases where some of the lossless two-ports are

ladder networks with all of their transmission zeros at the origin
%
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or at infinity are examined, Neceésary and sufficient conditions
{nvolving partial derivatives-under which an m-variable reactance or
positive real fdnction can be realized as the {mpedance function of
a pi-variab1e Tadder network with all of its transmission zeros at
p1=0 or at i and terminated in a reqétance or positive real.

impedance function in the remaining (m-1) variables are derived.

In Chapter V, necessary and sufficient conditions are
established for the realization of the voitage transfer function of a

fe%istively-terﬁqg;;;;rcascade of p1-and p2-variab1e ladder network
with ail of its transmission zeros &t p1=0 or at Pi=® (i=1,2).

It is shown that these analog networks can be used to obtain two-

LY

#
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CHAPTER 1!

CASCADE EXTRACTION OF A LOSSLESS TWO-PORT FROM A
MULTIVARIABLE POSITIVE REAL FUNCTION ‘

2.1 INTRODUCTION

As stated earlier, conditions in addition to positive realness
are required to ensure that a given multivariablé rational functien is
reaiizab]e as a cascade structure of lumped lossless two-ports terminated
by a resistance. Skirakawa et al. [22] have given necessary and
sufficient conditions on an MPRF whereby the extraction of a singlé5
~ varfable 1owpa£s ladder network with all of iEs transmission zeros at
infinity is possible. More recently [42], [4%], some work hgs been
reported on cascade extraction of a single-variable lumped 1ossTess two-

port from a given MPRF.

In this Chapter, some results on cascade realization of MPRFs
are obtained [44], [45]. 1In particular, necessary and sufficient
condit%on for an m-variable positive real function (PRF} to be realizable
as the driving-point impedance of a Tumped lossless iwo-port in one of
the variables, with a termination of an MPRF in the remaining (m-1)
variables is given. It is shown that'augmentation with surplus factors
as in the single-variable Darlington synthesis is not possible here.
Consequently, the lossless two-port cannot always be realized with .
reciprocal elements only. In such a case, however; it can be
realized'using ideal gyrators. It is showﬁ'that,‘by repeated appiication

of the condition for the cascade extraction, an MPRF is realizable as
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a cascade of sing}é-variabIe 1oss1f;§ two-ports closed on a single-

variable impedance.

Conditions are also found for the case when an m-variable

PRF is realizable both as a pi-variable lossless two-port network with

o

a driving-point impedfnce termination 201(915- , and as a pj-variable
165£TEss two-port hefwohk with a driving-point impedance-termination
ZOZ(nj) . Some sbec?ﬁ{?cases are also diﬁcussed where bdth the P;- and
pj-var1ab1e twb-ports reduce to either “simple series or simple shunt

r

branches,
2.2 THEOREMS ON CASCADE EXTRACTION

In this section, .necessary and sufficient conditions are

established such that an MPRF can be realized as a lossless two-port

_in one of the variables, with a termination whose driving-point impedance

is an MPRF in the other variables. The synthesis procédure is based

on the tﬁo theorems given below,

-

%*
The following notations have been used throughout the thesis

Pl,...m - (PpsPasecangd
Qi = {R1:p2:---spi_]:pi+11--1spm}
!Qij = {p]:pzs---,pi_]spi+]s---spj_1spj+]s---spm}

91,...,k = {P1aP2:---aP1_2:Pi_1st+];Pk+2,...,pm}

§ .. = {jm.l ,jwz,_...,jmi_-l ’jmiﬂ"""jmm}
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Theorem 2.2.1 .
i ' The necessary and sufficient conditions for a reduced* m-
. variable rational function ‘Z(p] m) expressible in the form - ‘
Npy ) mypydP(ay)+ny(py)ala; ). (2.2.1)

I CR LR EACREICH)

" a

where _m1(p1) and m,(p;) are even and n, (py) and pz(pi) éfe odd

polynomials @f the single variable ‘pi, and P(gi) and Q(Qi) are

polynomials in the variables o, , to be an MPRF are that

4

-

-

v ’ m.(py )40y {py) ‘ AP
1 $ & sing:e-var e pos ve rea unction
(1) m, (9, 1,05, i ingl Ll iti 1 functi
- (SPRF) in . p; , and
P(a) R - .
(1) @,y is an MPRF jn ay

Proof

Necessity: Let each pj(j=1;..;;m;j#1) assume an arbitrary positive. “
_ Ky (g ) +kny oy
Koty (P )4k 0o (py)

. ‘ ' .
real value a3 » then Z(al""fai-l’pi’ai+l""’am)

is an SPRF, where k, and k, "are positive real values of P(ni) and

) for th '« ~this imolies that kymplpydHkynpley) - -
qQ( i) fot‘r ese p;'s . | is implies t af k2m2(pi)+k2n1(pi) is an
e ke s s ottt m(p)4n,(py) 1
SPRF. Since ]{ , s a positive constant, mz(pi)+n1(pi) is also

- .
A function -is said to be reduced if its numerator and denominator

polynomials are relatively prime. ‘ -

L]



.
w
.

=

L'l .

18-

an SPRF, Hence, R (AL is an SPRF, To prove (ii),.proceed
LA AUP AL D R :

as follows: If Z does not have a critical frequency at p1=0 , then

o m(0)  Play) L
z(p] """p1_1’0’pi+1 ,'..’pm‘) = W . m N anq since Z(p-lj-.-’pi_“ ’0!

Pyysee-shy) 15 an MPRF, F s also an MPRF. On the other hand, if 2

ol

4

has a critical freddency at pi=0 , then it must be either a simple zero
or a simple pole, but not both, Bécausé the given function is reduced.
If it has a zero at 'pi=0 (the proof is similar in the case when I has

a pole at pi=0) , generate an MPRF as follows:

gy (50008, )y (py )Pl )]
SRR PR U M OO LICREACRLICN

-

(2.2,2)

_.mé(pi)Q(“i)+“é(Pi)P(ﬂi)
~ my(py)alR; )+, (py )P{,)

. dmp(py) dny ;) el odd
where mz(pi) = -Tﬂi;?— and "2(pi) - ——EE?——-.are res?gct1ve y o '
and even polynomials in p, . Since Fp, ,éj does not have a pale
. - . L LI )
| o e P
or’a zero at 'p;=0, ‘then F(p],...,pi;],ﬂ,pi+1....,pm) = EET676T§;T
n5(0) “ N Pla;)

must, also be an MPRF. Since ﬁgTﬁj"is a positive constant, ey
: ’ 2 : i

-

is an MPRF in the variables 2 . Thus,.Condition (ii) is also satified.

st my (p; )40y (py) PR my(p;)4ny(py) 1
uffigiency: .SinCE"-——r——Y———(——Y is an - CATA ] s also
: AR AT My APy )¥Natpy
P(Q ) Co mz(Pi )»+n] (p‘i) P(Qi)

- . i ‘ -
an SPRF. Further, since ﬁTE?T' is an MPRF, ﬁ{(pi)+n2(bi) + 9(91)

my (py P2, )41y (p, 108, )m, (p)0(a; Jony (P DP(2,)
Im, Tp )40, (py ) Jaka,)

ds an MPRF. This implies .

e -
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that [m (pi)P(n )+n1(p1)0(9 )+m (pi)Q(n J+n (pi)P(n )] is. a Hurwitz

o i h (FPR) ‘et 200, d Po;)
po mial in the narrow sense (HPN)}. Now, let Q enote ,
: S 1T ‘Qiﬂij

o . Re'Z(jm-l,...,jw )

e 230y U Imgldoy) - Uy g (5uq)]
e Imylieyytie )7, (o)1

3.
=

Sincé Zl(ni) is an MPRF, Re zl(°i) > 0 for all real wj(j=1,...,i-i,

. my (py ey (py) , : .
-§41,...,m) , and since EETETTIHETETT is an SPRF, [ml(Jmi)mz(Jmi)

-, (Jm In 2(Jm 120 for all real ei . Hence, Re z(j“1*---=j”m) >0
for all real mk(k=1,....m) . Thus, Z(p1,._.,m) satisfies the real
part condition, and the sum of its numerator and denominator polynomials

is an HPN, and therefore, it is an MPRF.
Theorem 2. 2 2

The necessarj‘%ﬁ% sufficient cond1t1on for a reduced MPRF

Z‘p_1 . ﬁ) ‘to be rea11zab1e as the input impedance of a pT-var1able

Jumped lossless two-port network with a driving-point impedance

's(a;)
termination ZO(Q ) = ~T——T (Fig. 2.1) is that Z can be written

as:

_my(p; )Py eng (pglQL0;)
on, ) e O T PO

(2.2.4)

*
This theorem is also proved in [42], “but the proof here is along the

1ines of .singleé-variable Darlington synthesis. <

(2;2.3)

.~



P
-
e

. -16-
G .
‘ p.-VARIABLE |
! | Z9(a;) = s{a.)/T(a;)
LOSSLESS TWO-PORT .
c: .
Z(p, y ,m)

FI1G. 2.1. Cascade Extraction of a pi-Variab1e LossTess

Two-Port from an MPRF Z(p] N m)

L]
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where m1(p1)‘ and_,mz(pil are even and nT(pi) and "2(p1) are odd
polynomials in p, , and P(ni) and Q(ni) are polynomials in the

[ variables a, .
i' -
¥ Proof
. Necessity: If Z(p1 m) is realizable as the impedance function of

the network shown in Fig. 2.1, it can always be written in the form

v

given by (2.2.4), and necessity follows.

Sufficiency: Eqn. (2.2.4) can be rewritten in the following two forms:

Case A: )
¢ mpy)  Pay)
Z(p1,..-,m) - nz(piTmz(pi) P(Qir ( L, a)
n,(p) * T, S
Case B:

m(py)  Qla;)

ny(py} mTpyT i PR}
LT W A CRNNICH
my(py) * Pla;)

(2.2.5b)

From (2.2.5a) and (2.2.5b), the following identifications can be made

for the two cases:

Case A Case B
m, (p.) | n,(p.)
Z()=11 Z(p)=11
1Py n,(p3) T T T
Z,,(py) = ikl 2y5(py) = "2 P1)
22°Pi’ 7 0, (p.] 22'Pi’ 7w Tp, ]
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Ct2(pilzy(py) R U

oy (pyImy (py)-ny (pydnydp) - i n1(P,-)nz(pi)—m1(p1)m2(p1-)‘
ng(pi) o mg(pi)
s(a;) P “sta,)  Qlay)
o) * a7y IR B U 9 Al )

m1(pi)+n1(p1)

Since F(P1) = TACRETACR

is'a PRF, the zeros of [m1(pi)m2(pi) -
"1(pi)n2(pi)1 have quadrantal symmetry in the pi—p1ane, and hence, the

numerator of 212(p1)221(p1) for the two cases can always be expressed

2 2 '
~as [mo(pi)—no(pi)] , where 'mo(pi) and "0(pi) are respectively even
and odd polynomials in Py - Hence, further identifications as given

below are possible:

Case A Case B
, ( ) - mo(P1)+ﬂo(Pi) 2 ( ) - ﬂo(Pi)+m0(Pi)
12'P4 TGN 12°Pj om0
21(P4) = T T | Z2ppp5) = = TACR I

In view of Theorem 2.2.1, F(pi) is an SPRF in p, _and Zo(ni)

is an MPRF in Q and hence, by Darlington synthesis, the open-
circuit two-port parameters as given by the two cases are realizable
using iﬁductors, capacitors and ideal gyrators [46]. Realization of
Z(pT,...,m) is obtained §y terminating the tw?-port with the MPRF

20(91) . This proves the sufficiency, and the theorem is established.

2

-1
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As seen from the two-port pprameters for the two cases, the
extracted lossless two-port is non-reciﬁrocal. However, if [m1(pi)m2(p1) -
n1(p1)n2(pi)] is plus or minus a perfect square, then a reciprocal
realization can be obtained [46] because, in such-a case, the f§%lowing

’

choices are péss1b1e:

Case A:

/ my (3 Imy (p, )-ny (4 )y (py)

le(pi) = 221 (P.i) = HZ(P.') . (2.2.63)
Case B: |

e n, (pdome (po My (py) |
21,(p,) = 27 (p.) = f Taonglog) oy )y o (2.2.6b)

mz(Pi)

In the case when [m1(pi)m2(p1)-n1(p%)hz(pi)] is not a
perfect square, neither z{z(pi) nor 221(p1) as.giQen by (2.2.6) is
a ratipna] function. These parameters are rational functions only if
the numerator of the even part of F(pi) is a perfect square. The
procedure in the single-variable Darlington synthesis is %o augment
the numerator and the dencminator of F(pi) by tﬁe surplus factor
[mo(p1)+n0(pi)] , & polynomial obtained by taking the left half pi-p1ane
zeros of [ml(pi)mz(pi)~n1(pi)n2(pi)] . This procedure, however, cannot
be followed in the cascade realization of Z(p]’.‘_’ ) , because when
the pi-variable lossless two-port is req]izéd as a reciprocal structure
made possiﬁ!e by proper augmentation of ‘F(pi) , and terminated by

ZO(Qi) , the resulting MPRF will be N

. |
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[my (p4 Img ()40 (b dng(p, )P (e, )

. _ #ny (pydmg (py )4my (o dng (P4 ) J0(a,)
Ly, L) TR, g Te, 190, 16, Tg U, JTATE, T

+[n,y (py mg (p 4m, (B, Ing (P ) IP(a,)

instead of that given by (2.2.4), O0h-the other hand, if Z(p1 m) is

augmented by the surplus factor mo(pi)+n0(p*) , “then

m (pyIP(a5 )+, (py)0(0;) _ Molpy)eng(py)
mz(pi)o(?i)+n2(pi)P(ﬂi) AN CH)

Z(p'l ’91) =

Imq (py dmg (p, Y4m, (py Ing(p;)IP(a,)

+[n1(pi)mo(p1)+n](pi)no(pi)30(ni)
_Iﬁé(pi)mo(pi)+m2(p1)n0(p1)10(ﬂif

+[ny (P Imy (p )40, (py Ing (p3 ) IP(5)

is not expressible in the form of (2.2.4), and thus, not cascade-
realizable. Hence, if [m](pi)mz(pi)-n](pi)nz(pi)] is neither a
= perfect square nor the negative of a perfect square, a reciprocal
realization of the Tossless two-port is not possible, even though a

~

non-reciprocal realization exists.
Theorems 2.2.1 and 2.2.2 suggest the following definition: .

Definition: .A reduced MPRF Z(p1 m) which can be written in the

. form:

my (py)P(ay)+n, {p;)Q(e,)
Z(p ). =
Toeenam " my (p 100, J4n, (p TR, )

-

is said to'bé cascade-expressible in the variable Py

—,
L3
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According to Theorem 2,2,1, if Z(p.I ’ } 1is cascade-

p0ve sl -
expressible in the variable Py » then F(pi) is an SPRF and .5T51T

1; an MPRF,-and by Theorem 2.2,.2, 1t can always be realized as the

impedance function of a p;i-variable lumped ]ossless‘two-port terminated

by a'driving-point impedance function 20(91) . Hence, it is.worth

A pointing out that for the extraction of a Tumped lossless two-poft from

a cascade-expressible MPRF Z(p1 m) it is not necessary to test
. ’ ’ P(n.)

the positive realness of F(pi) and _T_lT" and thus, the necessity

R,
of the thiee conditions of a théorem given in [43] seems rg&hndant.

