National Library
of Canada

i+l

du Can

Bib!ioth:gue nationale
a

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sant us an inferior photocopy.

Reproduction in full or in pant of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-338 (r.88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microtilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'it_manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

. Canad?d

Synapse : A Real-Time Programming Language

Michel de Champlain

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

September 1989

© Michel de Champlain, 1989

Bibliotheque nationale

I* National Library
du Canada

of Canada
Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A N4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, rnaking this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant & la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelgue maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-51351-9

Canada

Abstract

Synapse : A Real-Time Programming Language

Michel de Champlain

This thesis defines the real-time programming language Synapse. The language main
goal is to be small and expressive, so each of the primitives has simple and well-defined
semantics. Small embedded real-time microprocessor systems and device drivers are its
main application area. The concurrent programming model proposed by Synapse is
asynchronous message passing via interrupts. Communication between tasks is effect by
sending interrupt messages to handlers. This inter-task communication concept is in fact
a natural extension of the hardware interrupt mechanism. Synapse makes both hardware
and software interrupts uniformally available in high level language facilities. Synapse
provides dynamic priority and time slice options, along with task identifiers, to allow the
control of scheduling and dispatching decisions. It supports exception handlers, to handle
exceptions caused by hardware or software. Synapse has the ability to specify and
manipulate device registers for memory or port mapped devices to support both types of
processor architectures.

iv

To my wife Hélene
for her patience, help,
and, above all, love.

Table of Contents
Chapter 1 Introduction 1
11 Purpose 1
12 Main Goal 2
1.3 Organization of the Thesis 2
Chapter 2 Goals in Programming Language Design 3
21 Roots of Basic Rules, Methods and Principles 3
2.2 Good Human Interface (Readability and Writability) 4
23 Simplicity 5
24 Minimality 5
2.5 EaseofUse 6
2.6 Level of Abstraction 6
2.7 Modularity and Separate Compilation 7
2.8 Portability 7
29 Expressiveness 8
2.10 Orthogonality 8
211 Error Handling 9
212 Efficiency 9
Chapter 3 Requirements in
Real-Time Programming Language Design 10
3.1 Introduction 10
32 Task Control Management 11
33 Timing Constraint Specifications 12
34 Hardware Environment Specifications 13
Chapter 4 Requirements-Oriented Survey of
Real-Time Programming Languages 15
4.1 Ada 16
4.2 CHILL 17
4.3 Concurrent Pascal 18
44 Edison 19
45 Modula-2 20
46 PEARL 21
4.7 TuringPlus 22

4.8

Real-Time Euclid 24

Chapter 5 The Synapse Language Report 29

51 Introduction 29
5.1.1 Design Goals 30
512 Terminology and Basic Concepts 38
5.1.3 Language Summary 48
514 Method of Description and Syntax Notation 50
52 Lexicsl Elements 53
52.1 Character Set 53
522 Symbols 54
5.3 Types 58
5.3.1 Standard Types 59
532 Array Types 59

5.3.3 Open-Array Types 60

54 Constant Declarations 60

55 Variable Declarations 60

5.6 Device Declarations 61

5.7 Expressions and Operators 62

571 PrimaryExpressions 62

572 UnaryOperators 65

573 Type-Cast Expressions 66

5.74 Multiplicative Operators 66

5.7.5 Additive Operators 67

5.7.6 Relational Operators 67

5.7.7 Bitwise and Logical Operators 68

5.7.8 Precedence and Order of Evaluation 69

579 Type Conversions 70
5.8 Statements 72

5.8.1 Null Statements 73

58.2 Assignment Statements 73

583 IfStatements 74

5.84 Loop Statements 75

5.8.5 Exit When Statements 76

5.8.6 Interrupt Statements 76

5.8.7 Enable and Disable Statements 77

5.8.8 Delay Statements 80

589 Start Statements 80

5.8.10 Resume Statements 81

5.8.11 Suspend Statements 81

5.8.12 Terminate Statements 82

5.8.13 Reschedule Statements 82

5.8.14 Input and Output Statements 83
59 Real-Time Application Structure and Task Units 84
5.10 Task Interface 84

5.10.1 Task Header 85

5.10.2 Priority 85

5.10.3 Time Slice 85

5.104 Import List 86
5.10.5 ExportList 86
5.11 Task Implementation 87
5.11.1 Declarations In Task 87
5.11.2 Task Entry 88
512 Handler Declarations 88
5.13 Multi-Tasking 89
5.14 Mutual Exclusion 90
5.15 Synchronization and Communication between Tasks 92
5.15.1 Asynchronous Communication 92
5.15.2 Synchronous Communication 94
5.16 Exception Handling 96

Chapter 6 Synapse Applications 97

6.1 Producer-Consumer Problem 97
6.2 Bounded Buffer Problem 99

6.3 Reader-Writer Problem 102

6.4 Basic Resource Device Driver 103
6.5 Event Timer Problem 105

6.6 Robot Arm Controller 110

Chapter 7 Conclusion 113

71 Experience and State of the Implementation 113
7.1.1 Syntax-Directed Editor 113
7.1.2 Real-Time Executive 114
7.1.3 Compiler 115

72 Final Remarks 115

73 Future Directions 116

AppendixA The Synapse Language Syntax Summary 117

Al Method of Description and Syntax Notation 117
A2 Lexical Syntax Grammar 120
A3 Language Syntax Grammar 123

References 129

vii

List of Figures

Figure 5-1 Two Parts of a Task Unit 38

Figure 5-2 Symbclic Representation of a Task Unit 39

Figure 5-3 Inter-task Communication Diagram 40

Figure 6-1 Producer-Consumer Inter-task Communication Diagram 97
Figure 6-2 Bounded Buffer Inter-task Communication Diagram 99

Figure 6-3 Reader-Writer Inter-task Communication Diagram 102

Figure 64 Basic Resource Diagram 104

Figure 6-5 Event Timer Inter-task Communication Diagram 106

Figure 6-6 Robot Arm Coontroller Inter-task Communication Diagram 110

List of Tables

Table 4-1 General Goals in Programming Language Design Requirements 26
Table 4-2 Task Control Management Requirements 26

Table 4-3 Timing Constraint Requirements 27

Table 4-4 Hardware Environment Requirements 27

Table 4-5 Eligible in Motherhood Goals in Programming Languages 27
Table 4-6 Eligible in Task Control Management 28

Table 4-7 Eligible in Timing Constraints 28

Table 4-8 Eligible in Hardware Environment 28

Table 4-9 Language Suitability in the four areas asa RTL, 28

Table 5-1 Standard Types 59

Table 5-2 Precedence and Associativity of Synapse Operators 69

Table 5-3 Conversions to and from Standard Types 70

Table 54 Conversions to and from Open-Array Types 71

Chapter 1

Introduction

1.1 Purpose

Many real-time programs must satisfy strict timing demands. These demands should
be more than just the correctness of concurrent programs. Traditionally, the approach to
real-time programming has been to write a concurrent program. The purpose of concur-
rent programming is to support the sequencing of operations except the usage of
synchronization statements [Glig83][Kung85]. By contrast, in real-time programming the
programmer must be able to control the sequencing of operations explicitly{Lee84][Lee85].

This thesis introduces the real-time programming language Synapse. The language
supports the construction of real-time applications that will satisfy strict timing con-
straints. Such applications require to respond to external interrupts within a fixed time

deadline.

12 Main Goal

The main goal of Synapse is to bring high-level language programming to real-time ap-
plications. Synapse is small and expressive, so each of the primitives has a simple, well-
defined semantics. This goal supports the following requirements in the language:

* Genera! Goals in Programming Lenguage Design
+ Task Control Management

+ Timing Constraint Specifications

« Hardware Er. . sronment Specifications

1.3 Organization of the Thesis

Chapter 2 introduces the goals in programming language design. Chapter 3 presents
the requirements in language design for real-time programming. Chapter 4 summarizes
the suitability of several existing languages by taking the results of recent surveys in re-
quirements for real-time programming languages. Chapter 5 contains the complete
Synapse language report. Chapter 6 describes some examples of application programs.
Chapter 7 concludes with the experience, the state of the implementation, final remarks,
and future directions. Appendix A is a summary of the grammar given throughout the

report.

Chapter 2

Goals in
Programming Language Design

This chapter presents several goals for programmirg language design. It states also
some basic rules for making trade-offs among competing goals. Note that the presentation
order does not reflected their relative importance. The language report, in chapter 5, ex-

plains how Synapse meets these goals.

2.1 Roots of Basic Rules, Methods and Principles

Several designers of successful programming language have made considerable efforts
to define detailed rules, methods and principles to produce a better language [Ichb79,
Brin82, Wirt85, Holt88]. These reports have led to one important fact to remember: "Lan-
guage design is extremely complex and no single rule leads assuredly to good decisions"”
[Holt88]. The design of a language represents a trade-off among inevitably competing
goals and reflects the skills, knowledge, «:nd tastes of its designers [Pope77]. Language
design is a product of human creativity. To serve some needs perceived, each creator con-

ceives it in good faith with a good measure of common sense [Feld86]. Therefore, intel-

ligent debate and criticism are necessary to gain a clearer perspective on a programming
tradition. This inheritance has become so natural that it inhibits the ability to search for
new methods [Brin82]. Based on those principles, language designers have rgached com-
mon agreement on a number of important motherhood goals for general purpose program-

ming language design [Trem85), such = -:

« Good Human Interface

» Simplicity

» Ease of Use

» Level of Abstraction

» Modularity and Separate Compilation

» Portability

» Expressiveness
e Orthogonality

» Error Handling
« Efficiency

22 Good Human Interface (Readability and Writability)

External documentation and comments cannot clarify all the complexity involved in a
program. Notably since extei.;al documentation is too often out of date and incomplete.
Also, programmers dislike writing excessive comments and avoid them. Given these facts,
the most reliable form of documentation should be the program. itself. A better under-
standing of a program should also occur whenever the syntax reflects the semantics. We
must be able to read and write programs easily, but readability of programs is far more

important for maintenance than their writability [Hoar73].

2.3 Simplicity

Simplicity is a major goal in language design: language constructs must be simple to
understand in all situations. It is extremely difficult to decide to select or exclude all kinds
of features "it might also be nice to have." Wirth states that language designers often fail
in this respect: "I gladly admit that certain features of Ada that have no counter-parts in
Modula-2 may be nice to have occasionally. Nevertheless, I question whether they are
worth the price. Ada compilers are gigantic programs consisting of several hundred
thousand lines of code, because our newest Modula compiler measures some five thousand
lines only. I confess secretly that this Modula compiler is already at the limits of com-
prehensive complexity ... the real cost with those huge compilers is hidden in the unseen
efforts of the innumerable programmers trying desperately to understand them and use
them effectively.” [Wirt85]

Always rated the benefit of a language feature against the added cost of its implemen-

tation avoids large and complex compilers.

2.4 Minimality

Minimality is the property of having the absolute minimum number of constructs with
which a language can possibly survive (the language Edison is an example). There is a sig-
nificant distinction between a minimal set of constructs and a minimal usable set
[Trem85]. As an example, sequential and While constructs are enough to simulate all

otker constructs (even the If), but this minimal set is not really usable.

2.5 Ease of Use

All the constructs of a language must be easy to learn and natural to remember. Asa
sign of this, programmers familiar with the language should not consult their manuals
constantly. The correct method of doing something will be clear if the language is simple
and straightforward. Too many different ways of doing the same piece of code leaves the
programmer struggling to decide which one is appropriate for his application. The
programmer appreciates flexibility in a language when it remains easy to learn and use.

However, not when the flexibility needlessly increases the language’s complexity.

2.6 Level of Abstraction

Strong typing and type-checking are central concepts in modern programming lan-
guages (Pascal promotes them). Strong typing can improve the reliability and readability
of programs. An often too simplistic approach regards the definition of a type as a set of
values. A higher-level approach to data abstraction defines an abstract data-type (ADT) as
structured data together with a set of operations. These operations are procedures, func-
tions, or tasks. An ADT encapsulates and hides the representation of the data and the im-
plementation of the operations. The user’s view perceives an ADT as a "black box." Several
languages use modules or packages for the specification of abstract data types as well as

for the separate construction of program parts.

2.7 Modularity and Separate Compilation

A language must be modular, and hence provide control over the visibility of names. In
large projects there is a need to protect programmers from the accidental misuse of im-
plementation details. Because, this habit can lead to programs that are difficult to change
because a change in one module may affect other modules. Encapsulation and scope are
two facilities hiding implementation details from users of a given module. They extend the
notion of information hiding, already at the core of the notion of abstract data-type. Encap-
sulation is a tool for structured program organization that groups logically related entities.
Encapsulation constructs increase program security and simplify separate compilation.
Scope rules specify which entities are visible in a given area of a program. Open scopes
(like subprograms) specify constructs with all external entities "implicitly imported."
Other constructs should explicitly import or export entities like Modula-2 modules. The
package (Ada) and the module (Modula-2) are distinct classes of encapsulation constructs
[Appe82]. Both specify a single instance of an environment by encapsulating a collection of

declarations.

2.8 Portability

One of the original hopes for high-level languages (HLLs) was that they would be
machine-independent. A language is machine-independent if a program compiles and runs
correctly on machine X, and produces exactly the same output given the same input on

mechine Y.

2.9 Expressiveness

Language expressiveness should ease the formation of a self-explanatory statement of
the programmer’s intentions. It is also a measure of how naturally a program structure ex-
presses a problem-solving strategy. It must also provide facilities for hiding the low level
(machine-dependent) processing from other parts of the program. These parts can operate
at higher levels of abstraction, as well as adequate modularization mechanisms. This im-
proves the portability. Clever and quick programming tricks are directly in conflict with

readability. Their usage must be discouraged since they are mostly never essential.

2.10 Orthogonality

Any composition of basic features without any restrictions or special cases is or-
thogonality. However, the need for simplicity should exclude a general orthogonality fea-
ture that introduces complexity and heaviness. The tradeoff between the two goals is hard
to quantify and is a major decision in language design. It is not always clear which is bet-
ter:

« to combine few simple concepts without restrictions.
Example: Algol68 is 99% orthogonal but not simple.

» to combine few simple concepts with some restrictions.
Example: Pascal is simple but not orthogonal.

2.11 Error Handling

In some languages, array subscripts cutside of their range and dangling pointers are
usually examples of errors undiscovered at compile time. Run-time routines support error
detection by set up simple and inexpensive run-time checks for undetected errors during

compilation. Debugging phase installs these routines and removed them when done.

2.12 Efficiency

In the past, many languages have had efficiency as a main design goal (implicitly or
explicitly). Efficiency must come after reliability in language design. More computing sins
were committed in the name of efficiency than for any other single reason, including blind
stupidity [Wulf72]. The issue of efficiency is no longer measured exclusively by execution
speed and space. Today, the "efficiency measure” is the productivity and the maintenance
cost of software development rather than only the computing performance of the resulting

products.

Chapter 3

Requirements in
Real-Time
Programming Language Design

This chapter presents the requirements for real-time programming language design,

in single processor systems.

3.1 Introduction

Originally, real-time programming languages (RTPLs) base their design on sequential
general-purpose high-level programming languages, such as Pascal. It evolved specifically
for implementing system software components. Concurrent system software forced those
original RTPLs to use the system calls available from the target operating system. Unfor-
tunately, programs developed that way were not portable and were hard to maintain. Be-
cause, they contained hard-coded operating system calls. Over the past few years, the
applications on computers have changed considerably. Multitasking systems are now

plentiful, requiring new RTPL design goals for the needs of system programmers. Studies

10

in the way RTPLs are used (and misused) have led to several requirements [Glig83]
[Appe85] [Klig86] [ARTE87] listed below:
» Task Control Management
» Timing Constraint Specifications
« Hardware Environment Specifications
Since RTPLs are high-level languages, RTPL design goals try also to include all the

general goals in programming language design listed in the last section.

3.2 Task Control Management

Task controi management consists of:

» control of scheduling,
» parameters for tasks,
+ intertask communication,
» mutual exclusion among independent tasks, and
+ support of critical sections.
Some real-time applications often use explicit control over the scheduling and dis-

patching to meet their demanding performance requirements. Another very desirable
capability in many applications is an interface specification that provides periodic schedul-
ing of tasks at a fixed frequency.

There are situations in real-time applications where a design approach requires the
ability to adjust task priorities and time slices dynamically. For example, to drop the load
when the system detects failures. A dynamic priority scheme along with task identifiers
may allow the control of the scheduling and dispatching decisions.

