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ABSTRACT

Signal Processing Based on drregular Samphng Reconstruction Compression anid

Signal Transformation

Jorge Arturo Romero-Chacon. Ph. 1.

Concordin University, 1996

Signal recovery from nomnitormly spaced <av,ples and nonuniform samplineg rech
nignes are two topics, belonging to the wider area of camphine theory that are addies-ed
in thisc thesis. With respect to cgnal 1ecovenn, a <eries of ~amphne expansion- whose
coeflicionts are wignal samples Jocated at the toot lod of orthogonas] poly nomials. are pro
duced from o combination of Kramer's generalized sampling theorem and the theary of
teproducing kernels “The<e campling expan<ions are actnally detved from the repraducine
hernels of fimte <ignal spaces defined by the discrete transtanmations used i caloulatine
the coefficients of orthonormal series expansions. The reproducme hernels and the <am
pling expansions are then emploved in the extension of twa methads of <ignal recovery
tor short length intervals to transformed domains other than Fouriers one basod on the
singular value decomposition (SVD) and the other on the <olution of a <ystem of hu-
eiat equations (SLLI). The extension tmplies the substitution of the <inc function and the
infimite sampling expansion from the Whittaker Kotel'nihov Shannon theorem. by the
respective reproducing kernel and related sampling expansion corresponding to the trans-
formed demain. The applicability of the singular value decomposition method i later
expanded from short length intervals to longer ones with the help of an on line iterative
procedure. which decomposes the input sequence of nonuniform samples into overlapping
blockhs. According to the study performed in this thesis. the procedure works very well for
jitter values up to 3, after which other methods have to be used. For certain cases where

the jitter is greater than 3. a predetermined nonuniform sampling technique is proposed,

i



and its usefulness depends on the proximity of the <ampling porats to the oot loo of
orthogonal polynomials which the techimique telies upon The on fme iterative procedue
can be adapted to this last case. and a relative ptter parameter to measwre the tempn
ral deviation from a predetermined nonuniform sampling pattern s used, instead of the
parameter employved for the case of unitorm sampling with jitter,

With respect to the second topic addressed i this thesis exanples of the applic ation
of the nonuniform sampling technique, based on the root loci of orthogonal polvnonmiak
are shown in the following areas: signal compression. design of FIR digital ilters, <ignal
recovery from nonuniform samples. and representation of st tvpe <ipnals Also, the
technique hnown as time warping i~ shown to provide a way to either enhiance ot suppre
an ANM/EFN o1 an AM signal by emploving o multirate nonuniform samphne approach
This same technique facilitates the representation of a signal e termes of another (unrelated
to the first) by using a finite <um of weighted sine functions centered at nommfonn time
instants, These nonuniform points are obtained fronnnfornation provided by both signak
and the expansion weights are samples of the unrelated genal taken at the nonnmfornm

points,



PARA FERNANDO. MARIA CECILIA Y ROSAURA




ACKNOWLEDGEMENTS

I would like to thank Dr o Eugene I Plothin tor his guidance dunme these doctoral
vears as well as Di A NS Swamy for his gnidance and outstanding example of persanal
integrity in the face of blatant injustice,

I wounld like to achnowledge the friendship. support ond ard Fhove recenved from the
other student< at the Centre for Signal Proves<ing and Commumneations Ranesh, Moy
Manuel, Rajeev, Nanijeb, Jiajun, Branka, Hani Sano. Vijav, Sebvas A Bvees Tane,
Adel, Khalil To all of thenm. a big thanks

Lo the people at the house where | have fived for more than four vears (2000 e
Centred, in particular Gérard NMartineau, Guyv Castonguay - Claude and Npeole Chatelop
Viedre and Nicole West, Jean-Clande Madlé and Louise del Veochio Aine Ravimond
Madeleine Richardson. Romdo Labre, Nare Beaupre, D ihank theme b tor beine <o dand
to me To the rest of the residents. a big thanh-.

Tamy patents ard my sister. so far and vet <o close 1 thank them for then love il

unbreakable support and confidence i me.

vi



g lobhreoa o 11' ~tlene tosa

Tha un eon hotrorosa

Con mesiutado paso ma jestyoso

Por vna <elva, ovd nna vaor tindosa,
Que con tono molesto v contimitadao
Liamaba la atendion v oann ol cnidado
Del remante animal que no <abia

De qué hestia feroz quiza ~aldna

Vqguella voz que tanto tadas sonaba,
Cuanto mas en sitencio tado estaha,

Su majestad leonesa

Fa selva toda registrar procuga,

\Mas nada encuentra con la noche osonra
Hasta que pndo ver, ol que sorpresa!
Que sale de un estanqgue a la manana
La tal hestia ferazo v era una Rana,
Llamard la atencion de nacha gente

Ul charlatdn con su maea loca:

Muas yque logra, s al fin verd o prudente

Que no es sino ouna Rana, todo boca s

Félin Maria Samaniego. Tibula Y'Y/



TABLE OF CONTENTS

LIST OF TIGURES L . . \
LIST OF SYNMBOIS AND ABBRENIATTONS . NIt
1 Introduction 1
2 Reproducing Kernels and Sampling Expansions 11
21 Reproduame hernels for some nnite sigual spaces e
211 Introaductory defivitions . . . 1

2.1.2  The calculation of reproducing ketnels tor some lnte <ienal space It

22 Samphne Expansions from Reproducome, hernels L

3 Nonuniform Sampling: Methods, Strategies and A pplications 2]
A1 The SVD methad and its relstions<hip with teproducimge kernels KR

3 1.1 Reproducing hernel approach. examples . 2

3020 \rmangular fonction: recovery from nonindorm sample- 2

A48 0 Other exanples o000 . . 0

3.2 Samphue expansions and the SUF wethod o C i
4.3 Signal recovery lrom nonundorm samples i short intervals 3
3.1 Signal coupression . ... e e . A

3.5 Design of o Hinear phase FIR digital filter in the trequency domam naang

nonuntform ~amples . 0oL 00 L0000 0 . 49

3.6 Signal representation by nonuniform sampling, . . 1t

4 On-Line Iterative Recovery of Nonuniformly Sampled Signals 1R
1.1 Performance of the method for a random <ignal . . . . . 4

1.2 Pertormance of the method for a speech signal . . 0 . 0 L. I~

1.3 A statistical study of the method 000 00 000 . 6l

1.4 Conversion from nonuniform sampling to predetermined nonuniform sampling 61

Vil



5

6

Nonuniform Sampling as a Signal Transformation Tool
S hranstormation of an analy e signal
S A fed valued envelape and o tine varving phase
SE2 A time varving emvelope and phase

ST N time vanvne envelope and o bsed-valued phase

520 Sunal representation throneh the application of time warping |

Conclusions

REFERENCES

A Functions and Constants

B Equivalence Between the Two Methods Utilized in Chapter 3

C

Division by Zero in the Evaluation of Sampling Expansions

D Intermediate Algebraic Operations

E

l:

D1 Jacobl transformation
DAL Composing function for the Jacobi transformation
D12 The particular ease o = i n the reproducing kernel
D.2 Hermite transformation
D 2.1 Composing function for the Hermite transformation
1222 The particular case 0 = yin the reproducing kernel
D23 Generalized Bessel transtormation
D31 'he composing function for the Bessel transiormation

D4 Laguerre transformation

Modified Laguerre Polynomials
.1 Definition and calenlation of composing funetion

5.2 The particular case when r = yin the reproducing hernel

Computational Complexity of SVD and SLE Methods

I'.1 SLE method . . .

93

07

106

108

119

120

123



2

S\ D nethodd




LIST OF FIGURES

31 Revonery ol g traimn of trianeular pulses from nmtorm <amples . . n
3.2 Recovery of atrain of triangular pulses with J =06 . . . 2
33 Recovery ol a tram of triangular pulses with J = 1.2 . .o 20
30 bxamples of signal recovery under different donrains S 31
30 Root docr of Laguerre and modified Laguerte polynomuals C 31
36 Random signal recovery from nonanform <amples .0 00 C 36
37 Signal compression wang the 1oot log S . 10
A8 FIR Jow pass fitter designe with 0.1 cutotl frequency . 13
3.9 Bandstop filter design with 0.1 and 0 1 cutofl frequencies e 1
310 Representatnion of an ABR signal . . L o n
Lt Blodk partitionmmg for on-lne teratne method 0000 0 000 L . 50
1.2 Random signal recovery with Ml =3 and P =2 .. . .. . .. Ny
1.3 Random signal recovers with ANl =5 and PP = 2 C. e a9
11 Random ~ignal reconstinanon 6
1.5 Number and size of blocks obtained from random signal .~ 0 000 0 0 00 00T
Lo Speech signal tecoveny with M= 3and P=2. ... . .. . L. 0N
L7 Indidence i algorithm performance with varving ¢ .0 0. 0000 o0 L 60
LN Statistical study: algorithm performance with SLE method ... 0 0 0 .. 62
L9 Statistical study: algorithin performance with S\ D method .. .. . .00 63
1 10 Predetermined nonuniform sampling: block partitioning . . . .. . . . .. 06
111 Transformed domain and root domain . .. ..o 0000000 67
1.12 Predetermined nonuniform sampling: method perforimance . ... . . . ... (Y
113 Recovery of an ABR signal from algorithmresults .. . .. .00 .00 .. 70
5.1 Nignal mixed with strong FAVinterference . . . . . . .. . . ... ... ... 76
5.2 Time warping effect through nonuniform sampling ... .. ... ... ... 77
3.3 Output after time warping. filtering and interpolation . . . . . ... . ... 78

A




SF NN AN sienal betore the apphoadtion of tine warping s

S5 barst ~tepoan time warping' from AN BN G B N
e Second stepan e warpig trom EAL to sinelde simusonld s
5T MM sianal envelopes shapes and power spectium N
A ot stepin time warping: trom AN to FA wianad S
5.0 Secondd stepn time warping from TAL to anele sinusond N
A0 Signal representation using, time warpinge. | 1
511 Transtormation function and firal representation | . an
A2 Signal tepresentation using, tiine warping 1 9l
513 Transtormation fonction and final 1epresentation IV, 0




LIST OF SYMBOLS AND ABBREVIATIONS

ABR Auditory evoked Brainstem Response

AM Anmplitude Nodulation

BL, Space of Bandlimited Finite Energy Signal«
CANE Constrained Adaptive Notch Filter

e Cveles Per Second

DI Discrete Fourier Trausform

G Electrocardiogram

FIR Finite Impulse Response

Fi...) Fourier ‘Transform of the Argument
F1..) Inverse Fourier Transfornt of the Argument
I'M Frequency Modulation

Hy Hertz (Frequeney Unit)

1. ] Smallest integer greater than or equal 1o the argument
3{...} Imaginary part of the argunment

J Jitter Parameter (with respect to Uniforin Positions)
J, Relative Jitter Parameter

J) Bessel Function of Order g of the Argument
LCD Level Crossing Detector

MSE Mean Square Error

PSE Power Spectrum Estimate

R{...} Real part of the argument

S:(Jw) Spectral density of function =

SLE System of Linear Equations

SVD Singular Value Decomposition

WKS Whittaker-Kotel'nikov-Shannon

Y Symbol mean® .z for all

o Angular frequency (rad/sec)

xiii



Chapter 1

Introduction




Signal processing based on irregular sampling has had a long history that is not limited
to the years after 1949, when Claude E. Shannon published his version of a sampling
theorem applicable to bandlimited signals in the Fourier transform sensc The interest
in irregular sampling has indeed escalated since then, but there has been antecedents in
the mathematical literature since the first decades of the nineteenth century. The aspects
in sampling theory which the present thesis addresses, signal recovery from nonuniformly
spaced samples and nonuniform sampling techniques, have been considered for many years
Lefore the Shannon sampling theorem was published. With respect to the first aspect.
irregularity in sampling is a common problem that appears in measurements taken under
the influence of natural phenomena. These phenomena disrupts the frequency of the sam-
pling. This disruption can make the sampling to highly deviate from the uniform sampling
pattern, that according to the Shannon sampling theorem. is required to retrieve reliahle
information from the quantity of interest. Methods for signal recovery from nonuniformly
spaced samples that handle this tvpe of situations are very useful. With respect to the
second aspect, the application of nonuniform sampling technique, based un time warp-
ing or in predetermined nonuniform sampling. can facilitate the processing of signals that
treated otherwise with uniform sampling, would generate a lot of computational effort. For
example, when analyzing transient signals. with variations characteristically concentrated
towards the beginning of the observation interval. the use of a sampling pattern adapted
to those variations is more efficient than using an uniform sampling pattern for the whole
extension of the interval. For both problems of signal recovery from irregularly spaced
samples and the application of nonuniform sampling techniques. jitter error reduction can
be achieved by using iterative algorithms that can be on-line or not. The concept of on-line
refers to the ability to start the recovery procedure without waiting for the totality of the
samples to be available.

To trace the origins of the problem of recovering a signal from a given sample set, one
has to consider contributions as early as the Lagrange interpolation formula (used already
by Cauchy in 1831), which gives a polynomial taking the same values of an arbitrary

function atgiven ry,rs...., 1, points.
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If the arbitrary function, say g(r), s a polvnomial, f(+) will provide an exact tepresenta
tion. If on theother hand, g(r) is a different type of flunction, f{r) will give only a general
approximation to g(z). but it will equal g(r) at the known points g(r).....g{r,). The
points do not have to be taken at equal distances, Cauchy in 1811 [I] preseuted several
formulas. most of them deduced from Equation 1.1, applicable to the problem of interpola
tion. Two of these formulas will be shown next. Let f(¢) be an entite (analytic) function
of sin(t) and cos(?). and let k be the degree of f. Consider the product 4“\/3[(!). a
function of the trigonometric exponential ('V=T. The product will obviously be an entite
function of degree 2k +1. If n values #4.1,...., ¢, are taken with n > 2k 1. aund Fquation

1.1 with 2 =2k + 1 is used. we get

sill(%—'z)sin('——z—'iy--hin(%“)
sin('—l%'l)sin(h%i)---hin(u—;—'“)

fiy = f(t) +

sin(ISh ) sin(152) - osin (=)
sin(’—%‘—k) hi,,(m_;_u) ,,,bi“(r..—i.,,l )

C ot St

If the values {1,} follow the rule prescribed by the arithmetic progression 7,74 22, . 74

(n- l)%—‘”’. ...and if f(t) represents a real function of 7, it follows that

i)y = S e [(2_,"’2*—1)“ - Tt )] flr + ul ) (1.3)
h+ 15 sinfbe-r- 3] T .

The next important contribution in sampling theory is apparently due to the Belgian
mathematician Charles-Jean Baron de la Vallée Poussin (1908) who was the first person
to consider the sampling theorem for functions that are not necessarily band limited, by
studying the particular case of duration-limited functions [2]. His work was continued
by M. Theis (1919) and J. M. Whittaker (1927) (2. The next important contribution
to sampling theory was put forward by Shannon in the shape of what is today generally
called the WKS sampling theorem {3, 4]. This theorem states that if a function [ contains
no frequencies higher than W Hz, it is completely determined by giving its ordinates at a

. . 1
series of points spaced 7 seconds apart,
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The qualitative difference bhetween Cauchy’s efforts and Shannon’s is in the goal of
each analvsis: the first remains in the interpolation field. while the second states clearly
the method by which a bandlimited signal is to be recovered exactly. Cauchy’s analysis is
applicable to points taken arbitrarily in time. but the sampling theorem strictly requires
uniformly distributed time positions and uniformly spaced samples. What originally justi-
fiedd the study of signal processing based on irregular sampling was the impossibility under
many practical situations of maintaining or obtaining uniform samples from the signal
of interest. This particular problem gives origin to the widely studied topic of signal
reconstruction from nonequispaced samples.

Signal recovery from nonuniform samples has been treated by Yen [3] who examined
some special nonuniform sampling processes and derived some properties of bandlimited
signals. His main results are contained in four theorems, three dealing with nonuniform
sample point distributions having simple reconstruction formulas, and a fourth theorem
dealing with a new class of signals which he named minimum-enecrgy signals. a concept
which would be taken up years later under the context of the application of the SVD
technique to signal reconstruction [6]. The nonuniform sampling distributions considered
are: {1) migration of a finite number of sample points in a uniform distribution. (2)
shifting of half the uniform sample point, say, all those with t > 0- by an equal amount
with respect to the rest. and (3) a recurrent nonuniform distribution. like for instance.
when the sample points are divided into groups of .N points each, and the groups have a
recurrent period of ?}ﬁw seconds. For any of the above distributions, Yen proved that the
bandlimited signal remains uniquely defined. so it could be reconstructed from its samples.
The following theorem by Yen defines the minimum-energy signals: If the sample values at
a finite set of arbitrarily distributed sample pointst = 7,. p = 1.2..... N are given. a signal
Sf(t) with no frequency component above 1 cps is defined uniquely under the condition
that the energy of the signal [ f2(t)dt is a minimum. Moreover, the reconstruction of

the signal is
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»(1) qE=] g (= 7)) (1.6)

The coeflicients a,, are the coefficients of the inverse of a matrix whose elements are

sin(‘Zﬂ"'(T,,— Tq_)_)‘ pg= 12N
2aW(m, = 7y)

This minimum-energy signal can be employed as one of many approximations to a sampled
signal in an interval T.