2.3 ALTERNATIVE CONDITIONS FOR CASCADE EXTRACTION

According to Theorem 2.2.2, the necessary and sufficient

condition for a lossless two-port in the variable P to be completely -

extractable from an.MPRF is that the function be cascade-expressible -

in the varijable P; . The following theorems provide alternative methods

to test whether a given MPRF is cascade-expressible in the variable

Theorem 2.3.1

The necessary and sufficient conditions for a reduced MPRF

N(p, m .
Z( ) = —T——lLLLL—T to be cascade-expressible in the variable
P],...,m D p],...,m , | o
are that
(1) Npys@;)tN(-p;,0.) = am(pIPR;) (2.
(1) Npyo2y)-Nl-pyany) = 2nq(py)aley) (2
(111) D(p;,0;)#0(-p;.2,) = 2my(py)ala;) (2

1]

(V) D(p;u2y)-D(-py.2;) = 2ny(py)Play) . (2

Py

3.Ta)
.3.1b)
.3.1c)”

.3.1d)
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<

wﬁere m1(pi) and mz(pi) are even and n1(pi)_ and nz(pi) are odd
polynomials in p; , and P(ni) and Q(ni) are polynomials in a, .

Proof

NeceFSity: Since Z(pl,...,m) is cascade-expressible, 1t—{s readily
seen from (2.2.1) that conditions given by (2.3.1) are satisfied.

sufficiency: Adding (2.3.1a) with (2.3.1b) and (2.3.1c) with (2.3.1d),

yields 2N(p1".',m) = Zﬁ](pi)P(ﬂi)+2n1(p1)Q(ﬁi) and 20(p1,,..,m) =

cascade-expressible in p, .
Theorem 2.3.2

The necessary and sufficient condition for a reduced MPRF

Z(p, . to be cascade-expressible in the variable p; 1s that when
yeres

the function is written in the form:

n n-1l n-2
Ag(ay ey, q(a;)pg" +AL H(R5)pg s

*
+B-l (511 )p.i"'Ao(ﬂ.i)

Wpy, o) " (2.3.2)

Bn(ni)p?+An-l(ni)p?-]+8n-2(ni}p?—2+'f'
+hy (21)p;#8o(8;)

then all Ai's must be polynomials in Qy which are constant multiples

of each other, and all Bi's must be polynomials in ni which are'aTso

constant muitiples of each other.

Proof

Since all Ai(ﬂi)'s are constant multiples of each other, and:

all Bi(ﬂi)'s are also constant multiples of each other, the function

*
Without loss of generality, n is assumed to be even.
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given by {2.3.2) is obviously cascade-expressible in p; . Conversely,

a cascade:exbres§1b1e'function in the variable Py can‘élways be expressed

in the form of (2;3.2). o

Example 2,3.1
Consider the two-variable reéctance-function (TRF) given as
an example in [43].

; 2
N(pyspy) 6p$p§+3p$+ﬁp2+10p1pz+3

Z(P »P ) = = -
1°r2 D(pT ’p2) 5p$p2-t~6p1p§+3p1+5p2

The following relations are obtained by applying the conditions given

By (2.3.1) on i(p],Pz) -
é(pf+1)(6pg+3) = 2m; (py)P(p,)
.N(p1’p2)'N(‘p1sP2) Z(ZP])(sz) = 2n1(P1)Q(P2)

D(py-p,)+0(=Py2P,) = 2(p}+1)(5p,)  <-2my(py)Q(p,)
= 2(p1)(6p§+3) = 2n,{py)P(p,)

N(P]:P2)+N(‘P1'P2)'

u

D(P1,DZ)-D(-P1,P2)

the variable P; » and

Thus, thé given TRF is cascade-expressible in
it can be written as: '
2 2 » : '
‘ Z(p " y < (P]+1)[5P2*3]+(2P])[5p2] i} m1(p])p(P2)+Q1(p1)Q(p2)
172 2 2
{p1#1)[8p,1+(p; Y065 +31  m,(py)alp,)+ny(py )P (0y)

. 2,112 5.2 4 .
Since [m](p1)mz(p])-n](p1)n2(p1)] = (p]+1) -2p] = py#l is not a

perfect square, realization of the-Tossless two-port will.require the

: 2 2 : 2 .32
use of an ideal gyrator. Let [my(p,) -ny(py )71 = (myy=nyny} = [lpy+1)° -
(/fbl)z] , i.e. mo(b1) = (p$+1) and no(p1) = /2py , and make the
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© following 1dent1f1c3§10ns:_

) m](p]) p$+1
IR E A

2
m,(pq) _ Pyl

2 "R nT T o -

— 2
g(py4ng{py)  py+/2p +1

z'IZI(p]) - n(py) Py
B mO(pTI-nU(pl) _ p%—/ﬁb]+]
2nlpy) =

na(py) 2

P(p,) bt
ZolPp) = Q5,7 = THp,

A realization of Z(pl;pz) is shown in Fig. 2.2. The termination
io(pz) is a singIe-variap1e reactance function in Po s and it is
a]wéys~rea11zab1e as a lossless network. Note that since Z(p],pz) is
not lascade-expressible in the variable Pp » 2 realization af Z as
a lossless two-port in the p2-variab1e, with a termination of Pi-

variable reactance function, is not.possible.

-

2.4 THEOREMS ON CASCADE SYNTHESIS

The conditions discussed for the cascade extraction in the
preceding two sections will now be generalized for a realization of an
MPRF as a resistively-terminated cascade of single-variable Tossless two-

ports.

L

Theorem 2.4.1

The necessary and sufficient condition for a reduced m-variable
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O—
P
Py Lo(py) = ——
- g‘ra 5p2
VZ
b Ot
2{py.p,)

. FIG. 2.2. A Cascade Realization of Z(pl,pz) of Example 2.3.1.

oA
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Priny .. ...}

PRF Z](p1 m) to be realizable as the input impedance

O P1,. ... ,
of a resistively-terminated cascade of single-variable lumped lossless

two-ports of variables p; to p_ (Fig. 2.3) is that the function

Z](p1’_'.,m). can be decomposed as:

(4 ' i
o ) - ™ )(P1)Pi+1(91’;'_,1)+“§ )(p1)01+1(QIA...,1) ,
P, ..m m§1)(pi)01+1(“1,...,1)+"£j)(pi)Pi+1(n1,:;-,i)

i=1,2,..;,(m—1) (2.4.1)

(1) (1) (i) . (1)
where m, (pi) and m, (pi) are even and ny (pi) and n, (pi)
are odd palynomials of p, . and’ P1+](91 1) and Qi+1(n1 1.)
are multivariable polynomials of 2 5o
Proof

The theorem can readily be proved by repeated application of

Theorem 2.2.2.

Theorem 2.4.2

The necessary and sqfficient condition for a reduced m-variable
P1(pl,.;.,m)

Gley, .
of a resistively-terminated cascade of single-variable lumped lossless

—~

PRF ZI(p1 m) to be realizable as the input impedance

two-ports of variables Py to p are that, for i=1,2,...;(m-1) ,

u

B (1) ~‘
Popyany )y lppay ) = (0P (@ )

Pilpgsly, )Py lopply ) AARCRLINCHIS

Q'i (pi‘sﬂ‘] e ,1-“-)+Q1-(-Pi sn] ee ’1) ZNET')(P.])QH] (n'l ... .»,'1.)

-
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R L ) 1 ' -~
Q-]{p.ls(] i) Q«[( P‘l’n ”1). = 2“% )(pi)Pi+1(91,...."i)
. : J
. where the symbo1s'have thq same meanings as fn Theorem 2.4.1,

. . —_ ‘p

Proof . o R ~

\

. RN %t s
_Thd proof follows directly from Theorem 2.3.7,

.
- -

2.5 CHOICE OF THE FIRST LOSSLESS TWO-PORT NETWORK.

If an MPRF Z dg cascade-exPressible-tn only one of the
.ve}hab1es p.,. then by } eorem.2 2 2 a pi-variab1e 1oss1e§s two-port
can be extracted from it, and the pos1t10n of this two port is unique

in the overa11 rea11zat1on of 7. However, if the function 15 cascade—
expressib]e in more than one var1ab1e the first lossless two-port cou]d
be_in any one of these variables, In such a cask, one may expect.that

_ the cho1ce of one two- port over the other poss1b1e two-ports will-Yead

Lad .

o a;1arger number of extractions of cascade two—ports., Necessary and
sufficient conditions for the first lossless two-port to be‘extractable

~in either of the two variables P; or pj are now developed,

Theorem 2.5 - ' .

e
S

The necéssary and sufficient condition for a reduced m-eﬁriab1e

.

PRF Z(p] m) to be, rea]1zab1e as the input impedances of both a
IR RN ]

pi-variable lossless two-port term1nated by a driving-point impedance

201(ni) and as a pj-variéb1e lossless two-port terminated bi>a driving-

-point impedance 202(91) , is that the function Z be expressible as:



| mT(pi)[mz-(pj')ncnij).mz(pj)mij)]
200, . +y (py )Dym, (8)8(a, 5 )+an, (p;)A(R, )]

IR | L m1(pi)qugégg)B(gij)+6n2(pj)A(nij)] ' (z'i'1)
X, (pyIA(a 5 eny (p)8(3;)]

\ - y +(Y6n] (‘pT%

kY

N where m1(pi) and n1(p1) are respectively even and odd polynomials in

the variable Py » mz(pj) and nz(pj) are the cdrresponding polynomials
in the variable Py » A(gij) and B(Qij) are multivariable polynomials

in the variables nij &e and y and ¢ are nonnegative constants,

Proof

-

Necessity: If Z(p1 m) is realizable as the input impedance of a

pi-v5r1ab1e Tossless two-port terminated by an MPRF Zo](ni) , then by
Theorem 2.2.2 it is expressible as:

.~ my(p;)P(a; J4ny (p,)0(0;)
Z(p1,;..,m N m3(pi)Q(Qi)+n3(pi)PI§i) ' (2.5.2)

where m,(p,) and m3(piJ are evén and n,{(p,) and .na(pi) are odd
polynomials of the variable p;» and P(ni) and Q(n{) are polynomials
of the variables 2 . Without Toss of generality, the polynomials P

and Q can be expressed as:

A

Plo;)

mg ()M ) + ny(p,)B(; ;) L s

a(n;) = my(p;)ca ;) + ny (p, )0, ) o (2s.3)

where mz(pjl and m4(pj) are even and "2(pj) and ”4(pj) are odd

polynomials of the variable Ps > and A(nﬁj) , B(Qij) , C(Qij) and
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D(gijl' are po1ynom1515-of the variables Qij + Thus, (2.5.2) can be

rewritten as:

ma (4 my (py ARy 5)]4my (p)Dnyg (py)C R, 5)]

.+n2(pj)[m1(pi)B(n,j)]+n4(pj)[n1(pi)D(nij)i
mz(pj){q3(p1)A(n1j)]+m4(pj)[m3(p1)C(nij)]

1 (p3)Cng (b4 )80, 5)Tng (p ) lmg (b, )0(a, 5]

| Z(pT,...,m) (z'éﬂ4)

If the function givem by (2.5.4) is to be realizable as the input impedance
of a pj—variab1e Tossless two-port terminated by an MPRF Zoz(nj) , then

by Theorem 2.2.2 Z(p.l m) must be cascade-expressible in the variable
Py - This requires that m4(pj) = umz(pj) and n4(pj) = B"z(pj) , where

a and B are constants., Eqn., (2.5.4) then becomes:

my(p)my (py )A(R s en, () (aClay ;)]

#n,(p3)Imy (py)B(a; . )+n (py ) (8002, 1T

+n2(pj)[m3(pi)(BD(Qij))+n3(p1)B(ﬂij)]

oy )" (2.5.5)

The cascade-expressibility of Z(p] m) in the variable P; further
requires that the bracketed expressions of (2.5.5) be related to each
other by the equations given below:

- i '{-;I
4

ﬁa(pilﬁmcgnij)%+h3(pi2A(nij) = v[m1(ple(ﬂij)+n1(pi)(éDInfj))]~ (2.5.6a)
ma(pi)(3Q(ﬂij))fpaﬁbi)B(nij) = 6[m1tpi)A(ﬂij)fn1(pi)(ac(nij))] (2.5.6b)

4 »

I S .-
where y and & 'dre constants, Equations (2.5.6a) and (2.5.6b) can be

decompose& as follows:

-
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any (b, 1602, ;) = v (p 18Ry 1 5 nylpy )Ry ) = vemy (o0 )

$m3(p1)0(nij)‘= omy (pyJA(a4,) 2 ng(py)BLayy) = sany (py)Clayy)

From these relations, the following can be obtained:

Clags) = kyBlay4) SR | (2.5.
D(ay;) = kghlay;) - T (2.5.
na(Pi-) = k4n1 (pi) '. . * ) (2.5.

where Kk, , k, , kg and k, are constants related to a«, B, v and

§ as follows:

7a)
7b)
7c).

7d)

=X '
k1 k2 p _(2.5.8a)
=8 ‘
k] k3 2 (2.5.8b)
k4 ) )
O ‘= By : ‘ ) {2.5.8¢}
3 . * ’
k-
kg
E_ = af (2.5.8d)
2 N
"Three of the four equations given by (2.5.8) are independent, Soiving
for k2 s k3 and k4 in terms of k1, a, B, y and § gives:
= X
Ky aky (2.5.9)
= 8.
k3 = Bk] (2.5.9h)
kg = 3 o (2.5.9¢)
- 1
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Thus, substituting from (2.5.9a) and (2.5.9b) into (2.5.7b) and (2.5.7c)

. gives:

c(nij) = E%;'B(“1j) | (2.5.10a)
Dlayy) =-é-§ka\(n”). , (2.5.10b)

Usiné (2.5.6) and (2.5.10) into (2.5.5), and without loss of generality

letting 'k1=1 , yields (2.5.1), Thus, Z(p ) satisfies the

Tyuu.,m
necessity of the condition.