Parameters for tasks are an excellent way of expressing parallel distribution of infor-

matio. to a collection of tasks. This feature makes a task unit code reusable when each of

11

which may require independent initialization.

Intertask communication requires that asynchronous tasks allow exchange of mes-
sages (information) or signals (synchronization anly).

Mutual exclusion among tasks requires the serialization of their accesses to the same
critical section of code.

Some applications must be sure that certain eritical sections of code execute until com-
pletion without interruption by any other application task. This desirable control is a
dangerous feature but justifiable [ARTE87] particularly if there is a timing constraint in
the section. The following are the kinds of events that are not desired during a critical sec-
tion:

« hardware interrupts (could have dangerous effects: interrupt latency),
» software interrupts (by other application tasks),
« preemption at the end of the time slice.

To avoid having to resort to assembly language, the language introduces the ability to

control interrupts and preemption.

3.3 Timing Constraint Specifications

The need often arises to execute tasks with a very small variation between a requested
time of execution and the actual time of execution. There should be a way to guarantee
bounds on the time of execution. This variation can cause serious problems, particularly

during overload situations.

12

In general, it is not possible for the compiler (or programmer) to guarantee that the
task will execute within the specified response time. The best that can be done is to pro-
vide a mechanism that allows the programmer to:

» specify the desired response time, and
« specify strict upper bounds on the number of executions of all blocked
tasks (for interrupts or events) and of all loop constructs.

Another crucial timing constraint is that each task must be schedulable within a cer-
tain time.

In fact this supports two sorts of tasks recognized in real-time applications: periodic
and sporadic tasks [Lee85][Mok83]. A periodic task becomes ready at regular intervals

and a sporadic task may become ready at any time.

3.4 Hardware Environment Specifications

RTPLs must provide constructs to access the hardware and make the software port-
able. A hardware environment specification must represent the following three important
aspects: time, input/output interface and exceptions.

Time Access

Time includes real (absolute) time and elapsed (relative) time. Time-stamping needs

the real time access. Any time measurements requires kinds of elapsed time access (time

delay, time-out, etc.). RTPLs can provide both time facilities with Time and Delay state-

ments.

13

VO Interface Access
Hardware I/O interface requires access to the /O registers.

Memory mapped processors address these registers as memory locations by using com-
mon load and store instructions. On the other hand, port mapped processors address these
registers as port locations by requiring special 1/O port instructions.

In either case, a "variable at" interface can represent a uniform access to an I/0
register. This interface for memory and port mapped accesses will be through an absolute
memory pointer [Holt83] or a library port function [Inte85] respectively. A RTPL must
also provide an interface to interrupts. Interrupts are like instances of intertask com-

munication between a driver task and a hardware device task.

Exceptions and Interrupt Control
Tasks operate continuously in the presence of possible run-time errors. Handling such

errors in the traditional way is useless. A mechanism must handle these errors at both
task and system levels. A task exception mecharism is essential to handle event(s) or
error(s) caused by the execution of its local code. At the system level, an exception is like
an asynchronous interrupt triggered by any detected failures coming from other system

tasks. So, an exception handler is a software interrupt control.

14

Chapter 4

Requirements-Oriented Survey of
Real-Time Programming Languages

The previous chapter has presented some important requirements for the design of a
real-time programming language. These requirements determine the suitability of several
existing Real-Time Programming Languages (RTPLs), Concurrent Programming Lan-
guages (CPLs), and some System Programming Langages (SPLs). Also, the results of
other recent surveys [Abra82][Glig83][Apre85][Ghez87) » RTES7] take to account for the
aspect of language design requirements. The survey done in this chapter serves as a start-
ing point in identifying these requirements. The following languages have been surveyed:

« Ada

- CHILL

» Concurrent Pascal
« Edison

* Modula-2

« PEARL

» TuringPlus

» Real-Time Euclid

15

4.1 Ada

The Ada programming language was designed to meet many requirements presented
in the Steelman document: packages, generic packages and procedures, overloaded func-
tion names, portable typing mechanisms, variant records, tasks, exception handling,

separate compilation. Embedded computer systems are its main application area.

General Goals
The language has many facilities, a large description, and is rather complex. Some

of the constructs are far from simple, and therefore are difficult to understand.

Task Control

Communication and synchronization among tasks is done by the Rendezvous
mechanism. A Rendezvous is a form of remote procedure call. The language con-
tains no facilities for the control of scheduling, task parameters, and critical sec-

tions. Ada provides no mechanism for asynchronous intertask communication.

Timing Constraints
The nondeterministic select statement cannot guarantee timing properties that in-

volve upper bounds.

Hardware Envivonment

Ada provides s=:veral mechanisms for handling interrupts and hardware devices.

However, the language provides no means of specifying timing constraints,

16

Official Definition
[ANSI83].

Important Papers
[DOD78] [Ichb79] [DOD80] [ARTE87] [Parr88] [Risi88] [Stan88].

42 CHILL (Ccitt High Level Language)

CHILL is a language for parallel programming on single processor machines and dis-
tributed architectures. Several manufacturers of telecommunication switching systems
use CHILL. Pascal is the foundation of the sequential part of CHILL.. Modula and other

sources inspired the constructs for parallel programming.

General Goals
CHILL is a rather complex language because of the CCITT "committee effect.” It

requires a large compiler and provides no separate compilation.

Task Control

Communication and synchronization among tasks is done by three mechanisms:
regions, buffers and signals. Regions provide mutual exclusive access to shared
variables declared within a region. And finally, signals are direct transmissions
from one task to another without buffering. However, the language provides no

means for controlling scheduling and critical sections.

17

Timing Coastraints

None.

Hardware Environment

CHILL provides nine language-defined exceptions and several mechanisms for
handling interrupts and hardware devices. However, it provides no mechanisms
for accessing time and the I/O interfaces.

Official Definition
[CCIT80al].

Important Papers
[CCIT80b] [CCIT83] [Smed83].

4.3 Concurrent Pasca!

Concur=ent Pascal (CP) is an extension of a Pascal subset. Writing structured concur-
rent programs such as operating systems are its main application area.
General Goals
The language is far from simple and small. Processes, classes and monitors are the

mechanisms that provide data abstraction. CP programs are difficult to read be-

cause their organization are in acyclic graph form. CP provides no separate com-
pilation.

Task Control
Ccmmunication and synchronization among tasks is done by monitors.

18

Timing Constraints

None.

Hardware Environment

CP provides only an interface to memory-mapped device registers (based on its im-
plementation on the PDP-11). Non-mapped architectures support is not part of the
language definition. There is no mechanism for handling exceptions or interrupts
and the language provides no time access.

Official Definition
[Brin75).

Important Papers
[Hoar74] [Howa76a] [Howa76b] [Glig83].

4.4 Edison

Edison was designed for implementing reliable real-time programs for multiprocessor

systems with shared memory.

General Goals

Edison is based on Concurrent Pascal and Modula. Its design emphasizes
simplicity by omitting the language constructs that are not strictly necessary. The
expense of omitting these constructs decrease program readability (e.g. Pascal
With statements) and program efficiency. The principal encapsulation construct is
the module.

19

Task Control
The When statement supports task synchronization. The statement list of all

When statements in a program are critical sections which are mutually exclusive.

Timing Constraints

None.

Hardware Environment
Edison provides only facilities for controlling peripheral devices. In fact, its im-

plementation on the PDP-11 ignores interrupts completely (even at the machine

level). Standard procedure calls (place, obtain, and sense) control the I/O interface.

Official Definition
[Brin82],

Important Papers
[Dubn88).

4.5 Modula-2

Modula-2 is a language for small computers. It wes designed primarily for implemen-
tation on a conventional single processor and provides only a simple coroutine mechanism

for quasi-parallel tasks.

General Goals
All primitives have simple semantics. The language provides separate compilation.

20

Task Control

Modula-2 has neither explicit mutual exclusion nor other synchronization con-
structs. The programmer must provide these constructs himself,

Timing Constraints

None.

Hardware Environment

Modula-2 does not provide mechanisms for exception handling, but does provide a

mechanism for implementing device drivers.

Official Definition
[Wirt82].

Important Papers
[Spec72] [Ande86] [Hopp86) [Gree86] [Feld86].

4.6 PEARL

PEARL (Process and Experiment Automation Real-Time Language) has been

designed for real-time systems but also for systems programming in general.

General Goals
PEARL is a considerably more complex language than either Modula-2 or Edison

because some of its primitives arz based on PL/I. Extensive documentation on
PEARL exists but no formal definition. The language provides separate compila-

tion.

21

Task Control
PEARL includes only priority scheduling facility.

Timing Constraints
PEARL incdludes timing facilities such as time, deadline and period-based schedul-
ing.

Hardware Environment

PEARL provides an excellent mechanism to control device drivers and to handle

priority interrupts.

Official Definition
[Mart78].

Important Papers
[Mart79].

4.7 Turing Plus

The Turing language evolves from Concurrent Euclid. It improves on it by adding con-
venient I/0, checking of uninitialized variables, and type-safe variant records. Turing also
checked separate compilation, parametric procedures, and dynamic arrays.

Turing Plus is a general-purpose programming language that extends Turing to sys-
tems applications. These applications are operating systems, network controllers, basic
device drivers, and embedded software. This extension was done by adding dynamic con-

current processes, monitors with immediate and deferred condition queues, inline assemb-

22

ly code, type conversion, convenient acces to underlying hardware, and exception han-
dling.
General Goals
Turing Plus was designed with a striving for elegance. It increases utility and
reduces complexity. Turing Plus has a concise and expressive syntax, and is easy to

learn [Holt88]. The language provides separate compilation.

Task Control

Communication and synchronization among tasks is done by a special kind of
module (called the monitor). However, the language provides no means of control

of scheduling, task parameters, and critical sections.

Timing Constraints

None.

Hardware Environment

Turing Plus provides only an interface to memory-mapped device registers. There
is no formal interrupt control (even if nothing prevents the alternation of the inter-
rupt status register) since the kernel hides the mechanism. The language provides
no time access.

Official Definition
[Holt85].

haportant Papers
[Holt83a] [Holt88).

23

4.8 Real-Time Euclid

Real-Time Euclid (RTE) is a descendant of such languages as Pascal, Euclid, Concur-
rent Euclid, and Turing Plus. RTE has been designed to address issues of reliability and
guaranteed schedulability in real-time systems. The philosophy of the language is that
every exception detectable by the hardware or the software must have an exception hand-
ler clause associated with it. The language definition forces every construct to be time-

and space-bounded.

General Goals
RTE (like CE})is a considerably more complex language than either Turing Plus,

Modula-2 or Edison. Recently, Holt stated in the design goals for Turing: "The
desire to increase generality (in CE) was tempered (in Turing Plus) by the compet-
ing goals of language simplicity, efficiency and implementability ... more general
features entail too much complexity or inefficiency to compensate for their poten-

tial benefits." [Holt88).

Task Control

Communication and synchronization among tasks is done by a special kind of
module (called the monitor). However, the language provides no means to handle

task parameters.

1 Concurrent Euclid [Holt83b]

24

Timing Constraints
RTE has time-bounded loops and activation information for schedulability.

Hardware Environment

RTE provides only an interface to memory mapped device registers, The language

supports interrupt control and time access.

Official Definition
(Klig86].

Important Papers
{Pope77] [Holt83b].

The following tables 4.1, 4.2, 4.3, and 4.4 summarize th~ -sults of the survey. These
tables represent the 4 main specific requirement aspects in the design of a RTPL (see sec-
tion 3):

» General Goals in Programming Language
» Task Control

» Timing Constraints

» Hardware Environment

25

Table 41 General Goals in Programming Language Design Requirements

Ada CHILL CP' FEdism Mod® PEARL TP RTE®
Simplicity no poor poar yes yes poar yes poar
Usability no poor poar poor yes poor yes poar
Abstraction yes yes yes yes yes yes yes yes
Separate Compilation yes no no no yes yes yes yes
Expressivencss yes poor poor yeS yes poor yes yes

Table 4-2 Task Contro! *anagement Requirements

Ada CHILL CP Edison Mod2 PEARL TP RTE
Contl of Scheduling no no no no possible partial no yes
Task Parameters no yes no no no no yes no
Communication yes yes yes yes yes yes yes yes
Mutual Exclusion yes yes yes yes possible yes yes yes
Critical Sections no no no yes no no yes yes
1 Concurrent Pascal
2 Modula-2
3 Turing Plus

4 Real-Time Euclid

26

Table 4-3 Timing Constraint Requirements

Ada CHIL CP Edison Mod2 PEARL TP RTE

In Scheduling no no no no no partial no yes

In Constructs no no no no no no no yes

Table 4-4 Hardware Environment Requirements

Ada CHIL CP Edison Mod2 PEARL TP RTE

Interrupt Control yes yes o no yes yes yes yes
10 Interface Access yes yes partial yes yes yes partial partial
Time Access no no no no no no no yes

For each table, a list of all the languages surveyed can be ordered from the most

eligible (left) to the least eligible (right) by aspect of requirement:

Table 45 Eligible in General Goals in Programming Languages

Modula-2 =' Turing Plus > Ada = Edison = Real-Time Euclid > PEARL > CHILL = CP

1 Almost the same eligibility than
2 More eligible than

27

Table 46 Eligible in Task Control Management

Turing Plus = Real-Time Euclid > CHILL = Edison = CP > Modula-2 = PEARL > Ada

Table 4-7 Eligible in Timing Constraints

Real-Time Euclid >>> PEARL > Other languages

Table 4-8 Eligible in Hardware Environment

Real-Time Exclid > Ada = CHILL = Modula-2 = PEARU > Turing Plus > Edison > CP

And finally, a list that considers ¢he four aspects combined:

Table 4-9 Language Suitability’ in the four areas as aRTL

Real-Time Euclid > Modula-2 = Turing Plus > PEARL = Edison = Ada = CHILL > CP

In conclusion, Real-Time Euclid, Modula-2, and Turing Plus arise among the best real-

time programming languages.

1 Based on the following rates: yes = 1, possible (or almost) = .75, partial = .5, poor = .25, and no=0

28

Chapter

The Synapse Language Report

5.1 Introduction

This report defines the real-time programming language Synapsel. The language
main goal is to be small and expressive, so each of the primitives has a simple and well-
defined semantics. Small embedded real-time microprocessor systems and device drivers
are its main application area. The language reaches this goal by supporting the following
requirements:

» General Goals in Programming Language Design
« Task Control Management

» Timing Constraint Specifications

« Hardware Environment Specifications

1 A synapse (pronounced "Sin-apse") is a signal transmission pathway interconnecting a collection
of processing elements (called neurons or nerve cells) in a neural network in the human brain,

29

5.1.1 Design Goals

General Goals in Synapse
The following list mentions the main properties bestowed on Synapse. Itis:

» understandable (good human interface),

« small (minimality),

« gimple (simplicity),

+ easy tolearn and remember,

 provided with availability of data abstractions (level of abstraction),
» equipped with separate compilation (modularity), and

* built on well-defined language primitives (expressiveness).

Synapse is a modern block-structured language with a line-oriented approach and line
indentation. Even if most modern languages are context-free, their users apply a line-
oriented convention by placing their source text on separated lines to improve readability.
This approach used by Synapse merely enforces what programmers do by adhering to a
common programming style. Many languages, including natural languages, use expres-
sively indentation and line separation. Synapse uses indentation and i.:e separation to
identify the task structure and the statement context. This enhances the readability of the
code.

Simplicity is achieved by restrictirg goals, taking care of readability and expressive-
ness, and basing the language around a few well-defined, simple concepts.

A "¥" character precede a Synapse’s comment. The end of the line terminates it. This
design choice prevents the common programming error of failing to close a comment (in
Pascal, Modula-2 or C) thus causing code to be accidentally "commented out.” This type of

error is very hard to detect when reviewing code [Hoar73] [Trem85).

30

Encapsulation is a mechanism to structure a system by separating it into compilation
units. Synapse compiles separately each task unit to address two issues:

» toenforce modularization.
» toreduce the time required for recompilation of units.

The segmentation of a problem is more important than any hiding of information
[Gree86]. Most alarming problems in the industry is that {00 many applications are large
[Feldss).

One of the main purposes of a task unit is to implement an abstract data-type that
operates upon by a fixed set of operations executed by handlers.