Several authors have addressed the issue of randomly sampled random processes,
for which reconstruction theorems have heen proved [T 13]. Amang these contiibutions,
Beutler [7] has provided a unified approach to sampling theorems for wide sense station
ary random processes r(t). This approach. based upon Hilbert space concepts, gives the
following results: (i) a way to recover the process r(t) from nonperiodic samples, or when
any finite number of samples are deleted, (ii) conditions for obtaining r(f) when only the
past is sampled, (iii) a criterion for restoring x{{) from a finite number of consecutive
samples. and (iv) a minimum mean square error estimate of r(1) based on any (possibly
nonperiodic) set of samples. A proof of the WKS sampling theorem for wide sense sta
tionary random processes is derived using integration theory, properties of trigonometric
series, and Hilbert space ideas.

For bandlimited signals, Yao and Thomas [14] have established the conditions for the
existence of stable sampling expansions of the Lagrange interpolation type. A collateral
problem that is also addressed is the so—called expansion stability when small corruptions
in the amplitudes of sample values may not lead to small changes in the reconstrueted
signal. A stable sampling expansion with respect to a class of sampling sequences {~
tnsm € I >} ! of a class of functicns B, (bandlimited to ¥ radians per sccond), rests
upon the existence of a positive finite absolute constant (' (" independent of f € 1., and

< tn, n € I >), such that

'] is an index set of integers fixed for each admissible class of sampling sequence
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is valid for each sampling sequence and each f. A stable Lagrange interpolation sampling
expansion is defined by the following theorem. due to Yao and Thomas: The class of

functions f bandlimited to 7 rad/s B, possesses a sampling expansion given by

S =Y StV (1.7)

H= =%

| respect to each sampling sequence < t,.. n € [ > from the class It,, —u| < d < ll

thnel={0.xI.£2....}. and

(1)

= T

where (/(z) is an entire function of exponential type with indicator He(8) ¢ and with its

zeros equal to the sampling sequence. In particular. if @ = 0. the theorem reduces to the

sin{r(t—=mn})

w(t-n) the

Shannon sampling expansion. each composing function is given by ¥, (1) =
constant (' for stability becomes unity and the following identity is obtained (Parseval’s
relation):

~

/_ lffFdt =Y If )l (1.8)

n= -
It follows from the theorem that for d > ll it is not possible to obtain a sampling expansion
for B.. However, some of the properties implied by the theorem are still valid for B._,.
where 0 < ¢ < 7. Higgins [15]) has presented similar results except that his approach is
rooted in the theory of reproducing kernel Hilbert spaces and their bases.

Willis [16] has proposed a method for the spectral estimation and interpolation of a

bandlimited function when there are small perturbations (jitter) in sample location. This

work is related to [6].

{Let (7(z) be an entire function of fimte order p > 0 and finite type o > 8. The function

T In|G{r 6
Hc(8) = limy o E-J—'—(l—(—)—]
P
which measures the growth of |G(=)] along the ray making the angle ¢ with the positive real axis. 1s called
the indicator function of G{(z)



Iterative procedures for the recovery of bandlimited signals from unequally spaced
samples heve been treated in [17 26). and all these methods depend for their comvergence
and optimum performance on the constraint imposed on the data sets ol the mminnm
distance known as the Nyquist interval. This interval comes from the Nvquist rate, which
is the minimum rate at which a signal can be sampled and still be recovered. The violation
of this requirement makes it impossible for any realistic signal recovery.

A definite approach to treat all cases of signal recovery from nonuniform samples
in a uniform way has not been achieved owing to the laige variety of environments and
conditions.  On the other hand, and from a different perspective, the application ol a
nonuniform sampling scheme can be found to be advantageous under some circunmstances,
when for instance. the signal bandwidth changes with time and in this case. a varving
sampling rate would be more efficient to use than a uniform one [27]. In other application s,
the inclusion of a nonuniform grid of points in the design of particular systems provide
better results than designs based on a uniform grid of points.,

Nonuniform sampling technigues have received attention in many fickds prompted
by the unavoidable alteration of the uniform sampling patterns ont of the control of the
designer or the ohserver. Such is the case in astronomy [25, 29]. the construction of far field
patterns for antennas [30], and system identification [31]. Consider the case of astionomy
It is important in this field to perform photometric observations of stellar objects These
observations cover usually a long period of time in order to obtain an aceurate estimation
of the main peak. corresponding to the stellar object, in a power spectial window, for
example. Secondary peaks could appear. with the rest of the spectral window values
very close to zero. Some of che secondary peaks can be justified in the following way:
ary astronomical object has a seasonal appearance in the sky, which implies that one
year periodicity is bound to come up in any long series of astronomical observations:
photometric observations can only be made during the dark period of the Moon. and of
course, the observations follow the civil calendar in their scheduling of observing time,
All these observations are nonuniform in nature, hecause, apart from the phenomena
that appear in the observations and which have been mentioned hefore, the influence of
the Sun has to be taken into account also. A Fourier transform theorv is developed in

[28] that is valid for arbitrary data spacing. The resulting transform is used in powe

-]



spectrm analysis with results that are comparable to an analysis performed with equal
data spacing: the important point is that in this case aliasing can not be predicted in
advance as it happens for cqually spaced data, but has to be analyzed after the fact, in
terins of the time spacings employed and the resultant spectral window. One of the main
results of [2%] is that the observed Fourier transform, denoted by Fa (). is the convolution
of the true Fourier transform F(12) with a spectral window. 8y (#). which is obtainable as a
function of v and the times of observation. The problem of the processing of astronomical
data is also studied in [29], where an exact nonuniform sampling scheme is proposed based
on Cauchy’s residue theorem, and the class of signals the study considers can be described

by an inverse discrete Fourier transform:

N
e Atk . [2=tk
=32 [R“* o ( AY ) + sl ( 2N )]

"

A general nonuniform sampling formula is used for the reconstruction of the uniform
samples and the DFT of a bandwidth limited signal. The method is successful if as many
nonuniform samples are taken during one fundamental period of the signal as are needed
for the uniform Shannon sampling theorem: also. the nonuniform kernels work best in
situations where an equidistant sampling strategy is distnrbed. The same re<ults can be
used in the error correction of high frequency network analyzers.

In .ther fields, the use of nonuniform sampling schemes has been found to be more
useful under certain conditions than the normally used uniform sampling scheme. or they
have provided a more attractive alternative than the traditional methods from differ-
ent points of view (computational complexity, sampling efficiency. design characteristics
achioved, among others). Such is the case in spectrum analysis [32-36]. transient analysis
[37]. analog-to-digital conversion [38], discrete representation of signals [39. 40], digital
encoding of analog sources [41], nonuniform decimation of bandlimited signals [25]. digital
svnthesis of sinusoids [412-46], and FIR digital filter design [47-49]. As an example, con-
sider the field of transient analysis. The study of the transient response of a linear system
is based on the characterization of the impulse response by a sum of weighted complex
exponentials, and a subsequent estimation of the parameters of the modelled signal. In
the determination of the parameters of a complex signal consisting of nonharmonically

related damped sinusoids. a nonuniform sampling scheme, found from data adaptation,



could be chosen overuniform sampling, The reasons to use a nonuniform sampling <cheme
eonld be the reduction of the effect of measurement noise on estimation, the achievement
of sampling efficiency, ete. The chosen nonuniform sampling ~cheme depends an ditferent
criteria of the signal involved. and so. a preprocessing of the data by orthogonal polyne
mial approximation together with a minimum variance criterion takes place. This allons
the reconstruction of the signal at uniform spacings. The statistical characterization of
error in the reconstructed signal values is used in an approximate maximum likelihood
estimator, which leads to accurate results in the study of transient response in- noise {37).

In this thesis, several additions are made to both areas of research in irregulan
sampling theory. the signal recovery from nonuniform samples and the application of

nonuniform sampling techuiques. The following ontline identifies these contiibutions

¢ Based on Kramer's generalized sampling theorem and the theory of teproducng
kernel Hilbert spaces, a set of sampling expansions are obtained whose ¢ oeflicient<
depend on the root loci of orthogonal polynomnials. The integral transformations
derived from orthonormal series expansions (Laguerre, Jacobi, Hermite, Bessel) form
the cornerstone of the procedure that combines the theory of reproducing hernels

and Kramer’s theorem, as explained in Chapter 2.

o Extension of two existing methods for signal recovery. SVD [6] and SLE [21, 20].
to other transformed domains and sampling expansions, as well as the recognition
and study of areas where a nonuniform sampling technigue hased on the oot loo
of orthogonal polynomials could be applied. Chapter 3 presents some of these
eas: signal compression, FIR digital filter design, signal recovery from nonuniform

samples, and signal representation with its relationship to signal compression.

e Use of the SVD method in conjunction with an on-line iterative procedure for the
signal recovery from nonuniform samples. As seen in Chapter 4, this tecbnigue i
very attractive up tc values of the jitter parameter J less than 3. For greater jitter
values, and a nonuniform sampling scheme close to the root loci of an orthogonal
polynomial. the procedure is adapted to employ recovery wmethods for short length
intervals modified to use reproducing kernels (SVD method) or sampling ex pansion«

(SLE method) belonging to finite signal spaces (see Chapter 2).

9



e Use of nonuniform sampling strategios as a signal transformation tool, for the en-
hancement or suppression of an AM/FAM or an AM signal. This kind of ttan<forma-
tion. hnown as time warping. has also applications in representing a signal in terms
of a finite sum of weighted sine functions centered at nouuniform positions. Several

examples in Chapter 5 will help explain these ideas,

The conclusions in Chapter 6 will summarize the highlights of this thesis. as well as
provide a view toresearch areas where additional work can e done to extend and improve

the results achioved.
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Chapter 2

Reproducing Kernels and

Sampling Expansions



2.1 Reproducing kernels for some finite signal spaces

2.1.1 Introductory definitions

T he theory of reproducing kernels has originated in the work of mathematicians like G.
Szegd (1921) and S, Bergman (1922) [50]. Several definitions are necessary before stating
it relationship with sampling theory.

Definition 2.1 Let \ be a linear space. A norm on Vois a rule 4 that assigns a
real nnmber 5 (o) to each ¢ € Voand which satisfies the following axioms (0. v € V.o any

complex number):
Loy(ao) = o]+ ()

2ol s )+ ()

3. 9(0) = 0 implies that o = O (s the zero element in V)

Definition 2.2 Let [ denote any open interval a < » < bon the real axi<. A function
SUr) is said to be quadratically integrable on [ if it is a locally integrable function on 7

snch that

!

aolf) = [/ if(.r)l"fh]. (2.1)

with ag(f) < x. This definition defines a complete linear space L,(1). and its zero element
is the class of all Tunetions that are equal to zero alimost exervwhere on 11 ay is a norm on
L)

Definition 2.3 An inner product is a rule assigning a complex number (f.¢) to

cach ordered pair f. g of elements in L,(/1) defined by

b —
(f.g)= / fiz)g(r)dr (2.2)

where g(r) denotes the complex conjugate of g(r). From the concept of inner product
follows the concept of completeness. The completeness of a set of orthonarmal functions

{v.} means that every f € Ly(/) cau be expanded into the series



which comverges in 1,{7). thatis

\
0o (f - Z!,f. L'n)"‘y.) =0

n=t)

as N — o, Equation 2.3 i< hnown as the orthonotmal series expansion of [ with respeat
to {l.‘,‘ } .

Definition 2.4 An inner product space aver C (the set of comples numbersy or R
(the set of real numbers) W hich is complete with respect to the norm induced by the mnes
product is called a complex (o1 respectivelv, real) Hilbert space.

\With the brief background provided Hha the above definitions: the concept ol wre
producing hernel can be introdueed

Definition 2.5001] Let X be o dass of ttons defined o £ tormme a Hilbert
space (complex or real). The tunetion A(ay) of o oand yin 1 s called a reproducing

ketnel of Nif
1. For every y. A (e y) as function of 1+ helangs ta X,

2. The reproducing property: {for eveny y = Fand every [ € X,

Jiy)y=(ltry. ha.u)),

The subsoript o indicates that the sealar product applies to fune tions o s

2.1.2 The calculation of reproducing kernels for some finite signal spaces

The reproducing kernel, w hen it exists, isunicque for a Hilbert space [0, Tewill now becal
culated for finite spaces that originate from transformations imphat i some orthononnal
series expansions.

Given a set of orthonor.nal functions { o} every fe Lty (the st of fimte energy

signals defined on the intervai [) is expressed in the form

f = z(f-'_‘,.)'-',. = Zl'(rt)v,. (21

v =H{} Te==()
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The coefficienis FF(n) # - obtained according to the relation

F(n) = /,f(f)'/'n(r)df (2.5)

vhere [ denotes the interval on R (the real line) where the orthonormality exists. F(n)
is the result of the inner product of each orthonormal functior. with f. F(n) can assume
any value, but only at the discrete points n; this is the main feature of a diseretc trans-
formation. Consider the following correspondence between Equation 2.4 and a Fourier
series expansion for a periodic signal.  When the Fourier transform of a Fourier series
for a periodic signal is calculated. a sequence of impulses is obtained, with the impulses
centerod at points separated by a distance which is inversely proportional to the period of
the signal. This sequence of impulses defines the line spcetrum of the periodic signal [52].
The amplitude of each impulse is given by the corresponding coeflicient in the expansion.
When the periodic signal decomposes into a finite number of harmonics, the Fourier series
expansion reduces to a finite sum. Similarly, assume f in Equation 2.4 as being decom-
posable into a finite <um of N + 1 basis functions. so that f can be said to b of finite
support N on the discrete set of points {n}. which means, for values . > N. F(n) = 0.
This can be regarded as the discrete counterpart of the concept of bandlimited signals for
the Fourier transform domain. An extension of this concept for an integral transformation
which produces a continuous spectrumn for a continuous variable A, implies that the finite
support is over a bounded, and “continuous™ set of values of the variable A\. Other defini-
tions of a bandlimited signal are found in [53]). For the case of signals with finite support

N on a discrete transform domain,

N
=" Fn)vu(r) (2.6)

n=0
The reproducing kernel K'(z,y) corresponding to the signal space under considera-

tion has the following expansion coefficients according to Equation 2.5:

I\'(n,y)=/11\'(a:,y)1.’vn(a:)dz (2.7)

which is equal. due to the reproducing property of the reproducing kernel, to w,(y).

Expanding K (x.y) in terins of the set {1, },

14



1\' l\'
K(r.y) = Y Ky = Y wa(mea() (2.8)

n=0 n=0

The set {v',} of orthonormal functions is now identified as originating from the
classical orthogonal polynomials (Jacobi, Hermite, Laguerre), which define integral trans-
formations corresponding to the orthonormal series expansions. For each of these integral

transformations, any member of the set {4",} is written as [51]

"'(I)] : (2.9)

h,

order polynomial, w(r) is the weight function which defines or-

‘/"n(-T) = Pn(l‘) [
h

where p,(z) is the n'

thogonality on the interval [, and A, 1s the normalizing factor for orthonormality on /.

Substituting in Equation 2.8:

N
Kizy) = iyt 3 [RER)] (2.10)

n=0 h"

Applying the Christoffel-Darboux identity [55. 506],

K (2.y) = [0(z)w(y)]} { N } {PNH(J')I).\'(?/) - I)N(f)lhvﬂ(!l)} @211

;"N-H ’lN(-f".'/)

where by is the highest coefficient of the orthogonal polynomial of order N and hp is the
normalizing factor corresponding to that polynomial. Appendix A sets out the values of
the constants A and hin corresponding to the classical orthogonal polynomials, as well as
the values for the generalized Bessel polynomials [57]. The Bessel polynomials behave in
a way similar to the classical orthogonal polynomials, the only difference being that their
orthogonality is achieved on a trajectory around the unit circle. The reproducing kernels
for the aforementioned four examples are given below:

1. Laguerre Transformation: This transformation is defined in the interval {0,0c). It i

based on the generalized Laguerre polynomials, L; . of order n and parameter v > —1.

a 1 '(N+2
K(z,y) = (1'31)59"[)("([;y))r(/\g+:+)1)
LY (2} LRy (y) = LRy (2} L5 (y) (2.12)
T-y .