Sufficiency: The function given by (2.5.1) is in the cascaﬂe-expressib]e )

~ form in the variable Py - Moereover, it can also_be expﬁessed in the

~ cascade-expressible form in the variable p, as: )

>

my () [my (p )AL vy (p; )8 (0, )]

Z(p )= +n,(ps)Imy (py)B(Ry ;) +8ny (py)Ala, S]]
Toueosm (ym, (p s 77Tm; (p; 7B {8 ;T+8n, Tp, JA(a, 7]

+any (py ) m (b A, ) +vm (p)BL2 )]

(2.5.11Y)

-l

Hence, by Theorem 2.2.2, Z(p1 m) ‘can be realized both as a Py-
variable lossiess two-port terminated in an impedance Zol(ﬂi) , and
as a pj-variable lossless two-port terminated in‘'an impedance Zoz(ﬂj) s

and the théorem is proved,

The two realizations of the function Z(p] ) of the

RN |
previous theorem are shown in Fig. 2.4. It may be noted that the
terminations after the extraction of the p;-variable and the pj-variab1e
networks in both the cases are the same, namely, A(Qij)/B(Qij) . Hence,

it is immaterial in which variable a lossless two-port is extracted first.
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Special Cases

The function considered in Theorem 2.5,1 is now studied, when

any one of the constants y and & becomes zero or infinity, and the

. forms of realizations of the function for these cases are determined,

Case (i): y or & 1s zero

H

When y=0 , the function given by (2.5.1) reduces to

mp) myp)  Blag)
AL LN R I R BT

(2.5.12)

Hence, Z(p, m) can be realized as the' input impedance of a series

- o np) m(p.)
combination of three impedances: Z1(pi) N R Zz(pj) = EHHTB%T'
B(a, .) o 194 ) 2]
- ij’
and ZS.(Q,L]) W . ,
Case (ii): y or & is_infihity .
When y== , the function -Z(p1 m) is reduced to

PRI ]

= 1 -
Z(p'l ,...,m) - m](pi) 5n2(pj) GA(Q“.) " (2.5.13)

;) S CA I )

Hence, Z(p1 m) can be realized as the input‘impedanqé of a parallel
LICIL L |

— i _ m(p;) , ﬁnz(p.)
combination of three admittances: Y](pi)'— 5113;7-’ Yz(pj) = _EETE?T

aA(ni.)
o,
The function reduces to a similar form as given by (2.5.12)

or (2.5.13) when the constant ¢ becomes zero or infinity, Thus, when
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any one of the constants vy and ¢ becomes zero or infinity, then both
the Py- and the p ~variable networks reduce to either simple series or
simple shunt branches where the positions of the Py- and pj-variable

networks can be interchanged without altering the structures df individual

networks,

Example 2.5.1 -

Consider the two-variable PRF given below: g N

22,2

' 2.2 2., :
, p1p2+2p1p2+3p1p2161+12p1p2+p2+3p]+2p2+1 .
Z(P1:P2)." 2 2

2
2P1Pz+8P1P2+12p1p2+2p]+24p]p2+2p2+12p1+8p2+2

This function can be rewritten as:

(B2+1)Lp21)- (1)4(20,)- (1114 )
[(2)- (p241)-(1)418)+ (2p,)+ (1)]

(PF+1IL(2)- (p541)-(1)+(4)-(20,)- (1)T5(2)-(4)- (3 p;)
[{p+1}-(1)+(2p,)+(1)]

Z(P1aP2) =

u

" Thus, Z(p1,pé)' satisfies”fhe candition of Théorem 2.5.1, with A=B =]

and y=2 and §=4 , and it is realizable both as the input impedance’
of a Tossless two-port in p{ Eerminated.by a ﬁrivingzpoint function 1in

Po » and as the input impedancé of a lossless two-port in Py terminated
by a driving-point function in Py . " As a check, note that Z(p1,p2)

is cascade-expressible in both the variables P and p, as:
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- (pfﬂ i[p§+2p2+11+(% Py 1[2'p§+8p2+23
PqaPy = -
e (p%ﬂ )[2p§+892+2]+(1 2p, )[p§+292+1]

o

(p5+1)0p]+3p, #11+(p, ) (207 ¥12p, 2]
2 ; 2

(p5#1) (25} +12p, 42 +(8p, ) oy +3p; +1]

=

r .

Realizations for both the cases are shown in Fig. 2.5,

2.6 SUMMARY AND DISCUSSION

In this chapter, a necessary and sufficient condition for

" the realization of an m-variable PRF as the input impedance of a single-

variable Tossless two-port network terminated by a 'dr1v1ﬁg—point impedance
function in the rest of the variables has been obtained. The condition

is that the function be cascade-expreésible in one of the variables.

It is shown that the sTngIe-ﬁariab1e Tossless two-bort cannot
always be realized by reciprocal elements on1y,lbut in general it requires
ideal gyrator§ for realization. Alternative conditions which'are suitable
for testing the cascaQe-expressibi]ity of a given MPRF in the variable
pi are also given. It may be noted that the results on cascade
extraction hold also for multivariable reactance functions. Since the
termination of the extracted lossless two-port is also an MPRF, it has
been shown that a.realization of the g}ven %unct1on as a c&scade of
single~variable lossless two-ports closed on a single-variable impedance
;ggitf@n is possible, if the functfon is succéssive]y decomﬁosable in

the cascade-expressible forms,

K
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1,

"
i
e , 2
s . __1___ 7 (o) p2+2p2+'|
' ) | 12p] 01 p? . -2p§+8p2+1

1
) 2vZ J
i Z(P1 :pz) (a)
F
1

. 8 p2

1 S 2

' 1 7 (o) p.l+3p.|+'l

- PR g —_ -
P2 021 2p$+12p1+2' .
| gl ,
o—'—_ -'— _'_7.' 7; . -
Z(pyspp) - v g

-

.\\'4’

= FIG. 2.5. Cascade Realizations of Z(p];pz) of Example 2.5.1.
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In some cases the given MPRF may be cascade-expressible in

more than one variable, A condition has been obtained so that a.gfven

tnput impedance of a pi-variable lossless two-port term1pated by a
driving-point impedance function of variables hi and (ii) as the
input impedance of a pj-Qariable lossless two-port terminated by a
ariving-point'impédance function of variables nj . This condition has
clearly established that the choice of one variable over the other is
not to be preferred becausé in both cases the terminations, after

extracting the Py~ and pjévariab1e lossless two-ports,-ére the same.

" MPRF can’ be rea]ized'by both of the following possibilities: (i) as,the.
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CHAPTER 111 -

LADDER REALIZATION OF MULTIVARIABLE REACTANCE AND .
POSITIVE REAL FUNCTIONS N :

3.1 'INTRODUCTION

In the previous chép%er, results were obtained regarding the’
extraction of a single-variable lumped Tossless two-port from a given
m-variable PRF, the tenninatfon being an MPRF in the remaining (m-1)
variables. The 1ossless nature has been the only constra1nt put on the
Extraéﬁed network. However, it would be desirable that the extracted
network_méy have certain characteristics as required ¥y its applications.
For.instance, one may be interested in obfaining a resisti?ély-term?ﬁhted
lossless ladder realization of an MPRF because of its aprication in the

design of microwave and multidimensional digital filters,

It is known that th]e a s1ngle -variable reactance function

can always be synthesized as a lowpass ladder network by a cont1nued—

fraction expansion, not every SPRF can be realized by this technique.
Naturally, condifions {n addition to ﬁositiye-rea]ness are required
to realize multivariable functions by continued fraction expansion.
However, these conditions and those for the rea1izabi1iﬁy of general

multivariable ladder networks are not available in the literature.

This.chapter is concerned with the ladder realization of MPRFs.

In Section 3.2, necessary and sufficient conditions are established for’

N
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the realization of resistively-terminated Fujisawa-type lowpass 1ad¢er
networks and ladder networks whose transmission zeros are either at the
origin or at infinity in the various pi-pIanes [47]. In Section 3.3,
using the even part, of an MPRF which is of the first degree in all
variables'except one, realizability condition for a resistiyeTystenn1nated
lowpass ladder nethrk with all of its transmission zeros at infinity

is derived [48]. Using this rea11iation, condition for a resistively- -
terminated highpass ladder network with all of its transmission zeros

at the origin- is also obtained.

The symbols which itill/frequentiy be used in this chapter:are

listed below:
ép_(Z) : Degree of the variable p, 1in an MPRF Z.
i .

ml(pgif mz(pi), m{i)(pi), méi)(pi).: even polynomials in the

variable p. . )

i i . L
n1(p1), nz(pi), n% )(p1?, né )(pi) : odd polynomials 1q the
- + . . . ~ !ariab]e p}l )
P(Q%), Q(Qi) : multivariable po1ynom1a1§ in the variab1e$ 2, ¥

) . N : L

P1+1(ﬂ1,'_'zk),_Q1+1(ni}:‘_’k) : muitivariable polynomials

in the variables Q. K

(1) | (¢, (1) (%) .
Al (pi,...,m)’ A0 (pi,...,m)’ B1 (pi,...,m)’ BO (pi,...,m) ’
muitivariable pol}nomials fn the

variables P; m
3

g
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hM(i)(. ) M(i)( )z multivariable even 61 n;hials
] pi,o--,l“ ' 2 p'l,.'.’m ,. p y 4 :

in the variables Py m

-

N%i)(p{;f’.’m), N§1)(p1’l;_’m) : mu1t1variab1e odd polynomials

- | _in the variables p, m

-~

-

3.2 RESULTS ON LADDER REALIZATION

Lemmas 3.2.1 and 3.2,2 of this section establish necessary and.’ ;. -

sufficient conditions for a-single-variable 1addér.extrac;ion from a
éiven MPRF while the femaining theorems andrcdrollaries derive conditions

for a complete resistive]y-termiﬁated‘1adder-rga1ization of an MPRF.

Lemma 3.2.1 ' _ .

e . . - ‘ .
- The necessary and sufficient conditions for a reduced m-variable

PRF 'Z(p1. _ m) “to be ngaiizabie as the input impedance of a bi;variablk ‘

“lossless ‘ladder network with all of its tranémissipn zeros (a) at bi=m R
(b) at py=0" or (c) both.at p,=0 and p;= , -and terminated by a
o L%
- multivariable-positive real impédance‘function"20(91) , are that

+ {1) Z('p.| m)l is cascade-expressible in the variable p
geer ey b . .

.i >
that is, it ean be writtén_as: .
. ’ ' -. ¢ * ’ . R
M . Z(p . 1 . m1(p1)P(ni)+n1(pi)Q(ni)
| Tooeoomt mz(pi)0(91)+n2ﬁpi)P(h{) _ i
— . "‘. - .

N C o2k , :
(11)' m](pi)mz;p})-nl(pi)nz(pi) = Ro; where k ‘ is non—negati!e ‘

~tiiteger and R .1is non-zero real constant, and for the

\

thyge caseé:. )

' .
T T T2 PR
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~{a) k=0 and .R-0 , when all the transmission zeros

- ‘ : of the loss1ess 1adder network are at Py

(b) k-n , when all the transmission zeros of the

lossless 1qdder network are at p1=0

(¢) O<k<n., * when the transmission zeros of the 1ossless“

. ladder network are at p,=0 or p;==;

“where n=6_ (7).
_ Py

The nécéssity is obvious. Hence, only the sufficiency is
. i .
proved. Because of Condition (i}, the open-circuit parameters of the
lossless two-port ‘can be chbsen from either Case A.or Case B, as mentipned

in Section 2.2.

(a) Since k=0 éhq..R>0 , the choice'of the parameters

o o _R N .
of Case A with: z 2(p1) 1(p1) -ETB—j- is possible.

.o Since 212(p ) has a]l OI Jts zeros at p,= ,

realization of the—open o1rcu1t parameters will g1ve

a 1owpass Tadder network with pi-inductors in the series
i R

arms>and pi—capacitoré in the shunt arms. Realization

s

of- Z(p1 y )‘ is -obtained by terminating the Towpass
1adder network by the multivar1ab1e posit1ve real impedance

Z5(9 ) - (g, )/Q(n ) .

funct1on

(b) For a posi iﬁe R, choose-the parameters of Case A,
. /-R' n
and in tha; cage 212(pi) = 221(p13 —EETE;T- , whereas
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(c)
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for a negative R , choose the parameters of Case B,
_ Jcﬁb?' .
and in that case z1z(p1)'= 221(p1) = —-E;TB;T-. Since

212(91) has all of its zeros at 'p1=0 , realization of
the open-circuit parameteré will give a highpass ladder
network with p1-capac1tors.in the series arms and Py~
inductors in the shunt arms. This ladder network when
terminated by an app}opriate multivariable positive real
impedance of P(a,)/q(a,) or Q(hjilp(ﬂi) , gives a

realization of Z.gp1 m) .

Again, depending on a positive or a negative R , choose

/Rok

) _ _ i
Case A or Case B, and then 212(91) = 221(pi) = —;ETE;T

Rk
or —HETE;T-(O<k<n) . Thus, %12(p1) has zeros both at
p1=q and PiZ® » and hence, realization of the open-
ciréuit parameters will give a lossless ladder network
with its transmission zeros both at the origin aﬁd at
infinity of the p.-plane. A realization of Z(p1,...,m)

is obtained by‘terminating this bandpass Jadder network

with the impedancé function zo(“i) .

The necessary and sufficient conditions for an m-variable PRF

Z(P;,.:.,m)\'to be realizable as the input impedance of a resistively-

terminated lossless—Tadder nétwork which is a cascade of m two-ports
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of variables P1 to P in that'order, and eacﬁ two-port having all

of its transmission zeros at the origin or at infinity, are that,

(1) For 1=1,2,...f(m-1) . Z(c1,c2,...,c1_1,pi,.,.,pm{ u

is cascade-expressible in the variable Py ,.that is,

.)

,-'nc,.l

i)

'“1(”("'1)"“1'(“1 Cad )’“"1(”("1)01“ @y
‘“gi )(pi a0, . ,1)‘“"?)(‘%“’“1 (2

Z(c'l s,czs LR ’ci-1 ,P.i Ir e »Pm)-

, . 2k,
il ol nd p-ad Do nfie) = Ripy T 1120

. where R1 {5 a non-zero real constant, k1=0 or

5p (Z) and cj=0 or @ (j=1,...,1-15' depending on
-i .

whether k.=0 or & (Z) .
h| - P3,

Proof

Only the sufficiency will be proved, as the necessity

v

immediately follows from the analysis of such a network. For i=1,
(i) and (i1} are the conditions of Lemma 3.2.1. Hence, from the MPRF
Z(p1"-_’m) , a prvariabTe lossless ladder netwqu with all of its
transmissioﬁ zero;‘eitﬁer at py== or at p1=0‘: depending on whether

ky 1is zero or Gp (Z) , can be extracted. Termination 21(9]) of"
'I . .

this ladder network is given by Z(c1,p2,p3,...;ﬁm) , where c]=0 or
» depending on whether the extracted 1bssless two-port is a lowpass

or a highpass ladder network. The driving-point MPRF 21(91) , wWith
(i) ana (ii) for =2 , again satisfies the realizability conditfons of

Lemma 3.2.1, and a pz-variab1e lossless lowpass or highpass ladder

network can be extracted from it. Thus, at this stage of synthesis,

’
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thé cascade structure consists of Py- and pz—variab1e.10551ess two-ports

terminated by the driving-point MPRF ' Z (n] 2) Z(ci,cz.pa.p4, ceiPp ) ,'

where c2=0 or = depending on whether the pz-variab1e 1oss1ess two- port
is a To&pass or a highpass ladder network. This process is repeated

until a single-variable PRF Z ;(p ) = Z(cT,cz,...,c P ) , with.the

2k
condition that m(m)(p )mtm)(p )- n(m)(p )n(m)(D ) =R P 0 is obtained.