Modula-2 [Wirt83], Praxis [Evan81], and Ada [Ichb79] already provide some facilities
for encapsulation. These languages are even looser at allowing control of the scope of im-
ported variables. The "lazy and easygoing import-all approach” is too permissive [Feld86).
Unfortunately, this approach is the one used by most programmers. A program main-
tenance problem occurs when an unqualified imported identifier conflicts with a local iden-
tifier or another unqualified imported identifier. For example, the Use statement in Ada
unqualifies all identifiers to an entire compilation unit, a single subprogram, or a block.

The Synapse solution to the above problem is to force selective imports. This avoids
massive importation into a task and forces the use of qualified identifiers. In reaction to
many encapsulation problems, Synapse enforces some design rules by:

» Always having a qualified form for exported identifiers, consisting of
an exported task name followed by a dot followed by an exported hand-
ler name;

» Requiring selective imports to restrict the massive importation of ex-
ported operations through the scope of a specific handler in a task
[Ande86];

» Allowing export to accord public access of handlers;

31

* Restricting any exportation and importation of variables (as opposed
to operations). Because, global variables are harmful and result in ex-
cessive coupling of program segments [Myer78). Their usage (if al-
lowed) should be only in case of de: ~erate performance problems.

Synapse recognizes the need to avoid massive recompilation of units, and generates if
necessary an updated task interface file.

Languages with higher concepts for concurrency, like Ada (task concept with rendez-
vous), Concurrent Pascal (monitor concept), and Edison (concurrent statement), specify
very precisely the semantics of the supported communication method [Hopp86]. The
Synapse language (task concept with interrupts) belongs to this class. It offers a compiler
that can be sure the context where these concepts are used, and it promotes thereby a reli-
able language.

Synapse is also designcd to favor more secure programs by ensuring that the con-
structs available to the programmer are without potential side-effects. This goal is
achieved by eliminating or catching most of the ‘v\vial errors at compile time.

Pointer variables are also excluded from Synapse because at run time, it is generally
difficult to know if they point to the right objects. Detection and analysis of runaway-
pointer errors, therefore, is almost impossible to achieve. Like Edison [Brin82], we favor
simplicity cver endangering the security of a language by trying to get efficiency "the most
overemphasized goal” in programming-langage development [Trem85). Even good
programmers make significant errors using pointers, so removing them looks like the best
way to reduce errors [Feld86]. Synapse does not have operators that cause side effects in-
side expressions, such as the ++ and -- in the C language [Holt88]. Another improve-

ment for operators is to restrict the number of operator-priority levels to achieve

32

readability and obviousness in their use. The C language [Kern78] has overloaded its
operator-precedence structure. It uses fifteen different levels: this makes it quite confusing
and proves extremely hard to remember.

Also, to prevent side-effects inside expressions, handlers are allowed to have only input
parameters, as in Concurrent Euclid [Holt83].

Synapse allows the declaration of open-array parameters to write general-purpose

handlers that can work with arrays of arbitrary size.

Task Control Requirements
The following are the foremost task control requirements retained for Synapse:

» control of scheduling,

» parameters for tasks,

» inter-task communication,

» mutual exclusion among independent tasks, and
» support of critical sections.

Some real-time applications to meet their demanding performance requirements often
use explicit control over the scheduling and dispatching regime. Synapse specifies the time
slice and the priority of tasks in the interface specification. This feature is a very desirable
capability in many applications. There are also situations, in reaction to excessive loads, in
which the design approach requires the ability to adjust task priorities dynamically.
Synapse provides dynamic priority and time-slice options along with task identifiers to
allow the control of the scheduling and dispatching decisions.

Synapse supports parameters for tasks, to express parallel distribution of information

to them. This feature makes a task unit code reusable when each of which may require in-

33

dependent initialization.

A real-time application must respond to a series of external asynchronous hardware
interrupts, which may occur at any time. On the software side, multitasking allows inde-
pendent execution of program entities (tasks) that send to others via software interrupts.
Synapse supports both hardware and sofiware i.terrupts, as well as the handlers that
gerve them, using uniform language constructs. This notion is completely processor-inde-
pendent; it brings a uniform degree of abstraction to interruption/handler, such that is sel-
dom available in traditional mechanisms of high-level language or operating system.

The designers of Ada [Ichb79] have provided a link between tasks by defining the ren-
dezvous mechanism. This mechanism is based on synchronous (blocking) message pass-
ing and has the restriction that an inter-task communication cannot be completed without
the execution of a reply by the receiver task. Ada cannot easily provide asynchronous
inter-task communications.

The synchronization requirements for tasks include:

« inter-task communication,
» mutual exclusion among independant tasks.

Inter-task communication requires that asynchronous tasks be allowed to exchange
messages (information) or signals (synchronization only) with each other. Mutual ex-
clusion among tasks requires that the access of asynchronous tasks to the same critical
section of code be serialized.

Synapse regroups and supports the above requirements by assuring to an
asynchronous task that interrupts another, an exclusive access during its execution to the

critical section of code called the target handler.

34

Lo e ol il <

The main goal of Synapse is to offer a more flexible task communication mechanism by
sending and handling interrupts with message transfer. The concurrent programming
model proposed by Synapse is that of asynchronous message passing via interrupts. Com-
munication between tasks is effect by sending interrupt messages to handlers. This inter-
task communication concept is in fact a natural extension of the hardware interrupt
mechanism. Synapse makes both hardware and software interrupts uniformly available
in high-level language facilities.

These facilities also solve the problem of handling exceptions in tasks by allowing an
immediate interruption of the task receiving and serving the exception. Interrupt or ex-
ception handling allows the transfer of information (in the form of messages) between
tasks via an optional parameter list. The flexibility of this mechanism also allows the
choice of asynchronous or synchronous message passing, with the possibility of unidirec-
tional or bidirectional information transfer, where and when it is required.

Some runtime applications are required to be sure that certain sections of code can be
executed until completion, without interruption by other application tasks. This is espe-
cially true if there is » timing constraint on a section of code. Most of RTPLs cannot insure
that a task will not be nreempted by the executive! because of the interleaved execution of
tasks due to the time-slicing. This is a dangerous feature, but it has been shown that real-
time programmers will find a way (even through coding in assembly language) to get the
equivalent effect of disabling preemption (or even worse: disabling interrupts) [ARTE87].

Synapse offers the ability to disable/enable preemption and/or interrupts without going

1 also called the kernel

35

through an assembly language.

Timing Constraint Requirements

The following are the foremost timing constraint requirements retained for Synapse:

The need often arises in real-time systems for task(s) to be executed with a very small
variation between a requested time of execution and the actual time of execution. There
should be a way to guaraniee bounds on the time of execution. This variation can cause
serious problems, particularly during overload situations.

In general, it is impossible for the compiler (or programmer) to guarantee that the task
will execute within the specified response time. Synapse provides the constructs that
allow the programmer to:

+ specify the desired response time (if a task is waiting), and
» specify strict upper bounds on the number of executions of all loops.

These constructs assure that each task must be schedulable within a certain time

limit; if not, an exception will be raised to inform the programmer at run-time.

Hardware Environment Requirements

RTPLs must provide constructs to access the hardware and make the hardware en-
vironment portable. A hardware environment specification must represent the following
three important aspects: time, input/output interface and exceptions.

Time includes real (absolute) time and elapsed (relative) time. Time-stamping needs

the real time access. Any time measurements requires kinds of elapsed time access (time

36

delay, time-out, etc.).

Hardware /O interface requires access to the VO registers. Memory mapped proces-
sors address these registers as memory locations by using common load and store instruc-
tions. On the other hand, port mapped processors address these registers as port locations
by requiring special I/O port instructions. The ability to manipulate device registers in-
dudes the reading and the writing of registers. Synapse provides a construct to specify a
memory-mapped or port-mapped device register. This feature allows it to support either
type of processor architecture. In either case, a "variable at" interface can represent a
uniform access to an I/O register. This interface for memory and port mapped accesses
will be through an absolute memory pointer [Holt83] or a library port function [Inte85]
respectively in a way which is completly transparent to programmer. Synapse also sup-
ports an interface to interrupts. Interrupts are like instances of intertask communication
between a driver task and a hardware device task.

Tasks operate continuously in the presence of possible run-time errors. Handling such
errors in the traditional way is useless. A mechanism must handle these errors at both
task and system levels. A task exception mechanism is essential to handle event(s) or
error(s) caused by the execution of its local code. At the system level, an exception is like
an asynchronous interrupt triggered by any detected failures coming from other system
tasks. So, an exception handler is a software interrupt control. Synapse supports excep-

tion handlers, whether ezceptions are caused by hardware or by software.

37

5.1.2 Terminology and Basic Concepts
This section informally presents basic terms and concepts that differentiate Synapse

from other real-time languages.

Real-Time Application and Task Units

A Synapse real-time application is composed of one or more task units, where each

task unit is in a file that defines one task and must be compiled separately.

taskUnit

- - -

taskInterface (public)

taskHeader
priority
timeSlice
importList
efggrthiat

e - - —— - = s - = > e - = -

declaration
l_____task Entry

Figure 5-1 Two parts of a task unit
As Figure 5-1 shows, a task unit consists of two parts: the task interface and the task
implementation. The task interface is the public (visible) part of the task unit. It contains
the task header followed optionally by its priority, time slice, import list, and export list.
The task implementation is the private (hidden) part of the task unit. The bodies of the
uandlers declared in the task interface reside here. These handlers are the only export-
able entry points. Additional constants, variables, and devices can be declared and used

within the implementation. These declarations must be followed by a task entry: this is

38

where the task begins its execution. Likewise, additional private handlers may exist in
this section. However, all these objects are invisible to other task units (also called client
tasks). A client task does not know that they exist and cannot reference or interrupt them.
These hidden objects can only be used locally in the task unit. A modular real-time ap-
plication in Synapse is achieved through information hiding, which enforces a rigorous

separation between interface and implementation.

Symbolic Representation of a Task Unit
A task unit symbol is needed to represent complex multitasking real-time applications.

Figure 5-2 shows a task symbol that emphasizes the only visible interface of a task unit:

the task name and its handler entry points.

Figure 5-2 Symbolic Representation of a Task Unit

Inter-task Communication Model
The inter-task communication in Synapse is done through interrupts. This form of

communication between tasks is called asynchronous transmission and reception of mes-
sazes. The actions taken upon the arrival of a message are very similar in behavior to the

hanling of a hardware interrupt on a single processor. Sending interrupts is an intuitive

39

and very natural basic method for intertask communication in a real-time system.
Information (or synchronization) is transferred by sending and handling interrupts.
Handlers are intended to deal with the reception of asynchronous interrupt messages. A
handler is an interrunt service routine (ISR). It is declared solely in a task ivaplewrentation
that is dedicated to s¢ "ve an interrupt. Once an interrupt call has been sent, the handler-
Body is executed and assures a mutual exclusion in the body during its execution. There
are two kinds of handlers: software and hardware. The software interrupt handler is a
natural extension of the hardware interrupt mechanism. Only software handlers can
receive parameters from interrupts. A handler behaves like a procedure and returns to the

point of interrupt when the service is completed.

Figure 5-3 Inter-task Communication Diagram

Figure 5-3 shows two communicating tasks (Reader and Controller). The arrow indi-
cates an asynchronous interrupt from the calling task to the interrupted task. A simple
arrow represents an interrupt for synchronization only (no information in the message),
since an arrow with a small circle represents an interrupt with information in the mes-
sage. In this figure, the task Reader interrupts the task Controller to get a value that is

sent back via an interrupt with a message containing the value.

Input and Output
Input and output statements have been implemented and introduced in the Synapse

language for two reasons:

First, to test real-time applications easily, integer and string input-output (I/O) state-
ments have been implemented. This basic support I/O is available to ease any software
development. Obviously, they could be replaced (and/or ignored) if more powerful device
drivers are written for I/O.

Secondly, these statements are extremely useful to show practical examples in this

report. An J/O statement is a Get (input) or a Put (output) statement.

A Get statement reads getItem(s) from the keybcard. A getItem is a variable refer-
ence. The following input:

255 65535
is used in this example:

var aByte:byte

var aWord:word

get aByte, aWord
aByte = 255, aWord = 65535

A Put statement writes putltem(s) to the screen. A putltem is an expression or a
string constant:

put aByte

put 65535

put "Hello world!"
put "The answer ", 5, " is correct"

41

Separate Compilation
Synapse recognizes the need to be able to compile a program in distinct pieces and

provides facilities for both bottom-up and top-down approaches. The Synapse language al-
lows the compiler to fit smoothly into a operating system environment by having a direct
file name correspundence between the task header and the disk operating system (DOS)
file names.

This approach is of paramount importance when developing large systems with many
programmers. It enables the programmers to produce and test modules concurrently in
relative isolation from each other. Modularization enables the programmer to partition a
software system into various tasks and regroups into a single task unit both data and the
handlers needed. This serves to localize the scope of attention of the programmer and
reinforces information hiding.

Separate compilation is reinforced in Synapse by the definition of a task unit: a file
that MUST be compiled separately. This concept enhances the design of independent
units with clean interfaces by refining the quantity and the type of communication be-
tween units.

This type of modularization reduces the time required for recompilation of units be-
cause the Synapse compiler takes care of generating an interface file with ". int." exten-
sion that contains the visible part of a task unit. Each time the programmer changes and
recompiles a task unit, the compiler checks whether the changes have affected the inter-
face file and updates it if necessary. All dependencies between tasks, which occur only

through handlers, are specified by the import and export clauses.

42

The next section defines the separate compilation facility in Synapse. In what follow-

ings, the task Reader and the task Controller are separately compiled.

The reader.syn file contains:

task Reader in "reader.syn"
from Control import Read
export Read
var value:wozxd

handler Read(v:wozd)
value := v

entry
loop
...
interrupt Control.Read
enable wait Read

...

The controlr.syn file contains:

task Controller in "controlr.syn"
from Reader as caller import Read
export Write, Read
var value:word

handler Write(v:woxd)

value = v
put "writer#", callexr, " writes ", value, ’\n’

handler Read
put "reader#", caller, " reads ", value, '\n’

interrupt caller.Read(value)

entry
value := 5
loop
enable wait Read, Write
enable wait Write, Read

43

The interface of a task unit (visible part) is generated when it is compiled. The
Synapse compiler can be invoked to translate the task unit reader . syn to a C source file
(reader. c) and an interface module (reader . int) by this command:

sc reader.syn

The following invokes the translation of the task unit controlr.syn:

s¢ controlr.syn

The corresponding interface modules (. int) are generated as follow. Notice that the

export list is replaced by all the corresponding handler headers exported.

The reader.int file contains:

task Reader in "reader.syn"
from Controller import Read
handler Read (v:word)

The controlr.int file contains:

task Controller in "controlr.syn"
from Reader as caller import Read
handler Write (v:woxd)
handler Read

Ifa make utility program is available, a makefile can be constructed Sased on all the
dependencies of the above files:

controlr.c: controlr.syn reader.int
sc controlr.syn

reader.c: reader.syn controlr.int
sc reader.syn

With the above makefile, all compilations are reduced to a minimum because each in-
terface module contains all the information needed to check for legimate references of the
task unit, thus avoiding massive recompilations of units. It is alsc worth mentioning that
dependencies shculd not be among " . syn" files but rather among ". int" files. A modifica-

tion ofa". syn" will not necessary affect the corresponding ".int".

Line-Oriented Approach with Indentation

An important goal is to provide a modern block structured language with a line-
oriented approach [Lein80][Long86). Most languages are used in a line-oriented fashion
whether or not they require it: BEGIN, END, DO, OD, {, } are placed on separated
lines to improve readability. This line-oriented technique merely enforces what program-
mers do anyway bv convention. Also, people use indentation and line separation in a
meaningful manner in many languages, including natural languages. In the Synapse
Report, the terminal symbol NL shows & new-line followed by zero or more indentation
levels. So, like Occam [Inmos 84), Synapse uses indentation from the left margin and line

separation to show program structure and statement context: this yields a clean repre-

45

sentation by enhancing the readability of the code. This approach solves the perceived
ambiguities in context-free language associated with If-Else situations: Else is always
associated with the closest previous Else-less If even if they are not properly indented

[Kern88].

Indentation to Specify Task and Block Structure
Synapse makes the use of indentation to specify the task and block structures to both

the programmer and the compiler. A syntax-oriented editor (SDE) should be a consider-
able help to aid the programmer in his code entry to get a "syntactically correct compila-
tion unit.” An SDE will take a typed token for a construct, and infer the correct
indentation.