2. Jacobi Transformation: It is defined in the interval [—1,1]. The Jacobi transformation
has as particular cases. the Legendre, the Chebyshev, and the Gegenbauer transformations.

e . . e .
I'he Jacobi polynomials Pl have order n and parameters a, /3 > - ",

9—a-# PN +2) T(N+a+3+2)
IN+atB+2T(N+a+1) T(N+A+1)

o3 a, a3 a.f
{Pkﬂ’mrz‘v (y) - P ”(w)P‘:JJ(y)}

K(r.y) = ["’(T)“‘(!/)]%

(2.13)

S
where
w(z) = (1 —-x)"(1+ )’

3. Hermite Transformation: This transformation is defined in (~oc.>c). The Hermite

polynomials I, are characterized by their order n.

exp(=Z2) Hy oy (r) Hy(y) = Hx(2) Hy ()
VT NN - y)

4. Bessel Transformation: In a merely formal way, the generalized Bessel polynomials can

K(r,y)= (2.14)

be stated to form an orthonormal set with weight function p(z) and a unit circle path of

integratioun,

(= )N p(@)p()2 T(N + a)[yn 1 (2)yn (¥) — yn () yns (v)]
(2N 4+ a)N'T(a)(z — y)

K(r.y)= (2.15)

where yn denotes the generalized Bessel polynomial yn (z,a,b) of variable z. parameters
a and b, and order N [57].

Several authors have proposed to modify the transformations difined in Equation 2.5,
so that they no longer depend on a discrete index. The definition of continuous versions
and the corresponding inverse transformations, along with the derivation of sampling
theorems (in the transform domain) similar to the Shannon sampling theorem. are some

of the modifications proposed [58-60).
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2.2 Sampling Expansions from Reproducing Kernels

The reproducing kernel Hilbert spaces a.sociated with the Fourier, Hankel-Bessel, sine
and cosine transformations can be shown to produce sampling expansions [61]. These
transformations are functions of a continuous variable, and each of them has aun associated
space of finite energy bandlimited signals. Next, sampling expansions will be derived trom
the reproducing kernels presented in the previous section.

For the discrete transformations under consideration, the application of kramer’s
generalized sampling theurem [62] will result in a sampling expansion for the functions f
which have finite support .V in the transform domain [63].

Let f(t) be a signal of finite support N. The basic assumption of the Kiamer's
generalized sampling theorem is the existence of a finite energy sinal g(f) related to
f(t) by a kernel function R(t,.r). Consider the particular case when g(1) = (1), and

R(t.z) = K(t, 7). With these modifications, it follows that, if.

Ji) = /H(l..’l‘)g(.r)([.l' = /l\'(!,.r)f(.r)d.r (2.10)
I Ji

and if there is a set E' = {t,,} such that {K({,,.r}} is a complete arthogonal set on L,(/).
then

S0y = Jm o 3T S8 = 3 Sl (2.17)

[n]&N [n|<N
with
N, /
Su(t) = [i K({t,x)K=(t,,, r)dr (2.1%)

: 2
S Kt x)|* dr
where K" (t,, 2} denotes the complex conjugate of K(t,,r). To illustrate how to find the
set {t,}, consider the Laguerre transformation with the Laguerre polynomial of order N

and parameter a. For this case, the reproducing kernel is

af2 T+ y) I'(N +2) N(E) L (y) = Ly (r) LR (y)

2 'TIN+a+1) r-y

K(z.y) = (zy)*“exp(- {2.19)

Let ty,to € 1,t; # ty,
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UK ) K (e t)de = K (1)
JO
sy TN +2)
FN+a+1)
LCI('(’I)LX'-H("-’-) - L%H(tl)llf']\'(’?.)
ty —t2

= (tllz)“/z(k

To make K (r, ty). K(x.1;) orthogonal, the following equality has to be fulfilled:

Ly () Ljsi(12) = Ly (1) L (t2) = 0

With f of finite support N there are L’}-'T]l—\— equations similar to the above equation.
One obvious choice to satisfy these equations at the same time, is to choose the t/s to be
the N +1 roots of the Laguerre polynomial Ly, (r). With this choice. the set of functions

exprossed by

i : "+t TN +2) LY (r) Ly () — Ly (0) L3 (1)
N(rt) = (ot,)" 2 exp(-= ASAh £ Nl
Vi) (et )" exp( 2 )l‘(]\'+n+ 1) r—t,
+1,, T(N+2) [ =L, (@) LR())
— ) ’1 1)/2 R _ I t N+1 . K ‘2
()" 2 exp(~ 5 an+n+4){ - (2220)
with:1=1.....! N + 1, forms an orthogonal set of functions. Note that the choice is partly

justified by the number of orthonormal functions in the expansion of f with finite support

N. Therefore,

N+1

F =3 f(te)Sk(t) (2.21)

k=1

where {{;} are the roots of the Laguerre polynomial L% ,,(z), and

o K(z,0)K(z,t)dr
Jo 1K (2.4 [2dx

Sk(t) =

Using the fact that t is a root of L{ . the denominator simplifies in the following way:

[|KmuWw = Ml/'MLMKh@MT
JO 0

ty=— )

I8



_ r(N+2)y oty LA L VLN ()

B R A e A

_ C(NV+2) ] o] d N R

= mf’w(—fk)'k {E[-LI\Hl(’J)L.\'Uk”}l B
M(N +2)

= mﬂxp(*ik)‘l(* St x

(N+1LR () = (N +a + DL (1)
i)
(N +2)
(N +a+1)

= 177 exp(—ty) (N +a+D[LI)])

The identity [56]

1‘”43{‘“ (t)

S = (N D LR (0 = (Y 6k DLR )

has been used. Now, for the numerator,

f K(r )N (r.tp)de = K(t. 1)
0

t4+ 14 (N +2) “L','{'_;.l(’“/'){‘('k)
2 'T(N+a+4+ 1) (r—1;)

= (H3)" 2exp(~

The final expression for the camposing functions in the sampling expansion is:

1472 (11)! 7% exp(= 5 ) [~ Ly 4, (1))
(=) (N + a+ 1) L (1)
(/1) 2 exp(= 158 ) = Ly, (D)]
(t =t ) (N +a+ YLy (1)

Sk(t)

(2.22)

This example given for the Laguerre transformatian may be generalized for the other
transforinations as well. Equation 2.20 that sets up the condition under which a set of
values {t,} defines a set of orthogonal functions, is generalized for the other transforma-
tions considered here, by substituting the variables t; and {; for z and y respectively,
in Equations 2.13, 2.14, and 2.15. For those three transformations and for any values

tita, by # tg:

P ) PE M (1) = PP )Py = 0 (2.23)
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IIN-H(!I )1’,’\,’(’2) _ l[‘\'(“)i[l\‘.*_](fz) = 0 (2.24)
yver(B)yun () =yt yva(t2) = 0 (2.25)

For each transformation, the composing functions of the sampling expansions before nor-

malization are:

2707 TN +2)
2N +a+3+20(N +a+1)

F'N+a+342) P;(\;(:L‘:)(T)P)(\;"‘j)(’z)

K(rt) = (w()w(t,))

~

2.26
TN +A+1) -1, (2.26)
12 l2
Kty = — 2 HynloHy) (2.27)

Jr 2NHINT(r— 1)

=D p)p(t)) TN + @)y () (L) o
hirt) = 2N+ a)NT(a)(z-t,) (2.28)

The respective composing functions for each of the above tran<formations. in the same

order, are:

2w (1)) P (1)

S () = - - 2.29)
(1) (t = ) [w(t))2 (N + 24 a + H)PETH 0 {
(=
h'k(,) — ﬁ(\‘\p( P] )Hl\+](’) (2'50)

20t -t ) (N + D HN ()

W UE yn e (VBR(N + 1) +a — 2] .
Sl = {t = t)yn (t)b(V + 1) (2:30)

The intermediate algebraic operations corresponding to the last results can be found in
Appendix D.

In summary. for a signal f of finite support N, there is an expansion based on N + 1
orthonormal functions ¢, (x) obtained by choosing the set {t,,} equal to the N + 1 roots of
the polynomials LY, (7)), ,(J‘_;[,j)(m), Hp41(x), and ynv41(z). This expansion results from

evaluating Equation 2.21.
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Chapter 3

Nonuniform Sampling: Methods,
Strategies and Applications

2]



3.1 The SVD method and its relationship with reproduc-

ing kernels

The singular value decomposition (SVD) method for the recovery of signals from nonuni-
form samples has been introduced by D. J. Wingham [6}. This approach, originally pro-
posed for bandlimited signals in the Fourier transform sense, uses the reproducing property
of the sine function to set up an algorithm based on the singular value decomposition of
a matrix whose entries are given by the sinc function evaluated at the known nonuni-
form time instants. An expansion based on multiples of the sinc function and centered
at the nonuniform time instants, is used to reconstruct the original signal. The num-
ber of composing functions of the expansion equals the number of nonuniform samples.
These composing functions are linearly independent but not necessarily orthogonal. The
expansion coeflicients are calculated from the nonuniform sample values. and from the
cigenvectores and eigenvalues of the singular value decomposition.

This method guarantees that the values of the reconstructed signal equal the nonuni-
form samples at the known nonuniform time instants. The reconstruction so provided
constitutes the minimum norm solution to the recovery problem. and from this point of
view, it is equivalent to Yen's solution [5].

There are two ways to implement the SVD method, but the final result is the same.
The following is the description of the algorithm. showing both versions.

First version: Let {t,} be the set of nonuniform time instants with i = 1.2,....m. {y(t,}}
be the set of nonuniform samples, {si} be the set of uniform time instants (or any other
set of points where the signal has to be known) with & = 1,2,...,p, and {h(sx)} be the
set of samples to recover.

1. Construct the matrix A whose entries are given by

o = sin[2m fo(t, — s1)]
' [27 fo(t, ~ sk)]

In general, 4 is a rectangular matrix.

2. Find the singular value decomposition of A. This generates the left singular vectors
{v,()} with n = 1,2,...,m and size m x 1, the right singular vectors {u,(s:)} of size

p x 1, and the singular values {A,}.
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3. Compute

1= A7) wita)e(n)

where n = 1,2,....m.

4. Compute

hs) = 3 it(si)

Second version: Let {t,}. {y(t,}}, {s1}, {h(sx)} be defined as before.

1. Form matrix B. whose entries are given by

sin[27 fo(t, = 1))

[znf(l(fl - r_) )]
where 7, j = 1,2.3...., m. Notice that B is formed using only the nonuniform time instants
{t,}.

2. Obtain eigenvectors and eigenvalues of B. Let the eigenvectors be denoted as {e, (1))

b, =

with n = 1.2.....m. and the eigenvalues as A?, where A,'s are also the singular values of

the SV'D decomposition of the kernel

sin[27 fo(t,, — )]

Knt)= [27 folty — 1))

3. Evaluate

sin[2m folsy = 1,,)]
[27rf()(~“k - ’n)]

u,(s) = )\,'1 Z (1)

where n = 1,2.....m. {u,(sk)} are the right singular vectors and {v,(n)} are the lefi
singular vectors of the SVD decomposition of &'(n.t).

4. Evaluate

‘n= ’\,_l Z y(tu)v(n)

where n = 1,2,...,m.

5. Evaluate
hisk) = D 7au(sk)
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Even though the SVD method is concerned with bandlimited signals in the Fourier
transform domain. the reproducing property of the sine function opens up the possibility
of extending the method to other transform domains. Hilbert spaces with a reproducing
kernel, in particular those where orthogonal transforms can be defined. can then have their
own version of the SVD method. Within the transform domains, the set of signals for
which the method would be applicable are those with finite support in the corresponding,
transform domain. For the Fourier transform domain. these finite support signals are the
commonly known bandlimited signals.

The main reason for extending the results obtained for the Fourier domain to other
domains is the possible optimization of signal processing: useful characteristics not shown
in the Fourier domain but existing in another transform domain, can be exploited [64, 63].
If a signal reconstruction is attempted. it would be based on composing functions which
are also of finite support in the transform domain under consideration. Functions which
are not of finite support in any domain can always get a reconstruction based on finite
support functions. In this case, the reconstruction would be somewhat affected by the
finite number of composing functions (one composing function for each given nonuniform
sample). An additional advantage of having a reproducing kernel-based procedure for a
given transform domain is the certainty that the reconstruction achieves the minimum-
norm solution to the problem.

The changes that have to be made to adapt the SVD method to other Hilbert spaces

with reproducing kernel A (r,y). are minimal. For the first version of the method. make
ax = K (t,,s1)

The second version requires some more changes. Make

b, = K(t,t)

K(nt) = K(tn.t)

,\;“ Zv,-(n)l\'(Sk.fn)
n

u, (sk)

Once these changes are made for the respective Hilbert space and transformation,

the algorithm is ready for use. Several examples will be presented to illustrate this theory.
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This general approach based on the SVD method, once extended to other reproducing,
kernel Hilbert spaces, justifies the name of rproducing kerned approach for the whole

procedure [63].

3.1.1 Reproducing kernel approach: examples

Consider the Hankel, sine, and cosine transformations. The expressions for the correspond
ing reproducing kernels have been already obtained in [61] under different considerations.
(a) Hankel transformation

Let H; be the class of Ly([0, oc[) functions f such that their Hankel transforms of ordey

1
v.r 2> —3

F()) = /U"'(Ar)%./,,(m)f(r)m

vanish almost everywhere outside of [0, B,]. The corresponding inverse Hankel transform

is given by

B
1) = [) (YL (A F(A A

with 1 > 0, F € L,([0. B))). H), is a reproducing kernel Hilbert space on 1), = [0~ . The

unique reproducing kernel is given hy

1
. By {yr)z
Kilr.y) = oyl Bu) U (0081) = s (010)) ~
rJ (yB) {1 (e B) = Jup (e By)}) {3.1)

(b) Sine transformation

Let H, be the class of Ly([0,o0) f functions such that their sine transforms

F(3) = (-72;)’ /0% sin(31) f(1)d1

vanish almost everywhere outside of [0, B,]. The corresponding inverse sine transform is
given by
!

f(t) = (3>7 [)H‘ sin(31)F(3)d.3
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with t 2 0. F € L,([0. B,]). H, is a reproducing kernel Hilbert space on Eg = [0.x[. The

unique reproducing kernel is given by

(3.2)

sin((y — r)By) i sin((y + .r)b's)}

1
KN (r.y)=—
talrey) Tf{ y-—r (y+r)

(¢) Cosine transformation

Let H, be the class of L,([0,x[) f functions such that their cosine transforms

Fh)=(3>%£xﬂ»h0ﬂﬂm

T

vatiish almost evervwhere outside of {0. B,]. The corresponding inverse cosine transform

s =(2)

with £ > 0. I € L([0. B]). H.is a reproducing kernel Hilbert space on [£ = {0, x[. The

is given by

B,
/ cos(41) F5)d7
JO

unique reproducing kernel is given by

sin(B (y+r))  sin(B (3/-—.1‘))} (3.3)

; 1
l\‘(I‘?/):;{ u+r_+ y—r

3.1.2 A triangular function: recovery from nonuniform samples

As a practical example of the application of the reproducing kernel approach. consider a
train of three triangular pulses. If the bandwidth of this signal is defined as the freq. ency
at which 90 per cent of the signal energy is contained. then 19 is the number of samples
necessary to reconstruct the signal according to the sampling theorem. This number of
samples comes after some calculations involving the square power of the magnitude of the
FFT of the signal.

Figure 3.1 shows the results of >ignal recovery after 20 uniform samples have been
given as input to four different variations of the SVD method. Each of these variations
includes a reproducing kernel analyzed already in the last section.

Figure 3.2 shows the signal recovery after 20 uniform samples with jitter have been

given as input to four different variations of the SVD method. The jitter parameter! is

'.J is the parameter used to define the interval ——J.‘,l. Lzl] on which the random variable 8t 1< uniformly

distnbuted 7 s the sampling period  The random variable defines the set {7} of nonuniform time
mstants, 7, = AT + &¢, where kT is the umform time nstant
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Figure 3.1: Recovery of a train of three triangular pulses using the SV'D method. Fach
of the graphs correspouds to a different reproducing kervel, The first corresponds to the
Hankel-transformed domain, the second to the sine-transformed domain. the third to the
cosine-transformed domain, and the last to the Fourier-transformed domain, ~shere the
sine function is the corresponding reproducing kernel.