This is realized by a resistively-terminated lowpass or highpass 1addé}
network with all of its transmission zeros either at p == or at m=0 .
Thus, Z(p1 . ) is realized as the input impedance of a resistively-
terminated 1oss1ess ladder network which is a cascade of m lossless
two-ports of variables p, tq Py each two-port having all of its

[

transmission zeros at the origin or at infinity,
@

Corollary 3.2.1

The necessary and sufficient conditions for an m-variable PRF
Z(P1,...’m) to be rea]izable'as the input impedance of the resistively-

terminated lowpass ladder network of Fig. 3.1 are that,

T(3) For i=1,2,...(m-1) , 2(0’0"“’0’pi""’pm) is cascade-

expressible in the variable Py . that is,

2{0,0,...,0,p:5. .- 4Py (1)(91)P1+1(“1 )+"(1)(p )Q1+1(n i)
1 (ﬂ(p )Q1+](Q] )+ T'”(p-i)PH-] (Q ’1')
—

(1) m%i)(p})méi)(p,)-n§1)(p%)n£i)(pi) =R, 1=1,2,....m

‘ where Ri is a non-zero positive constant.
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Corollary 3.2.2

)

:The necessary and shff1c1en§hFonditfons for an m-variable PRF
Z(p]

terminated highpass 1ad§er network of Fig. 3.2 are that,

m) to be realizable as the input impedance of ‘the resistively-
I 3

(i} For 1i=1,2,...,(m=1) , Z(w,...,m;p1,l..,pm) is cascade-
expressible in the variable Py > that is,
(1) (1)
my e )Py g ey gy )0y ey )

Z(‘”:----“‘:p :--':p)= X
B méi)(p1)01+1(91,...,i)+"éi)(p1)P1+l(n1,...,1)

Zn

(i1) mgi)(pi)méi)(p1)-n$i)(p1)n£{)(pi) = R.p; T,oie1,2,..

where R} is a non-zero-real constant and n1=6p (Z) .
i

Corollaries 3.2.1 and 3.2.2‘are special cases of Theorem 3.2.7.

Lemma 3.2.2

]

_The necessary and sdffjcient conditions for an m-variable PRF
Z(p1 ‘ m) to be realizable as the input impedance of a pi-variable
mid-series and mid-shunt 1owpéss ladder network terminated by a

muitivariable positive real impedance function Zo(ni) are that

(i) Z(p1 m) is cascade-expressible in the variable Pi o

that }s, it can be written as:

m, (p; )P(ay)+ny (py)0lay)
Z{p, ) =
Tooeoom’ © m,(p. 0l )+n, (p 1P(R, T

Y

!
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m (pydingpy) - °

(11) The :ingleevariab1e PRF, F(pi) = DICRTACY satisfies

the Fujisawa conditions [49] givgn below:

{a) Zeros of the numerator of the evenJParp,of _F(pT)
are restricted to the 1ma§1napy“ax§$ of the AR ’ *

Py-plane,
(b). ;FﬁpTJ.fhas a pole Of'zerorat Py== -

{c) ny(py) or n,(p;) - (or both) have at least one ¢
more zero than there are zeros of the numerator

of the even part of F(pi) .

(d) 1If Wy < wy<eee<wy are the imaginary axis zeros
mentioned in {a), then if n1(p1) satisfies

Conditfion (c), any value mjf has at least j

_zeros of m1(pi) between p.=0 and itself, and
if "2(pi) satisfies Condition {c¢), wj has at o i

‘least j zeros of mz(pi) between p;=0 and

itself, : . ;

;l' -

Proof |

sufficiency: Since F(pi) is a single-variable PRF satisfying the
Fujisawa conditions, it can always be realized as the impedance function
of a one-ohm tenninatéd lossless mid-series and mid-shunt 1owpass'1adder
network in the variable, Py [49]. This network, with the resis ive

termination réplaced by the MPRF P(ﬂi)/Q(Q1) , gives a realization of

z(p1,...,m) *
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The necessary and sufficient conditions for an m—varfab]e PRF
Z(p1‘_..,m) to be realizable as the input impedance of a resistively-
terminated lossless ladder network which is a cascade of m Fujisawa-type
Towpass 1adder‘netwdrks of variables Py to Py ?re that, .Sﬁé i

(1) For i=1,2,...,{(m-1) , 2(0;0,...,0,p1;..;3pm1 is cascade-

expressibie in the variable Py s that is, °

P T L BT LT TD
mg (60 (2, ...,1)"“;.”(91')"14»1(“1,...,1')

Z(0,0,...,pi,. .

e ‘*’(pi)+n“’(p1) 1
S i F p = i=1,2,...,m
o Tom eV ey

satisfies the Fujisawa conditions,
Proof

The driving-point function of the termination of a pi-variable
Fujisawa-type lowpass ladder network can be ‘obtained by fetting pi=0
in the overall driving-point function of the network. The proof of this
theorem can be obtained by u51ng this fact and repeatedly applying

L.emma 3 2.2.

It was shown in Chapter II that from a_given MPRF Z, a lossless
two-port in the variable p; can be extracteé if and on]yiif the function
is cascade-expressible in the variable P; - Thus, an m-variable BRF may
require as many as m trials to test if the function is cascade-expressible

in any one of the variables. However, in the case of extraction of a



degrees of the numerator and the denominator polynomials differ by one.
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ladder network whose transmission zeros are all e1thef at the origin or
at infinity, tPe test of cascade expressibility of a function is much simpler
than in the general case. If a pi-var1ab1g Tadder network with all of ‘
its transmission zeros at py= has to be extracted from kZ , then the

highest degrees of the numerator and the denominator polynomials of 1

" in the variable Py must differ by one. ~Similarly, if a p1-variab1e )

ladder network with all of its transmission zérds at. p1=0 has to be
extracted from Z , then the lowest degrees of the numerator and the
denominator polynomials of Z 1in the variable Py must also differ by
one. Hence, for the extraction of these typeé of ladder network§ ong
ought to check Condition (1) of Lemma 3.2.1 by testing if the given MPRF

is cascade-expressible in a variable in which the highest or the lowest

In general, if the highest or the lowest degrees of the numerator and
the denominator polynomials of~an MPRF in a variable differ by oner then

that particular variable cannot be contained in the Toad.

The following examples are considered to illustrate the techniques

of lgdder realizations based on the results obtained in this section,

Example 3.2.1

Realize the PRF of three variab1es given below:
2
4p1p2p3+4p1P293+2P1p2p3+4p1p2+2p1pzp3+4p1p2p3

2
+4p'| p2+2P"| P2P3+4P-| p3+2|3'] p§+P2P3+P‘z‘Q3+4PT+2P-| p2
+p2+p2p3+p2+p3+1 S < ﬁ”f ke

‘_'9

VG A

5 77
2P1P2P3+2P1pzpa*Pzpa+zp1pz+pzps+2°1pzp3+2P1+p2

Z(_p,‘ sPan3) =

P . +p2p3+2p1p3+2p1+p2
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o
ar

"Since the highest degrees of the numerator and the denominator polynomials .

in the variable Pq differ by one, an attempt is madé”fbmFéwrite Z in
the cascade-expressible form in this variable. .-
2 2 2.2 22 .2 . 2°
(4p7+1)[PoP3+RoP3 ¥y *PyPy*, *P*1 142D, [PP3+D,P 3 +Po+PoP4 4R, ] -
2 2 2 2 2, 2 ‘
[pzp3+p§§3132+p2p3+92]+2p1[p293+pzp3+p2+p2p3+p2fp3+1]

z‘(p] :p2.P3) =

- e

The real part condition of the p1-var1ab1e network can be -checked by

6 (by) = o ng ) ()0 {1ty )V )

(40241} (1)-(2p ) (2py) = 1

The termination of the p1-variable lowpass ladder network is given by

- 2 2,2

20,0 p.) = PaP3*PaP3+Dy PPy 4Py 3] & g
»P2sP3 27, 2 2

' PaP3*PaP3*P; PP Py

Since the lowest degrees of the numerator and the denominator polynomials
of -Z(o,pz.p3) in the variable p, differ by orle, this function i .
rewritten in the cascade-expressible form in the variable P, as iwen

below:

2 : 2 a
(po+1)Lpa+114+p, [pp,+1] | ’

Z(OSPZsps) = 7.7
PoLP3+pa+1 ]+, [p,+11]
* Now, the numerator of the even part of the pz-variab1e nefwork and the
driving-point impedancé of its termination are given as
™~

~

1

——
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' O i
G, (py) -'mfz)(pz)m(z)(p )»n(z)*(p (2)(p2) j) 1 o

i . ! N i : L )
» ﬁ?w~ ‘; - J pz(fill . ‘,‘_ . .
e . = (pz'ﬂ)(pz) (Pz)(Pz) p;z@ p2 . RN \ : '
] ,‘ v’g o r'\r -‘
{ p3+] .. N ' _ ‘ Vot ' r
Z(o’@,p3) = _2—__. - . v, |." .
. p:.}"’f-"-_;."'1 . . . ’

.

. ' . ’ ]
Finally, the numerator of the even part of. Z(O,w,p3) is given by

5yog) = n{ (008 ()02 (630 (o)

= (1)(p5#1)-(p5) (p;)

Thus, Z(pi,pz,p3} satisfies the conditions of Theorem 3.2.1, and it can
be realized as the input 1mpedance of a res1st1ve1y-term1nated ladder

-The necessary parameters of rea112at1on are as follows:

m1m(p1) 4p$+1 461(13_1_) S

Wy - ] . m i
Zyy°(py) = = (py) = =g~
ey T S gy

+ ' i 2P

(2) -
z (p ) = = \
n.'e néz)(pz) ‘p2 IR e 2 (pz

A complete realization of Z 1is shown in Fig. 3.3.

‘Example 3.2.2
Consider a two-variable PRF given by
d \
A
, .
\\
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52 6.5 2 3h. 5.4
p1pz*pl+?Plpz+59$92+4p1Pz+2P1?§pTPz

2 2., 3., 3.2 oo 2.2
1P+50) Py +2P Pp 4Py +5py P, H4Py P5+5Py

2.5 3 6
p$b2+2p1 Po+PIP

2( ) .+2p1p2+p§+2p14p2+] . ’ A
CBPaPpl F 43 5 3 2.5 37 223, 0.3
: : +2plpz+p1pz+4p1pz+p1+2p1p2+4p1pz+3p1pz+2p1+4p1p2_

: 2 3 .
- +6"%Pz*‘“ﬁ*3"192"2"1”2"92*3"1*2?1Pz"ZF’z*z"l*pz*1 AR

b . ]

R . [ . (Y

! \Qvf ) . . S, ’;IF :

Here, the highest degrees of numerator and dehom1nator po1yﬁom1a1§‘o$

oz 1n the variable p, are the 'same,. whereas those in the variable p]

d1ffer by one. Hence, the variable py cannot be. a 1oad variable of
a cascade rea112a;ion of 2, i} one exists. Therefore, an attempt:is - P,

made to check if 2 1$'in the cascade-expressible form in the variable Pq:

-

6 2 6 6 4 22,2
+5p]p2+5p1p2+5p]+p2+p2+1)

42
. (p1Pz*P1P2+P1*5P1P2+5P1pz*5p1

5 3 2 3,3

o +(2p1p3+4p1p§+2p1p2+4p]p§+2p$+8pfp2+4p1p2+2p1p2+4p1

2 - 1]
v "*4P1pz+2P1p2+2P1) / o —
26ypp ) = S S K. SO o
(2 1pz+4p1p2+2p1p2+3p1pz+2p1+ﬁp1p2+3p]p2+pg+3p1+ p2+ﬂ2+ )

52 5 3 2
: _+(p]pz+p]P2+P1+4P1Pz+4P]p2+4p1+ZP1PZ+ZP1P2+ZP1)

A -

-
-

[(p1+5p?+5p1+1)p2+(p1+ﬁp +5p1+1)p2+(p1+5p]+5p1+1)]

+[(2p1+4p]+2P1)Dz+(4P1 p]+4p1)p2+(2p]+4p1+2p1)92

Z{pyspy) = +(2p1+4p1+2p])] : N ‘
: [(2p1*3p1+‘)Pz+(“P1+591+2)Pz+(2P1+3P1+1)pz+(291+3pl+1)]
+[(P1+4P]+2p1)p2+(p1+4p]+2p1)p2+(p1+4p1+2p])]
|
2{py»py) = (p‘+5p1+5p1+1)E°2+p2+1]+(2P1*4P1+291)[Pz+293+pz+1] :
. (2p1+3p1+1)[p2+2p2+p2+]]+(p1+4p]+2p])[p2+p2+]]

.4’{‘ ’
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*

Thus, Z 1is cascade-expressible in the varia'b1e,'p1 . Obtain the single-

variable PRFs given below:

a{" (o, 0n{1 (5 (oPes0] 450241 )+(2p3 445 420, )
PR ¢ PRV ( PSR PSSP SRS IO -(3.2.1)
) "'"2 (p'] )+n2 (p'| ) _ ZP] +3p1 +'_| )*(91 +4p] "'2p'| )
and b
P(p,) . tp§+1)+(pa) (3.2.2)

T = 10p,) =
W) T (22 )4 (pyn,).

~ The sing]e-var1ab1e functions given by (3.2.1) and (3.2{2f |
satisfy the rea112ab111ty conditions of Fujisawa lowpass Tadder networks.
First, the function given by (3.2.1) is realized with a one-ohm resistive
termination and then th1s one-ohm res1stance is replaced by a realization

of the function given by (3.2.2). A complete Fujisawa-type ltowpass ladder
realization of Z(pl,pz) is shown in Fig. 3.4.

3.3 LADDER REALIZATION USING REAL PART ‘CONDITION - f

So far, the discussion. has been on the realization o% a ‘lowpass

or a highpass ladder network where the cascade-express1b111ty:1s one of

the conditions that the given input 1mpedance has to satisfy ! In this

ection the rea1izabi11ty conditions are derived invelving £ne numerator

. of the even part. In particular, necessary and sufficient cdnd1tions are

ﬂ‘fder1ved under which an m-variable PRF of the first degree in an1 variables

excébt one can be reééized as a resistively-terminated ladder network
First,

a theorem on a resistively-terminated lowpass ladder realization is
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estab11shed then using this theorem and the transformation P; +'l—- s
Py '

N the condition forgthe ggaﬂ1zab111ty of_a re&1§t1ve1y-term1nated highpass

-

ladder netﬁbrk 1s derived

Theorem 3.3.1

The necessary and sufficient condition for an m-variable PRF

I b LI ] _1WI|ich S0 e s
’¢l°‘II“ : (p] )luz (p“’..-’m

F“ )(p]

~.degree in a]l variab]es'except one, to be realizable as the input impedance

of a fésistive1y—term1nated lowpass ladder network, with inductors in the

series arms and capacitors in the shunt armé, is that

Mg])(p1,...,m)M£1)(pI,...,m)'N%1)(p1,... )N(1)(Pl,...,m) =R

where R s a non-zero positive real constant.

Proof

The necessity follows immediately since,. for such a realization,
all the transmission zeros are at p == (k=1,...,m) independent of other

*

variables.