The following example a typical task unit with levels of indentation to specify the task

and block structures:

declaration of a task named Reader

physically stored in the file "reader.syn"

task Reader in "reader.syn"
Declaration in a task (visible in handlers and task entry)
var aGlobalVariable:byte

handler Read(aParameter :byte)
Declaration of i (visible in handler Read only)
var i:byte

Statement in a handler
i := aGlobalVariable + aParameter

taskEntry

entry
Declaration of i (visible in task entry only)
var i:byte

Statements in task entry
aGlobalVariable := 0

i:=10
countdown 9 8 ... 0 go!
loop
the 3 following statements are the loop’s body
ic=1i-+-1
put i
exit when i = 0
put "go! "

47

5.1.3 Language Summary

The following summary gives only a brief language’s overview without discussion.
Refer to §5.1.1 for design goals, comments on advantages and disavantages, and other
people’s experience.

A Synapse real-time application is composed of one or more task units. Each task unit

is a file that defines one task and must be compiled separately.

Task Units
A task unit consists of two parts: the task interface and the task implementation.

The task interface is the public (visible) part of the task unit. It contains the task
header followed optionally by its priority, time slice, import list, and export list.

The task implementation is the private (hidden) part of a task unit. A task implemen-
tation may have zero or more declarations of a constant, a variable, a device, a hardware
handler, or a software handler and a task entry. All these declarations are logically and

textually hidden from other task unit(s), except software handlers that can be exported.

Declarations

Constant, variable, and device declarations introduce respectively: a constant iden-
tifier, one or more variable names, and a device name.

Information is transferred between tasks by sending and handling interrupts. A
handler is an interrupt service routine (ISR) declared only in a task implementation dedi-
cated to serve an interrupt. Once an interrupt call has been received, the handler body is
executed. There are two kinds of handlers: software and hardware. Only software hand-

lers can be visible (exported) to other client tasks, these exportations are specified in the

48

task interface. Handlers are like critical sections, they provides mutual exclusive access
to shared variables declared within a task. So, it is highly recommended to test or update
these variables in handler’s body. Any access on them in the task body should be done in a

time-critical section of code to avoid pre¢mption.

Statements
The sequence of statements describes a sequence of actions that are to be performed.

An Assignment statement changes the value of a variable, a device, a task’s priority,
or a task’s timeslice.

The If statement allows the selection of an inner sequence of statements based on the
value of an expression.

The Loop statement is the basic iterative mechanism, and specifies a sequence of
statement(s) to be executed repeatedly until Exit When statement causes an immediate
exit.

An Interrupt statement is used to send information to any handler of any task.

The Enable/Disable-hardware statement enables/disables the interruption of all
hardware handlers.

The Enable/Disable-device statement enables/disables specific device number(s).

The Enable/Disable-preemption statements are used when some time-critical sec-
tions of code must be guaranteed to be executed until completion without preemption.

The .inable/Disable statement enables/disables all software handlers and thus
allow/prevent them from being interrupted by other tasks.

The Delay statement allows a task to suspend itself for a given interval.

The Start statement creates and schedules the execution of task name(s), on the basis

49

of the priority and the timeslice established in each task interface.

The Schedule statement resumes the execution of task(s) by inserting it(them) onto
the ready queue.

The Suspend statement stops the execution of task(s) indefinitely, until a Schedule
statement is made on behalf of that(those) task(s).

The Terminate statement allows the running task to kill another task.

The Reschedule statement moves the running task onto the ready queue, and com-
pletes a context switching by scheduling a new task to run.

There is basic support for input and output with Get and Put statements imple-

mented to test real-time applications, and to ease software development.

Data Types
The main classes of types are standard types, array types, and open-array types.

A standard type is a byte or a word. An array type is a structure made up of a fixed
number of items (of standard type). An open-array type is the base address of an array

and is used as parameter for handlers to work with arrays of arbitrary size.

5.1.4 Method of Description and Syntax Notation

The form of Synapse task units is described by line-oriented syntax with context-de-
per:dent requirements expressed by narrative rul :s and indentations.

The meaning of Synapse task units is described by narrative rules defining both the ef-
fects of each construct and the composition rules for constructs. This narrative employs
technical terms whose precise definition is given in each section.

Synapse uses indentation from the left to right margin and line separation to identify

50

the task structure and statement context, to give a clean representation by enhancing the
readability of the code. The terminal symbol NL (new-line) is a special symboi in the
Synapse character set. One or more indentations take effect only if they immediatly follow
a NL. The pattern of indentation is crucial for the interpretation of Synapse by the com-
piler.

The syntax of Synapse is described in a variant of BNF (Backus/Naur Form). The syn-
tactic symbols are of two kinds: terminals and non-terminals.

The boldface typewriter style identifies terminal symbols including keywords and
single characters (or special symbols).

Examples:

task priority import delay var
The italic style identifies non-terminal symbols. These symbols represent names using
upper and lower case letters.

Examples:

realTimeApplication taskUnit variableDeclaration expression

A syntax rule is a non-terminal followed by a colon to introduce its definition.

Example:

delayStatement :
delay expression

An alternative syntax rule lists its definitions on separate lines, except when the word
"one of" followed the colon.

Example of equivalent rules:
multiplicativeOperator :
*

/
mod

51

multiplicativeOperator : one of
* / mod
Braces { and] enclose a repeated symbol. The symbol may appear zero or more
times; the repetitions occur from left to right as with an equivalent left-recursive rule.

Example of equivalent rules:

realTimeApplication :
taskUnit (taskUnit)}

realTimeApplication :
taskUnit
realTimeApplication taskUnit

Brackets [and] enclose an optional terminal or non-terminal symbol.

Example of equivalent rules:

deviceDeclaration :
device deviceName : standardType [atDeviceLocation] NLs

deviceDeclaration :

device deviceName : standardType NLs
device deviceName : standardType atDeviceLocation NLs

The syntax does not explicitly defined the following non-terminal symbols. They are
equivalent to identifier (§5.2.2):

constantName variableName deviceName
handlerName taskName parameterName

The syntax does not explicitly defined the following non-terminal symbols. They cor-
respond to the general rule of a nonTerminalList given below:

variableNameList handlerNameList expressionList constantExpressionList
taskldList putltemList getltemList

nonTerminalList :
nonTerminal [, nonTerminal)

52

52 Lexical Elements

The text of a real-time application in Synapse consists of the texts of one or more com-
pilations. A corapilation text is a file called a task unit which is a sequence of lexical ele-

ments, each composed of characters. Each task unit must be compiled separately.
5.2.1 Character Set

characterSet : one of
letter digit specialCharacter SP NL

letter : one of
ABCDE!‘G I JKL NOPQRSTUVWXY 2
abcdefghiijk lm nopgrstuvwxysz
digit: oneof
012345617829
specialCharacter : one of
r()y *+, - ./ :<=>[11"\
SP:
the space character
NL:
the new-line character

The character set used in Synapse is the printable subset of the ASCII character set.
The Synapse lexical scanner simply filters any character that does not belong to the fol-
lowing set except the non-printable new-line character.

The character set is classified into letters, digits, special characters, space characters,
and new-line characters. The corresponding upper and lower case letters are considered

different.

53

oot aldd

52.2 Symbols

symbol : one of
separator delimiter identijier keyword constant comment

A Synapse task unit is rspreseited as a text file, consisting of lines each ended by an
NL character. Text lines are broken into symbols (also called tokens). Each symbol is the
minimal lexical element which is composed of characters in the set. A symbol may be a

separator, a delimiter, an identifier, a keyword, a corstant, or a comment.

Separators

separator: one of
SP NL

A separator is required to separate adjacent symbols. A separator is a space character
(SP) or a new line character (NL). Spaces are required to specify indentations after an NL
(starting at the beginning of a source line). They are also used to separate identifiers and
must not occur within identifiers or operators. Extra spaces are otherwise normally used
to improve readability. A space character is a separator except within a comment, a string

constant, or a space character constant.

Delimiters

delimiter : one of
()4, -/ rc=>[] "\ = /= >= <=

A delimiter is a special character or two adjacent special characters except within a

comment, a character constant, or a string constant.

54

Identifiers

identifier :

letter (identifierCharacter)}

identifierCharacter : one of

letter decimalDigit _

An identifier is a sequence of letters, digits, or underlines which must begin with a let-

ter. The programmer uses identifiers to refer to the constants, variables, devices, handlers

and tasks used in a given application. Upper and lower case letters in identifiers are dis-

tinct.
Examples:

Synapse

Keywords

keyword : one of

and
as
at

byte

caller
child
const
create

delay
device
disable

SYNAPSE

else
enable
entxy
exit
export

false
from

get

handler
hardwvare

id

if

inmport

in
interrupt

55

are distinct identifiers

loop

name
not
null

parent
preemption
priorxity
put

of
orx

reschedule
resume

self
shl

shr
start
state
suspend

task
terminate
timeslice
true

var
wait
within
when

word

xXox

These predefined identifiers are keywords that have special meaning to the Synapse
compiler. They can be used only as defined (they cannot be redefined), and they must be

written entirely in lower case letters.

Constants

constant : one of
integerConstant stringConstant

A constant is a number or a string of characters that can be used as a value in an ap-
plication. The value of a constant does not change during execution. The Synapse lan-
guage has two kinds of constants: integer constants and string constants.
integerConstant : one of

binaryConstant decimalConstant hexadecimalConstant

An integer constant is unsigned and can be represented in three different bases: bi-
nary, decimal and hexadecimal.
binaryConstant :
Ob binaryDigit { binaryDigit }

decimalConstant :
digit { digit)}

hexadecimalConstant :
Ox hexadecimalDigit { hexadecimalDigit)}

binaryDigit : one of
0 1

hexadecimalDigit : one of
digii a b cde £ABCDTETF

A binary constant consists of the prefix 0b followed by a sequence of binary digits. A
decimal constant consists of a sequence of decimal digits. A hexadecimal constant consists

of the prefix 0x followed by a sequence of the decimal digits and the letters a (or A)

56

through £ (or ¥). The value of a binary constant is computed to base 2; that of a decimal
constant to base 10; that of a hexadecimal constant to base 16. The lexically first digit is
the most significant. Integer constants are taken ‘o be vrords. The keywords true and

false are integer constants that indicate the boolean values 1 and O respectively.

Examples:

16 = 0x10 = 0bl10000

65535 = OxFFFF

true = Obl

false = 0b0
stringConstant :

" stringCharacterSequence "

stringCharacterSequence :

stringCharacter { stringCharacter)

stringCharacter :
any character in the source character set or escapeSequence
except double-quote ("), backslash(\),and NL

escapeSequence : one of
NMONMW \E \n \x \t \v \O

A string constant is a sequence of zero or more characters enclosed in double-quotes. A
string has a global storage duration and a type "array of bytes" and is initialized with the
given characters. A null byte \0 is appended to the string to determine its end. Certain
non-printable characters may be represented according to the following table of escape se-
quences:

\' is asingle-quote(’)
\" is a double-quote (")
\\ is abackslash (\)
\f£ isaform feed

\n is a newline

\r is a carriage return
\t is a horizontal tab
\v is a vertical tab

\0 is a null byte

57

Cominents

comment :
anyCharactersExceptEndOfLineCharacter NLs

A comment is a sequence of characters that is considered as an NL by the compiler.
Except within a character constant or a comment, a sharp sign (#) marks the start ofa
comment. It is ended by one or more NLs. This means that a comment is always clearly
identified on all its lines.

Examples:
This is a comment

This is a long comment split onto
consecutive lines

5.3 Types

type: oneof
standardType arrayType

Data values are grouped into classes called types. The main classes of types are stand-
ard types, array types, and open-array types. A typeis a named set of values with each
value being of one, and only one, type. The operands that yield data values during execu-
tion are constants, variables, and expressions. Any value yielded by an operand during ex-

ecution will be of one and only one type.

58

5.3.1 Standard Types

standardType : one of
byte word

The types byte and woxrd are standard types. They are also called integral types.
The following table summarizes the storage associated with each standard type. The
table gives also the range of values that can be stored in a variable of each type.

Table 51 Standard Types

Type Storage Range
byte 1byte 010255
word 2 bytes 01065535

5.3.2 Array Types

arrayType :
standardType [constantExpression]

An arrayType is a structure made up of a fixed number of items (constantExpression
specifies the size of the array) which are all of standardType. The items of the array are

accessed by indices that range from 0 to the size of the array minus one (constant-

Expression - 1).

Examples:
byte [80] # array type of 80 bytes
word [20] # array type of 20 words

59

5.3.3 Open-Array Types

openArrayType :
byte []
word []
An open-array type is the base address of an array. This type is used as parameter for

handlers (§5.9) to work with arrays of arbitrary size.

Examples:
byte [} # open-array type of bytes
word [] # open-array type of words

5.4 Constant Declarations

constantDeclaration :
const constantName : standardType := -constantExpression NLs

A constant declaration introduces a constant identifier ident of type standardType as
a synonym to a constantExpressi~ value. A constantExpression is an expression which
can be evaluated at compile time and is of a standard type.

Examples:

const LINE_LENGTH:byte := 80

const MAX WORD :woxrd := 65535

const BUF LENGTH :woxd := 4 * LINE LENGTH
const OK iword := true

5.5 Variable Declarations

variableDeclaration :
var variableNameList : type NLs

A variable declaration introduces one or more variable names of a given type .

E=zamples:
var aByte:byte # declaration of a byte variable "aByte".
var aWord, count:word # declaration of two word variables

"aWord" and "count™.
var anArray:wozrd [4] # declaration of an array variable
“anArray" of 4 words.

5.6 Device Declarations
deviceDeclaration :
device deviceName : standardType [atDeviceLocation] NLs

atDeviceLocation :
at constantExpression

A. device declaration introduces one device name ident of a given standardType . The
device registers (memory or port mapped) can be specified to be located at an absolute
device location corresponding to a hardware device. The device access in the language is
completely independent of the actual device mapping (the compiler takes care of these im-
plementation details).

Examples:

declaration of a device variable "printerDataReg"

device printerDataReg:byte

declaration of a device "printerBaseAddcess" at the location 10
device printerBaseAddress:byte at 10

61

5.7 Expressions and Operators

This section describes the form of Synapse expressions. A Synapse expression is a se-
quence of operands which are evaluated using a set of rules which specify the order of
precedence and also upon which operands the operations are to be performed. An operand
can be a variable identifier, a constant, or a task expression. Evaluation of an expression
yields a result (e.g., a value of a certain type) determined by the types of the operands and
by the operators. Parentheses are used to modify the order in which the operators are to be
applied to the operands. These subsections present operators in order of decreasing

precedence (with highest precedence first).

5.7.1 Primary Expressions

primaryExpr:
integerConstant
characterConstant
true
false
constantName
variableOrD~viceReference
create flasklName [(actualTaskParameterList)]
name of taskld
state of tlaskld
priority of taskld
timaslice of taskld
(expression)

actualtaskParameterList :
expressionList

saskld :
id of taskName
caller
parent
child
self

62

An integer constant, a character constant, and the keywords tzue and false are
primary expressions. These operands have a standard type (§5.4).

A constant name is a primary expressio.. that refers to an integer or to a character
constant (§5.4).

A variable or a device reference is a primary expression that provides a name for a
variable (§5.5) or a device (§5.6). Every name (or identifier) operand has an associated
type.

A task is known throughout the application by two identities: its name (taskName)
and its identification number (taskld).

A task’s name taskName is assigned by the programmer during a task creation or
when it is started (§5.8.9). A taskName is an identifier that gives a name to a task during
its declaration (§5.10.1).

A unique task identification number taskld is assigned to a task (in the task control
block) during its creation by the real-time executive. A taskld is an integer constant of
type byte between 1 and 255, inclusive.

The id of operator returns the taskld of the task corresponding to the string con-
stant that is contained in the taskName given at the time of its declaration(§5.10.1). An
integer constant zero is returned if the named task is not found. The type of the result is
byte.

The caller operator returns the taskld of the task that just sent an interrupt. This
operator can only be used 1n a software handler during the servicing of an interrupt.

The parent operator returns the taskld of the parent task (the creator of the cur-

rently active task).

63

The child operator returns the taskld of the last child task created by this task.

The self operator returns the taskld of the running task.

The expression create creates a new task and puts it in suspended state. It can
resume execution only through a schedule statement. The creation is based on the priority
and the timeslice established in the task interface. A task can be created with actual
parameters if required. This expression returns the taskld of the task created.

The expression name of taskld returns the task name of the corresponding taskld.
The type of the result is string constant.

The expression state of faskld returns the state of the corresponding taskld . The
type of the result is byte. See the Synapse Real-Time eXecutive (SynRTX) document for
the different states of a task.