J = 0.6.
Figure 3.3 shows the signal recovery when J = 1.2. For this particular example, the
method wi*!. the sinc kernel seems to provide the best solution when the jitter increases.
The SVD method can also be adapted to the finite signal spaces with reproducing
kernels obtained in Chapter 2. The special case when = = y for those kernels is considered

in Appendix D. The recovery from nonuniform samples using the SVI) method with those

reproducing kernels will be treated later in this chapter.
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Figure 3.2: Recovery of a train of triangular pulses using the SVD method with J = 0.6.
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Figure 3.3: Recovery of a train of triangular pulses using the SVD method with .J = 1.2.
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3.1.3 Other examples

Figure 3.4 shows three different examples of signal recovery using the reproducing kernel
approach. The recavery is performed from a set of eight nonuniform samples, which are
positioned in the time instants indicated by a circle (‘o). In (a), the recovery takes place

in the Hankel transformed domain, where the signal

finy = %ﬁ {11 (Bat) = T (Bh)Ju(Br) = (Jom1 (Br) = g1 (Bi)) i But)}

is bandlimited to By, in the Hankel transform sense. Note in this case that the signal and
the reconstruction are indistinguishable from one another. In (b), the recovery this time

takes place in the cosine transformed domain, where the signal

f(,).__A\/gsin(thf)

is bandlimited to B, in the cosine transform sense. The match between the reconstruction
and the original signal seems to be very good. Finally, in (c), the signal reconstruction

takes place in the sine transformed domain. where the signal

24 [2 5 Bt
=20 T

s

)

is bandlimited to B in the sine transform sense. The reconstruction is not good at the
end of the observation interval, due to: (1) the positiveness of the original signal and that
the composing functions of the expansion used in the reconstruction can take any value
positive or negative, and (2) there is not enough information at the end of the interval for

the reconstruction to match the signal variations.

3.2 Sampling expansions and the SLE method

To determine a finite-energy signal (t), bandlimited to | f| < fo, from its samples {x (nT)}
sampled at or above the Nyquist rate (1/2fg). an infinite series has to be used. This infinite
series is stated in the sampling theorem (also known as the WKS sampling theorem, for
Whittaker, Kotel'nikov, and Shannon [3]). Instead of using an infinite series, a truncated

version can be used, giving the value of z(t) at any instant ¢,,, as
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Figure 3.4: The continuous line represent the original signal, and the dashes represent the
recovery. In (a), the recovery is performed in the Hankel transformed domain. In (b),
it is performed in the cosine transformed domain, and in (¢), it is performed in the sine

transformed domain.
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z(tw) = Az(nT) (3.1)

where T = 1/2f,, fs is the sampling frequency, z(t,,) is the vector of reconstructed
samples, and A is a N x N matrix with entries defined by
sin[27 fs(tm — nT)]

Ay = {27(']3('771 _ 1lT)] ('3"))

with m,n=1,2,...,N,and z(nT) = [2(T),z(2T),....z(NT)]7 is a set of equally spaced

samples. Note that Equation 3.4 is a system of N equations for N unknowns. To reduce the
error caused by the substitution of the infinite series by its truncated version, the order N of
the system should be taken exceptionally large. The solution of the system. in consequence,
represents a straightforward solution to the problem but becomes meaningless due to its
large size. In [24] it was suggested that a set z(,,) of nonuniform samples at time instants
{n.} could be used in Equation 3.4 because z(t,,) represents any arbitrary set of samples.
The relationship between z(7,,) and x(nT) is then given by the Equation 3.1 where A is

the composing matrix with elements

I sin[27 fo(Tm — nT))
e 27rf3(7-m - TIT)

with m,n = 1,2.....N, and 7, = mT + §i. 6t is a random variable distributed in

(3.6)

the interval [—izl—,%r] where J has been already defined as the jitter parameter. The
uniform sample vector z(nT) is found by solving the system of linear equations. This
method, which will be called SLE (for System of Linear Equations) can be extended also
to other types of sampling expansions, infinite or not.

Sampling expansions can be derived from the reproducing kernels examined in Sec-
tion 3.1.1 by following a path similar to the one already described in Chapter 2 for finite
signal spaces related to discrete transformations derived from orthonormal series expan-
siors. These sampling expansions are calculated by an alternate way in [61, 66]. The
extension of the SLE method to other sampling expansions has the effect of mapping the
set of nonuniform samples given into another set of nonuniform samples of a known time

instants pattern. The original signal is thereby restored using the new set of nonuniform

samples and the respective sampling expansion [63].
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A comparison belween the SV'D and SLE methods points out several differences,
Firstly, the kind of expansion used in the SLE methad is based on a set of orthonormal
functions, while reconstruction using the SVD method is based on linearly independent
functions that are not necessarily orthogonal. Secondly, the expansion coeflicients in the
second method are signal samples, while the coeflicients in the first method depend on, but
are not restricted to, the nonuniform samples given. Thirdly, the coeflicient matrix of the
system of linear equations uses two sets of time instant points, while the matrix in one of
the two versions of the first method uses only one set. Fourthly, the reconstruction using,
the SVD method is guaranteed to produce the minimum-norm solution to the problem
of recovery from nonuniform sampies. A fifth observation concerns the computational
complexity of both the methiods: the SLE method is much less computationally expensive
than the SVD method. In this regard, see Appendix F. Finally, a sixth observation will
be made in Chapter 4 with respect to the robustness of the methods in the presence of
jitter,

Examples .here the generalized SLE method is employed will be shown in the next

section.

3.3 Signal recovery from nonuniform samples in short in-

tervals

The two methods of signal recovery from nonuniform samples, SVI) and SLE, have been
presented and extended to transform domains other than Fourier in the two first section:
of this chapter. The reproducing kernels and sampling expansions obtained in Chapter 2
can also be included in the generalization of the SVD and SLE methods [67].

The collection of sampling expansions from Chapter 2 are characterized by cocffi-
cients dependent on unique sets of sampling points {¢,,} (the roots of arthogonal polynomi-
als). Suppose that a set of nonuniform samples and its attached nonuniform time instants
are provided, and the original signal is to be recovered from thi» information. Out of the
collection of sets {t,}, the set that is closest to the given set of nonuntform tisne instants
is selected. The signal is then restored using the sampling expansion or the reproducing

kernel corresponding to that set by applying the generalized version of the SLE or SV
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methods, respectively [63]. Thus, from this perspective, the problem of signal recovery
from nonuniform samples can be seen as a problem of mapping a set of nonuniform time
instants into a set of predetermined nonuniform titne instants,

To show the relevance of the sets {t,} to the recovery problem, consider the root
pattern of the Laguerre polynomials in Figure 3.5. With the variation of the parameter
a. the polynomial roots change position. A parabola-shaped curve is obtained with cach
parameter value. The Laguerre polynomial produces the curves in the lower half of the
plot: a modified Laguerre polynomial, R (r) = Li} (v, — r). produces the set of curves in
the upper half, where 1, is the largest root of L} (x). The modified Laguerre polynomials
are treated in Appendix E. Both the polynomials, the original and the modified, are
orthogonal, although over different intervals. The modified polynomial is orthogonal over
the interval (—oc.14]. These loci are con enient for those sampling schemes where the
samples are concentrated either at the beginning or at the end of the observation interval.
Particular situations where those sampling schemes are useful arise in transient analysis
and in biological systems, where burst signals have their information concentrated at the
beginning of the observation interval.

Ax an example of signal recovery from nonuniform samples, consider Fignre 3.6,
where a random signal with a maximum frequeney of 1941 Hz is nonuniformly sampled
according to the root pattern of a Laguerre polynomial of order 22 with parameter a = 0
Plots (a) and (b) in the figure respectively show the signal reconstruction using the SELE
and SVD methods in the absence of jitter. The SLE method uses the Laguerie-based
sampling expansion known from Chapter 2. The SV method uses the reproducing kernel
deducted from the discrete Laguerre transformation. Plots (c¢) and () correspond to the
cases shown in the first two plots, but with a relative jitter parameter, J,, of .85 added
to the samples.

The jitter parameter mentioned in the last paragraph is defined as follows, et
{tx} be a sequence of nonuniform time instants, and {ri} be the same sequence but with
jitter. Let ag = t441 — tx. Then 7 = { + 8t, where & is a random variable, uniformly
distributed in the interval [—(MT“)J,. (B52)J,], where J; is a scalar called the relative
jitter parameter (relative to the nonuniform positions), pis a random variable that takes

the values 1 or 0, with probability Q(p) for a 1, and probability R(p) = 1 - Q(p) for a 0.
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Figure 3.6: Reconstruction of a random signal with a maximum frequency of 1944 Hz.
The symbology used means: (): signal sample, (0): value obtained by recovering method
corresponding to the position of the coefficient of the sampling expansion. S. E. stands
for sampling expansion. and R. K. for reproducing kernel. The original signal is depicted
using a continuous line, and its reconstructions with dashes.

and p=1-p.
Figure 3.6 pinpoints the similarity in the results of both SVD and SLE methods.
Appendix B shows that, in fact, both are equivalent under the conditions of the example.
Note that time scaling has been used in the plotsso that the relative position of the
polynomial rootsis preserved. Given an observation interval of duration T, a simple linear
transformation is used to map the roots of the orthogonal polynomial into the observation
interval. Let g2 be the last point of the interval, y; be the first point, x, be the first root,

I3 be the last root, and z be a vector containing the roots. Then the new locations y of
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the roots are given by

_ 2 —w) - (2 = yary) (3.7)

(r2 — 1)~ (r2 — 1)

I

This expression and its equivalent, which maps the roots back into their original positions,
have to be considered in the application of the SVD and SLE methods because the argu-
ments of the sampling expansion and the reproducing kernel have to be values within the
same scale as the roots. In other words, before using any of the signal recovery methaods,
the values of the observetion interval have to be mapped into the interval defined by the
first and the last roots of the orthogonal polynomial, by using a lincar transformation
analogous to Equation 3.7.

The SLE and SVD methods that respectively use a truncated sampling expansion
and a reproducing kernel based on the sinc function [6, 26), fail to reconstruct the random
signal given the set of nonuniform samplesin Figure 3.6. This is due tothe ill-conditioning*
of the coeflicient matrices employed in those methods. For the example considered, the
estimated reciprocals of the condition number of the coeflicient matrices employed in the
abovementioned miethods, oscillate between 3.077 x 1071 for the smallest, and 1.7571 «
107" for the largest, making the signal reconstruction absolutely impossible. The problem
of ill-corditioning appears as a direct efflect of the violation of the known rule that a
stable signal reconstruction cannot be achieved when the sampling is performed at a rate
lower than the Nyquist rate (usually meastared in Hz) [70]), which implies that the gaps
between samples cannot exceed a precise quantity also known as the Nyquist interval.
Many methods of signal reconstruction from unequally spaced samples have as a basic
assumption that the maximum gap between two samples does not exceed the Nyquist
interval [71, 17, 18, 72, 73]. For these methods, when in the sampling set there are
sampling gaps larger than the Nyquist interval, the result is either divergence or a very
slow convergence in the method {71]. Due to the different nature of the extended methaods,

the assumption mentioned before is not necessary.

?A matrix is ill-conditioned if the reciprocal of its condition number approaches the computer’s fluating,
point precision (for instance, less than 107 for single precision or 107'? for double) The condition number
is defined as the ratio (in magnitude) of the largest to the smallest singular value of the matnix [68] The
values of the reciprocal condition number given here come from the use of the software package MATLAR,
which bases its calculations on LINPACK [69)].
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The implicit limitation in the number of roots that can be calculated with accuracy
when increasing the order of a polynomial, imposes a practical bound in the order of the
orthogonal polynomials that form the basis of the generalized SVD and SLE methods.
This implie- that only small sampling sets can be analyzed at a time. For larger sampling
sets, an on-line iterative procedure [74, 75] that decomposes the incoming set of nonuni-
form samples into overlapping blocks of a chosen minimnum size, can be used, and within
each block, the SLE and SVD methods proposed can be applied as long as the signal

characteristies allow it. This iterative procedure will be presented in Chapter 4.

3.4 Signal compression

The search for techniques applicable to signal compression has been a very important
area of research for years. The simple compression technique of varyving the sampling
rate of a signal that presents variations in frequency with interlacing intervals of slow and
fast change. has the overall effect of producing a signal sampled nonuniformly. Another
example of the application of a nonuniform sampling approach for compression consists
in the cascading of a level crossing detector (LCD) and an interval encoder. The LCD
produces a sample whenever its input crosses a threshold level, and the interval encoder.
by assigning binary strings to the time between level crossings and to the directions of
the crossings, codifies the information about the source signal; along with the addition of
run-length encoding and prediction, the compression ratio would improve depending on
the source [11]. An immediate application of this type of encoding is to analog-to-digital
conversion [38].

The possibility of representing most of the information carried by a signal by using
few coeflicients of the signal representation in a transform domain, constitutes another
way to achieve signal compression. Such is the case when dealing with 1mage piocessing,.
where it is possible to preserve only 12.4% of Fourier transform coefficients of an image.,
and there is still enough information to be able to clearly distinguish the basic features of
the image [76).

A decrease in the number of coefficients necessary for a signal representation could

be achieved when representing the signal in a transform domain other than the Fourier
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transform domain. This implies compression by reducing, the number of coeflicients that
store the signal information. The following example will show that representing a signal
using its samples taking according to the root locus of an orthogonal polynomial, could
provide significant savings in the number of samples needed to recover the signal [77].

A linear FM signal with a maximum frequency of 182145 Hz is genetated by placing,
its peaks at the time instants given by the root loci of the polvnomials L) () and R} (1)
of order 15 and parameter a = 0. Figure 3.7 shows the relevant plots for this example.
A power spectrum estimate (PSE) of the signal is shown in (a). The variation of the
mean square error (MSE) with respect to the number of samples used in the reconstine
tion is shown in {b). Curve 1 corresponds to a signal tecovery by the combination of
a Laguerre-based and a modified Laguerre-based sampling expansions, whose coethcients
are nonuniform samples centered at the root loci of the orthogonal polynontials. Curve
2 corresponds to a signal recovery based on the WKS sampling expansion whose cacth
cients are vniform samples, In (¢}, a reconstruction using 32 nonuniform samples and the
two sampling expansions is shown, with each expansion occupying hall of the curve. The
nonuniform samples are placed at the root loci of the polynomials L) (r) and R (), ol
order 16 and o = 0. For camparison. a reconstruction for the same A signal s shown in
(d). but it is based on the WKS sampling expansion using 32 uniform samples.

For this example, the WKS sampling theorem stipulates a minimum of 1147 uniform
samples to recover the signal, for the abservation interval and bandwidth given. However,
a very good reconstruction is achieved using only 32 nonuniform samples and the two

sampling expansions proposed, leading to a compression index of 4.6,

3.5 Design of a linear phase FIR digital filter in the fre-

quency domain using nonuniform samples

The dependency of the root locus of an orthogonal polynomial on the values of a parameter
(or parameters, according to the case) can be exploited in digital filter design to define
frequency response values in certain points like cutoffl frequencies.

There has been much interest in the use of nonuniform samples in digital filter deqagn

[47.48.78-82], and two of the reasons for it have been: (1) the search for a technique
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that provides a way to place frequency response values in particulathy chosen places not
necessarily situated on a grid of equispaced frequencies [77]0and (2) the desipgn of efficient
FIR filters requiring fewer arithmetic operations than the conveutional filters.

The design procedure proposed for an FIR digital filter using nonuniform samples

starts by considering

M
H(=N) = Y hine =1 = ()

n=u
vhich is known as the frequency response of the filter, and where fi(n) is the nmpule
response. 77 the sampling period, and « the frequency in radians per second. For a lnear
vhase design. the frequency response should be made symmetrical or antisvimietiical
about a midpoint, and for each of these two cases, VS could be odd or even [»\'.(]. o1

syvmmetrical design with M even,

M
2 M A

Hi) = S )T uz) 3=t S e ! (4.5
n=U - n:—\,—’-}l

which after some algebra and the use of symmetry. changes to,

Mo
A At 3 A
H{s) =« _J“Tll /l(—-’l) + 2 Z hit)« n.\[(‘—)’- - l)w"l‘] (:3.9)
< 1=0 “
For a symmetrical design with M odd.
MG M -2
Hiw) =222 W) cas[{(———)1 (310
(«) Ezj Conl(+ 1
Both Equations 3.9.3.10 have the form
Hiw) = Afw)e =37 (3.01)

where A(w) is a real function of the variable w. and it is expressed in terms of the unhnown
impulse response h(n). Because A(w) is real, it can be approximated by any of the finite
sampling expansions from Chapter 2:

N+

Alw) =3 [0 ) Sl ) (3 12)

n=1}



The values {7, } are the roots of orthogonal polynomials where the frequency response can
he made to take specific values. By varying the parameters associated with the orthogonal
poly romials, the root locus changes, and with it, the position of the samples.