Suff{ciency: Assume that the degrees in none of the variables of the

numerator and the denominator polynomials of F§ )(p1 m) differ by
one. Also, without loss of generality, assume that Gp [F(”(p1 m)]: 1
(k=1,...,m-1) and Gp F“)(p1 )]— n . Now, F(”(p1 m) can

. A m _ 'EXEER]

be rewritten as:



(p1,...,m)+N$1)(p1,...,m)
1
--’m)+N§ )(pl,-...m)

A-§2)(P2,. . ’m)P]"'A[(]z?(pzj . ’m)

(3.3.1a)
1 (pz,....m)P1+362)(p2,....m) |

where

“%1)(91,.1.,m)ﬂé1)(P1,...,m)‘"§1)(91,... )"ér)(p1,...,m) = R (3.3.1b)

,Tﬂ
' (2). Aéz)(pz m) P
The (m-1)-variable PRF F'"‘(p, m) ° oy -t can be expressed
U BO (pz’- ,m)

as

A(2)

2 2)(p, \
o, Ay ) w8, e, ) |
Zsueem BSZ’(pz,...,m) ng)(Pz,...,m)+“§2)(pz,...,m)
(3 Yo, 403 '
. A] )(p3’.__’m)p2?Aé )(p3,..-3m1 ‘(3.3.23)

57 (b, P35 (P, a)

Condition (3.3.1b) implies that the PRF given by (3.3.2a) must satisfy

Ll

the condition:

M§2)(p2,...,m)M§2)(p2,...,m)'N§2)(p2,...,m)N£2)(p2,...,m)l= R (3.3.2b)

Continuing this way, obtain the following PRFs with the corresponding™

[
L

real part conditions: .
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' : (3) 3 3 ,
FB3)¢p ) _ A {p3,...,n) = M% )(ps,....m)+N§ )(p3,....m)
3,...,m;? 853)(p3,....m) rngs)(pB,...,m)+N§3)(p3,...,m)
. - (4 4 ’
vg'“ -~ A )(p4....,m)p3+Aé )(p4,...,m) (3.3.3a)
81(4)("4....,m)93+3c(14)(p4,...,m) |

”$3)(P3,...,m)"£3)(93,...,m)“"{B)(pa,...,m)"és?(ps,...,m) - R

& . (3.3.3b)
L (n-2
plm-2) )= ol )(pm-Z,...,m)
Em#Z,...an Bgﬁ;z)(p ) )
MeZy. .o sm

M'fm-Z)(pm-Z e oo ,m)+NT(m—2) (pm-Z', ‘e )

| - SN () ' =2
| My (pm-Z,...,m)+N2m )(pm-2,....m)

alm=1) s

pm-1,m)pm-2

<T,m
' : (3.3Ma)
B1(m—] )(p

)

(-1

m-!,m)pm-2+30 m-1,m

(m-2)

M1 (pm—Z,...,m)Mém-Z)(pm-Z,...,ﬁ)'N%m-Z)(bm-Z,}..;m)Ném—Z)(pm—Z,....m)=R
| (3.3.4b)
YERIV
F(m-1)(p 1 ) : A?m 1;(Dm_1}m) _
-1,m -
, m BOm (pm-1 ,m)
- Mfm-1)(pm—1,m)+N§m—T)(pm-l,m) -~

R R ITIR N S

m-1,m -1,m) : )
é ' -

_ Amp 1 ™ (p)
8™ (p Jp 480 (p,)
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- ’m)Mg"'”(pm_1 ,,,.)-N1(“"”(Pm-1 e, ml =R g (3.3.50)
F(”‘) A(m)(p) '"%m)(pm)’“"{m)spm) (3.3.6a)
a(m’(p ) M ()™ (py) |
wm o ™ o) ~§M’(p WMy =r (3.3.60)
;

Note that none of the polynomials A(i)'s and B(i)'s

(12Z,...,m} can be 1dent1ca11y zero, zince in that case the real part

conditions will not be sat1sf1ed. Also, none of the polynom1a1s (1)'

and B(i); (i=2,...,m) can be 1dent1ca11y zero, since in that case a
degree difference in the variable p, will be reflected between the

numerator and the denominator polynomials of the given PRF F“)(p1 m) .

For instance, if in (3.3.5a), B%m)(pm) = 0 , then the degrees in the
variebie Pool of the numerator and the denominator polynomiais’of

. F(m'] )

(p. )- differ by one,_that is, the degrees.in the variable p
m-1,m S - m-1

) and B(m ])(p

] rn) of (3.3.4a)

. (m-1)
of the polynomiais AO (Pm_1,m

differ B} one. The function A(m'1)(p )/B(m 1)(p ) is a ratio
. R

m-1,m m-1,m

of even and odd polynomials because of Conditioh (3.3.4b). Assume that

Agm'1) is even and B%m']) is odd.\ Since A{m"])(Pm_1,m)/Aémf1)(pm-1,m)

and 8"Vl /8" g ) e PRES, N e, g )

™o ) and 8™ o y-an™ g

n-1 m . where a and B

m-1,m
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3 B

b

f. o are positive constants., Thus, F(m’lz)(p";_2 _ m) as given by (3. 3 4a)
E. - ' can be rewritten as: '

P - (m-1) (m-1) (m-1)

é S £(m- 2)(p ) “( 1)(Pm 1 ,m) P2 "( )(Pm -1 m)+N (Pp-1 m) (3.3.7)
f. ' m-2,. m- m=1 (m=1)

§$\ BN Py ) P2 ™ Py mytNe Ry )
&‘ From (3.3.7), it is élear,that the degrees in the variable P of the
% : numerator and the denominator po]ynom1a1s of F(m 2)(pm_2 . m) also

differ by one. Continuing 1n this way, it can be concluded that the degrees.

in the variable me{ of the numerator and the denominator polynomials

I adae o o B PREN

of the given function F(])(p1 mJ differ by one. Since this

s not possible, the polynomial -B{m)(pm) cannot be identically zero.

The single-variable PRF F" (pm) as given by (3.3.6a)

satisfies Condition (3.3.6b). Hence, the degrees in the variable pﬁ

r oy

of its numerator and denominator pdlynomia1s Ag“)(pm) and Bg“)(pm)

R e

differ by one, Since the PRF as given by {3.3.5a) satisfies ?he real

; ‘ part condition (3.3.5b), A(m)(p )/B% (p ) is a reactance funﬁtion.
Assume that it is a ratio of even ﬁb'odd po1ynom1a15. Moreover, s1nce

‘ A (o)A (g ) and B(m)(p )/B(m)(p ) are PRFs, A(m)(p ) = ™ (p )

and B(m)(p ) = aNgm)(p ), where y and & are positive constants.

Hence, the function E(m ”(.pL mJ can be rewr1tten as.

s

YM(m)(P P, +H§m)(pm)+N§m)(pm)r
sn("”(p P 1+r~-|("‘)(p,,,)mzﬁ"’(pm)

YA N
. | _ '

(3.3.5)

- FUn-T)(p
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It is obvious from (3.3.8) that the degrees in the variable p_ of the

nnmerator and denominator poiynomiaIS'of .F(m'l)(pm_1.m) differ by one.
Thus, using the PRFs and the corresponding real part conditions successively
from (3 3.6) to (3. 3 1), one arr1ves at the conc1us1on that the degrees

in the variable P of the numerator and the denominator poTynomia1s “of

the given function F(1)(p1’ ..,m) .differ by one. Th1s cpntradicts the
original assumption of no degree difference. Hence, if the PRF given by
(3.3.1a) has to satisfy the real part condition given by (3.3.1b), the
’degrees in at least one of the variables of the numerator and the

denominator polynomials of the given function must: differ by one.

Consequently, by Ozaki and Kasami's theorem [50]-, removal of a po]e at

e
infinity from F( )(p]"..,m) (on\\l{F(])(p1’_."m) 15 possible. If
.the numerator polynomial is oné degree higher in'a particular variable
than the denominator polynomial, then the function has a po1e at infinity
in that variable independent of the other var1ab1es wh1ch can be extracted
as a_series inductor. On the other hand, if the numerator ponnom1a1
is one degree 1nwer than the denominator polynomial--then from the “inverted
funct1on a shunt capacitor can be extracted, In e1ther case, the remaining

‘funct1on is positive real whose degree in one of the variables ig reduced

by one from that of F( )(p1,‘;., ). Moreover, the numerator of the
even part of the remaining function is still R, and thus the process
is repeatable, Hence, by repeated removal of po1es or zeros, a,zero

degree function is achieved, which can'bg realized as a resistor.- This

proves the sufficiencys and the theorem.is established.
. . )
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Theorem 3.3.2

-

The necessary and sufficient condition for an m-variable PRF

M, (p )N, (p )
F(p] ') 1 11---1m 1 1,.. .M

= »which is of the first degree
TR 1 F A Y '

in all variables except one, to pe realizable as the input 1mpedaﬁce of
a résistive1y—terminated highpass ladder network, wfth‘capacitors in the

. series arms and inductors in the shunt arms, is that

- . z_k_}_’ﬂ_z_k_a__,—-u.
Mtpy, Moy ) ey pdNaley ) = ER ey ey

2k
m
(3.3.9)

where H 1is a non-zero real constant and k1=6p (F) ¢i=1,2,...,m) )
. i

Proof

-M$1)(pi,...,m)+N$1)(p],..:ﬂn)
Mél)(P1,...,m)+“é1)(P1,...,m)

Let F(])(p1 ' m) = be an

_m-variable PRF obtained from F(p1 rn) after making the transformation

p; > L (i=1,...,m) . Since F(p1 m) satisfies the.condition given

Pi seves

by (3.3.9),1t can be shown that F“)(p1 - m) will satisfy the condition
: seees .

given below:

00y 0y 4 e e s

where R\\;s a non-zpro_posﬁtive real constant. Thus, by Theorem 3.3.1,

F(T)(p1 m) can be realized as the driving-point. impedance fpnctioq “

e e e s e ————————— s au -

R Y in e

-t



-65-

owpass ladder network, From this realizatfon
+ %—: (i=1,..,,m) on it, a realization
i . C e

. : : . : f
of F as the input impedance of a resistive1y-term1nated,highpass-1adder

- of a resistively-terminate

by making the retransformation

network with capacitors in the series arms and inductors in the shunt arms

' are obtained. .

Example 3.3.1

Consider the following three-variable PRF:

1°F2°F3 MZ(P] .pzap3)+N2(P-| :p2:p3)

4 3.0 2 4.3 2
(24p,p;P5+18p, P, +12p; P,P3+4P,+8p5D4+6p, P, 4D,

4 2> 2
+(6P]P2+24P]pgp3+15p1p2+5p1p2p3+2pg+4p2p3+3p1+2p2)

. (1291pgp3+30p1pgp3+4pgp3t6ﬁ1p3+4p2p3)
3 , ' 2
+(36p'| P2P3+8ng3ﬂ zp.] p2p3+8p2p3)

Here M](p1,pz.p3)M2(p1:p2,93)-N1(p],pz,p3)N2(p1,pé,p3) 1§_eva1uated to

be 288p$pgp§_. Thgs, Z(§1,p2,§5)_ satisfies the condition of Thegrem

3.3.2, and it can belrealjzed:ag the impedance function of a resistively-
terminated highpass‘}adde} network.. A complefé realization is shown in
Fig. 3.5. ” | |
) e

3.4 SUMMARY AND nrsc655{bn

This chapter has egtabiishgd several necessary and sufficient
conditions for the realization of résistive1y-terminafed mqltivariable
‘lossless Iadder'networks. First;'conditions havé been derived for thé

extraction of a lowpass, a highpass or a bandpass ladder network, with
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;1i‘of its £ransmiss1on Zeros efther at p1=0 or.at p1=é ». O a
Fujisawa-type lowpass ladder network,  Next, using the fact for the
extracted lowpass and highpqss ladder network; the 1mpedance;funét10n
of the terminating iﬁad can be abtained by respectively letting p1=0
and p;=u in the given M?RF, con&itioh§ for a complete ladder rea11iat{on
have been derived. These cond?f?ons_%llow a realization of an MPRF a;
a resistively-terminated cascade of m lossless two-ports such that each’
two-port 1s-éfther a lowpass or a highpass ladder network. It hés been'
shown that the highest or the 10@E5t degree difference of a particu]gﬁ
varfable between the numerator and the denominator polynomials determines
the choice of the var{able'ih which the conditions for a ladder extraction
with all of its transmigsidn.zeros at the origin or at infinity ought to =& _
be tested. It may be noted that Tpeorem 3.2.1 also gives the conditions
for a multivariable reactance function to be realfzabf;‘SS the input
impedance of a lossless ladder network if Condition (i1) “b]ds-only for

i=1,...,(m-1).

Condition ﬁsing_the numerator of the even bart has been derived
for the realization of a class ofhresistive]y-terminated 10wﬁéss la&der
networks, Using this realization, condition for a.resistive1y-terminated
highpass Tadder network with ail of its transmission zerog at the origin
lhas also béen derived, These realizations do not assume a specific
structure of the ladder network such as the one where each of the series
and shunt arms contains reactive elements in all of the variables [38],
or tﬁe ladder network of Section 3.2 where the structure consists of a
cascade of distinct single-variable Tossless tw?-porgs in.each of the

variables,

la‘i'

e
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e . .. - CHAPTER 'IV.

. PARTIAL DERIVAJIVE PROPERTIES OF MULTIVARIABLE
(CASCADED NETHORKS -

'~ " 4.1 INTRODUCTION
Some properties and techniques of generation of multivariable

reactance and positive real funct1pﬁs, from the partial derivative point
of view, may be found in the 1iterature [15], [fg], [51]. However, no
such‘study seems to haQé been done for my1t1var1ab1e cascade structures.
In this chapter [52], [53], some partial derivative properties of'a‘mu1{1-

| variable structure which is a cascade of‘singTe-variab1e lossless two-ports
'terminated by a single-variable imﬁedance function are established.
These properties are then utilized io derive conditions for the extraction
of single-variable -lossless 1a§der ngtwork with all of its transmission
zeros at the origin or at.iﬁfinity; Finally, some synthesis procedures \

‘ are outlined for the extraction of these kinds of ladder networks.

- The fo116w1ng symbols shall freqnenily be used in this chapter:

Zp (p1 ) m) . . partial derivative of the multivariable
i 3=
s function Z(p] m) with respect to the
‘ variable p, .
Ev F(pi) : even part of the positive real function F(p,).
% Nu G(pT m) . numerator of the rational function G(p.| m) )
I \\‘
- .
/\ R -

et e = e e . L e



: s - -69-

4.2 PARTIAL DERIVATIVE PROPERTIES OFcA MULTIVARIABLE CASCADE OF SINGLE

VARIABLE LOSSLESS. TNO PORTS WITH A ‘REACTIVE OR POSITIVE REAL LOAD

‘This section wiil first establish some general partial

two-ports of variables 2 to. Po-1 * and terminated in a reactance or

positive real 1mpedancg function of variable. Pn - Those cases where

some of the lossless two-ports are lowpass or highpass ladder networks

. derivative properties of a nepwork which is a cascade of {(m-1) -Istlessl -

with all of their transmission zeros either at the orig1h or at infinity

' w111'then be 'studied. Using these partial derivat1ve properties' .

necessary and suffigient conditions under which an m-variabTe PRE or

reactance function (RF) can be realized as the 1nput impedance of a p,-

zeros at pys= or pi=0 » and téfminated_1n a reactance or positive -

real impedance function of ﬁafiab}es gy will be derived.