The expression priority of taskld returns the priority (§5.10.2) of the correspond-
ing taskld . The type of the result is byte.

The expression timeslice of taskld returns the timeslice (§5.10.3) of the cor-
responding taskid . The type of the result is byte.

Example

task MyTask in "mytask.syn”
handler IdentifyTheCaller
put "Interrupted by task # ", caller
put "named : ", name of caller

entry
var myChildAnotherTask, myPriority:byte
var myTimeslice:wozd

creation of a child named AnotherTask
myChildAnotherTask := create AnotherTask

prints the child taskid in three differznt ways
put child, id of AnotherTask, myChildAnctherTask

prints my taskid and my parent taskid
put self, parent

gets my priority and my time slice
myPriority := priozxity of self
myTimeslice := timeaslice of self

raises my priority
priority of self := myPriority + 1

raises my time slice by 10 ticks
timeslice of self := myTimeslice + 10

5.7.2 Unary Operators

unaryExpr :
primaryExpr
unaryOperator typeCastExpr

unaryOperator: one of
+ - not

The resulting type of all unary operators is the standard type. The result of the unary
+ operator is the value of its operand. The result of the unary -~ operator is the negative

(two's complement) of its operand. The result of the unary not operator is the bitwise

one’s complement of its operand.

Examples:
+ expr i8 equivalent to (0 + expr)
- expr is equivalent to (0 - expr)
not expr is equivalent to (0 - expr - 1)

not 0b11001100 is equivalent to 0b00110011

65

5.7.3 Type-Cast Expressions

typeCastExpr :
unaryExpr
standardType (typeCastExpr)
openArrayType (typeCastExpr)

Type-cast conversions are discussed in §5.7.9; standard types are discussed in §5.3.1;

open-array types are discussed in §5.3.3.

5.7.4 Multiplicative Operators

multiplicativeExpr :
typeCastExpr { multiplicativeOperator multiplicativeExpr)

multiplicativeOperator: one of
* / mod

The result of the * operator is the product of the operands. The * operator is com-
mutative and associative, and expressions involving several multiplications at the same
level may be regrouped. The result ofthe / operator is the quotient of the operands.

The result of the mod operator is the remainder from the division of the first operand by

the second.

Example:

The expression (x/y)*y + x mod y is equal to x (G y is not zero)

5.7.5 Additive Operators
additiveExpr :
multiplicativeExpr { additiveOperator additiveExpr)

additiveOperator: one of
+ -

The result of the + operator is the sum of the operands. The + operator is com-
mutative and associative, and expressions involving several additions at the same level

may be regrouped. The result of the - operator is the difference of the operands.
5.7.6 Relational Operators
relationalExpr :

additiveExpr (relationalOperator relationalExpr]

relationalOperator : one of
€ > <= > = /=

Each of the operators less than (<), greater than (>), less than or equal to (<=), and
greater than or equal to (>=) yields one (1) if the specified relation is true and zero (0) if
it is false. The operators equal to (=) and not equal to (/=) yields one (1) if the specified
relation is true and zero(0) if it is false. The result has standard type.

Examples:
9 =38 is equal to
9 /=8 is equal to

0=0 is equal to
0 /=0 is equal to

O = O

67

5.7.7 Bitwise and Logical Operators
bitwiseOrLogicalExpr :
relationalExpr { bitwiseOrLogicalOperator bitwiseOrLogicalExpr }

bitwiseOperator : one of
shr shl and or xor

The result of the and operator is the bitwise "and" of the operands. Each bit in the
result is set if both corresponding bits in the converted operands are set; otherwise the
result bit is cleared. Th: and operator is commutative and associative. The result of the
or operatoris the bitwise inclusive "or" of the operands. Each bit in the result is set if
either or both corresponding bits in the converted operands are set; otherwise the result
bit is cleared. The or operator is commutative and associative. The result of the xor
operator is the bitwise "exclusive or" of the operands. Each bit in the result is set if both
corresponding bits in the converted operands contain opposite value (one is set, the other
is cleared); otherwise the result bit is cleared. T‘he xox operator is commutative and as-
sociative. The result of exprl shl expr2 is exprl shifted left by the number of bits
specified in expr2. Zeros are shifted in on the right. The result of exprl shr expr? is
exprl shifted right by the number of bits specified in expr2. Zeros are shifted in on the
left,

Examgles:

not 0b00110011 is equal to 0b11001100 (or 0xCC)
0b11001100 and 0b10101010 1is equai 0 O0b10001000 (or Ox88)
0b11001100 ox 0bl10101010 is equal to 0Obl11101110 (or OxEE)
0b11001100 xor 0b10101010 is equal to 0b01100110 (or 0x66)
000110000110000011 shr 1 is equal to 0b0011000011000001
0b1100011111101111 shl 2 is equal to 0b0001111110111100

Note that the resulting value (true or false) from a relational expression can be combined

68

significantly with logical operators:

not (8>3) is equal to 0x0000 (false)
8<3 and 9> 4 is equal to 0x0000 (false)
8>3 or 9> 4 is equal to 0x0001 (tzxue)

5.7.8 Precedence and Order of Evaluation

The precedence and associativity of Synapse operators affect the grouping and evalua-
tion of operands in expressions. An operator’s precedence is meaningful only in the
presence of other operators having higher or lower precedence. Expressions with higher
precedence operators are evaluated first. An expression can contain several operators with
equal precedence. When several such operators appear at the same level in an expression,
evaluation proceeds according to the associativity of the operator, either right to left or left
to right. The following table summarizes the precedence and associativity of the Synapse
operators, listing them in order of precedence from highest to lowest. Operators that ap-
pear together in a line have equal precedence and are evaluated according to their as-
sociativity.

Table 5-2 Precedence and Associativity of Synapse Operators

Symbol Type of Operation Associativity
+ - not Unary Righttoleft
* / mod Multiplicative Left toright
+ - Additive Left to right
<><==> = [= Relational Left toright
shr shl and or xor Bitwise and Logical Left to right

69

5.19 Type Conversions

Type conversions occur:

+ when a value is assigned to a variable of a different type,

» when a value is explicitly cast to another type,

+ when an operator converts the type of its operand or operands befare
performing an operation, ard

+ when a value is passed as an argument to a handler.

Assignment Conversions
In assignment operations, the type of the value being assigned is converted to the type

of the variable receiving the assignment. The methods of carrying out conversions depend

upon the type, as given in Table 5.3.

Table 5-3 Conversions to and from Standard Types

From To Method
byte word Zero Extend
word byte Preserve low-order byte

An open-array to one type of value can be converted to an open-array to a different
type. The result will depend of the alignment sizes of different types in storage (byte or
word).

An open-array value can be converted to a standard type value, and vice-versa. The

methods of carrying out conversions depend upon the type, as given in Table 5.4.

70

Table 54 Conversions to and from Open-Amay Types

From To Method

byte byte [] | Zero Extend

byte word [] Zero Extend

word byte [] Preserve patiemn (no change)

word word (] Preserve patiem (no change)

byte [] byte Preserve low-order byte

byte [] word Preserve pattem (no change)

byte [] word [] Implementation dependent

word [] byte Preserve low-onder byte

word [} word Preserve patiem (no change)

word [] byte [] Preserve patiem (no change)
Type-Cast Conversions

Explicit type conversions can be made by a type cast. A type cast has the form

standardType (typeCasiExpr)
openArrayType (typeCastExpr)
where standardType and openArrayType specify a particular type and typeCastExpr

is a value to be converted to the specified type. The conversion rules for assignments (out-
lined above) apply also to type casts. An openArrayType can be converted to another open-
ArrayType. However, the result is implementation dependent, because of the alignment
requirements of different types (byte or word) in storage:. See the compiler documentation
on openArrayType conversions.

71

Operator Conversions

The conversions performed by Synapse operators depend on the operator and on the

type of the operand or operands. Table 5-3 lists all operator conversions.

Handler-Call Conversions

The type of conversion performed on the argument in a handler call depends on the
declared parameter type for the called handler. Tables 5-3 and 5-4 list all argument con-

versions.

5.8 Statements

statement :
nullStatement
assignmentStatement
ifStatement
loopStatement
exitWhenStatement
interruptStatement
enableStatement
disableStatement
delayStatement
startStatement
resumeStatement
suspendStatement
terminateStatement
rescheduleStatement
ioStatement

Statements are used to specify the flow of control through an application. The execu-
tion of these statements is achieved in a body by task entries and handlers.
As mentioned in §5.1.2, there is no need for compound statements in Synapse, since in-

dentations perform an equivalent function.

72

5.8.1 Null Statements

nullStatement :
null

Its execution is an empty operation, has no effect, and always ends. This statement is
useful as a filler when the syntax requires a statement.
Example: A busy loop

loop
null

5.8.2 Assignment Statements

assignmentStatement :
variableOrDeviceReference := expression
priority of taskld := expression
timeslice of taskld := expression

The expression is evaluated and the resulting value is assigned to a variatle, a device,
a task’s priority, or a task’s time slice. In an assignment (: =), the value of the expression
replaces the old objezt specified on left. An assignment to an indexed variable of an array
variable assigns a value to the indexed variable without changing the values of the
remaining position(s) in the array.

Examples:

a = ¢4
anArray[2] := 5

set bit 0 in aDevice (independently if it is
¥ memory or port mapped device)
aDevice := aDevice or 0x01

73

5.8.3 If Statements
ifStatement :
if expression NLs statements [elsePart] [elseTruePart]

elsePart ;
{ else expression NLs statements)

elseTruePart :
else NLs statements

Each conditional expression following each If and Else is evaluated until one of them
is found to be true, in which case the statement(s) following the expression is (are) ex-
ecuted. An Else immediately followed by a new-line (NL) or a comment is considered to be
true. If none of the expressions evaluate to true then the statement(s) following Else
is(are) executed; if no Else is present the execution continues following the If statement.

An Else is essociated with the lexically immediately preceding aligned If or Else . For
example, in

d :=3
e =4
ifa>0
i€ b > ¢
¢ :=Db
else c > d
e = ¢C
else
e :=d

all Else statements go with the aligned If , as shown by indentation. As result,
if a=0, b=1, ¢=2 then e=4

if a=1, b=1, ¢=2 then e=3

if a=1, b=5, ¢c=2 then e=5

if a=1, b=1, c=6 then e=6

74

Different indentaticns will change the association. The indentations determines what
you want:
d :=3
e = 4§
ifa>0
i€ b> ¢
e :=b
else c > d
e 1= ¢
else
e :=d
Will evaluate as follows:
if a=0, b=1, ¢=2 then e=3
if a=1, b=1, ¢=2 then e=4
if a=1, b=5, ¢=2 then e=5

if a=1, b=1, ¢c=6 then e=6
5.8.4 Loop Statements

loopStatement :
loop [within integerConstant] NLs statements

The statement(s) indented inside a loop is(are) repeated indefinitely. The within
clause limits the iterations to no more than a some real-time units or ticks (integer-
Constant). If the loop times out, an exception handler will be activated. Exception hand-
lers are discussed in §5.16.

Example: Keep getting a byte from the keyboard and printing it on the terminal ... forever.

var aByte:byte
loop
get aByte
put aByte

75

5.8.5 ExitWhen Statements

exitWhenStatement :
exit when expression

An Exit When statement causes an immediate exit to the nearest enclosing loop if the
expression evaluates to true. Otherwise, the execution of the loop continues. An Exit When
statement cannot appear outside of a loop.

Examples: Keep getting a byte from the keyboard, exit from the loop if it is 0, otherwise

print it on the terminal.

var aByte:byte

loop
get aByte
exit when aByte = 0
put aByte

Same as above, except that "exit from the loop" must be within the next
20 seconds (2000 x 10ms/tick).

var aByte:byte

loop within 200V
get aByte
exit when aByte = 0
put aByte

5.8.6. Interrupt Statements

interruptStatement :
interrupt taskName . handlerName [(expression ,]
interrupt taskld . handlerNarw [(expression)]
An Interrupt statement is used to send information to any handler of any task. It is
sent to the specified handlerName with an optional actualParameterList. The effect of an
interrupt on a task depends on whether or not this interrupt is enabled and on its priority

among all the other interrupts that are now enabled for this task. As any iwo inter=ipts

76

may not have equal priorities, a non-deterministic choice will never happen. If an inter-
rupt (and possibly information) is sent to a non-enabled handler, then the interrupt will be
pending (with sent information saved if any) until the handler is enabled. A handlerName
selects a particular handler]d that belongs to a specific taskld . Each handlerName must

be prefixed by a taskName or a taskld and the dot(.) operator.

Example: Send txue tothe handler Granted in task PrinterServer.

interrupt PrinterServer.Granted(true)
or
interrupt id of PrinterServer.Granted(true)

5.8.7 Enable and Disable Statements

enableStatement :
enable hardware
enable device constantExpressionList
enable preemption
enable handlerNameList
enable constantExpressionList
enable wait handlerNameList [within integerConstant]
enable wait constantExpressionList [within integerConstant]

disableStatement :
disable
disable hardware
disable device constantExpressionList
disabk’s preemption
Because the above statements are machine-dependent, the programmer should refer
to the corresponding device numbers listed in the Synapse Real-Time eXecutive document.
The Disable-hardware statement disables all hardware handlers and thus prevents

them from being interrupted (like the disable interrupt instruction available on

mic.oprocessors). The Enable-hardware statement enables all hardware handlers to be

77

interrupted (like the enable interrupt instruction available on microprocessars).

The Enable-device statement enables specific device number(s) (constantExpression-
List). The Disable-device statement disables specific device number(s) (constant-
ExpressionList). This statement is implementation dependent and has no effect if devices
share an interrupt level. See the compiler documentation on device interrupt levels.

The Enable/Disable-preemption statements are used when some time-critical sec-
tions of code must be guaranteed to be executed until completion without preemption. The
Disable-preemption statement execution assures that the scheduler will not try to
preempt the calling task, until it next executes an Enable-preemption statement. Execut-
ing the enable preemption statement when the task is already preemptible, or the Disable-
preemption statement when the task is already nonpreemptible, is permitted, and has no
effect.

The Disable statement disables all software handlers and thus prevents them from
being interrupted by other tasks.

All other Enable statements are used for software handler(s). The constant-
ExpressionList represents at least one handler number specified by the order of ¢he
handler’s declaration of the corresponding task (from 0 to 15, inclusive). The handler-
NameList enables the software handler(s) with a priority given by the order of their ap-
pearance in the text so it is not possible to have software handlers with equal priority. The
software handler(s) which is(are) enabled will remain enabled until a subsequent software
enable or disable occurs. The Enable-wait statement behaves like the Enable statement,
except that it blocks the current task; it then waits for the first interrupt to come along

which will be prucessed with the lexical ordering priority given. The within clause limits

78

the iterations to no more than a number of real-time units or ticks (integerConstant). If
the loop times out, an exception handler will be activated. Exception handlers are dis-

cussed in §5.16.

Examples:

Enable all hardware handlers to be interrupted.
enable hardware

Enable the Real-Time Clock device (RTC = 0)
enable device 0

A time-critical section of code guaranteed to be
executed to completion without preemption
disable preemption

time-critical section ¢£ code

enable preemption

Enable software handler ’‘Current’ and ’‘Last’ (where Current is
prior to Last), then resumes execution.

All other software handlers are disabled.

enable Current, Last

Enable software handler ’Current’ and ‘Last’ (where Current is
prior to Last), block the task and relinquish the control to

the scheduler. All other software handlers are disabled.
enable wait Current, Last

Same as above, except that one of these software handlers
"Current’ and ’'lLast’ must be interrupted within the next
20 seconds (2000 x 10ms/tick).

enable wait Current, Last within 2000

79

5.8.8 Delay Statements
delayStatement :
delay expression
The delay statement allows a task to suspend itself for a given interval. The duration
in increments of 10 ms per tick is given by the expression.

Example:

the task is delayed (sleeping)
for next 2 seconds (200 x iOms/tick)
delay 200

5.8.9 Start Statements

startStatement :
staxt startTaskNameList

startTaskNameList :
startTashName (, startTaskName)

startTaskName :
taskName [(actualTaskParameterList)]

actualtaskParameterList :
expressionList

The start statement creates and resumes the execution of task name(s) based on the
priority and the timeslice shown in each task interface. Task(s) can be started with actual
parameters if required. This statement does not reschedule the currently active (running)
task.

Example:

start Cecntrol task and three Reader tasks
start Control, Reader(0), Reader(l), Reader(2)

80

5.8.10 Resume Statements
resumeStatement :
resvma taskldList

The resume statement resumes the execution of task(s) by inserting it(them) onto the
ready queue. This statement does not reschedule the currently active (running) task.