To design a linear phase lowpass filter symmetrical about its midpoint with Af even.

the following equation is established,

N+ YR \f
Z J () Su(w, 7)) = /l(‘?) +2 h(7) COS[(',—) - 2)wT] (3.13)
n=1 1=0 <

On the rnight there are ¥ + 1 unknowns, and on the left N 4+ 1 operands. So. % = N.
By extending the last equation to L frequencies {w}, the resulting overdetermined system
of linear equations is solved by using singular value decomposition (SVD), which provides
a linear least square solution for the impulse response h{n). The impulse response (filter
coeflicients) will then have a minimum norm in the Euclidean sense [84]. The number L
of frequencies has to be greater than or equal to ‘—‘2’— + 1. The overdetermined system of
oquations is written as Bh = d. where L is the vector of filter coeflicients, d is the vector
of values of the sampling expansion. and B is the matrix originating from the evaluation

of the cosine function in Equation 3.13. and characterized by entries of the form
A,
‘2('()5[(7 - i), T]

where y=1,.... Land i=0...., ¥ ~ 1. The solution f the system is obtained in terms
of the right singular vectors v, and the singular values {a,} corresponding to the singular
value decomposition of B:
W 1
h=3 =" BTd (3.14)
=1 1

where W is the rank of B, defined as the number of linearly independent columns of the
matrix. In this case, the solution is consistent because W equals the number of elements
of h.

This design method differs from other design approaches in the use of an expansion
that completely specifies the frequency responsc in the frequency domain, and as a con-
sequence, in the inclusion of a smooth trausition band which reduces the approximation

ripple [85, RG]
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FIR Filter Design: Comparison with Window Methods
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Figure 3.8: FIR lowpass filter with cutoff frequency at 0.1 (normalized). Three window
based design methods are compared against the method proposed.
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Figure 3.8 shows four different designs for a lowpass digital filter with cutofl fre-
quency 0.1 (normalized), a minimum attenuation of 50 dB in the stopband, and twentv
distinet coefficients for each design. Note the significant improvement that in the transi-
tion band the method proposed achieves with respect to the other methods. The sampling
expansion for this design used a Laguerre polynomi»l of order 20 and parameter o = 9.89.

Another example will be provided to illustrate the design technique proposed. The
design of a linear pha.so bandstop filter presents a double symmetry, one ahout —‘21 and

another ahnut , for M even. To find the corresponding design equations. the frequency

response is rewritten in the following way:

A1
H{w) = Zh(n)(‘l“’"’r

n=
2y A
= h(0)+ Z h(n) "J“'"T+/:( l) “J“’MT+ Z h(n)e=ronT 4
n=l1 A’+]
Al g
’I(-——) —_;mMI+ (")(—th’l_*_h( ] )—_) +1+
A
AYES
7 ()T 4 (MM (3.15)
!

which after some algebra reduces to

M]

H(w) = 7 > 7{/1 0)[1 +Zcos(ng ]+ Z 2h{i cos[(z_\zl — H)wT] + cos(iwT)] +

=1

M M
211(—)coq(wTT)} (3.16)
The last expression presents the same form as in Equation 3.11. The reasoning can then

proceed as above,

M]

Alw) = h(0)1 4+ 2cos( w-——T)] + Z 2h(i cos[(‘%[ — 1)wT) + cos(iwT)) +
1=1

Zh(A‘l)ros(ng) (3.17)
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Comparison with Window-Based Design Methods
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Figure 3.9: Bandstop filter with cutofl frequencies at 0.1 and 0.1, Three window-based
methods are compared against the method proposed.

On the right side of the last expression there are A—,’ + 1 unknowns, and on the left there
are N 4 1 operands. So, %1 = N. with Al an even number. By establishing again
an overdetermined system of linear equations, a linear least square solution for h{n} is
calculated.

Figure 3.9 presents the results of designing an FIR bandstop filter with cutoff fre-
quencies at 0.1 and 0.4. with a minimum attenuation in the stopband of 50 dB. Using 21
distinct coefficients in the design, the transition band is shorter for the method proposed
than for the other methods shown, but the minimum attenuation goal is missed hy ap
proximately 2 dB. The sampling expansion used a Laguerre polynomial of order 11 and
parameter a = 202.

A comparison with window-based methods is shown in both figures of this section.
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The design method proposed is interactive, and involves a series of trials to achieve
the desired features, Not any nonuniform placement of samples provides an optimum
design that satisfies the requirements of minimum attenuation and cutoff frequencies [77].
In both examples, two of the nonuniform samples were placed in the transition band to
eliminate the approximation ripples in the stopband. For the lowpass design, one transition
sample was given the valne 0.69, and the other 0.18. For the bandstop design. the values
for the transition samples were 0.92, and 0.23. The rest of the samples took the values |

or 0. The approximation ripples in the passband for both designs were lower than 2 dB.

3.6 Signal representation by nonuniform sampling

The application of Kramer s generalized sampling theorem to finite signal spaces has pro-
duced sampling -xpansions whose coeflicients are signal samples taken according to the
root loci of orthogonal polynomials. The root loci are functions of the parameters that
characterize the polynomials. and they can assume many different shapes with the varja-
tion of these parameters. The parabolic shape of the Laguerre polynomials, for instance,
makes the corresponding sampling expaunsion suitable to represent signals showing fast
variation at the beginning, and slow variations at the end of an observation interval. Such
is the case for the so-called burst signals. The opposite case. wherein a signal varies slowly
at the heginning and faster at the end of the interval, corresponds to a sampling expansion
based on mirrored images of the Laguerre polynomials, the R () polynomials. A signal
with maximum variation at the center of the interval can be represented by a combination
of two sampling expansions, one based on Laguerre polynomials and the other on their
mirrored images (see Section 3.4).

A signal representation can be assigned to a burst signal such as the transient audi-
tory evoked brainstem response (ABR. [87]). A simulated ABR signal is shown in Figure
3.10, along with a corresponding signal reconstruction based on a Laguerre-based sampling
expaunsion (a = 5). The number of coefficients in the signal representation is N 4 1 = 24,
while the more typical Shannon sampling expansion employs 41 uniform samples. This

signal representation produces a compression ratio of 1.7,
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Chapter 4

On-Line Iterative Recovery of

Nonuniformly Sampled Signals
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In this chapter, an on-line iterative procedure for signal recovery from nonuniform samples
will be presented. This procedure will extend the use of the two methods examined before,
the SVD and SLE methods, to long intervals with large sets of signal samples. The
procedure avoids the restraint imposed by the size of the sample set in other methods by
rearranging the set into smaller jointly overlapping blocks. The procedure has also the
advantage of being on-line, which means that the signal processing can start even before
all samples have been received.

The procedure proposed constitutes an improvement over the existing methods due
to its on-line nature, and it offers the possibility of using iterations to ameliorate the
results. It is a much less complicated technique from the point of view of mathematical
tools employed (compared with [20, 22]).

The on-line iterative procedure will be applied in this chapter to two different cases
(1) the first case involves the conversion from nonuniform sampling to uniform sampling,
that is, from a set of nonuniform samples to a set of uniform samples, and (2) the conversion
from nonuniform sampling to a predetermined nonuniform sampling, which means, from
a set of nonuniform samples to a set of samples positioned at the root loci of orthogonal
polvnomials. The first type of conversion is the most common, because the set of uniform
samples is then used with the WKS sampling theorem to reconstruct the signal. For this
conversion, the cases of small jitter (J < 1} and of medium jitter (1 < J < 3) will he
studied and a comparison made between the results obtained by using the SLE and the
SVD methods of signal recovery. The second type of conversion relies on the proximity of
the sampling to any of the root loci of orthogonal polvnomials, and it corresponds to the
case where J > 3. For this second type of transformation, the concept of relative jitter
(Jy, defined with respect to nonuniform samples) is then applicable.

The description of the on-line iterative procedure for the conversion from nonuniform
samples to uniform samples requires the following definitions. Let M be the minimum
block length, P be the number of overlapping uniform points between consecutive blocks,
N be the total number of samples in the input sequence, Q be the number of points used
in obtaining an estimate of the nonuniform samples from the estimated uniform samples,
and {7,} be the nonuniform time instants. Refer to Figure 4.1 for an illustration of the

definitions of M, P, and N.
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Figure 4.1: Block rearrangement of the sequence of nonuniform samples. The first sequence
corresponds to the uniform points, and the second to the nonuniform points. The uniform

points are supposed to be synchronized with respect to the nonuniform points.




The following steps define the procedure.

1. Choose values of M and P where M is an odd number (> 1} and P is an vven
number (> 2). This particular choice for the values of Af and I? is made to favor
symmetry and simplify processing. Perform a partition of the sequence in blocks
according to Al and P as seen in Figure 4.1. Each block has to have as many
uniform as nonuniform points. For Figure 4.1, the values chosen for A7 and 1” are 3

and 2, respectively.

2. Estimate uniform samples corresponding to the nonuniform samples included in
each block. The estimation is performed using ecither the SLE or the SVD method,
Let #,(nT) be the vector of estimated uniform samples (before iterations), and I
the sampling period. After the estimation, discard the estimated uniform samples
corresponding to the P points on the edges of the block. For example, il the block
includes 5 points and P = 2, five uniform samples will be estimated bhut two of them

will be discarded, one at each point on the edge of the block.

3. Once the uniform samples have been estimated over the sequence of N samples,

calculate an estimate of the nonuniform samples using the expression

Q
() = Zi,(nT)sinr[u}(,(r,,, - nT)) {(1.1)

n=1
where Q@ < N — P. Subtract these values from the known nommiform samples,

z(7m ). thereby generating the error

Q(i(rnl)) = Q(Tm) - i(Tm) {(1.2)

4. e(Z(mm)) is used to calculate the error in the uniform samples, ¢(r,(nT)), by using,
¢(Z(m)) as input to the SLE or SVD method. The block rearrangement is again

used in this calculation.
|

+

5. Use ¢(£,(nT)) to improve estimation of the uniform samples.

,(nT) = &, (nT) + (£, (nT)) (1.3)
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6. Repest steps 2 thru 5, to perform successive iterations.
Several remarks concerning this algorithm can be made [75].

e The number of samples involved in the computation decreases slightly with each it-
eration because the samples corresponding to the points on the edges of the sequence

are discarded.

e The reason behind the elimination of the abovementioned samples is to decrease
the influence of the truncation error, which is unavoidable when dealing with a
truncated version of the WKS sampling expansion [%8]. This will become clearer

when examining the examples.

o With respect to the step 3 of the procedure. Q could be made less than N to reduce
processing delay and computational complexity. In simulations, the value Q) = vx M

could be used, where v is a scalar conveniently chosen.

s 1o keep vonstant the number of points under analysis, so that there is no loss from
iteration to iteration, the samples estimated corresponding to the outer edges of the

first and last blocks of the sequence are to be retained. not discarded.

e A particular problem implicit in the procedure is the placement of the sequence of
uniform points with respect to the sequence of nonuniform points, whose positions
are known. The uniform points cannot be placed arbitrarily with respect to the
nonuniform points because the deviation of the nonuniform points from the uniform
points is not guaranteed to be a minimum (the same for the recovery error). The

identification of the proper locations for the uniform points is called synchronization.

To explain how synchronization can be accomplished. consider the following reason-
ing. Let {r(i)}. i = 1,..., L be the nonuniform sample positions, and T the sampling

interval. The uniform positions are located at {t(i)}, 1= 1,..., L such that

@)y =7+ (- 1T+t (4.1)

where |8t} < T'. Choose {t(7)} such that the average jitter,
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- 1 &
-=72 )~ 7(2)] (1.5)

is minimized over a length of data L. The set {t(i}} reaches its optimum location if ot
in Equation 4.4 minimizes the average jitter given by Equation -L.h. By differentiating

Equation 4.5 with respect to 8¢,

L

LIRS %Z[T(l’) —{r()+ (- N1} (1.6)

=1
The second derivative of J shows that for this value 8f,,,. the set {1(2)} reaches its optimum
location. To implement synchronization, find 8¢, and place the uniform points according
to Equation -1.1. Now. several examples will be examined to show the performance of the

method.

4.1 Performance of the method for a randon signal

A random signal with a bandwidth of 2200 Hz, is sampled at a sampling rate of 1.2 times
the Nyquist rate. The number of samples taken is N = 370. The sampling is affected by
jitter hetween the values of J = 0.1 and J = 2.5. The noise that generates the jitter is
uniformly distributed. Two different sets of experiments are performed, one with Al = 3,
P =2, and the other one with Al =5, P = 2.

Figure 4.2 corresponds to the first case, and Figure -3 to the second case. In each
figure, a comparison is made between the performance of the SLEE and the SVD methods.
With the increment of jitter, the mean square error increases faster when using, the SLE
method than when using the SVD method. The latter can accept larger values of jitter
than the former. The reason is the interaction among the sample spacing, the Nyquist
interval, and the ill-conditioning of matrices.

Figure 4.4 shows the reconstruction of the signal after three iterations of the method,
for J = 2.5 and using the SVD methe! for the block processing. The first graph in the
figure corresponds to the case M = 3, P = 2, and the second to the case M = 5, P = 2.
The reconstruction is better in the second graph due to the decrement in truncation erron

with the increment in M.
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corresponds to a reconstruction with M = 5 and /2 = 2. The original signal is represented
with a continnous line, and the reconstruction with dashes.



block distribution in sizes
180 T T T —

' 1 i 1 T

160

140

number of blocks

[«)]
(=]

40

T
/

20 T

0 i ) 1 1 ! ] —:6\ T - - 1
3 35 4 45 5 5.5 6 6.5 7 75 8
block size

Figure 4.5: Number and sizes of blocks obtained lor the example where a random signal
is reconstructed from its samples. Curve 1 coriesponds to the case where the methe |

parameters are A = 3. P = 2, and curve 2 to the case where the parameters are Al =5,
P=2.

With respect to the computational complexity, the results of Appendix I© will now
be used. Refer to Figure 4.5 for a glimpse at the number and size of the blocks involved in
the calculation for this example. The total number of multiplications for the case A =3,
P = 2 is, for the SLE method, 39284, and for the SVI) method, 485724, The calcualation
does not consider the intermediate step 3 because it is common to both versions of the
algorithm. For the second case, where M = 5, P =2, for the SLE method there are 4751
multiplicatior », and for the SVD method. 688079 multiplivations.

Some observations can be made at this point. The best overall results are achioved




with the combination of the on-line itejative method and the SVD method, but the com-
putational complexity of this combination greatly exceeds that corresponding to the com-
bination of the SLEE method and the on-line iterative procedure. For small jitter (J < 1),
the combination of the SLIEE method and the algorithm proposed is more convenient to
use for the savings that are obtained in calculations, and for the results achieved. For
medium jitter (I < J < 3), the combination of the SVD) method and the algorithm gives

best results despite the number of operations involved [74].

4.2 Performance of the method for a speech signal

A speech signal with a bandwidih of 2536 Hz is sampled at 1.2 times the Nyquist rate. N =
370 samples are collected, and the on-line iterative method is used with the paremeters
Al =3 and P =2. The results are shown in Figure 1.6, with J varying between 0.1 and
2.5. The comparison between the SVD and the SLE methaods in that figure again shows
that the overall performance of the formeris better than the latter. Note that in the part
of the figure corresponding to the SLE method. not all the values for the jitter are shown
owing to the large increase in the mean square error after J = 1.6: if shown until .J = 2.5,
the MSE values would not be distinguishable for J < 1 due to scaling.