Theorem 4.2.1

- The necessary condition fér'an m-variable PRF Zi(p.I ' m)
to be the 1nput impedance of a one-ohm resistiVely-term1nated network -

(Fig. 4.1) which is a cascade of m Jossless two-ports of variables |

» .

P to Pm , 1s that

ml . .dF(p) .
. { 1 {NukEv F'i(p'i)}] + Nu dpm—ﬂ'l
L (pl e : 2
" 1j21[méj)(ijQj+l(nl,.;.,j)fnéa)(pj)Pj+1(nl,...,i)]
m$1)(p1)+n§1)(p;)

where fi(pi) =T ) is the dfiv1ngfpofdt functionfbf,the
mz (P1)+n2 (p'i) -' it .

. ' , . 3 . v . é“?
two-port when it is ‘terminated by a one-ohm resistance, and

\
¥ -. e
y . . .

“variable lowpasé or highpass ladder nétwork, with all of its trangmissiom

(a.2.1)

ith
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"This process is continued until Z

R ——

j+1(pj+1,...,m) is the driving-point function of the

QJ+1(91 j)

termination of the jth two-port (i=1,....m , §=1,...,m=1) .

Proof ~

A

The driving-point function of the gfven network (Fig. 4.1)

can be written as:

(1)(p1)P (a0 {p1 )0y 0))
m£1)(p1)02(91)+ﬂ2 ?(p1)?z(n1)

Zl(p1,...,m (4.2.2)

o Taking part1a1 derivative of (4.2.2) with respect to Py gives:

lu

[m(1)(P1)m(])(P )- n(19(P )“(])(91)] o zZp (72, --;'m)

hp 1,0 m (4.2.3) +
Emz (p]102(91)+n2 (P1)P2(9])]
But  Z, cah be written as: .
- ‘?’(pZ)P (9 2)+n‘ )(pz)osm1 ) “
Zz(pz m (2 (4-2-4)
_ e (p,)05(ay 2)+n2 (92)P3(n1 2) .

and its partial derivative with.respect to p, s given by

[m12’(p2)m22’(p )-n(Z)(pz ; )(pa)] No 23 (P g
) = T (4.2.5)

Zme(P1...;,m

as given below is obtained:

m-1 pm

&
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(m-k)-variab1e driving-point PRF (RF) of variables @
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[m%m-])(Pm_1)méT'])(P 1)-n(m-])(9m 1)“(m-1)(p ‘1)]Nuzmp {pp,)

. (P sP ) = .
-1, Po-1Fa’ (0" By )Gy g on™ (58 )T

(4 2.6)

Hence, Z]p can be rewritten as:
om

o [ T (mtiy(pi)m<1)(pi) (o057 Mo zmpm(pm) _
) ) = : (4.2.7)

2
jg [(m(j)(p )Qj"!-] (Q‘[ )+r|( (Pj)PJH_(QT,...,,‘])],

But m%i)(pi)mgi)(pi) n%i)(pi)néi)‘pi) = NEV Fylp,) , and thus, (4.2.7)

yields (4.2.1).

Théorem 4.,2.2

7 The necessary condition‘fbr an m-variable PRF (RF) Z](p1 m)
to be the input impedance of a network (Fig. 4.2) which is a cascade of

K lossiess two-ports of variable P to Py » and terminafed'by an
. r

] k- is that

k
[ m (kv Fi(py )1l Nu k+](n ,k)

(p ) =
z 1,...,m" k
1Py I [m2 (pj)oj+1(n1 )+n23’(p LRt

j—

mfi)(p1)+“§1)(Pf3a; | .
(1) STVl (i=1,...,k)
m2 (p'i)+n2 (rpi)

!
[

where Py € “1,...;k " Fi(pi) =

1s'the driving-point functibn’of'the ith two-port when it is terminated

- ~
T
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Py . g)
UYalh,, . 5

by a one-ohm resistance, and Zia@ ) U=k

is the'driv1ng-point function of the termination of the jth two-port.

" The proof of this theorem is along the same 1ines as those of

Theorem 4.2.1.

" Corollary 4.2.1

~ o o
If™in the network of Fig. 4.2, any one of the lossless two-ports
is a lowpass ladder network wifh inductors in the series arms and

capacitors in the shunt arms, then NuZ1p (pl m) (pl e k)
- q i yeons

g ey

-

is independent of the.variab&p of that lossless twoeﬁort.

Proof »
Thgo}em 4.2.2 gives
k- o R |
! = , g
Wz, (g, ) = LT BRI M g e (9 (4.2.9)
~ 20
—-‘¢\

.
in

If the jth lossless two-port, where j ¢ {1;...,k} , is a lowpass ladder
. network as stated in the coroklary, then NuEv Fj(pj) is identically a
positive constant. -Hence, from-(4.2.91< Nu z]pg(pl,...,m) is
° independent of Py - . i} , . /}

Corollary 4.2.2 : .

If in the/network of Fig. 4.2, any one of the lossless two-ports,
' say the one 1nftb variable Py , is a highpags ladder network with
capacitors in the series arms and inductors in the shunt arms, then

!
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Nu Z1p1(p1'...'m) (Pl € nl-----b)' has Z(nj-l)th order zero at p;=0 ,
where .nj=spj(z]) .

Proof

: :

-

If the jth 1ossléssa&ho-port, where j e {1,...,k} , 1s a'

t highpasﬁtiadder network as stated in the corollary, then NuEv Fj(pj) =

2n
ijj J , Where Hj is a real constant. Moreover, the corresponding

portion of the denominator of (4.2.8), that is, the polynomial

-[m(j)(PJ)QJ+1(91’_._’j)+n£3)(Pj)§j}1(n1,.._'j)]z will hévef pg as a

2

factor. Hence, from (4.2.8) Nu Zy, (p] m) has 2(nj-'l)th - order

)
Zero at pj=0 .

Theorem 4.2.3

If an m-variable PRF (RF) , &
- T I R (4.2.10)
S U RS CREI B CR LG E A LGP R

L
=
L}

where mz(pi)’ and "2(p1) are respectively even and odd polynomials
. oy .
of Py . and P(ni) and Q(pi) are multivariable polynomials ‘in P y
\

satisfies the condition:. -

-

2 oy, ) = Dy (o dmylpgdeny (pydng(p)] <
ot o - T (a.2.11)¢
[sz(g" )ala;)-Play )_Qpp,(n‘ )]

il

-

where P, € Qs and mT(pi) and n](p1) are respectively even and odd
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po1yndm1a1s of Py » then N(p] m) {s expressible as:
peeay

N(py .. @) = M{pydP(ay ), (py)0(ay) , (4.2.12)

i

Proof

Taking partial derivative of  Z(pj . ) with respect
to the variable Py € 91 » glves: |

(P11 )0(a; ) ony oy P00

. -N(p1,. )[mztpi)o (a )+n2(p1)Pp (a,)]
zﬁ (hy )" - 2 (4.2.13)
5 . [mz(pi)0(91)+n2(pi)P(91)] o :

e

Now, 1f the condition given by (4.2.11) has. to be satisfied, then from
(4. 2 13) the following two relationships must hold:

sz(p] sans ,m)Q(ni )'N(p] yenn !m)qu‘(ni)

m (py) TP, (a)0(ap)-P(a)0p (0]  (8.2.14)
sztp1,...,m)P(ni)'N(pl,...,m)Ppg(ni) “

*

m eI, (9)alay)Pa)0, (0] (4.2.15)

1f p_ (a.)q(a,)-P{g,)q (a,) # 0, then(4.2.14) and-{4.2.15) yield:
pz. i i i Py { L .

Kr

¢ “(Pf,...,m)=ﬁ‘1(ni)P(ﬂi)f:\1(p1)o(n1) )
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Thus, the thedr {s proved,

Theorem 4.2.4 .

The necessary and sufficient conditions for an m-;ariable.RF
Z(P1,:..,m) to be realizable as @he input impedance of a lowpass ladder
network with Pi-inductors in the series arms and p;-capacitors in the
shunt arms, beginning with an 1h&uctor, and terminated by an (ﬁ-])-variabIe

RF 20(91) are thap,
(1) The function "2 dis of the form .

R n Na= X
i An(“i)"i*‘“n-1(“1“’1‘ﬁ“'"+A1(“1)P1*A0(“1)
n-1| n-2
Boa1 (810847 By p{ag)py Tk o48, (0,045 (0;)

ey, ) . k4.2.165'

. P
- (i1) The polynomial Nu Z_ (p ") 1is independent of p

. Py 1,...,m i
for all p:j E:ni . L ‘
Proof - ] . - YL
= . _ , . ,

Necessity: ;If the function Z is realizable as stated in thi_theoreh,

it is obviously expressible in the form of (4.2.f6)._ The necessity of
' oo ) L

L

Condition (i1) follows directly from Corollary 4.2.1.

. Sufficiency: H{thout toss of?generality;_asshme tﬁaf n is even, and
the reactance function Z is a ratio of even by odd polynomials. Thus,
the‘bOIynomiaI coeffjcfenth Ak(k=0,...,n) - is even or odd dqpehding on

whether K s even:or odd, whereas -the polynomial dOef¥$c1en£'
Bg(2=0,...,n—1) is even or odd degehqiﬁg on whether 2 is odd or even.

s

Now: for the function given by (4.2.16), obtain

- ‘ 4
r ~
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7 is also an RF and the -polynomial coefficient Cz is even or odd

depending on whether 2 {s even or odd. Again, because ¢f Conditfon fii),

2n-1
. k
. Nu ij(_p.l,””ml = ..kZO ;;1k(_3'!11p,I » Py 8, (4.2.17)
where ak(ni) is given by
a,(a,) = A'(2,)B_(q,) - A (a,084(a,) (4.2.18)
k q+§=k gr 1™ q+§=k L .

with prime. representing the partial derivative with respect to the

variable Py - By Condition (ii), a1 = 0 tpat is,

An Bna17Aq Bﬁ o
‘ g

a0 ; I CR N

Because of the given form of Z , An(ni) or B. 1(9 ) cannot be

identical]} zeros.' Thus, from (4.2.19), (——ﬂ—q =0 . Since this

apj n-1
is true for all pj € ni-, An/Bn-l = kn “is a positive constant. Hgnce,
a pole at’ p;== independent of the other variables can be removed from

Z , that is, Z(p]’_‘.,m) = knp1+z1(p]’__-,m) » such that, : " _

n-1 n-2 ' .

_ S @ydey 6, plagdpy™ 44y (850py4Co(ay) - '
zl(p1,....m) - n-1. . .. n-2 (4.2.20)
+ By Rg)pyT 4By (g ey - 4By (24P 4By () '

where 00(91) = AO(Qi) and Cl(ni) = Aztni) -k By _ 1(9 ) (2=1,2,...,n-7) .

v L. o

I

dppp I identically zero, that 4s,

L
]

.' A;‘ Bn-2+A_rI|_'| 'Bn_l-An B;‘-Z-An-i Bl 1 = . . | | (4_.2.2])

7 L A i INT. " i,

TIPS



R e

" Substituting A =k 8

 =79- .

in (4,2,21) ylelds; ',

n n-1
] J' N .
- " [ T = r v N R -9
Ar-17kq ‘n-Z)' Bn—If$AnJI"kn B2l By =0 (4.2.22)
Since -kn B2 = Cocy (4.2.22) cén be rewritfen'as: ‘
Chey B oy B = 0 . 2
The above.rglat1onship hBTds’on]y when either Cn_{ is identically
zbrs or.ié is a constant multiple of' B - Since Bn 1 is even
polynomial of variables' a, and Cn 1 is odd the second possib111ty
fs,ru]ed out, and -Cn_,1 5"0.. From (4:2.20), obtain
) . ) f:
) yeeo p.li -5 .

. - -1 n=2 ..
_ Bn_1(91)91 8, (e )p "+ 48, (ny)py B (ay)

1 i . . (a.2.20)
Co-2(84)Py "4Ch_g(agdpy™ 4 40 (8 Doy 3o ay)

1

~'Note that Cn 2(9 } #0 , - because in that case Y] wou]d not be ap

o

~RF. The reactance function Y1 has the same form as 2 except that

1ts degree 1nfthe variable P; is reduced ‘from n to (n-1) . " Since

oy 1 o -
CHPy, ) TRy (p]’ M ?pj(P1,...,m) N Yipj(pl,...,m)
_.fon’;]] pj € Qi ©  Moreover, since Nu Z (p] - mi is independgnf of

] Pj KRS ) '
p; , Nu Y(p] m) is also independent of p;. Thus, Y, too

éafisfies the two conditions of the theorem, and its degree in the variable

p1 is one-less than that of Z . Hence, a pole at py== 1ndepe'nt
’ , - . ’ i ! ’ . v .

v

TN AR, 5 s a2 b e it TG AT e s
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of the othe; variables can be removed from Y; - This process of pole
removal at Py can successively be repeﬁted until the degree in .the
variable Py of the remgining function reduces to zero. Thus; fhe
rééctance function Z 1s realized as the input impedance of a lowpass
ladder network with pi-inductors in the series arms and pi-capacigprs

in the shunt arms, beginning with an inductor, and terminated by aﬁ_RF

i

of variab1és 91 .

Theorem 4;2.5'.

The necessary and sufficieqt conditions for an m-variable

--. RF Z(p] m) td be realizable as the input 1mpedancé of a highpass
ladder network with pi-capgcitors in the ! elge's artis and "pi-inductors_
in the shunt arms, beginning with a capacitor, and terminated by an
(m-i)-var1able RF 20(91) are thét,
(i) The function Z 1is of the form
n n-1 '
20 ) - An(ni)pi+An-1(ni)pi +'f'+A1(ni)p1+A0(ni) (4.2.25)
Tyeeu,m n nel, o o vlen e
B -(‘_ ’ n a ' .
‘(11) .Fpr all pJ e fy . Zp.(p1’_-:!m); has 2(n-1)th .
. .a'/. order zero at py=0 - where n=8, (z) .
R , 1
Proof "
If the function Z satisfies the two conditions, Z, (py )
‘ L . ) j rered
—~must be of the form, ‘
. y
- 2(n-1
- ) _H(ni)pi(" ) | (0226
& P = - L
% Pirl,...,m n-1 n-2, . 2
J By (ay)py 48,y (ay)py "4 - 4By (a)py8; (24)] N

e T R R I SR Y Vs EU R L e s e T T E T IO R A
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where H(ﬂi) is a polynomial {n n{ , If 21(p1 m) is a- function

obtained from Z(p.I

.;..,m) by making the transformation Py * . on

Py
1t, then it has the same form as (4.2.16), and the‘partial derivative
of Z](p1

m) with respect to Py € By is given by

E H(a,)

R Lh n=1 n-2, . '
A Y [31(91)P1 ".'Bz(ﬂi)p.i + .+Bn-1(91)p1f8n(91)]

iy P

(P'l

1, x. (4.2.27)

From (4.2.27), it is obvious that the Nu Z1p (p] ﬁ) is independent

of Py - Thus, .21(p1 . m) satisfies the two conditions of Theorem
- . B ypga ey .

4.2.4, and as a result it is realizable as the input impedance of a p,-

variable lowpass ladder network terminated by'ap RF of variables 91 .