Example:

create Control task and three Reader tasks
controlTid := crrate Control
readerNumber := 0

loop
readerTid[readerNumber] := create Reader (readerNumber)

readerNumber := readerNumber + 1
exit when readerNumber = 3

resume Control task and three Reader tasks
resume controlTid, readerTid[0], readerTid[l], readerTid[2]

5.8.11 Suspend Statements

suspendStatement :
suspend taskldList

The suspend statement stops the erecution of task(s) specified by taskldList . A task
may suspend itself, and/or any cther task(s). It can release execution only by some other
task(s) executing the schedule statement. This statement initiates a reschedule (i.e., a task

switch).

81

Example: To respond to processar overload situations.

it overload
suspand id of Background

if recovered
schedule id of Background

5.8.12 Terminate Statements
terminateStatement :
terminate taskldList

The terminate statement allows the currently active (running) task to kill another
task(s). A task may terminate itself (commit suicide).

Examples:

birth and death of a child

staxt MyChildTask
terminate child # same as "terminate id of MyChildTask"

suicide

terminate self

same as the two above statements
terminate child, self

5.8.13 Reschedule Statements

rescheduleStatement :
raschedule

The reschedule statement 1uoves the currently active (running) task onto the ready
queue, completes a context switching, selects a new task to rum, and makes this new task
running. The purpose of this statement is to allow a task to give up part of its time slice.

Examples:

reschedule # the running task

82

5.8.14 Input and Qutput Statements

ioStatement :
putStatement
getStatement

putStatement :
put putltemlist

putltem :
expression

stringConstant

getStatement :
get getltemnList

getltem :
variableReference

An I/O statement is a get (input) ora put (output) statement. A get statement
reads getItem(s) from the keyboard. A getltem is a variable reference. The following
input:

255 65535

is used in this example:

var aByte:byte

var aWord:word

get aByte, aWord

aByte = 255, aWord = 65535

A put statement writes putItem(s) to the screen. A putltem is an vxpression or a
string constant.

Examples:

put aByte

put 65535

put "Hello world!"

put "The answer ", 5, " is correct"

83

5.9 Real-Time Application Structure and Task Units

realTimeApplication :
taskUnit (taskUnit)]

A Synapse real-time application is composed of one or more task units, where each
task unit is a file that defines one task and must be compiled separately. A taskisa
separate "thread of control” which executes conceptually in parallel with other tasks. Itis
an independent active entity with a collection of statements executed strictly in sequence,

which goes into action automatically as soon as the task is activated.

taskUnit :
{ NL] taskinterface taskImplementation

A task unit consists of two parts: the task interface and the task implementation.

5.10 Task Interface

taskinterface :
taskHeader [priority] [timeSlice] [importList] [exportList]

The task interface is the public (visible) part of the task unit. It contains the task

header followed optionally by its priority, time slice, import, and export lists.

84

5.10.1 Task Header

taskIieader :
task taskName [formalParameterList] in stringConstant NLs

A task header gives a name (taskName) to a task. A task may optionally take
parameters, the types of which are defined in the formal parameter list. The names of
parameters, as well as the name of the task, are visible inside the task. The identifiers
declared in the formalParameterList must be distinct from other identifiers inside the
task. The task header also specifies in which physical file (stringConstant) this task unit
is located.

5.102 Priority

priority :
priority integerConstant NLs

The task’s priority is an integer constant from 1 (lowest) to 255 (highest). The priority

is 1 by default.

5.10.3 Time Slice

timeSlice :
timeslice integerConstant NLs
In Synapse, the timeSlice is mesured in real-time units (or ticks). One real-time unit is
equal to ten milhseconds. At every clock interrupt, the real-time ciock driver calls the
scheduler to prepare the next task ready to be executed. The task’s time slice is an integer
constant that corresponds to the number of real-time units during which the task should

be executed before preemption. The time slice is 2 (20 milliseconds) by default, if not

85

specified.
5.10.4 Import List
importList :
{(from taskName [asRole] impoxt handlerNameList NLs)

asRole :
as caller
as child

as parent
A task interface should import only those handler(s), from other task units that are re-

quired in the implementation part. This reduces its dependence on other task units. The
task name (also called a qualified task name) specifies the task unit whose imported hand-
ler(s) needs to be accessed (handlerNameList). Obviously, to import handlers, these must
be visible (exportablz) from the specified task name. This selective import facility allows
the import of different handlers of the same name from different task units and still avoid
conflicts of names.

The optional asRole is useful when a task statement references the target task because

it is the caller, the parent or the child.

5.10.5 Export List

exportList :
{ export handlerNameList NLs)

The export clause lists the software handlers (handlerNameList) that are accessible to

other task units.

86

Example of a task interface:

task Reader in "reader.syn"
priority 2
timeSlice 10
from Control as caller import Read
export Read

5.11 Task Implementation

taskImplementation :
{ declaratiornInTask] taskEntry

The task implementation is the private (hidden) part of a task unit. It contains decla-

ration(s) and a task entry which are logically and textually hidden from other task unit(s).
5.11.1 Declarations in Task

declarationinTask :

declaration

hardwareHandlerDeclaration

softwareHandlerDeclaration
declaration :

constantDeclaration

variableDeclaration

deviceDeclaration

A task implementation may have zero or more declaration(s) of a constant, a variabie,

a device, a hardware handler, or a software handler. The scope of declaration(s) within the
task implementation extends from *he task interface) the last statement in the task
body. This declarative region is global to an inner (enclosed) declarative region. Inner dec-

larative regions are optional handler declaration(s) and a mandatory task entry.

87

5.11.2 Task Entry

taskEntry :
entry NLs body

body :
{ declaration] statements

A task entry is where the task begins its execution. A body is composed of zero or more
declarations of a constant, a variable, or a device followed by at ieast one statement. The
soope of declaration(s) within the task entry extends from the entxy to the last statement
in the body. This declarative region is local to the task implementation. A declaration is

hidden within a task entry if it contains the same identifier of this declaration.

5.12 Handler Declarations

hardwareHar::lerDeclaration :
hardwareHandlerHeader body

softwe.reHandlerDeclaration :
softwareHandlerHeader body

Information is transferred between task: by sending and handling interrupts. A
handler is an interrupt service routine (ISR) declared only in a task implementation dedi-
cated to serve an interrupt. Once an interrupt call has been sent, the handler body is ex-
ecuted. There are two kinds of handlers: software and hardware.

hardwareHandlerHeader :
handler handlerName hardware : integerConstant NLs

softwareHandlerHeader :
handlexr handlerName [formalPurameter] NLs

88

The software interrupt handler is a natural extension of the hardware interrupt
mechanism. Only 4 software handler can receive an argument from interrupts (via a for-
mal parameter). A handler behaves like a routine and returns after execution to the point
of interrupt. Only software handlers can be visible (exported) tc other client task, these ex-
portations are specified in the task interface (§5.10). A hardware handler must specify the
interrupt vector number (integerConstant). This is implementation-dependent; the
programmer should refer to the corresponding device numbers listed in the compiler docu-
ment.

Example: An interrupt-vector 0 for hardware handler DivisionByZero.

handler DivisionByZero hardwaxe:(
put "Division by Zero\n"

Example: A software handler Read that receives a value from a task.

handler Read(aValue:woxd)
put "Value received from the caller”, caller, "is", aValue

5.13 Multi-Tasking

A task is a separate "thread of control” which executes concurrently with other tasks.
It is an independent active entity with a collection of statements executed strictly in se-
quence that goes into action automatically as soon as the task is started. A task ends by
executing its last statement or by executing a Terminate statement in its body. Concur-
rent execution of a task is created and scheduled by the Start statement with actual

parameters if required.

89

For example, the following are two separate files. The first file called baby.syn con-
tains a task named Baby that prints its own babble, and the second file startup.syn is the
UsersTaskStartUp task that creates and schedules two tasks Baby printing (babbling) at
undefined relative speeds:

task Baby(babble:byte[]) in "baby.syn"

entry

doop
put babble

task StartUpUserTasks im "suuser.syn"
entry
start Baby("Do"), Baby("Ga")
StartUpUserTasks is terminated at this point.
The output is a sequence of Do’s and Ga's where each sequence is ended by the context
switch of each task reaching the end of its time slice.

DoDoDoDoDoGaGaGaGaGaDoDoDoDoDoGaGaGaGaGaDoDoDoDoDoGaGaGaGaGa. . .

5.14 Mutual Exclusion

When tasks need to update common data, the data may be corrupted if more than one
update takes place in parallel. In Synapse, handlers guarantee mutually exclusive access
to global data in a task. A handler guarantees that only one task is active inside a handler
at a given time. The following application shows how such an example can be safely
programmed using handlers. The task Observer waits for an event, and increments the
eventCount in task Update as soon as he sees one. The task Reporter waits for a while,

prints and resets the eventCount in the Update task. The task Update is started first to

initialize count with the value zero and gives a fair access to the Reporter and the Ob-
server by rotating interrupt priorities.

Example:

task StartUpUserTasks in "suuser.syn"

entry
start Update, Observer, Reporter

task Update in "update.syn"
export Report, Observe
var eventCount :word
handlex Report
put eventCount
eventCount := (
handler Observe
eventCount := eventCount + 1
entry
eventCount := 0
loop
give a fair access by rotating interrupt priorities
enable wait Observe, Report
enable wait Report, Observe

task Observer in "observer.syn"
from Update import Observe
entry
loop
wait for an event ...
interrupt Update.Observe

task Reporter in "reporter.syn"
from Update import Report
entry

loop
wait for a while ...

interxupt Update.Report

91

5.15 Synchronization and Communication between tasks

In most real-time applications, tasks must interact with one another. Two tasks can
interact by synchronizing their activities or by passing messages between themselves.
Synchronization is two tasks adjusting their relative rates of execution to meet certain
timing requirements. Communication (with message passing) means that data (a mes-
sage) is exchanged between two tasks. Because ¢asks must synchronize to exchange data,
the semantics of message passing is higher level than that of synchronization.

A real-time language needs a synchronization primitive to allow tasks to communi-
cate, while preventing them from simultaneous access to data (see mutual exclusion
§5.14).

Both intertask synchronization and communication are accomplished with handler

entries. A task declares its handler entries in the task implementation.

5.15.1 Asynchronous Communication

The actions taken upon the arrival of a message are very similar in behavior to the
handling of an interrupt on a single processor. This type of inter-task communication is a
very natural mechanism based on the importance of interrupts in real-time systems.
Synapse offers asynchronous message passing as a general communication construct that

should be viewed as an orthogonal form of communication.

92

Asynchronous Communication without data

Example: A task Receiver waits the reception of an interruption from task Sender, by
means of the statement enable wait Sync in the task entry of Receiver:

task Sender in "sender.syn"
from Receiver import Sync
entry
interrupt and continue ...
interrupt Receiver.Sync

e e

task Receiver in "receiver.syn"
export Sync
handler Sync

entry
enable wait Sync

Asynchronous Communication with data

Example: A task Receiver awaits the reception of an interruption with data from another
task Sender, by means of the statement enable wait Syncin the task entry of Receiver:

task Sender in "sender.syn"

from Receiver import Sync
entry

var data:woxd

computation on data

interrupt and continue ...
intexrupt Receiver.Sync(data)

task Receiver in "receiver.syn"
export Sync
var receivedData:word
handler Sync(data:word)
receivedData := data

entry
enable wait Sync

93

5.15.2 Synchronous Communication

Synchronous communication requires a rendezvous between tasks which desire to
transfer data (unidirectionally or bid.rectionally). The sender will be blocked until the

other task (the receiver) sends back an interrupt, and then both tasks continue.
Synchronous Communication without data

task Sender in "sender.syn"
from Receiver import Sync

export Reply

handler Reply

entry
interrupts and waits on Reply
interrupt Receiver.Sync(data)
enable wait Reply

task Receiver in "receiver.syn"
from Sender impoxt Reply

export Sync

handler Sync
interrupt caller.Reply

entry
waits on Sync
enable wait Sync

94

Synchronous Communication with data

task Sender in "sender.syn"
from Receiver import Sync
export Reply
var sentData:woxrd

handler Reply(data:word)
sentData := data

entry
interrupts and waits on Reply
interrupt Receiver.Sync(sentData)
enable wait Reply

task Receiver in "receiver.syn"
from Sender import Reply
export Sync
var receivedData:woxd

handlexr Sync (data:wozd)
computation on data
receivedData := data

entzy
waits on Sync
enable wait Sync
interrupt Sender.Reply(receivedData)

95

5.16 Exception Handling

Exceptional situations are generally influenced by internal hardware interrupt
mechanisms or by run-time error conditions. Exception handlers are responsible for han-
dling the exccptions that are raised within a unit, and behave exactly like standard hand-
lers. An exception is raised via an interrupt statement.

Example:
task DivisionByZero in "div0.syn"
handler DivByZero hardware:0
enable hardware # allow further interrupts
put "Division by Zero\n"

interrupt DivisionByZero.Exception

handler Exception
action after a division by zero ...

entry
on entry, the interrupt hardware vector 0 is installed
loop
enable wait Exception

96

Chapter 6

Synapse Applications

This chapter describes some applications written in Synapse.

6.1 Producer-Consumer Problem

The application is shown diagrammaucally in Figure 6-1, followed by the correspond-

ing Synapse source code.
Terminal Producer Consumer_ Screen _ .
Next |(<--~-=-- Next |<~=—===-- Next |[<~wwm~=~
O===== ~>| Data o= —=== >| Data O====== >| Data
————————————————————————————————————— P

Figure 6-1 Producer-Consumer Inter-task Communication Diagram

The StartUpUserTasks starts the Screen, Consumer, Producer, and Terminal tasks
(suuser.syn, line 3). The Screen task will be blocked (screen.sys, line 11) waiting for an in-
terrupt coming from the Consumer task. The Consumer and Producer tasks will be in the
same situation (consumer.syn, line 15; producer.syn, line 15) until the terminal reads a
byte from the keyboard, sends it to the Producer task, and waits for a synchronization ac-
knowledge for a Next byte (terminal.syn, lines 11, 12 and 13). Then, in the Producer task

(producer.syn), the handler Data receives the byte through the input parameter b (line 9),

97

sends it to the Corsumer task (line 10), and signals the terminal, which is the caller, for
the next byte (Hﬁe 11). The Consumer task (consumer.syn) receives the byte (line 9), sends
it to the Screen task (line 10), signals the Producer caller task (line 11), and waits for the
Screen task to signal the completion of output on the screen (line 16). The Screen task
(screen.syn) receives the byte (line 5), sends it to the screen using put (line 6) and then

sends the synchronizing interrupt to the Consnmer task (line 7).

1 task StartUpUserTasks in "suuser.syn"

2 entry

3 start Screen, Consumer, Producer, Ter:ninal
1 task Terminal in "terminal.syn"

2 from Producer import Data

3 export Next

4

5 handler Next

6 null

7

8 entry

9 var b:byte

10 loop

11 get b

12 interrupt Producer.Data(b)
13 enable wait Next

1 task Producer in "producer.syn"

2 from Consumer import Data
3 from Terminal as caller import Next
4 export Next, Data

5

6 handlexr Next

7 null

8

9 handler Data (b:byte)

10 interrupt Consumer.Data (b)

11 interrupt caller.Next

12

13 entry

14 loop

15 enable wait Data

16 enable wait Next

98

1 task Consumer in “"consumer.syn"

2 from Screen import Data
3 from Producer as caller import Next
4 export Next, Data

5

6 handler Next

7 null

8

9 handler Data(b:byte)

10 interrupt Screen.Data(b)

11 interrupt caller.Next

12

13 entry

14 loop

15 enable wait Data

16 enable wait Next

1 task Screen in "screen.syn"

2 from Consumer as caller import Next
3 export Data

4

5 handler Data(b:byte)

6 put b

7 interzrupt caller.Next

8
9
1
1

0
1 enable wait Data

6.2 Bounded Buffer Problem

The application is shown diagrammatically in Figure 6-2, followed by the correspond-

ing Synapse source code.
Producer Buffer . Consumer
Next |K-~===-- Next [L—===e-- Next

O==m——= >! Data O====== >| Data

Figure 6-2 Bounded Buffer Inter-task Communication Diagram

The StartUpUserTasks starts the Buffer, Consumer, and Producer tasks (suuser.syn,
line 3). The Buffer task (buffer.syn) initializes its variables (lines 21, 22, aid 23), and waits
for an interrupt coming from the Producer task (producer.. ., line 10). The Consumer
sends an interrup! to Buffer task (consumer.syn, line 10). This interrupt will be pending
(buffered) since the Buffer task has not yet enabled the hancier Next. With the next state-
ment, it gets blocked (consumer.syn, line 11) waiting for an interrupt that will come from
3L “er task (buffer.syn, line 16) as soon as a datum will be available. The Producer task
(producer.syn) will be blocked (line 11) waitin;’ ’» serve an interrupt in handler Next (line
5). When the Producer task produces a byte b, it sends b via interrupt to the Buffer task
(producer.syn, line 10). Then, the handler Data (buffer.syn, line 9) receives the byte b and
stores it in the buffer (lines 10, 11, and 12). If the buffer if full, then it enables only the
handler Next (line 26), and wants until the consumer releases a free slot in the buffer (lines
16, 17, and 18). If the buffer is empty (line 27), then it enables only the handler Data (line
28), and waits until the producer stores a byte in the buffer (lines 10, 11, and 12).