A small detail was mentioned when introducing the algorithm: it is the possibility
of not using all the values (N = 370) of the sequence in step 3 to estimate nonuniform
samples from the uniform samples estimated. Several simulations have been made to study
how the value of v (in @ = v x M) affects the results of the algorithm for the speech signal
under study. Figure 1.7 presents the results of those simulations for three different values
o1 jitter and for the SLE and SVD methods. The parameters M and P are the same. Note
that r = 15 seems to mark the point where the mean square error stabilizes for the three
examples. The expression sliding window describes the neighbourhood of points around a
particular uniform point that i- used to calculate an estimation of the nonuniform sample

associated with the sample at that point.
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Figure 4.6: Results when a speech signal is recovered from its nonuniform samples, for

varying jitter values and three iterations. The SVD method is compared with the SLE
method.
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Figure 4.7: This figure shows how the variation in Q = v x A affects the performance of
the algorithm. The value of v is plotted against the mean square error for three different
values of J. Two curves are shown in each plot: one corresponds to the SLE method (*),
and the other to the SVD method {0).
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4.3 A statistical study of the method

An important aspect of the performance analysis of the method i~ its behaviour in the
presence of jitter induced by a Gaussian noise source,

The following simulations were performed. Taking M = 3, P = 2, a random signal
with a bandwidth of 2200 Hz was sampled at 1.2 times the Nyquist rate and a total of
N = 370 samples were obtained. By varying the seed number of a randowm generator, H0
different realizations of jitter for a variance between 0.1 and 1.2 were obtained (o produce
two curves, one for the SLE method and the other for the SVD) method. Figure 1.8 shows
the dispersion of the results for the SLE method. Note the change in scaling, to be able to
present the results. Figure 4.9 shows the results for the SVD wethod. For small vatues of
the variance (up to 0.5667), both methods offer a mean square error less than one pereent.
After that value, the error increases substantially faster for the SLE method than tor
the SVD method. The results reinforce the opinion of the robustness of the combination

algorithm-SVD method when an increment in jitter is experimented,

4.4 Conversion from nonuniform sampling to predetermin-

ed nonuniform sampling

A nonuniform sampling scheme, based on the root loci of Laguerre polynomials, was pro
posed in Section 3.6 to provide a better adjustment of the sampling to signal chatacteristic
than the provided by uniform sampling. The decrease in the amount of data pocessary to
store signal information is the direct effect of this new type of sampling, sc heme, There is
also the possibility of more freedom in choosing design parameters for systems that have
relied so far on uniform sampling.

An on-line iterative procedure for signal recovery from nonuniform samples will
be proposed for the case of a nonuniform sampling scheme applied to a signal with the
appropriate characteristics. The relative jitter, .J., will be relevant in the discussion, and
the jitter will be measured against a set of reference points, {f;}, which are nonuniform
and represent the roots of the Laguerre polynomial.

In general terms, the procedure about to he described follows the one already stadied,
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Figure -1.8: This figure shows the behaviour of the algorithm when using the SLE method.
The figure is broken in two to be able to present the effect of small values of variance in
the left side, and the overall performance in the right.
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SVD method (after third iteration)
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Figure 4.9: This figure shows the behaviour of the algorithm when using the SV method.
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wi. b the obvions changes to account for the predetermined nonuniform samples which will
now be the reference points (instead of the uniform points as before).

Assume that the signal has been effectively sampled using N +1 nonuniform samples,
and that jitter has affected the sampling with a value J,. The time instants given by the
root toeus of a Laguerre polynomial of order N + 1 are termed the reference points, {t; }.
By true nonuniform samples or re fe rence samples it will be understood to mean the signal
samples at the reference points, {z(fx)}. The time positions {tx} with jitter are called
jittered pomts, {11}, and the associated nonuniform samples, simply samples, {z(m)}.

Let A be the minimum block length, P be the number of overlapping samples
between consecutive blocks, and @@ be the number of points used to obtain an estimate of
the jittered nonuniforin samples from the estimated reference samples.

The procedure is as follows,

I. Choose values of AL and I where M is an odd number (> 1}, and P is an even
number (> 2). Perform a partition of the sequence in blocks according to M and £°
as shown in Figure -1.10. Each block has to have as many reference points as jittered

points.

[

Fstimate the signal samples corresponding to the reference points from the samples.
This estimation is performed using either the SLE method or the SVD method,
and it is performed block by block. For each block, discard the reference samples
estimated corresponding to F? points on the edges of the block. For example, if the
bloch comprises six points and I’ = 2, then six samples will be estimated hut two
of them will be discarded (one on each edge). Let Z,(fx) be the vector of estimated

reference samples.

3. Ounce the sample es imation has been completed for all the blocks, calculate an
estimate of the samples I)(7x) from the estimated reference samples, z,(¢x). This

estimation involves Q points, and it is performed using the following expression:

k2 i (Ta /) 2 exp(- 25 ) [- LY 4y (7i)

i) =k§lil("~) (ri = tr) (N 41 + a)La(tx)

(4.7)
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where Q = Ay - ki + 1, which is the number of estimated samples in step 2 after
discarding the estimated samples on the edges. Ay indicates the first, and A2 the last

estimated sample.

. Subtract £y (73) from the known samples, £(m). thereby generating, the erron

(2 (m)) = 2(n) — () (1LN)

e(2(m)) is used to calculate the error in the estimated reference samples ¢ (£4(44))
by using it as the input in either the SLE method or the SVD method. Then, use

(£, (1)) to improve the estimation of the reference samples,

Io(1k) = 2 (1) + (2 (1)) (1.9

. Repeat steps 2 thru 5. until a satisfactory error 1eduction is achieved.

Some observations are in order.

The number of points involved in the computation decreases with each iteration
because the samples on the edges of the sequence are disc arded. To heep the number
of poiuts constant, the estimated reference samples at the outer edges of the first

and last blocks are kept instead of being discarded,

The SLE and SVD methods have been adapted to deal with the sampling scheme.
For the SLE method. the system of linear equations is derived from a sampling,
expansion based on Laguerre-based composing functions, instead of the Shannon
sampling expansion. For the SVD method. the original reproducing kernel (sine
function) has been replaced by a reproducing kernel corresponding to a finite signal

space [63).

Svnchronization is an important issue.  To place the sequence of referenc e point-
with respect to the nonuniforin positions in such a way to reduce the overall jitter,
the value § needed to define the positions of the reference points can be found as

follows.
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Figure -1.10: The sequence is rearranged in blocks. The first sequence corresponds to the

reference points, and the second corresponds - the jittered points.
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Figure 4.11: The axes relate the transformed domain (where the sampling takes place)
and the root domain, where the polynomial roots are located. All operations liave to rele
to the root domain so that the Laguerre-based sampling expansions are valid.

The minimization of the overall jitter will take place in the original domain of the
roots. Consider Figure 1.11. Let z = {z,} be the Laguerre roots in domain (*). Let A
min{z,}, B = max{z,}. and {7,} be the Laguerre roots. Let a = min{y,}. b = max{5,}.
Ay the minimum and Bj the maximum of the transformed roots with jitter in domain (*).

From the domain (*) to the root domain, the following transformation is applied:

b— «a al3 - bA,

T = 2 1,10
r B]-A|~+ l)‘]—f‘] ( )

where the subscript T' indicates transformation. Let Ay = A, By = B ' ° The goal of the

It2

analysis will be to find & that minimizes the jitter as it appears in the transforied values,

Replacing the values of Ay, By in Equation .10,

b—a a(B+8) —bA

= Bre At TBIE A

ft2
=3
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(b—a)z+ a(B+48) - bA

= 411
(B8 -A (111
The jitter expression that is to he minimized is
_ A ,
T = — =
NI (12— 21 (7))
| N ((b=a)z+ a(B+6) —bAY]? ‘
= i (1.12)
N+l = 1 (B+68)~ A

The differentiation will give

7 ) Ni:'.)[7.(H+5—.Al)—-[(b—n):,+a(B+5)—bA]] (b—a)(z, — )
g8 TN+ 1o T

+1 B+6-A (B+d- A):

Now, equating to zero to find value of & that minimizes J:

0

! "“2[7,(1”5_ Al)—[(b—u):,+(1(B+6)-b.~1]] (b—a)(z — A)
.\+1§ B+o- 1 (B+6— 1)

N+1

}: {rB4+s-A)=[(b-a)z+a(B+8) =bAJ}(z, - 1) = 0
=1

AN+l
Y AuB-A) = (b-a)z, —aB+bl+ (3, —a)}z,—A) = 0
1=1

which gives finally,

s m ot (B = A) = (b= @)z — aB+bA)(z - 4)
Z:\:T‘(')l - “)(31 - A)

The value § is then used to place the reference points in an adequate position to decrease

(1.13)

jitter.

Consider the following example that shows the method as applied to a transient
sigral. An ABR signal is nonuniformmly sampled according to the root loci of the Laguerre
polynomial of order 24 and parameter a = 5. This means that 24 samples are obtained
from the signal and used in its representation. The sampling is affected by jitter varying
between J. = 0.1 and J; == 1.8. These jitter values correspond to J > 3. The results are

shown for the SLE and the SVD methods in Figure 4.12. For this example, A/ = 3 and
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Figure 4.12: This figure shows the performance of the algorithia proposed when applied
to the conversion from nonuniiorm sampling to a predetermined nonunifonn samplhng
scheme. For this example, M = 3 and P = 2. Three itetations are used, with the
following symbology: (*) 0 iterations, (o) literation, (\) 2 terations, (+) threeilerations
The relative jitter. .J,.. occupies the horizontal axis.

P = 2. The SV'D method provides the best overall performance. Figure 113 presents the
signal reconstruction achieved after the use of the algorithm proposed and the SLE, and

SV'D methods. The latter method seemns to show a hetter recovery than the former .
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Figure 4.13: This figure shows the reconstruction of an ABR signal from the results
provided by the algorithw using both the SLE and the SVD methods. The results are
from the third iteration, and /. = 1.8. The original signal is represented by a continuous
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Chapter 5

Nonuniform Sampiing as a Signal

Transformatien Tool



Several applications were examined in Chapter 3 showing that methods based on nonuni-
form sampling could be used with advantage under different circumstances over methods
that traditionally rely on uniform sampling. An idea closely related to those methods
and which has received special attention in the literature concerning potential applica-
tions for nonuniform samples schemes, has been the use of nonuniform sampling as a
signal transformation tool. If a given signal can be transformed to a new domain and
an analysis performed in a more convenient fashion than in the original domain. then
the transformation applied to the signal should be encouraged. Such is the case of the
Fourier transformation, where the transformed signal gives an insight into the frequency
components that otherwise would not he evident,

With the situple example of the Fourier transformation in mind. an obvious question
is where and how nonuniform sampling could be used for a signal transformation.

There are two different instances to be treated here where nonuniform sampling
alters a signal and transforms it. The tust approach deals with the transformation of an
analytic signal. and the second with the representation of a signal in terms of a sum of

weighted sine funetions centered at nonuniform positions.

5.1 Transformation of an analytic signal

The patticular technique that is employed to perform a transformation on a signal involv-
ing nonuniform sampling is known as time warping  Under the same name, there are throe
techniques in different fields that share the warping effect with the method that will be
proposed. The first technique is used in Medicine in the extraction or estimation of evoked
potentials, and it involves the nonlinear extension and/or «ompression of the time axis of
an initial evoked potential estimate [89-91]. Th nd technique, known as the time-
warped polynomial coding method, is used for the cuding of ECG. speech, and image line
information, and is based on a general class of orthogonal transforms that rely on warp-
ing and weight functions (92, 93]. The third technique. more related to the topic of this
chapter. appears in the sampling and reconstruction of bandlimited and non-bandlimited
signals [91, 95]. This technique assumes the existence of an one-to one transformation

applied to f(t) (the sampled signal), denoted by 7 = 4(t). such that another functioa h(7)

T2




is obtained, with a sampling period of T units. I the transformation 4 between t and
7 is such that ~ 4+ nT = 4(t,) for some arbitrary ¢ and with {{,} a set ol nonuniform
time instants, then the samples of h(7) will be uniformly spaced, and ‘he WKS theotem
can be used for the signal reconstruction. To get an exact reconstruction, h(7) must he
bandlimited to wy = 7/T. With this. the transformation can be reversed, and f{t) can
be retrieved by using f(1) = h(5(t)). Substituting this relationship in the WKS theorem

with 7 = 5(1).

_ ¥ sinfwa(7 (1) = n1)] r
f(’) - n:z—\, [“"O(“I(') - HT)] (H. N

To reconstruct f(!) from its nonuniformly spaced samples {£(1,,)}. find the invertible and
one-to-one function 4 (t) such that 4(1,,) = »T, and then use the Equation 5.1.

The time warping technique of interest in this section will transformy an analvtie
signal into a sinusoid signal that will be enhanced or suppressed depending upon the

application. By analvtic signal is understood a signal of the form

v(l) = A cos(N (1)) ("2

where A(f) is called envelope, and ¥(t) is called angle (or phase). Tn fact, (1) = ®{e(1)}.
where ©(t) is called a complex—analytic signal [96]. and whose imaginary part is the Hilhert
transform of v(f). There are three cases or combmations that will be mentioned aned an

example for each one of them will be given:
o A(N): fixed-valued, W (1) time varving
o A(t): time-varying, W({): time varyin,

e A(1): time-varving, W(t): fixed valued.

5.1.1 A fixed—valued envelope and a time—varying phase

The time warping technique may perform a transformation on an angle modulated signal,
so that it ran be rejected by two types of discrete linear time varying filters [97]0 “The

angle myodulated signal v(f) can be written as
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v(l) = A,,(n.s[z‘",,(!)-i-(f)l.]

= Aycosfw,t +0(t) + ¢,] (5.3)

where A, and ¥, (1) = ¢, (1) + @, are the envelope and the angle (phase}, w,t aud 8(t) are
the linear and nonlinear terms of the phase, respectively, and @, is the initial phase of v(1).
Suppose that W, (1) is time varying (but can be known). while 4, and ¢, are ur.known hut
fixed. Consider A(t) = W,.(1) /wr. where &) is a scaling coeflicient not necessarily equal to

wy. For an appropriate choice of w7, the signal v () becomes a function of the new variable

A

1 (A) = Aucos[wid + o] (5.1

[

where 7 indicates the time warping effect. The signal v*(A) is a harmonic signal of
frequency w7 if A is considered an independent variable  Therefore. the problem of filtering
an angle modulated signal » () transforms into the processing of a single sinusoidal signal
ol lixed frequency &) and a transformed time A, There are two practical ways to perform
the transformation. a nonuniform-to-uniform transformation and a uniform-to-nonuniform
transformation. The interest here is centered in the former wav. If the original angle

madulated signal was mixed with an arbitrary signal s(¢).

u{t) = (1) + v(1) (3.0)

after having converted the angle modulated signal into a single sinusoid of a fixed {re-
quency, it can be rejected using a constrained noteh filter (98], The mixture u(f) can be
nonuniformly sampled at the time instants {t; }, defined by ¥, (t;) = 2}\& The constrained
uotch filter central frequency is then fixed at -2{- (N being the number of samples during,
the time interval in which the phase ¥,(t) advances by 27 radians). By making N large
enough, it is possible to reconstruct s(f) from the nonuniform samples, using any inter-
polation method. The time varying nature of the suppression of a FM interference (the
time variance that characterizes the linear ~stem that rejects the signal) has been eluded

by means of a transformation by nonuniforin sampling, and the relatively easy problem of

!



the design of a linear time-invariant svstem has replaced it. The synchronization problem
(to extract W, (1)) has been considered in [99. 100]. An example, taken from [98], will

illustrate this technique. Consider the signals,

sin[ 17 (t — 37.5)]
A7 (l - 37.9)
() = 10cos[2751 4+ 10sin(270.10) + Tsin(270.34)] (h.7)

cos(2m70t) {H.6)

Figure 5.1 shows the signal <(7) and the mixture u(t). along with the power spectium
estimate (PSFE) of u(t) and ~(¢). Note that the interference practically overwheblins the

signal s(¢) as seen in plot (d). Figure 5.2 shows the power spectium estimate of s(1) The
second plot in Figure 5.2 shiows the effect of nonuniform sampling in the power spectium
of u(t): a harmonie signal appears and it is suppressed by the CANE system as seey in
the plot (). The suppression takes place when the central frequency of the noteh filter i
fixed at the value of the sinusoid frequency. Plot (d) of the same figure shows the CANE
output before interpolation: it is a plot of sample values against the sample indexy Figuie
5.3 shows the CANFEF output after interpolation: the original signal is present as well s
the system transient. Plot (b) in that figure compares the original signal and the CANI

output after interpolation. The recovery is very good.

5.1.2 A time-var,ing envelope and phase

The following procedure is proposed to deal with this case. Both envelope and phase ane
time varying but knowr. The aim of the transformation will be to transform the AN/1IFM
signal into a single sinusoid for enhancement or annihilation. An example will iHustrate
the steps to be taken in the transformation.

Consider the following envelope and phase functions,

2
A(t = — 0K
(1) (15172 (H.%)
Wty = 2750+ 10sin(270.4) + 7sin(270.33¢) (5.9)

Figure 5.4 shows the integral of the envelope, as well as A1), the signal and e P25}
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Figure 5.1: ‘T'his figure shows the sienal

s{1) and the mixture u(t), along with the power
spectrum estimates of w{f) and v{f).
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the recovery after time warping. filtering and interpolation with a continuous line.