From this realization, by making the retransformation Py > %—- on it, a
: i
realization of Z 1is obtained as the inpht impedance of a highpass ladder

¥
o

network with pﬁ-capacitors in the series arms and p%-inductors in the shunt

©arms, beginning with a capacitor, gnﬁ terminated by an (m-1)-variable RF

of variables 91 y ey

Lemma 4.2.1 IR W
) ’ T 1 N [}

,‘ o JM'(p 'U" )+ﬁ (p‘ C ) .
- 1 ‘],'---"m .I 1,...,"]
If F'l (P'I,...’m) = MZ(P] - m)+N2(P-| ) is an m-variab]g

PP |||

PRF 6f variables P ;;;, ”;hen the'fﬁnctions given by

1
]

T - )

o . P, Pty )

R T L GRS
hY

€ \ A

' o )+, (py . )p
. ; : e 1M, ,m Pl e
(1) F,lp C = e O]
. 3 .1"""“*% Moty P ™eley

e SaveaA = - C e —
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are (m+l}-variable RFs of‘variables' P mt1 ¢

o
-

o " : P
li‘l.l-i-N.I

If Fl ‘M2+N2 is an MPRF then —-;ﬁ— {s also an MPRF,

Since the sum of two positive rea1 functions is also a positive real

M +N2 1 Mlpm+1 +M2+N2pm+l

function, implies’
o " Pael P ()

15 an MPRF. Thi

that tne numerator polynomial of this functiqn: ﬂ]pm+l+N1+M2+N2pm+i
is HPf: .Since the ratio of the even part to the odd part of such a

"1 P = F. is an {m+1)-variable RF. "In a
Mp*ioPpar 2. '

poiynomial ,is an RF,

similar way, it can be proved that Fy is also an {m+1)-variable RF.

" Theorem 4.2.6 . LT *\\\\*; ’ ‘ Tl

The necessary and sufficient conditions for an m-variable’ PRF

ey ey ) e the e
ey, ™ IR T (pl,..., T to be realizable as the input _

fmpedance of a 1oupase Tadder network with p%-inductor§‘in the series

arms and p;-capacitors in the shunt arms, beginning with an inductor,
and terminated by an (m-1)-variabie PRF 20(91) ‘are that the {m+1)-
| Py o Pod™ey )
', m+l” 1M, .

variable function Z,(p ) =
) ] ]..'..,m+1 Mz(p'l .. ’m)ﬂz(p'l )pm+1

~

\

satisfies the conditions of Theorem 4.2.4.

Proof . I
.Necessity: 1f 7 is realizable:as the impedance function of a pi-variabie

lowpass ladder network with all of its transmission.zenné‘dt P> -

i L T Ty TR B A R O




'f Theorem 4-2 4, 1t can be—realized as the input impedance of a pi-variable

. and terminate& by an m-variable RF of wariables {ni,p

2663 -)- M\Lp ) (P ‘be realizablé :;h‘ 1 '
CHe Ll T 2("’1- N (Pi,... ‘o be realizable s the Tnput

- by Theorem 4.2.4,satisfies the two- conditions oF 2 at theorem .

~ arms and %3—inductors in the shunt amms, begirfning witﬁ a capacitor,,

‘ 83~ .
L]
M(n)+N(n) : BRI
and terminated By an (-1 l—variable PRF - zu(n K> ﬁ"(n_m_l' then °
. , b 4 By S
MLl )pp 8, (n Y .

. in this reaiﬂzation repiacing the tenmination by J—IE—T;E-TE-T—————
{'P ’

give a reaiization of 21 .. The driving-point funttion of tpis structure, ’

* I

Sufficiency- The (m+i)-variable function A by Lemma 4 2 1, is an .
.43 !

E AR
wi . o

. EF fundtion. Since this function satisfies the two- conditions of. .

.

Towpass ladder network with ,all of its transmission zeros at pt

"In this.

m+“} .

' 'neaiization, 1etting_ Ppe =1 give% a reaiization of Z.

LI
R

Theorem” 4.2.7 . .
I:.

" The necessary and sufficient conditio

A
1
T

impedance of a highpass ladder network with pi-capacitors in the series

and terminated by an (m l)—variable PRF 20(9 ) are that the (m+1)- i
AR ‘ . H(P )p N, (po )"' -
‘ : 111, m+l 1YY, L .
- variable fnnctionv Z, (p: C o) = or -+
o : 1*",. .:,IIH:] . MZ(P] )"',Nz(p] e )pm+1.. )
M. (p METNCA )p N I
. 1, 1,. m+l L.
Z,(p,.. ) = - satisfies the" conditfons
A2 ST ’.r.‘._,m)pmﬂ-hﬂ.(p.l‘“..’ ) | tlens
SR o ST SRR S
of Theorem 4.2.5. -~ < .. e T
s ‘“ . Ct - B L . q ; . . s - . ‘ v . '.. o
- v_ -'.g' -n . Lo e, ‘: ' ’l_.. J .,
] \’>n ) ‘ o ‘ e ')
; * - ™ e N RN AV PN SR PN
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Necessity: If Z 1is realizabie as the impedance function of a pi-variable
highpass ladder network, with all of its'trahsmission zeros at pi=0 ,

M (01)+N (91)
Ma(n-)+Na(n 7 then

and terminated by*an (m-1}-variable PRF Zo(n%) =

-

thi lizati 1 the termination b Ma (80P ¥y ) in
in s realization replacing the termination by W
M (9 )+Nb(n )pm+1

give a rea11zat1on of Z] or Z2 depending on whether the last element
of. the P; —variab1e 1adder network is a shunt or a ser1es branch element.
The driving-point function of this structure, by Theorem 4.2. 5 satisfies

the two conditions of that theorem.

Sufficiency: The ‘(m+1)-variable function Z] or 22 , by Lemma 4.2.1,
js a reactance function. - If any one.of these functions satjsfies the
two conditions of Theorem 4.2.5, then it can be realized as thé input

impedance of a piﬂvariab1e highpass ladder network with all of its

- transmission zeros at p;=0 and terminated by an m-variable RF of .

variables {Qi’pm+1} . In this realization, letting p

m+1=] gives a

realization of Z .

4.3 SYNTHESIS PROCEDURES FOR LADDER EXTRACTION

In this section, sémé"techniques of lowpass and highpass
ladder extraction from an RF or a PRF are discussed. Once a multivariable
function satisf{es the conditions of ény one of the theorems 4.2.4
through 4.2.7, a ladder network with all its transmission zeros either
at pi=0 or at p{=é can be extracted from the function. In other words,
the given function can be expressed in a continued fraction expansion

form as,
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4 } \
given below:: ) : h-
Z* - . 'I . . : .
oy, . =t t (4.3.1)
: 1
. yolpy) + —
2,(py) + ‘ |
- .Y4(P1) +
N S
d‘.
zn-l(pi) *

a(a,)
yalpy) # P(a,)

where zj(pj) and yk(pi) (§=1,3,...,0-1 3 k=2,4,...,n) are of the

form Kgpi or —— (2=1,2,...,n) , K, peing a positive constant.

From {(4.3.1), it is obvioué‘that the pi-variéb1e Jossless two-port is
independent of the terminating load of variablés Qs s if the load‘is
non-zero and -finite. Since the load is reactance or positive real function,
it can never become zero or infinity for all py € 9, -with Ré Py > 0.
Hence, for any point in this polydomain, the lossless two-port is
independent of the load. Consequently, for the extraction of the p,-
variable lossless ladder network, it would be much simplier to work with

the single-variable PRF Z(k],...,ki_] S P ki+1""’km) ; where all

k.'s are non-zero positive real constants.

3

*

Without loss of generality, the degree of Z(p1 m) in the variable
P is assumed to be even.

R AL g sk 8T

A TR ol
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In this case the terminating load becomes pureiy res{stive and must be
replaced by an appropriate RF or PRF of variables ni in order to obtain
a realization of Z(p1,"_’m¥ } Synthesis procedufgs for the extraction
of a lowpass or a highpass ladder network; with all of its transmission

- i

’ ! .
zeros at p1=0 or at py== » are now outTined.

Extraction of a Lowpass Ladder Network

In order that a p{-variahle lowpass ladder network with all
of its transmission zeros at py== can be extracted from an m-variable
RF o;'PRF Z(p1,'_.,m) , the function must satisfy the gonditions of
Theorem 4.2.4 or Theorem 4.2.6. Once these con&itions are satisfied,

synthesis can be carried out by following the steps'given below:

(i) Obtain a single-variable PRF Z,(p,) =
Z“‘L--;'-'*km’pi’km'“-'km) . where k;'s

(j=1§...,m ; j#i) are non-zero positive constants.

(ii) Realize Zl(pi) as a lowpass ladder .network with
all of its transmission zeros at Pi= and

terminated in a resistance R .

(iii) Replace the resistive termination, R by the {m-1)-
variable RF or PRF Z(pl,...,pi_l,ﬂ,pi+1,...,pm) .
This gives a driving-point impedance realization of

oy ) -

~

\\Eitraction of a Highpass Ladder Network
B

In order that a pi-variab1e highpass ladder network with all

of its transmission zeros at pi=0 can be extracted from an m-variable



-87- (‘/ 5
RF and PRF Z(p] m) ,» the function must satisfy the conditions of

Theorem 4.2.5 or Theorem 4.2.7. Once these conditions are satisfied,

’synthesis can be carried out by following the steps given below:

(i) Obtain a singie-variabfe PRF Z;(p;) =
Z(RT""’k1-1’pi’k1+1"""km) , where kj's

(j=1,...,m , j?i) are non-zero positive constants.

(11) Réalize Z;(p;) as a highpass ladder network with all
of its transmission-zeros at p1=0 » and terminated in

a resistance R .

(1i1) Replace the resistive termination R by the (m-1)-
variable RF or PRF Z(p1,...,p1_],w,p1+1,...,pm) .
This gives a driving-point impedance realization of

Z(p1....,m) -

Example 4,3.1

Consider éhe TRF given below: o /z/
5.3.¢ 3
]08p1p2+54p$p2+324p$p§+540p]pg+54p1
+270p?p2+540p$p§+324p]p2+90qir’,
( N(p1,p2) +]62b]p2+108p§+18
Z(py,p,)
1°F2° ~ o{p;,p,) 4 3 4 32 2 3 2
1°72 78p.[p2+39p]p2+234p]p2+360p1p2+39p]+180p]p2
; ~ +300p, p5+108p3+50p, +54p,

Degree in the variable P of the numerator polynomial of (p1,p2
is one higher than that of the denominatog, and the function can be

expressed in the form of (4.2.16), where P;=Py - The numerator of the

~
&
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Partial derivative of Z(p];bzl with -respect to 52 as given by

O S T T
Nu sz(p-lspz) 108p2+72p2+36p2+12p2+3
is independent of Py - Thus, Z(pl,pz) satisfies the two conditions
of Thgorem 4.2.4, and it can be realized as thg input impedance of a3
p]-varfable Towpass ladder network with all of its transmission zeros
at p]=m‘, -and terminated in ;3 Po-variable RF. First, the function

Z](p])'= Z(pT’]) as given by

152P$+37BP?+810p$+630p$f485p1+126

Z,(p;) = ;
[t 117p$+273pf+540pf+350p]+152
15 realized as a3 resistively-terminated lowpass Tadder network. Next,.

in order to dbtain a realization of Z(p];pz)-, the resistive termination

6 2
7. p2+]
of R = g ohm is replaced by the RF Z(O,pz) T3 (Fig. 4.3).

3
6p2 +3p2

4.4 SUMMARY

In tﬁis chapter, some partial derivative Properties of a class
of driving-point functions have been discussed. First, a general result
concerning the‘pirtia1 derivative of the impedance function of a network
which is a cascade o} {m-1) Tossless two-ports of variables Py to
Pn-1 » and terminated by a.beactance or positive real function of

variable Py 15 obtained. It has been shown that for such networks,

there exists a relationship between the numerators of the even part and

the partial derivative of the impedance function. The partial der1vat1ve

- ot e e .
— e . LR
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result is then examined for the cases where one or more lossless two-ports

may be lowpass or highpass 1addersnetwdrks with all of their transmission

N

: reéults; necessary and suffjcjeht conditions under which an m-variable
RF or PRF can be realized as the impedance function of a p1:

Towpass or highpass ladder network, with all of its transmission zero

at p1=0 or at Py= ,a’and terminated by a reactance or a positive real

function of 91 are established. Some.syntheéis procedures are also

discussed for the extraction of these kinds of ladder networks.

o A
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«

CHAPTER V

LADDER REALIZATION OF A CLASS OF TWO-DIMENSIONAL VOLTAGE
TRANSFER FUNCTIONS WITH APPLICATION TO
WAVE DIGITAL FILTERS

5.1 INTRODUCTION oo

In recent years, a great deal of attention has been paid to the
development of two-dimensional (2-D) digital filtering because of its
application in the fields of picture procéssing aqd‘geophysics [54], '[55].
Design techniques of such filters, however, encounter the prob1éms of

stability and realization.

Instability arises in the case of an infinite impulse response
type of 2-D digital filter which is dsual1y implemented in a recursive
fashion. The transfer function of such a filter is a rational function of
two variables z, and z, . The s;ability, in the bounded-input bound-
oﬁtput sense, of the 2-D digital filter is guaranteed if and only if the
transfer function has no poles in {(z],zz) : lz1| > 1, lzzl > 11,
and no non-essential singularities of the second kind in the same reéion
except pogsibily on {(zl,zz) : 1211 =1, }zzl = 1}‘[56]. This introduces
difficulties in testing for the stability and the existing techniques
L57], [58] are often tedipus to use. lt‘yas been rep&rted [59], [GOj‘that
a stable 2-D digital lowpass transfer fuﬁction can be dbtained to
approximate a circularly symmetric response starting with a
two-variable passive ana]ég network and then using double bilinear

z-tradsformation. .

J U . —————e
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The other problem in 2-D digital f{1tering is the rea) ization
techniques. Imp1ementatfon of 2-D filters in the direct form is not
desirable because of the poor-sensitivity‘associated with the finite
word-1engths of multiplier coefficien%s More recently [60], a technique
has been developed whereby starting with a doubly terminated 1oss1ess
jadder qetwork in two- variab1es each series and shunt arm element is
rep1acedaby the corresponding wave digital two-port and the individual
two-ports;are casgaded to obtain the overaTT digital realization. This

.

N A
technique: enSures the sensitivity properties of the analog domain.

7 |
”"\——-\7,.// \

It has been reported [69] that. in the case of & doubly-terminated
lossless network a better' approximation of a circularly symmetric 1owpass
response is obtained when Py~ and pz-variab1e networks are cascaded than

in the case of any-other*cbmbination of these variables.

This chapter (611, (62] deals with the realization of the
voltage transfer function of a res1st1ve1y-term1nated two-port which is
a cascade of py- and o Zvariable lossless two-ports (Fig. 5.1), such that
eaeh two-port has all of its transmission zeros either at p1=0 or at
Py (i=1;2) _ This analog network can then be used to obtain a digital

realization by using the technique described in [60].