1 task StartUpUserTasks im "suuser.syn"

2 entxy

3 start Buffer, Consumer, Producer
1 task Producer in "producer.syn"

2 from Buffer import Data _
3 export Next

4

5 handler Next

6

7 entry

8 loop

9 # produces b

10 interrupt Buffer.Data (b)
11 einable wait Next

100

1 task Consumer imn “consumer.syn"

2 £rom Buffer import Next

3 export Data

4

5 handler Data(b:byte)

6 # consumes b

7

8 entry

9 loop

10 interrupt Buffer.Yext

11 enable wait Datec

1 task Buffer in "buffer.syn"

2 from Producer as caller import Next

3 from Consumer as caller import Data

4 export Next, Data

5 const NUMBER OF SLOTS:byte := 20

6 var buffer:byte[NUMBER OF_SLOTS]

7 var nFull, slotToFill, slotToEmpty:byte
8

9 handler Data(b:byte)

10 buffer([slotToFill] :=Db

11 nFull := nFull + 1

12 slotToFill := (slotToFill+l) mod NUMBER_OF_ SLOTS
13 interrupt caller.Next

14

15 handler Next

16 interrupt caller.Data (buffer(r])

17 slotToEmpty := (siotToEmpty+l) mod NUMBER_OF SLOTS
18 nFull := nFull - 1

19

20 entry

21 nFull := 0

22 slotToFill := 0

23 slotToEmpty := 0

24 loop

25 if nFull = NUMBER OF SLOTS # buffer full ?
26 enable wait Next

27 else nFull = 0 # buffer empty ?
28 enable wait Data

29 alse

30 enable wait Data, Next

101

6.3 Reader-Writer Problem

The application is shown diagrammatically in Figure 6-3, followed by the correspond-

ing Synapse source code.
Reader Controller Writer
------- >| Read
Read [K====== o] Write Cmmm—oe 0

Figure 6-3 Reader-Writer Inter-task Communication Diagram

task StartUpUserTasks in "suuser.syn"

entry
start Controller, Reader, Writer

task Reader in "reader.syn"
from Control import Read
export Read
var value :woxd

handlexr Read (v:word)
value := v

entry
loop
...
intexrupt Control.Read
enable wait Read
...

102

task Writer im "writer.syn"
£rom Control import Write

entry
var value:word

value := 0

intexrupt Control.Write(value)

. loop

3 '

L value := value + 2

E interrupt Control.Write(value) # update the value
$...

task Control in "control.syn"
from Reader as caller import Read
export Write, Read
var value:woxd

handler Write (v:word)
value := v

handler Read
interruvpt caller.Read(value)

/ entry
loop

enable wait Read, Write
enable wait Write, Read

6.4 Basic Resource Device Driver

Tasks competing for shared resources must synchronize their accesses. Once a
resource is acquired by a task, another task claiming the resource should be blocked until
the owner task releases it. The following figure illustrates a basic resource device driver.
Each task must follow the same access protocol: acquire the resource, then use it, and
finally release it.

Acquire { Use } Release

103

The task Resource blocks itself by the enable wait Acquire when the resource is avail-
able. The Acquire handler keeps the task identification (the caller) in owner, and acknow-
ledges it by sending an interrupt to the caller'’s Grant handler. The owner can used the
resource, and it is the sole task that can release it. The Release handler verifies whether
the task that attempts to release the resource is really the owner, then the resource is
freed by assigning NOBODY to owner; otherwise, an exception is raised to indicate which
task does not respect the access protocol.

The application is shown diagrammatically in Figure 6-4, followed by the correspond-

ing Synapse source code.

Resourxce

< -

«..===>| Acquire
e o===>| Use
..~==>| Release

Figure 64 Basic Resource Diagram

task Resource in "resource.syn"
export Acquire, Release
const NOBODY:byte := 0
var owner :byte

handler Acquire
owner := caller
interrupt caller.Grant

Use ...

handler Release
if owner = caller
owner := NOBODY
else
interrupt self.Exception(callex)

handlex Exception{who:byte)
who is the task that has accessed the keyboard without
using the access protocol: Acquire { Use } Release

entry

owner := NOBODY

loop
enable wait Acquire

loop
the owner can now used the resource ...
only the client (owner) can release it
enable wait Release, Exception
exit when owner = NOBODY

6.5 Event Timer Problem

The event timer problem [Kerr84] is one timer resource which services several tasks
competing for the timer. These tasks have priority so a higher priority task can pre-empt
a lower priority task. The pre-empted task is informed of the time which has elapsed up to
the interruption. The Clock task generates a software tick triggered by a real-time clock

(served by the hardware handler HardwareTick).

105

The application is shown diagrammatically in Figure 6-5, followed by the correspond-

ing Synapse source code.
TimerClient TimerServer ClockDevice
===>| Acquire HaxrdwareTick |<---..
Grant |<--o e==>| Enable
~-->| Disable
SoftwareTick |<---
--->| Start
--=>| stop
Finish {<--o

WaitInterrupt |[<--o

Figure 6-5 Event Timer Inter-task Communication Diagram

task StartUpUser in "suuser.syn"

entry
const STOP_TIMER:woxrd =0
const WAIT_ INTERRUPT:word := 1

start ClockDevice, TimerServer

start 4 timer clients with priority 1, 2, 3, and 4
start TimerClient (WAIT INTERRUPT) # already prio 1
start TimerClient (STOP_TIMER)

priority of child := 2

start TimexClient (WAIT_ INTERRUPT)

priority of child := 3

start TimerClient (STOP_TIMER)

priority of child := 4

task TimerClient (actionToDo:word) in "tmclient.syn"

const STOP_TIMER:word :=0
' const WAIT_INTERRUPT:word := 1
var stopped, granted:word

export Start, Grant, Finish, Interrupt

106

handler Start
stopped := false
put "Started by ", name of self, "\n"

handler Grant (aGrant:woxd)
granted := aGrant

handler Finish(elapsed:woxd)
stopped := txue
put "Stopped by ", nams of self
put " elapsed time: ", elapsed, "\n"

handler Interrupt (elapsed:word)

stopped := true
put "Stopped by another task, elapsed time: ", elapsed

entry
loop

loop
interrupt TimerServer.Acquire

enable wait Grant
exit when granted
wait for a while and retry ...

interrupt TimerServer.Start
enable Interrupt
do something ...

loop
exit when stopped
if actionToDo = STOP_TIMER
interrupt TimerServer.Stop
enable wait Finish, Interrupt
else
enable wait Interrupt

task TimerServer in "tmserver.syn"
prioxity 5
from ClockDevice import Enable, Disable
from TimerClient as owner import Interrupt
from TimerClient as caller import Finish, Grant
export Acquire, Start, Stop, SoftwareTick
const NOBODY:word := (
var elapsed, running:woxd
var owner :byte

107

handler Acquire
if running # a timer is already acquired
if priority of caller > priority of owner
send the elapsed time to the current owner
interrupt owner.Interrupted(elapsed)

stop and reset the timer
running := false
elapsed := 0

give it to the caller

owner := caller

interxupt caller.Grant (true)

else

interrupt caller.Grant (false)
else

owner := caller

elapsed := 0

interrupt caller.Grant (true)

handler Start
if owner = caller
running := true
interrupt ClockDevice.Enable
else
interrupt self.Exception(caller)

handler Stop
if owner = caller
running := true
owner := NOBODY
interrupt ClockDevice.Disable
interrupt caller.Finish(elapsed)
else
interrupt self.Exception(caller)

handler SoftwareTick
elapsed := elapsed + 1

" handler Exception(who:byte)
put "Illegal access by ", name of who, "\n"

108

entry
running := false
owner := NOBODY # in case of illegal access
loocp
loop
enable wait Acquire
exit when owner = caller

loop
enable wait Start
exit when running

timer can be stopped by the owner, or
acquired by another timer client of higher priority
loop

enable wait Stop, SoftwareTick, Acquire

exit when not running

task ClockDevice in "clockdev.syn"
priority 5
from Timer import SoftwareTick
export Enable, Disable
var enabled:woxrd

handler HardwareTick hardware:8
if enabled
interrupt Timer.SoftwareTick

handler Enable
enabled := true

handler Disable
enabled := false

entry
enabled := false
loop
enable wait Enable, Disable

109

6.6 Robet Arm Controller

The robot arm controller is shown diagrammatically in Figure 6-6, followed by the cor-

responding Synapse source code.
Controller Calculator MotorControllexr,
O=—=-=- >I NextPosition O==—=== >| NextMotion
4
MotionDone |<---- °

Figure 66 Robot Amn Controller Inter-task Communication Diagram

The robot arm allows real parallelism of operation within the movements of the arm.
This one has three degrees of freedom, each of which is manipulated by a separate stepper
motor which needs the direction and the number of steps to move [Kerr84). The robot arm
can be moved to any position in the x, y and z directions. The home position (0,0,0) indi-
cates that the arm is vertically above the base at its maximum extension. The Controller
task accepts new coordinates from the operator and moves the appropriate robot arm by

sending the position to 3 joint motion calculator tasks.

task Controller in "controlr,syn"
export MotionDone
const X:word = 0
const Y:woxrd =1
const Z:word = 2
var moved, pos, calcId: byte[3]

handler MotionDone (jointNumber :byte)
moved|[jointNumber] = true

110

entry

start Calculator (X)
calcId[X] := child
start Calculator(Y)
calcId(¥Y] := child
staxt Calculator(Z)
calcld(z] := child

loop

get position from the operator
get pos[X]}, pos([Y], pos(2]

compute motion for each motor in parallel
locp
moved([X] := false
moved(Y] := false
moved(Z2] := false
interrupt calcId([X].NextPosition(pos[X])
interrupt calcId[Y].NextPosition(pos[Y])
interrupt calcId[Z].NextPosition(pos[Z])

wait for acknowlegment
loop
enable wait MotionDone
exit when moved{X] and moved[Y] and moved([Z]

put "Arm is at:"
put pos(X], ":", pos[Y], ":" pos[Z], "\n"

task Calculator (jointNumber:byte) in "calc.syn"

export
from
var
var

NextPosition

MotorController as child import NextMotion
step, direction, oldPosition, newPosition:byte
motion:woxd

handler NextPosition (nextPos:byte)
nextPosition := nextPos

111

entry
-« IPosition := 0
start MotorController (jointNumber)

loop
enable wait NextPosition

compute next motor step
and direction from old and new positions
motion := step shl 8 and direction

motion is a word, where:

- step is the Most Significant Byte
- direction is the Least Significant Byte
oldPosition := newPosition

interxupt child.NextMotion(motion)

task MotorController (jointNumber:byte) in "motor.syn"
from Controller import MotionDone
export NextMotion

handler NextMotion (motion:woxrd)
Move motor according to step and dircntion (motion)

entry
loop
enable wait NextMotion
interrupt Controller.MotionDone (jointNumber)

112

Chapter 7

Conclusion

7.1 Experience and State of the Implementation

The Synapse environment is currently composed of an executive, a compiler, and an

editor.

7.1.1 Syntax-Directed Editor
A syntax-directed editor called SynEd (Synapse Editor) is now under development. Its

sole purpose is to be a helpful companion to the programmer by providing an environment
to develop syntaxically correct Synapse task units. It identifies task structure and state-
ment context with correction proposal on error detection. It also provides an on-line con-
text-sensitive help facilities, an automatic indentation of control structures, and a
complete set of basic editing functions. A first release has been implemented and in-
tegrates the lexical scanner and the parser of Synapse. SynEd development is funded in

part by the Department of National Defense of Canada (DND).

113

7.1.2 Real-Time Executive

A real-time executive called SynRTX (Synapse Real-Time eXecutive) has been imple-
mented to provide all services needed by the language. It is completly written in the C
language (4000 lines), except few modules in assembly language (400 lines). The actual
implementation runs on IBM PCs or compatibles. SynRTX has been used since November
1988 as teaching tool for better understanding of real-time concr ots and to help writing
device drivers in several undergraduate courses at College Militaire Royal (CMR) de St-
Jean. Students have been writing their real-time applications by using the following
software development methods:

« draw a complete inter-task communication diagram of all tasks in-
volved in the application (as Figure 5-3),

» for each task, write the equivalent task unit in Synapse code,

» translate by hand (with all the techniques shown in class) the Synapse
code into the C language, with the appropriate S;/mRTX system calls.!

SynRTX makes no use of the IBM PC/BIOS functions, because they are not reentrant.
So, various device drivers (polled and interrupted driven) have been written for kinds of
interface: serial (RS232C), parallel (printer), and keyboard. A window management has
been implemented reusing the windowing primitives of SynEd. Floppy disk and StarLAN

device drivers are now under development.

1 This transletion was required because the Synapse compiler was still under development at that
time

114

7.7,.3 Compiler
The Synapse compiler has two kind of input files: task interface file suffixed by . int,

and a task unit file suffixed by . syn. The compiler translates the Synapse source code in C
source code by inserting all the proper system calls of the run-time Synapse Real-Time e-
Xecutive (SynRTX). Using C as intermediate language makes Synapse portable to any en-
vironment having a C compiler. A C compiler/linker will generate an executable module
ready to be loaded onto the target system for execution.

After proof of proper handling of several real-time and concurrent classical problems
(§6), the Synapse language definition was stable enough to start writing a compiler in
February 1989. The lexical scanner (written in C) and the parser (using YACC) were com-
pleted by March proving that the language’s grammar was not ambiguous. A complete

compiler with C code generation is expected to be ready soon.

72 Final Remarks

This thesis has described a new real-time programming language called Synapse. In
particular, the language design concentrated on simple explicit constructs express without
ambiguous semantics.

In programming language design, several successful designers have wefined rules,
methods, and principles to produce a better language. Based on these principles, they have
reached common agreement on several general goals.

The design of a real-time programming language needs (with the above goals) specific

requirements. They are task control management, timing constraints, and hardware en-

115

AART ESTINTT A ATATRER R AR ARTTER AR PR T T

vironment.

A survey on these requirements shows that Real-Time Euclid is the most qualified
real-time programming language (with a total of 12/15). All others are nearly system
programming languages (less than 10.5/15) since they have several weaknesses in real-
time.

A complete language report on Synapse mentions its general goals and how the lan-
guage supports the above requirements. A section informally presents basic terms and
concepts that differentiate Synapse from other real-time languages. The method of
description and the syntax notation of Synapse follows a brief language summary. The last
section contains the formal definition of both syntax and semantics of the language.

Several apphcations describes the language’s capability to test and check the validity
of the design requirements. A large set of applications exercices each construct of the lan-
guage, specially those related to the executive.

Even if there is still place for further experimentations with the language, all feedback
from users so far has been very positive. They agreed that Synapse is a useful potential

real-time language for small embedded real-time applications and writing device drivers.

7.3 Future Directions

The Synapse project is available to any people interested to use it in a real-time ap-
plication. Performance measurements will be done for all SynRTX system calls. Research
in new debugging techniques for multitasking will be explored to offer a better aid to
developpers of real-time software. A plan for rapid porting on a 16-bit or 32-bit embedded

controller has been set up to provide another test bed for the experimentation of Synapse.

116

Appendix A

The Synapse Language
Syntax Summary

This summary of Synapse syntax is intended to be an aid to comprehension. Itisa

recapitulation of grammar that was given throughout the report.