The integral of the envelope provides the basis of the criterion to choose the nonuwitorm

sampling points. Let

iy
Ay = / A(t)dt (5.10)

ty

which is a fixed constant that ultimately defines the sampling rate. The sequence of
nonuniform time instants {f;}, obtained from Equation 5.10, is used to sample the signal
After sampling, the integral of the envelope changes to a straight line and the envelope
to a constant in a new t’ domain, shown in Figure 5.5. The subindices of the pomts
{t)} are used for the abscissa axis in the ¢ domain. Figure 5.5 depicts the phase and
shape of the AM/FMN signal in the ¢ domain, along with the cortesponding 'St The
AM/FM signal becomes a FM signal in the ' domain. A second translormation is then
performed on the phase in the ¢ domain, so that the phase is sampled at the points where
constant increments happer if the phase is then drawn in a new 7 domain, with aun
abscissa axis defined by the subindex of the consecutive constant increments mentioned, a
straight line represents now the phase. and the original AM/EN signal s a sinusond with
a constant envelope in the ¢ domain. The corresponding shape and P'ST are sbown in
Figure 5.6. This single sinusoid thus obtained can be suppressed o1 enhanced according,

to the application.

5.1.3 A time-varying envelope and a fixed-valued phase

The procedute proposed for this case assumes a time varying but known envelope, awl
the phase is a straight line. This is an AM signal. and the Figures 5.7, 5.8, and 5.9 show
the steps to follow to transform the signal into a FM signal in the ¢/ domain, and then
into a single sinusoid with constant amplitude in the ¢ domain. The transformation fiom
the ¢t domain to the t' domain proceeds in a similar manner as was shown in the lat
section, and the transformation from the t' domain to the " domain, where o M signal
is transformed into a siugle sinusoid, proceeds as was shown in Section 5.0.1. T he invere

transformation, back into the original t domain, is also possible because the knowledge of

the sets of points used for the transformations from domain to domain is kept.
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Figure 5.1: This figure shows an AM/FM signal, its power spectrumn, the signal envelope,
and the integral of the envelope.
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5.2 Signal representation through the application of time

warping

Another intere-ting apphcation of the concept of tune warping i mn the tepresentation
of ¢ signal as a fimte sum of weighted <ine functions centered at ponuniform positions
01 102 The weighits (coeflicients of the sum) wre nonunforinm samples of o given menal
tahen at the nonamform time positions obtained by a time warping criterion In this
<ectiol. a representation of o signal in terms of the samples of a second unrelated pnal
and a sum of the tvpe mentioned above wall be proposed Auantermediate fune tosn wsli bae
ased 1o produce the nommiform time positions where the sime fanctions will he centered
I

Let =it be o <icual bandhmited 1o the frequenaes b o w00 andd belonems 1o the

handlingted finte enerey space BL. Represent oty the form

i) = Aty ity (i

where rtfy i~ bandlimited to o0 The spectrad densite S (e goven by the Fonnwer tran

form of 2041 for the finite length observation mterval i

! — .

( (Ddiryrine -tde b o )
S.gwp=o40 " (1Y
0 |

, [

Note that () has to be handlimited 1o g where o, b g = w0 @) can b een o a
transformation over vt} ar as an envelope By definition. @f) 1« postive <inple valaed
funetion,

For the complete specitication of z(1). according to the WRKS theorem N ~ample

are necessary. where

1
.\'Z I - l 14
NE )

with At = == and [ is a function that returns the smallest integer greates thauw or equal
m

to the argument between the square brackets. Define now the fundtion (1) a-

d-(t)
dt

=¢(1) R RY
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Replacing the Last defimtion i Lgnation 512

1
Silje) = / a2 de
Ja

\-5 1-|\

This is a Stieltje< integral that can be approvimated by a Stieltes <umnsme N equal step

increments Ay = 4,0, /N o which i< a conctant, with

I
T T / d’“)'“
J1

}

Find the points {1, } that satisfv the followmg condition

= o= \ -

I he location ol the et {I,} depends on it Once this et s abtained
densitv S (jw) can be approximated as

AN |
S (e = Z N U LA T )

b=t

T

the NI t1al

Y

where r, is o residual errors Honow the inverse Fourier tran~form 1~ calculated,

o= FTUS ()
A

= %; Z s(t) /““ R RATR 7 ACINE .F“’{r, }
=t k=0 ST
N -1 .
A‘, ’ 25]“[\4},,‘(’ - r}\)] ~1y.
= 5= g:(m et F
A s
siniwy, (I —t _
= 239 f., Z J(fx):—l“—(————‘—)—]Jrf Hr)
=0 Wm(’ - ’L)
. A
Z([) = 2[”(“]1‘17. Z I(’[\)Sl"‘(‘[w‘,”“-—’k)]+f_l{7‘(}

k=0

{H.19)

If the functions =(f) and r(f) are provided, the transformation @ could be tahen as

the ratio of these signals,




d(1) = ~—: (M

with the necessary restraint on @©{7) to be a positive single valued tunction 1 s even

where positive, then its integral is monotonically increasing, making possible the calon

lation of distinct and successive values {5 To obtain &), the samples available tor (0
and rit) (taken at the same time instauts) shonld be used. The wtegral of ¢ would he
obtained, and from it the set of points {#;}.

As an example for what has been proposed, consider now Frgures 5.0 and 71 Twa
random signals, z() and (1), the first with a bandwidth of 283 Hz,iond the secomd with
a bandwidth of 127 Hz, are shown in Figure 5,10 along with their cotresponding power
spectiums. In Figure S.110 the signal @(7) 1s shown as well as its integral. The set {t, )
i~ obtained from this integral by using Equation 5070 and it is used 1o <ample ai0) and
to center the sine functions that appear in Equation 5.19. The 1epresentation ol (4 1
shownin the final plot of Figure 5 11 The number of points g used 1o represent (1) 1= the
same as the minimum number of samples that according to the WKS theoremn s needed
to1econstruet (1), See Equation 5,13, 1t is also possible toincrease the number ol pongt
ti by inereasing N in Equation 5.170 and the result would be an improved representation
The signal representation in Figure 5,011 uses N = 25, which = the mintimum number of
points to reconstruct z{#) from uniform samples,

Figures 5.12 and 5.13 show a second example for the type of representation praposed

i this section, This time. the signal #(1) is a train of four trangulin pul<es,
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Lios thesis has been concerned with the applications of nonunitornn ~ampling techngues
based on the concept of time warping as well as with the predetermmed nonunitonn
sampling defined by the oot loar of orthogonal polyuounals  The signal tecovery trom
nonuniform samples has also been examined. and methods of teconstiuction for <hort
length intervals have been used within aniterative procedure to recorer signals over longer
mtervals,

The following are the contributions that have been made by this research They aie

accompanied by condlustons.

I Definition of certain finite signal spaces from integral ttansformations hased an o
thonormal series expansions, for which the combination of htamer’s generaized <an
pling theorem and the theory of reproducing kernels pioduce sampling expansions
whose coeflinients are signal samples taken at the root oc ol orthogonal poly nomial

Results are obtained for the Laguerte, Hermite, Jacobi, and Bessel poly nonnal-

20 kxtension of the SVD method of signad recovery to transformed domains other than
Foutier. by considering the reproduding hernels associated with those domatns By
this extension. transformations lihe sine. costne and Hanhel can exhibat then owy
version of the reconstruction method. The above mentioned linite <ignal <pace
have their reproducing kernels. and by the same principle, the SVD method can he

extended to these.

3. Extension of the SLE method of signal recovery to sampling expansions other than
the WKS campling theorem expansion. This generalization is as straighttonward a-
the one concerning the SV'D method, and it can be used for fimte or infimte samphuog

expansions.

1 Use of the root lod of orthogonal polvnomials in signal compression, FIR digital
filter design. signal recovery from nonuniform samples, and signal representation by
nonuniform sampling. The roots of the modified Laguerre polynomials, B0y are

included. and they forin a mirrored image of the roots of the origial polvnongals

S, The applicability of the SVD recovery methad is extended from <hort length interval-

to longer ones by the use of an on-line iterative procedure for the signal recovery from
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nominitorn ~amples which rearranges the mput cequence of samples mtaoverlapping
data blocks The procedare is fusthy emploved for the case of umifornn <amphng
patterns altered by ptter but it de chown that 1t can also he nsed for the case
of predeternumed nonumforn sampling patterns ongimating from the roat doa ol
arthogonal polvnomials. o measnre the deviation of time posttions from those
predetermined sampling patterns. a relative jitter parameter Lo is used nstead of

B parameter S corresponding 1o the umform sampling case,

Vohen the pracedure mentioned above s used i conjunction with the SVD method,
the overal)l petformance 1 recovery s very zood hut the computational hurden s
higher with tespect to the one obtained wane the procedure with the SLE method
This sugeests that the cotbination of the SLE wethod and the procedute s mere
comvenient to ase for the case J o 1 than the other combination hecause of the
savings gamed i computational complexity Forthecase < < 3 the combination
of the SN D method and the procedure is more convenient than the other one hecanse
ol the qualitn of the resulte even though the computational caomplexity increases

substantialh

Use of the time warping techmque tor the enhancenent or suppres<ion ot an AN FN]

of an AN sjpnal,

Expansion of the concept of signal representation in terms of « fitte sum of weighted
sine functions centered at nonunitorm time positions.  these nopuniform time in
stants are obtained by the time warping technigue from information provided by,
(1} the function whose representation is sought, and (2) another function. unrelated
to the first one, from which samples will also be taken at those nonuniform time

posicons and will be used as the weights of the expansion.

I'he main contribmtions of this research are: (1) the derivation of sampling expan-

sions whose coetlicients are signal samples taken at the root loei of orthogonal polynomials,

amd {2) the introduction of an algorithm for the on-line iterative recovery of a ~signal from
o R [

nonuniformh spaced samples.




Among the tuture tesearch topies that can be explonod concermme the theme tdued

i thi= thesi=o we have the following

o Obtain ~amphug expansious for other svstems of orthozonal polvnonal waeh
terestine haractenistics, bke the doubbv arthioeonal covcentiated pobvin el The
mtegral of the squared maguitude of these polvnomials s nrasinum an anterval /
at the expense of the same integral evaluated i another mtenval 1 T he polviond

are orthogonal on bothomtervals, Joand L1040 101

o liprove the signal representation proposed for burst type sienad- by estanh b
procedure that will use that representation as a st approxamatien heeoal of than
procedure will be to dommish any existing zasadpnstmeny Tplement an alvont b

that will process any number of transient signabss resultme o overall compre -

o Descnibe the svstem that will soppress o enbance an AN T o an AN o]
asing the tiine warpime technigque  Thisamvolves the solution of the svnchiomation

problem tor the phase taneley and amphiode parts of the <ional

o Linploy the stgnal tepresentation m terms of o imte sum of werehived < funanon
centered ot nonuniform tie instant=c1n the signal recovery fromoarreaularhy < paced
~amples  Start with tvo <ot S} tsamplesi and {1} ttoee positionss ohitam
a fst estimation of wndonn samples Jrtad ] and ase several ateration of the

algorithim proposed i this thesis to teconver the onginal sienal. 100
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Several functions and constants that have been used in Chapter 20 are defined below, i he

- =

notation follows felerences {.—» .

o Lapuerte Tranormation:

N +a (-nv
Iy = 1o+ 1) .ok = — wir)y=r"¢’
A AY:

o Jacoby Transformation: The weight function has already been indicated,

/"lm+\+m(wx+n 2ol
B T P N R

oo+ N 4+ 1) T+ 342V + 1)

by = —
K Ao+ 3+ N+ 20 '+ N +1)

e Hernmte Transformation:

e Bessel Translormation:

(=1 NN (a) RN +a-1)
2N +a- DN +a=1) \_b\'l(.\ +a - 1)

h =

. . . , !
Notein the last equation. for the case a = 2. a # b, ple) = « "3, Also, j= V= 1.
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Appendix B

Equivalence Between the Two

Methods Utilized in Chapter 3
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The two methode wtized an Chapter 3 give <pmilar results in recovery from nonunitorm
satmples, thus those methods may be considered as equivalent ones, as the following rea-
somng demon-trates, Accordimg to the SNVD method [6]0 the solution to the reconstruction

proablem is
Lit] = L.t nlgin,

where glu] is the observations vector, and
Lottony =3 u 0A7 v, )

is the hernel of the right inverse operator L. Recall that up (1) are functions centered at

the time instants where the <amples have been taken:
ay () = A ekt
T

where At 4,0 1= the reproducing kernel evaluated at the time nstant £ andd at e imple
instant £, I the absence of jitter, it the samples are tahen at the valves aives oy the
toats ol the dassical orthogonal polyvnomials of ordet N + 1,

Aty =bi1.))5,(1)

where b{f,) i~ ¢ normatization constant. and S, (1) i~ an element of the orthonormal <et of
fune tions derived from the reproducing kernel in Chapter 2. The cieenvalue-elgenvedcton

equation (6]
AR [ o] = Mejn

that defines the telationship among singular values, eigenvectors. and the matiin A A .
simplifies when the samples are taken at the aforementioned values. Note that the entries

of the matriy equal A {1,,.1,,). and

. bit,) fn=m
h (’n"m) =
0 otherwise

Therefore, the eigenvalue-eigeuvector equation can be written as

oy 0 0 .- 0
0 b)) 0O .- 0
v[m] = Ax[n]
0 0 0 bitn) 0
0 0 0 0 bitxe)
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ot the ty pe of square matnin descmibed above the eraenvalues have the tonm A7 e

and the etgemvedtors

rﬂ (lﬂ -(ﬂ PUW nj n1
0 ] 0 0 { 0
0 () ] ( ]
ELO0 =0 any=40 Uy TN EREN SN
| {0 ]
0 0 0 ) | ()
-()A L(,J L().. L“A L(\~ |

T he particular configuration of the X< and ot the eigensectors ~sinuplify the expres wms fon
w, () and for [, (¢t ny as only one of the factor-an the pespective sum will be ditterent
from zero.

w{ty = ,\;lZnUl)l\"',) = \:‘S«r,(u)hil_)h.,qll N th s

Ao, another expression that is simmplified i~

L,tt.n) = Zu (N ey = N aqr - N Chras i S it
Finall,
Wty = Ltou)gnl = Zq(u)[,(f nyoo- }_::/(u)\. it

which is equal to the reconstruction formnla impletnented by the ~ampling o« pan oo
approach. This re~ult can be espected to be appronimatels valid even wath cnadl vale
ol jitter.
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Division by Zero in the
Evaluation of Sampling

Expansions
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One particular problem found. when caleulating the values of functions computationally
from the kind of sampling expansions derived in this thesis, is the appearance of divisions
by zero when the evaluation point is close to a polynomial root according to computer
accuracy.

A solution to the above problem is to express the composing fund tion present i the
sampling expansion in an equivalent wav. where it is absent from the denominator the
factor that produces the division by zero.

As an illustration, consider the Laguerre-hased sampling expansion detived in Chap
ter 2. The general expression for the composing function has heen shown to be,

’k(’/’k)“"‘)“xl’(:’(}’;‘&)[*h{ r1)

S = - )
HO (= t)(N + T+ a)L3(t) (.1
so that the sampling expansion for a function [ of finite support N is
N4
fy =3 frasu (C.2)
h=1

The polynomial LY (*) can be expressed as:

I,-'\+l(f) = (l,\+|1‘\‘+‘+n\-f\+u,\_,l\"-}----+u,l+u(,
ny : Uy, - - 4 7]
= 4N [fl\+l+ I\-f— ! II\ l+.. + ! f - AL
N+ aN 41 N Ny

axgr (8=t =)= 1) - (b= INHE =ty )]

where {r.} are the roots of the polynomial. Therefore,

N+1
Lty =avp [ -1
=1
For the Laguerie polynomials [51].
(=ptH!
aN4) = e
N SN

Combining the last results into the expression for the composing Tunetion:

(e /1) P exp(=EA D (= LR, (D]

(t = )N+ 1+ a)LR ()
u(r/n..)“/’exp(i’,ﬂ)(al)ul-.'T-.II‘,:’u - 1)
(=N +1 +(1)L‘]{,UA)

TN _1\N+2 N+
it /) exp( G0 VT e - 1)
(t—=06) N+ + n)[,‘,(',(li)

Sk(t)
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Forl = k, t; = t;. Therefore,

! . (- N+1
(_l)l\"k('/'k)(./Z(‘x[)(—(%m)l_l[:].[;el_([ - f{)

N+ DN + 1+ ) Lg (1)

The product of factors present in the last formula needs for its evaluation the knowl-
edge of the polynomial roots. A good program for finding polynomial roots is presented
in [105). On the other hand, when calculating polynomial coeflicients from the roots, the
computation can lead to large errors despite the fact that the polynomial may have the
best numerical condition. To avoid this problem, a re-ordering of the roots (the so-called
Leja ordering) can be used to correct this problem [106).