5.2 REALIZATION OF A TWO-VARIABLE RESISTIVELY-TERMINATED LOSSLESS LADDER
" NETWORK WITH ITS TRANSMISSION ZEROS AT THE ORIGIN OR AT INFINITY

In this section conditions are derived for the realization of a
rational function as the voltage transfer function of a resistively-

[y

terminated lowpass, highpass or bandpass ladder network which is 2 cascade
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v

qf - and pz-vi?iable lossless tyo-ports, each two-port having all of

its transmission zeros at p;0 or py== J(i=1,2) .

The technique is

based on transforming the problém of a transfer function realization to

that of a driving—poinf'?unction rea1izatioﬁ.

Lemma-5.2.1,

t D(pymy) = (B P(R)ém (py)Ap,) o where oy (Pa) and

’n1(p1) are respectively even and odd pdlynomials is

“py » and P(py)

and Q(pz) are polynomials in Py is a strictly Hurwitz polynomial

- () in the two-variables p; and Py o then

.(i) m1(p1)+n1(p1) is a single-variable SHP in Py - )

P(p,) :
(i) ﬁTE%T is an SPRF in B, «  ®

Proof

Let P(pz) and 'Q(pz) be expre;sed as Uﬂa(p2)+Na(p2)] and

'Bﬂb(p2)+Nb(p2)] respectively, where Ma(pz) and M

and Na(pz) and Nb(pz) are odd polynomials in-- Py -

D(p1,p2) can now be expressed as:
o]
D(py,py) = m1(b1)Mh1p2)+n1(p1)Nb(p2)+"H(p1)Na(pz

From (5.2.1), a TRF can be formed as:

m}(p1)Ma(pz)+n1(p15Nb(p2)

| , F(P] !pz) = m_l(p.1)Na(p2)+n] (pﬂMb(Pz)

b(pz) are even,

The polynomial

)+ (py My (py) (5.2.1)

(5.242)



(i)

‘(11)

Theorem 5.2.1

- that case D(p1,p2) will not be an-SHP. Hence

" =95
7
If py=c, is a positive constant, then F(p1,c2) is an
SPRF. Thus, from (5.2.2) [m1(p1)Ma(c2)+n1(p])Nb(c2)]

M_(c,) . m {py)
Nplep) ~ nilp)

is a Hurwitz polynomial, that js, or

mpy) ‘
1 . .
E;TE;T s a reactance function. Now thg polynomiais

m](pl) and n](p1) can have only the imaginary axis

zeros. But they cannot have common factor§ because in

m (py )40 () is a single-variable SHP in p, .

oIf P17% is a positive constaht, then, the function given .
- . £,

by |

_my (e M (B, )40 ()N, (p,)
F(°1’p2) B m1(c])Na(p2)+n](c1)Mb(p21' v

is an SPRF. This implies that function-given by

. _my (e )M, (py 148 (py)]
P {ePe) = 5 Te YT, 15, 770, (5,71

_mleq)  Plpy) -
-y {eyT 7 Qlp,)

P(p,)
js also an SPRF. Hence, arﬁgj- is an SPRF.
. "2

The necessary and sufficient conditions for a two-variable
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.

rational function T(p1.p2) to be the voltage transfer function of a
resistively-terminated ladder network which.1s a cascade of py- and p,-
variable 1oss1es§ two-pbrts, each two-port having all of its transmission

ZEros, at infinity, are. that,

(1) the function is expressible 1n the form:

K . K | . S

T(p.sP,) = = ' 2.

,(P1 Pp) 0{py,p,) m1(p1)P{p2)+n1(p1)Q(p2) (5.2.3)
-+ uhere K -is a positive constant and D(py.p,). is @

<15/ two-variab1e SHP, and ‘ ) ';

(i{) the numerator of the even part of P(pz)/Q(pz) is, a

positive constant.

+ -

Proof .

[

The necessity is obvious. Hence, only the sufficiency is
proved. here. ‘Since D(p1,p2) m1(p1)P(p2)+n1(p1)Q(p2) is a two- var1ab1e

SHP, by Lemma 5.2.1, m1(p1)+n (p1) 15 a single-yariable SHP " Construct

m, (py )40y (py)
a s1ng]e _variable PRF, — (p])+n2(p]} , such that m1(P1)m2(P])

'nltpl)HZ(p1) = ¥ where K, isa positive real constant. Note that

the construction of such a function is always possibie. Next, construct -

a two-variable function given below:

: _m (p )P p2)+n (91)0(92) .
Upyap) - 2(p1)Q(D2)+“ (p, 7PTp,)

pe
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o, L1V Py SPRF 1 . and by Lemma 5.2. *(py)
oW, mz(p1)+n2(p1) is an " n Py and by gmma - 5TF;T

‘ is also an SPRF. Hence,‘by Theoreﬁ 2.2.1, Z(P]JPZ) is a two-variable
PRE. Moreover, Z(p1,p2) sat1sf1es ‘the two cond1t1ons of Corollary 3.2.1,.
and therefore, it can be rea11zed as .the- input impedance of a resist1ve1y-
terminated 1adder'hetwork which'is a ‘cascade of Pi- and pz-var1ab1e
tossless two-ports, each two- port having all of its transmission zeros .
at infinity. This network realizes the transfer funct1on given by (5.2.3)
within a mu1t1p11cat1te corstant. . . ;

Theorem 5.2.2 . - \fh

L

The necessary and.spff%ciénf condition for a two-variable
rational function _T(pi,pz) to be the voltage transfer function of a
resistiver-termjn;ted ladder network yhich is a cascade of Py- andlpz-
variab]e 1ossle§s two-ports, each two-port having all of its transmission
zeros at the origin, is that after making the_transformation. p; 5%_ {
(i=1,2) 1in the given function, the resulting flinctioh satisfies the

conditions of Theorem 5.2.1.

Theorem 5.2.3

-

- The necessary and sufficient condition for a two-variable
rational function T(p1,p2) to be the voltaée transfer function of a
_resistively-terminated ladder network whicr is a ra;cade of py- and p,-
variable lossless two-ports, and pa; all of its transmission zeros at
Py and p2=0 , is that after making rhe-transformation Py > pl
in the given function, the resuiting function satisfies the conditions

of Theorem 5.2.1.
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Theorems 5.2.2 and 5.2.3 can be proved readily. Note that
Theorem 5.2.3 covers only a special class of resistively-terminated
bandpass ladder networks, that is, ladder networks having all of their

transmission zeros at ;= and P,=0 .

5.3 APPLICATION 70 TWO-DIMENSIONAL WAVE DIGITAL FILTERS

Y

The class of digital‘;ransfer functions for which the

corresponding analog transfer fﬁnctions satisfy the conditions of

Theorem 5.2.1, 5.2.2 or 5.2.3 May now be realized by using the approaﬁh

-

given in [6Q]. ‘Starting with the analog realization of T(p1,p2) = Vg—
1

as a resistively-terminated 1osslass two-port, obtain the corresponding

. . Co z.-1 -
digital realization of H(z1,22) 4ﬁ¥§7/:1th p; = E%iT' (i=1,2) by using

. Fig. 5.2, where the digifa] two-port N s obtained from the corresponding

analog network as fo]]ow;: each of the series and shunt arm elements is
réplaced by the corresponding wave digital two-port, and the indiv%dual
two-ports are then cascaded to obtain the overall digital two-port N .
The class of analog ladder networks }ea]ized in Section 5.2 contains
series and shunt inductors or capacitors. The digital two-ports
corresponding to these series and shunt elements are summarized in

Table 5.1. The technique of realization ig ii]ustrated by considering

the following example.

Example 5.3.1

Let an analog transfer function in two variables be given as:

L-‘- —l:_‘._ ) .I.‘.. Lo

e e e L

A I

[ A P
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.T(pl,pz) can be realized as the transfer funFtion of a resistively-

R o
I

~-101-
~h.

2
Py

T(pyspy) = =

) 7 (5.3.1)
P1P2 /2P Py +/Zp, 0y 4P 4Py Py +P, + 2D, ]

*
The 2-D digital transfer function is obtained from the above transfer
Z.-1

function by using double bilinear z-transformation, P = El?T , i=1,2.

: (z +1)2(z -1)2
H(zy,2,) = —— t —
(21-1) (22-1) +J§(z]-1) (22-1)(12+1)

W2z, 1) (2,41} (z-1) (2, -1 (2,41

(5.3.2}

+(z1L1)(z]+1)(12-1)(z2+1)+(z1+1)2(z2-1)2

W2(2; 1) (2y-1) (2,1 4(2)41) 2 (2,11)°

The function given by (5.3.1) cannot be a lowpass or a highpass function

with all of its transmission zeros either at p.== or p.=0 (i=1,2) .

However, after making the transformation Po %—- , the resulting function
. : : 9
satisfies the conditions of Theorem 5.2.1. Hence, the given function

terminated ladder network which is a cascade of p- and pz-vaéiab1é
lossless two-ports, and has all of its transmission zeros at Py and
p2=0 . The analog reaIizétion js shown in Fig. 5.3. Now, starting with

this singly-terminated lossless ladder network in two variables, each

~of the series and shunt arm elements is replaced by the corresponding wave

digital two-port of Table 5.1, and the individual two-ports are then
cascaded to obtain a digital realization of the transfer function

H(z1,22) as given by 5.3.2. Fig. 5.4 shows this digital realization.
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A Voltage Transfer Function Realization of

T(p1,p2) of Example 5.3.1.
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5.4 SUMMARY

- Neéessary and sufficient conditions have been derived for the
realization of a two-variable rationél_function as'thg voltage triansfer
function of a resistivé1y-tgrminated_1dﬁpass,‘highpass or bandpass ladder
network which is a cascade of ¢1- and pz-variab]é 1o§sléss two-ports,
each two-port having all of its transmission zerés either at the origin
or at infinity. The process of realization has been ‘carried out by
transform1ng the prob]em of a trqnsfer function rea11zat1on, under the
given conditions, to the probiem of a two-wariable pos1t1ve rea1 impedance
funct1on realization. It has been shown that from thesé1§na109
rea11zat1ons, 2-D digital realizations can be obta1ned by using the wave

digital technique proposed in [60].
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CHAPTER VI

. CONCLUSIONS

6.1 SUMMARY ‘

The thesis has 1nvegtjgated the realization problem of multi-

_var%éble structures which are cascade of single-variable Tumped lossiess

two-port networks terminatéd by positive real impedances. The technique
of reaiization has ‘been based on the decomposabi}ity of multivariable

“functions into simpler functions and on the z-parameter characterization

of passive_]hhped lossless two-ports,

Cdndftion for the realization of an m-variable PRF of
arbitrary deqgree in each variable as the input 1mbedance of a pi-yariab1e
10§s1ess”twﬁ-pbrt terminated by an impedance function of the remaining
(m-1) -variables_has been derived using the technique of single-variable
Darlington synthesis. Since the terminating load of the loss1ess two-port
is also an MPRF, it has been_shown that'by repeatedly using the result
of sing]é—variabfe cascade-extraction, the given function can be tested
for a complete cascadé realization. Each lossless two-port of the
cascade structure is non-reciprocal uniess the numerator of* the even
part of the impedance function has a product separable perfect square
factor in the variable of the lossless two-port. §ome alternative

_ conditions have also been proposed for the cascade realization. In some
cases, an MPRF may be cascade-expressible in more than one variable.
It has been shown that in such cases the choice of one variable over

the others is not to be preferred because after the extraction of
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lossless two-ports.in all such variables, the terminating loads are
the same within constant multiples regardless of the order in which the

lossless two-ports are extracted,

The result of cascade extraction of single var1ab1e lossless
two- port from a muitivariable 1mpedance ‘function has then been app11ed
for.the realization of a cascade of sing]e-var1able 1adder networks,
each in a distinct variab1e, and having all of its transmission zeros
either at the origin or at infinity. For such a netwerk the choice of
the variable in which the first lossless two-port ought to be extracted

is determined by the difference of the highest or the Towest degree

of a variable between the numérator and denominator polynomials of the impedance

function. Realizability condition has also been derived for a resistively-
terminated ladder structure where:each lossless two-port is a Fujisawa-

type lbwpas;.ladder network.

Using an even part condition, realization for a class of MPRF

as the fmpedance functions of resistively-terminated lowpass or highpass

ladder networks with all of their transmission zeros either at the origin
or at infinity have been obtained. The reactance elements of these ladder

networks are not grouped gpgether to follow some predeterminedASEquence.

Some general properties of the impedance function of a multi-
variable cascade structure of single-variable lossless two-ports with
or without a resistiQe'termination‘have been examined from the partial
Herivative point of view. It has‘beed shown thgi for such a ngtwgﬁk

there exists a relationship between the partial derivative of the

impedance function and the even part of individual two-ports when they

P
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jre terminated by positive resistors. A more detailed study is made
when any one of the lossless two-ports assumes the structure of a
ladder network. Specifically, conditions making use of partial

derivatives have been derived for the cascade extraction of a single-

variable lossiess ladder network with all of its transmissién'zeros either_

at the origin or at infinity.

! Finally, utilizing the conditions for the impedance function
realization, necessary and sufficient conditiéns have been established
" for the realization of a two-variable rational funétion_as the voltage
transfer function of a resistively-terminated 1adder network which is
a cascade of Py- and pz—variable lossjess two—pprts, each two-port having
all of its transmission zZeros either at the origin or at infinity.
It has been shown that the realization of a class of digital;transfer'
functions can be pbtained from these analog ladder networks by employing

a.techniqug of wave digital filter design.

6.2 -SUGGESTIONS FOR FURTHER INVESTIGATION

The work of this thesis leads to the following. problems for

further investigation.

(i) The thesis has beén mainly concérned with the synthesis’
of sing1y-terminated multivariable structures wh%ch are cascade d;
single-variable lossless two-ports. Another problem of practical
significance which can be studied is the realization of doubly—terﬁinated

-

multivariable structures.

PSR TP IR
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(i1} In Chapter II, it has been shown that the condition for
cascade extraction of the'éiFvariab1e Tumped lossless two-port from an
m-variable_PRF js that the function be cascade-expressible in the
| varaible p. . However, this would require as many as m trials to
determ{ne whether the given function is cascade-expressible in
any one of the m variables. It would be desirable to construct a .
" gimple testing procedure to determine in which variable the function -

o

is cascade-expressible.
. ) .\
(iii) A problem suited for the synthesis of a cascade structure
of lumped Tossless two-ports and UEs would be the realization of an -
m-variable PRF as the input impedance of the Py -variable Tumped 1ossless

two-port terminated by an impedance function in which the degree of the

variable 'pi is lower than that in the given function.

(iv) In Chapter III, using an even part condition, an MPRF
of the:first degree in all varijables except one was realized as,phe
impedance function of a resistjvely;terminated Towpass or highpass ladder
network. The possibility of extending this rea]iiation ta jmpedance

functions of arbitrary degree in each variable can be explored.

(v} In Chapter V, the conditions for the realization of
the transfer function of a reswst1ve1y-term1nated cascade
of py- and pz—var1ab1e ladder networks, each network having a]1 of its
transmission zeros either at the origin or at infinity, were obta1ned
The problem can further be investigated to include ladder networks with

other finite imaginary axis transmission zeros.
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