A.1 Method of Description and Syntax Notation

The form of Synapse task units is described by line-oriented syntax with context-de-
pendent requirements expressed by narrative rules and indentations. Synapse uses inden-
tation from the left to right margin and line separation to identify the task structure and
statement context, to give a clean representation by enhancing the readability of the code.
The terminal symbol NL (new-line) is a special symbol in the Synapse character set. One
or more indentations take effect only if they immediatly follnv a NL. The pattern of in-
dentation is crucial for the interpretation of Synapse by the compiler.

The syntax of Synapse is described in a variant of BNF (Backus/Naur Form). The syn-

tactic symbols are of two kinds: terminals and non-terminals.

117

The boldface typewriter style identifies terminal symbols including keywords and
single characters (or special symbols).

Examples:

task priority import delay var

The italic style identifies non-terminal symbols. These symbols represent names using
upper and lower case letters.

Examples:

realTimeApplication taskUnit variableDeclaration expression

A syntax rule is a non-terminal followed by a colon to introduce its definition.

Example:

delayStatement :
delay expression

An alternative syntax rule lists its definitions ¢n separate lines, except when the word
"one of" followed the colon.

Example of equivalent rules:
multiplicativeOperator :

*

/

mod

multiplicativeOperator : one of
* / mod

118

Braces { and] enclose a repeated symbol. The symbol may appear zero or more
times; the repetitions occur from left to right as with an equivalent left-recursive rule.

Example of equivalent rules:

realTimeApplication :
taskUnit (taskUnit }

realTimeApplication :
taskUnii
realTimeApplication taskUnit

Brackets [and] enclose an optional terminal or non-terminal symbol.

Example of equivalent rules:

deviceDeclaration :
device deviceName : standardType [atDeviceLocation] NLs

deviceDecloration :

device deviceName : standardType NLs
device deviceName : standardType atDeviceLocation NLs

The syntax does not explicitly defined the following non-terminal symbols. They are
equivalent to identifier (§5.2.2):

constantName variableName deviceName
handlerName taskName parameterName

The syntax does not explicitly defined the following non-terminal symbols. They cor-
respond to the general rule of a nonTerminalList given below:

variableNameList handlerNameList expressionList constantExpressionList
taskldList putltemList getltemList

nonTerminalList :
nonTerminal { , nonTerminal)

119

A.2 Lexical Syntax Grammar

characterSet : one of
letter digit specialCharacter SP NL

letter : one of
ABCDEFGHIJKLMNNOPQRSTUVWIX
abcdefghijklmnopgrstuvwix
digit: oneof
01234567178)9
specialCharacter : one of
() *+, - . /)i <c=>11 "\
SP:
the space character
NL:
the new-line character
symbol: oneof

separator delimiter identifier keyword constant comment

separator : one of

SP NL
delimiter : one of

() *+, - ./ :<=>[1"\ = /= > <=
identifier :

letter (identifierCharacter)

identifierCharacter : one of
letter decimalDigit _

120

< W
NN

keyword: one of

and else loop
as enable
at entry

exit mod

export
byte

name

false not

£rom null
caller
child get parent
const preemption
create handler priority

hardware put

id of

if or
delay import
device in reschedule
disable interzupt resume

constant: oneof
integerConstant stringConstant

integerConstant : one of
binaryConstant decimalConstant hexadecimalConstant

binaryConstant :
Ob binaryDigit { binaryDigit)}

decimalConstant :
digit (digit]

hexadecimalConstant :
0x hexadecimalDigit { hexadecimalDigit]

binaryDigit : one of
01
hexadecimalDigit : one of
digit a b cde £ABCDTETF

—a
"~
FSy

self
shl

shr
start
state
suspend

task
terminate
timeslice
true

var
wait
within
when

woxrd

xor

stringConstant :
v stringCharacterSequence "

stringCharacterSegquence :
stringCharacter (stringCharacter)

stringCharacter :
any character in the source character set or escapeSequence
except double-quote (), backslash(\),and NL

escapeSequence : one of
VoA AN N \m \r \t \v \O

comment :
anyCharactersExceptEndOfLineCharacter NLs

122

A.3 Language Syntax Grammar

realTimeApplication :
taskUnit { taskUnit]

taskUnit :
{ NL } tasklnterface taskImplementation

taskInterface :
taskHeader [priority] [timeSlice] [importList] [exportList]

taskImplementation :
{ declarationInTask] taskEntry

taskHeader :
task tashName [formalParameterList] in stringConstant NLs

priority :
priority integerConstant NLs

timeSlice :
timeslice integerConstant NLs

importList :
{ fxom taskName [asRole] import handlerNameList NLs)

asRole :
as caller
as child
as parent

exportList :
{ export handlerNameList NLs)}

NLs:
NL { NL)

declarationInTask :
deciaration
hardwareHandlerDeclaration
softwareHandlerDeclaration

123

declaration :
constantDeclaration
variableDeclaration
deviceDeclaration

taskEntry :
entry NLs body

body :
{ declaration] statements

constantDeclaration :
const constantName : standardType := constantExpression NLs

type : oneof
standardType arrayType

standardType : one of
byte wozxd

arrayType :
standardType [constantExpression]

variableDeclaration :
var variableNameList : type NLs

deviceDeclaration :
device deviceName : standardType [atDeviceLocation] NLs

atDeviceLocation :
at constantExpression

hardwareHandlerDeclaration :
hardwareHandlerHeader body

softwareHandlerDeclaration :
softwareHandlerHeader body

hardwareHandlerHeader :
handler handlerName hardware : integerConstant NLs

softwareHandlerHeader :
handlexr handlerName [for-walParameter] NLs

124

primaryExpr :
integerConstant
characterConstant
true
false
constantName
variableOrDeviceReference
create laskName [(actualTaskParameterList)]
name of taskld
state of taskld
priority of taskld
timeslice of taskld
(expression)

variableOrDeviceReference :
varigbleName [[expression 1]
deviceName

taskld :
id of taskName
callex
parent
child
self

expression ;
unaryExpr

unaryExpr :
primaryExpr
unaryOperator typeCastExpr

unaryOperator : one of
+ - not

typeCastExpr :

unaryExpr
standardType (typeCastExpr)
openArrayType (typeCastExpr)

multiplicativeExpr :
castExpr [multiplicativeOperator multiplicativeExpr)

multiplicatweOperator : one of
* / mod

additiveExpr :
multiplicativeExpr (additiveOperator additiveExpr)

125

additiveOperator: one of
+ -

relationalExpr :
additiveExpr { relationalOperator relationalExpr }

relationalOperator : one of
<€ > <= > = /=

bitwiseOrLogicalExpr :
relationalExpr { bitwiseOrLogicalOperator bitwiseOrLogicalExpr }

bitwiseOperator: one of
shr shl and or xor

statements :
statement NLs { statement NLs)

statement :
nullStatement
assignmentStatement
ifStatement
loopStatement
exitWhenStatement
interruptStatement
enableStatement
disableStatement
delayStatement
startStatement
resumeStatement
suspendStatement
terminateStatement
rescheduleStatement
ioStatement

nullStatement :
null

assignmentStatement :
variableOrDeviceReference := expression
prioxity of taskld := expression
timeslice of taskld := expression

ifStatement :
if expression NLs statements [elsePart] [elseTruePart]

elsePart :
{ else expression NLs statements)

126

elseTruePart :
else NLs statements

loopStatement :
loop [within integerConstant] NLs statements

exitWhenStatement :
exit when expression

interruptStatement :
interrupt taskNume . handlerName [(expression)]
interxrupt taskld . handlerName [(expression)]

enableStatement :
enable hardware
enable device constantExpressionList
enable preemption
enable handlerNameList
enable constantExpressionList
enable wait handlerNameList [within integerConstant]
enable wait constantExpressionList [within integerConstant]

disableStatement :
disable
disable hardware
disable device constantExpressionList
disable preemption

delaySiatement :
delay expression

startStatement :
start startTaskNameList

startTaskNameList :
startTaskName { , startTaskName)

startTaskName :
taskName [(actualTaskParameterList)]

actualtaskParameterList :
expressionList

resumeStatement :
rasume laskldList

suspendStatement :
suspend taskldList

127

terminateStatement :
terxminate faskldList

rescheduleStatement :
reschedule

ioStatement :
putStatement
getStatement

putStatement :
put putltemList

putltem :
axpression

stringConstant

getStatement :
get getltemList

getltem :
variableReference

constantExpressionList :
constantExpression { , constantExpression]

constantExpression :
expression

formalParameterList :
(parameter (, parameter])

formalParameter :
(parameter)

parameter :
parameterName : standardType

parameterName : openArrayType
openArrayType :

byte []
word [}

128

References

AndeS86 Anderson, T.L., The Scope of Imported Identifers in Modula-2,
ACM Sigplan Notices, vol. 21, no 9, September 1986.

ANSI83

ANSI/M]LSTD-1815A, Washmgton,D C:US. DoD Jan. 1983.

ARTES7 Ada Run Time Fnvironment Working Group (ACM SIGAda),
A Catalog of Interface Featyres and Options for the Ada Run Time
Ernvironment, Release 2.0, 1987.

Appe82 Appelbe, W.F., Ravn A.P., Encapsulation Constructs in Systems.

Programming Languages, Dept. of EECS, UCSD,
Computer Science Tech. Report No. CS-057, August 1982,

Appe85 Appelbe, W.F., Hansen K., A Survey of Systems Programming
I . Concept 1 Failiti
Software Practice and Experience, vol. 15, no 2, February 1985.

Belz86 Belzle, C., Coulas, M., MacEwen, G. H., and Marquis G.,

RNet: A Hard Real-Time Distributed Programming System,
Proc. of the IEEE Real-Time System Symposium, 1986.

Brin75 Brinch Hansen, P., The Programmisg Language Concurrent Pascal,
IEEE Trans. Software Eng., SE-1, 193207, 1975.

Brin82 Brinch Hansen, P., Programming a Personal Computer,
Prentice-Hall, 1982.

CCIT80a CCITT, Introduction to CHILL,
the CCITT High Levei Programming Language, 1980.

CCIT80b CCITT, The CCITT High Leve] Programming Language, 1980.

CCIT83

DOD78 U.S. Department of Defense, Requirements for High Order Computer
Programming Languages, "Steelman”, June 1978,

129

DODS80

Evan8l

Feld86

Gehas86

Ghez87

Glig83

Gree86

doar73

Hoar74

Holt83

Holt83b

Holt88

Hopp86

U.S. Department of Defense, “Stoneman”: Requirements for Ada
Programming Support Environment, Feb. 1980.

Evans, A. Jr, et.al., Praxis Language Reference Manual.
UCRL-15331, Lawrence Livermore National Laboratory, 1981.

Feldman, M.B., Ada vs. Modula-2: a Response from the Ivory Tower,
ACM Sigplan Notices, vol. 21, no 5, May 1986.

Gehani, N. H,, Roome, W. D,, Concurrent C,
Software Practice and Experience, vol. 16, 821-844, 1986.

Ghezz, C., Jazayeri, M., Programming Language Concepts,
2nd ed., John Wiley & Sons, 1987.

thor V.D. and Luckenbaugh, G. L AnAssessment_Qﬁ.haBeaL'Dme

Procof the IEEE Real 'I&meSystem Symposlum 1983

Greenwood, J.R., Comments on "A View from the trenches"
ACM Sigplan Notices, vol. 21, no 5, May 1986.

Hoare, C.A.R. Hints on Programming Larguage Design, Report CS403,
Stanford University, Stanford, Calif. October 1973.

Hoare, C.A.R. Monitors: An Operating System Structuring Concept,
Comm. ACM 17 10, Oct. 1974. Corrigendum: February 75.

Holt, R.C., Concurrent Euclid, The Unix System, and Tunis,
Addison-Wesley, 1983.

Holt, R.C., and Cordy, J.R., The Turing Language Report,
Tech. Report CSKI-153, CSRI, U. of Toronto, Dec. 1983.

Holt, R.C , Matthews, P.A. Rosselet dJd. A. Cordy,J R.

Pnentxoe-Hall 1988.

Hoppe, J., Another Approach to the Implementation of Synchronizaiion
Primit
Software Practice and Experience, vol. 16, no 12, December 1986.

130

Howa76a Howard, J. H., Proving Monitors,
Comm. ACM, vol. 15, no 5, May 1976.

Howa76b Howard, J. H., Signaling in Monitors,
Proc. of the 2nd Intl. Conference on Soft. Eng., IEEE cat. no. 76CH1125-4C, Oct. 1976.

Ichb79 Ichbiah, J. et al. Rationale for the design of the Ada programming
language, ACM Sigplan Notices, vol. 14, no 6, June 1979.

Inmo84 Inmos Limited, QOCCAM Programming Manual,
Prentice-Hall, 1984.

Inte85a Intel Corporation, PL/M-86 User's Guide,
Literat~e Department, September 85.

Inte85b Intel Corporation, Implementing StarL AN with the Inte] 82588
Controller, AP-236 Literature Department, September 85.

Jens75 Jensen, K, Wirth, N. Pascal User Manual and Report,
2nd ed., Springer-Verlag, 1975.

Jons87

SIGPLAN Notlws, vol 22 n08 1987

Kern78 Kernighan, B.W., Richie D.M., The C programming Language,
Prentice-Hall, 1978.

Kerr84 Kerredge, J. M., Simpson D., Three Solutions for a Robot Arm Controller
Software Practice and Experience 14, 1984, 3-15.

Klig86 Kligerman, E., Stoyenko, A., Real-Time Euclid: A Language
IEEE Trans. on Software Eng. SE, vol. 12, no 9, 1986.

Kung85 Kung, A, Kung, R,

Galaxy: A Distributed Real-Time OS Supporting High Availability,
Proc. of the IEEE Real-Time System Symposium, 1985.

Proc. Rea.-’l‘une Systems Sympos:um, 1984.

131

Lein80

Ligh82

Macl87

Mart78

Mok84

Myer78

Parr88

Pete85

PopeT77

Smed83

Lee, | Gehlot, V.,

Pmc Real 'I‘nme Systems Symposmm, 1985

Leinbaugh, D. W., Indenting for the Compiler,
SIGPLAN Notices, vol. 15, no 5, 1980.

Light, R. A., A Real-Time Executive for Multiple Micropracessor Systems.
Proc. Real-Time Systems Symposium, 1982.

2nd ed., Holt, Rinehart and Winston, 1987.

Martin, T., Real-Time Programming Language PEARL -
Concepts and Characteristics,
Proc. COMPSAGC, pp. 301-306, Chicago, 1978.

Proc. Real-Time Systems Symposium, 1984,

Myers, G., Composite/Structured Design,
Van Nostrand Reinhold, 1978.

Parrish, L., Runninz in Real Time: A Problem for Ada,
Defense Computing, Sept.-Oct. 1988.

Petermann, U., Szalas, A.,

A Nof POL Distributed P C icating by I ’
SIGPLAN Notices, vol. 20, no 3, March 1985.

Pogek, G.J., Horning, &' J., Lampson, B.W., Mitchell, J.G., London,R.L,
Not the desien of Euclid

Proceedings of the ACM Conference on Language Design for

Reliable Software, ACM Sigplan Noticcs vol. 12, no 3, March 1977.

Rising, L., Tasking Troubles and Tips,
SIGPLAN Notices, vol. 23, no 8, 1988.

CH. Smedema,CH MedemaP Boasson, M.

Prenhce-Hall Intematnonal 1983

132

Snoo78 Snook, T., Report on the Programming Language PLZ/SYS,
Springer-Verlag, 1978,

Spec72 Spector, D., Ambiguities and insecurities in Modula-2,
ACM Sigplan Notices, vol. 17, no 8, August 1972.

Stan88 Stankovie, J., Real-Time Camputing Systems: The Next Generation,
Tech. Report TR-88-06, COINS Degpt., U. of Massachusetts, Jan. 1988.

Trem85 Tremblay, J.P., Sorenson, P.G., The Theory and Practice of Compiler
W: MCGl‘aW-Hﬂl, 1985.

VRTXS86 VRTX/86 User’s Guide, Hunter and Ready, 1985.

Wirt77 Wirth, N., Toward a Discipline of Real-Time Programming,
Comm. of ACM, vol. 20, no 8, Aug. 1977.

Wirt83 Wirth, N., Programming in Modula-2,
Springer-Verlag, 1983.

Wirt85 Wirth, N., From Programming Language Design to Computer
Construction, Comm. ACM, vol. 28, no 2, February 1985.

Wulf72 Wulf, W.A., A Case against the GOTO,
ACM Sigplan Notices, vol. 7, no 11, November 1972.

Zavo86 Zavodnik, R. J., and Middleton, M. D.,

SIGPLAN Notices, vol. 21, no 6, June 1986.

133