The final expression for the function f is

Sk (1) = (('3)

N4 (=0t /i) Fexp(UF LT, - 1) .
[y = IL=‘I ft) NT NI+ L%(0) (C.1)
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Intermediate Algebraic

Operations
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Several relationships have been given in Chapter 2. The algebraic operations that justify

those results are shown here,

D.1 Jacobi transformation

D.1.1 Composing function for the Jacobi transformation

What is left to do to find the composing function is to evaluate the integral
: 2
K, t)*dr = lim K (¢,
/-‘I (1) Jim K1 4)

which will provide the normalizing constant. Let

Qi TN+ 0N +a+342)
IN+ta+3+2T(N+a+ NN+ 3+1)

= A(ﬂ. J)

Now, we will have,

¢,

P(“ 1) P(En,d) {
lim N(t. 1)) = tl_illtlk[u'(l)u'((k)]%,\(u.J){ \+1(({)—;\k) (th)

s K r
= A((l /'))U (/A)l’( })( ) : P(\+:)( )]
t=1t,

dr
e .\ )j 2 { 0 M
= Ao At PU() ——i—“-zi-i—] [P+ 40)]
-A\' Ai 1 o X
L Y
L

t=1,

= A A ()P

The composing, function will he the ratio of Equation 2.26 and the last result. which
appears in Equation 2.29.

D.1.2 The particular case r = y in the reproducing kernel

The reproducing kernel for signals of finite support was established to be

Hl (] 1.1 b) n,.i @, li
1_—£\+{1)( ) ( 1)( ) P(\ )( )PI(\-H)( )
(r-y)

K(r,y) = [w(z)w(y)z Ala, 5)

Wher r = y. the L'Haspital rule when applied gives

Po )P ) - PE ) PR )
(x - y)

K(y.y) = Il.i.l*uu[u'(.r)u'(y)]%A( /i)
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(A IYY a, wa 1 ‘..A“
) “'(U)A(O.J){l’f\- Kt )[ P(\H{) ] - 1)\+;)( )[;,.1'(\' )(.r)] }
Y
= u»(y)/\(ﬂ‘d) {1):(\?4?)(”) [\ + 2 +(l ] ’( Tt 1) )

o N+t+a4+3 atla
P,(v+'1)(y) [———-——~] P, +1' ’“)(J)}

)

4

When using the reproducing hernel K (., y) in the SVD method (which justifies the title
reproducing kernel approach to the procedure), the samples will be located at points 4. 1l
in the absence of jitter, and if these points y are roots of the Jacobi polvnomial of orde
N+ 1. K (y. y) simplifies to

1. ‘\' 2 ‘1 o N
K(y.y) = wy)Ala. H PP () ——*——*—i—‘] PRt

2
D.2 Hermite transformation

D.2.1 Composing function for the Hermite transformation

The normalization constant is calculated in the following way:

. , oxp(- [‘ gy ])umu)n,\(m
ST ! = ]
/_ ALt flll]’IA ANHINY (b~ 1y)

exp(=t{) Hn(t) | [HMIU)]
DNHINL/T o s L (- 1)

vxp(—ff.)”,v(’k)[__ , }
INHINY /7 cl.r[”‘\““)] =1,

Making use of the equality 3";]11\'(0 =2NH, (1) [51],

exp(—t3) Hn(ty)
NZDARENN

Dividing Equation 2.27 by the last constant will produce Equation 2.30.

/ IR (1 ) [Pdt = 2(N + 1) Hn(14)

D.2.2 The particular case » = y in the reproducing kernel

We have the following calculations for this case:

hm K(z.y) = Cexp(= T {Hnaa () Hx () = M (o) naly)}
lim K(z,y) = lim NN 7 (s — y)
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1] ) ’ 1

- z“\)\:l(/\:/\/)‘ {”/\( )[( Hygilr )]
exp(—

- 2,\“,\,,\/_[!!
exp(—y?)

= geriNTE 2N+ DA () = 28 Eavada o (9)]

ol _
K(y.y) = g_q_)(_y_) (-N”rl)”,‘%'(y)—NHH:(y)HN_u(y)1
J

N NL/E

When y is a root of the Hermite polynomial of order N 4 1:

- Hxi(y) [;]('1; H‘\'(-")] 1=J

Ir=y

NN+ DHN(Y) — Hyg (9)2N Hy 21 (y)]

K(y.y) = ZAP(\,.\/-(NH) Hi:(y)

D.3 Generalized Bessel transformation

D.3.1 The composing function for the Bessel transformation

The normalization constant is calculated in the following way:

) oy _ EDMTUTIN +a)yn (i) [d
‘%ll\(,’“)l i = (2N +(1)’\'l’((1) [1! '\HU)]r t
(=DM pt)PN + @)un(th) BN + Dyx(1s)

2N + a) N1 (a) 2R(N+1)+a—2

The following relationship has been used [57] in the last step:

d 1

AL (2N YR Ao
(”3/1\(1) TN 1o [\2 +a—2)t = BNJyn(t) + bNyx 1 (1)}

which when applied to the present case and evaluated at ¢ = {; (a root of the polynomial
of order N + 1), will give

[(1 ' (l)] _ (N + Dyn{tr)
a NN T ERN T ) +a-2)

The normalizing constant will then be

: 2, (=DN*p(t)T( N+a)yN( )b(N + 1)
‘%ll\ (t,tk)l d( == (2Ay+a)j\7!r [2 ]V+ 1) +q- 2]

Equation 2.28 when divided by this normalizing constant will give Equation 2.31. Note
that, even though the reproducing kernel is complex, the composing function is real. The
SVD method can not be used with the reproducing kernel because it is complex.
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D.4 Laguerre transformation

The particular case r = y in Equation 2.12 will now be analyzed for the Laguoerre trans
formation. Taking the limit when r - y.

f+3/)
2 T(N+a+1)

I'(N +2) d o
m{["‘*‘”] Fn ol

d (4] I
[?1; Ly a1 (I)L:y L‘\'(y)}

The following identity will be useful [56):

K(y.y) = lim(ry)*/ exp(- Y +2) {L““”z‘““’) \iﬂ.’]’\‘-’”}

r-n

= y“exp(-y)

d | N . N
EL\‘.\'(‘T) = ; [4\ IJ‘\'(.I’) - ( \ + (\)L N (I)]

Using the last identity in the present development,

TN +2) { i

K(y.y) = y'exp(-y) I . [NLI () = (N + o) Ly )] L y) -

N+a+)
(34 DL () = (3 o+ L3 0] L3 ()}
(N +2)

1
y

= y"exp(-y) X LUV + o+ D/nL )] = (L (/oL

N+a+l)
—((N+ ) /YLy (WL 11 ()
« r(‘\' + 2] ’ r 2 o o
= y (‘XP("y)m{HA\ + o+ D/[LN ) = (LN () )l v y)
N+ a) Ly ()]}
a1 (N +2)

=y “Xl’(—y)m

(N +a) L ()]}

{(N+a+ DL = L (nlla(y) -+

When y is a root of the Laguerre polynomial Ly, (r), then

, _ NN +2)
Ky =y" 'exp(‘y)r( S (N DLR-(y))

N+a+1)

11K




Appendix E

Modified Laguerre Polynomials
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E.1 Definition and calculation of composing function
Define the modified Laguerre polvnomials as

Ry(rd = Li( = ) (1

where 1, is the largest root of L3 {r).
The condition of orthogonality and normalization for Laguerre polynomials is [56]:

~ } n+ n A
[T L L ede = P+ 1) S 1)
JO n
Now, let r = v,, — y. therefore
=) apa . ‘ nta
¢ " (11.“ - U) 1‘7;(1/71 - y)Lm(lln - U)‘IU = l (“ + l) l»,,,”
T n
=) o pou ‘ N4 o
/ T = ) RO L G = y)dy = Pla 4 1) S
- n
= $(a,n)d,, {1.3)

The last equation indicates that R (y) is orthogonal in the interval ] =~ is,] with respect
to the weighting function ¢ =" =9 (y, — y)*. Rewriting Equation .3,

/Uu (—(l’n"U)/z(V“ — 3/)"/214;:(1’” — u) (—("v\'!l)/‘!(p” — y)"/'z[/":‘(,/” — !/)

. dy = &,
Jon [@(a. n))'/? [@ (. m)]' 72 Y
This means that the orthonormal sequence defined by

e~lm=w2( gy 2Ly (b, — y)
[P (a,m)]H/2

v () =

define an orthonormal series expansion expressed by

A
f=Y Fom)va()

m=0
with f being of finite support NV, if we follow the ideas presented in Chapter 2. 1f instead

of v, it is used vp 41, the orthonormal sequence obtained will be of the form

(A-(.:~+1—v)/2(VN+, - y)“/'lL‘,;‘(l’NH -Yy)
[®(ar, 1m))V/2

which will be defined in the interval |—oc,va 41]. Un 41 is the largest root of the polynomial
L%,,(y). Calculating now the reproducing kernel.
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N

I\'(J'.y) = Z ’o’r.(.’/)'-'74(-r)
n={0
_ oy (e e e ),
et [®(a, m)]/2
Ry gy = 0) g (vng — o)
[®(a,n)]1/?
X ROy = y) (ra g = )L (a4 = y) L (va g = 7)
- = d(a.n)
N
. , o Litvxgr — y) L — )
! ‘M'l(Hy)/z[(“.\'M - yrNe — -T)] /2“2_—% +l 4’(()1.;:) a
From [107].
YLl TV ER) L)L) - Ly (0L )
= dlan) NN+a+1) (¢ = y)

= 1

If the following change of variables is performed in the last equation.

!
L= Uy T
!
y = Ny Y

one will have,

(N +2) LR'+1 (V41— y')Lf{’("NH -1') - Ltf‘\'+1("l\'+1 - J")Lf{'('/.\‘ﬂ -y

I = —=
PN +a+1) (vn41=2") = (vNg1 = Y)
PN+ R ()L (ena — ) = Ry () LR (vvr — 0)
T P(N+a+1) y -

Substituting now to find the reproducing kernel, one will have,

) st (240 w2 T(N+2
Kiry) = 02y, - y) oy - 7)) ’z‘r(z\‘——“f +a+)l)
Ry sy () LR (41 = ) = Ry (@) LY (vvar —9) (E)
y—r

with —o0 < r,y < va41. Choosing now y = tg, where {5 is one of the N + 1 roots of
Rx41(y). the expression for the reproducing kernel changes to
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. . : 2 ar LV 42
K(r.ty) = 7o U000 o) (i 40 = )] /.l_‘(——.\'_Jr_:n_T]) A
Ry (LS (v 41 = 1)

(r —1y)

(1.5)

To find the composing function corresponding to the reproducing hernel alteady found,
one needs only to calculate the normalization constant:

Nty e Gt C TN 42
/_\ W (. tp)]2de = Jll-'»'zl.‘ N R = ) (v —I)]”/.I‘(.\S 4—%—;’-” .
Ly (vngr — )R ()
(r—14)
I'(N +2)

— (-“‘\+‘+“\(V‘\'+| - ’L) 1! L‘{'(V‘r\'.}] _ ,L) .

F(N+ta+1)

" d
___lu'
L(]J‘ ‘\+](I)].r=lk
- F(N+2)
— Pangrtiag, S P | L A AN YIS .
( (ragr — 1) R ”lx(l.\ﬂ 1)
I d
LY (N —
77 NN ')]m“

Applying the relationship for the first derivative of a Laguerre polynomial {56].

, =1)
Lyplvng —1) = (

d
da UN4y — T

[N+ DLy v =) = (N +a+ DL (rn gy - o))

With & = t;. a root of R, (r). the last expression simplifies to

d ., (N +a+ 1)L (vagr = 1)
[_LA\'+1(".\'+1 -7 = A
dr r=ty UNy1 — ’k

Substituting in the equation for the normalization constant,

VN i ~UN41HL . -t u—ll‘ “\' 2 14”! ™ -1 2 A . l
/ -“I]\(-Tvtk)lzdl‘:( (Vl\+l k) ( '+ )[ l\(l/\+l k)] ( + - )_
Jooo F'N+a+1)
(F.6)
The composing function will then be of the form (after dividing Equation E.5 by Equation
E.6),

(r—tx)/2 ; — 1-a/2 Un - u/')Lu’ Un -
Si(z) = € (vnv41 — ty) (VN 41 ) 11 (UN41 = 7) (7]
(x = )L} (N4 ~ )N +a + 1)
((T—“‘)/z(ll}\'.'_] _ t‘.)l—“/2(VN+I _ 1)(./21{R'+|

(r —t)L{y(vnsr - ) (N +a+1)
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E.2 The particular case when » = y in the reproducing

kernel
Consider the expression for the reproducing kernel (Equation E. 1) with a =0,

RypilyYa{vagr —0) = Expl(n)Lalon gy = o)

I\'(_r‘y) — ('~l"\.’|"1+y)/z(‘\.+ I) [

y—r
Making » = y.
. v wene d
Kly.y) = ="+ ¢"(N +1) {H'\'H(y) [J;L\'("\“ ~r) —Ia(ragyy —y) -
d
J;Il\‘+l(”\+l - Jl)]J:V}

. r N
= (""\-fl(’/(,\ + ]){l{\+](1/) l-ll—\-—————
+

r(ll\(l’\+] - J') - I,\_](I‘\+| -".IH}

N+
Ny — T

=Ly (i *!I)[ (Laii(ngy =) = La(vn gy — -f))]}

1=

S nRU(N 1)
= ’ ( ) {\ H.\'+1(.’/)[L.\‘(”\+l =yl = Ly (a4 — !/)}—
UNgtr — ¥
(N+ DLa(ras = DIH vy = Ly (vvg - )]}
(TN 4] )
= (N + DIy =) = Expbvtng —u) +
PNy — ¥

NIy j{rng - .',’)]}

If yis @ voot of Kyyq(y). then

‘:,\+1+u(‘\- + 1)2“‘\“/\_“ . y)].’
PNgy = ¥

Ky.y) =




Appendix F

Computational Complexity of

SVD and SLE Methods
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F.1 SLE method

The compntational work performed in the solution of the system Ax = b by Gaussian
elimination is divided in three steps: caleulation of mul.ipliers, elimination, and back
substitution [108].

1. If we consider only divisions and multiplications as the relevant operations. for the
first step there are ﬁ“—l)z(l:y operations, where n is the number of equations.

I ~1)(2n=1) :
2. For the second step, there are ﬂl’——%‘—’—‘——— operations.

P . - - 1 .
3. For the last step, there are & ”.2(" 2 4 ol ) 4+ n operations.

The final rumber of operations is given by the sum of the thiee counts,
I A

W+ Gn? — 80+ 12
6

The last euation is restrained to the syvstem of linear equations. If the number of

ASLE =

. Ve . . ¥ .
aperations needed to caleulate the coeflicients of the system is included, n* more operations
have to be summed to the last result. Therefore,

HSLE = Aspe 4+ n®
W4+ 120% - 8u + 12
6

1.2 SVD method

The operation counts for the SVD method will be based on the second version of the
method, that was presented in Section 3.1. There are five steps. Assume for the calcula-
tions that m = p.

I. The formation of matrix B takes m? multiplications.

2. The sccond step is executed in two main stages, according to the algorithm proposed
in [109]. The first stage consists in the application of Householder transformations to
reduce matrix B to a bidiagonal form, and the second stage consists in the application
of a variant of the QR algorithm to find the singular values of the bidiagonal matrix.
There is an intermediate step between both stages, which consists in the initialization
of the matrices U and V, which contain the left and the right singular vectors of
B. The reduction to bidiagonal form has m® floating point multiplications. The
initialization for matrices U and V implies %m" multiplications. In the second stage,
the rotations that are used to reduce the bidiagonal matrix to diagonal form must be
multiplied into the arrays of singular vectors. If r designates the number of rotations,

then the amount of multiplications performed is 8nr. The number r is difficult to
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estimate. The reduction of the kth superdiagonal element requires no more than h
rotations. There are approximately m superdiagonal elements that must be reduced
until they are considered to be zero by a given convergence eriterion. Thus, if «

is the maximum number of iterations required to reduce a superdiagonal element,
12
r < 5sm? [69].

3. The third step takes 2 4+ m operations.
4. The fourth step takes 2m? aperations.

5. The fifth step takes m? operations.

The approximate number of operations (counting only divisions and multiplications)
for the SVD method. for a set of m nonuniform samples is

. . R ,
Hsvp = m? + ;;m" + 8mr 4+ 2’ +m+2m* + m*

L3 4 12m 4+ 2 tmr + 3
3

(F.2)
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